Science.gov

Sample records for administration planet profile

  1. 2010 Profile of a Research Administrator

    ERIC Educational Resources Information Center

    Shambrook, Jennifer; Roberts, Thomas J.

    2011-01-01

    This paper expands upon the seminal work of Roberts and House, which described the first empirical study of the demographic profile of a research administrator. The original work was based upon data from the 2005 Research Administrator Survey (RAS), a regional study of research administrators in the southeastern United States. In this paper,…

  2. 77 FR 26819 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BLUE PLANET; Invitation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Maritime Administration Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BLUE PLANET... the vessel BLUE PLANET is: Intended Commercial use of Vessel: ``Charter to Boy Scouts of...

  3. Formation of terrestrial planets in disks with different surface density profiles

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader; Winter, Othon C.

    2016-03-01

    We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbital configurations of Jupiter and Saturn. We carried out simulations in the context of the classical model with disk surface densities proportional to {r^{-0.5}}, {r^{-1}} and {r^{-1.5}}, and also using partially depleted, non-uniform disks as in the recent model of Mars formation by Izidoro et al. (Astrophys J 782:31, 2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because as a result of the interactions of giant planets with the protoplanetary disk, secular resonances will also play important roles in the orbital assembly and properties of the final terrestrial planets, we will study the effect of these resonances as well. In that respect, we divide this study into two parts. When using a partially depleted disk (Part 1), we are particularly interested in examining the effect of secular resonances on the formation of Mars and orbital stability of terrestrial planets. When using the disk in the classical model (Part 2), our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results of our study show that in general, the ν _5 resonance does not have a significant effect on the dynamics of planetesimals and planetary embryos, and the final orbits of terrestrial planets. However, ν _6 and ν _{16} resonances play important roles in clearing their affecting areas. While these resonances do not alter the orbits of Mars and other terrestrial planets, they strongly deplete the region of the asteroid belt ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In the

  4. FLICKER AS A TOOL FOR CHARACTERIZING PLANETS THROUGH ASTERODENSITY PROFILING

    SciTech Connect

    Kipping, D. M.; Bastien, F. A.; Stassun, K. G.; Chaplin, W. J.; Huber, D.; Buchhave, L. A.

    2014-04-20

    Variability in the time series brightness of a star on a timescale of 8 hr, known as ''flicker'', has been previously demonstrated to serve as a proxy for the surface gravity of a star by Bastien et al. Although surface gravity is crucial for stellar classification, it is the mean stellar density that is most useful when studying transiting exoplanets, due to its direct impact on the transit light curve shape. Indeed, an accurate and independent measure of the stellar density can be leveraged to infer subtle properties of a transiting system, such as the companion's orbital eccentricity via asterodensity profiling (AP). We here calibrate flicker to the mean stellar density of 439 Kepler targets with asteroseismology, allowing us to derive a new empirical relation given by log{sub 10}(ρ{sub *} (kg m{sup –3})) = 5.413 – 1.850log{sub 10}(F {sub 8} (ppm)). The calibration is valid for stars with 4500 < T {sub eff} < 6500 K, K{sub P} < 14, and flicker estimates corresponding to stars with 3.25 < log g {sub *} < 4.43. Our relation has a model error in the stellar density of 31.7% and so has ∼8 times lower precision than that from asteroseismology but is applicable to a sample ∼40 times greater. Flicker therefore provides an empirical method to enable AP on hundreds of planetary candidates from present and future missions.

  5. Flicker as a Tool for Characterizing Planets Through Asterodensity Profiling

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Bastien, F. A.; Stassun, K. G.; Chaplin, W. J.; Huber, D.; Buchhave, L. A.

    2014-04-01

    Variability in the time series brightness of a star on a timescale of 8 hr, known as "flicker," has been previously demonstrated to serve as a proxy for the surface gravity of a star by Bastien et al. Although surface gravity is crucial for stellar classification, it is the mean stellar density that is most useful when studying transiting exoplanets, due to its direct impact on the transit light curve shape. Indeed, an accurate and independent measure of the stellar density can be leveraged to infer subtle properties of a transiting system, such as the companion's orbital eccentricity via asterodensity profiling (AP). We here calibrate flicker to the mean stellar density of 439 Kepler targets with asteroseismology, allowing us to derive a new empirical relation given by log10(ρsstarf (kg m-3)) = 5.413 - 1.850log10(F 8 (ppm)). The calibration is valid for stars with 4500 < T eff < 6500 K, KP < 14, and flicker estimates corresponding to stars with 3.25 < log g sstarf < 4.43. Our relation has a model error in the stellar density of 31.7% and so has ~8 times lower precision than that from asteroseismology but is applicable to a sample ~40 times greater. Flicker therefore provides an empirical method to enable AP on hundreds of planetary candidates from present and future missions.

  6. Method for calculation of ionization profiles caused by cosmic rays in giant planet ionospheres from Jovian group

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Ruder, H.; Mateev, L.; Buchvarova, M.; Kostov, V.

    As a continuation of our studies of cosmic ray (CR) ionization in the atmospheres of the planets in the Solar system [Adv. Space Res. 27 (11) 1901, 2001a] we present a new method for the calculation of the electron production rate q(h) profiles due to particles of all energy intervals: galactic CR, anomalous CR component and other types of high energy particles. In the above mentioned paper, ionospheres of terrestrial planets are investigated, where the spherical model is used. For giant planets which have significant oblateness in spite of the isotropic penetration of the galactic CR in their atmospheres, the trivial integration on the azimuth angle is not applicable, because of the presentation of the planets as rotational ellipsoids and the azimuth dependence of the integrand function. The difference between profiles for spherical qS and ellipsoidal qE models of the terrestrial planets (Earth, Venus and Mars) is small. These differences in the qS and qE profiles increase significantly in the upper atmospheric layers of outer major planets. This requires the introduction of a modified Chapman function for oblate planet in the particle depth parameter (PDP), while considering the CR influence and ionization processes in the ionospheres of the giant planets. New calculations for relative profiles qE/qS in the atmosphere of Saturn are presented. For this purpose an improved primary CR spectrum with a new type of smoothing function f with tangens hyperbolicus is used.

  7. Profiles of School Administrators in South Korea: A Comparative Perspective

    ERIC Educational Resources Information Center

    Kim, Songmi; Kim, Eugene P.

    2005-01-01

    Research literature considering school administrators in South Korea is disappointingly sparse. A central focus of this article is to investigate vital descriptors of Korean school administrators, including demographic profiles, entry perspectives, pre-service and in-service training and career commitment. Secondarily, the findings are compared to…

  8. Radiative cooling profiles of the Jovian-planet atmospheres in radiative-convective equilibrium

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hashimoto, G.; Ishiwatari, M.; Takahashi, Y.; Onishi, M.; Kuramoto, K.

    2014-04-01

    In order to understand cloud convection in the Jovian-planet atmospheres, we have estimated the radiative cooling profiles with a newly developed numerical model. This model computes a radiativeconvective equilibrium state of atmosphere with given potential temperature and composition of deep atmosphere. The modeled outgoing thermal radiation and tropopause level are found to be little dependent on deep H2O abundance. From the modeled radiative cooling profile as well as the extent of wet convection zone, one can derive the temporal interval of tall cumulonimbus activity by equating the amount of radiative cooling and latent heat release associated with vapor condensation. The estimated interval increases with deep H2O abundance. Prolonged intervals of large scale cloud features appeared on Jupiter and Saturn imply enrichment of H2O in their deep atmosphere relative to the solar proportion, consistent with the estimation range from studies of internal structure modeling.

  9. Business Administration and Management. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) for business administration and management is an employer-verified competency list that evolved from a modified DACUM (Developing a Curriculum) job analysis process involving business, industry, labor, and community agency representatives throughout Ohio. The competency list consists of six…

  10. Dayglow Emission Line Profiles from the Outer Planets Cycle 4-MED Part 2 OF 5414

    NASA Astrophysics Data System (ADS)

    Clarke, John

    1994-01-01

    Recent IUE observations of the H Ly alpha emission line profilefrom Jupiter's dayglow and aurora reveal a substantial line broadening,implying that the observed high brightness is due to resonantscattering of solar emission with a broad line rather than chargedparticle excitation. This may reflect highly energetic processesproducing a 5-10 km/sec suprathermal population of H atoms in Jupiter'supper atmosphere, which in turn may be related to the unresolved questionof the high exospheric temperatures of 400-1200 K detected on all 4 giantplanets during the Voyager encounters. It is clear that if the bright HLy alpha emissions from the outer planets are due mainly to resonantscattering of solar and interplanetary emissions, as observedon Jupiter and Saturn from long term correlations with the solarLy alpha flux, then the lines from all 4 planets must be broad toexplain the observed high albedos. The H Ly alpha lineshapes providea discriminant between the processes of resonant scattering andcharged particle excitation. We propose to obtain high signal to noiseH Ly alpha line profile measurements from Saturn, Uranus, and Neptuneto resolve the questions about the excitation processes for the brightairglow emissions.SATURN PART ONLY - NEPTUNE AND URANUS IN ORIGIAL PROP (5414).

  11. Planetary Accretion in the Inner Solar System: Dependence on Nebula Surface Density Profile and Giant Planet Eccentricities

    NASA Technical Reports Server (NTRS)

    Chambers, J. E.; Cassen, P.

    2002-01-01

    We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.

  12. Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.; Guenther, E.; Smalley, B.; McDonald, I.; Hebb, L.; Andersen, J.; Augusteijn, Th.; Barros, S. C. C.; Brown, D. J. A.; Cochran, W. D.; Endl, M.; Fossey, S. J.; Hartmann, M.; Maxted, P. F. L.; Pollacco, D.; Skillen, I.; Telting, J.; Waldmann, I. P.; West, R. G.

    2010-09-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars. Based on observations at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope. E-mail: acc4@st-and.ac.uk

  13. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; Wirth, Volkmar; Frank, Helmut; Bechtold, Peter; Wedi, Nils P.; Tomita, Hirofumi; Satoh, Masaki; Zhao, Ming; Held, Isaac M.; Suarez, Max J.; Lee, Myong-In; Watanabe, Masahiro; Kimoto, Masahide; Liu, Yimin; Wang, Zaizhi; Molod, Andrew; RajenDran, Kavirajan; Kitoh, Akio; Stratton, Rachel

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double

  14. Fatty acid profile of pig meat after probiotic administration.

    PubMed

    Ross, Gloria Romina; Van Nieuwenhove, Carina Paola; González, Silvia Nelina

    2012-06-13

    The aim of this work was to study the fatty acid profile of pig meat after probiotic administration. Thirty postweaned pigs (25 day old) were distributed into 2 groups: control (n = 15) and probiotic (n = 15). Each experimental group was fed ad libitum on a commercial diet for 35 days. Lactobacillus amylovorus and Enterococcus faecium mixed culture (10(8) CFU/ml)was daily orally delivered to the probiotic group. At the end of the assay, six pigs randomly selected from each group were slaughtered and muscle samples (Longissimus dorsi) were taken for fatty acid analysis. Tissues from the probiotic group animals exhibited an increase in monounsaturated and polyunsaturated fatty acids; furthermore, linoleic acid (C18:2), linolenic acid (18:3), and cis-9,trans-11 conjugated linoleic acid (CLA) concentrations were significantly higher (p < 0.05) compared to the control group. These results suggest probiotic administration could be useful to modify and improve the fatty acid profile of pig meat. PMID:22506842

  15. (De)constructing Organizational Boundaries of University Administrations: Changing Profiles of Administrative Leadership at German Universities

    ERIC Educational Resources Information Center

    Blümel, Albrecht

    2016-01-01

    By analysing institutional changes of administrative leadership at German universities, this paper studies the construction of organizational boundaries as an important aspect of organizational transformation of universities as complete organizations. Building on an analysis of the formal status of administrative leadership at universities derived…

  16. Administrative Information Systems: The 1985 Profile and Five-Year Trends. CAUSE Monograph Series.

    ERIC Educational Resources Information Center

    Thomas, Charles R.; van Hoesen, Dana S.

    Information is presented about the administrative computing activities of colleges and universities belonging to CAUSE (the professional association for computing and information technology in higher education). Profiles and trends are provided based on 1985 Member Institution Profile Surveys conducted in 1980, 1983, and 1985. A total of 350…

  17. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses

  18. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments. PMID:19270373

  19. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  20. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2007-10-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  1. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles.

    PubMed

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; de Almeida, Luís Pereira

    2016-03-01

    In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs). To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled "Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype" (Conceição et al., in press) [1]. PMID:26958628

  2. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles

    PubMed Central

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C.; Manjunath, N.; de Almeida, Luís Pereira

    2016-01-01

    In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs). To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled “Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado–Joseph disease neurological phenotype” (Conceição et al., in press) [1]. PMID:26958628

  3. Polyphenol administration impairs T-cell proliferation by imprinting a distinct dendritic cell maturational profile.

    PubMed

    Delvecchio, Francesca Romana; Vadrucci, Elisa; Cavalcanti, Elisabetta; De Santis, Stefania; Kunde, Dale; Vacca, Michele; Myers, Jay; Allen, Frederick; Bianco, Giusy; Huang, Alex Y; Monsurro, Vladia; Santino, Angelo; Chieppa, Marcello

    2015-09-01

    Currently little is known as to how nutritionally derived compounds may affect dendritic cell (DC) maturation and potentially prevent inappropriate inflammatory responses that are characteristic of chronic inflammatory syndromes. Previous observations have demonstrated that two polyphenols quercetin and piperine delivered through reconstituted oil bodies (ROBs-QP) can influence DC maturation in response to LPS leading to a modulated inflammatory response. In the present study, we examined the molecular effects of ROBs-QP exposure on DC differentiation in mice and identified a unique molecular signature in response to LPS administration that potentially modulates DC maturation and activity in inflammatory conditions. Following LPS administration, ROBs-QP-exposed DCs expressed an altered molecular profile as compared with control DCs, including cytokine and chemokine production, chemokine receptor repertoire, and antigen presentation ability. In vivo ROBs-QP administration suppresses antigen-specific T-cell division in the draining lymph nodes resulting from a reduced ability to create stable immunological synapse. Our data demonstrate that polyphenols exposure can drive DCs toward a new anti-inflammatory molecular profile capable of dampening the inflammatory response, highlighting their potential as complementary nutritional approaches in the treatment of chronic inflammatory syndromes. PMID:26096294

  4. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans

    PubMed Central

    Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885

  5. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  6. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  7. An Administrative Claims Model for Profiling Hospital 30-Day Mortality Rates for Pneumonia Patients

    PubMed Central

    Bratzler, Dale W.; Normand, Sharon-Lise T.; Wang, Yun; O'Donnell, Walter J.; Metersky, Mark; Han, Lein F.; Rapp, Michael T.; Krumholz, Harlan M.

    2011-01-01

    Background Outcome measures for patients hospitalized with pneumonia may complement process measures in characterizing quality of care. We sought to develop and validate a hierarchical regression model using Medicare claims data that produces hospital-level, risk-standardized 30-day mortality rates useful for public reporting for patients hospitalized with pneumonia. Methodology/Principal Findings Retrospective study of fee-for-service Medicare beneficiaries age 66 years and older with a principal discharge diagnosis of pneumonia. Candidate risk-adjustment variables included patient demographics, administrative diagnosis codes from the index hospitalization, and all inpatient and outpatient encounters from the year before admission. The model derivation cohort included 224,608 pneumonia cases admitted to 4,664 hospitals in 2000, and validation cohorts included cases from each of years 1998–2003. We compared model-derived state-level standardized mortality estimates with medical record-derived state-level standardized mortality estimates using data from the Medicare National Pneumonia Project on 50,858 patients hospitalized from 1998–2001. The final model included 31 variables and had an area under the Receiver Operating Characteristic curve of 0.72. In each administrative claims validation cohort, model fit was similar to the derivation cohort. The distribution of standardized mortality rates among hospitals ranged from 13.0% to 23.7%, with 25th, 50th, and 75th percentiles of 16.5%, 17.4%, and 18.3%, respectively. Comparing model-derived risk-standardized state mortality rates with medical record-derived estimates, the correlation coefficient was 0.86 (Standard Error = 0.032). Conclusions/Significance An administrative claims-based model for profiling hospitals for pneumonia mortality performs consistently over several years and produces hospital estimates close to those using a medical record model. PMID:21532758

  8. Extreme Planets

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

    All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

    Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

  9. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration.

    PubMed

    Umigai, N; Murakami, K; Ulit, M V; Antonio, L S; Shirotori, M; Morikawa, H; Nakano, T

    2011-05-15

    Crocetin, a unique carotenoid with a short carbon chain length, is an active compound of saffron and Gardenia jasminoides Ellis used as traditional herbal medicine. The present study was undertaken to investigate the pharmacokinetic profiles of crocetin in healthy adult subjects. The study was conducted as an open-label, single dose escalation with 10 Filipino volunteers (5 men and 5 women). The subjects received a single dose of crocetin at three doses (7.5, 15 and 22.5 mg) in one week interval. Blood samples were collected from the brachial vein before and at 1, 2, 4, 6, 8, 10 and 24 h after administration. Plasma concentrations of crocetin were determined by high-performance liquid chromatography (HPLC). Crocetin was rapidly absorbed and detected within an hour of administration with a mean time to reach maximum concentration (T(max)) of crocetin ranging from 4.0 to 4.8 h. The mean values of C(max) and AUC(0-24h) ranged from 100.9 to 279.7 ng/ml and 556.5 to 1720.8 ng. h/ml respectively. C(max) and AUC values increased with dose proportional manner. Crocetin was eliminated from human plasma with a mean elimination half life (T(½) of 6.1 to 7.5 h. In summary, there were no serious adverse events up to 22.5 mg dose of crocetin while crocetin was found to be absorbed more quickly than the other carotenoids such as β-carotene, lutein and lycopene. PMID:21112749

  10. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats

    PubMed Central

    Ferris, Craig F.; Yee, Jason R.; Kenkel, William M.; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H.; Kulkarni, Praveen; Perkybile, Allison M.; Carter, C. Sue

    2015-01-01

    A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood–brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose–response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity. PMID:26441574

  11. Lipids and lipoprotein profile in doxorubicin treated rats: influence of alpha-tocopherol administration.

    PubMed

    Geetha, A; Catherine, J; Sankar, R; Devi, C S

    1990-11-01

    The effect of doxorubicin (DXR) on the levels of heart, liver and plasma lipids and plasma lipoproteins were studied in rats. Rats were treated with DXR (2.5 mg/kg body weight weekly for 8 weeks, iv) with or without alpha-tocopherol (alpha-TPL) (400 mg/kg body wt daily for 60 days) co-administration. DXR treated rats showed increase in plasma total cholesterol, triglycerides and phospholipids. The activities of lecithin cholesterol-acyl transferase and hepatic and extrahepatic lipoprotein lipase were lowered significantly with concomitant increase in liver and heart lipid peroxide levels in DXR treatment. HDL cholesterol level was found to be decreased significantly in DXR treated rats as a result of which there was an increase of LDLc/HDLc ratio. alpha-TPL coadministration brought back the enzyme activity to near normal and reduced the level of lipid peroxides. The lipid changes were minimum in rats treated with both alpha-TPL and DXR. This study suggests that the toxicity of DXR is reflected in lipids and lipoprotein profile. PMID:2283173

  12. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa

    2015-09-01

    Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels. PMID:25681744

  13. Outer Planets

    NASA Video Gallery

    Did you know that through NASA’s various satellite missions we have learned more about these planetary bodies in recent years than we knew collectively since we started to study our planets? Throu...

  14. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  15. Dose-dependent effects of alcohol administration on behavioral profiles in the MCSF test.

    PubMed

    Karlsson, Oskar; Roman, Erika

    2016-02-01

    The acute effects of alcohol administration are age-, dose-, time- and task-dependent. Although generally considered to be a sedative drug, alcohol has both stimulatory and depressant effects on behavior, depending on dose and time. Alcohol-induced motor activating effects are consistently shown in mice but rarely demonstrated in adult, outbred rats using conventional behavioral tests. The aim of the present experiment was to study acute alcohol-induced effects on behavioral profiles in a more complex environment using the novel multivariate concentric square field™ (MCSF) test, designed for assessing different behaviors in the same trial including locomotor activity. Adult male Wistar rats (Sca:WI) were administered one intraperitoneal (i.p.) injection of alcohol (0.0 g/kg, 0.5 g/kg, 1.0 g/kg, or 1.5 g/kg) 5 min prior to the 30-min MCSF test. The two highest doses induced marked motor-suppressing effects. A significant interaction between group and time was found in general activity when comparing rats exposed to alcohol at 0.0 g/kg and 0.5 g/kg. In contrast to the 0.0 g/kg dose that increased the activity over time, animals administered the low dose (0.5 g/kg) demonstrated an initial high activity followed by a decline over time. No indications for acute alcohol-induced anxiolytic-like effects were found. The multivariate setting in the MCSF test appears to be sensitive for detecting motor-activating effects of low doses of alcohol as well as reduced locomotion at doses lower than in other behavioral tasks. The detection of subtle changes in behavior across time and dose is important for understanding alcohol-induced effects. This approach may be useful in evaluating alcohol doses that correspond to different degrees of intoxication in humans. PMID:26695588

  16. Human urinary excretion profile after smoking and oral administration of ( sup 14 C)delta 1-tetrahydrocannabinol

    SciTech Connect

    Johansson, E.; Gillespie, H.K.; Halldin, M.M. )

    1990-05-01

    The urinary excretion profiles of delta 1-tetrahydrocannabinol (delta 1-THC) metabolites have been evaluated in two chronic and two naive marijuana users after smoking and oral administration of ({sup 14}C)delta 1-THC. Urine was collected for five days after each administration route and analyzed for total delta 1-THC metabolites by radioactivity determination, for delta 1-THC-7-oic acid by high-performance liquid chromatography, and for cross-reacting cannabinoids by the EMIT d.a.u. cannabinoid assay. The average urinary excretion half-life of {sup 14}C-labeled delta 1-THC metabolites was calculated to be 18.2 +/- 4.9 h (+/- SD). The excretion profiles of delta 1-THC-7-oic acid and EMIT readings were similar to the excretion profile of {sup 14}C-labeled metabolites in the naive users. However, in the chronic users the excretion profiles of delta 1-THC-7-oic acid and EMIT readings did not resemble the radioactive excretion due to the heavy influence from previous Cannabis use. Between 8-14% of the radioactive dose was recovered in the urine in both user groups after oral administration. Lower urinary recovery was obtained both in the chronic and naive users after smoking--5 and 2%, respectively.

  17. Microlensing Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    The theory and practice of microlensing planet searches is developed in a systematic way, from an elementary treatment of the deflection of light by a massive body to a thorough discussion of the most recent results. The main concepts of planetary microlensing, including microlensing events, finite-source effects, and microlens parallax, are first introduced within the simpler context of point-lens events. These ideas are then applied to binary (and hence planetary) lenses and are integrated with concepts specific to binaries, including caustic topologies, orbital motion, and degeneracies, with an emphasis on analytic understanding. The most important results from microlensing planet searches are then reviewed, with emphasis both on understanding the historical process of discovery and the means by which scientific conclusions were drawn from light-curve analysis. Finally, the future prospects of microlensing planets searches are critically evaluated. Citations to original works provide the reader with multiple entry points into the literature.

  18. Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits.

    PubMed

    Sarkar, A; Lavania, S C; Pandey, D N; Pant, M C

    1994-10-01

    Administration of fresh leaves of Ocimum sanctum (Tulsi) mixed as 1 g and 2 g in 100 gms of diet given for four weeks, brought about significant changes in the lipid profile of normal albino rabbits. This resulted in significant lowering in serum total cholesterol, triglyceride, phospholipid and LDL-cholesterol levels and significant increase in the HDL-cholesterol and total faecal sterol contents. PMID:7883302

  19. Inside-out Planet Formation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors >~ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) "pebbles," drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ("dead zone") region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ~1 M ⊕ planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  20. Inside-out planet formation

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors ≳ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (∼cm-m size) 'pebbles', drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ('dead zone') region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ∼1 M {sub ⊕} planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  1. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  2. Endogenous and xenobiotic metabolite profiling of liver extracts from SCID and chimeric humanized mice following repeated oral administration of troglitazone.

    PubMed

    Barnes, Alan J; Baker, David R; Hobby, Kirsten; Ashton, Simon; Michopoulos, Filippos; Spagou, Konstantina; Loftus, Neil J; Wilson, Ian D

    2014-01-01

    1. Metabonomic analysis, via a combination of untargeted and targeted liquid chromatography-mass spectrometry (LC-MS) and untargeted (1)H NMR spectroscopy-based metabolite profiling, was performed on aqueous (AQ) and organic liver extracts from control (SCID) and chimeric humanized (PXB) mice dosed with troglitazone at 0, 300 and 600 mg/kg/day for seven days. 2. LC-MS analysis of AQ liver extracts showed a more "human-like" profile for troglitazone metabolites for PXB, compared with SCID, mice. 3. LC-MS detected differences in endogenous metabolites, particularly lipid species in dosed mice, including elevated triacylglycerols and 1-alkyl,2-acylglycerophosphates as well as lowered diacylglycerophosphocholines and 1-alkyl,2-acylglycerophosphocholines for PXB compared with SCID mouse liver extracts. Following drug administration changes in the relative proportions of the ions for various unsaturated fatty acids were observed for both types of mouse, some of which were specific to PXB or SCID mice. 4.  (1)H NMR spectroscopy revealed that AQ PXB mouse liver extracts had elevated amounts of inosine, fumarate, creatine, aspartate, trimethylamine N-oxide, glycerophosphocholine, phosphocholine, choline, glutamine, glutamate, acetate, alanine and lactate relative to SCID mice and decreased histidine, glycogen, α- and β-glucose, taurine, and glutathione. Increased uracil and tyrosine concentrations were detected for PXB mice on troglitazone administration. 5. Metabonomic profiling thus showed clear differences between humanized and SCID mice, including after administration of troglitazone. PMID:24350779

  3. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  4. Profile of American Youth: 1980 Nationwide Administration of the Armed Services Vocational Aptitude Battery.

    ERIC Educational Resources Information Center

    Office of the Assistant Secretary of Defense for Manpower and Reserve Affairs (DOD), Washington, DC.

    The Profile of American Youth study, sponsored by the Department of Defense and the Military Services, in cooperation with the Department of Labor, is documented in this report. The principal objectives of the research project were to assess the vocational aptitudes of a nationally representative sample of youth 18 through 23 years of age and to…

  5. Extrasolar Planets and Prospects for Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Fischer, Debra A.

    2004-06-01

    Examination of ˜2000 sun--like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ˜200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05--5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News &summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth--mass planets remain undetectable, but space--based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade. The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter--mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth--mass planets. These observations and the theory of planet formation suggests that single sun--like stars commonly harbor earth--sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non--circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter--like planets may reside at 5--10 AU from stars, not easily detectable at present. The sun--like star 55 Cancri harbors a planet of 4--10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward. To date, 10 multiple--planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are ``hierarchical'', consisting

  6. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  7. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  8. Gene expression profiles of murine fatty liver induced by the administration of valproic acid

    SciTech Connect

    Lee, Min-Ho; Hong, Il; Kim, Mingoo; Lee, Byung Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock . E-mail: molee@snu.ac.kr

    2007-04-01

    Valproic acid (VPA) has been used as anticonvulsants, however, it induces hepatotoxicity such as microvesicular steatosis and necrosis in the liver. To explore the mechanisms of VPA-induced steatosis, we profiled the gene expression patterns of the mouse liver that were altered by treatment with VPA using microarray analysis. VPA was orally administered as a single dose of 100 mg/kg (low-dose) or 1000 mg/kg (high-dose) to ICR mice and the animals were killed at 6, 24, or 72 h after treatment. Serum alanine aminotransferase and aspartate aminotransferase levels were not significantly altered in the experimental animals. However, symptoms of steatosis were observed at 72 h with low-dose and at 24 h and 72 h with high-dose. After microarray data analysis, 1910 genes were selected by two-way ANOVA (P < 0.05) as VPA-responsive genes. Hierarchical clustering revealed that gene expression changes depended on the time rather than the dose of VPA treatment. Gene profiling data showed striking changes in the expression of genes associated with lipid, fatty acid, and steroid metabolism, oncogenesis, signal transduction, and development. Functional categorization of 1156 characteristically up- and down-regulated genes (cutoff > 1.5-fold) revealed that 60 genes were involved in lipid metabolism that was interconnected with biological pathways for biosynthesis of triglyceride and cholesterol, catabolism of fatty acid, and lipid transport. This gene expression profile may be associated with the known steatogenic hepatotoxicity of VPA and it may provide useful information for prediction of hepatotoxicity of unknown chemicals or new drug candidates through pattern recognition.

  9. Urinary profile of methylprednisolone acetate metabolites in patients following intra-articular and intramuscular administration.

    PubMed

    Panusa, Alessia; Regazzoni, Luca; Aldini, Giancarlo; Orioli, Marica; Giombini, Arrigo; Minghetti, Paola; Tranquilli, Carlo; Carini, Marina

    2011-04-01

    A study on urinary metabolites of methylprednisolone acetate (MPA) has been performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in precursor ion scanning (PIS) and neutral loss (NL) modes. Patients suffering from joint inflammation have been treated with Depo-Medrol® (MPA marketed suspension, 40 mg) intra-articularly (IA) and after a wash-out period, intramuscularly (IM) at the same dose. Urine samples have been collected after both the administration routes. Metabolites were identified in PIS mode by setting the fragment ion at m/z 161 which is specific for MPA, methylprednisolone (MP), methylprednisolone hemisuccinate, and in NL mode by selecting the losses of 54, 72, 176 and 194 Da. The MP-related structure of each target ion detected in both the MS modes was then confirmed by MS/MS acquisitions, and by accurate mass experiments. By using this approach, 13 MPA metabolites (M1-M13) have been identified, nine already reported in the literature and four unknown and for which the chemical structures have been proposed. No differences in the metabolic pattern of MPA when administered IM or IA were observed. The relative abundances of metabolites compared with the internal standard (MP-D2) were monitored by multiple reaction monitoring analysis for 19 days after both the administration routes. PMID:21336796

  10. Intra-articular administration of lidocaine in anaesthetized dogs: pharmacokinetic profile and safety on cardiovascular and nervous systems.

    PubMed

    Di Salvo, A; Bufalari, A; De Monte, V; Cagnardi, P; Marenzoni, M L; Catanzaro, A; Vigorito, V; Della Rocca, G

    2015-08-01

    The intra-articular administration of lidocaine is a frequent practice in human orthopaedic surgical procedures, but an eventual absorption of the drug into the bloodstream can lead to toxicity, mainly concerning the central nervous system and the cardiovascular systems. The purpose of this study was to determine the pharmacokinetic profile and the safety, in terms of cardiovascular and CNS toxicity, of lidocaine after intra-articular administration to anesthetized dogs undergoing arthroscopy. Lidocaine 2% was administered to eight dogs before surgery in differing amounts, depending on the volume of the joints involved, and blood samples were taken at predetermined time points. The maximum serum concentration of lidocaine ranged from 0.50 to 3.01 μg/mL (mean ± SD: 2.18 ± 0.91 μg/mL), and the time to reach it was 28.75 ± 15.74 min. No signs of cardiac toxicity were detected during the entire procedure, and possible signs of CNS toxicity were masked by the anaesthesia. However, concentrations reported in literature as responsible for neurotoxicity in dog were achieved in three of eight investigated subjects. Pending further studies, veterinarians should consider the possibility of side effects occurring following the intra-articular administration of local anaesthetics. PMID:25428796

  11. Exploring Planet Sizes

    NASA Video Gallery

    This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

  12. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-07-10

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

  13. Pharmacokinetic profiles of meloxicam in turtles (Trachemys scripta scripta) after single oral, intracoelomic and intramuscular administrations.

    PubMed

    Di Salvo, A; Giorgi, M; Catanzaro, A; Deli, G; della Rocca, G

    2016-02-01

    Meloxicam is an anti-inflammatory and analgesic drug used to treat many pathological conditions in turtles. With the aim to fill the lack of data about its pharmacokinetic in this species, eighteen turtles (Trachemys scripta scripta) were divided in three groups and treated with a single dose of meloxicam (0.2 mg/kg) by intramuscular, intracoelomic and oral route, respectively. At scheduled time points, blood samples were collected and meloxicam concentrations were determined by HPLC. Pharmacokinetic parameters were calculated from the obtained concentration-time curves. After intramuscular treatment, a plasma peak of meloxicam equal to 1590.03 ± 1845.32 ng/mL (mean ± SD) and a Tmax of 1.17 ± 0.45 h were reached, indicating a quick absorption of the drug. The intracoelomic administration brought to the largest AUC (12621.04 ± 6203.79 h*ng/mL) and to a Cmax and a Tmax equal to 1154.52 ± 662.78 ng/mL and 2.82 ± 1.39 h, respectively. Following oral treatment, the plasma concentrations of meloxicam were very low indicating a scarce absorption. Further studies are warranted to determine the effective plasma concentration of meloxicam in turtles and, consequently, the dosage regimen. PMID:26789011

  14. Lipid profile of body builders with and without self-administration of anabolic steroids.

    PubMed

    Fröhlich, J; Kullmer, T; Urhausen, A; Bergmann, R; Kindermann, W

    1989-01-01

    Twenty-four top-level body builders [13 anabolic steroid users (A); 11 non-users (N)] and 11 performance-matched controls (C) were examined to determine the effect on lipids, lipoproteins and apolipoproteins of many years of body building with and without simultaneous intake of anabolic steroids and testosterone. After an overnight fast, triglycerides (TG), total cholesterol (TOTC), high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), the HDLC subfractions HDL2C and HDL3C, as well as apolipoprotein A-I (Apo A-I), apolipoprotein A-II (Apo A-II) and apolipoprotein B (Apo B) were determined. Both A and N, compared to C, showed significantly lower HDLC and higher LDLC concentrations, with the differences between A and C clearly pronounced. In a subgroup of 6 body builders taking anabolic steroids at the time of the study, HDLC, HDL2C, HDL3C, Apo A-I and Apo A-II were all significantly lower and LDLC was significantly higher than in a second subgroup of 7 body builders who had discontinued their intake of anabolic steroids at least 4 weeks prior to the study. In some single cases HDLC was barely detectable (2-7 mg.dl-1). The TG and TOTC remained unchanged. The present findings suggest that many years of body building among top-level athletes have no beneficial effect on lipoproteins and apolipoproteins. Simultaneous use of anabolic steroids results in part in extreme alterations in lipoproteins and apolipoproteins, representing an atherogenic profile. After discontinuing the use of anabolic steroids, the changes in lipid metabolism appear to be reversible. PMID:2583156

  15. Pharmacokinetic Profile of µSMIN Plus™, a new Micronized Diosmin Formulation, after Oral Administration in Rats.

    PubMed

    Russo, Rosario; Mancinelli, Angelo; Ciccone, Michele; Terruzzi, Fabio; Pisano, Claudio; Severino, Lorella

    2015-09-01

    Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (µSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t½), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with µSMIN Plus™ compared with animals treated with micronized diosmin. In particular, µSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for µSMIN Plus™, which may represent a new tool for CVI management. PMID:26594761

  16. Influence of chronic administration of anabolic androgenic steroids and taurine on haemostasis profile in rats: a thrombelastographic study.

    PubMed

    Roşca, Adrian E; Badiu, Corin; Uscătescu, Valentina; Stoian, Irina; Mirică, Radu; Braga, Radu I; Pavel, Bogdan; Zăgrean, Leon

    2013-04-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone with thrombogenic potential in high doses and long-term administration. Taurine, a widely distributed amino-sulfonic acid, is known for its beneficial effects in hypercoagulable states. In order to assess the impact of chronic administration of high doses of AAS and taurine upon haemostasis process in rats, 40 male Wistar rats were divided into four equal groups: control group (group C) - no treatment; androgen group (group A) - received 10 mg/kg per week of nandrolone decanoate (DECA); taurine (group T) - received oral supplementation of 2% taurine in drinking water; androgen and taurine group (group AT) - concomitant administration of DECA and taurine. After 12 weeks, blood samples were collected and haemostasis parameters were assessed with the thrombelastographic (TEG) analysis system: reaction time, clot kinetics (K, α), final clot strength, coagulation index and the clot lysis (Ly30). Nandrolone significantly decreased reaction time in group A compared with control (P<0.001), whereas taurine significantly increase reaction time (P=0.01), and this effect was maintained in group AT compared with group A (P=0.009). Similar differences between groups have been recorded for the clot kinetics parameters K, α. The final clot strength and coagulation index were significantly increased in group A versus group C (P=0.04, respectively P<0.001), but not in group AT versus group C (P>0.05). There were no differences in clot lysis, as shown by Ly30. Nandrolone produces an accelerated clot development and an increased clot firmness in Wistar rats. Taurine association ensures a protective effect against this hypercoagulable state, partially restoring the altered parameters of the coagulation profile. PMID:23160242

  17. Pharmacokinetic profiles of netobimin metabolites after oral administration of zwitterion and trisamine formulations of netobimin to cattle.

    PubMed

    Lanusse, C E; Trudeau, C; Ranjan, S; Prichard, R K

    1991-03-01

    Pharmacokinetic profiles of the major metabolites of netobimin were investigated in calves after oral administration of the compound (20 mg/kg) as a zwitterion suspension and trisamine salt solution in a two-way cross-over design. Blood samples were taken serially over a 72-h period and plasma was analysed by HPLC for netobimin (NTB) and its metabolites, including albendazole (ABZ), albendazole sulphoxide (ABZSO) and albendazole sulphone (ABZSO2). NTB was occasionally detected in plasma between 0.5 and 1.0 h post-treatment. ABZ was not detectable at any time. ABZSO was detected from 0.5-0.75 h up to 32 h post-administration, with a Cmax for the zwitterion suspension of 1.21 +/- 0.13 micrograms/ml and AUC of 18.55 +/- 1.45 micrograms.h/ml, respectively, which were significantly higher (P less than 0.01) than the Cmax (0.67 +/- 0.12 micrograms/ml) and AUC (8.57 +/- 0.91 micrograms.h/ml) for the trisamine solution. ABZSO2 was detected in plasma between 0.75 and 48 h post-administration. The zwitterion suspension resulted in a Cmax (2.91 +/- 0.10 micrograms/ml) and AUC (51.67 +/- 1.95 micrograms.h/ml) for ABZSO2, which were significantly higher (P less than 0.01) than those obtained for the trisamine solution (Cmax = 1.67 +/- 0.11 micrograms/ml and AUC = 22.77 +/- 1.09 micrograms.h/ml). The ratio of AUC for ABZSO2/ABZSO was 2.92 +/- 0.26 (zwitterion) and 2.80 +/- 0.20 (trisamine). The MRT for ABZSO2 was significantly longer (P less than 0.01) after treatment with the zwitterion suspension than after treatment with the trisamine solution.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2038091

  18. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  19. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  20. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat

    PubMed Central

    Cerf, Marlon E.; Herrera, Emilio

    2016-01-01

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status. PMID:26742067

  1. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat.

    PubMed

    Cerf, Marlon E; Herrera, Emilio

    2016-01-01

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status. PMID:26742067

  2. Neonatal finasteride induces anxiogenic-like profile and deteriorates passive avoidance in adulthood after intrahippocampal neurosteroid administration.

    PubMed

    Martín-García, E; Darbra, S; Pallarés, M

    2008-07-17

    Recent findings indicate that neurosteroids could act as important keys during the brain development. Fluctuations in neonatal allopregnanolone (AlloP) could result in altered pharmacological properties of the GABA(A) receptor system in adulthood. Recent studies demonstrated that neurosteroids play a critical role in regulating normal neurodevelopment in the hippocampus. The aim of the present work is to screen whether developmentally altered neurosteroid levels influence the behavioral response to adult intrahippocampal administration of AlloP, a GABA(A) positive modulating neurosteroid, and pregnenolone sulfate (PregS), a GABA(A) negative modulator in rats. For this purpose, pups received AlloP (10 mg/kg, s.c.), a 5alpha-reductase inhibitor (finasteride, 50 mg/kg, s.c.) or vehicle from the fifth to the ninth postnatal day. At maturity (i.e. 90 days old) a bilateral cannula was implanted into the hippocampus. After recovery from surgery, animals received an administration of AlloP (0.2 microg/0.5 microl), PregS (5 ng/0.5 microl) or vehicle in each hippocampus 5 min before they were tested in the elevated plus maze (EPM) and immediately after the passive avoidance training session, and retention was tested 24 h later. Results indicated that neonatal finasteride treatment deteriorated passive avoidance retention and elicited an anxiogenic-like effect in the EPM test in adulthood, as seen by the reduction of open arm entries and in the time spent in the open arms. Intrahippocampal PregS administration also disrupted passive avoidance, possibly related to its anxiogenic profile. Fluctuations in neonatal AlloP affect the aversive learning and the anxiety-related behavior in adulthood, and this effect could be in part mediated by alterations of the mature functions of the hippocampus, possibly via the GABA(A) receptor. These data point to the role of GABAergic neurosteroids in critical periods of vulnerability that influence normal development of GABAergic pathways in

  3. Peeking at the Planets.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2002-01-01

    Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

  4. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  5. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  6. Excretion profile of hydrocodone, hydromorphone and norhydrocodone in urine following single dose administration of hydrocodone to healthy volunteers.

    PubMed

    Valtier, Sandra; Bebarta, Vikhyat S

    2012-09-01

    Abuse of prescription opioids for non-medical use has been on the rise over the past decade. The most commonly abused opioid is hydrocodone, a frequently prescribed pain medication metabolized by the body to hydromorphone, norhydrocodone and other minor metabolites. This study describes the excretion profile of hydrocodone, hydromorphone and norhydrocodone in urine following a single dose (10 mg) administration of hydrocodone to human subjects (n = 7) and presents a validated liquid chromatography-tandem mass spectrometry method for analysis of the drug and its metabolites. Limit of quantitation was 5 ng/mL for all analytes; limit of detection was 2.5 ng/mL for hydrocodone and norhydrocodone and 5 ng/mL for hydromorphone. Peak concentrations of hydrocodone were found at 3:30-7:00 hours post-dose and were in the range of 612-2,190 ng/mL. Hydromorphone peak concentrations were found at 6:15-26:45 hours post-dose and ranged from 102 to 342 ng/mL. For norhydrocodone, peak concentrations were found at 4:20-13:00 hours post-dose and ranged from 811 to 3,460 ng/mL. Although hydromorphone was found at lower levels than hydrocodone, in six of seven subjects, it persisted for as long as hydrocodone was detected. Norhydrocodone was found at higher levels and lasted for a longer period of time than hydrocodone, thus making the nor-metabolite a valuable tool in evaluating hydrocodone use and/or misuse. PMID:22782534

  7. Planet Demographics from Transits

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    2015-08-01

    From the demographics of planets detected by the Kepler mission, we have learned that there exists approximately one planet per star for planets larger than Earth orbiting inside of 1 AU. We have also learned the relative occurrence of these planets as a function of their orbital periods, sizes, and host star masses and metallicities. In this talk I will review the key statistical findings that the planet size distribution peaks in the range 1-3 times Earth-size, the orbital period distribution is characterized by a power-law cut off at short periods, small planets are more prevalent around small stars, and that approximately 20% of Sun-like stars hosts a planet 1-2 times Earth-size in a habitable zone. Looking forward, I will describe analysis of photometry from the K2 mission that is yielding initial planet discoveries and offering the opportunity to measure planet occurrence in widely separated regions of the galaxy. Finally, I will also discuss recent techniques to discover transiting planets in space-based photometry and to infer planet population properties from the ensemble of detected and non-detected transit signals.

  8. Kepler's missing planets

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2013-08-01

    We investigate the distributions of the orbital period ratios of adjacent planets in high-multiplicity Kepler systems (four or more planets) and low-multiplicity systems (two planets). Modelling the low-multiplicity sample as essentially equivalent to the high-multiplicity sample, but with unobserved intermediate planets, we find some evidence for an excess of planet pairs between the 2:1 and 3:1 mean-motion resonances in the low-multiplicity sample. This possible excess may be the result of strong dynamical interactions near these or other resonances or it may be a byproduct of other evolutionary events or processes such as planetary collisions. Three-planet systems show a significant excess of planets near the 2:1 mean-motion resonance that is not as prominent in either of the other samples. This observation may imply a correlation between strong dynamical interactions and observed planet number - perhaps a relationship between resonance pairs and the inclinations or orbital periods of additional planets. The period ratio distributions can also be used to identify targets to search for missing planets in the each of the samples, the presence or absence of which would have strong implications for planet formation and dynamical evolution models.

  9. The SARG Planet Search

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Gratton, R.; Endl, M.; Fiorenzano, A. F. Martinez; Barbieri, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Bonavita, M.

    The search for planets in multiple systems allows to improve our knowledge of planet formation and evolution. On one hand, the frequency of planets in binary systems has a strong effect on the global frequency of planets, as more than half of solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On the other hand, the properties of planets in binaries, and their differences with the properties of the planets orbiting single stars, would shed light on the effects caused by the presence of the companion stars. Indeed, the first analysis of the properties of planets in binaries showed the occurrence of some differences with respect to those orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).

  10. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  11. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  12. Magnetic activity of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  13. Detection and elimination profile of cathinone in equine after norephedrine (Propalin®) administration using a validated liquid chromatography-tandem mass spectrometry method.

    PubMed

    Yi, Rong; Zhao, Sarah; Lam, Geoffrey; Sandhu, Jasmeet; Loganathan, Devan; Morrissey, Barbara

    2013-12-01

    Cathinone is the principal psychostimulant present in the leaves of khat shrub, which are widely used in East Africa and the Arab peninsula as an amphetamine-like stimulant. Cathinone readily undergoes metabolism in vivo to form less potent cathine and norephedrine as the metabolites. However, the presence of cathine and norephedrine in biological fluids cannot be used as an indicator of cathinone administration. The metabolism of pseudoephedrine and ephedrine, commonly used in cold and allergy medications, also produces cathine and norephedrine, respectively, as the metabolites. Besides, cathine and norephedrine may also originate from the ingestion of nutritional supplemental products containing extracts of Ephedra species. In Canada, ephedrine and norephedrine are available for veterinary use, whereas cathinone is not approved for human or veterinary use. In this article, the detection of cathinone in equine after administration of norephedrine is reported. To the best of our knowledge, this is the first such report in any species where administration of norephedrine or ephedrine generates cathinone as the metabolite. This observation is quite significant, because in equine detection of cathinone in biological fluids could be due to administration of the potent stimulant cathinone or the nonpotent stimulant norephedrine. A single oral dose of 450 mg norephedrine was administered to four Standardbred mares. Plasma and urine samples were collected up to 120 h after administration. The amount of cathinone and norephedrine detected in post administration samples was quantified using a highly sensitive, specific, and validated liquid chromatography-tandem mass spectrometry method. Using these results, we constructed elimination profiles for cathinone and norephedrine in equine plasma and urine. A mechanism that generates a geminal diol as an intermediate is postulated for this in vivo conversion of norephedrine to cathinone. Cathinone was also detected in samples

  14. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  15. March of the Planets

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2007-01-01

    The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

  16. Name That Planet!

    ERIC Educational Resources Information Center

    Beck, Judy; Rust, Cindy

    2002-01-01

    Presents an activity in which students in groups explore one planet in the solar system and present their findings to the whole class. Focuses on the planet's location in the solar system, geological features, rate of revolutions, and calendar year. (YDS)

  17. Pioneer 10: Beyond the Known Planets.

    ERIC Educational Resources Information Center

    Waller, Peter

    1983-01-01

    On June 13, 1983, the U.S. unmanned spacecraft, "Pioneer 10," will cross the orbit of Neptune. This first flight beyond the planets is being celebrated by the National Aeronautics and Space Administration and other groups. Discusses what the spacecraft will observe and types of data it will collect. (JN)

  18. Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice.

    PubMed

    Nerstedt, Annika; Nilsson, Elisabeth C; Ohlson, Kajsa; Håkansson, Janet; Thomas Svensson, L; Löwenadler, Björn; Svensson, Ulla K; Mahlapuu, Margit

    2007-06-01

    Lactic acid bacteria are probiotics widely used in functional food products, with a variety of beneficial effects reported. Recently, intense research has been carried out to provide insight into the mechanism of the action of probiotic bacteria. We have used gene array technology to map the pattern of changes in the global gene expression profile of the host caused by Lactobacillus administration. Affymetrix microarrays were applied to comparatively characterize differences in gene transcription in the distal ileum of normal microflora (NMF) and germ-free (GF) mice evoked by oral administration of two Lactobacillus strains used in fermented dairy products today - Lactobacillus paracasei ssp. paracasei F19 (L. F19) or Lactobacillus acidophilus NCFB 1748. We show that feeding either of the two strains caused very similar effects on the transcriptional profile of the host. Both L. F19 and L. acidophilus NCFB 1748 evoked a complex response in the gut, reflected by differential regulation of a number of genes involved in essential physiological functions such as immune response, regulation of energy homeostasis and host defence. Notably, the changes in intestinal gene expression caused by Lactobacillus were different in the mice raised under GF v. NMF conditions, underlying the complex and dynamic nature of the host-commensal relationship. Differential expression of an array of genes described in this report evokes novel hypothesis of possible interactions between the probiotic bacteria and the host organism and warrants further studies to evaluate the functional significance of these transcriptional changes on the metabolic profile of the host. PMID:17433125

  19. Formation of giant planets

    NASA Astrophysics Data System (ADS)

    Magni, G.; Coradini, A.

    2003-04-01

    In this presentation we address the problem of the formation of giant planets and their regular satellites. We study in particular the problem of formation of the Jupiter System comparing the results of the model with the present characteristics of the system, in order to identify what are those better represented by our approach. In fact here, using a 3-D hydro-dynamical code, we study the modalities of gas accretion onto a solid core, believed to be the seed from which Jupiter started. To do that we have modelled three main regions: the central planet, a turbulent accretion disk surrounding it and an extended region from which the gas is collected. In the extended region we treat the gas as a frictionless fluid. Our main goal is to identify what are the characteristics of the planet during its growth and the physical parameters affecting its growth at the expenses of the nebular gas present in the feeding zone. Moreover we want to understand what are the thermodynamical parameters characterizing the gas captured by the planet and swirling around it. Finally, we check if a disk can be formed in prograde rotation around the planet and if this disk can survive the final phases of the planet formation. Due to the interaction between the accreting planet and the disk it has been necessary to develop a complete model of the Jupiter’s structure. In fact the radiation emitted by the growing planet heats up the surrounding gas. In turn the planet’s thermodynamic structure depend on the mass accretion rate onto it. When the accretion is rapid, shock waves in the gas are formed close to the planet. This region cannot be safely treated by a numerical code; for this reason we have developed a semi-analytically model of a a turbulent accretion disk to be considered as transition between the planet and the surrounding disk.

  20. Interiors of the giant planets

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1976-01-01

    Various investigations concerning Jupiter, Uranus and Saturn are discussed. Revisions in the Galilean satellite ephemerides led to a new interpretation of earth-based measurements of Jovian oblateness which agrees with Pioneer measurements. In the area of scintillation theory, a semi-qualitative result was obtained for spike profiles produced by finite stellar disks viewed through Kolmogorov turbulence. It was also possible to set limits on the systematic distortion of stellar occulation profiles by turbulence which minimize the systematic distortion problem. The position of Miranda was studied for the purpose of obtaining an accurate prediction of a possible stellar occultation by Miranda in 1977, following an occultation of the same star by Uranus. In addition, using thermodynamic calculations, a model was developed for the adiabiatic cooling of Jovian-type planets and an observational test of the model was proposed. The dynamic structure of Saturn's rings was also studied.

  1. Low Profile, High Impact: Four Case Studies of High School Department Chairs Whose Transactions "Transform" Teachers and Administrators.

    ERIC Educational Resources Information Center

    Wettersten, Jill A.

    This paper explores the leadership strategies of four exemplary high school department chairs. It develops a model based on social-exchange theory to show how chairs, as middle managers, must satisfy the expectations of both teachers and administrators. Data were derived from a case study of department chairs identified as exemplary in four…

  2. Hazards to Planet Formation

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2001-05-01

    The Orion Nebula provides a remarkable window on the first few million years in the lives of typical young stars and planetary systems. HST has demonstrated that most young stars in the Nebula are surrounded by circumstellar disks (the so-called `proplyds'). While these observations show that planet forming environments may be common, they also demonstrate that Orion's disks are being destroyed by intense UV radiation fields. `Gravel' sufficiently large to resist photo-erosion (meter scale solids or ices) may lock-up sufficient material to eventually build rocky planets. Indeed, there is evidence for large solids in some proplyds. But, the hydrogen and helium needed for the formation of giant planets will be removed. To form in Orion-like environments, giant planets must be assembled promptly prior to UV exposure. Even rocky planets may not form if the photoionized disk corona causes surviving large particles in the disk to spiral into the central star. Thus, nearby massive stars pose severe hazards to planet formation. Star counts indicate that most stars form in Orion-like environments. Only about 10% of young stars are born in shielded environments such as the Taurus or L1641 clouds where disks may escape photo-erosion. In dark clouds, the majority of stars (> 80%) form in non-hierarchal multiple star systems where close encounters with sibling stars can destroy disks and eject young planets. Thus, most stars may never develop planetary systems. These considerations indicate that extra-Solar planets may be rare, contrary to the popular view. These conclusions are consistent with the recent discoveries of extra-Solar planets around a few percent of single stars.

  3. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Palmer, David; Doyon, Rene; Gavel, Don; Larkin, James; Oppenheimer, Ben; Saddlemyer, Leslie; Wallace, J. Kent; Bauman, Brian; Evans, Julia; Erikson, Darren; Morzinski, Katie; Phillion, Donald; Poyneer, Lisa; Sivaramakrishnan, Anand; Soummer, Remi; Thibault, Simon; Veran, Jean-Pierre

    2006-06-01

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10 -7 to 10 -8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  4. The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; al., e

    2006-05-02

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10{sup -7} to 10{sup -8}, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  5. Planet formation and searches

    NASA Astrophysics Data System (ADS)

    Montgomery, Ryan Michael

    2009-08-01

    This thesis explores the possibilities for discovery of terrestrial-mass planets in the habitable zones of their host stars. Towards this aim, we present the results of three projects and discuss another two preliminary studies of further explorations. In so doing, we explore a fairly comprehensive range of possibilities regarding the formation and detection of terrestrial- mass planets in the habitable zone. We first study the potential for terrestrial planets to form in situ in and around the habitable zones of M-dwarf stars. We proceed to explore the feasibility of searches for these planets using the transit method via Monte- Carlo simulations. We find that M-dwarfs pose an interesting challenge for study: being inherently dim, widely spread on the sky, and photometrically variable. We present results of simulated ground-based transit search campaigns as well as simulated searches from a modest satellite mission. Our second project is a straightforward extension of the previous study: a collaborative effort to search for transit signals around the nearest M-dwarf: Proxima Centauri. We describe our observations as well as the Monte-Carlo analysis used to place constraints on the possible planetary radii and periods. Our third project is a search for transiting extra-solar Jovian planets using the Rossiter-McLaughlin effect. We search through the private Keck radial- velocity datasets for undiscovered Rossiter-McLaughlin signals. We present our results in the form of both strong null-result datasets as well as potential transiting systems. We then briefly analyze these larger Jovian planets for potential to harbor potentially habitable terrestrial satellites. Our final preliminary analysis looks into the potential for the Large Synoptic Survey Telescope to detect transiting Neptune-mass planets orbiting M-dwarfs which could then lead to terrestrial-mass planet detections. The sum of these efforts is a comprehensive investigation into the likelihood and

  6. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  7. Trapping planets in an evolving protoplanetary disk: preferred time, locations, and planet mass

    NASA Astrophysics Data System (ADS)

    Baillié, K.; Charnoz, S.; Pantin, E.

    2016-05-01

    Context. Planet traps are necessary to prevent forming planets from falling onto their host star by type I inward migration. Surface mass density and temperature gradient irregularities favor the apparition of traps (planet accumulation region) and deserts (planet depletion zone). These features are found at the dust sublimation lines and heat transition barriers. Aims: We study how planets may remain trapped or escape these traps as they grow and as the disk evolves viscously with time. Methods: We numerically model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geometry, and composition. The resulting midplane density and temperature profiles allow the modeling of the interactions of this type of evolving disk with potential planets, even before the steady state is reached. Results: We follow the viscous evolution of a minimum mass solar nebula and compute the Lindblad and corotation torques that this type of disk would exert on potential planets of various masses that are located within the planetary formation region. We determine the position of planet traps and deserts in relationship with the sublimation lines, shadowed regions, and heat transition barriers. We notice that the planet mass affects the trapping potential of the mentioned structures through the saturation of the corotation torque. Planets that are a few tens of Earth masses can be trapped at the sublimation lines until they reach a certain mass while planets that are more massive than 100 M⊕ can only be trapped permanently at the heat transition barriers. They may also open gaps beyond 5 au and enter type II migration. Conclusions: Coupling a bimodal planetary migration model with a self-consistent evolved disk, we were able to distinguish several potential planet populations after five million years of evolution: two populations of giant planets that could stay trapped around 5.5 and 9 au and possibly open gaps, some super-Earths trapped

  8. Kepler's Multiple Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    Among the 1800 Kepler targets that have candidate planets, 20% have two or more candidate planets. While most of these objects have not yet been confirmed as true planets, several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Virtually all candidate systems are stable, as tested by numerical integrations (assuming a nominal mass-radius relationship). Statistical studies performed on these candidates reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness of planetary systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. The characteristics of the confirmed Kepler multi-planet systems will also be discussed.

  9. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2013-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This presentation highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines around "mystery planets" using orbiting "spacecraft" (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle/high school age audiences. However, we also show a scaled-down version that has been used with elementary school age audiences.

  10. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  11. Students Discover Unique Planet

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public

  12. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  13. The planet Saturn (1970)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The present-day knowledge on Saturn and its environment are described for designers of spacecraft which are to encounter and investigate the planet. The discussion includes physical properties of the planet, gravitational field, magnetic and electric fields, electromagnetic radiation, satellites and meteoroids, the ring system, charged particles, atmospheric composition and structure, and clouds and atmospheric motions. The environmental factors which have pertinence to spacecraft design criteria are also discussed.

  14. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  15. Atmospheres of Jovian Planets

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy

    The giant planets of the solar system have been studied for centuries using a wide range of remote sensing and in situ techniques. An understanding of the atmospheres of Jupiter, Saturn, Uranus, and Neptune has dramatically improved since the dawn of spacecraft exploration of the outer solar system in the 1970s. Cloud decks that were predicted to exist from thermochemical equilibrium arguments have been observationally confirmed, although the exact vertical distribution of condensible species in these atmospheres remains an active area of study. All four of the giant planets have fast zonal (east-west) winds with prograde and retrograde jets, which dominate their atmospheric circulations. Each planet also contains long-lived cyclonic features or convective cloud features that appear and disappear on short timescales. These features suggest a link between the energy transport in the deep atmosphere and the visible cloud tops; the exact nature of this connection remains an outstanding question in giant planet atmosphere studies. The chemistry of the giant planet atmospheres is driven by both the convective processes that loft disequilibrium species from the deep atmosphere into the stratosphere and the interaction between stratospheric materials and ultraviolet sunlight. A unique opportunity to study these interactions was presented to planetary scientists in 1994, when the 22 fragments of Comet Shoemaker-Levy 9 impacted Jupiter. The future of giant planet atmospheric studies is promising. Several mission concepts that will answer fundamental questions regarding giant planet atmospheres are in various stages of development, and the James Webb Space Telescope will also contribute especially to our understanding of Uranus and Neptune. As an understanding of giant planet formation and evolution expands and deepens, these knowledge gains must be examined against the backdrop of the numerous exoplanet systems recently discovered, very few of which resemble our own.

  16. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  17. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, J. R.; Palmer, D.; Doyon, R.; Larkin, J.; Oppenheimer, B.; Saddlemyer, L.; Veran, J.; Wallace, J. K.; Gemini Planet Imager Team

    2007-12-01

    Direct detection of extrasolar planets would be a major step in the study of other solar systems, sensitive to planets beyond the period cutoff of Doppler surveys. Furthermore, such planets can be spectrally characterized to measure temperature, gravity, and perhaps composition, shedding light on planet formation and evolution. Surveys of 50-100 young stars with current generation AO systems have excluded the presence of massive (2-10 MJ), young (? Myr) planets in wide (? AU) orbits, but to probe 5-20 AU scales around a large sample of target stars will require dedicated next-generation instruments. One such facility will be the Gemini Planet Imager (GPI). It combines a 2000-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a near-infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 9. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets - opening up a new field in the characterization of the environments of nearby stars. I will present an overview of the instrument design and its scientific capabilities. GPI is currently in the design phase, scheduled for deployment as a facility instrument on the Gemini South telescope in early 2011. Portions of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership.

  18. Planets' magnetic environments

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1989-02-01

    The magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and comets and the heliomagnetosphere are examined. The orientations of the planetary spin and magnetic axes, the size of the magnetospheres, and the magnetic properties and the radio emissions of the planets are compared. Results from spacecraft studies of the planets are included. Plans for the Voyager 2 mission and its expected study of the Neptune magnetosphere are considered.

  19. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  20. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    PubMed

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. PMID:26048667

  1. Building a virtual planet

    NASA Technical Reports Server (NTRS)

    Meadows, V. S.

    2002-01-01

    The virtual Planetary Laboratory (VPL) is a recently funded 5-yr project, which seeks toimprove our understanding of the range of plausible environments and the likely signatures for life on extrasolar terrestrial planets. To achieve these goals we are developing a suite of innovative modeling tools to simulate the environments and spectra of extrasolar planets. The core of the VPL IS a coupled radiative transfer/climate/chemistry model, which is augmented by interchangeable modules which characterize geological, exogenic, atmospheric escape, and life processes. The VPL is validated using data derived from terrestrial planets within our own solar system. The VPL will be used to explore the plausible range of atmospheric composittions and globally averaged spectra for extrasolar planets and for early Earth, and will improve our understanding of the effect of life on a planet's atmospheric spectrum and composition. The models will also be used to create a comprehensive spectral catalog to provide recommendations on the optimum wavelength range, spectral resolution, and instrument sensitivity required to characterize extrasolar terrestrial planets. Although developed by our team, the VPL is envisioned to be a comprehensive and flexible tool, which can be collaboratively used by the broader planetary science and astrobiology communities. This presentation will describe the project concept, the tasks involved, and will outline current progress to date. This work is funded by the NASA Astrobiology Institute.

  2. Discrete cell gene profiling of ventral tegmental dopamine neurons after acute and chronic cocaine self-administration.

    PubMed

    Backes, Eric; Hemby, Scott E

    2003-11-01

    Chronic cocaine administration induces a number of biochemical alterations within the mesolimbic dopamine system that may mediate various aspects of the addictive process such as sensitization, craving, withdrawal, and relapse. In the present study, rats were allowed to self-administer cocaine (0.5 mg/infusion) for 1 or 20 days. Tyrosine hydroxylase immunopositive cells were microdissected from the ventral tegmental area (VTA) using laser capture microdissection, and changes in the abundances of 95 mRNAs were assessed using cDNA macroarrays. Five GABA-A receptor subunit mRNAs (alpha4, alpha6, beta2, gamma2, and delta) were down-regulated at both 1 and 20 days of cocaine self-administration. In contrast, the catalytic subunit of protein phosphatase 2A (PP2alpha), GABA-A alpha1, and Galphai2 were significantly increased at both time points. Additionally, calcium/calmodulin-dependent protein kinase IIalpha mRNA levels were increased initially followed by a slight decrease after 20 days, whereas neuronal nitric-oxide synthase mRNA levels were initially decreased but returned to near control levels by day 20. These results indicate that alterations of specific GABA-A receptor subtypes and other signal transduction transcripts seem to be specific neuroadaptations associated with cocaine self-administration. Moreover, as subunit composition determines the functional properties of GABA-A receptors, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine. PMID:12966149

  3. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  4. Impact of buserelin acetate or hCG administration on day 12 post-ovulation on subsequent luteal profile and conception rate in buffalo (Bubalus bubalis).

    PubMed

    Pandey, A K; Ghuman, S P S; Dhaliwal, G S; Kumar, Ajeet; Agarwal, S K

    2013-01-30

    The present study investigated the impact of gonadotropic hormone administration on day 12 post-ovulation on subsequent luteal profile and conception rate in buffaloes. All the buffaloes (n=48) were estrus synchronized by a synthetic analogue of prostaglandin F(2α) (PGF(2α)), administered 11 days apart, followed by insemination during mid to late estrus. To examine the effect of mid-luteal phase hormonal treatment, buffaloes were randomly divided into control (normal saline, n=14), d12-BA (buserelin acetate, 20μg, n=17) and d12-hCG (hCG, 3000IU, n=17) groups. Ovaries were scanned on the day of induced estrus to measure the preovulatory follicle (POF) diameter and on days 5, 12, 16 and 21 post-ovulation to examine the alterations in corpus luteum (CL) diameter. On the day of each sonography, blood samples were collected for the estimation of plasma progesterone. In treatment groups, luteal profile (CL diameter and plasma progesterone) on day 16-21 post-ovulation was better (P<0.05) as well as first service conception rate was higher (52.9% in each treatment group vs. 28.6%, P>0.05) compared to controls. All the pregnant buffaloes exhibited higher (P<0.05) plasma progesterone on various post-ovulation days than their respective non-pregnant counterparts. Treatment-induced accessory corpus luteum (ACL) formation was observed in 58.8 per cent and 70.6 per cent buffaloes of d12-BA and d12-hCG group, respectively, that also had higher (P<0.05) plasma progesterone compared to controls. Compared to the spontaneous CL, the diameter of ACL was less (P<0.05) in the treatment groups. In conclusion, buserelin acetate and hCG administration on day 12 post-ovulation leads to accessory CL formation, improves luteal profile and consequently increases conception rate in buffaloes. PMID:23201300

  5. Auroral Lyman α and H2 bands from the giant planets 3. Lyman α spectral profile including charge exchange and radiative transfer effects and H2 color ratios

    NASA Astrophysics Data System (ADS)

    Rego, D.; Prangé, R.; Ben Jaffel, L.

    1999-03-01

    In this paper, third of a series of three dealing with a model of auroral H and H2 emission in the giant planets, we focus on the characteristics of the emergent emission, the only one which can be compared with observations. As the Jovian atmosphere is optically thick at 1215.67 Å, modeling of emergent auroral Lyman α line profiles requires the use of a radiative transfer code to model the transport of photons from the auroral source to the top of the atmosphere. Here, radiative transfer effects are modeled using the ``doubling and adding'' method. This radiative transfert code is self-consistently coupled with the energy degradation code used in the first two papers to compute the excitation rate along the path of precipitating particles as a function of wavelength. Input parameters are the identity and the energy of the incoming particles. We find that the auroral Lyman α line profile shows a central reversal due to the atmospheric H overlying the emitting layer. The shape of the emergent line is almost only sensitive to the column of H in the line of sight to the emission, related, via the atmospheric model used, to the the particle penetration depth (i.e. their energy). In addition, in the case of proton precipitation, charge exchange produces fast H atoms (Hf) which precipitate with the protons. Hf can also be excited and radiate Lyman α photons. This produces a second, Doppler shifted, component, of the Lyman α profile. This component may represent as much as 77.4% of the total Lyman α intensity for 10 keV protons, and it decreases with incident proton energy. It also extends over a broad wavelength range (up to 56 Å for 1 MeV proton). Detection of this component would unambiguously identify protons as the particles responsible for the Jovian aurorae. However, for high proton energies, the escaping flux may be too weak to be detected. Finally, following earlier analyses of IUE auroral spectra, we compute the color ratio C between the fluxes escaping

  6. Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes.

    PubMed

    Lynch, Wendy J; Girgenti, Matthew J; Breslin, Florence J; Newton, Samuel S; Taylor, Jane R

    2008-06-01

    Alterations in gene expression in the dorsal striatum caused by chronic cocaine exposure have been implicated in the long-term behavioral changes associated with cocaine addiction. To gain further insight into the molecular alterations that occur as a result of cocaine self-administration, we conducted a microarray analysis of gene expression followed by bioinformatic gene network analysis that allowed us to identify adaptations at the level of gene expression as well as into interconnected networks. Changes in gene expression were examined in the dorsal striatum of rats 1 day after they had self-administered cocaine for 7 days under a 24-h access, discrete trial paradigm (averaging 98 mg/kg/day). Here we report the regulation of the circadian genes Clock, Bmal1, Cryptochrome1, Period2, as well as several genes that are regulated by/associated with the circadian system (i.e., early growth response 1, dynorphin). We also observed regulation of other relevant genes (i.e., Nur77, beta catenin). These changes were then linked to curated pathways and formulated networks which identified circadian rhythm processes as affected by cocaine self-administration. These data strongly suggest involvement of circadian-associated genes in the brain's response to cocaine and may contribute to an understanding of addictive behavior including disruptions in sleep and circadian rhythmicity. PMID:18452895

  7. Discovery of a novel isoxazoline derivative of prednisolone endowed with a robust anti-inflammatory profile and suitable for topical pulmonary administration.

    PubMed

    Ghidini, E; Capelli, A M; Carnini, C; Cenacchi, V; Marchini, G; Virdis, A; Italia, A; Facchinetti, F

    2015-03-01

    A novel glucocorticoids series of (GCs), 6α,9α-di-Fluoro 3-substituted C-16,17-isoxazolines was designed, synthesised and their structure-activity relationship was evaluated with glucocorticoid receptor (GR) binding studies together with GR nuclear translocation cell-based assays. This strategy, coupled with in silico modelling analysis, allowed for the identification of Cpd #15, an isoxazoline showing a sub-nanomolar inhibitory potency (IC50=0.84 nM) against TNFα-evoked IL-8 release in primary human airways smooth muscle cells. In Raw264.7 mouse macrophages, Cpd #15 inhibited LPS-induced NO release with a potency (IC50=6 nM)>10-fold higher with respect to Dexamethasone. Upon intratracheal (i.t.) administration, Cpd #15, at 0.1 μmol/kg significantly inhibited and at 1 μmol/kg fully counteracted eosinophilic infiltration in a model of allergen-induced pulmonary inflammation in rats. Moreover, Cpd #15 proved to be suitable for pulmonary topical administration given its sustained lung retention (t1/2=6.5h) and high pulmonary levels (>100-fold higher than plasma levels) upon intratracheal administration in rats. In summary, Cpd #15 displays a pharmacokinetic and pharmacodynamic profile suitable for topical treatment of conditions associated with pulmonary inflammation such as asthma and COPD. PMID:25556984

  8. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    SciTech Connect

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  9. Dynamical Simulations of Terrestrial Planet Formation During Giant Planet Migration

    NASA Astrophysics Data System (ADS)

    Mandell, A. M.; Raymond, S. N.; Sigurdsson, S.

    2005-12-01

    We present preliminary results of dynamical simulations of young planetary systems undergoing migration of a Jovian-type planet through the terrestrial region. We find that a significant fraction (10-40%) of the initial planetary embryos remain after giant planet migration, and subsequent evolution of the system results in the formation of terrestrial planets in various configurations, often including a planet in the Habitable Zone. In simulations with gas drag, 3-6 Earth mass planets are formed interior to the migrating Jovian planet, swept inward through moving resonances, and eccentricities are damped for all planets. Systematic variations are seen between simulations with and without gas drag. The presence of a second, non-migrating giant planet reduces the water content and mass of the planets formed throughout the system. This research was supported in part by the Penn State Astrobiology Research Center and the Goddard Center for Astrobiology.

  10. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  11. Distinct microRNA Expression Profiles in Mouse Renal Cortical Tissue after 177Lu-octreotate Administration

    PubMed Central

    Schüler, Emil; Parris, Toshima Z.; Helou, Khalil; Forssell-Aronsson, Eva

    2014-01-01

    Aim The aim of this study was to investigate the variation of the miRNA expression levels in normal renal cortical tissue after 177Lu-octreotate administration, a radiopharmaceutical used for treatment of neuroendocrine cancers. Methods Female BALB/c nude mice were i.v. injected with 1.3, 3.6, 14, 45, or 140 MBq 177Lu-octreotate, while control animals received saline. The animals were killed at 24 h after injection and total RNA, including miRNA, was extracted from the renal cortical tissue and hybridized to the Mouse miRNA Oligo chip 4plex to identify differentially regulated miRNAs between exposed and control samples. Results In total, 57 specific miRNAs were differentially regulated in the exposed renal cortical tissues with 1, 29, 21, 27, and 31 miRNAs identified per dose-level (0.13, 0.34, 1.3, 4.3, and 13 Gy, respectively). No miRNAs were commonly regulated at all dose levels. miR-194, miR-107, miR-3090, and miR-3077 were commonly regulated at 0.34, 1.3, 4.3, and 13 Gy. Strong effects on cellular mechanisms ranging from immune response to p53 signaling and cancer-related pathways were observed at the highest absorbed dose. Thirty-nine of the 57 differentially regulated miRNAs identified in the present study have previously been associated with response to ionizing radiation, indicating common radiation responsive pathways. Conclusion In conclusion, the 177Lu-octreotate associated miRNA signatures were generally dose-specific, thereby illustrating transcriptional regulation of radiation responsive miRNAs. Taken together, these results imply the importance of miRNAs in early immunological responses in the kidneys following 177Lu-octreotate administration. PMID:25386939

  12. Late-stage accretion and habitability of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Raymond, Sean Neylon

    The final stage in the formation of terrestrial planets consists of the accumulation of ~1000 km "planetary embryos" and ~1 km planetesimals via collisional accretion., under the mutual gravity of other solid bodies and the gas giant planets (if any). Water is delivered to planets via collisions with volatile-rich bodies that condensed past the snow line, beyond about 2.5 AU. We present results of a large number of relatively low-resolution simulations, designed to assess the predictability of systems of terrestrial planets as a function of "observables" such as the orbit of gas giant planets. These show that a variety of terrestrial planets can form, from small, dry, Mars-like worlds to planets with similar properties to Earth, to >3 Earth mass "water worlds" with >=30 times as much water as the Earth. The terrestrial planets are largely shaped by the influence of the giant planets and the surface density of material. We have uncovered trends between the terrestrial planets and (i) the mass, (ii) the orbital distance and (iii) the orbital eccentricity of a giant planet, (iv) the surface density of the disk, and (v) the disk's density profile. Five simulations with 1000-2000 particles reveal new aspects of the accretion process Water is delivered to the terrestrial planets as a few large planetesimals in a "hit or miss" process, and as billions of planetesimals in a robust way. The water delivery process is therefore more robust than previously thought, implying that the range of water contents of extra-solar Earths is less stochastic than indicated in previous studies; most planets accrete water- rich bodies. We simulate terrestrial accretion in the presence of close-in giant planets (e.g., "hot jupiters"), assuming these form and migrate quickly. Potentially habitable planets can form in these systems, but are likely to be iron-poor. Asteroid belts may exist between the terrestrial planets and hot jupiters in these systems. We have also tested the accretion

  13. Stability of resonant configurations during the migration of planets and constraints on disk-planet interactions

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Laskar, J.

    2015-07-01

    We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We use an analytical model of resonances and describe the effect of the disk by a migration timescale (Tm,i) and an eccentricity damping timescale (Te,i) for each planet (i = 1,2 for the inner and outer planets, respectively). We show that the resonant configuration is stable if Te,1/Te,2> (e1/e2)2. This general result can be used to put constraints on specific models of disk-planet interactions. For instance, using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater than the outer's orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3:1 MMR), GJ 876b, c (2:1 MMR), and HD 45364b, c (3:2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high masses of these planets.

  14. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry.

    PubMed

    Junza, A; Saurina, J; Barrón, D; Minguillón, C

    2016-08-19

    High resolution accurate mass spectrometry (HRMS) operating in full scan MS mode was used in the search and identification of metabolites in raw milk from cows medicated with enrofloxacin. Data consisting of m/z features were taken throughout the entire chromatogram of milk samples from medicated animals and were compared with blank samples. Twenty six different compounds were identified. Some of them were attributed to structures related to enrofloxacin while others were dipeptides or tripeptides. Additionally, enrofloxacin was administered in a controlled treatment for three days. Milk was collected daily from the first day of treatment and until four days after in the search for the identified compounds. The obtained data were chemometrically treated by Principal Component Analysis. Samples were classified by this method into three different groups corresponding to days 1-2, day 3 and days 4-7 considering the different concentration profile evolution of metabolites during the days studied. Tentative metabolic pathways were designed to rationalize the presence of the newly identified compounds. PMID:27425761

  15. Profiling of steroid metabolites after transdermal and oral administration of testosterone by ultra-high pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Badoud, F; Boccard, J; Schweizer, C; Pralong, F; Saugy, M; Baume, N

    2013-11-01

    The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the

  16. Oral administration of banana lectin modulates cytokine profile and abundance of T-cell populations in mice.

    PubMed

    Sansone, Ana Claudia Miranda Brito; Sansone, Marcelo; Dos Santos Dias, Carlos Tadeu; Oliveira do Nascimento, João Roberto

    2016-08-01

    Banana lectin (BanLec) is a dimeric protein occurring in fruit pulp that modulates immune cell functioning in vitro. In order to assess the immune response in vivo, BanLec from ripe banana (Musa acuminata) fruit was purified and orally given to mice for seven days. The analysis of cytokines in the mice peripheral blood revealed increased IL-10, IL-17 and TNFα, and a reduction of IFNγ and IL-6. In the thymus, an increase of CD4+ and a decrease of CD8+ T-cells were observed after oral administration of BanLec. The modulation of pro- and anti-inflammatory cytokines and T-cells in the peripheral blood and thymus of mice demonstrated the immunomodulatory properties of natural BanLec in vivo. This research brings new data on a protein from a fresh fruit consumed worldwide that may act as an immunomodulator, potentially affecting the host response to infections, immune diseases and cancer. PMID:27106589

  17. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M.; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

    2014-07-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and they can even give us clues to the atmospheric history of these planets. This paper highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines of “mystery planets” using orbiting “spacecraft” (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle and high school audiences. However, we have also used a scaled-down version with elementary school audiences.

  18. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  19. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  20. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  1. Recipes for planet formation

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.

    2009-11-01

    Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.

  2. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  3. Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Boss, Alan; Lecavelier des Etangs, Alain; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Kokubo, Eiichiro; Mardling, Rosemary; Minniti, Dante; Queloz, Didier

    2012-04-01

    Commission 53 was created at the 2006 Prague General Assembly (GA) of the IAU, in recognition of the outburst of astronomical progress in the field of extrasolar planet discovery, characterization, and theoretical work that has occurred since the discovery of the first planet in orbit around a solar-type star in 1995. Commission 53 is the logical successor to the IAU Working Group on Extrasolar Planets (WGESP), which ended its six years of existence in August 2006. The founding President of Commission 53 was Michael Mayor, in honor of his seminal contributions to this new field of astronomy. The current President is Alan Boss, the former chair of the WGESP. The current members of the Commission 53 (C53) Organizing Committee (OC) began their service in August 2009 at the conclusion of the Rio de Janeiro IAU GA.

  4. Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

    PubMed

    Melega, William P; Jorgensen, Matthew J; Laćan, Goran; Way, Baldwin M; Pham, Jamie; Morton, Grenvill; Cho, Arthur K; Fairbanks, Lynn A

    2008-05-01

    Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity. PMID:17625500

  5. Serum lipid and fatty acid profiles in adriamycin-treated rats after administration of L-carnitine.

    PubMed

    Hong, Young Mi; Kim, Hae Soon; Yoon, Hye-Ran

    2002-02-01

    Cardiomyopathy induced by Adriamycin (ADR) is a cause of congestive heart failure. Recently, it has been suggested that ADR inhibits the carnitine palmitoyltransferase system (CPT I) and consequently the transport of long-chain fatty acids across mitochondrial membranes. This study was devised to ascertain how ADR affects serum lipid and fatty acid metabolism in rats given ADR with and without L-carnitine supplementation. Male Sprague-Dawley rats were divided into four groups. The first group was the control. The second group was given intraperitoneal injections of ADR (5 mg/kg) twice a week over a period of 2 wk. The third group received the same dose of ADR plus L-carnitine (200 mg/kg). The fourth group was injected with L-carnitine only. Serum lipids (total cholesterol, triglyceride, HDL cholesterol, and LDL cholesterol) and fatty acid levels were determined on the first, eighth, and 15th d after injection of ADR. ADR caused an increase of serum total cholesterol, triglyceride, and LDL cholesterol compared with the control group. HDL cholesterol was similar between two groups. Similarly, total fatty acids, especially C16-C18 fatty acids, were significantly elevated after injection of ADR. Striking reduction in these substances was observed when L-carnitine was added (p < 0.05). This study is the first report regarding the reversal effect of L-carnitine in connection with FFA profiles (C6-C18) in the serum of ADR-induced cardiomyopathic rats. This study also supports the view that ADR causes cardiomyopathy because it interferes with fatty acid metabolism, and we hypothesize that there is a possible protective effect of L-carnitine. PMID:11809922

  6. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  7. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  8. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  9. Location of Planet X

    SciTech Connect

    Harrington, R.S.

    1988-10-01

    Observed positions of Uranus and Neptune along with residuals in right ascension and declination are used to constrain the location of a postulated tenth planet. The residuals are converted into residuals in ecliptic longitude and latitude. The results are then combined into seasonal normal points, producing average geocentric residuals spaced slightly more than a year apart that are assumed to represent the equivalent heliocentric average residuals for the observed oppositions. Such a planet is found to most likely reside in the region of Scorpius, with considerably less likelihood that it is in Taurus. 8 references.

  10. Development and use of an administrative claims measure for profiling hospital-wide performance on 30-day unplanned readmission

    PubMed Central

    Horwitz, Leora I.; Partovian, Chohreh; Lin, Zhenqiu; Grady, Jacqueline N.; Herrin, Jeph; Conover, Mitchell; Montague, Julia; Dillaway, Chloe; Bartczak, Kathleen; Suter, Lisa G.; Ross, Joseph S.; Bernheim, Susannah M.; Krumholz, Harlan M.; Drye, Elizabeth E.

    2014-01-01

    Background Existing publicly-reported readmission measures are condition-specific, representing < 20% of adult hospitalizations. An all-condition measure may better measure quality and promote innovation. Objective To develop an all-condition, hospital-wide readmission measure. Design Measure development Setting 4,821 US hospitals. Patients Medicare Fee for Service (FFS) beneficiaries ≥ 65 years. Measurements Hospital-level, risk-standardized unplanned readmissions within 30 days of discharge. The measure uses Medicare FFS claims and is a composite of five specialty-based risk-standardized rates for medicine, surgery/gynecology, cardiorespiratory, cardiovascular and neurology cohorts. We randomly split the 2007–2008 admissions for development and validation. Models were adjusted for age, principal diagnosis and comorbidity. We examined calibration in Medicare and all-payer data, and compared hospital rankings in the development and validation samples. Results The development dataset contained 8,018,949 admissions associated with 1,276,165 unplanned readmissions (15.9%). The median hospital risk-standardized unplanned readmission rate was 15.8 (range 11.6–21.9). The five specialty cohort models accurately predicted readmission risk in both Medicare and all-payer datasets for average risk patients but slightly overestimated readmission risk at the extremes. Overall hospital risk-standardized readmission rates did not differ statistically in the split samples (p=0.7 for difference in rank) and 76% of hospitals’ validation set rankings were within two deciles of the development rank (24% >2 deciles). Of hospitals ranking in the top or bottom deciles, 90% remained within two deciles (10% >2 deciles), and 82% remained within one decile (18% > 1 decile). Limitations Risk-adjustment was limited to that available in claims data. Conclusions We developed a claims-based hospital-wide unplanned readmission measure for profiling hospitals that produced reasonably

  11. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Garduño, Maria Luisa; Garcia, María Luisa; Calpena, Ana C

    2016-03-30

    Pranoprofen (PF)-loaded nanoparticles (PF-F1NPs and PF-F2NPs) have been formulated into blank hydrogels (HG_PF-F1NPs and HG_PF-F1NPs) or into hydrogels composed of 3% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone), as innovative strategy to improve the biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (Pranoprofen, PF) for topical application. The purpose of this approach has been to increase the contact of PF with the skin, improve its retention in deeper layers, thus enhancing its anti-inflammatory and analgesic effects. The physicochemical characterization of the developed hydrogels showed a non-Newtonian behaviour, typical of semi-solid formulations for skin administration, with sustained release profile. The results obtained from ex vivo skin human permeation and in vivo anti-inflammatory efficacy studies suggest that topical application of HG_PF-F2NPs has been more effective in the treatment of oedema on the skin' surface in comparison to other hydrogels. No signs of skin irritancy have been detected for all the semi-solid formulations containing 0% or 3% azone. PMID:26844786

  12. Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan; Laughlin, Gregory

    2008-02-01

    We employ a two-dimensional, grid-based hydrodynamic model to simulate upper atmospheric dynamics on extrasolar giant planets. The hydrodynamic equations of motion are integrated on a rotating, irradiated sphere using a pseudospectral algorithm. We use a two-frequency, two-stream approximation of radiative transfer to model the temperature forcing. This model is well suited to simulate the dynamics of the atmospheres of planets with high orbital eccentricity, which are subject to widely varying irradiation conditions. We identify six such planets, with eccentricities between e = 0.28 and e = 0.93 and semimajor axes from a = 0.0508 AU to a = 0.432 AU, as particularly interesting. For each, we determine the temperature profile and resulting infrared light curves in the 8 μm Spitzer band. Especially notable are the results for HD 80606b, which has the largest eccentricity (e = 0.9321) of any known planet, and HAT-P-2b, which transits its parent star, so that its physical properties are well constrained. Despite the varied orbital parameters, the atmospheric dynamics of these planets display a number of interesting common properties. In all cases, the atmospheric response is primarily driven by the intense irradiation at periastron. The resulting expansion of heated air produces high-velocity turbulent flow, including long-lived circumpolar vortices. In addition, a superrotating acoustic front develops on some planets; the strength of this disturbance depends on both the eccentricity and the temperature gradient from uneven heating. The specifics of the resulting infrared light curves depend strongly on the orbital geometry. We show, however, that the variations on HD 80606b and HAT-P-2b should be readily detectable at 4.5 and 8 μm using Spitzer. These two objects present the most attractive observational targets of all known high-e exoplanets.

  13. Immune profile of asplenic patients following single or double vaccine administration: A longitudinal cross-sectional study

    PubMed Central

    Doğan, Sait Murat; Aykas, Ahmet; Yücel, Evrim Şefika; Okut, Gökalp; Şimşek, Cenk; Çayhan, Kürşat; Zengel, Baha; Uslu, Adam

    2015-01-01

    Objective: Splenectomy poses a lifelong threat for the development of uncontrolled sepsis despite vaccination. As it is impractical to measure the levels of each antibody against 23 most frequent bacterial serotypes, different surrogate markers of immune response should be identified. Material and Methods: Forty-eight patients with benign disorders were vaccinated with Pneumo-23 and Act-HIB before or at the day of surgery. The immunological response and opsonization capacity of the patients after splenectomy was analyzed through the quantitative measurement of IgG, IgM, C3, and C4 titers; flow-cytometric analysis of (CD3+) T-lymphocytes and (CD19+) B-lymphocytes; and isolation of CD27+ B cells by immunomagnetic positive selection. Blood samples were drawn at the sixth month and 5 and 7 years after surgery. Results: The mean follow-up period was 98.4 months. All the patients in this series had normal IgG, C3, C4 levels and a normal distribution of CD19+ B-cells and CD8+ T-cells in three follow-up periods. Moreover, C3 levels markedly improved to 133.5±37.3 mg/dL at 5 years and remained stable thereafter. CD19+ B-lymphocyte values have progressively improved to the normal range in 98% patients at 7 years. Further, low levels of CD27+ B-cell population (memory cells) was observed in only 12.5% patients at the last follow-up. Adequate seroconversion of IgG, IgM with normal C3, C4, and CD19+ B-cell levels were accomplished in almost all patients. Early postoperative death and late overwhelming infections did not occur. Conclusion: Our results are indicative of the resumption of the immune function following Pneumo-23 and Act-HIB administrations, instigated by the probable activation of B cells and adequate production of C3, C4, IgG, and IgM antibodies in remote lymphoid tissues. PMID:26504413

  14. Effect of the administration of Solanum nigrum fruit on blood glucose, lipid profiles, and sensitivity of the vascular mesenteric bed to phenylephrine in streptozotocin-induced diabetic rats

    PubMed Central

    Sohrabipour, Shahla; Kharazmi, Fatemah; Soltani, Nepton; Kamalinejad, Mohammad

    2013-01-01

    Background Solanum nigrum fruit is traditionally used in Asia to manage, control, and treat diabetes but there is no scientific evidence of the efficacy of Solanum nigrum fruit in treatment of diabetes. We designed this study to investigate the effect of the administration of oral doses of aqueous extract from Solanum nigrum fruit on plasma glucose, lipid profiles, and the sensitivity of the vascular mesenteric bed to Phenylephrine in diabetic and non-diabetic rats. Material/Methods Animals were divided into 5 groups (n=10): 2 groups served as non-diabetic controls (NDC), and the other groups had diabetes induced with a single injection of streptozotocin (STZ). Solanum nigrum-treated chronic diabetic (CD-SNE) and Solanum nigrum-treated controls (ND-SNE) received 1g/l of Solanum nigrum added to drinking water for 8 weeks. The mesenteric vascular beds were prepared using the McGregor method. Results Administration of Solanum nigrum caused Ca/Mg ratio, plasma glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), total cholesterol, and triglyceride concentrations to return to normal levels, and was shown to decrease alteration in vascular reactivity to vasoconstrictor agents. Conclusions Our results support the hypothesis that Solanum nigrum could play a role in the management of diabetes and the prevention of vascular complications in STZ-induced diabetic rats. PMID:23660828

  15. Oral administration of dehydroepiandrosterone to healthy men: alteration of the urinary androgen profile and consequences for the detection of abuse in sport by gas chromatography-mass spectrometry.

    PubMed

    Dehennin, L; Ferry, M; Lafarge, P; Pérès, G; Lafarge, J P

    1998-02-01

    Dehydroepiandrosterone (DHEA) replacement therapy as compensation for high age-related decline of DHEA and DHEA sulfate production is a matter of intense investigation, since many beneficial effects have been proven, or are suggested and expected. Therefore, DHEA abuse by athletes has been considered by the International Olympic Committee, which banned the substance recently. As DHEA for oral supplementation is easily available, we decided to investigate the effect on the urinary androgen profile of administration along this route of a single substitution dose of 50 mg. Quantitative analysis by gas chromatography-mass spectrometry with selected ion monitoring demonstrated that the drug was readily absorbed with 50 to 75% recovery of dosing after 24 h, and with glucuro- and sulfoconjugates of DHEA, androsterone, and etiocholanolone as the most abundant metabolites. In agreement with reported data found in blood, conversion of exogenous DHEA to the principal biologically active androgen, testosterone, was low but proven to be real by the administration of deuterium-labeled DHEA and the subsequent identification and quantification of deuterium-labeled testosterone. A concentration threshold of 300 micrograms/L of DHEA glucuronide is proposed for the screening of DHEA abuse in sport, but a single replacement dose can only be detected during 8 h. Such a short detection period is the consequence of considerable first-pass hepatic metabolism and also of the high interindividual variability of circulating and urinary DHEA and DHEA sulfate concentrations. PMID:9516717

  16. The brain gene expression profile of dopamine D2/D3 receptors and associated signaling proteins following amphetamine self-administration.

    PubMed

    Sun, H; Calipari, E S; Beveridge, T J R; Jones, S R; Chen, R

    2015-10-29

    Persistent neuroadaptations following chronic psychostimulant exposure include reduced striatal dopamine D2 receptor (D2R) levels. The signaling of D2Rs is initiated by Gαi/o proteins and terminated by regulator of G protein signaling (RGS) proteins. The purpose of this study is to examine the association of the drug taking behavior and gene expression profile of D2/D3Rs, and their associated signaling proteins in the ventral tegmental area (VTA) and nucleus accumbens (NAc) using a rodent model of amphetamine (AMPH) self-administration. Rats were allowed to self-administer AMPH (0.187 mg/kg/infusion for a maximum of 40 injections in 6h daily sessions) for 5 days during which rats showed an escalated rate of AMPH intake across days. AMPH self-administration induced profound brain region-dependent alterations of the targeted genes. There was a positive correlation of the messenger ribonucleic acid (mRNA) levels of RGS10 between the VTA and the NAc in the control animals, which was abolished by AMPH self-administration. AMPH self-administration also produced a negative correlation of the mRNA levels of RGS7 and RGS19 between the two brain regions, which was not present in the control group. Furthermore, AMPH taking behavior was associated with changes in certain gene expression levels. The mRNA levels of RGS2 and RGS4 in both the VTA and NAc were positively correlated with the rate of AMPH intake. Additionally, the rate of AMPH intake was also positively correlated with RGS10 and negatively correlated with RGS17 and the short form of D2Rs mRNA level in the VTA. Although there were significant changes in the mRNA levels of RGS7 and RGS8 in the NAc, none of these measures were correlated with the rate of AMPH intake. The present study suggested that short-term AMPH self-administration produced pronounced changes in the VTA that were more associated with AMPH taking behavior than changes in the NAc. PMID:26321241

  17. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  18. Safety and toxicokinetic profiles associated with daily oral administration of grapiprant, a selective antagonist of the prostaglandin E2 EP4 receptor, to cats.

    PubMed

    Rausch-Derra, Lesley C; Rhodes, Linda

    2016-07-01

    OBJECTIVE To evaluate safety and toxicokinetic profiles associated with daily oral administration of grapiprant, a new analgesic that selectively blocks the prostaglandin E2 EP4 receptor, to cats. ANIMALS 24 healthy domestic shorthair cats (12 males and 12 females). PROCEDURES Cats were randomly assigned (3 of each sex/group) to receive a placebo capsule or grapiprant at 3, 9, or 15 mg/kg, administered PO once daily for 28 days, beginning on day 0. Food consumption and behavior were observed daily, body weight was measured weekly, and clinicopathologic tests were performed on blood and urine samples collected on days -7, 14, and 25. Blood samples for toxicokinetic analyses were collected after treatment on days 0 and 27. Cats were euthanized on day 28, and full necropsies and histologic evaluations were performed. RESULTS Grapiprant rapidly reached peak serum concentrations and maintained substantial concentrations throughout the 28-day period. By day 27, maximum serum concentrations ranged from 683 ng/mL to 4,950 ng/mL, which were attained by 1 to 4 hours after administration. Serum half-lives on day 27 ranged from approximately 2 to 14 hours (median, approx 5 to 6 hours). Grapiprant was well tolerated, and no adverse effects were detected at doses ≤ 15 mg/kg. No significant effects of grapiprant were identified on body weight, food consumption, clinicopathologic variables, or gross or histologic necropsy findings. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested the safety of daily oral administration of grapiprant to cats. Additional studies are needed to evaluate the efficacy of grapiprant for treatment of cats with osteoarthritis. PMID:27347820

  19. The Planet Formation Imager

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Buscher, D. F.; Monnier, J. D.; PFI Science, the; Technical Working Group

    2014-04-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI and discuss how PFI could significantly advance our understanding of the architecture and potential habitability of planetary systems. We present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, we give an overview about the interferometric and non-interferometric technologies that we are investigating in order to meet the specifications.

  20. Positions of minor planets

    NASA Astrophysics Data System (ADS)

    Gressmann, M.

    A continuation of Gressman's (1980) observations is given using the Schmidt-camera 34/40 cm, f = 76. Topocentric positions of several minor planets are presented, and reference stars are obtained from the AGK(3), and applied to the two-star method to avoid any major errors. Parallax constants are also given, along with coordinates for the epoch 1950.0.

  1. Planets and Pucks.

    ERIC Educational Resources Information Center

    Brueningsen, Christopher; Krawiec, Wesley

    1993-01-01

    Presents a simple activity designed to allow students to experimentally verify Kepler's second law, sometimes called the law of equal areas. It states that areas swept out by a planet as it orbits the Sun are equal for equal time intervals. (PR)

  2. A Planet for Goldilocks

    NASA Astrophysics Data System (ADS)

    Batalha, N.

    2014-07-01

    The search for life beyond Earth has inspired Solar System exploration and SETI surveys. Today, the search for life also leads to exoplanet discovery and characterization. Launched in March 2009, NASA's Kepler Mission has discovered thousands of exoplanets with diverse properties. Though each new world is interesting in its own right, Kepler aims to understand the population as a whole. Its primary objective is to determine the frequency of exoplanets of different sizes and orbital periods. Of special interest are the Earth-size planets in the “Goldilocks” (or habitable) Zone where the flux of incoming starlight is conducive to the existence of surface liquid water. Once Kepler establishes the prevalence of such planets in the Solar neighborhood, future missions can be designed to find not just a planet in the Goldilocks Zone but a planet for Goldilocks—a truly habitable environment for life as we know it. Kepler discoveries and progress will be described as well as the resources available to bring Kepler science to the public and into the classroom. The possibility of finding evidence of life beyond Earth is working its way into the public consciousness and has the potential to inspire generations. Scientific literacy is a natural consequence of awakening the spirit of exploration and discovery that led Goldilocks into the forest and leads humans into space.

  3. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  4. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  5. Take a Planet Walk

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2008-01-01

    Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

  6. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  7. Making and Differentiating Planets

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2015-07-01

    The rocky planets formed by progressive aggregation of dust to make planetesimals which joined to make large objects called planetary embryos that finally accumulated into planets, one of which we live on. This chaotic process is complicated further by chemical changes with distance from the Sun, including differences in oxidation conditions and water concentration. Once the inner planets began to form, metallic iron sank to form cores, reacting with the rocky portions in the process. David C. Rubie (University of Bayreuth, Germany) and colleagues in Germany, France, and the United States put all this planetary action into an impressively thorough computer model of planet formation and differentiation. They show that the observed compositions of the Earth can be matched by simulations that include the Grand Tack (Jupiter and Saturn migrate inwards towards the Sun and then back out), and chemical gradients in the Solar System, with more reducing conditions near the Sun, more oxidizing farther from the Sun, and oxidizing and hydrated conditions even farther from the Sun. The study identifies other important variables, such as the extent to which metallic iron chemically equilibrated with the silicate making up the Earth's mantle, the pressure at which it happened, and the likelihood that Earth accreted heterogeneously.

  8. Finding Planets around other stars

    NASA Video Gallery

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  9. NASA Reveals Most Unusual Planet

    NASA Video Gallery

    In exploring the universe, NASA has uncovered one planet more unusual than all others. This 30 second video shows you which planet that is, and explains that NASA science helps us better understand...

  10. Classifying Planets: Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  11. Impact of Buserelin Acetate or hCG Administration on the Day of First Artificial Insemination on Subsequent Luteal Profile and Conception Rate in Murrah Buffalo (Bubalus bubalis).

    PubMed

    Pandey, A K; Ghuman, Sps; Dhaliwal, G S; Agarwal, S K; Phogat, J B

    2016-08-01

    This study was designed to investigate the impact of buserelin acetate (BA) or human chorionic gonadotropin (hCG) administration on the day of first artificial insemination (AI) on subsequent luteal profile (diameter of corpus luteum (CL) and plasma progesterone) and conception rate in Murrah buffalo. The present experiment was carried out at two locations in 117 buffalo that were oestrus-synchronized using cloprostenol (500 μg) administered (i.m.) 11 days apart followed by AI during standing oestrus. Based on treatment (i.m.) at the time of AI, buffalo were randomly categorized (n = 39 in each group) into control (isotonic saline solution, 5 ml), dAI-BA (buserelin acetate, 20 μg) and dAI-hCG (hCG, 3000 IU) group. Out of these, 14 buffalo of each group were subjected to ovarian ultrasonography on the day of oestrus to monitor the preovulatory follicle and on days 5, 12, 16 and 21 post-ovulation to monitor CL diameter. On the day of each sonography, jugular vein blood samples were collected for the estimation of progesterone concentrations. All the buffalo (n = 117) were confirmed for pregnancy on day 40 post-ovulation. The conception rate was better (p < 0.05) in dAI-BA (51.3%) and dAI-hCG (66.7%) groups as compared to their control counterparts (30.8%). Furthermore, the buffalo of dAI-hCG group had improved (p < 0.05) luteal profile, whereas the buffalo of dAI-BA group failed (p > 0.05) to exhibit stimulatory impact of treatment on luteal profile when compared to control group. In brief, buserelin acetate or hCG treatment on the day of first AI leads to an increase in conception rate; however, an appreciable impact on post-ovulation luteal profile was observed only in hCG-treated Murrah buffalo. PMID:27170495

  12. Evaluation of the circadian profiles of serum dehydroepiandrosterone (DHEA), cortisol, and cortisol/DHEA molar ratio after a single oral administration of DHEA in elderly subjects.

    PubMed

    Ceresini, G; Morganti, S; Rebecchi, I; Freddi, M; Ceda, G P; Banchini, A; Solerte, S B; Ferrari, E; Ablondi, F; Valenti, G

    2000-04-01

    Aging is associated with a selective decline in circulating levels of dehydroepiandrosterone (DHEA) and its sulfate, with no major changes in cortisol secretion. In young subjects, serum levels of both DHEA and cortisol are regulated according to a circadian rhythm, and an age-related attenuation of DHEA, but not cortisol, circadian rhythmicity has been reported. Several trials have evaluated the effects of DHEA supplementation in elderly subjects, although the results are still controversial. However, no data are available on the 24-hour profile of DHEA circulating levels in elderly subjects with DHEA administration. In the present study, we evaluated the circadian rhythms of DHEA, cortisol, and the cortisol/DHEA molar ratio in old subjects treated with either placebo (old-PL) or a single 50-mg dose of DHEA (old-D), both administered orally at 0700 hours. For each variable, the circadian profiles were compared with those obtained in young control subjects. The group of young subjects displayed a circadian rhythm for both DHEA and cortisol serum concentrations but no rhythm for the cortisol/DHEA molar ratio. In the old-PL group, the circadian rhythm of DHEA was completely abolished, whereas significant rhythms for both cortisol and the cortisol/DHEA molar ratio were observed. Particularly, at each time point, the cortisol/DHEA molar ratio was significantly higher in these subjects versus the young group. In the old-D group, the circadian rhythm of DHEA was completely restored and was comparable to that observed in the young group. Analogous to the observations in young subjects, the profile of the cortisol/DHEA molar ratio in old-D subjects did not display any circadian rhythmicity, the values being almost completely comparable to those observed in young controls. Our data demonstrate that the circadian rhythm of DHEA is totally abolished in elderly subjects. A single 50-mg dose of DHEA administered orally at 0700 hours restores the circadian rhythmicity of serum

  13. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  14. Understanding the Atmospheres of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Fortney, J.

    2007-10-01

    With the direct measurement of thermal emission (and perhaps soon reflected light) from the 'hot Jupiters', extrasolar planetary science is transitioning from discovery to characterization. Familiar attributes of solar system giant planet atmospheres, including hot stratospheres, clouds, redistribution of heat by winds, and perhaps even non-equilibrium molecular abundances and photochemical products have been recognized and modeled in some of these exotic atmospheres. Despite the fact that atmospheric dynamics undoubtedly plays a major role in controlling the thermal structures of these planets, one-dimensional radiative-convective equilibrium models are still exceptionally useful for understanding the baseline atmospheric physics and resultant thermal structure. Our group's apparently successful prediction of a hot stratosphere on planet HD 149026b is emblematic of the utility of 1D models. In the talk we will review our efforts to model the vertical structure of several of the hot Jupiters, focusing on the processes that play major roles in influencing the atmospheric chemical and temperature profiles. We will highlight processes (e.g., photochemistry acting on S-, P-, N-, and O- as well as C-bearing molecules) that are ripe for further modeling. Given that measurements of thermal emission in various Spitzer mid-infrared bands will soon be published for 10 planets, unprecedented opportunities for comparative exoplanetary science are now at hand.

  15. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    SciTech Connect

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.; and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  16. How Giant Planets Shape the Characteristics of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  17. Atmospheric models for post- giant impact planets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Zahnle, K. J.; Marley, M. S.; Schaefer, L. K.; Fegley, B.; Morley, C.; Cahoy, K.; Freedman, R. S.; Fortney, J. J.

    2013-12-01

    The final assembly of terrestrial planets is now universally thought to have occurred through a series of giant impacts, such as Earth's own Moon-forming impact. These collisions take place over a time interval of about 100 million years, during which time it takes at least 10 collisions between planets to make a Venus or an Earth. In the aftermath of one of these collisions the surviving planet is hot, and can remain hot for millions of years. During this phase of accretion, the proto-terrestrial planet may have a dense steam atmosphere, that will affect both the cooling of the planet and our ability to detect it. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting of vaporized rock material. The atmospheric chemistry is computed self-consistently for atmospheres in equilibrium with hot surfaces, with compositions reflecting either the bulk silicate Earth (BSE, which includes the crust, mantle, atmosphere and oceans) or Earth's continental crust (CC). These two cases allow us to examine differences in atmospheres formed by outgassing of silica-rich (felsic) rocks - like the Earth's continental crust - and MgO- and FeO-rich (mafic) rocks - like the BSE. Studies of detrital zircons from Jack Hills, Australia, show that the continental crust existed 164 million years after the formation of the solar system, in which case the material vaporized in a giant impact should likely reflect the CC composition. However, if at the time of impact the surface of the planet does not yet exhibit the formation of continents, then the BSE case becomes relevant. We compute atmospheric profiles for surface temperatures ranging from 1000 to 2200 K, surface pressures of 10 and 100 bar, and surface gravities of 10 and 30 m/s^2. We account for all major molecular and atomic opacity sources, including collision-induced absorption, to derive the atmospheric structure and compute

  18. Comparative Ionospheres: All Planets Enjoy Sunshine

    NASA Astrophysics Data System (ADS)

    Mendillo, M.

    2005-12-01

    The ionization of a planet's (or moon's) upper atmosphere is caused by energetic photons (EUV and X-rays), augmented by the influx of energetic particles (meteoritic, heliospheric, magnetospheric). The primary structure of an ionosphere, its electron density profile with height Ne(h), results from photochemical processes, with modifications (sometimes dramatically so) due to transport. Typically, the Ne(h) profiles on Venus and Mars conform to photochemical equilibrium, while at Earth both photochemistry and dynamics are needed. For the giant planets, photochemistry alone is unable to match observations. This suggests the need for dynamical processes (winds, E-fields), energetics (e.g., loss via vibrationally-excited molecules), and possible influxes of material (e.g., water products)--- all poorly constrained by observations. Variable solar activity affects all planetary ionospheres, and local plasma instabilities may occur as well. This brief paper provides an overview of known characteristics of planetary ionospheres, and then gives examples of regional and episodic disturbances on Mars as a way to encourage the study of solar-terrestrial planet-relationships (STPR) as a future direction for aeronomy.

  19. Profile of microflora of the posterior intestine of Chinook salmon before, during, and after administration of rations with and without erythromycin

    USGS Publications Warehouse

    Moffitt, C.M.; Mobin, S.M.A.

    2006-01-01

    We describe the resident heterotrophic aerobic microflora of the salmonid posterior intestine before, during, and after the administration of rations with erythromycin in a hatchery raceway environment. We compare the profiles of medicated Chinook salmon Oncorhynchus tshawytscha with those of control fish that were not fed erythromycin. The combined counts of bacteria and yeasts per gram of fish intestine originating from four upstream raceways ranged from 3.0 ?? 102 to 9.6 ?? 105 colony-forming units (CFU) over the study period. Yeasts were commonly identified in the gut, and abundances ranged from 0% to more than 80% of the CFU. Erythromycin therapy decreased the total microbial population and altered the bacterial diversity in the gut during treatment. The intestinal microbial populations in fish medicated with erythromycin increased rapidly after treatment ceased, and by 25 d after treatment the CFU were similar in samples from both medicated and control fish populations. Of 325 isolates from fish selected for biochemical profiles, we identified a total of eight gram-positive and eight gram-negative genera. Bacillus spp. were common throughout sampling and were identified in samples of fish feed. Erythromycin-resistant, gram-positive bacteria were observed throughout the sampling in medicated and control fish. We identified seven gram-positive and two gram-negative genera in 74 selected isolates from control and erythromycin feeds. Our studies suggest that the aerobic microflora of the posterior intestine varies over time, and it is likely that few resistant genera of concern to human health are present.

  20. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  1. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  2. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-01

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance. PMID:23641110

  3. Dynamical Detection of Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Clark Fabrycky, Daniel; Orosz, Jerome; Welsh, William

    2015-12-01

    The Kepler data revealed a population of transiting gas-giant planets orbiting around close binary stars, beginning with Kepler-16, a highlight of the Extreme Solar Systems II meeting. Due to the restrictive geometry requirements of transit detections, this population is highly observationally biased towards coplanarity. However, a third of those planets detectably perturb their host binary's eclipse times, such that they could have been recognized even without transits. Here we announce the detection of three non-transiting planets based on this dynamical technique. Apsidal precession due to the planet makes the primary and secondary eclipse periods differ, and in addition a short-term modulation of the binary's eclipse times reveals the planet's orbital period. Several planetary periods are observed for each system, buttressing the interpretation. Though the method is nearly equally sensitive to all orbital orientations, each planet orbits near its host binary's plane, suggesting this class of planets formed in the circumbinary nebula.

  4. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  5. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  6. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  7. The genesis of planets.

    PubMed

    Lin, Douglas N C

    2008-05-01

    Barely a decade ago scientists who study how planets form had to base their theory on a single example-our solar system. Now they have dozens of mature systems and dozens more in birth throes. No two are alike. The basic idea behind the leading theory of planetary formation--tiny grains stick together and swoop up gas--conceals many levels of intricacy. A chaotic interplay among competing mechanisms leads to a huge diversity of outcomes. PMID:18444325

  8. Impact of buserelin acetate or hCG administration on day 5 post-ovulation on subsequent luteal profile and conception rate in Murrah buffalo (Bubalus bubalis).

    PubMed

    Pandey, A K; Dhaliwal, G S; Ghuman, S P S; Agarwal, S K

    2015-11-01

    The present study aimed to establish the impact of buserelin acetate or hCG administration on day 5 post-ovulation on subsequent luteal profile and conception rate in buffalo. The buffalo (n=45) were subjected to an estrous synchronization protocol (synthetic analog of PGF2α administered, through intramuscular route, 11 days apart), followed by artificial insemination (AI) during mid to late estrus. On day 5 post-ovulation, buffalo were administered (i.m.) normal saline (Control, n=14), buserelin acetate (20μg, d5-BA, n=14) or human chorionic gonadotropin (3000IU, d5-hCG, n=17). Ovarian ultrasonography was conducted on the day of induced estrus and on days 0, 5, 12, 16 and 21 post-ovulation to assess preovulatory follicle or corpus luteum (CL) diameter. Also, on these days, jugular vein blood sampling was conducted for the estimation of plasma progesterone. First service conception rate was greater (χ(2)=5.18, P>0.05) in d5-BA and d5-hCG groups (71.4% and 47.1%, respectively) as compared to control (28.6%). Both treatment groups had a greater (P<0.05) CL diameter and plasma progesterone during the post-treatment period in comparison to that control treatment group. Treatment-induced accessory CL formation was observed in 92.9% and 76.5% buffalo of d5-BA and d5-hCG groups, respectively. In conclusion, buserelin acetate and hCG administration on day 5 post-ovulation leads to accessory CL formation that may have a role in enhancing conception rate. PMID:26471839

  9. Extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Korechoff, R. P.; Diner, D. J.; Tubbs, E. F.; Gaiser, S. L.

    1994-01-01

    This paper discusses the concept of extrasolar planet detection using a large-aperture infared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.

  10. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Macintosh, Bruce; Perrin, Marshall D.; Ingraham, Patrick; Konopacky, Quinn M.; Marois, Christian; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam Seth; Cardwell, Andrew; Chilcote, Jeffrey K.; De Rosa, Robert John J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James E.; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Kathleen M.; Nielsen, Eric L.; Norton, Andew; Oppenheimer, Rebecca; Palmer, David; Patience, Jenny; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemeyer, Leslie; Savransky, Dmitry; Serio, Andrew W.; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wang, Jason; Wiktorowicz, Sloane; Wolff, Schulyer; Gpi/Gpies Team

    2015-01-01

    The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of GPI has been tuned for maximum sensitivity to faint planets near bright stars. GPI has undergone a year of commissioning, verification, and calibration work. We have achieved an estimated H-band contrast (5-sigma) of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds in spectral mode, and suppression of unpolarized starlight by a factor of 800 in imaging polarimetry mode. Early science observations include study of the spectra of β Pic b and HR 8799, orbital investigations of β Pic b and PZ Tel, and observations of the debris disk systems associated with β Pic, AU Mic, and HR 4796A. An 890-hour exoplanet survey with GPI is scheduled to begin in late 2014. A status report for the campaign will be presented.

  11. Complex patterns in the distribution of planets show planet migration and planet and star properties

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    We present dramatic patterns in the distribution of exoplanet periods and eccentricities that vary as functions of iron abundance of the host star, planet mass, stellar properties, and presence of a stellar companion. These patterns include surprising peaks and gaps. They raise the question of whether planets themselves contribute to increasing stellar metallicity by causing other planets or material to “pollute” the star.We also show that the falloff in planets at the shortest periods can be used to determine the rate of planets migrating into the star as a function of the strength of tidal dissipation in the star. A small rate of planets migrating into the star can produce the observed population of the shortest period planets without having to invoke extremely weak tidal dissipation. Tidal dissipation strengths stronger than the tidal quality factor Q being equal to 107 are possible if there is a moderate flow of giant planets into the star. It is likely that within a decade it will be possible to measure the time shift of transits of the shortest period orbits due to orbital period decreases caused by tidal migration.The distribution of the shortest period planets indicates that the strength of tidal dissipation in stars is a function of stellar mass, making it worthwhile to monitor the shortest period systems for time shifts across a range of stellar masses. This time shift is inversely proportional to the lifetime of a planet.It is essential to know the rate of planets migrating into stars in order to understand whether inflated planets are only briefly inflated during a faster migration into the star, or if planets maintain anomalously large radii for longer periods of time.The paucity of Neptune-mass planets at the shortest periods could be due either to a lower rate of inward migration or to evaporation. Knowing how evaporation contributes to this paucity could help determine the fractions of planets that are rock, liquid water, or gas.

  12. PREDICTING PLANETS IN KEPLER MULTI-PLANET SYSTEMS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-05-20

    We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 10{sup 7} years to investigate the stability of 4000-8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing {Delta}, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation {Delta} < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

  13. The Effect of Giant Planets on Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa

    2015-12-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are relatively uncommon based on long baseline radial velocity searches. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times.

  14. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  15. The Rocky Planet Survey

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    In direct support of the NASA Origins program, we propose the Rocky Planet Survey, a high cadence exoplanet search of sixty late G and K dwarf stars using the CHIRON spectrometer, which we built and commissioned at CTIO. CHIRON operates in two high- resolution modes (R=90,000 and R=120,000) and has a demonstrated precision of better than 1 m s-1. We are contributing 200 nights of telescope time for the next three years, for the excellent phase coverage needed to carry out this work. We have developed simulation software to optimize scheduling of observations to suppress aliases and quickly extract dynamical signals. Our science objectives are to (1) provide a statistical assessment of planet occurrence as a function of decreasing mass in the range of parameter space 3 < Msini < 30 MEARTH for orbital periods up to 50 days, (2) to determine the fraction of low mass planets in multi-planet architectures, and (3) detect planets with Msini < 3 MEARTH in orbital periods shorter than ~20 days. In addition to the science objectives, we intend to push the frontiers of extreme precision Doppler measurements to keep the U.S. competitive with the next generation of European Doppler spectroscopy (ESPRESSO on the VLT). Our team has significant expertise in optical design, fiber coupling, raw extraction, barycentric velocity corrections, and Doppler analysis. The proposed work includes a new optimal extraction algorithm, with the optical designers and software engineers working together on the 2-D PSF description needed for a proper row-by-row extraction and calibration. We will also develop and test upgrades to the barycentric correction code and improvements in the Doppler code that take advantage of stability in the dispersion solution, afforded by a new vacuum-enclosed grating upgrade (scheduled for November 2011). We will test use of emission wavelength calibrations to extend the iodine (absorption) wavelength calibration that we currently use to prepare for eventual use of

  16. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  17. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  18. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  19. Watching How Planets Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Anatomy of a Planet-Forming Disc around a Star More Massive than the Sun With the VISIR instrument on ESO's Very Large Telescope, astronomers have mapped the disc around a star more massive than the Sun. The very extended and flared disc most likely contains enough gas and dust to spawn planets. It appears as a precursor of debris discs such as the one around Vega-like stars and thus provides the rare opportunity to witness the conditions prevailing prior to or during planet formation. "Planets form in massive, gaseous and dusty proto-planetary discs that surround nascent stars. This process must be rather ubiquitous as more than 200 planets have now been found around stars other than the Sun," said Pierre-Olivier Lagage, from CEA Saclay (France) and leader of the team that carried out the observations. "However, very little is known about these discs, especially those around stars more massive than the Sun. Such stars are much more luminous and could have a large influence on their disc, possibly quickly destroying the inner part." The astronomers used the VISIR instrument [1] on ESO's Very Large Telescope to map in the infrared the disc surrounding the young star HD 97048. With an age of a few million years [2], HD 97048 belongs to the Chameleon I dark cloud, a stellar nursery 600 light-years away. The star is 40 times more luminous than our Sun and is 2.5 times as massive. The astronomers could only have achieved such a detailed view due to the high angular resolution offered by an 8-metre size telescope in the infrared, reaching a resolution of 0.33 arcsecond. They discovered a very large disc, at least 12 times more extended than the orbit of the farthest planet in the Solar System, Neptune. The observations suggest the disc to be flared. "This is the first time such a structure, predicted by some theoretical models, is imaged around a massive star," said Lagage. ESO PR Photo 36/06 ESO PR Photo 36/06 A Flared Proto-Planetary Disc Such a geometry can only be

  20. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  1. Debris Disks and Hidden Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  2. Planets Suitable for Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When searching for extraterrestrial life, and particularly intelligent life, elsewhere in the solar system or in our galaxy, the obvious places to look are habitable Earth-like planets. This is because most living organisms are quite vulnerable to harsh conditions, and thus the presence of life will be most likely when very favorable conditions occur. Here organisms that survive under extreme conditions on Earth represent no contradiction, because they have adapted to their way of life by the fierce battle of survival on the basis of Darwin's theory (discussed in Chap. 6). But what are the conditions that are favorable for life?

  3. Spinning Stardust into Planets

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A computerized animation simulates the formation of a stellar disk and planets. Ten images from the Hubble Space Telescope (HST) show young stellar disks (taken with the Near-Infrared Camera Multi-Object Spectrometer (NICMOS)) and stellar disks around young stars (taken with the Wide-Field Planetary Camera 2 (WFPC2)). Dr. Deborah Padgett describes what astronomers see in the images of young stellar disks and Dr. Karl Stapelfeldt explains HST's role in helping astronomers to examine young stars in order to understand how solar systems like our own may form.

  4. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  5. NASA's Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  6. Planet X - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  7. Starting a Planet Protectors Club

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2007

    2007-01-01

    If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

  8. Planet X - ract or fiction

    SciTech Connect

    Anderson, J.

    1988-08-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  9. The 3D Flow Field Around an Embedded Planet

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin

    2015-10-01

    3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.

  10. Dynamical Interactions Among Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Laughlin, G.

    For certain multiple planet systems such as GJ 876 and 55 Cancri, which have (1) been observed for a large number of orbital periods, and which (2) have strong planet-planet gravitational interactions, the approximation that the planets are orbiting on independent Keplerian ellipses is inadequate. We discuss the production of self-consistent dynamical fits to these interacting systems, in which a minimization scheme (such as the Levenberg-Marquardt technique, or a Genetic Algorithm) is used to repeatedly drive an N-body integrator and improve the agreement between the integrated reflex motion of the central star and the observed radial velocities.

  11. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2001-12-01

    Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field currently available. Topics cover the origin and evolution of life on Earth, the geological, physical and chemical conditions in which life might arise and the detection of extraterrestrial life on other planets and moons. The book also covers the history of our ideas on extraterrestrial life and the origin of life, as well as the ethical, philosophical and educational issues raised by astrobiology. Written to be accessible to students from diverse backgrounds, this text will be welcomed by advanced undergraduates and graduates who are taking astrobiology courses.• Compiled by world experts in their disciplines to create a truly comprehensive book • Accessible to students from a wide range of backgrounds • A welcome addition to this rapidly-growing field

  12. Stars and Planets

    NASA Astrophysics Data System (ADS)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  13. The Planet Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet

    This book is not so much for the space scientist looking for background material for research as it is for one interested in the history of planetary exploration. The first half (˜100 pps) is devoted to studies of Venus before the space age, starting at several hundred years BC. It is obvious from the multitude of detailed descriptions of observers' accounts that considerable library research went into this section. While sometimes tedious, this chronology of Venus research is punctuated with amusing facts. While many may know about the Velikovsky theory of the cometary origin of the planet, few may know that Lowell drew pictures of Cytherian canals similar to the canals of Mars or that Frederick the Great of Prussia proposed to name the (once suspected) satellite of Venus D'Alembert, after the mathematician. An equally amusing appendix shows the ups and downs of the rotation period of this planet with the invisible surface. Much attention is focused on early telescope observations, the ashen light, and transits of Venus. At the end of this half, one appreciates that Venus has played a fairly important role in history in the areas of religion, science, and technology.

  14. The Giant Planet Jupiter

    NASA Astrophysics Data System (ADS)

    Rogers, John H.

    2009-07-01

    Part I. Observing Jupiter: 1. Observations from Earth; 2. Observations from spacecraft; Part II. The Visible Structure of the Atmosphere: 3. Horizontal structure: belts, currents, spots and storms; 4. Vertical structure: colours and clouds; Part III. The Observational Record of the Atmosphere: 5. The Polar Region; 6. North North Temperate Regions (57°N to 35°N); 7. North Temperate Region (35°N to 23°N); 8. North Tropical Region (23°N to 9°N); 9. Equatorial Region (9°N to 9°S); 10. South Tropical Region (9°S to 27°S); 11. South Temperate Region (27°S to 37°S); 12. South South Temperate Region (37°S to 53°S); Part IV: The Physics and Chemistry of the Atmosphere: 13. Possible large-scale and long-term patterns; 14. The dynamics of individual spots; 15. Theoretical models of the atmosphere; 16. The composition of the planet; Part V. The Electrodynamic Environment of Jupiter: 17. Lights in the Jovian night; 18. The magnetosphere and radiation belts; Part VI. The Satellites: 19. The inner satellites and the ring; 20. The Galilean satellites; 21. Io; 22. Europa; 23. Ganymede; 24. Callisto; 25. The outer satellites; Appendices: 1. Measurement of longitude; 2. Measurement of latitude; 3. Lists of apparitions and published reports; 4. Bibliography (The planet); 5. Bibliography (The magnetosphere and satellites); Index.

  15. Profiling Nonrecipients of Mass Drug Administration for Schistosomiasis and Hookworm Infections: A Comprehensive Analysis of Praziquantel and Albendazole Coverage in Community-Directed Treatment in Uganda

    PubMed Central

    Chami, Goylette F.; Kontoleon, Andreas A.; Bulte, Erwin; Fenwick, Alan; Kabatereine, Narcis B.; Tukahebwa, Edridah M.; Dunne, David W.

    2016-01-01

    Background. Repeated mass drug administration (MDA) with preventive chemotherapies is the mainstay of morbidity control for schistosomiasis and soil-transmitted helminths, yet the World Health Organization recently reported that less than one-third of individuals who required preventive chemotherapies received treatment. Methods. Coverage of community-directed treatment with praziquantel (PZQ) and albendazole (ALB) was analyzed in 17 villages of Mayuge District, Uganda. National drug registers, household questionnaires, and parasitological surveys were collected to track 935 individuals before and after MDA. Multilevel logistic regressions, including household and village effects, were specified with a comprehensive set of socioeconomic and parasitological variables. The factors predicting who did not receive PZQ and ALB from community medicine distributors were identified. Results. Drug receipt was correlated among members within a household, and nonrecipients of PZQ or ALB were profiled by household-level socioeconomic factors. Individuals were less likely to receive either PZQ or ALB if they had a Muslim household head or low home quality, belonged to the minority tribe, or had settled for more years in their village. Untreated individuals were also more likely to belong to households that did not purify drinking water, had no home latrine, and had no members who were part of the village government. Conclusions. The findings demonstrate how to locate and target individuals who are not treated in MDA. Infection risk factors were not informative. In particular, age, gender, and occupation were unable to identify non-recipients, although World Health Organization guidelines rely on these factors. Individuals of low socioeconomic status, minority religions, and minority tribes can be targeted to expand MDA coverage. PMID:26409064

  16. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  17. Bayesian Hypothesis Testing for Planet Finding

    NASA Astrophysics Data System (ADS)

    Braems, I.; Kasdin, N. J.

    2003-12-01

    One of the most important performance metrics of any space planet finding system is integration time. The time needed to make a positive detection of an extrasolar planet determines the number of systems we can observe for the life of the mission and the stability requirements of the spacecraft and optical control systems. Most astronomical detection approaches rely on fairly simple signal-to-noise calculations and a threshold determined by the ability of the human eye to extract the planet image from the background (usually a signal-to-noise ratio of five). In this paper we present an alternative approach to detection using Bayesian hypothesis testing. This optimal approach provides a quantitative measure of the probability of detection under various conditions and integration times (such as known or unknown background levels) and under different prior assumptions. We also show how the technique allows for a much higher probability of detection for shorter integration times than the previous photometric approaches. We gratefully acknowledge the support of the Jet Propulsion Laboratory of the National Aeronautics and Space Administration for this work and Institut National de Recherche en Informatique et Automatique (INRIA) for its support of Ms. Braems.

  18. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  19. Tides in Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2015-11-01

    The arrival of Juno at Jupiter in less than a year necessitates analysis of what we can learn from the gravitational signal due to tides raised on the planet by satellites (especially Io but also Europa). In the existing literature, there is extensive work on static tidal theory (the response of the planet to a tidal potential whose time dependence is ignored) and this is what is usually quoted when people refer to tidal Love numbers. If this were correct then there would be almost no new information content in the measurement of tidally induced gravity field, since the perturbation is of the same kind as the response to rotation (i.e., the measurement of J2, a well-known quantity). However, tides are dynamic (that is, k2 is frequency dependent) and so there is new information in the frequency dependent part. There is also (highly important) information in the imaginary part (more commonly expressed as tidal Q) but there is no prospect of direct detection of this by Juno since that quadrature signal is so small. The difference between what we expect to measure and what we can already calculate directly from J2 is easily shown to be of order the square of tidal frequency over the lowest order normal mode frequency, and thus of order 10%. However, the governing equations are not simple (not separable) because of the Coriolis force. An approximate solution has been obtained for the n =1 polytrope showing that the correction to k2 is even smaller, typically a few percent, because the tidal frequency is not very different from twice the rotation frequency. Moreover, it is not highly sensitive to structure in standard models. However, the deep interior of the planet may be stably stratified because of a compositional gradient and this modifies the tidal flow amplitude, changing the dynamic k2 but not the static k2. This raises the exciting possibility that we can use the determination of k2 to set bounds on the extent of static stability, if any. There is also the slight

  20. What Makes a Habitable Planet?

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L.

    2013-04-01

    Space missions help answer one of humanity's most profound questions: Are we alone in the universe? To begin to understand what makes a planet habitable, and thus where to look for life both within and outside of Earth's solar system, scientists need to understand what in planetary formation and what in its subsequent evolution combine to produce a habitable planet.

  1. The fate of scattered planets

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  2. Three Planets Orbiting Wolf 1061

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M⊕ minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M⊕ minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M⊕ minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H & K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  3. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  4. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected

  5. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  6. Astrophysics: Growing planet brought to light

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan

    2015-11-01

    Thousands of extrasolar planets have been discovered, but none is a planet in its infancy. Observations have finally been made of a young planet growing in its birthplace -- opening the way to many more such discoveries. See Letter p.342

  7. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  8. The Effect of Giant Planets on Habitable Planet Formation

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  9. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  10. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  11. THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION

    SciTech Connect

    Johnson, Jarrett L.; Li Hui

    2012-06-01

    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H]{sub crit} {approx_equal} -1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z {approx}> 0.1 Z{sub Sun }. If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

  12. Comparative bioavailability of two oral L-thyroxine formulations after multiple dose administration in patients with hypothyroidism and its relation with therapeutic endpoints and dissolution profiles.

    PubMed

    Vaisman, M; Spina, L D; Eksterman, L F; dos Santos, M J; Lima, J S; Volpato, N M; da Silva, R L; de Brito, A P; Noël, F

    2001-01-01

    The aim of the present study was to evaluate the bioequivalence and therapeutic equivalence of the two most commonly prescribed L-thyroxine (monsodium L-thyroxine hydrate, CAS 25416-65-3) formulations in Brazil in patients treated for hypothyroidism. Twenty-four patients received 100 micrograms L-thyroxine daily of either Puran T4 (test) or the Brazilian reference formulation (reference) during 42 days, in a two-period crossover design. Serum samples obtained over a 24-h interval were analyzed for their total T4 concentration by a chemiluminescent immunoassay. Content and uniformity of the tablets and dissolution studies were also assessed according to USP 24 monograph using an isocratic HPLC-UV system and a rotating-paddle method. The mean pharmacokinetic parameters for total T4, expressed as geometric means (CV), for the test and reference were, respectively: Cmax (microgram/dl) 9.8 (14.3%) and 10.8 (14.9%); AUC0-24 h (microgram/dl.h) 206.8 (13.9%) and 230.4 (14.9%). Median values (90% CI) for Tmax (h) were 3 (2-3) and 2 (2-4) for the test and reference, respectively. 90% CI for ratios of LogCmax and LogAUC0-24 h were 86.6-94.9 and 86.3-93.4, respectively. Although the test exhibited values of Cmax and AUC0-24 h around 10% lower than the reference, these formulations must be considered bioequivalent since the 90% CI for both Cmax and AUC0-24 h mean ratio were within the 80-125% interval as proposed by the US Food and Drug Administration and the Brazilian legislation. TSH dosages within the normal range further support therapeutic equivalence between the two formulations. Dissolution data were roughly in agreement with in vivo results since both formulations comply with the USP dissolution criteria although the test tablets had a slower dissolution rate than the reference tablets. As a conclusion, the two oral formulations of L-thyroxine are both bioequivalent and therapeutically equivalent although presenting a small difference in their extent of absorption

  13. A Disintegrating Minor Planet Transiting a White Dwarf

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John; Charbonneau, David; Latham, David W.; Ciardi, David; Schaefer, Laura; Kipping, David; Angus, Ruth; Eastman, Jason; Wright, Jason; McCrady, Nate; Wittenmyer, Robert; Dufour, Patrick

    2015-12-01

    Over the past decade, evidence has accumulated suggesting that the photospheres of many white dwarfs are polluted by the remnants of small rocky bodies leftover from the progenitors' planetary systems. The evidence for this scenario is typically indirect and circumstantial. We report observations of a disintegrating minor planet transiting a polluted white dwarf. The transits are 5 minutes long, up to 40% deep, have an asymmetric profile and highly variable transit depths. This system provides strong corroborating evidence for the planet accretion model for white dwarf pollution and lets us watch the destruction of a solar system in real time.

  14. Nucleic acid labeling with ( sup 3 H)orotic acid and nucleotide profile in rats in protein deprivation, enteral and parenteral essential amino acid administration, and 5-fluorouracil treatment

    SciTech Connect

    Jakobsson, B.; el Hag, I.A.; Andersson, M.; Christensson, P.I.; Stenram, U. )

    1990-09-01

    Rats were fed a 0% casein diet for 1 week, with or without enteral or parenteral administration of essential amino acids, or a 25% casein diet, in one group supplemented with 5-fluorouracil treatment. Ninety minutes before sacrifice the rats were given a tracer of (3H)orotic acid. Incorporation into the acid soluble fraction, RNA, and DNA was determined in liver, small intestine, bone marrow, and kidney. Nucleotide profile was examined in liver and intestine. Protein deficiency caused inter alia a decrease in body weight; a decrease in RNA/DNA ratio and an increase in the specific RNA labeling in liver and kidney; an altered nucleotide profile in the liver; an increase in the nucleotide/DNA and RNA/DNA ratios and a decrease in the specific labeling of the acid soluble fraction, RNA, and DNA in the bone marrow. These changes were prevented to the same extent by giving essential amino acids, either orally or intravenously. The minor changes in intestinal nucleotide profile in protein deprivation were prevented to a slightly larger extent by amino acids orally than parenterally. 5-Fluorouracil treatment gave a decrease in the RNA/DNA ratio in the liver and kidney but an increase in the nucleotide/DNA and RNA/DNA ratios in the bone marrow. Nucleotide profiles were unaltered. The amount of DNA per gram of tissue decreased in bone marrow and increased in kidney. Parenteral administration per se resulted in almost no changes.

  15. Comparative ionospheres. I - The inner planets. II - The outer planets

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1983-01-01

    A description is given first of the fundamental physical and chemical processes controlling the thermospheres and ionospheres of the inner planets, Venus and Mars. A comparison is made between the neutral composition and temperature structure of Venus and Mars and those of the earth. Consideration is then given to the chemical and diffusion processes in the ionosphere. After a brief treatment of the ionospheric energetics and heat sources, the mechanisms underlying the maintenance of the nightside ionosphere of Venus are reviewed. A description is then given of the upper atmospheres and ionospheres of the major planets, Jupiter and Saturn. The treatment of the temperature structure and composition of the thermospheres of the major planets includes a description of the physical and chemical processes controlling the hydrocarbons and atomic hydrogen. A comparison is then made between the ionospheres of the major planets and those of the inner planets. It is noted that Io and Titan also have atmospheres and ionospheres, and these are treated briefly. Even though comets cannot be classed as planets, they have atmospheres and ionospheres that are not gravitationally confined.

  16. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  17. Planets to Cosmology

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Casertano, Stefano

    2006-04-01

    Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

  18. Planets to Cosmology

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Casertano, Stefano

    2011-11-01

    Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

  19. PLANETS ON THE EDGE

    SciTech Connect

    Valsecchi, Francesca; Rasio, Frederic A.

    2014-05-20

    Hot Jupiters formed through circularization of high-eccentricity orbits should be found at orbital separations a exceeding twice that of their Roche limit a {sub R}. Nevertheless, about a dozen giant planets have now been found well within this limit (a {sub R} < a < 2 a {sub R}), with one coming as close as 1.2 a {sub R}. In this Letter, we show that orbital decay (starting beyond 2 a {sub R}) driven by tidal dissipation in the star can naturally explain these objects. For a few systems (WASP-4 and 19), this explanation requires the linear reduction in convective tidal dissipation proposed originally by Zahn and verified by recent numerical simulations, but rules out the quadratic prescription proposed by Goldreich and Nicholson. Additionally, we find that WASP-19-like systems could potentially provide direct empirical constraints on tidal dissipation, as we could soon be able to measure their orbital decay through high precision transit timing measurements.

  20. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  1. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  2. This Little Planet.

    ERIC Educational Resources Information Center

    Hamilton, Michael, Ed.

    In six essays considering overpopulation, pollution, and food supply from the framework of the Judeo-Christian tradition and of world ecology, three theologians (Pollard, Shinn, and Bonifazi), an ecologist (Sears), a geographer (Glacken), and a medical scientist and administrator (Bennett), conclude that the control and preservation of the natural…

  3. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  4. Astrographic Positions of Minor Planets

    NASA Astrophysics Data System (ADS)

    Naskrecki, W.; Swierkowska, S.

    The paper presents the photographic position of minor planets taken in the years 1986/1987 at the Astronomical Observatory of A. Mickiewicz University, Poznan, with an astrograph of the F=1500 mm, d=300 mm.

  5. Astrographic Positions of Minor Planets

    NASA Astrophysics Data System (ADS)

    Nasrecki, W.; Swierkowska, S.

    The paper presents the photographic position of minor planets taken in the years 1985-1986 at the Astronomical Observatory of A. Mickiewicz University, Poznan, with a astrograph of the F=1500 mm, d=300 mm.

  6. Magnetospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Vanallen, James A.

    1987-01-01

    The five qualitatively different types of magnetism that a planet body can exhibit are outlined. Potential sources of energetic particles in a planetary magnetosphere are discussed. The magnetosphere of Uranus and Neptune are then described using Pioneer 10 data.

  7. Voyager to the Seventh Planet.

    ERIC Educational Resources Information Center

    Gold, Michael

    1986-01-01

    Presents recent findings obtained by the Voyager 2 mission on Uranus. Updates information on the planet's moons, rings, atmosphere, and magnetic field. Illustrations and diagrams of selected aspects of Uranus are included. (ML)

  8. Raman scattering in the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Cochran, W. D.; Trafton, L. M.

    1978-01-01

    A technique is developed to calculate the detailed effects of Raman scattering in an inhomogeneous anisotropically scattering atmosphere. The technique is applied to evaluations of Raman scattering by H2 in the atmosphere of the major planets. It is noted that Raman scattering produces an insufficient decrease in the blue and ultraviolet regions to explain the albedos of all planets investigated. For all major planets, the filling-in of solar line cores and the generation of the Raman-shifted ghosts of the Fraunhofer spectrum are observed. With regard to Uranus and Neptune, Raman scattering is seen to exert a major influence on the formation and profile of strong red and near infrared CH4 bands, and Raman scattering by H2 explains the residual intensity in the cores of these bands. Raman scattering by H2 must also be taken into account in the scattering of photons into the cores of saturated absorption bands.

  9. Planet Hunters: Kepler by Eye

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  10. Planets in extreme magnetic environments

    NASA Astrophysics Data System (ADS)

    Moutou, Claire

    2015-12-01

    Interactions between stars and planets in very close-in systems include irradiation, tidal and magnetic effects, the relative amplitudes of which depend on the system parameters. The extent of magnetic interactions, however, is only poorly known since the magnetic fields of the parent star itself is barely characterized. In this presentation, I will review the recent efforts made to measure and characterize the magnetic fields of star hosting close-in planets, in order to provide quantitative constraints in the studies of star-planet interactions.We have been using the spectropolarimeters CFHT/ESPaDOnS and TBL/NARVAL to assess the our ability to detect the circular polarization of several dozens planet-host stars, and to map the large-scale magnetic topology of a sub-sample of these stars. The detection of magnetic fields as low as a few Gauss is possible around relatively bright, solar-like stars. After hot-Jupiter systems, we got interested in systems with smaller planets in close orbits. Several applications of these magnetic topologies have already been used in theoretical analyses of the star-planet interactions, that we will briefly review. Perspectives for this work include further observing programs and more detailed theoretical representations.

  11. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  12. Habitable Planets: Interior Dynamics and Long-Term Evolution

    NASA Astrophysics Data System (ADS)

    Tackley, Paul J.; Ammann, Michael M.; Brodholt, John P.; Dobson, David P.; Valencia, Diana

    2014-04-01

    Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.

  13. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C. B.; Asphaug, E. I.

    2003-05-01

    The currently accepted model for the formation of terrestrial planets describes their growth as the collisional accumulation of rocky or sometimes molten planetesimals. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably rotationally unstable spin rates acquired as a planet grows. Do planets really accrete in this manner? On the other hand, most of the work studying the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision (Agnor, Canup & Levison 1999) but by all of the major collisional encounters in a planet's history. As demonstrated in our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for subsequent collisions. We have commenced a detailed study of collision dynamics and outcomes common to the late stage of terrestrial planet accretion. We are modeling collisions using smooth particle hydrodynamics to examine, primarily, the regimes of impact that truly allow for accretion (i.e. mass accumulation instead of mass loss). We are also studying the cumulative affect of giant impacts on major planetary characteristics (such as composition and spin) and

  14. ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES

    SciTech Connect

    Lissauer, Jack J.; Jontof-Hutter, Daniel; Rowe, Jason F.; Howell, Steve B.; Jenkins, Jon M.; Fabrycky, Daniel C.; Lopez, Eric D.; Fortney, Jonathan J.; Agol, Eric; Marcy, Geoffrey W.; Isaacson, Howard; Kolbl, Rea; Deck, Katherine M.; Fischer, Debra A.; Sasselov, Dimitar; Short, Donald R.; Welsh, William F.

    2013-06-20

    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of Kepler photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. Moreover, we examine the stability of these envelopes against photoevaporation and find that the compositions of at least the inner two planets have likely been significantly sculpted by mass loss. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.

  15. GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET-PLANET INTERACTIONS

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth A.

    2013-04-20

    Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semimajor axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H] < 0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g., stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.

  16. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  17. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2004-12-01

    The terrestrial planets are generally thought to have formed via the collisional accumulation of rocky bodies. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably prohibitively large spin angular momentum acquired as a planet grows. To date, studies of the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001, Canup 2004). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision but by all of the major collisional encounters in a planet's history (Agnor, Canup & Levison 1999). As demonstrated by our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for the subsequent collision. We are studying collisional dynamics and outcomes common to the late stage of terrestrial planet formation. We use smooth particle hydrodynamics model collisions in an effort to identify the range of impact dynamics that allow for accretion (i.e. mass growth instead of mass loss). In our initial study we found that for dynamical environments typical of most late stage accretion models, about half of all collisions between equal mass planetary embryos do not result in accumulation into a larger embryo (Agnor & Asphaug 2004). We will

  18. Reaching for the red planet

    PubMed

    David, L

    1996-05-01

    The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet. PMID:11538726

  19. Planet Scattering Around Binaries: Ejections, Not Collisions

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-06-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multi-planet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  20. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  1. Growth of planets from planetesimals

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Stewart, Glen R.

    1993-01-01

    The paper reviews the formation of terrestrial planets and the cores of Jovian planets within the framework of the planetesimal hypothesis, wherein planets are assumed to grow via the pairwise accumulation of small solid bodies. The rate of (proto)planetary growth is determined by the size and mass of the protoplanet, the surface density of planetesimals, and the distribution of planetesimal velocities relative to the protoplanet. Planetesimal velocities are modified by mutual gravitational interactions and collisions, which convert energy present in the ordered relative motions of orbiting particles into random motions and tend to reduce the velocities of the largest bodies in the swarm relative to those of smaller bodies, as well as by gas drag, which damps eccentricities and inclinations. The evolution of planetesimal size distribution is determined by the gravitationally enhanced collision cross section, which favors collisions between planetesimals with smaller velocities.

  2. Characterizing K2 Planet Discoveries

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  3. Planet Masses from Disk Spirals

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Young, forming planets can generate immense spiral structures within their protoplanetary disks. A recent study has shown that observations of these spiral structures may allow astronomers to measure the mass of the planets that create them.Spirals From WavesSnapshots of the surface density of a protoplanetary disk in a 2D simulation, 3D simulation, and synthesized scattered-light image. Click for a closer look! [Fung Dong, 2015]Recent studies have shown that a single planet, if it is massive enough, can excite multiple density waves within a protoplanetary disk as it orbits. These density waves can then interfere to produce a multiple-armed spiral structure in the disk inside of the planets orbit a structure which can potentially be observed in scattered-light images of the disk.But what do these arms look like, and what factors determine their structure? In a recently published study, Jeffrey Fung and Ruobing Dong, two researchers at the University of California at Berkeley, have modeled the spiral arms in an effort to answer these questions.Arms Provide AnswersA useful parameter for describing the structure is the azimuthal separation (sep) between the primary and secondary spiral arms. If you draw a circle within the disk and measure the angle between the two points where the primary and secondary arms cross it, thats sep.Azimuthal separation of the primary and secondary spiral arms, as a function of the planet-to-star mass ratio q. The different curves represent different disk aspect ratios. [Fung Dong, 2015]The authors find thatsep stays roughly constant for different radii, but its strongly dependent on the planets mass: for larger planets, sep increases. They discover that sep scales as a power of the planet mass for companions between Neptune mass and 16 Jupiter masses, orbiting around a solar-mass star. For larger, brown-dwarf-size companions, sep is a constant 180.If this new theory is confirmed, it could have very interesting implications for

  4. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago. PMID:21707386

  5. Numerical modeling of convection in the interiors of giant planets

    NASA Astrophysics Data System (ADS)

    Evonuk, Martha

    Thermal convection in the deep interiors of giant planets is simulated to help explain observations of surface winds and predict interior behavior. Using two- and three-dimensional hydro-codes, approximations and assumptions commonly made while simulating giant planets are examined. Two-dimensional simulations show that fluid behavior in giant planets cannot be studied properly unless the vast change in density with depth experienced in a giant planet is taken into consideration. Including a density stratification results in asymmetric scales of motion (smaller scales in the less dense regions), a preferential weighting of the mean properties of the fluid (such as entropy) to that of the denser regions, and for rotating fluids, a very important source of vorticity generation which fuels the formation of zonal flow structures at the surface and at depth. Currently the majority of codes used in the planetary modeling community employ the Boussinesq approximation, which assumes a constant density background profile, a poor approximation for a giant planet. Core size and rotation rate also play important roles in the interior fluid patterns, as rotation acts to suppress convection and to drive shear flow while larger cores acts to impede flow. At low rotation rates, simulations of planets that include small solid cores for numerical reasons may be poor approximations for planets without solid inner cores. Two-dimensional simulations provide valuable insights, yet there are many aspects of giant planets that need to be explore in three dimensions. Three-dimensional finite-volume simulations of a Jupiter- like planet with no core generate surface zonal flow patterns similar to previous spectral simulations that include large cores. This result emphasizes that it is increased resolution and Rayleigh number in conjunction with the density stratification that allows the formation of multiple high latitude jets in a planetary body, not the inclusion of a large non

  6. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  7. AN ULTRACOOL STAR'S CANDIDATE PLANET

    SciTech Connect

    Pravdo, Steven H.; Shaklan, Stuart B. E-mail: stuart.shaklan@jpl.nasa.gov

    2009-07-20

    We report here the discovery of the first planet around an ultracool dwarf star. It is also the first extrasolar giant planet astrometrically discovered around a main-sequence star. The statistical significance of the detection is shown in two ways. First, there is a 2 x 10{sup -8} probability that the astrometric motion fits a parallax-and-proper-motion-only model. Second, periodogram analysis shows a false alarm probability of 3 x 10{sup -5} that the discovered period is randomly generated. The planetary mass is M {sub 2} = 6.4 (+2.6,-3.1) Jupiter-masses (M {sub J}), and the orbital period is P = 0.744 (+0.013,-0.008) yr in the most likely model. In less likely models, companion masses that are higher than the 13 M {sub J} planetary mass limit are ruled out by past radial velocity (RV) measurements unless the system RV is more than twice the current upper limits and the near-periastron orbital phase was never observed. This new planetary system is remarkable, in part, because its star, VB 10, is near the lower mass limit for a star. Our astrometric observations provide a dynamical mass measurement and will in time allow us to confront the theoretical models of formation and evolution of such systems and their members. We thus add to the diversity of planetary systems and to the small number of known M-dwarf planets. Planets such as VB 10b could be the most numerous type of planets because M stars comprise >70% of all stars. To date they have remained hidden since the dominant RV planet-discovery technique is relatively insensitive to these dim, red systems.

  8. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets. PMID:24664912

  9. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  10. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  11. Recent Kepler Results On Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.; Fabrycky, Daniel C.

    2014-04-01

    Ranked near the top of the long list of exciting discoveries made with NASA's Kepler photometer is the detection of transiting circumbinary planets. In just over a year the number of such planets went from zero to seven, including a multi-planet system with one of the planets in the habitable zone (Kepler-47). We are quickly learning to better detect and characterize these planets, including the recognition of their transit timing and duration variation ``smoking gun'' signature. Even with only a handful of such planets, some exciting trends are emerging.

  12. Pharmacokinetic profile of two different pharmaceutical forms of theophylline (a slow release tablet and a syrup) after multiple dose administration to healthy human volunteers.

    PubMed

    Muscará, M N; Hofstätter, E A; de Nucci, G

    1993-01-01

    Due to the narrow therapeutic range of theophylline, plasma concentrations of this drug are monitored in patients undergoing chronic therapy. Slow-release preparations avoid the fluctuations in plasma levels and improve patient compliance. In this study, we have compared the pharmacokinetic profiles of a theophylline slow-release tablet and a syrup form, when administered in multiple doses to healthy adult volunteers. The classification based upon releasing patterns is confirmed. PMID:8246751

  13. Wide Giant Planets are Rare: Planet Demographics from Direct Imaging

    NASA Astrophysics Data System (ADS)

    Biller, Beth

    2015-08-01

    The previous generation of direct imaging surveys probed samples of 100-200 stars with AO-driven coronagraphic imaging and advanced techniques such as Angular Differential Imaging (ADI) (e.g. surveys such as SEEDS, IDPS, the NICI Science Campaign, among others). These surveys found that wide giant planets are comparatively rare, especially at separations > 50 AU: for instance, Biller et al. 2013 find for a sample of 78 young moving group stars that the the frequency of 1-20 M Jup companions at semi-major axes from 10-150 AU is <18% at a 95.4% confidence level using DUSTY models and <6% at a 95.4% using COND models. As next generation planet-finding cameras such as GPI at Gemini, SPHERE at VLT, project 1640, and SceXAO at Suburu come online, our understanding of wide planet populations is likely to undergo a rapid evolution, especially for planets at separations of 10-50 AU. New large-scale surveys (400-500 stars) are now underway with these new instruments, e.g. NIRSUR with SPHERE and GPIES with GPI. In this talk, I will review the previous generation of surveys and the statistical results that they have yielded. I will also discuss prospects for the new generation of ongoing surveys.

  14. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  15. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    SciTech Connect

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J.; Tuomi, Mikko; Zhang, Z.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Carter, B. D.; Jenkins, J. S.; Vogt, S. S.; Rivera, Eugenio J.

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  16. Millimeter image of the HL Tau Disk: gaps opened by planets?

    SciTech Connect

    Li, Hui

    2015-10-20

    Several observed features which favor planet-induced gaps in the disk are pointed out. Parameters of a two-fluid simulation model are listed, and some model results are shown. It is concluded that (1) interaction between planets, gas, and dust can explain the main features in the ALMA observation; (2) the millimeter image of a disk is determined by the dust profile, which in turn is influenced by planetary masses, viscosity, disk self-gravity, etc.; and (3) models that focus on the complex physics between gas and dust (and planets) are crucial in interpreting the (sub)millimeter images of disks.

  17. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  18. Planet scattering around binaries: ejections, not collisions

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-09-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically affects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multiplanet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  19. Exploring the planets with spacecraft - Accomplishments to date

    NASA Technical Reports Server (NTRS)

    Rea, D. G.

    1974-01-01

    A summary of knowledge gained about Venus, Mars, Jupiter, and Mercury via spacecraft. Mariner and Venera probes returned data on Venus' size, atmospheric structure and composition, temperature profiles, and magnetic field. Knowledge of the clouds is still primitive. Mars and Mariner probes (especially Mariner 9) expanded knowledge of the Martian surface, atmospheric structure and dynamics, and magnetic field. Mars is now viewed as a very active planet, with the possibility of life not immediately ruled out. Pioneer 10 returned data on Jovian temperature profiles and magnetic field, Galilean satellite masses, and Io's atmosphere. Mariner 10 added to knowledge of Mercury's surface, magnetic field, atmosphere, and activity.

  20. Terrestrial Planet Finder Interferometer Science Working Group Report

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Lay, Oliver P. (Editor); Johnston, Kenneth J. (Editor); Beichman, Charles A. (Editor)

    2007-01-01

    Over the past two years, the focus of the project for the interferometric version of the Terrestrial Planet Finder(TPF-I) has been on the development of the scientific rational for the mission, the assessment of TPF-I architectures, the laboratory demonstration of key technologies, and the development of a detailed technology roadmap. The Science Working Group (SWG), in conjunction with European colleagues working on the European Space Agency's (ESA's) Darwin project, has reaffirmed the goals of TPF-I as part of a broad vision for the detection and characterization of Earth-like planets orbiting nearby stars and for the search for life on those planets. The SWG also helped to assess the performance of different interferometric configurations for TPF-I/Darwin. Building on earlier SWG reports, this document restates the scientific case for TPF-I, assesses suitable target stars and relevant wavelengths for observation, discusses dramatic new capabilities for general astrophysical observations, and summarizes how Spitzer has improved our knowledge of the incidence of zodiacal emission on the search for planets. This document discusses in some detail on laboratory advances in interferometric nulling and formation flying. Laboratory experiments have now achieved stable narrow- and broad-band nulling the levels of 10-6 and 2.0x10-5, respectively. A testbed has demonstrated formation flying using two realistic spacecraft mockups. With a suitably funded program of technology development, as summarized herein and described in more detail in the Technology Plan for the Terrestrial Planet Finder Interferometer (2005), the National Aeronautics and Space Administration (NASA) and ESA would be able to start within the coming decade a full-scale TPF-I/Darwin mission capable of finding Earths orbiting more than 150 nearby stars, or a scaled back interferometer capable of studying more than 30 stars. Finding evidence for life on just one of those planets would revolutionize our

  1. Return to the Red Planet

    NASA Technical Reports Server (NTRS)

    Lee, W.

    1996-01-01

    In November 1996, NASA and the Jet Propulsion Laboratory will begin America's return to Mars after a 20-year absence by launching the Mars Global Surveyor (MGS) spacecraft. This mission will usher in a new and exciting era of scientific missions to study the red planet.

  2. Finding Spring on Planet X

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2007-01-01

    For a given orbital period and eccentricity, we determine the maximum time lapse between the winter solstice and the spring equinox on a planet. In addition, given an axial precession path, we determine the effects on the seasons. This material can be used at various levels to illustrate ideas such as periodicity, eccentricity, polar coordinates,…

  3. Terrestrial Planet Finder: science overview

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Beichman, C. A.

    2004-01-01

    The Terrestrial Planet Finder (TPF) seeks to revolutionize our understanding of humanity's place in the universe - by searching for Earth-like planets using reflected light, or thermal emission in the mid-infrared. Direct detection implies that TPF must separate planet light from glare of the nearby star, a technical challenge which has only in recent years been recognized as surmountable. TPF will obtain a low-resolution spectra of each planets it detects, providing some of its basic physical characteristics and its main atmospheric constituents, thereby allowing us to assess the likelihood that habitable conditions exist there. NASA has decided the scientific importance of this research is so high that TPF will be pursued as two complementary space observatories: a visible-light coronagraph and a mid-infrared formation flying interferometer. The combination of spectra from both wavebands is much more valuable than either taken separately, and it will allow a much fuller understanding of the wide diversity of planetary atmospheres that may be expected to exist. Measurements across a broad wavelength range will yield not only physical properties such as size and albedo, but will also serve as the foundations of a reliable and robust assessment of habitability and the presence of life.

  4. Giant Planets in Open Clusters

    NASA Astrophysics Data System (ADS)

    Quinn, S. N.; White, R. J.; Latham, D. W.

    2015-10-01

    Two decades after the discovery of 51 Peg b, more than 200 hot Jupiters have now been confirmed, but the details of their inward migration remain uncertain. While it is widely accepted that short period giant planets could not have formed in situ, several different mechanisms (e.g., Type II migration, planet-planet scattering, Kozai-Lidov cycles) may contribute to shrinking planetary orbits, and the relative importance of each is not well-constrained. Migration through the gas disk is expected to preserve circular, coplanar orbits and must occur quickly (within ˜ 10 Myr), whereas multi-body processes should initially excite eccentricities and inclinations and may take hundreds of millions of years. Subsequent evolution of the system (e.g., orbital circularization and inclination damping via tidal interaction with the host star) may obscure these differences, so observing hot Jupiters soon after migration occurs can constrain the importance of each mechanism. Fortunately, the well-characterized stars in young and adolescent open clusters (with known ages and compositions) provide natural laboratories for such studies, and recent surveys have begun to take advantage of this opportunity. We present a review of the discoveries in this emerging realm of exoplanet science, discuss the constraints they provide for giant planet formation and migration, and reflect on the future direction of the field.

  5. Tracking Planets around the Sun

    ERIC Educational Resources Information Center

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  6. Do Other Planets Have Summer?

    ERIC Educational Resources Information Center

    Nelson, George

    2005-01-01

    It's important to keep two things in mind when thinking about the cause of the seasons: (1) Earth and all the other planets except Pluto and Mercury move around the Sun in almost perfect circles, getting neither closer nor farther away from the Sun during the year; and (2) Earth's rotation axis is tilted with respect to the plane of its orbit…

  7. MEMS AO for Planet Finding

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  8. Venus and Mercury as Planets

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  9. The Chemistry of the Planets.

    ERIC Educational Resources Information Center

    Blake, Peter

    1988-01-01

    Introduces knowledge of planetary chemistry for possible use in teaching. Discusses the chemical composition of the planets; the atmosphere and clouds of Venus, Jupiter and its moons, and Titan. Includes diagrams of the greenhouse effects in the solar system, elemental abundances, and the chemical composition of Jupiter. (RT)

  10. Jupiter: Lord of the Planets.

    ERIC Educational Resources Information Center

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  11. How Common are Habitable Planets?

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The Earth is teeming with life, which, occupies a diverse array of environments; other bodies in our Solar System offer fewer, if any, niches which are habitable by life as we know it. Nonetheless, astronomical studies suggest that a large number of habitable planets-are likely to be present within our Galaxy.

  12. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  13. Tour of Planet With Extreme Temperature Swings

    NASA Video Gallery

    A computer simulation of the planet HD 80606b. The point of closest approach -- and maximum heating -- occurs about 4.5 seconds into the animation. As the planet whips around the star, we see the e...

  14. Kepler Discovers Earth-size Planet Candidates

    NASA Video Gallery

    NASA's Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet's surface. Five of th...

  15. Kepler Discovers Its First Rocky Planet

    NASA Video Gallery

    NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system....

  16. Disposition and metabolic profile of the weak androgen Dehydroepiandrosterone (DHEA) following administration as part of a nutritional supplement to exercised horses.

    PubMed

    Knych, H K; Arthur, R M; Stanley, S D; McKemie, D S

    2015-01-01

    In order to ensure the welfare of performance horses and riders as well as the integrity of the sport, the use of both therapeutic and illegal agents in horse racing is tightly regulated. While Dehydroepiandrosterone (DHEA) is not specifically banned from administration to racehorses in the United States and no screening limit or threshold concentration exists, the metabolic conversion of DHEA to testosterone make its presence in nutritional supplements a regulatory concern. The recommended regulatory threshold for total testosterone in urine is 55 and 20 ng/mL for mares and geldings, respectively. In plasma, screening and confirmation limits for free testosterone (mares and geldings), of no greater than 0.1 and 0.025 ng/mL, respectively are recommended. DHEA was administered orally, as part of a nutritional supplement, to 8 exercised female thoroughbred horses and plasma and urine samples collected at pre-determined times post administration. Using liquid chromatography-mass spectrometry (LC-MS), plasma and urine samples were analyzed for DHEA, DHEA-sulfate, testosterone, testosterone-sulfate, pregnenolone, androstenedione, and androstenediol. DHEA was rapidly absorbed with maximal plasma concentrations reaching 52.0 ± 43.8 ng/mL and 32.1 ± 12.9 ng/mL for DHEA and DHEA sulfate, respectively. Free testosterone was not detected in plasma or urine samples at any time. Maximum sulfate conjugated testosterone plasma concentrations were 0.98 ± 1.09 ng/mL. Plasma testosterone-sulfate concentrations did not fall below 0.1 ng/mL and urine testosterone-sulfate below 55 ng/mL until 24-36 h post DHEA administration. Urine testosterone sulfate concentrations remained slightly above baseline levels at 48 h for most of the horses studied. PMID:25242721

  17. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d. PMID:24191033

  18. Chemical profiling with HPLC-FTMS of exogenous and endogenous chemicals susceptible to the administration of chotosan in an animal model of type 2 diabetes-induced dementia.

    PubMed

    Niu, Yimin; Li, Feng; Inada, Chikako; Tanaka, Ken; Watanabe, Shiro; Fujiwara, Hironori; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro; Matsumoto, Kinzo

    2015-02-01

    In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 μM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative

  19. A Quantitative Criterion for Defining Planets

    NASA Astrophysics Data System (ADS)

    Margot, J. L.

    2015-12-01

    A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence. This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets. All 8 planets and all classifiable exoplanets satisfy the criterion. This metric may be useful in generalizing and simplifying the definition of a planet.

  20. A Quantitative Criterion for Defining Planets

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc

    2015-12-01

    A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence. This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets. All eight planets and all classifiable exoplanets satisfy the criterion. This metric may be useful in generalizing and simplifying the definition of a planet.

  1. Non-grey thermal effects in irradiated planets atmospheres

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Guillot, Tristan; Fortney, Jonathan J.; Marley, Mark S.

    2016-01-01

    The large diversity of exoplanets in terms of irradiation temperature, gravity and chemical composition discovered around stars with different properties call for the development of fast, accurate and versatile atmospheric models. We derive a new, non-grey analytical model for the thermal structure of irradiated exoplanets. Using two different opacity bands in the thermal frequency range, we highlight the dual role of thermal non-grey opacities in shaping the temperature profile of the atmosphere. Opacities dominated by lines enable the upper atmosphere to cool down significantly compared to a grey atmosphere whereas opacities dominated by bands lead both to a significant cooling of the upper atmosphere and a significant heating of the deep atmosphere.We compare our analytical model to a grid of temperature-pressure profiles for solar composition atmospheres obtained with a state-of-the-art numerical model taking into account the full wavelength, temperature and pressure dependence of the opacities. We demonstrate the importance of thermal non-grey opacities in setting the deep temperature of irradiated giant planets atmospheres. In the particular case of highly irradiated planets we show that the presence of TiO in their atmospheres alters both the optical and the thermal opacities. The greenhouse effect - a semi-grey effect - and the "blanketing effect" - an intrisically non-grey effect - contribute equally to set the deep temperature profile of the planet atmosphere. We conclude that non-grey thermal effects are fundamental to understand the deep temperature profile of hot Jupiters.Our calibrated analytical model matches the numerical model within 10% over a wide range of effective temperature, internal temperature and gravities and properly predict the depth of the radiative/convective boundary, an important quantity to understand the cooling history of a giant planet. Such a fast and accurate model can be of great use when numerous temperature profiles need to

  2. Progress in extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1991-01-01

    Progress in extra-solar planet detection is reviewed. The following subject areas are covered: (1) the definition of a planet; (2) the weakness of planet signals; (3) direct techniques - imaging and spectral detection; and (4) indirect techniques - reflex motion and occultations.

  3. The Use of Planisphere to Locate Planets

    ERIC Educational Resources Information Center

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  4. Impact of Luminal Fluid Volume on the Drug Absorption After Oral Administration: Analysis Based on In Vivo Drug Concentration-Time Profile in the Gastrointestinal Tract.

    PubMed

    Tanaka, Yusuke; Goto, Takanori; Kataoka, Makoto; Sakuma, Shinji; Yamashita, Shinji

    2015-09-01

    The objective of this study is to clarify the influence of fluid volume in the gastrointestinal (GI) tract on the oral drug absorption. In vivo rat luminal concentrations of FITC-dextran (FD-4), a nonabsorbable marker, and drugs (metoprolol and atenolol) after oral coadministration as solutions with different osmolarity were determined by direct sampling of residual water in each segment of the GI tract. The luminal FD-4 concentration after oral administration as hyposmotic solution was significantly higher than that after administration as isosmotic or hyperosmotic solution. As the change in FD-4 concentration reflects the change in the volume of luminal fluid, it indicated that the luminal volume was greatly influenced by osmolality of solution ingested orally. Then, fraction of drug absorbed (Fa) in these segments was calculated by comparing the area under the luminal concentration-time curve of FD-4 with those of drugs. Fa values of two model drugs in each GI segment decreased with increase in luminal fluid volume, and the impact of the fluid volume was marked for Fa of atenolol (a low permeable drug) than for that of metoprolol (a high permeable drug). These findings should be beneficial to assure the effectiveness and safety of oral drug therapy. PMID:25821198

  5. Flow of Planets, Not Weak Tidal Evolution, Produces the Short-Period Planet Distribution with More Planets than Expected

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2013-01-01

    The most unexpected planet finding is arguably the number of those with shorter periods than theorists had expected, because most such close planets had been expected to migrate into the star in shorter timescales than the ages of the stars. Subsequent effort has been made to show how tidal dissipation in stars due to planets could be weaker than expected, but we show how the occurrence distribution of differently-sized planets is more consistent with the explanation that these planets have more recently arrived as a flow of inwardly migrating planets, with giant planets more likely to be found while gradually going through a short period stage. This continual ``flow'' of new planets arriving from further out is presumably supplied by the flow likely responsible for the short period pileup of giant planets (Socrates+ 2011). We have previously shown that the shortest period region of the exoplanet occurrence distribution has a fall-off shaped by inward tidal migration due to stellar tides, that is, tides on the star caused by the planets (Taylor 2011, 2012). The power index of the fall-off of giant and intermediate radius planet candidates found from Kepler data (Howard+ 2011) is close to the index of 13/3 which is expected for planets in circular orbits undergoing tidal migration. However, there is a discrepancy of the strength of the tidal migration determined using fits to the giant and medium planets distributions. This discrepancy is best resolved by the explanation that more giant than medium radii planets migrate through these short period orbits. We also present a correlation between higher eccentricity of planetary orbits with higher Fe/H of host stars, which could be explained by high eccentricity planets being associated with recent episodes of other planets into stars. By the time these planets migrate to become hot Jupiters, the pollution may be mixed into the star. The clearing of other planets by migrating hot giant planets may result in hot Jupiters

  6. Search for Terrestrial Planets with SIM Planet Quest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.

    2006-01-01

    SIM is an astrometric mission that will be capable of 1 microarcsec relative astrometric accuracy in a single measurement of approx.1000 sec. The search for terrestrial planets in the habitable zone around nearby stars is one of the main science goals of the project. In 2001, NASA through the peer review process selected 10 key projects, two of which had as its goal, the search for terrestrial planets around nearby stars. The two teams, one led by G. Marcy (UC Berkeley) and one lead by M. Shao (JPL), have an extensive preparatory science program underway. This paper describes the status of this activity as well as the technology status of SIM's narrow angle astrometry capability, to reach 1 uas in a single epoch measure and its ability to average multiple epoch measurements to well below 1 uas.

  7. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  8. Detailed Abundances of Stars with Small Planets Discovered by Kepler. I. The First Sample

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Vaz, Zachary A.; Katime Santrich, Orlando J.; Cunha, Katia; Smith, Verne V.; King, Jeremy R.; Teske, Johanna K.; Ghezzi, Luan; Howell, Steve B.; Isaacson, Howard

    2015-12-01

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star, save one, has at least one planet with a radius ≤1.6 R⊕, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10 m Keck I telescope and High Resolution Echelle Spectrometer using standard spectroscopic techniques. The metallicities of the seven stars range from -0.32 to +0.13 dex, with an average metallicity that is subsolar, supporting previous suggestions that, unlike Jupiter-type giant planets, small planets do not form preferentially around metal-rich stars. The abundances of elements other than iron are in line with a population of Galactic disk stars, and despite our modest sample size, we find hints that the compositions of stars with small planets are similar to stars without known planets and with Neptune-size planets, but not to those of stars with giant planets. This suggests that the formation of small planets does not require exceptional host-star compositions and that small planets may be ubiquitous in the Galaxy. We compare our derived abundances (which have typical uncertainties of ≲0.04 dex) to the condensation temperature of the elements; a correlation between the two has been suggested as a possible signature of rocky planet formation. None of the stars demonstrate the putative rocky planet signature, despite at least three of the stars having rocky planets estimated to contain enough refractory material to produce the signature, if real. More detailed abundance analyses of stars known to host small planets are needed to verify our results and place ever more stringent constraints on planet formation models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  9. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  10. Planet Detection Algorithms for the Terrestrial Planet Finder-C

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Braems, I.

    2005-12-01

    Critical to mission planning for the terrestrial planet finder coronagraph (TPF-C) is the ability to estimate integration times for planet detection. This detection is complicated by the presence of background noise due to local and exo-zodiacal dust, by residual speckle due optical errors, and by the dependence of the PSF shape on the specific coronagraph. In this paper we examine in detail the use of PSF fitting (matched filtering) for planet detection, derive probabilistic bounds for the signal-to-noise ratio by balancing missed detection and false alarm rates, and demonstrate that this is close to the optimal linear detection technique. We then compare to a Bayesian detection approach and show that for very low background the Bayesian method offers integration time improvements, but rapidly approaches the PSF fitting result for reasonable levels of background noise. We confirm via monte-carlo simulations. This work was supported under a grant from the Jet Propulsion Laboratory and by a fellowship from the Institut National de Recherche en Informatique et Automatique (INRIA).

  11. Hot Jupiters from secular planet-planet interactions.

    PubMed

    Naoz, Smadar; Farr, Will M; Lithwick, Yoram; Rasio, Frederic A; Teyssandier, Jean

    2011-05-12

    About 25 per cent of 'hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter. PMID:21562558

  12. Expression profile of key immune-related genes in Penaeus monodon juveniles after oral administration of recombinant envelope protein VP28 of white spot syndrome virus.

    PubMed

    Thomas, Ancy; Sudheer, Naduvilamuriparampu Saidumuhammed; Kiron, Viswanath; Bright Singh, Issac S; Narayanan, Rangarajan Badri

    2016-07-01

    White spot syndrome virus (WSSV) is the most catastrophic pathogen the shrimp industry has ever encountered. VP28, the abundant envelope protein of WSSV was expressed in bacteria, the purified protein administered orally to Penaeus monodon juveniles and its immune modulatory effects examined. The results indicated significant up-regulation of caspase, penaeidin, crustin, astakine, syntenin, PmRACK, Rab7, STAT and C-type lectin in animals orally administered with this antigen. This revealed the immune modulations in shrimps followed by oral administration of rVP28P which resulted in the reduced transcription of viral gene vp28 and delay in mortality after WSSV challenge. The study suggests the potential of rVP28P to elicit a non-specific immune stimulation in shrimps. PMID:27154537

  13. Temporal profile of magnetic resonance angiography and decreased ratio of regulatory T cells after immunological adjuvant administration to mice lacking RNF213, a susceptibility gene for moyamoya disease.

    PubMed

    Kanoke, Atsushi; Fujimura, Miki; Niizuma, Kuniyasu; Fujimura, Taku; Kakizaki, Aya; Ito, Akira; Sakata, Hiroyuki; Sato-Maeda, Mika; Kure, Shigeo; Tominaga, Teiji

    2016-07-01

    Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology and is characterized by an abnormal vascular network at the base of the brain. Recent studies identified the RNF213 gene (RNF213) as an important susceptibility gene for MMD; however, the mechanisms underlying the RNF213 abnormality related to MMD have not yet been elucidated. We previously reported that Rnf213-deficient mice and Rnf213 p. R4828K knock-in mice did not spontaneously develop MMD, indicating the importance of secondary insults in addition to genetic factors in the pathogenesis of MMD. The most influential secondary insult is considered to be an immunological reaction because RNF213 is predominantly expressed in immunological tissues. Therefore, we herein attempted to evaluate the role of an immunological stimulation as a supplementary insult to the target disruption of RNF213 in the pathophysiology of MMD. Rnf213-deficient mice were treated with strong immunological adjuvants including muramyl dipeptide (MDP)-Lys (L18), and then underwent time-sequential magnetic resonance angiography (MRA) up to 40 weeks of age. The results obtained did not reveal any characteristic finding of MMD, and no significant difference was observed in MRA findings or the anatomy of the circle of Willis between Rnf213-deficient mice and wild-type mice after the administration of MDP-Lys (L18). The ratio of regulatory T cells after the administration of MDP-Lys (L18) was significantly decreased in Rnf213-deficient mice (p<0.01), suggesting the potential role of the RNF213 abnormality in the differentiation of regulatory T cells. Although the mechanisms underlying the development of MMD currently remain unclear, the RNF213 abnormality may compromise immunological self-tolerance, thereby contributing to the development of MMD. PMID:26972532

  14. Planet X : The Search for an Illusion

    NASA Astrophysics Data System (ADS)

    McGaha, J.

    2006-10-01

    The search for Planet X began soon after the discovery of Uranus in 1781. The scientific search, over the next 200 years, resulted in the discovery of many new "Objects" (Planets and Minor Planets) but not the elusive Planet X. The data now indicate there never was a Planet X to find and the scientific search ended in the early 1990's. In the last 10 years the search has begun anew, not by scientists, interested in adding to our knowledge, but by groups advocating apocalyptic ideas. They have a wide following and are interested in promoting their pseudoscientific beliefs. This talk will discuss this history.

  15. Proceedings of Protostars and Planets V

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Oral presentation sessions in this conference include: Clouds and cores; Star formation and protostars; Binaries and multiples; Newborn massive stars; jets and outflows; Clusters and associations; T Tauri stars and disks; Brown dwarfs; Planet formation and evolution; Extrasolar planets; Dust and protoplanetary disks; Early solar system and Astrobiology. Poster presentations included: Clouds and Cores. Collapse and Protostars, Binaries and Multiples, Clusters, Associations, and the IMF, Jets and Outflows, T Tauri Stars and Other Young Stars, Disks and Disk Accretion, Brown Dwarfs, Herbig Ae/Be Stars and Massive Stars, Solar System Objects, Planet Formation, Extrasolar Planets and Planet Detection, Properties of Protoplanetary Disks, Migration and Planetary Orbits and Meteoritics and Astrobiology

  16. Minor planets and other solar system objects

    NASA Astrophysics Data System (ADS)

    Bec-Borsenberger, A.

    1989-06-01

    The work performed to include observable planets and planet satellites in the Hipparcos input catalog is presented. The preparatory astrometric and photometric work needed to prepare the observations, and the considerations applied to their selection, are discussed. The magnitude of the minor planets proposed for observation by Hipparcos is analyzed, and those retained for observation are given. The position of minor planets in the input catalog is given by using their ephemerides, and examples of plots for Hebe and Flora planets, are given. Moreover, it is shown that Europa and Titan satellites can be adequately modulated by the Hipparcos main grid.

  17. ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES

    SciTech Connect

    Nagasawa, M.; Ida, S.

    2011-12-01

    We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planets by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.

  18. MESSENGER: Exploring the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2011-12-01

    One of Earth's closest planetary neighbors, Mercury remained comparatively unexplored for the more than three decades that followed the three flybys of the innermost planet by the Mariner 10 spacecraft in 1974-75. Mariner 10 imaged 45% of Mercury's surface at about 1 km/pixel average resolution, confirmed Mercury's anomalously high bulk density and implied large fractional core size, discovered Mercury's internal magnetic field, documented that H and He are present in the planet's tenuous exosphere, and made the first exploration of Mercury's magnetosphere and solar wind environment. Ground-based astronomers later reported Na, K, and Ca in Mercury's exosphere; the presence of deposits in the floors of polar craters having radar characteristics best matched by water ice; and strong evidence from the planet's forced libration amplitude that Mercury has a fluid outer core. Spacecraft exploration of Mercury resumed with the selection for flight, under NASA's Discovery Program, of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. Launched in 2004, MESSENGER flew by the innermost planet three times in 2008-2009 en route to becoming the first spacecraft to orbit Mercury in March of this year. MESSENGER's first chemical remote sensing measurements of Mercury's surface indicate that the planet's bulk silicate fraction differs from those of the other inner planets, with a low-Fe surface composition intermediate between basalts and ultramafic rocks and best matched among terrestrial rocks by komatiites. Moreover, surface materials are richer in the volatile constituents S and K than predicted by most planetary formation models. Global image mosaics and targeted high-resolution images (to resolutions of 10 m/pixel) reveal that Mercury experienced globally extensive volcanism, including large expanses of plains emplaced as flood lavas and widespread examples of pyroclastic deposits likely emplaced during explosive eruptions of volatile

  19. Simulator for Microlens Planet Surveys

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Horne, Keith; Alsubai, Khalid A.; Bramich, Daniel M.; Dominik, Martin; Hundertmark, Markus P. G.; Liebig, Christine; Snodgrass, Colin D. B.; Street, Rachel A.; Tsapras, Yiannis

    2014-04-01

    We summarize the status of a computer simulator for microlens planet surveys. The simulator generates synthetic light curves of microlensing events observed with specified networks of telescopes over specified periods of time. Particular attention is paid to models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011. Time intervals during which events are observable are identified by accounting for positions of the Sun and the Moon, and other restrictions on telescope pointing. Simulated observations are then generated for an algorithm that adjusts target priorities in real time with the aim of maximizing planet detection zone area summed over all the available events. The exoplanet detection capability of observations was compared for several telescopes.

  20. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  1. Security for a Smarter Planet

    NASA Astrophysics Data System (ADS)

    Nagaratnam, Nataraj

    Bit by bit, our planet is getting smarter. By this, we mean the systems that run, the way we live and work as a society. Three things have brought this about - the world is becoming instrumented, interconnected and intelligent. Given the planet is becoming instrumented and interconnected, this opens up more risks that need to be managed. Escalating security and privacy concerns along with a renewed focus on organizational oversight are driving governance, risk management and compliance (GRC) to the forefront of the business. Compliance regulations have increasingly played a larger role by attempting to establish processes and controls that mitigate the internal and external risks organizations have today. To effectively meet the requirements of GRC, companies must prove that they have strong and consistent controls over who has access to critical applications and data.

  2. Artemis: A Stratospheric Planet Finder

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Petro, L. D.; Burrows, C.; Ftaclas, C.; Roggemann, M. C.; Trauger, J. T.

    2003-01-01

    The near-space environment of the stratosphere is far superior to terrestrial sites for optical and infrared observations. New balloon technologies will enable flights and safe recovery of 2-ton payloads at altitudes of 35 km for 100 days and longer. The combination of long flights and superb observing conditions make it possible to undertake science programs that otherwise could only be done from orbit. We propose to fly an "Ultra-Hubble" Stratospheric Telescope (UHST) equipped with a coronagraphic camera and active optics at 35 km to search for planets around 200 of the nearest stars. This ULDB mission will establish the frequency of solar-type planetary systems, and provide targets to search for earth-like planets.

  3. The Realm of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Ferlet, Roger

    2010-10-01

    In November 1995, an article published in Nature [1] put planetary sciences not only as a new hot field in both observational and theoretical astrophysics but also as a topic with a large impact toward the layman. This article was reporting the first discovery of a planet orbiting a star beyond our Sun, namely the solar-type star 51 Pegasi. Nearly four centuries after Giordano Bruno was burnt in public in Roma partly for having intuitively claimed the plurality of worlds, we were entering the extraordinary epoch in which one of the oldest inquiries of mankind-are we alone in the Universe?-can be tackled with the scientific method, leaving aside centuries of endless speculations. To date (July 2010), almost 500 extrasolar planets are known. We shall briefly review the main detection methods, together with the big surprises which arose during these last exciting fifteen years, without being exhaustive.

  4. Planet-crossing asteroid survey

    NASA Technical Reports Server (NTRS)

    Wilder, P. D.

    1984-01-01

    The planet-crossing asteroid survey was begun in 1973 in order to study those asteroids which may intersect the orbits of the inner planets. Throughout the history of the survey, many of the various classes of asteroids were investigated. The near-Earth objects including the Apollo, Amor, and Aten families were studied in addition to asteroids whose orbits cross that of Mars, and some objects which are generally confined to the main belt. Observing was done on the 18 inch Schmidt telescope at the Palomar Mtn. Observatory. Typically, two consecutive photographs of a favorable field are taken. The exposure times of the films are usually twenty minutes and ten minutes, respectively. The telescope is guided at sidereal rate, so that asteroids will leave short trailed images. The films are then scanned for trails. By comparing the two films, the direction and approximate rate of motion of an asteroid may be determined.

  5. Ionospheres of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Nagy, A. F.

    1980-01-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  6. Planet Candidate Validation and Spin-Orbit Misalignments from Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.

    2016-01-01

    Short-period planets around intermediate-mass (~1.5-2.5 M⊙ A-mid F type) stars are a largely unexplored region of parameter space. These stars' typically rapid rotation and rotationally broadened spectral lines preclude the use of the precise radial velocity measurements that are typically used to discover planets and confirm transiting planet candidates. Nonetheless, exploring this population is important for constraining models of planet formation and migration. I have been using Doppler tomography to investigate this population. As a planet transits a rotating star, it successively obscures regions of the stellar disk with different radial velocities, resulting in a perturbation to the rotationally broadened line profile; this is the Rossiter-McLaughlin effect. In Doppler tomography, I spectroscopically resolve this perturbation and its movement during the transit. This allows me to not only validate transiting planet candidates, as I can show that the transiting object orbits the target star and is not a blended background eclipsing binary, but also to measure the spin-orbit misalignments of these planets. This is the (sky-projected) angle between the stellar spin and planetary orbital angular momentum vectors, and is a statistical probe of planetary migration; different migration mechanisms predict different distributions of spin-orbit misalignments. In this dissertation talk I will discuss my work to validate Kepler planet candidates around rapidly rotating stars using Doppler tomography, and to measure the spin-orbit misalignments of hot Jupiters discovered by ground-based surveys. I will also discuss the use of Doppler tomography to provide additional characterization of planets and their host stars, such as the detection of planetary orbital precession and stellar differential rotation. Finally, I will highlight the potential of current and future missions such as K2 and TESS to expand our knowledge of planets around intermediate-mass stars.

  7. Interactions between planets and evolved stars

    NASA Astrophysics Data System (ADS)

    Shengbang, Qian; Zhongtao, Han; Fernández Lajús, E.; liying, Zhu; Wenping, Liao; Miloslav, Zejda; Linjia, Li; Voloshina, Irina; Liang, Liu; Jiajia., He

    2016-07-01

    Searching for planetary companions to evolved stars (e.g., white dwarfs (WD) and Cataclysmic Variables (CV)) can provide insight into the interaction between planets and evolved stars as well as on the ultimate fate of planets. We have monitored decades of CVs and their progenitors including some detached WD binaries since 2006 to search for planets orbiting these systems. In the present paper, we will show some observational results of circumbinary planets in orbits around CVs and their progenitors. Some of our findings include planets with the shortest distance to the central evolved binaries and a few multiple planetary systems orbiting binary stars. Finally, by comparing the observational properties of planetary companions to single WDs and WD binaries, the interaction between planets and evolved stars and the ultimate fate of planets are discussed.

  8. Astrometeric Science with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Unwin, Stephen

    2006-01-01

    This viewgraph presentation reviews Astrometry with the Space Interferometry Mission (SIM) PlanetQuest. The topics include: 1) SIM PlanetQuest - the World's First Long- Baseline Optical Interferometer in Space; 2) National Academy of Sciences / NRC endorses SIM PlanetQuest; 3) SIM Planet Search; 4) Planetary System Architectures & Diversity; 5) SIM Search for 110 M(sub Earth) Planets Around Nearby Stars; 6) Deep Search of 120 nearby stars; 7) Planets around Young Stars; 8) SIM PlanetQuest Science Team; 9) Dark Halo of our Galaxy; 10) Dynamics of Galaxy Groups within 5 Mpc; 11) Probing Active Galactic Nuclei with Astrometry; 12) Snapshot Observing Mode: Astrometry for the masses; 13) SIM Technology Development is Complete; and 14) SIM Hardware, Tested for Flight.

  9. Irregular Satellites of the Planets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    2005-01-01

    This proposal is directed towards the observational exploration of the irregular satellite systems of the planets. Primarily we use large-format CCD cameras on the world's largest telescopes, on Mauna Kea, to discover new irregular satellites and then to monitor their positions in order to ascertain their orbital characteristics. Separate observations are taken to determine the physical properties of the irregular satellites. The big picture science objective is to determine how these satellites were captures, and to use the properties of the satellites and their orbits to place constraints on early solar system (including formation) processes. Work in the first year has focussed on a major investigation of the Saturn irregular satellite system. We secured observing time on the Subaru and Gemini 8-m diameter telescopes in December 2004, January, February and March 2005 for the conduct of a deep, wide-area survey. This has resulted in the detection and orbit determination for 12 new satellites to be announced in the next week or two. Additional satellites were lost, temporarily, due to unusually poor weather conditions on Mauna Kea. These objects will be recovered and their orbits published next year. A separate survey of the Uranus irregular satellites was published (Sheppard, Jewitt and Kleyna 2005). Away from the telescope, we have discovered the amazing result that the four giant planets possess similar numbers of irregular satellites. This flies in the face of the standard gas-drag model for satellite capture, since only two of the giant planets are gas giants and the others (Uranus and Neptune) formed by a different process and in the absence of much gas. The constancy of the satellite number (each giant holds approximately 100 irregular satellites measured down to the kilometer scale) is either a coincidence, with different capture mechanisms at different planets giving by chance the same total numbers of irregular satellites, or indicates that the satellites

  10. Observed positions of minor planets

    NASA Astrophysics Data System (ADS)

    Bem, J.; Szczodrowska-Kozar, B.

    Photographic positions were determined for the six minor planets Ceres, Vesta, Hebe, Flora, Eunomia, and Melromene, the observations being made from the Wroclaw Astronomical Observatory between February 1981 and February 1982. Tabulated data include UT of the observation, epoch-1950 topocentric positions, standard deviation of a reference star, the number of reference stars, and the exposure time. The AGK3, SAO, and Perth 70 catalogs were used for reference star positions.

  11. Electrodynamics on extrasolar giant planets

    SciTech Connect

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be

  12. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  13. Exploring Mercury. The iron planet

    NASA Astrophysics Data System (ADS)

    Strom, Robert G.; Sprague, Ann L.

    How did Mercury get such an enormous iron core? Why is its tectonic framework so different from any other planet or satellite? What is its crystal composition? Why is the crust so depleted in iron when the interior is so rich in that element? What are the polar deposits? Where do the elements in the exosphere come from? Mercury is a planet shrouded in mystery. Only 45 percent of its surface has been seen in any detail, and that was from the Mariner 10 flyby in 1974. Yet what is known only makes the planet more fascinating. New Earth-based observations have shed light on surface and exosphere compositions, and re-evaluations of the Mariner 10 data, using modern image processing techniques, show evidence for volcanic flow fronts, pyroclastics and other volcanic phenomena not seen before. This ground-breaking book not only chronicles what has been discovered, but looks ahead to what has yet to emerge. An accompanying CD contains all the best Mariner 10 images, including the data for each image, photomosaics and maps.

  14. DETECTING VOLCANISM ON EXTRASOLAR PLANETS

    SciTech Connect

    Kaltenegger, L.; Sasselov, D. D.; Henning, W. G.

    2010-11-15

    The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

  15. Planets, pluralism, and conceptual lineage

    NASA Astrophysics Data System (ADS)

    Brusse, Carl

    2016-02-01

    Conceptual change can occur for a variety of reasons; some more scientifically significant than others. The 2006 definition of 'planet', which saw Pluto reclassified as a dwarf planet, is an example toward the more mundane end of the scale. I argue however that this case serves as a useful example of a related phenomenon, whereby what appears to be a single kind term conceals two or more distinct concepts with independent scientific utility. I examine the historical background to this case, as a template for developing additional evidence for pluralist approaches to conceptual disputes within science and elsewhere. "I would like to note that the two speakers who have spoken so far have both done the same extremely insulting gaffe," he said. "They have used the expression 'a physical definition of a planet' - by implication, suggesting that a dynamical definition is not physics!" He said he felt he had to teach the panel "something you should know": that dynamics was indeed physics, and in fact was addressed before solid-state physics in every textbook ever written." (Boyle, 2010, p. 126)

  16. Looking for a habitable planet

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    Only very favorable combination of many physical parameters may provide the necessary con-ditions for unicellular organisms to evolve into multicellular animals. The main factors of the planet, that is critical for the evolution and existence of life, form a peculiar labyrinth with many impasses. Most important are mass and temperature conditions on the planet. The planet that meets RNA/ DNA life requirements must have: •a mass about 5E27 g; •some zones with a favorable thermal conditions (273-340K); •an atmosphere that is able to absorb an external hard radiation but transparent for photons with 1-3 eV energy; •a sufficient den-sity of a stellar radiation; •presence of other sources of energy, e.g. of oxidation species in the atmosphere; •a moderate gravitation; •open water with big islands or continents; •a moderate rotation period; •a moderate eccentricity of the orbit; •a moderate inclination of equator plane to the orbit plane; •an intensive meteoritic impacts or other cosmic catastrophes that stimulate evolution of the most perfect beings; •one or more massive satellites; •an intensive volcanism and/or plate tectonics.

  17. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  18. Study on the pharmacokinetics profiles of polyphyllin I and its bioavailability enhancement through co-administration with P-glycoprotein inhibitors by LC-MS/MS method.

    PubMed

    Zhu, He; Zhu, Si-Can; Shakya, Shailendra; Mao, Qian; Ding, Chuan-Hua; Long, Min-Hui; Li, Song-Lin

    2015-03-25

    Polyphyllin I (PPI), one of the steroidal saponins in Paris polyphylla, is a promising natural anticancer candidate. Although the anticancer activity of PPI has been well demonstrated, information regarding the pharmacokinetics and bioavailability is limited. In this study, a series of reliable and rapid liquid chromatography-tandem mass spectrometry methods were developed and successfully applied to determinate PPI in rat plasma, cell incubation media and cell homogenate. Then the pharmacokinetics of PPI in rats was studied and the result revealed that PPI was slowly eliminated with low oral bioavailability (about 0.62%) at a dose of 50 mg/kg, and when co-administrated with verapamil (VPL) and cyclosporine A (CYA), the oral bioavailability of PPI could increase from 0.62% to 3.52% and 3.79% respectively. In addition, in vitro studies showed that with the presence of VPL and CYA in Caco-2 cells, the efflux ratio of PPI decreased from 12.5 to 2.96 and 2.22, and the intracellular concentrations increased 5.8- and 5.0-fold respectively. These results demonstrated that PPI, with poor oral bioavailability, is greatly impeded by P-gp efflux, and inhibition of P-gp can enhance its bioavailability. PMID:25590941

  19. The safety profile of a cationic lipid-mediated cystic fibrosis gene transfer agent following repeated monthly aerosol administration to sheep.

    PubMed

    Alton, Eric W F W; Baker, Alison; Baker, Eilidh; Boyd, A Christopher; Cheng, Seng H; Coles, Rebecca L; Collie, D David S; Davidson, Heather; Davies, Jane C; Gill, Deborah R; Gordon, Catherine; Griesenbach, Uta; Higgins, Tracy; Hyde, Stephen C; Innes, J Alastair; McCormick, Dominique; McGovern, Michael; McLachlan, Gerry; Porteous, David J; Pringle, Ian; Scheule, Ronald K; Shaw, Darren J; Smith, Sionagh; Sumner-Jones, Stephanie G; Tennant, Peter; Vrettou, Christina

    2013-12-01

    Clinically effective gene therapy for Cystic Fibrosis has been a goal for over 20 years. A plasmid vector (pGM169) that generates persistent expression and reduced host inflammatory responses in mice has raised prospects for translation to the clinic. The UK CF Gene Therapy Consortium is currently evaluating long-term repeated delivery of pGM169 complexed with the cationic lipid GL67A in a large Multidose Trial. This regulatory-compliant evaluation of aerosol administration of nine doses of pGM169/GL67A at monthly intervals, to the sheep lung, was performed in preparation for the Multidose Trial. All sheep tolerated treatment well with no adverse effects on haematology, serum chemistry, lung function or histopathology. Acute responses were observed in relation to bronchoalveolar cellularity comprising increased neutrophils and macrophage numbers 1 day post-delivery but these increases were transient and returned to baseline. Importantly there was no cumulative inflammatory effect or lung remodelling with successive doses. Molecular analysis confirmed delivery of pGM169 DNA to the airways and pGM169-specific mRNA was detected in bronchial brushing samples at day 1 following doses 1, 5 and 9. In conclusion, nine doses of pGM169/GL67A were well tolerated with no significant evidence of toxicity that would preclude adoption of a similar strategy in CF patients. PMID:24090839

  20. The Evryscope and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Law, Nicholas Michael; Ratzloff, Jeffrey; del Ser, Daniel; Wulfken, Philip J.; Kavanaugh, Dustin

    2015-08-01

    The Evryscope (Law et al. 2015) is a 24-camera hemispherical all-sky gigapixel telescope (8,000 sq.deg. FoV) with rapid cadence (2mins exposure, 4sec readout) installed at CTIO. Ground-based single-station transiting surveys typically suffer from light curve sparsity and suboptimal efficiency because of their limited field of view (FoV), resulting in incomplete and biased detections. In contrast, the Evryscope offers 97% survey efficiency and one of the single-station most continuous and simultaneous monitoring of millions of stars (only limited by the day-night window).This unique facility is capable of addressing new and more extensive planetary populations, including: 1) for the first time, continuously monitor every 2mins a set of ~1000 bright white dwarfs (WDs). This will allow us to put constraints on the habitable planet fraction of Ceres-size planetesimals at the level of 30%, only in a survey timescales of a few weeks, as well as first-time testing planetary evolution models beyond the AGB phase. 2) search for rocky planets in the habitable zone around ~5,000 bright, nearby M-dwarfs. 3) synergies between Evryscope and upcoming exoplanets missions (e.g. TESS, PLATO) are also promising for target pre-imaging characterization, and increasing the giant planet yield by recovering multiple transits from planets seen as single transit events from space. 4) all-sky 2-min cadence of rare microlensing events of nearby stars. 5) all-sky continuous survey of microlensing events of nearby stars at 2mins cadence. 6) increase the census of giant planets around ~70,000 nearby, bright (g<10) solar-type stars, whose atmospheres can be characterized by follow-up observations. We are developing new data analysis algorithms to address the above scientific goals: from detecting the extremely short and faint transits around WDs, to disentangle planetary signals from very bright stars, and to combine space-based light curves with the Evryscope's ones. We will present the first

  1. Genome Expression Profiling-Based Identification and Administration Efficacy of Host-Directed Antimicrobial Drugs against Respiratory Infection by Nontypeable Haemophilus influenzae

    PubMed Central

    Euba, Begoña; Moleres, Javier; Segura, Víctor; Viadas, Cristina; Morey, Pau; Moranta, David; Leiva, José; de-Torres, Juan Pablo; Bengoechea, José Antonio

    2015-01-01

    Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection. PMID:26416856

  2. Beta Pictoris planet finally imaged?

    NASA Astrophysics Data System (ADS)

    2008-11-01

    A team of French astronomers using ESO's Very Large Telescope have discovered an object located very close to the star Beta Pictoris, and which apparently lies inside its disc. With a projected distance from the star of only 8 times the Earth-Sun distance, this object is most likely the giant planet suspected from the peculiar shape of the disc and the previously observed infall of comets onto the star. It would then be the first image of a planet that is as close to its host star as Saturn is to the Sun. Sharpening Up Jupiter ESO PR Photo 42a/08 Beta Pictoris as seen in infrared light The hot star Beta Pictoris is one of the best-known examples of stars surrounded by a dusty 'debris' disc. Debris discs are composed of dust resulting from collisions among larger bodies like planetary embryos or asteroids. They are a bigger version of the zodiacal dust in our Solar System. Its disc was the first to be imaged -- as early as 1984 -- and remains the best-studied system. Earlier observations showed a warp of the disc, a secondary inclined disc and infalling comets onto the star. "These are indirect, but tell-tale signs that strongly suggest the presence of a massive planet lying between 5 and 10 times the mean Earth-Sun distance from its host star," says team leader Anne-Marie Lagrange. "However, probing the very inner region of the disc, so close to the glowing star, is a most challenging task." In 2003, the French team used the NAOS-CONICA instrument (or NACO [1]), mounted on one of the 8.2 m Unit Telescopes of ESO's Very Large Telescope (VLT), to benefit from both the high image quality provided by the Adaptive Optics system at infrared wavelengths and the good dynamics offered by the detector, in order to study the immediate surroundings of Beta Pictoris. Recently, a member of the team re-analysed the data in a different way to seek the trace of a companion to the star. Infrared wavelengths are indeed very well suited for such searches. "For this, the real challenge

  3. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  4. Planets migrating into stars: Rates and Signature

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-01-01

    New measurements of the occurrence distribution of planets (POD) make it possible to make the first determination of the rate of planet migration into stars as a function of the strength of stellar tidal dissipation. We show how the period at which there is falloff in the POD due to planets migrating into the star can be used to calculate this rate. We show that it does not take extremely weak tidal dissipation for this rate to be low enough to be supplied by a reasonable number of planets being scattered into the lowest period region. The presence of the shortest period giant planets can be better explained by the ongoing migration of giant planets into stars. The presence of giant planets in period on the order of a day and less had prompted some to conclude that tidal dissipation in stars must necessarily be much weaker for planet mass than for binary star mass companions. However, a flow of less than one planet per thousand stars per gigayear could explain their presence without requiring as much of a difference in tidal dissipation strength in stars for planetary than for stellar mass companions. We show several new analytical expressions describing the rate of evolution of the falloff in the POD, as well as the rate of planet. The question of how strong is the tidal dissipation (the quality factor 'Q') for planet-mass companions may be answered within a few years by a measurable time shift in the transit period. We show that the distribution of remaining planet lifetimes indicates a mass-dependence of the stellar tidal dissipation. The possibility of regular merger of planets with stars has led us to find several correlations of iron abundance in stars with planet parameters, starting with the iron-eccentricity correlation (Taylor 2012, Dawson & Murray-Clay 2013). These correlations change in the presence of a stellar companion. We show that the distribution of planets of iron-rich planets is significantly different from the distribution of iron poor stars in

  5. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  6. Orbital Evolution and Migration of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Trilling, D. E.; Benz, W.; Guillot, T.; Lunine, J. I.; Hubbard, W. B.; Burrows, A.

    1997-07-01

    Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and mass loss from the planet. Summing torques on planets in disks with various physical parameters, we find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances. Inward migration timescales can be approximately equal to or less than disk lifetimes and star spindown timescales. Therefore, the range of fates of Jupiter-mass planets is broad, and generally comprises three classes: (I) planets which migrate inward too rapidly and lose all their mass due to Roche lobe overflow; (II) planets which migrate inward and survive in very small orbits; and (III) planets which do not migrate very far. Some, but not all, of the planets in Class II lose mass during their evolution and migration times, resulting in planets with final masses smaller than their initial masses. For example, in our model, we produce planets similar to 51 Peg b which have lost ~ 75% of their initial mass. The observed extrasolar planets, both those with extremely small semi-major axes (51 Peg b at 0.05 AU, tau Boo b (0.046 AU), upsilon And b (0.057 AU), and 55 Cnc b (0.11 AU)) and those with more moderate semi-major axes (rho Cor Bor b (0.23 AU), 47 UMa b (2.1 AU)) form a subset of the potential outcomes of the system, in that Jupiter-mass objects can stably survive in orbits with a wide range of semi-major axes. Our numerical model produces planets which have similar characteristics to the observed planets, as well as planets similar to Jupiter, and many intermediate cases. Since Jupiters can stably migrate to various orbital separations, we predict that, as planetary detection techniques improve, Jupiter-mass planets will be found in a wide range of orbits, from much less than 1 AU to

  7. Detailed Abundances of Stars with Small Planets Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Vaz, Zachary A.; Katime Santrich, Orlando J.; Cunha, Katia M. L.; Smith, Verne V.; King, Jeremy R.; Ghezzi, Luan; Howell, Steve B.; Teske, Johanna

    2016-01-01

    We present newly derived stellar parameters and the detailed abundances of 19 elements of seven stars with small planets discovered by NASA's Kepler Mission. Each star save one has at least one planet with a radius less than 2 REarth, suggesting a primarily rocky composition. The stellar parameters and abundances are derived from high signal-to-noise ratio, high-resolution echelle spectroscopy obtained with the 10-m Keck I telescope and HIRES spectrometer using standard spectroscopic techniques. We compare the abundances to those of a general Galactic disk population and investigate possible abundance trends with condensation temperature of the elements.S.C.S. acknowledges support provided by grant NNX12AD19G to S.C.S. from the National Aeronautics and Space Administration as part of the Kepler Participating Scientist Program.

  8. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations

    PubMed Central

    Rosotti, Giovanni P.; Juhasz, Attila; Booth, Richard A.; Clarke, Cathie J.

    2016-01-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations. PMID:27279783

  9. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni P.; Juhasz, Attila; Booth, Richard A.; Clarke, Cathie J.

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ˜15 M⊕: this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ˜20 M⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  10. Stability of habitable exomoons of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  11. Disc-planet interactions in subkeplerian discs

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2009-11-01

    Context: One class of protoplanetary disc models, the X-wind model, predicts strongly subkeplerian orbital gas velocities, a configuration that can be sustained by magnetic tension. Aims: We investigate disc-planet interactions in these subkeplerian discs, focusing on orbital migration for low-mass planets and gap formation for high-mass planets. Methods: We use linear calculations and nonlinear hydrodynamical simulations to measure the torque and look at gap formation. In both cases, the subkeplerian nature of the disc is treated as a fixed external constraint. Results: We show that, depending on the degree to which the disc is subkeplerian, the torque on low-mass planets varies between the usual type I torque and the one-sided outer Lindblad torque, which is also negative but an order of magnitude stronger. In strongly subkeplerian discs, corotation effects can be ignored, making migration fast and inward. Gap formation near the planet's orbit is more difficult in such discs, since there are no resonances close to the planet accommodating angular momentum transport. The location of the gap is shifted inwards with respect to the planet, leaving the planet on the outside of a surface density depression. Conclusions: Depending on the degree to which a protoplanetary disc is subkeplerian, disc-planet interactions can be very different from the usual Keplerian picture, making these discs in general more hazardous for young planets.

  12. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  13. Terrestrial Planet Finder, Planet Detection Test-Bed: Latest Results of Planet Light Detection in the Presence of Starlight

    NASA Technical Reports Server (NTRS)

    Martin, Stefan R.; Booth, Andrew J.

    2008-01-01

    The Terrestrial Planet Finder, Planet Detection Test-bed is a lab based simulation of the optics and control systems for the Terrestrial Planet Finder Interferometer mission. The test-bed supports starlight nulling at 10um infrared wavelengths, with fringe tracking at 2um wavelengths and angle and shear tracking at visible wavelengths. It further allows injection of simulated planet light in the presence of the nulled star light, to allow testing of planet detection methods. We will describe the detailed construction and operation of the test-bed from an optical and control system perspective. We will also report the latest results for narrow band nulls, and the detection of broad band planet light in the presence of nulled starlight.

  14. Comparisons of the pharmacokinetic profile of four bioactive components after oral administration of gan-sui-ban-xia decoction plus-minus gansui and gancao drug combination in normal rats.

    PubMed

    Zhang, Yang; Qian, Dawei; Pan, Ying; Zhu, Zhenghua; Huang, Jing; Xi, Junzuan; Guo, Jianming; Zhou, Xueping; Zhong, Gansheng; Duan, Jinao

    2015-01-01

    Gan-Sui-Ban-Xia Decoction (GSBXD) was first presented by Zhang Zhongjing in the book Synopsis of Golden Chamber during the Han Dynasty period. The formula was then used for the treatment of persistent fluid retention with floating pulse in Traditional Chinese Medicine (TCM), which in modern medicine is known as malignant ascites. Here, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of glycyrrhizinic acid, liquiritin, paeoniflorin, albiflorin after oral administration of GSBXD plus-minus Gansui and Gancao anti-drug combination to investigate the possible pharmacokinetic profile differences of different prescriptions with GSBXD in normal rats. The differences of pharmacokinetic parameters among groups were tested by the Student's t-test with p < 0.05 as the level of significance. Significant differences were found between the Gansui and Gancao anti-drug combination and other herbs in GSBXD on pharmacokinetic profile of glycyrrhizinic acid, liquiritin, paeoniflorin and albiflorin. The obtained knowledge might contribute to the rationality of the clinic use of GSBXD and also reveal the compatibility conditions of the Gansui and Gancao anti-drug combination. PMID:26007184

  15. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  16. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    SciTech Connect

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  17. Have protoplanetary discs formed planets?

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Rice, W. K. M.

    2010-09-01

    It has recently been noted that many discs around T Tauri stars appear to comprise only a few Jupiter masses of gas and dust. Using millimetre surveys of discs within six local star formation regions, we confirm this result, and find that only a few per cent of young stars have enough circumstellar material to build gas giant planets, in standard core accretion models. Since the frequency of observed exoplanets is greater than this, there is a `missing-mass' problem. As alternatives to simply adjusting the conversion of dust flux to disc mass, we investigate three other classes of solution. Migration of planets could hypothetically sweep up the disc mass reservoir more efficiently, but trends in multiplanet systems do not support such a model, and theoretical models suggest that the gas accretion time-scale is too short for migration to sweep the disc. Enhanced inner-disc mass reservoirs are possible, agreeing with predictions of disc evolution through self-gravity, but not adding to millimetre dust flux as the inner disc is optically thick. Finally, the incidence of massive discs is shown to be higher at the protostellar stages, Classes 0 and I, where discs substantial enough to form planets via core accretion are abundant enough to match the frequency of exoplanets. Gravitational instability may also operate in the Class 0 epoch, where half the objects have potentially unstable discs of >~30 per cent of the stellar mass. However, recent calculations indicate that forming gas giants inside 50 au by instability is unlikely, even in such massive discs. Overall, the results presented suggest that the canonically `protoplanetary' discs of Class II T Tauri stars have globally low masses in dust observable at millimetre wavelengths, and conversion to larger bodies (anywhere from small rocks up to planetary cores) must already have occurred.

  18. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-10

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M{sub +} from 10 to 20 AU. For large planet masses (M {approx}> M{sub Sat}), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a {approx}< 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence-which is in the opposite sense from that predicted by the simplest scattering models-as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity

  19. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  20. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  1. Genesis of a planet in Messier 4

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn

    1993-01-01

    The anomalous spin period second derivative of the binary millisecond pulsar PSR 1620-26 in the globular cluster M4 is best explained by a sub-Jovian mass planet in a moderately eccentric about 7 AU orbit about the pulsar binary. We consider formation scenarios for PSR 1620-26. A planet scavenged from a single main-sequence star during an exchange encounter naturally produces systems such as PSR 1620-26. The position of the pulsar just outside the core of M4 is shown to fit naturally with the preferred formation scenario and permit a planet to have survived in the inferred orbit about the binary. It is possible that the orbital eccentricity of the binary was induced by the planet. A confirmation of a planet in eccentric orbit about PSR 1620-26 would strongly suggest that planets form ubiquitously around low-mass main-sequence stars, even stars of low metallicity.

  2. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  3. Orbital Architectures of Planet-hosting Binaries. I. Forming Five Small Planets in the Truncated Disk of Kepler-444A

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Kratter, Kaitlin M.; Kraus, Adam L.; Isaacson, Howard; Mann, Andrew W.; Ireland, Michael J.; Howard, Andrew W.; Huber, Daniel

    2016-01-01

    We present the first results from our Keck program investigating the orbital architectures of planet-hosting multiple star systems. Kepler-444 is a metal-poor triple star system that hosts five sub-Earth-sized planets orbiting the primary star (Kepler-444A), as well as a spatially unresolved pair of M dwarfs (Kepler-444BC) at a projected distance of 1\\buildrel{\\prime\\prime}\\over{.} 8 (66 AU). We combine our Keck/NIRC2 adaptive optics astrometry with multi-epoch Keck/HIRES RVs of all three stars to determine a precise orbit for the BC pair around A, given their empirically constrained masses. We measure minimal astrometric motion (1.0 ± 0.6 mas yr-1, or 0.17 ± 0.10 km s-1), but our RVs reveal significant orbital velocity (1.7 ± 0.2 km s-1) and acceleration (7.8 ± 0.5 m s-1 yr-1). We determine a highly eccentric stellar orbit (e=0.864+/- 0.023) that brings the tight M dwarf pair within {5.0}-1.0+0.9 AU of the planetary system. We validate that the system is dynamically stable in its present configuration via n-body simulations. We find that the A-BC orbit and planetary orbits are likely aligned (98%) given that they both have edge-on orbits and misalignment induces precession of the planets out of transit. We conclude that the stars were likely on their current orbits during the epoch of planet formation, truncating the protoplanetary disk at ≈2 AU. This truncated disk would have been severely depleted of solid material from which to form the total ≈1.5 M⊕ of planets. We thereby strongly constrain the efficiency of the conversion of dust into planets and suggest that the Kepler-444 system is consistent with models that explain the formation of most close-in Kepler planets in more typical, not truncated, disks. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The

  4. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  5. Infrared imaging of extrasolar planets

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Tubbs, Eldred F.; Gaiser, Steven L.; Korechoff, Robert P.

    1991-01-01

    An optical system for direct detection, in the infrared, of planets orbiting other stars is described. The proposed system consists of a large aperture (about 16 m) space-based telescope to which is attached a specialized imaging instrument containing a set of optical signal processing elements to suppress diffracted light from the central star. Starlight suppression is accomplished using coronagraphic apodization combined with rotational shearing interferometry. The possibility of designing the large telescope aperture to be of a deployable, multiarm configuration is examined, and it is shown that there is some sacrifice in performance relative to a filled, circular aperture.

  6. The magnetic field of planets

    NASA Technical Reports Server (NTRS)

    Dolginov, S. S.

    1985-01-01

    The strength of the dipole fields H sub Oi of the various inspected planets are connected by simple scaling law, involving observable angular velocity omega, planetary radia R sub p velocity omega and amplitude alpha of planetary precession, and radia R sub c, densities RHO sub c, conductivities sigma sub c of their liquid cores according to the contemporary models of planetary inner structure. The Lunar paleofield of 1G, its decay to zero is also explained in the frame of precession-dynamo model, evolution of the Earth-Moon system and primeval satellites in its suggested by Runcorn.

  7. The magnetic field of planets

    NASA Astrophysics Data System (ADS)

    Dolginov, S. S.

    The strength of the dipole fields HOi of the various inspected planets are connected by simple scaling law, involving observable angular velocity omega, planetary radia Rp velocity omega and amplitude alpha of planetary precession, and radia Rc, densities RHOc, conductivities sigmac of their liquid cores according to the contemporary models of planetary inner structure. The Lunar paleofield of 1G, its decay to zero is also explained in the frame of precession-dynamo model, evolution of the Earth-Moon system and primeval satellites in its suggested by Runcorn.

  8. Magnetospheres of the outer planets

    SciTech Connect

    Cheng, A.F.

    1986-12-01

    The magnetospheres of the outer planets have been shown by Voyager explorations to strongly interact with the surfaces and atmospheres of their planetary satellites and rings. In the cases of Jupiter, Saturn and Uranus, the processes of charged particle sputtering, neutral gas cloud formation, and rapid plasma injection from the ionization of the neutral clouds, have important implications both for the magnetospheres as a whole and for the surfaces and atmospheres of their satellites. The general methodology employed in these researches has involved comparisons of the planetary magnetospheres in order to identify common physical processes. 16 references.

  9. The Profile of Astronomy Amateurs

    NASA Astrophysics Data System (ADS)

    Czart, K.

    Presentation of questionnaires carried out on Polish Astronomy Portal websites. There was over 80 questionnaires during 2 years period. As most part of users visiting this website are astronomy amateurs, we can assume questionnaires give a picture of astronomy amateurs community. Questionnaires can be divided into four main thematical groups: profile of users (age, sex, activities), what do they think about controversial astronomical problems (is Pluto a planet?), what are their likings (favorit star, most beatiful planet) and “business” questions (how did they find our website?, how many astronomical services do they visit regularly?).

  10. Observational Studies of Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Southworth, J.

    2015-07-01

    The study of transiting extrasolar planets is only 15 years old, but has matured into a rich area of research. I review the observational aspects of this work, concentrating on the discovery of transits, the characterization of planets from photometry and spectroscopy, the Homogeneous Studies project, starspots, orbital obliquities, and the atmospheric properties of the known planets. I begin with historical context and conclude with a glance to a future of TESS, CHEOPS, Gaia and PLATO.

  11. Infrared and the search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1991-01-01

    Search for evidence concerning the existence of extrasolar planets will involve both indirect detection as well as direct (imaging). Indirect detection may be possible using ground based instrumentation on the Keck telescope, Imaging probably will require an orbiting system. Characterizing other planets for complex molecules will require a large orbiting or lunar-based telescope or inteferometer. Cryogenic infrared techniques appear to be necessary. Planning for a NASA ground and space-based program, Toward Other Planet Systems (TOPS), is proceeding.

  12. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.

    2011-08-01

    We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = M{sub p} /M{sub s} . In agreement with previous studies, for the low-mass planet cases (q = 5 x 10{sup -6} and 10{sup -5}), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = M{sub p} /M{sub s} = 10{sup -3} for M{sub s} = 1M{sub sun}), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an {alpha} viscosity. For the intermediate-mass planets (q = 5 x 10{sup -5}, 10{sup -4}, and 2 x 10{sup -4}), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).

  13. Three-dimensional Magnetohydrodynamic Simulations of Planet Migration in Turbulent Stratified Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.

    2011-08-01

    We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = Mp /Ms . In agreement with previous studies, for the low-mass planet cases (q = 5 × 10-6 and 10-5), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = Mp /Ms = 10-3 for Ms = 1M sun), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an α viscosity. For the intermediate-mass planets (q = 5 × 10-5, 10-4, and 2 × 10-4), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).

  14. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillen, R. S.; Smith, P. H.

    1986-01-01

    Stars are observed with a ground-based instrument designed to measure small changes in the line-of-sight velocities. The purpose of the observations is to detect large planets by the oscillatory reflex motion they induce on the stars they are orbiting. The instrument is an optical spectrometer for which wavelengths are first calibrated by transmission through a tunable Fabry-Perot etalon interferometer. Changes in the line-of-sight velocities are revealed by changes in the Doppler shift of the absorption-line spectra of stars. The scrambling of incident light by an optical fiber and the stability of wavelength calibration by a tilt-tunable Fabry-Perot etalon provide immunity to systematic errors that historically have effected more conventional radial velocity spectrographs. A cross-dispersed echelle spectrograph spatially separates the orders of constructive interference transmitted through the etalon. Selecting several echelle diffraction orders in the vicinity of 4250 to 4750 A, which are imaged on a CCD, about 350 points on the profile of the stellar spectrum are sampled by successive orders of interferometric transmission through the etalon.

  15. Phase IV study comparing diurnal glycemic profile following the administration of 2 NPH plus regular human DNA recombinant insulin regimens in type 1 diabetes mellitus (T1DM) adult patients.

    PubMed

    Feleder, E C; Yerino, G A; Halabe, E K; Tombazzi, J L; Farias, J M

    2012-06-01

    Intensive insulin therapy (IIT) based on multiple daily injections of long plus rapid-acting insulin has been demonstrated to reduce mortality and morbidity associated with chronic hyperglycemia in T1DM patients. The objective of this study was to assess and compare the postprandial glycemic profile over a diurnal 12 h-period produced by the administration of a new NPH plus regular human DNA recombinant IIT (test regimen) relative to the reference IIT in T1DM patients. A phase IV, single-center, open-label, randomized, multiple-dose, balanced, cross-over study in 12 T1DM patients was conducted. Patients were assigned to receive either the test (Densulin® N (NPH) plus Densulin® R (regular),100 UI/ml, Denver Farma, Argentina) followed by the reference (InsulatardHM® (NPH) plus ActrapidHM®,100 UI/ml, Novo Nordisk Pharma Argentina) regimens or viceversa, according to a random sequence. Each treatment regimen consisted of 2 phases of an ambulatory run-in period of 7 days followed by 12 h confinement period. Blood glucose levels were measured. Glycemic profile was evaluated through glycemic plasma-concentration time curves, area under the time-concentration glycemic curves from basal to 2 h (GlyAUC0-2) and to 12 h (GlyAUC0-12) postprandial, and maximum glycemic postprandial concentration (GlyCmax). 12 hour glycemic concentration-time curves were similar for both test and reference regimens. Geometric least square means ratios Test/ref regimens and their 90% confidence interval for GlyAUC0-2, GlyAUC0-12 and GlyCmax were 94.33 (81.13-125.09), 107.75 (94.05-123.45) and 105 (92.89-118.68), respectively. Both regimens presented similar safety profile. This study demonstrated that the new human DNA recombinant NPH and regular insulin is equally effective to the reference regimen for postprandial diurnal glycemic profile. PMID:22438072

  16. Constraints on planet formation from Kepler’s multiple planet systems

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.

    2015-01-01

    The recent haul of hundreds of multiple planet systems discovered by Kepler provides a treasure trove of new clues for planet formation theories. The substantial amount of protoplanetary disk mass needed to form the most commonly observed multi-planet systems - small (Earth-sized to mini-Neptune-sized) planets close to their stars - argues against pure in situ formation and suggests that the planets in these systems must have undergone some form of migration. I will present results from numerical simulations of terrestrial planet formation that aim to reproduce the sizes and architecture of Kepler's multi-planet systems, and will discuss the observed resonances and giant planets (or the lack thereof) associated with these systems.

  17. ACCRETION OF ROCKY PLANETS BY HOT JUPITERS

    SciTech Connect

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in {approx}4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N {approx} 10{sup 3}) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities-both speeds and impact parameters-for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  18. Detecting Planets Outside The Solar System

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Terrile, Richard J.; Ftaclas, Christ; Gatewood, George

    1993-01-01

    Report describes proposed Astrometric Imaging Telescope, used to detect planets in orbit around distant stars. Includes executive summary and statement of scientific objectives of Astrometric Imaging Telescope program.

  19. Integrated software package STAMP for minor planets

    NASA Technical Reports Server (NTRS)

    Kochetova, O. M.; Shor, Viktor A.

    1992-01-01

    The integrated software package STAMP allowed for rapid and exact reproduction of the tables of the year-book 'Ephemerides of Minor Planets.' Additionally, STAMP solved the typical problems connected with the use of the year-book. STAMP is described. The year-book 'Ephemerides of Minor Planets' (EMP) is a publication used in many astronomical institutions around the world. It contains all the necessary information on the orbits of the numbered minor planets. Also, the astronomical coordinates are provided for each planet during its suitable observation period.

  20. Searching for Planets Around other Stars

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this colloquim presentation, Professor of Astronomy, Geoffrey Marcy discusses the discovery of planets orbiting other stars. Using the Doppler shift caused by stellar wobble that is caused by nearby planetary mass, astronomers have been able to infer the existence of Jupiter-sized planets around other stars. Using a special spectrometer at Lick Observatory, the wobble of several stars have been traced over the years required to generate an accurate pattern required to infer the stellar wobble. Professor Marcy, discusses the findings of planets around 47 Ursae Majoris, 16 Cygni B, 51 Pegasus, and 56 Rho 1 Cne. In the case of 56 Rho 1 Cne the planet appears to be close to the star, within 1.5 astronomical units. The observations from the smaller Lick Observatory will be augmented by new observations from the larger telescope at the Kek observatory. This move will allow observations of smaller planets, as opposed to the massive planets thus far discovered. The astronomers also hope to observe smaller stars with the Kek data. Future spaceborne observations will allow the discovery of even smaller planets. A spaceborne interferometer is in the planning stages, and an even larger observatory, called the Terrestrial Planet Finder, is hoped for. Professor Marcy shows artists' renderings of two of the planets thus far discovered. He also briefly discusses planetary formation and shows slides of both observations from the Orion Nebula and models of stellar system formation.

  1. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-06-01

    Recent observations of debris discs, believed to be made up of remnant planetesimals, brought a number of surprises. Debris disc presence does not correlate with the host star's metallicity, and may anti-correlate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here we explore predictions of the alternative Tidal Downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high metallicity stars but release more debris per disruption than their low [M/H] analogs. This predicts no simple relation between debris disc presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long term evolution and multi-fragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  2. The PRIMA Astrometric Planet Search project

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Henning, Thomas; Queloz, Didier; Albrecht, Simon; Bakker, Eric J.; Baumeister, Harald; Bizenberger, Peter; Bleuler, Hannes; Dandliker, Rene; de Jong, Jeroen A.; Fleury, Michel; Frink, Sabine; Gillet, Denis; Jaffe, Walter J.; Hiddo Hanenburg, S.; Hekker, Saskia; Launhardt, Ralf; Le Poole, Rudolf S.; Maire, Charles; Mathar, Richard; Mullhaupt, Philippe; Murakawa, Koji; Pepe, Francesco; Pragt, Johan H.; Sache, Laurent; Scherler, Olivier; Segransan, Damien; Setiawan, Johny; Sosnowska, Danuta; Tubbs, Robert N.; Venema, Lars B.; Wagner, Karl; Weber, Luc; Wuethrich, Rolf

    2004-10-01

    The PRIMA facility will implement dual-star astrometry at the VLTI. We have formed a consortium that will build the PRIMA differential delay lines, develop an astrometric operation and calibration plan, and deliver astrometric data reduction software. This will enable astrometric planet surveys with a target precision of 10μas. Our scientific goals include determining orbital inclinations and masses for planets already known from radial-velocity surveys, searches for planets around stars that are not amenable to high-precision radial-velocity observations, and a search for large rocky planets around nearby low-mass stars.

  3. Observing Planet Formation in Young Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Kuchner, M. J.; Debes, J. H.

    2009-01-01

    Identification and observation of where and when gaps form in protoplanetary disks is vital for learning about the process of planet formation. We will present simulations of radiative transfer in gas-rich protoplanetary disks with embedded planets that predict and model observable signatures of planet formation. Depending on the mass of the planet, the perturbation may be a local dimple or an annular gap. We will demonstate that these features can already be detected in some nearby gas-rich disks. The appearance of disks with embedded planets varies with wavelength as it ranges from optical through infrared to radio because of optical depth effects. Shorter wavelengths reveal superficial surface features of disks, while longer wavelengths probe deeper in the disk. Confirmation of a planet-induced gap in a disk requires multi-wavelength observations. Imaging of the predicted features of planet formation in disks requires very high spatial resolution, and is currently most feasible in the optical and radio. However, data in the infrared is crucial for constraining the models. Deep gaps created by very massive planets may be detectable in SEDs. Confirmation of a planet-induced gap in a disk requires multi-wavelength observations.

  4. Comparing Planet Formation Signatures in two Systems

    NASA Astrophysics Data System (ADS)

    Deroo, Pieter

    2012-10-01

    Following the discovery of exoplanet systems with multiple transiting planets - unique laboratories for studying planet formation and evolution - we propose to characterize and compare the exoplanet atmospheric composition in the compact solar system analog Kepler-11. We propose WFC3/G141 transmission spectroscopy of three low-density super-Earth/Neptune planets in the six-planet system. The proposed grism spectroscopy targets the strong 1.4-micron water band and the distinct 1.6-micron methane features, thus probing the principal thermochemical reservoirs of oxygen and carbon for the planets we will observe. The carbon and oxygen abundance and their ratio are key diagnostics of planet formation and evolution, and the proposed observations will provide a unique observational constraint because comparing planets in the same exoplanet system removes the variables that influence inter-system comparative exoplanetology. Together with the only other multi-planet system observation {PI Desert}, the proposed observations aim at starting the process of observationally differentiating inter-system and intra-system parameters that influence the composition of individual planets. In so doing, we will improve our understanding of whether our own solar system is typical or exceptional.

  5. Disk's Spiral Arms Point to Possible Planets

    NASA Video Gallery

    Simulations of young stellar systems suggest that planets embedded in a circumstellar disk can produce many distinctive structures, including rings, gaps and spiral arms. This video compares comput...

  6. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-09-01

    Recent observations of debris discs (DDs), believed to be made up of remnant planetesimals, brought a number of surprises. DD presence does not correlate with the host star's metallicity, and may anticorrelate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here, we explore predictions of the alternative tidal downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high-metallicity stars but release more debris per disruption than their low [M/H] analogues. This predicts no simple relation between DD presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long-term evolution and multifragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  7. HD 80606: searching for the chemical signature of planet formation

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Flores, M.; Buccino, A.

    2015-10-01

    this binary system than in the Sun. The lack of a trend in refractory elements with Tc between both stars implies that the presence of a giant planet do not neccesarily imprint a chemical signature in their host stars, similar to the recent result of Liu et al. (2014, MNRAS, 442, L51). This is also in agreement with Meléndez et al. (2009), who suggest that the presence of close-in giant planets might prevent the formation of terrestrial planets. Finally, we speculate about a possible, ejected or non-detected, planet around the star HD 80607. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.Table 1 is available in electronic form at http://www.aanda.orgThe reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A17

  8. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  9. Direct Imaging of Warm Extrasolar Planets

    SciTech Connect

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  10. Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets

    NASA Astrophysics Data System (ADS)

    Smith, Andrew W.; Lissauer, Jack J.

    2010-08-01

    We numerically investigate the stability of systems of 1 {M_{oplus}} planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log( t c / t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as

  11. Deep Imaging of Giant Planets

    NASA Astrophysics Data System (ADS)

    Chauvin, G.

    2010-10-01

    With the development of high contrast imaging instruments and techniques, vast efforts have been devoted during the past decade to detect and characterize lighter, cooler and closer companions to nearby stars, and ultimately image new planetary systems. Complementary to other observing techniques (radial velocity, transit, micro-lensing, pulsar-timing and astrometry), this approach has opened a new astrophysical window to study the physical properties and the formation and evolution mechanisms of giant planets at orbits larger than a few AUs. In this review, I will briefly present the main motivations to use deep imaging to search for exoplanets and review the constant progress achieved thanks to improved performances of advanced instrumentation and data analysis techniques. I will describe the main classes of stars identified and observed so far to increase the chances of detection. I will also detail the classical strategy adopted to identify false alarms and characterize true companions. I will review the current status of the different deep imaging surveys as well as the main results that recently led to the discovery of giant planets probably formed like the ones of our solar system. Finally, I will rise the questions and uncertainties related to the formation mechanisms, the physical properties and the frequency of these planetary mass companions to conclude with the exciting and attractive perspectives offered with the future generation of deep imaging instruments.

  12. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems. PMID:23604071

  13. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  14. Six Planets Orbiting HD 219134

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Burt, Jennifer; Meschiari, Stefano; Butler, R. Paul; Henry, Gregory W.; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-11-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P = 3.1, 6.8, 22.8, 46.7, 94.2, and 2247 days, spanning masses of {M}{sin}i=3.8, 3.5, 8.9, 21.3, 10.8, and 108 {{M}}\\oplus , respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8 m automatic photometric telescope at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ∼0.0002 mag, providing strong support for planetary-reflex motion as the source of the RV variations. The HD 219134 system with its bright (V = 5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, which are expected to be detected by NASA’s forthcoming TESS Mission and by ESA’s forthcoming PLATO Mission.

  15. The fragility of the terrestrial planets during a giant-planet instability

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.; Chambers, John E.

    2016-02-01

    Many features of the outer Solar system are replicated in numerical simulations if the giant planets undergo an orbital instability that ejects one or more ice giants. During this instability, Jupiter and Saturn's orbits diverge, crossing their 2:1 mean motion resonance (MMR), and this resonance-crossing can excite the terrestrial planet orbits. Using a large ensemble of simulations of this giant-planet instability, we directly model the evolution of the terrestrial planet orbits during this process, paying special attention to systems that reproduce the basic features of the outer planets. In systems that retain four giant planets and finish with Jupiter and Saturn beyond their 2:1 MMR, we find at least an 85 per cent probability that at least one terrestrial planet is lost. Moreover, systems that manage to retain all four terrestrial planets often finish with terrestrial planet eccentricities and inclinations larger than the observed ones. There is less than a ˜5 per cent chance that the terrestrial planet orbits will have a level of excitation comparable to the observed orbits. If we factor in the probability that the outer planetary orbits are well replicated, we find a probability of 1 per cent or less that the orbital architectures of the inner and outer planets are simultaneously reproduced in the same system. These small probabilities raise the prospect that the giant-planet instability occurred before the terrestrial planets had formed. This scenario implies that the giant-planet instability is not the source of the Late Heavy Bombardment and that terrestrial planet formation finished with the giant planets in their modern configuration.

  16. All for the Planet, the Planet for everyone!

    NASA Astrophysics Data System (ADS)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  17. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  18. Planet Earth and the New Geoscience

    NASA Astrophysics Data System (ADS)

    Burke, Kevin

    AGU has embarked on a new kind of activity by becoming involved in an ambitious project called “Planet Earth,” the core of which consists of a series of television programs to be seen in the United States on PBS, starting in January of this year (see box). I here review a course text designed to be used in combination with these television specials.Although there is an element of self-interest in reviewing in Eos a book that forms part of a project to which AGU is heavily committed. I have been able to quiet my conscience by convincing myself that there are special reasons for such a review: the concerted text and television approach is novel in our field, the subject matter is of general interest to members of the Union, and (most important) I was not myself involved. The more than 75 people cited in the credits include the current AGU president and several of his distinguished predecessors, as well as numerous geophysicists, with a sprinkling of science journalists, educators, administrators, and television experts.

  19. The Sun, stars and planets (Christiaan Huygens Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup

    2010-05-01

    Using stellar occultations as a tool to probe the planetary atmospheres has resulted in significant contributions to the exploration of our solar system. The technique of solar occultation has been well known for decades, but because of stars being so faint objects with respect to the Sun this technique was not very popular in the 70's. While fostering the idea of stellar occultations, I tried to avoid the unfortunate fate of Giordano Bruno, who was burned to death on February 17, 1600: he had dared to declare that the stars were objects like the sun, only much more remote. This talk will illustrate some results obtained by the star occultation technique by one scientific example on each of the three planets which are equipped with a stellar occultation instrument: GOMOS on ENVISAT (ozone monitoring), SPICAM on board Mars Express (temperature profiles), and SPICAV on Venus Express (SO2). I will also talk about Cristiaan Huygens, the first to discuss (according to the historical review of Pierre Connes) the problem of extra-solar planets in modern scientific terms which are still valid to day. Finally, I will address the threat to the planet Earth posed by Mankind, with some discussions about demography and geo-engineering.

  20. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  1. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  2. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  3. Can CMB Experiments Find Planet Nine?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent studies have identified signs of an unseen, distant ninth planet in our solar system. How might we find the elusive Planet Nine? A team of scientists suggests the key might be cosmology experiments.AHypothetical PlanetOrbits of six distant Kuiper-belt objects. Their clustered perihelia and orbital orientations suggest they may have been shepherded by a massive object, hypothesized to be Planet Nine. [Caltech/Robert Hurt]Early this year, a study was published that demonstrated that the clustered orbits of distant Kuiper belt objects (and several other features of our solar system) can be explained by the gravitational tug of a yet-undiscovered planet. This hypothetical Planet Nine is predicted to be a giant planet similar to Neptune or Uranus, with a mass of more than ~10 Earthmasses, currently orbiting ~700 AU away.In a recent study, a team of scientists led by Nicolas Cowan (McGill University in Canada) has estimated the blackbody emission expected from Planet Nine. The team proposes how we might be able to search for this distant body using its heat signature.Heat from an Icy WorldCowan and collaborators first estimate Planet Nines effective temperature, based on the solar flux received at ~700 AU and assuming its internal heating is similar to Uranus or Neptune. They find that Planet Nines effective temperature would likely be an icy ~3050 K, corresponding to a blackbody peak at 50100 micrometers.Search space for Planet Nine. Based on its millimeter flux and annual parallax motion, several current and future cosmology experiments may be able to detect it. Experiments resolution ranges are shown with blue boxes. [Cowan et al. 2016]How can we detect an object withemission that peaks in this range? Intriguingly, cosmology experiments monitoring the cosmic microwave background (CMB) radiation are optimized for millimeter flux. At a wavelength of 1mm, Cowan and collaborators estimate that Planet Nine would have a very detectable flux level of ~30 mJy. The

  4. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in

  5. Main Stair Newel Post, Handrail, and Baluster; Nosing Profile; Landing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main Stair Newel Post, Handrail, and Baluster; Nosing Profile; Landing Profile; Stringer Profile; Rotunda Balustrade and Balcony Profile - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Administration Building, 500 North Fifth Street, Hot Springs, Fall River County, SD

  6. Formation and Dynamics of Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2016-05-01

    The discovery of more than a dozen transiting circumbinary planets provides new constraints on the planet formation and migration processes in circumbinary disks and also raises a number of puzzles. I will discuss several recent works related to circumbinary planets and disks. (1) New long-duration hydro simulations of circumbinary disks (R.Miranda, D.Lai and D.Munoz 2016). The simulations reveal that the inner circumbinary disk may develop appreciable eccentricity and precesseses coherently -- these features are bound to have a strong impact on planet-disk interaction. (2) The disruption of planetary orbits through evection resonances with an external companion (W.Xu and D.Lai 2016a). This may help explain the lack of transiting planets around very compact stellar binaries (D.Munoz and D.Lai 2015). (3) The stability of mean-motion resonance capture as planets migrate inwards in a circumbinary disk. This relates to the pile-up of planets near the stability limit as observed in the sample of transiting circumbinary planets (W.Xu and D.Lai 2016b).

  7. Photographic observations of minor planets at Pulkovo

    NASA Astrophysics Data System (ADS)

    Vasil'Eva, T. A.; Kiseleva, T. P.; Orlova, O. N.

    Results of photographic positional observations of minor planets at the normal astrograph of the Pulkovo observatory are reported. The AGK-3 catalog is used as a reference catalog. The study involves the reduction of 88 plates with six minor planets, a list of which, as well as opposition dates, number of plates, and rms observational errors, is given.

  8. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  9. THE STATISTICS OF MULTI-PLANET SYSTEMS

    SciTech Connect

    Tremaine, Scott; Dong Subo

    2012-04-15

    We describe statistical methods for measuring the exoplanet multiplicity function (the fraction of host stars containing a given number of planets) and inclination distribution from transit and radial-velocity (RV) surveys. The analysis is based on the approximation of separability-that the distribution of planetary parameters in an n-planet system is the product of identical 1-planet distributions. We review the evidence that separability is a valid approximation for exoplanets and conclude that it captures many, but not all, of the known characteristics of multi-planet systems. We show how to relate the observable multiplicity function in surveys with similar host-star populations but different sensitivities. We also show how to correct for geometrical selection effects to derive the multiplicity function from transit surveys if the distribution of relative inclinations is known. Applying these tools to the Kepler transit survey and to RV surveys, we find that (1) the Kepler data alone do not constrain the mean inclination of multi-planet systems; even spherical distributions are allowed by the data but only if a small fraction of host stars contain large planet populations ({approx}> 30); (2) comparing the Kepler and RV surveys shows that the mean inclination of multi-planet systems is less than 5 Degree-Sign ; and (3) the multiplicity function of the Kepler planets is not well determined by the present data.

  10. PLANETS NEAR MEAN-MOTION RESONANCES

    SciTech Connect

    Petrovich, Cristobal; Malhotra, Renu; Tremaine, Scott E-mail: renu@lpl.arizona.edu

    2013-06-10

    The multiple-planet systems discovered by the Kepler mission exhibit the following feature: planet pairs near first-order mean-motion resonances prefer orbits just outside the nominal resonance, while avoiding those just inside the resonance. We explore an extremely simple dynamical model for planet formation, in which planets grow in mass at a prescribed rate without orbital migration or dissipation. We develop an analytic version of this model for two-planet systems in two limiting cases: the planet mass grows quickly or slowly relative to the characteristic resonant libration time. In both cases, the distribution of systems in period ratio develops a characteristic asymmetric peak-trough structure around the resonance, qualitatively similar to that observed in the Kepler sample. We verify this result with numerical integrations of the three-body problem. We show that for the 3 : 2 resonance, where the observed peak-trough structure is strongest, our simple model is consistent with the observations for a range of mean planet masses 20-100 M{sub Circled-Plus }. This predicted mass range is higher-by at least a factor of three-than the range expected from the few Kepler planets with measured masses, but part of this discrepancy could be due to oversimplifications in the dynamical model or uncertainties in the planetary mass-radius relation.

  11. The planets Uranus, Neptune, and Pluto (1971)

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1972-01-01

    Design criteria relating to spacecraft intended to investigate the planets of Uranus, Neptune, and Pluto are presented. Assessments were made of the potential effects of environmental properties on vehicle performance. Pertinent data on the mass, radius, shape, mean density, rotational pole location, and mean orbital elements for the three planets are given in graphs and tables.

  12. Our Planets at a Glance. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch.

    People have gazed up at the cosmos for thousands of years and wondered about the wanderers of the heavens: the planets. The past 20 years have been the golden age of planetary exploration because of many expeditions, most notably the Voyager and other unmanned space craft. This document is a summary of the information known about the planets of…

  13. Star-planet connection through metallicity

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Israelian, G.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correi, A. C. M.; Oshagh, M.

    2014-07-01

    We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database (Santos et al. 2013) to study the relation between stellar metallicity and position of planets in the period-mass diagram. Using this large sample we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈ 10 M⊕ to ≈ 4 MJup. Moreover, Earth-like planets orbiting metal-rich stars always show shorter periods (≤20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. Most probably planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems.

  14. The searches for Earth-like planets

    NASA Astrophysics Data System (ADS)

    Alonso, R.

    2010-12-01

    Several techniques are achieving nowadays the precision levels required to detect few-Earth-mass planets, but still a fruitful path needs to be explored in order to detect a planet like the Earth orbiting inside the habitable zone of a star. We summarize the different approaches followed to reach this goal, and highlight their achievements.

  15. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    SciTech Connect

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together with those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds contrasts

  16. Kepler Planets: A Tale of Evaporation

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Wu, Yanqin

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ~0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ~0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and the

  17. Journey to a Star Rich with Planets

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets

    This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own.

    The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri.

    The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit.

    As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days.

    Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life.

    The animation ends with a comparison between 55 Cancri and our solar system.

    The colors of the illustrated planets were chosen to resemble those of our own solar

  18. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  19. Characterizing Transiting Planet Atmospheres through 2025

    NASA Astrophysics Data System (ADS)

    Cowan, N. B.; Greene, T.; Angerhausen, D.; Batalha, N. E.; Clampin, M.; Colón, K.; Crossfield, I. J. M.; Fortney, J. J.; Gaudi, B. S.; Harrington, J.; Iro, N.; Lillie, C. F.; Linsky, J. L.; Lopez-Morales, M.; Mandell, A. M.; Stevenson, K. B.

    2015-03-01

    The discovery of planets around other stars is revolutionizing our notions of planet formation and is poised to do the same for planetary climate. Studying transiting planets is complementary to eventual studies of directly imaged planets: (1) we can readily measure the mass and radius of transiting planets, linking atmospheric properties to bulk composition and formation, (2) many transiting planets are strongly irradiated and exhibit novel atmospheric physics, and (3) the most common temperate terrestrial planets orbit close to red dwarf stars and are difficult to image directly. We have only been able to comprehensively characterize the atmospheres of a handful of transiting planets, because most orbit faint stars. The Transiting Exoplanet Survey Satellite (TESS) will discover transiting planets orbiting the brightest stars, enabling, in principle, an atmospheric survey of 102-103 bright hot Jupiters and warm sub-Neptunes. Uniform observations of such a statistically significant sample would provide leverage to understand—and learn from—the diversity of short-period planets, and would identify the minority of truly special planets worthy of more intensive follow-up. We argue that the best way to maximize the scientific returns of TESS is to adopt a triage approach. A space mission consisting of a ~1 m telescope with an optical-NIR spectrograph could measure molecular absorption for nonterrestrial planets discovered by TESS, as well as eclipses and phase variations for the hottest jovians. Such a mission could observe up to 103 transits per year, thus enabling it to survey a large fraction of the bright (J < 11) hot-Jupiters and warm sub-Neptunes TESS is expected to find. The James Webb Space Telescope (JWST) could be used to perform detailed atmospheric characterization of the most interesting transiting targets (transit, eclipse, and—when possible—phase-resolved spectroscopy). TESS is also expected to discover a few temperate terrestrial planets

  20. Fast spin of the young extrasolar planet β Pictoris b.

    PubMed

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass. PMID:24784216

  1. Towards the Detection of Reflected Light from Exo-planets: a Comparison of Two Methods

    NASA Astrophysics Data System (ADS)

    Rodler, Florian; Kürster, Martin

    For exo-planets the huge brightness contrast between the star and the planet constitutes an enormous challenge when attempting to observe some kind of direct signal from the planet. With high resolution spectroscopy in the visual one can exploit the fact that the spectrum reflected from the planet is essentially a copy of the rich stellar absorption line spectrum. This spectrum is shifted in wavelength according to the orbital RV of the planet and strongly scaled down in brightness by a factor of a few times 10-5, and therefore deeply buried in the noise. The S/N of the plantetary signal can be increased by applying one of the following methods. The Least Squares Deconvolution Method (LSDM, eg. Collier Cameron et al. 2002) combines the observed spectral lines into a high S/N mean line profile (star + planet), determined by least-squares deconvolution of the observed spectrum with a template spectrum (from VALD, Kupka et al. 1999). Another approach is the Data Synthesis Method (DSM, eg. Charbonneau et al. 1999), a forward data modelling technique in which the planetary signal is modelled as a scaled-down and RV-shifted version of the stellar spectrum.

  2. Global stratigraphy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  3. Faint Satellites of Outer Planets

    NASA Astrophysics Data System (ADS)

    Veillet, C.

    1982-03-01

    In astronomy, as in other matters, the charm 01 novelty is one of the important lactors that govern the choice 01 the observations. How many objects saw suddenly many eyes or kinds of detectors looking at them, before linding again, some months or years later, their sidereal quietness! ... However, it is often after a long time of regular observations that they confide a (small) part 01 their secrets. The laint satellites 01 planets don't transgress this fortunately approximative rule. The deliciency in observations during many consecutive years makes the determination 01 their motion very difficult, and it is olten too late to make up lor lost time. We shall try to i1lustrate this lact in the next lines using the observations of the systems of Saturn, Uranus and Neptune we made in April 1981 on the DanishESO 1.5-m reflector.

  4. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere. PMID:20307182

  5. Dynamics and Chemistry of Planet Construction

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-03-01

    Sophisticated calculations of how planetesimals assembled into the terrestrial planets can be tested by using models of the chemistry of the solar nebula. Jade Bond (previously at University of Arizona and now at the Planetary Science Institute, Tucson, AZ), Dante Lauretta (University of Arizona) and Dave O'Brien (Planetary Sciences Institute) combined planetary accretion simulations done by O'Brien, Alessandro Morbidelli (Observatoire de Nice, France), and Hal Levison (Southwest Research Institute, Boulder) with calculations of the solar nebula chemistry as a function of time and distance from the Sun to determine the overall chemical composition of the planets formed in the simulations. They then compared the simulated planets with the compositions of Earth and Mars. The simulated planets have chemical compositions similar to real planets, indicating that the accretion calculations are reasonable. Questions remain about the accretion of water and other highly volatile compounds, including C and N, which are essential for life.

  6. Detection of Terrestrial Planets Using Transit Photometry

    NASA Technical Reports Server (NTRS)

    Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.

  7. Evolution and Atmospheric Circulation of "Pegasi Planets"

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Showman, A.

    About one-quarter of the extrasolar giant planets discovered so far have orbital distances smaller than 0.1 AU. Among those are the first genuine giant planet detected outside our solar system, 51 Peg b, and the first characterized extrasolar planet, HD 209458b (also in the Pegasus constellation). These ``Pegasi planets'' form a class of objects whose evolution and structure is strongly affected by stellar irradiation and tides. We show in particular that the radius of HD 209458b cannot be reproduced by conventional evolution models unless its atmosphere is assumed to be unrealistically hot. We argue that the combination of the synchronization by stellar tides and the strong irradiation yield an atmosphere that has significant temperature variations and strong winds. The kinetic energy thus generated can be transported in the deep interior and slow the planet's contraction. We also discuss the consequences of the atmospheric circulation on the chemistry.

  8. Chemical composition of Earth-like planets

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Thiabaud, A.; Marboeuf, U.; Alibert, Y.; de Elía, G. C.; Guilera, O. M.

    2015-08-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, differences exist that can be associated to the dynamical environment in which they were formed.

  9. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  10. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  11. The Planet around 51 Pegasi

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Williams, Eric; Bildsten, Lars; Graham, James R.; Ghez, Andrea M.; Jernigan, J. Garrett

    1997-05-01

    Doppler measurements of 51 Pegasi have been made from 1995 October through 1996 August, with a precision of 5 m s-1. We find a period of 4.231 days, a velocity amplitude of 56 +/- 1 m s-1, and a velocity curve that is essentially sinusoidal, all in excellent agreement with Mayor & Queloz. The only viable interpretation is a companion having minimum mass, m sin i = 0.45 MJupiter, in a circular orbit of radius of 0.051 AU, with an eccentricity less than 0.01. Alternative explanations involving stellar surface phenomena such as pulsation or spots are ruled out. The lack of tidal spin-up of the star constrains the mass of the companion to be less than 15 MJupiter. If the tidal Q-value is less than ~106 for the planet (close to Jupiter's presumed value), then internal dissipation is adequate to circularize the orbit and synchronize the planet's rotation. After subtracting the best-fit Keplerian velocity curve, the residuals exhibit no apparent variations at a level of 5 m s-1 during 10 months. The absence of further reflex motion along with limits from IR speckle observations rule out additional companions in a large portion of the parameter space of mass and orbital radius, including all masses greater than 1 MJupiter within 2.0 AU. Based on observations obtained at Lick Observatory, which is operated by the University of California, and on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology.

  12. Chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1992-01-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  13. Primordial Cratering Regimes on Planets

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.

    2004-11-01

    Understanding of planetary surface evolution (and possibly biological evolution) is hampered by a longstanding uncertainty over the nature of impact cratering and interplanetary debris in the first 600 My of solar system history. On the one hand, a number of researchers (1-3) treat a cataclysmic spike in cratering 3.9 Gy ago as an observational fact, arguing that little or no cratering occurred from 4.5 to 4.0 Gy ago, and that all multi-ring lunar basins formed 3.85 to 4.0 Gy ago. On the other hand, dynamical theorists have had problems trying to explain the a large impactor spike, as reviewed in (4). Worse yet, meteorite evidence on lunar and asteroidal impact melts (3,5) fail to confirm the strong spike in Apollo-sample impact melts at 3.9 Gy. A semi-quantitative model has been suggested to reconcile the findings (5). References: (1) Tera, F., D.A. Papanastassiou, G. J. Wasserberg 1974. Isotopic evidence for a terminal Lunar cataclysm, Earth Planet. Sci. Lett. 22, 1-21. (2) Stoeffler, D., G. Ryder 2001. "Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System," in Chronology and Evolution of Mars, Eds. R. Kallenbach, J. Geiss, W. K. Hartmann. Kluwer Academic Publishers, Netherlands, pp. 105-164. (3) Cohen, B. A., T. D. Swindle, D. A. Kring 2000. Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 290, 1754-1756. (4) Hartmann, W. K., G. Ryder, L. Dones, D. Grinspoon 2000. The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System. In Origin of the Earth and Moon, Eds. R. M. Canup, K. Righter (Tucson: Univ. Arizona Press), pp. 493-512. (5) Hartmann, W. K. 2003. Megaregolith evolution and cratering cataclysm models - Lunar cataclysm as a misconception (28 years later). Meteor. Planet. Sci. 38, 579-593.

  14. Planet Hunters: Two New Confirmed Planets and the First Kepler Seven Candidate System

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph; Wang, J.; Jek, K.; Fischer, D.; Agol, E.; Hunters, Planet

    2014-01-01

    Planet Hunters has confirmed two new planets, PH3 b and PH3 c, through transit timing variations (TTVs) and discovered a seventh planet candidate KOI-351.07, marking the first Kepler seven candidate system. Since most Kepler multiple planet candidates are true planets, KOI-351.07 is the strongest proposed seventh planet candidate in any planetary system. KOI-351 is a very compact system; all candidates have periods < 1 year. . Although errors are large, the inner five planets appear to all be sub-Neptune, while the outer two are likely gas giants. In our new confirmed system PH3, both confirmed planets experience significant TTVs, with PH3 b having an amplitude of over 5 hours. Along with the third candidate in the system (KOI-1353.02), this system may be in a Laplace resonance: Pout/Pmid = Pmid/Pin = 1.91. These new discoveries add to Planet Hunters previous successes: two previously confirmed planets and ≈ 60 other planet candidates.

  15. Double Planet Meets Triple Star

    NASA Astrophysics Data System (ADS)

    2002-08-01

    High-Resolution VLT Image of Pluto Event on July 20, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about the tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon , measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet . At the current distance of nearly 4,500 million km from the Earth, Pluto's disk subtends a very small angle in the sky, 0.107 arcsec. It is therefore very seldom that Pluto - during its orbital motion - passes exactly in front of a comparatively bright star. Such events are known as "occultations" , and it is difficult to predict exactly when and where on the Earth's surface they are visible. Stellar occultations When Pluto moves in front of a star, it casts a "shadow" on the Earth's surface within which an observer cannot see the star, much like the Earth's Moon hides the Sun during a total solar eclipse. During the occultation event, Pluto's "shadow" also moves across the Earth's surface. The width of this shadow is equal to Pluto's diameter, i.e. about 2300 km. One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by

  16. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  17. THE GEMINI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND DEBRIS DISK STARS

    SciTech Connect

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Ftaclas, Christ; Chun, Mark; Biller, Beth A.; Hayward, Thomas L.; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; De Gouveia Dal Pino, Elisabete M.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; and others

    2013-08-20

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known {beta} Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a {>=}5 M{sub Jup} planet beyond 80 AU, and <21% of debris disk stars have a {>=}3 M{sub Jup} planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d {sup 2} N/dMda{proportional_to}m {sup {alpha}} a {sup {beta}}, where m is planet mass and a is orbital semi-major axis (with a maximum value of a{sub max}). We find that {beta} < -0.8 and/or {alpha} > 1.7. Likewise, we find that {beta} < -0.8 and/or a{sub max} < 200 AU. For the case where the planet frequency rises sharply with mass ({alpha} > 1.7), this occurs because all the planets detected to date have masses above 5 M{sub Jup}, but planets of lower mass could easily have been detected by our search. If we ignore the {beta} Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a {>=}3 M{sub Jup} planet beyond 10 AU, and {beta} < -0.8 and/or {alpha} < -1.5. Likewise, {beta} < -0.8 and/or a{sub max} < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet

  18. Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correia, A. C. M.; Israelian, G.; Oshagh, M.

    2013-12-01

    Aims: We explore the relations between physical and orbital properties of planets and properties of their host stars to identify the main observable signatures of the formation and evolution processes of planetary systems. Methods: We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database to study the relation between stellar metallicity and position of planets in the period-mass diagram. We then used all the radial-velocity-detected planets orbiting FGK stars to explore the role of planet-disk and planet-planet interaction on the evolution of orbital properties of planets with masses above 1 MJup. Results: Using a large sample of FGK dwarf hosts we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈10 M⊕ to ≈4 MJup. Earth-like planets orbiting metal-rich stars always show shorter periods (fewer than 20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. We also found statistically significant evidence that very high mass giants (with a mass higher than 4 MJup) have on average more eccentric orbits than giant planets with lower mass. Finally, we show that the eccentricity of planets with masses higher than 4 MJup tends to be lower for planets with shorter periods. Conclusions: Our results suggest that the planets in the P - MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker, depending on the metallicity of the respective system. One possibility is that planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems. The trends and dependencies obtained for very high mass planetary systems suggest

  19. The growth of planets by pebble accretion in evolving protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Lambrechts, Michiel; Johansen, Anders

    2015-10-01

    The formation of planets depends on the underlying protoplanetary disc structure, which in turn influences both the accretion and migration rates of embedded planets. The disc itself evolves on time scales of several Myr, during which both temperature and density profiles change as matter accretes onto the central star. Here we used a detailed model of an evolving disc to determine the growth of planets by pebble accretion and their migration through the disc. Cores that reach their pebble isolation mass accrete gas to finally form giant planets with extensive gas envelopes, while planets that do not reach pebble isolation mass are stranded as ice giants and ice planets containing only minor amounts of gas in their envelopes. Unlike earlier population synthesis models, our model works without any artificial reductions in migration speed and for protoplanetary discs with gas and dust column densities similar to those inferred from observations. We find that in our nominal disc model, the emergence of planetary embryos preferably should occur after approximately 2 Myr in order to not exclusively form gas giants, but also ice giants and smaller planets. The high pebble accretion rates ensure that critical core masses for gas accretion can be reached at all orbital distances. Gas giant planets nevertheless experience significant reduction in semi-major axes by migration. Considering instead planetesimal accretion for planetary growth, we show that formation time scales are too long to compete with the migration time scales and the dissipation time of the protoplanetary disc. All in all, we find that pebble accretion overcomes many of the challenges in the formation of ice and gas giants in evolving protoplanetary discs. Appendices are available in electronic form at http://www.aanda.org

  20. ASYMMETRIC FUNDAMENTAL BAND CO LINES AS A SIGN OF AN EMBEDDED GIANT PLANET

    SciTech Connect

    Regály, Zs.; Király, S.; Kiss, L. L.

    2014-04-20

    We investigate the formation of double-peaked asymmetric line profiles of CO in the fundamental band spectra emitted by young (1-5 Myr) protoplanetary disks hosted by a 0.5-2 M {sub ☉} star. Distortions of the line profiles can be caused by the gravitational perturbation of an embedded giant planet with q = 4.7 × 10{sup –3} stellar-to-planet mass ratio. Locally isothermal, two-dimensional hydrodynamic simulations show that the disk becomes globally eccentric inside the planetary orbit with stationary ∼0.2-0.25 average eccentricity after ∼2000 orbital periods. For orbital distances 1-10 AU, the disk eccentricity is peaked inside the region where the fundamental band of CO is thermally excited. Hence, these lines become sensitive indicators of the embedded planet via their asymmetries (both in flux and wavelength). We find that the line shape distortions (e.g., distance, central dip, asymmetry, and positions of peaks) of a given transition depend on the excitation energy (i.e., on the rotational quantum number J). The magnitude of line asymmetry is increasing/decreasing with J if the planet orbits inside/outside the CO excitation zone (R {sub CO} ≤ 3, 5, and 7 AU for a 0.5, 1, and 2 M {sub ☉} star, respectively), thus one can constrain the orbital distance of a giant planet by determining the slope of the peak asymmetry-J profile. We conclude that the presented spectroscopic phenomenon can be used to test the predictions of planet formation theories by pushing the age limits for detecting the youngest planetary systems.

  1. Open Source Cloud Computing for Transiting Planet Discovery

    NASA Astrophysics Data System (ADS)

    McCullough, Peter R.; Fleming, Scott W.; Zonca, Andrea; Flowers, Jack; Nguyen, Duy Cuong; Sinkovits, Robert; Machalek, Pavel

    2014-06-01

    We provide an update on the development of the open-source software suite designed to detect exoplanet transits using high-performance and cloud computing resources (https://github.com/openEXO). Our collaboration continues to grow as we are developing algorithms and codes related to the detection of transit-like events, especially in Kepler data, Kepler 2.0 and TESS data when available. Extending the work of Berriman et al. (2010, 2012), we describe our use of the XSEDE-Gordon supercomputer and Amazon EMR cloud to search for aperiodic transit-like events in Kepler light curves. Such events may be caused by circumbinary planets or transiting bodies, either planets or stars, with orbital periods comparable to or longer than the observing baseline such that only one transit is observed. As a bonus, we use the same code to find stellar flares too; whereas transits reduce the flux in a box-shaped profile, flares increase the flux in a fast-rise, exponential-decay (FRED) profile that nevertheless can be detected reliably with a square-wave finder.

  2. Planets and Stars under the Magnifying Glass

    SciTech Connect

    Hazi, A U

    2007-02-12

    Looking out to the vastness of the night sky, stargazers often ponder questions about the universe, many wondering if planets like ours can be found somewhere out there. But teasing out the details in astronomical data that point to a possible Earth-like planet is exceedingly difficult. To find an extrasolar planet--a planet that circles a star other than the Sun--astrophysicists have in the past searched for Doppler shifts, changes in the wavelength emitted by an object because of its motion. When an astronomical object moves toward an observer on Earth, the light it emits becomes higher in frequency and shifts to the blue end of the spectrum. When the object moves away from the observer, its light becomes lower in frequency and shifts to the red end. By measuring these changes in wavelength, astrophysicists can precisely calculate how quickly objects are moving toward or away from Earth. When a giant planet orbits a star, the planet's gravitational pull on the star produces a small (meters-per-second) back-and-forth Doppler shift in the star's light. Using the Doppler-shift technique, astrophysicists have identified 179 planets within the Milky Way galaxy. However, most of these are giant gas planets, similar in size to Jupiter and Saturn, and they orbit parent stars that are much closer to them than the Sun is to Earth. Planets similar in size to Earth have also been found, but they, too, are so close to their suns that they would be much hotter than Earth and too hot for life to exist. In 2005, an international collaboration of astronomers working with telescope networks throughout the Southern Hemisphere uncovered clues to a small, rocky or icy planet similar to Earth. The new planet, designated ogLE-2005-BLg-290-Lb, is the farthest planet from our solar system detected to date. The discovery was made by the Probing Lensing Anomalies network (PLAnET) using microlensing--a technique developed nearly two decades ago by Livermore astrophysicists as part of the

  3. The Role of Tides in Known Multi-Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first known extrasolar planet system, upsilon Andromedae, was discovered in 1999. The number of stars known to possess more than one planet has been growing rapidly since then. The dynamical interactions among such planets can be quite strong. These interactions can excite the orbital eccentricities of planets, even planets orbiting very close to their stars. Stellar tides can damp the eccentricities of such close-in planets, removing dynamical energy from the system and ultimately affecting the motions of all of the planets. These and other effects of tides in extrasolar multi-planet systems will be discussed.

  4. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-09-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with an present-day eccentricity of 0.2 and semimajor axis of 5 AU orbiting a Sun-like star, 50% of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  5. A New Way to Confirm Planet Candidates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  6. First light of the Gemini Planet imager.

    PubMed

    Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-09-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  7. First light of the Gemini Planet Imager

    PubMed Central

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-01-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  8. Light from Red-Hot Planet

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light.

    The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure.

    As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star.

    The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.

  9. Survival of planets around shrinking stellar binaries

    NASA Astrophysics Data System (ADS)

    Munoz, Diego Jose; Lai, Dong

    2015-12-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. We present new results (PNAS 112, 30, p 9264) on the orbital evolution of planets around binaries undergoing orbital decay by this "LK+tide" mechanism. From secular and N-body calculations, we show how planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Either outcome can explain these planets' elusiveness to detection. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer specific predictions as to what their orbital configurations should be like.

  10. First light of the Gemini Planet Imager

    SciTech Connect

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Stone; Wolff, Schuyler

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0+0.8–0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.

  11. First light of the Gemini Planet Imager

    DOE PAGESBeta

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; et al

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a singlemore » 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0+0.8–0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.« less

  12. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  13. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly. PMID:17314975

  14. The Cambridge photographic atlas of the planets

    NASA Technical Reports Server (NTRS)

    Briggs, G.; Taylor, F.

    1982-01-01

    The origin of the solar systems is considered along with the formation of the planets, the evolution of the planets, the surfaces of solid planets, and the atmosphere of the planets. A description is provided of the various planets of the solar system. It is pointed out that Mercury was little known until March 1974 when the Mariner 10 spacecraft made the first of its three flybys of that body. In the case of Venus, the Pioneer mission to Venus by NASA in 1978 provided a breakthrough concerning a knowledge of the solid body hidden beneath the clouds. The characteristics of the planet earth are discussed together with information about the moon. A shaded relief map of Mars illustrates the geographic features of this planet. The map was produced with the aid of Mariner 9 photographs. Maps of the Jovian system based on photographs provided by space missions are also presented, and the Saturnian system is discussed, taking into account major satellites and rings of Saturn.

  15. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  16. Imagine Moving Off the Planet

    NASA Technical Reports Server (NTRS)

    Elfrey, Priscilla R.

    2006-01-01

    Moving off the planet will be a defining moment of this century as landing on the Moon was in the last. For that to happen for humans to go where humans cannot go-- simulation is the sole solution. NASA supports simulation for life-cycle activities: design, analysis, test, checkout, operations, review and training. We contemplate time spans of a century and more, teams dispersed to different planets and the need for systems that endure or adapt as missions, teams and technology change. Without imagination such goals are impossible. But with imagination we can go outside our present perception of reality to think about and take action on what has been, is and, especially, what might be. Consciously maturing an imagined, possibly workable, idea through framing it to optimization to design, and building the product provides us with a new approach to innovation and simulation fidelity. We address options, analyze, test and make improvements in how we think and work. Each step includes increasingly exact information about costs, schedule, who will be needed, where, when and how. NASA i integrating such thinking into its Exploration Product Realization Hierarchy for simulation and analysis, test and verification, and stimulus response goals. Technically NASA follows a timeline of studies, analysis, definition, design, development and operations with concurrent documentation. We have matched this Product Realization Hierarchy with a continuum from image to realization that incorporates commitment, current and needed research and communication to ensure superior and creative problem solving as well as advances in simulation. One result is a new approach to collaborative systems. Another is a distributed observer network prototyped using game engine technology bringing advanced 3-D simulation of a simulation to the desktop enabling people to develop shared consensus of its meaning. Much of the value of simulation comes from developing in people their ability to make good

  17. Scattering outcomes of close-in planets: Constraints on planet migration

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman; Tremaine, Scott

    2014-05-10

    Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e ≲ 0.1, i ≲ 0.1) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistent with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.

  18. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    SciTech Connect

    Timpe, Miles; Barnes, Rory; Kopparapu, Ravikumar; Raymond, Sean N.; Greenberg, Richard; Gorelick, Noel

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We then performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.

  19. Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Rowe, Jason F.; Jenkins, Jon M.; Bryson, Stephen T.; Latham, David W.; Howell, Steve B.; Gautier, Thomas N., III; Batalha, Natalie M.; Rogers, Leslie; Ciardi, David; Fischer, Debra A.; Gilliland, Ronald L.; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen; Huber, Daniel; Chaplin, William J.; Basu, Sarbani; Buchhave, Lars A.; Quinn, Samuel N.; Borucki, William J.; Koch, David G.; Hunter, Roger; Caldwell, Douglas A.; Van Cleve, Jeffrey; Kolbl, Rea; Weiss, Lauren M.; Petigura, Erik; Seager, Sara; Morton, Timothy; Johnson, John Asher; Ballard, Sarah; Burke, Chris; Cochran, William D.; Endl, Michael; MacQueen, Phillip; Everett, Mark E.; Lissauer, Jack J.; Ford, Eric B.; Torres, Guillermo; Fressin, Francois; Brown, Timothy M.; Steffen, Jason H.; Charbonneau, David; Basri, Gibor S.; Sasselov, Dimitar D.; Winn, Joshua; Sanchis-Ojeda, Roberto; Christiansen, Jessie; Adams, Elisabeth; Henze, Christopher; Dupree, Andrea; Fabrycky, Daniel C.; Fortney, Jonathan J.; Tarter, Jill; Holman, Matthew J.; Tenenbaum, Peter; Shporer, Avi; Lucas, Philip W.; Welsh, William F.; Orosz, Jerome A.; Bedding, T. R.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Handberg, R.; Hekker, S.; Karoff, C.; Kawaler, S. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Silva Aguirre, V.; Stello, D.; White, T. R.; Boss, Alan; Devore, Edna; Gould, Alan; Prsa, Andrej; Agol, Eric; Barclay, Thomas; Coughlin, Jeff; Brugamyer, Erik; Mullally, Fergal; Quintana, Elisa V.; Still, Martin; Thompson, Susan E.; Morrison, David; Twicken, Joseph D.; Désert, Jean-Michel; Carter, Josh; Crepp, Justin R.; Hébrard, Guillaume; Santerne, Alexandre; Moutou, Claire; Sobeck, Charlie; Hudgins, Douglas; Haas, Michael R.; Robertson, Paul; Lillo-Box, Jorge; Barrado, David

    2014-02-01

    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O). Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology.

  20. THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS

    SciTech Connect

    Gong Yanxiang; Zhou Jilin; Xie Jiwei; Wu Xiaomei E-mail: yxgong@nju.edu.cn

    2013-05-20

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPS is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-search targets. (2) If hot Jupiters formed through PPS, their original moons have little chance of survival. (3) Planets in multiple systems with small eccentricities are more likely to hold their primordial moons. (4) Compared with lower-mass planets, massive planets in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.

  1. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy. PMID:20603366

  2. Precursor Science for the Terrestrial Planet Finder

    NASA Technical Reports Server (NTRS)

    Lawson, P. R. (Editor); Unwin, S. C. (Editor); Beichman, C. A. (Editor)

    2004-01-01

    This document outlines a path for the development of the field of extrasolar planet research, with a particular emphasis on the goals of the Terrestrial Planet Finder (TPF). Over the past decade, a new field of research has developed, the study of extrasolar planetary systems, driven by the discovery of massive planets around nearby stars. The planet count now stands at over 130. Are there Earth-like planets around nearby stars? Might any of those planets be conducive to the formation and maintenance of life? These arc the questions that TPF seeks to answer. TPF will be implemented as a suite of two space observatories, a 6-m class optical coronagraph, to be launched around 20 14, and a formation flying mid-infrared interferometer, to be launched sometime prior to 2020. These facilities will survey up to 165 or more nearby stars and detect planets like Earth should they be present in the 'habitable zone' around each star. With observations over a broad wavelength range, TPF will provide a robust determination of the atmospheric composition of planets to assess habitability and the presence of life. At this early stage of TPF's development, precursor observational and theoretical programs are essential to help define the mission, to aid our understanding of the planets that TPF could discover, and to characterize the stars that TPF will eventually study. This document is necessarily broad in scope because the significance of individual discoveries is greatly enhanced when viewed in thc context of the field as a whole. This document has the ambitious goal of taking us from our limited knowledge today, in 2004, to the era of TPF observations in the middle of the next decade. We must use the intervening years wisely. This document will be reviewed annually and updated as needed. The most recent edition is available online at http://tpf.jpl.nasa.gov/ or by email request to lawson@hucy.jpl.nasa.gov

  3. Planet traps and first planets: The critical metallicity for gas giant formation

    SciTech Connect

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki E-mail: hirashita@asiaa.sinica.edu.tw

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  4. Ptolemy's treatment of the outer planets

    NASA Astrophysics Data System (ADS)

    Duke, Dennis

    2005-01-01

    The purpose of this paper is to investigate whether for the outer planets Ptolemy followed his otherwise consistent custom of describing a scenario that did not happen as he says, or whether, at least for the outer planets, he left us a more accurate rendition of events. The detailed reconstructions of Ptolemy's calculations that follow show that, at least in the Almagest, Ptolemy is a writer with consistent habits when it comes to observations. We begin by reviewing, with minimal editorial comment, Ptolemy's calculations for each planet.

  5. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  6. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  7. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well. PMID:15136756

  8. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  9. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5'-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats.

    PubMed

    Li, Qiang; Wang, Liping; Dai, Peimin; Zeng, Xuejun; Qi, Xiaoxiao; Zhu, Lijun; Yan, Tongmeng; Wang, Ying; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2015-05-22

    The use of dietary flavones is becoming increasingly popular for their prevention of cancers, cardiovascular diseases, and other diseases. Despite many pharmacokinetic studies on flavone mixtures, the position(s) of glucuronidation sites on the flavone skeleton in vivo remain(s) uncertain because of the lack of a convenient method to differentiate the isomers in biological samples. Accordingly, this study aimed to develop a new strategy to identify the position of the mono-O-glucuronide of flavones in vivo and to simultaneously determine the parent agent and its major metabolites responsible for complex pharmacokinetic characteristics. The novel strategy involves accurate mass measurements of flavone glucuronides, their [Co(II) (flavone glucuronide-H) (4,7-diphenyl-1,10-phenanthroline)2](+) complexes generated via the post-column addition of CoBr2 and 4,7-diphenyl-1,10-phenanthroline, and their mass spectrometric fragmentation by UPLC-DAD-Q-TOF and the comparison of retention times with biosynthesized standards of different isomers that were identified by analyzing the shift in UV spectra compared with the spectra of their respective aglycones. We successfully generated a metabolite profiling of flavones in rat plasma after oral administration of a flavone mixture from Dracocephalum moldavica L., which was used here as the model to demonstrate the strategy. Twelve flavone glucuronides, which were glucuronidated derivatives of acacetin, apigenin, luteolin, diosmetin, chrysoeriol and cirsimaritin, were detected and identified. Glucuronidation of the flavone skeleton at the 3'-/7-position was more prevalent, however, luteolin 4'-glucuronide levels exceeded luteolin 7-glucuronide levels. Based on the UDP-glucuronosyltransferase (UGT) metabolism profiling of flavones in rat plasma, six main compounds (tilianin, acacetin 7-glucuronide, apigenin 7-glucuronide, luteolin 3'-glucuronide, acacetin, and apigenin) were selected as pharmacokinetic markers. Pharmacokinetic

  10. Used planet: a global history.

    PubMed

    Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H

    2013-05-14

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271

  11. Prognosis for a sick planet.

    PubMed

    Maslin, Mark

    2008-12-01

    Global warming is the most important science issue of the 21st century, challenging the very structure of our global society. The study of past climate has shown that the current global climate system is extremely sensitive to human-induced climate change. The burning of fossil fuels since the beginning of the industrial revolution has already caused changes with clear evidence for a 0.75 degrees C rise in global temperatures and 22 cm rise in sea level during the 20th century. The Intergovernmental Panel on Climate Change synthesis report (2007) predicts that global temperatures by 2100 could rise by between 1.1 degrees C and 6.4 degrees C. Sea level could rise by between 28 cm and 79 cm, more if the melting of the polar ice caps accelerates. In addition, weather patterns will become less predictable and the occurrence of extreme climate events, such as storms, floods, heat waves and droughts, will increase. The potential effects of global warming on human society are devastating. We do, however, already have many of the technological solutions to cure our sick planet. PMID:19149275

  12. Dynamos in stars and planets

    NASA Astrophysics Data System (ADS)

    Jones, C. A.

    2001-12-01

    There has been significant progress in the development of numerical geodynamo models over the last eight years. Advances in computer technology have made it possible to perform three-dimensional simulations, with thermal or compositional convection as the driving mechanism. These numerical simulations give reasonable results for the morphology and strength of the field at the core-mantle boundary, and the models are also capable of giving reversals and excursions which can be compared with paleomagnetic observations. Some useful constraints are obtained by considering the entropy balance and the ohmic dissipation. However, recent studies of plane layer dynamos suggest that the current generation of dynamo models have not yet reached the correct dynamical regime. A rather severe test of how well we understand the geodynamo comes when we try to apply the theory to the magnetic fields of stars and other planets. It becomes clear that not all dynamos are in the same dynamical regime. Some, like the Earth, are in magnetostrophic balance; others like the Sun, are not. Some are in a strong field regime with Elsasser number of order one, others (including some planetary dynamos) are not. Even within late type stars, the rotation rate strongly affects the dynamical regime that the dynamo operates in. The prospects for classifying the various type of convection driven dynamo, by elucidating the possible dynamical regimes, will be reviewed.

  13. Used planet: A global history

    PubMed Central

    Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H.

    2013-01-01

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271

  14. Chemical Characterization of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2016-07-01

    Exoplanetary discoveries in the past two decades have unveiled an astonishing diversity in the physical characteristics of exoplanetary systems, including their orbital properties, masses, radii, equilibrium temperatures, and stellar hosts. Exoplanets known today range from gas-giants to nearly Earth-size planets, and some even in the habitable zones of their host stars. Recent advances in exoplanet observations and theoretical methods are now leading to unprecedented constraints on the physicochemical properties of exoplanetary atmospheres, interiors, and their formation conditions. I will discuss the latest developments and future prospects of this new era of exoplanetary characterization. In particular, I will present some of the latest constraints on atmospheric chemical compositions of exoplanets, made possible by state-of-the-art high-precision observations from space and ground, and their implications for atmospheric processes and formation conditions of exoplanets. The emerging framework for using atmospheric elemental abundance ratios for constraining the origins and migration pathways of giant exoplanets, e.g. hot Jupiters, will also be discussed. A survey of theoretical and observational directions in the field will be presented along with several open questions on the horizon.

  15. Long term evolution of planetary systems with a terrestrial planet and a giant planet

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-06-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  16. Survival of Planets Around Shrinking Stellar Binaries: A New Population of Misaligned Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2015-08-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via tidal dissipation mediated by Lidov-Kozai oscillations in orbital eccentricity induced by a distant tertiary companion. We explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may be ejected from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.Reference: D. Munoz and D. Lai 2015, submitted

  17. The Impact of Transiting Planet Science on the Next Generation of Direct-Imaging Planet Searches

    NASA Astrophysics Data System (ADS)

    Carson, Joseph C.

    2009-02-01

    Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.

  18. Long-term evolution of planetary systems with a terrestrial planet and a giant planet

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-09-01

    We study the long-term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders, and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion, and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the time-scales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  19. Polar Views of Planet Earth.

    ERIC Educational Resources Information Center

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  20. Innermost Planets of the Solar System

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The appearance and characteristics of Mercury and Venus as evening and morning stars are discussed. Inferior and superior conjunction are defined. The motions, phases, and planetary dynamics of the two planets are compared with those of the earth and moon.

  1. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  2. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk. PMID:21921192

  3. Super-earth Detection and "Planet Fever"

    NASA Astrophysics Data System (ADS)

    Pont, Frederic; Aigrain, S.; Zucker, S.

    2009-09-01

    Radial-velocity spectrographs and space transit searches have become sensitive enough to detect planets only a few times more massive than the Earth - the telluric planets or "super-Earths." We are getting one step nearer to knowing how common are Earth analogs. There is a catch however: many of the super-Earth detections are very close to the detection thresholds, and intrinsic stellar variations are an important source of false positive with both the radial velocity and transit technique. In preparation for the coming harvest of new detections, it seems worth attempting to develop some vaccine against the most extreme strands of "planet fever," the contagious disease of seeing extra-solar planet in any signal.

  4. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  5. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  6. Searching for Extrasolar Planets with SIM

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2000-01-01

    The Space Interferometry Mission (SIM) will be the first spacebased long base-line Michelson interferometer designed for precision astrometry. SIM will extend the reach of astrometry to cover the entire Galaxy, and will address a wide range of problems in Galactic structure and stellar astrophysics. It will also serve as a technology precursor for future astrophysics missions using interferometers. SIM will be a powerful tool for discovering planets around nearby stars, through detection of the reflex motion, and it will directly measure masses for the planets detected this way. It will have a single-measurement precision of 1 microarcsecond in a frame defined by nearby reference stars, enabling SIM to search for planets with masses as small as a few earth masses around the nearest star. More massive planets will be detectable to much larger distances.

  7. The origin of planets orbiting millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1992-01-01

    A model for the formation of planets around millisecond pulsar which no longer have stellar companions is suggested. Detailed hydrodynamical models are presented which suggest that planet formation can occur either in a low-mass X-ray binary progenitor to a progenitor of a star-vaporizing millisecond pulsar when the neutron star is accreting material driven off its companion by X-ray irradiation or after a pulsar has formed and is vaporizing its companion. In both cases a circumbinary disk is created in which planets can form on a timescale of 10 exp 5 to 10 exp 6 yrs and the planets can survive a second phase in which the companion star moves toward the pulsar and is completely vaporized.

  8. The origin of life from primordial planets

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Schild, Rudolph E.; Wickramasinghe, N. Chandra

    2011-04-01

    The origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen-helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.

  9. A message for future planet hunters

    NASA Video Gallery

    Imagine how our world would change once an Earth-like planet is discovered outside our solar system? You can be part of this change! Learn how astronomer Mario Perez was inspired in space and learn...

  10. Animation: A Binary and Its Planets

    NASA Video Gallery

    This artist's movie illustrates Kepler-47, the first transiting circumbinary system -- a system with more than one planet orbiting a pair of stars -- 4,900 light-years from Earth, in the constellat...

  11. Our World: Pluto - Our First Dwarf Planet

    NASA Video Gallery

    With more powerful telescopes, scientists are discovering smaller objects in our solar system. Find out how scientists now classify planets. See how NASA's robotic spacecraft, New Horizons, will he...

  12. Planets orbiting Quark Nova compact remnants

    NASA Astrophysics Data System (ADS)

    Keränen, P.; Ouyed, R.

    2003-08-01

    We explore planet formation in the Quark Nova scenario. If a millisecond pulsar explodes as a Quark Nova, a protoplanetary disk can be formed out of the metal rich fall-back material. The propeller mechanism transfers angular momentum from the born quark star to the disk that will go through viscous evolution with later plausible grain condensation and planet formation. As a result, earth-size planets on circular orbits may form within short radii from the central quark star. The planets in the PSR 1257+12 system can be explained by our model if the Quark Nova compact remnant is born with a period of ~ 0.5 ms following the explosion. We suggest that a good portion of the Quark Nova remnants may harbour planetary systems.

  13. Intrinsic luminosities of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1980-01-01

    Available data and theories on the size and nature of interior power sources in the four Jovian planets are reviewed. These four planets are Jupiter, Saturn, Uranus and Neptune. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. The evidence and interpretations presented in the discussion seem to indicate that (1) all four Jovian planets were once more luminous and are presently cooling to a state of equilibrium with sunlight; and (2) the thermal evolution of the Jovian planets is predominantly controlled by their photospheres and does not depend on interior conductivity. Both conclusions are consistent with either the simple adiabatic cooling model or with more complicated gravitational unmixing models of the type discussed by Stevenson and Salpeter (1977).

  14. Lone Planet Under a Cosmic Magnifying Glass

    NASA Video Gallery

    This artist's animation illustrates the technique used for finding free-floating, Jupiter-mass planets in space. Astronomers found evidence for 10 of these worlds, thought to have been ejected earl...

  15. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  16. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  17. The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Currie, T.

    2012-01-01

    We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.

  18. Studies of the major planet satellite systems

    NASA Technical Reports Server (NTRS)

    Frey, H.; Lowman, P. D.

    1974-01-01

    A summary is presented of the available data on the satellites of the major planets, including the currently most plausible models for several observed phenomena, for the planning of spacecraft missions to these objects. Some of the important questions likely to be solved by flyby and/or orbital missions to the giant planets are detailed, the importance of these studies to our understanding of the solar system as a whole is indicated.

  19. IBM Cloud Computing Powering a Smarter Planet

    NASA Astrophysics Data System (ADS)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  20. Planet Nine, dark matter and MOND

    NASA Astrophysics Data System (ADS)

    Sivaram, C.; Kenath, Arun; Kiren, O. V.

    2016-07-01

    Here we propose the possibility that the recently postulated Neptune-sized planet with an orbital period of 15,000 years could be a gravitationally condensed dark matter (DM) object. The observed mass of Planet Nine fits with the theoretical mass predicted for such DM objects formed by 60 GeV DM particles, which is the currently favoured DM particles. This object could also provide us with a testing ground for modification of Newtonian dynamics.

  1. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  2. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  3. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  4. Revealing a universal planet-metallicity correlation for planets of different solar-type stars

    SciTech Connect

    Wang, Ji; Fischer, Debra A.

    2015-01-01

    The metallicity of exoplanet systems serves as a critical diagnostic of planet formation mechanisms. Previous studies have demonstrated the planet–metallicity correlation for large planets (R{sub P} ⩾ 4 R{sub E}); however, a correlation has not been found for smaller planets. With a sample of 406 Kepler objects of interest whose stellar properties are determined spectroscopically, we reveal a universal planet–metallicity correlation: not only gas-giant planets (3.9 R{sub E} planets (R{sub P} ⩽ 1.7 R{sub E}) occur more frequently in metal-rich stars. The planet occurrence rates of gas-giant planets, gas-dwarf planets, and terrestrial planets are 9.30{sub −3.04}{sup +5.62}, 2.03{sub −0.26}{sup +0.29}, and 1.72{sub −0.17}{sup +0.19} times higher for metal-rich stars than for metal-poor stars, respectively.

  5. Eight planets in four multi-planet systems via transit timing variations in 1350 days

    SciTech Connect

    Yang, Ming; Liu, Hui-Gen; Zhang, Hui; Yang, Jia-Yi; Zhou, Ji-Lin E-mail: huigen@nju.edu.cn

    2013-12-01

    Analysis of the transit timing variations (TTVs) of candidate pairs near mean-motion resonances (MMRs) is an effective method to confirm planets. Hitherto, 68 planets in 34 multi-planet systems have been confirmed via TTVs. We analyze the TTVs of all candidates from the most recent Kepler data with a time span of upto about 1350 days (Q0-Q15). The anti-correlations of TTV signals and the mass upper limits of candidate pairs in the same system are calculated using an improved method suitable for long-period TTVs. If the false alarm probability of a candidate pair is less than 10{sup –3} and the mass upper limit for each candidate is less than 13 M {sub J}, we confirm them as planets in the same system. Finally, eight planets in four multi-planet systems are confirmed via analysis of their TTVs. All of the four planet pairs are near first-order MMRs, including KOI-2672 near 2:1 MMR and KOI-1236, KOI-1563, and KOI-2038 near 3:2 MMR. Four planets have relatively long orbital periods (>35 days). KOI-2672.01 has an orbital period of 88.51658 days and a fit mass of 17 M {sub ⊕}. To date, it is the longest-period planet confirmed near a first-order MMR via TTVs.

  6. Planet-disc evolution and the formation of Kozai-Lidov planets

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.; Nixon, Chris; Armitage, Philip J.

    2016-06-01

    With hydrodynamical simulations, we determine the conditions under which an initially coplanar planet-disc system that orbits a member of a misaligned binary star evolves to form a planet that undergoes Kozai-Lidov (KL) oscillations once the disc disperses. These oscillations may explain the large orbital eccentricities, as well as the large misalignments with respect to the spin of the central star, observed for some exoplanets. The planet is assumed to be massive enough to open a gap in the disc. The planet's tilt relative to the binary orbital plane is subject to two types of oscillations. The first type, present at even small inclination angles relative to the binary orbital plane, is due to the interaction of the planet with the disc and binary companion and is amplified by a secular resonance. The second type of oscillation is the KL oscillation that operates on both the planet and disc at larger binary inclination angles. We find that for a sufficiently massive disc, even a relatively low inclination planet-disc system can force a planet to an inclination above the critical KL angle, as a consequence of the first type of tilt oscillation, allowing it to undergo the second type of oscillation. We conclude that the hydrodynamical evolution of a sufficiently massive and inclined disc in a binary system broadens the range of systems that form eccentric and misaligned giant planets to include a wide range of initial misalignment angles (20° ≲ i ≲ 160°).

  7. PLANET HUNTERS: ASSESSING THE KEPLER INVENTORY OF SHORT-PERIOD PLANETS

    SciTech Connect

    Schwamb, Megan E.; Lintott, Chris J.; Lynn, Stuart; Smith, Arfon M.; Simpson, Robert J.; Fischer, Debra A.; Giguere, Matthew J.; Brewer, John M.; Parrish, Michael; Schawinski, Kevin

    2012-08-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of {>=}2 R{sub Circled-Plus} planets on short-period (<15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, {>=}4 R{sub Circled-Plus} Planet Hunters {>=}85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler {>=}4 R{sub Circled-Plus} planets suggests that the Kepler inventory of {>=}4 R{sub Circled-Plus} short-period planets is nearly complete.

  8. Progress in testing exo-planet signal extraction on the TPF-I Planet Detection Testbed

    NASA Technical Reports Server (NTRS)

    Martin, Stefan R.; Szwaykowski, Piotr; Loya, Frank M.; Liewer, Kurt

    2006-01-01

    The TPF Interferometer (TPF-I) concept is being studied at the Jet Propulsion Laboratory and the TPF-I Planet Detection Testbed has been developed to simulate the detection process for an earthlike planet orbiting a star within about 15 pc. The testbed combines four beams of infrared light simulating the operation of a dual chopped Bracewell interferometer observing a star and a faint planet. This paper describes the results obtained this year including nulling of the starlight on four input beams at contrast ratios up to 250,000 to 1, and detection of faint planet signals at contrast ratios with the star of 2 million to 1.

  9. A modified Chapman function for the polar regions of oblate planet ionospheres

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Kostov, V.; Buchvarova, M.

    The goal of this paper is to derive expressions for the modified Chapman function Che for the north and south polar regions of an oblate planet. Formulas for Che in an oblate planet atmosphere for high, middle and lower latitudes (including the equator) were derived in our previous investigation [Adv. Space Res. 27 (11) (2001) 1895]. For this purpose the classic ionosphere theory for a spherical planet was used as introduced by Chapman. The modified Chapman function for a rotational ellipsoid depends on the solar zenith angle χ, altitude h, latitude ϕ and the solar declination δ. Due to the complex geometry of an oblate planet, represented as an ellipsoid of revolution with the polar axis as the rotation axis, the polar latitudes ϕ=+/-90° appear as more specific cases. This paper presents the results of our work on the modified Chapman function Che for the poles of oblate planetary bodies. These results show the necessity of introducing Che in numerical analyses of the ionospheres of Jupiter, Saturn, Uranus and Neptune. For example, on Saturn (the most oblate planet), the vertical profile of the relative electron production rate clearly deviates from the ``normal'' profile calculated with the standard Chapman function Ch for spherical planet. At larger zenith angles (χ=100°) this deviation reaches a factor of five in the ionization rate maxima and increases with solar zenith distance χ. These profiles pertain at the pole for h=2150 km above the level of the ammonia clouds, where one of the ionospheric peaks of Saturn has been observed from spacecraft radio occultation. A table for Che for the ionosphere of Saturn is presented. This table is calculated for different altitudes and solar zenith angles χ=45°, 60°, 75°, 80°, 83°, 85°, 87°, 90°, 93°, 95°, 97° and 100°. The function Che for the giant planets has a dependence on the scale height, unlike the standard Ch function. That is why Che tables must be calculated for each planet separately.

  10. Effects of Photoevaporation on Planet Migration

    NASA Astrophysics Data System (ADS)

    Wise, Alexander; Dodson-Robinson, Sarah E.

    2015-01-01

    The final locations of planets may be influenced by turning points in their migration tracks called 'planet traps' (Hasegawa & Pudritz 2013, 2014). We explore a new planet trap caused by photoevaporation of a protoplanetary disk. Near the end of the lifetime of the gas disk, photoevaporation rates on the inner disk begin to exceed viscous accretion rates, initially resulting in a gap being formed at ~1 AU. Disk material inside the gap is quickly drained and then the gap widens until the gas disk is entirely blown away. Using a combination of analytical calculations and numerical simulations, we show that the variations of disk density resulting from this process affect the migration tracks of planets. In particular, the initial photoevaporative gap at ~1 AU stops planets from migrating inward from the gap for tens of thousands of years, until photoevaporation disperses the remaining disk and the planets lose their primary source of migration. This process may explain the apparent pileup of exoplanets at ~1 AU.

  11. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  12. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  13. A Quantitative Criterion for Defining Planets

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc

    2015-11-01

    The IAU definition of 'planet' needs improvement because it is neither quantitative nor general. The current definition applies only to solar system bodies and does not allow for the classification of exoplanets. The current definition can also be misunderstood or misconstrued because of its qualitative nature (e.g., "has cleared the neighbourhood around its orbit").A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence. This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets. All 8 planets and all classifiable exoplanets satisfy the criterion.I will describe the development of the metric and apply it to solar system bodies, exoplanets, and pulsar planets. I will then show how this metric could be used to quantify, generalize, and simplify the definition of 'planet'. A preprint is available at http://arxiv.org/abs/1507.06300

  14. A metallicity recipe for rocky planets

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah I.; Chiang, Eugene; Lee, Eve J.

    2015-10-01

    Planets with sizes between those of Earth and Neptune divide into two populations: purely rocky bodies whose atmospheres contribute negligibly to their sizes, and larger gas-enveloped planets possessing voluminous and optically thick atmospheres. We show that whether a planet forms rocky or gas-enveloped depends on the solid surface density of its parent disc. Assembly times for rocky cores are sensitive to disc solid surface density. Lower surface densities spawn smaller planetary embryos; to assemble a core of given mass, smaller embryos require more mergers between bodies farther apart and therefore exponentially longer formation times. Gas accretion simulations yield a rule of thumb that a rocky core must be at least 2M⊕ before it can acquire a volumetrically significant atmosphere from its parent nebula. In discs of low solid surface density, cores of such mass appear only after the gas disc has dissipated, and so remain purely rocky. Higher surface density discs breed massive cores more quickly, within the gas disc lifetime, and so produce gas-enveloped planets. We test model predictions against observations, using planet radius as an observational proxy for gas-to-rock content and host star metallicity as a proxy for disc solid surface density. Theory can explain the observation that metal-rich stars host predominantly gas-enveloped planets.

  15. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  16. Exospheres from asteroids to planets

    NASA Astrophysics Data System (ADS)

    Killen, R.; Burger, M.; Hurley, D.; Sarantos, M.; Farrell, W.

    2014-07-01

    The study of exospheres can give us a handle on the long-term loss of volatiles from planetary bodies due to interaction of planets, satellites and small bodies with the interplanetary medium such as the solar wind, meteors and dust, the solar radiant flux, and internal forces like diffusion and outgassing. Recent evidence for water and OH on the Moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to some asteroids including Vesta and Ceres, and ESA sent Rosetta to asteroids Lutetia and Steins. OSIRIS- Rex will return a sample from a primitive asteroid, Bennu, to the Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and thus reflect the composition of the body's regolith, although not in a one-to-one ratio. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, the mass of the exospheric species, the heliocentric distance, the rotation rate of the primary, the composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick-look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. It is also of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements.

  17. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  18. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  19. KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit

    NASA Astrophysics Data System (ADS)

    Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin

    2014-03-01

    Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).

  20. STAR HOPPERS: PLANET INSTABILITY AND CAPTURE IN EVOLVING BINARY SYSTEMS

    SciTech Connect

    Kratter, Kaitlin M.; Perets, Hagai B.

    2012-07-01

    Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here, we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars ('star hoppers'), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible for more massive planets. Such capture could populate the habitable zone around white dwarfs.