Science.gov

Sample records for administration space radiation

  1. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  2. Serving the Space Administration

    ERIC Educational Resources Information Center

    Campbell, Jack E.; Thompson, Arthur W.

    1974-01-01

    The purpose of the current program was to establish an upward mobility program that afforded employees an opportunity to improve their credibility in job opportunity selection under the directives of the National Aeronautics and Space Administration. (Author/RK)

  3. Radiation effects in space

    NASA Astrophysics Data System (ADS)

    Fry, R. J. M.

    The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committe 75 of the National Council on Radiation Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and the induction of cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, -a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.

  4. Radiation effects in space.

    PubMed

    Fry, R J

    1986-01-01

    The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committee 75 of the National Council Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised. PMID:11537230

  5. Radiation protection in space.

    PubMed

    Reitz, G; Facius, R; Sandler, H

    1995-01-01

    Radiation environment, basic concepts of radiation protection, and specific aspects of the space radiation field are reviewed. The discussion of physico-chemical and subcellular radiation effects includes mechanisms of radiation action and cellular consequences. The discussion of radiobiological effects includes unique aspects of HZE particle effects, space flight findings, terrestrial findings, analysis of somatic radiation effects and effects on critical organs, and early and delayed effects. Other topics include the impact of the space flight environment, measurement of radiation exposure, establishing radiation protection limits, limitations in establishing space-based radiation exposure limits, radiation protection measures, and recommendations. PMID:11541474

  6. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

  7. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)

  8. Radiation Effects In Space

    SciTech Connect

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  9. Radiation protection in space

    SciTech Connect

    Blakely, E.A.; Fry, R.J.M.

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  10. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  11. Space Radiation Risk Assessment

    NASA Astrophysics Data System (ADS)

    Blakely, E.

    Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from

  12. Radiation protection in space.

    PubMed

    Blakely, E A; Fry, R J

    1995-08-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space. PMID:7480625

  13. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  14. Space radiation dosimetry

    SciTech Connect

    Hanser, F.A.; Dichter, B.K. ||

    1993-12-31

    Dosimetry is the measurement of the energy deposited in matter by various forms of radiation. In space the radiation is primarily energetic electrons, protons and heavier ions from planetary radiation belts, solar flares, and interstellar cosmic rays. Experimentally, dose is frequently obtained by summing the individual energy deposits in a solid state detector. If the detector is calibrated and the sensitive mass is known, the energy sum can be converted directly to accumulated radiation dose in Gy (J/kg). Such detectors can also be used to provide an approximate separation of dose into the components due to electrons, protons, and heavier ions, which is useful if it is desired to convert the measured dose into a biological effective dose (Sv) for manned spaceflight purposes. The output can also be used to provide an essentially instantaneous dose rate for use as warning devices. This is the primary type of space radiation dosimeter to be discussed here. The MOS-type dosimeter is another solid state sensor which can be of small size and low power. These devices integrate the total dose once through, can not separate particle types, and are not suitable for instantaneous dose rate measurement at low levels. There are several additional methods of measuring space radiation dose using scintillators, etc., but are not discussed in detail. In this paper emphasis is given to descriptions of active solid state detector instruments which have successfully worked in space. Some results of in-orbit dose measurements are presented.

  15. Overview of NASA's space radiation research program

    NASA Technical Reports Server (NTRS)

    Schimmerling, Walter

    2003-01-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  16. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  17. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  18. Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation

  19. Protection from space radiation

    SciTech Connect

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-07-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods.

  20. Protection from Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  1. The space radiation environment

    SciTech Connect

    Robbins, D.E.

    1997-04-30

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.

  2. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The problem of ensuring space flight safety arises from conditions inherent to space flights and outer space and from the existing weight limitations of spacecraft. In estimating radiation hazard during space flights, three natural sources are considered: the Earth's radiation belt, solar radiation, and galactic radiation. This survey first describes the major sources of radiation hazard in outer space with emphasis on those source parameters directly related to shielding manned spacecraft. Then, the current status of the safety criteria used in the shielding calculations is discussed. The rest of the survey is devoted to the rationale for spacecraft radiation shielding calculations. The recently completed long-term space flights indicate the reliability of the radiation safety measures used for the near-Earth space exploration. While planning long-term interplanetary flights, it is necessary to solve a number of complicated technological problems related to the radiation protection of the crew.

  3. Space radiation studies

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two Active Radiation Dosimeters (ARD's) flown on Spacelab 1, performed without fault and were returned to Space Science Laboratory, MSFC for recalibration. During the flight, performance was monitored at the Huntsville Operations Center (HOSC). Despite some problems with the Shuttle data system handling the verification flight instrumentation (VFI), it was established that the ARD's were operating normally. Postflight calibrations of both units determined that sensitivities were essentially unchanged from preflight values. Flight tapes were received for approx. 60 percent of the flight and it appears that this is the total available. The data was analyzed in collaboration with Space Science Laboratory, MSFC. Also, the Nuclear Radiation Monitor (NRM) was assembled and tested at MSFC. Support was rendered in the areas of materials control and parts were supplied for the supplementary heaters, dome gas-venting device and photomultiplier tube housing. Performance characteristics of some flight-space photomultipliers were measured. The NRM was flown on a balloon-borne test flight and subsequently performed without fault on Spacelab-2. This data was analyzed and published.

  4. Federal radiation initiatives wane in Reagan administration.

    PubMed

    Linton, O W

    1981-12-01

    A series of administrative initiatives undertaken by the Carter Administration in response to public concerns about harmful effects of exposures to ionizing radiation in various settings has been abandoned by the Reagan Administration. The decision to discard the Radiation Policy Council, the coordinating agency established in 1980, leaves the federal government with no overall focus or overall budget for radiation research and protection activities. The line agencies with direct radiation responsibilities, including the Department of Energy, Nuclear Regulatory Commission, Department of Defense, Food and Drug Administration's Bureau of Radiological Health, and Department of Labor, continue with somewhat contradictory and uncoordinated programs. PMID:6976109

  5. Biology relevant to space radiation

    SciTech Connect

    Fry, R.J.M.

    1996-08-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors.

  6. Space station thermal control surfaces. [space radiators

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

    1979-01-01

    Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

  7. Radiation and Human Space Exploration

    NASA Video Gallery

    Just outside the protective layer of Earth’s atmosphere and magnetosphere, is a universe full of radiation. What happens to our bodies when we leave the surface of Earth to travel in space or visit...

  8. Radiation recommendation series: administratively required dental radiographs

    SciTech Connect

    Not Available

    1981-09-01

    Administrative requirements for radiographs are found in many segments of the United States health care system. This document presents an FDA radiation recommendation on administratively required dental x-ray examinations. In general, such examinations are not requested to further the patient's dental health, but rather as a means of monitoring claims. However, the administrative use of radiographs that have been taken in the normal course of patient care is usually appropriate, as long as the patient's right to privacy is respected.

  9. Modeling the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2006-01-01

    There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.

  10. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.

    1991-01-01

    Progress during the period of 1 Jun. - 1 Dec. 1991 is presented. An analytical solution to heavy ion transport equation in terms of Green's function formalism is developed. The mathematical development is recasted into efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code is also applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  11. Shielding from space radiations

    NASA Astrophysics Data System (ADS)

    Chang, C. Ken; Badavi, Forooz F.

    1991-12-01

    Progress during the period of 1 Jun. - 1 Dec. 1991 is presented. An analytical solution to heavy ion transport equation in terms of Green's function formalism is developed. The mathematical development is recasted into efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code is also applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  12. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  13. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.

  14. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented.

  15. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an Iron beam projectile at 600 MeV/nucleon in water is presented.

  16. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  17. Space radiation protection: Destination Mars

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  18. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. PMID:26432587

  19. Mitigation of Space Radiation Effects

    NASA Astrophysics Data System (ADS)

    Atwell, William

    2012-02-01

    During low earth orbit and deep space missions, humans and spacecraft systems are exposed to high energy particles emanating from basically three sources: geomagnetically-trapped protons and electrons (Van Allen Belts), extremely high energy galactic cosmic radiation (GCR), and solar proton events (SPEs). The particles can have deleterious effects if not properly shielded. For humans, there can be a multitude of harmful effects depending on the degree of exposure. For spacecraft systems, especially electronics, the effects can range from single event upsets (SEUs) to catastrophic effects such as latchup and burnout. In addition, some materials, radio-sensitive experiments, and scientific payloads are subject to harmful effects. To date, other methods have been proposed such as electrostatic and electromagnetic shielding, but these approaches have not proven feasible due to cost, weight, and safety issues. The only method that has merit and has been effective is bulk or parasitic shielding. In this paper, we discuss in detail the sources of the space radiation environment, spacecraft, human, and onboard systems modeling methodologies, transport of these particles through shielding materials, and the calculation of the dose effects. In addition, a review of the space missions to date and a discussion of the space radiation mitigation challenges for lunar and deep space missions such as lunar outposts and human missions to Mars are presented.

  20. Radiation protection standards in space.

    PubMed

    Sinclair, W K

    1986-01-01

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space. PMID:11537242

  1. Radiation protection standards in space

    NASA Astrophysics Data System (ADS)

    Sinclair, Warren K.

    Radiation protection standards for the individual exposed to ionizing radiation in his/her daily work have evolved over more than 50 years since the first recommendations on limits by the NCRP and the ICRP. Initial standards were based on the absence of observable harm, notably skin erythema, but have since been modified as other concerns, such as leukemia and genetic effects, became more important. More recently, the general carcinogenic effect of radiation has become the principal concern at low doses. Genetic effects are also of concern in the younger individual. Modern radiation protection practices take both of these risks into account. Quantification of these risks improves as new information emerges. The study of the Japanese survivors of the atomic bombs continues to yield new information and the recent revisions in the dosimetry are about to be completed. The special circumstances of space travel suggest approaches to limits not unlike those for radiation workers on the ground. One approach is to derive a career limit based on the risks of accident faced by many nonradiation workers in a lifetime. The career limit can be apportioned according to the type of mission. The NCRP is considering this and other approaches to the specification of radiation standards in space.

  2. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  3. Radiation protection guidelines for space missions.

    PubMed

    Fry, R J; Nachtwey, D S

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem). PMID:3410682

  4. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.; Nachtwey, D.S.

    1988-08-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  5. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.; Nachtwey, D.S.

    1986-01-01

    The National Aeronautics and Space Administration's current radiation protection guidelines were recommended in 1970. The career limit was set at 400 rem. Today, using the same approach as in 1970, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments that will be experienced in different missions than previously. Since 1970 women have joined their ranks. For these and other reasons it was considered necessary to reexamine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and inclination of the orbit. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (1.0 Sv) for a 24 year old female to 400 rem (4.0 Sv) for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye has been reduced from 600 rem (6.0 Sv) to 400 rem (4.0 Sv). 20 refs., 1 fig., 7 tabs.

  6. [Emphasis of biological research for space radiation].

    PubMed

    Ohnishi, T; Nagaoka, S

    1998-03-01

    The paper summarized issues, current status and the recent topics in biological research of space radiation. Researches to estimate a risk associated with space radiation exposure during a long-term manned space flight, such as in the International Space Station, is emphasized because of the large uncertainty of biological effects and a complexity of the radiation environment in space. The Issues addressed are; 1) biological effects and end points in low dose radiation, 2) biological effects under low dose rate and long-term radiation exposure, 3) modification of biological responses to radiation under space environments, 4) various aspects of biological end points vs. cellular and molecular mechanisms, 5) estimation of human risk associated with radiation exposure in space flight, 6) regulations for radiation exposure limits for space workers. The paper also summarized and introduced recent progress in space related radiation researches with various biological systems. PMID:11541824

  7. Survivable pulse power space radiator

    DOEpatents

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  8. Survivable pulse power space radiator

    DOEpatents

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  9. Radiations in space: risk estimates.

    PubMed

    Fry, R J M

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial populations. In deep space the duration of the mission, position in the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainities in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons: (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts: and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. PMID:12382925

  10. Biology relevant to space radiation

    SciTech Connect

    Fry, R.J.M.

    1997-04-30

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration.

  11. Radiation protection during space flight

    SciTech Connect

    Kovalev, E.E.

    1983-12-01

    The evaluation of space radiation hazards and shielding requirements is discussed. The proton and electron exposures encountered in earth orbit from the earth radiation belts and solar-flare activity are calculated as functions of orbital altitude and inclination, and the probabilities of exceeding a given dose equivalent are given in tables for missions of varying duration. The Galactic space radiation is characterized and shown to be significant only beyond the earth's vicinity. The Radiation Shielding Design Criteria approved by the USSR Ministry of Health are discussed, and the need for a more heavily shielded shelter module to be used whenever solar-flare activity is detected is indicated. The shielding of interplanetary spacecraft is considered, and it is shown that much heavier shielding is needed for missions longer than about 2 yrs during solar minimum or 3 yrs during solar maximum, or for spacecraft with nuclear energy installations (NEI). A typical shielding thickness requirement is 20 g/sq cm for the radiation shelter of a spacecraft powered by liquid propellant or by a nuclear rocket engine (but without an NEI) on a 600-d interplanetary flight. 7 references.

  12. Radiation Assurance for the Space Environment

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian

    2004-01-01

    The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.

  13. Space Radiation Transport Methods Development

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Tripathi, R.; Qualls, G.; Cucinotta, F.; Prael, R.; Norbury, J.

    Early space radiation shield code development relied on Monte Carlo methods for proton, neutron and pion transport and made important contributions to the space program. More recently Monte Carlo code LAHET has been upgraded to include high-energy multiple-charged light ions for GCR simulations and continues to be expanded in capability. To compensate for low computational efficiency, Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representations of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process and resolving shielding issues usually had a negative impact on the design. We evaluate the implications of these common one-dimensional assumptions on the evaluation of the Shuttle internal radiation field. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be

  14. 3 CFR - Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... And Space Administration To Act as Administrator Presidential Documents Other Presidential Documents Memorandum of January 16, 2009 Designation of Officers of the National Aeronautics And Space Administration... Administration By the authority vested in me as President by the Constitution and the laws of the United...

  15. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  16. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  17. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  18. CAD-based radiation protection and shielding in space

    SciTech Connect

    Appleby, M.H.

    1991-01-01

    In the not-too-distant future, astronauts will begin living and working on space station Freedom (SSF), eventually establishing a permanent presence in space. Beyond Freedom, the National Aeronautics and Space Administration (NASA) has set its sights on returning to and eventually establishing outposts on the moon and Mars. Without appropriate methods of identifying protection deficiencies, spacecraft designers often overestimate or defer shielding solutions in both cases burdening the program. To avoid possible penalties such as increased mass, complexity, and cost, radiation analysis should be conducted as part of the preliminary design process. An innovative radiation assessment system combining computer-aided design (CAD) capabilities with established NASA transport codes has been developed permitting fast, accurate analysis of spacecraft. The use of this automated analytical tool the Boeing Radiation Exposure Model (Brem) is discussed in this paper, relative to spacecraft design and the optimization of radiation shielding. Results obtained from recently completed radiation analysis of space station Freedom are also discussed.

  19. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  20. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  1. Space Radiation, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    Described is the protection from space radiation afforded the earth by the atmosphere, ionosphere, and magnetic field. The importance of adequate instruments is emphasized by noting how refinements of radiation detection instruments was necessary for increased understanding of space radiation. The role of controversy and accident in the research…

  2. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  3. Radiation energy conversion in space

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1979-01-01

    Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite. A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.

  4. Hazards to space workers from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Lyman, J. T.

    1980-01-01

    A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.

  5. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  6. Rotating bubble membrane radiator for space applications

    NASA Technical Reports Server (NTRS)

    Webb, Brent J.

    1986-01-01

    An advanced radiator concept for heat rejection in space is described which uses a two-phase working fluid to radiate waste heat. The development of advanced materials and the large surface area per mass makes the Bubble Membrane Radiator an attractive alternative to both conventional heat pipes and liquid droplet radiators for mid to high temperature applications. A system description, a discussion of design requirements, and a mass comparison with heat pipes and liquid droplet radiators are provided.

  7. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  8. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  9. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  10. A survey of space radiation effects

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1980-01-01

    The effects of space radiation and its significance for space missions, as they increase in scope, duration, and complexity are discussed. Type of radiation hazard may depend on location or on special equipment used. It is emphasized that it is necessary to search for potential radiation problems in the design stage of a mission. Problem areas such as radiation damage to solar cells and the revolutionary advances are discussed. Radiation effect to electronics components other than solar cells, and several specialized areas such as radioactivity and luminescence are also examined.

  11. Space shuttle L-tube radiator testing

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1976-01-01

    A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.

  12. 37. Attic, south wall, detail of radiator Veterans Administration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Attic, south wall, detail of radiator - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  13. An Administrator's Checklist for Open-Space.

    ERIC Educational Resources Information Center

    Nolan, Robert R.; Roper, Susan Stavert

    A checklist is provided of practical steps to be considered and acted upon in planning and implementing an open-space school. The document divides the process into three phases: initial planning, just prior to moving, and post-move. Considerations in the planning stage involve: staff and community input in deciding upon open space; clarification…

  14. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  15. Space Radiation and its Associated Health Consequences

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2007-01-01

    During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.

  16. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  17. Space radiation health research, 1991-1992

    SciTech Connect

    Jablin, M.H.; Brooks, C.; Ferraro, G.; Dickson, K.J.; Powers, J.V.; Wallace-Robinson, J.; Zafren, B.

    1993-10-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided.

  18. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  19. Potential health effects of space radiation

    NASA Technical Reports Server (NTRS)

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  20. Radiation Shielding for Manned Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  1. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan

    2006-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.

  2. Genesis of the NASA Space Radiation Laboratory.

    PubMed

    Schimmerling, Walter

    2016-06-01

    A personal recollection of events leading up to the construction and commissioning of NSRL, including reference to precursor facilities and the development of the NASA Space Radiation Program. PMID:27345197

  3. Space Radiation Program Element Tissue Sharing Initiative

    NASA Technical Reports Server (NTRS)

    Wu, H.; Huff, J. L.; Simonsen, L. C.

    2014-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.

  4. Near-Earth Space Radiation Models

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  5. Radiation risk and human space exploration

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.

  6. Radiation risk and human space exploration.

    PubMed

    Schimmerling, W; Cucinotta, F A; Wilson, J W

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. PMID:12577903

  7. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  8. Simple Benchmark Specifications for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  9. Overview of the NASA Space Radiation Program

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Huff, Janice L.; Patel, Zarana S.; Nelson, Greg; Simonsen, Lisa C.

    2016-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long-duration, manned space missions. Outside the Earth’s protective magnetosphere, astronauts are exposed to galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high-energy, high-charge (HZE) particles as well as high-energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. Understanding the quantitative and qualitative differences in biological responses produced by galactic cosmic radiation compared to Earth-based radiation is imperative for accurate risk mitigation and is a major focus of the NASA Space Radiation Program’s research strategy. The main health risks of concern are epithelial carcinogenesis and leukemias, central nervous system effects that may result in acute (in-flight) cognitive impairment and/or late neurological disorders, degenerative tissue effects including circulatory and heart disease, and the possibility of acute radiation syndromes resulting from an unshielded exposure to a large solar particle event. The NASA Space Radiation Program is focused on the characterization and mitigation of these health risks and understanding possible interactions with other biological stressors found in the space environment. In this presentation, evidence for health risks associated with heavy ion exposure will be presented.

  10. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  11. The space radiation environment for electronics

    SciTech Connect

    Stassinopoulos, E.G.; Raymond, J.P.

    1988-11-01

    The earth's space radiation environment is described in terms of charged particles as relevant to effects on spacecraft electronics. The nature and magnitude of the trapped and transiting environments are described in terms of spatial distribution and temporal variation. The internal radiation environment of the spacecraft is described in terms of shielding the high-energy particles of the free-field environment. Exposure levels are presented in terms of ionizing radiation dose and particle fluence for comparison to electronic component susceptibility.

  12. 2014 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one

  13. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  14. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space... National Aeronautics and Space Administration (NASA) is publishing this notice to advise the public of...

  15. Space Radiation and Risks to Human Health

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  16. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  17. Biological countermeasures in space radiation health.

    PubMed

    Kennedy, Ann R; Todd, Paul

    2003-06-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed. PMID:12959130

  18. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  19. Biological countermeasures in space radiation health

    NASA Technical Reports Server (NTRS)

    Kennedy, Ann R.; Todd, Paul

    2003-01-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  20. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  1. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B. ||

    1993-12-31

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  2. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; Brent, R.; Bhattacharya, Sharmila

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human

  3. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  4. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  5. National Aeronautics and Space Administration plans for space communication technology

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  6. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  7. Radiation Effects in the Space Telecommunications Environment

    SciTech Connect

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  8. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  9. Radiation shielding for future space exploration missions

    NASA Astrophysics Data System (ADS)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  10. A multimegawatt space power source radiator design

    SciTech Connect

    Jedruch, J.

    1988-01-28

    The multimegawatt space power sources (MMSPS) proposed for deployment in the late 1990s to meet mission burst power requirements, require an increase by four orders of magnitude in the power rating of equipment currently used in space. Prenger and Sullivan (1982) describe various radiator concepts proposed for such applications. They range from the innovative liquid droplet radiator (Mattick and Hertzberg 1981) to the more conventional heat pipe concept (Girrens 1982). The present paper deals with the design of the radiator for one such system, characterized by both high temperature and high pressure. It provides an estimate of the size, mass, and problems of orbiting such a radiator, based on the assumption that the next generation of heavy launch vehicle with 120-tonne carrying capacity, and 4000-m/sup 3/ cargo volume, will be available for putting hardware into orbit.

  11. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    PubMed

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. PMID:27345198

  12. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory

    NASA Astrophysics Data System (ADS)

    Miller, J.; Zeitlin, C.

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  13. Cancer Risk Assessment for Space Radiation

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled "Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies". This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. The biological uncertainty in predicting cancer risk for space radiation derives from two primary facts. 1) One animal tumor study has been reported that includes a relevant spectrum of particle radiation energies, and that is the Harderian gland model in mice. Fact #1: Extension of cancer risk from animal models, and especially from a single study in an animal model, to humans is inherently uncertain. 2) One human database

  14. Rotating bubble membrane radiator for space applications

    SciTech Connect

    Webb, B.J.; Antoniak, Z.I.

    1986-05-01

    An advanced radiator concept for heat rejection in space is described which uses a two-phase working fluid to radiate waste heat. The development of new advanced materials and the large surface area per mass makes the Bubble Membrane Radiator an attractive alternative to both conventional heat pipes and liquid droplet radiators for mid-to-high-temperature applications. A system description, a discussion of design requirements, and a mass comparison with heat pipes and liquid droplet radiators is provided. To meet the increased demand for power, solar dynamic and nuclear power systems, which operate on a closed heat engine cycle or use direct conversion of thermal to electric power, are being investigated for their significant reduction in size and mass over comparable photovoltaic systems. This reduction in mass and size may translate into reduced initial and life cycle costs as well as improved orbital operations in the areas of stability, control, and maintenance. For any space-based activity, waste heat must ultimately be radiated to space. Spacecraft system studies by NASA and industry have shown that heat rejection radiator systems are a major weight and volume contributor to any power or thermal management system. The optimal design and development of future power or thermal management systems will require advanced heat rejection concepts utilizing new and innovative approaches to reduce overall system mass and size, while increasing system efficiency and thermodynamic performance. These advanced heat rejection systems will be required to withstand the detrimental effects of meteoroid and space debris impact, radiation, and ionizing atoms, in addition to addressing such pertinent mission requirements as reliability and maintainability, operation and control, system integration, and life cycle cost. 5 refs., 1 fig., 3 tabs.

  15. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts. PMID:11604058

  16. High-energy radiation background in space

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr. (Editor); Trombka, J. I. (Editor)

    1989-01-01

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  17. High-energy radiation background in space

    NASA Astrophysics Data System (ADS)

    Rester, A. C., Jr.; Trombka, J. I.

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  18. Managing Space Radiation Risk in the New Era of Space Exploration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space exploration is a risky enterprise. Rockets launch astronauts at enormous speeds into a harsh, unforgiving environment. Spacecraft must withstand the bitter cold of space and the blistering heat of reentry. Their skin must be strong enough to keep the inside comfortably pressurized and tough enough to resist damage from micrometeoroids. Spacecraft meant for lunar or planetary landings must survive the jar of landing, tolerate dust, and be able to take off again. For astronauts, however, there is one danger in space that does not end when they step out of their spacecraft. The radiation that permeates space -- unattenuated by Earth s atmosphere and magnetosphere -- may damage or kill cells within astronauts bodies, resulting in cancer or other health consequences years after a mission ends. The National Aeronautics and Space Administration (NASA) has recently embarked on Project Constellation to implement the Vision for Space Exploration -- a program announced by President George W. Bush in 2004 with the goal of returning humans to the Moon and eventually transporting them to Mars. To adequately prepare for the safety of these future space explorers, NASA s Exploration Systems Mission Directorate requested that the Aeronautics and Space Engineering Board of the National Research Council establish a committee to evaluate the radiation shielding requirements for lunar missions and to recommend a strategic plan for developing the radiation mitigation capabilities needed to enable the planned lunar mission architecture

  19. Discrete Space Theory of Radiative Transfer: Application

    NASA Astrophysics Data System (ADS)

    Rao, M. Srinivasa

    2010-06-01

    The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.

  20. Discrete Space Theory of Radiative Transfer: Application

    NASA Astrophysics Data System (ADS)

    Rao, M. Srinivasa

    The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.

  1. Cancer Risk Assessment for Space Radiation

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled 'Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies'. This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. Additional information is contained in the original extended abstract.

  2. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  3. Space and radiation protection: scientific requirements for space research

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1995-01-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.

  4. Radiation survey in the International Space Station

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Zaconte, Veronica

    2015-12-01

    The project ALTEA-shield/survey is part of an European Space Agency (ESA) - ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev-45 MeV and 25 MeV/n-250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation

  5. Transport methods and interactions for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.

    1991-01-01

    A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.

  6. Space Radiation Program Element Tissue Sharing Forum

    NASA Technical Reports Server (NTRS)

    Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.

    2016-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation

  7. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  8. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  9. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates. PMID:27018778

  10. Operational Aspects of Space Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.

    2005-01-01

    Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.

  11. Radiation Risk Projections for Space Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis

    2003-01-01

    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order

  12. Review of radiation hardening techniques for EDFAs in space environment

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Tian, CuiPing; Wang, YingYing; Wang, Pu

    2015-03-01

    The damage mechanism and test technology of space radiation environment to space equipment was classified and the radiation protection demand of active fiber for space application was analyzed. The radiation hardening techniques of Ce doping, hydrogen loading and pre-radiation exposure and thermal annealing for Er:Yb co-doped fiber was surveyed.

  13. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  14. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  15. Space radiation issues within the Space Exploration Initiative (SEI)

    SciTech Connect

    Ward, T.E. ||

    1993-12-31

    One of the more important considerations of manned space-flight, outside the Earth`s magnetosphere with exploration and habitation of the lunar and Martian surfaces, is the radiation hazard. Specifically, the risk of high levels of radiation, due to Galactic Cosmic-Rays (GCR) and Solar Particle Events (SPE) during long duration manned missions of 2 - 3 years length, must be quantitatively assessed. Current limits of space radiation to astronauts (NCRP, 1989) could easily be exceeded on long missions, if shielding requirements are not met for spacecraft and habitats. Life-threatening solar flares occurring during a solar maximum are readily detected but not reliably predicted. Quantitative shielding estimates (Simonsen and Nealy, 1991a) for spacecraft indicate that 10 - 20 metric tons (mt) of water are required for shielding from a large solar flare event. It is therefore necessary and prudent to define the passive shielding requirements quantitatively with minimum uncertainties in order to reduce the overall vehicle mass. Additionally, the engineering design that utilizes materials, fuels, and cargo for supplemental shielding to a storm shelter will further reduce the weight penalty for radiation protection shielding.

  16. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  17. 2015 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson

  18. Validation of comprehensive space radiation transport code

    SciTech Connect

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  19. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  20. Thermal Radiator Pointing for International Space Station

    NASA Technical Reports Server (NTRS)

    Green, Scott

    1999-01-01

    In order to provide thermal radiation environments that result in adequate beat rejection, the single-phase, liquid ammonia (NH3) heat rejection system on the International Space Station (ISS) requires that its two thermal radiator wings be dynamically rotated as the ISS travels through its orbit. This paper discusses the closed-loop, thermal radiator pointing system that is used on ISS to ensure adequate heat rejection by the radiators, while preventing freezing of the ammonia under low heat loads and cold-environmental conditions. Although initial designs used an open-loop approach for radiator pointing, concerns about performance robustness, algorithm complexity, memory requirements, and sustaining support drove the development of a more robust, simpler, closed-loop system. Hence, the challenge of the closed-loop system was to utilize existing sensors, actuators and computers to fit into the existing hardware and software architecture of the ISS. Using a proportional-integral (PI) control architecture with limited output and an anti-windup integrator, the temperature of the ammonia coming out of the radiator is measured and controlled by adjusting the radiator wing orientation. The radiator wing orientation for the local minimum environment is fed forward to the control system, and the closed-loop controller is used to generate a bias off of that local minimum environment in order to heat up the ammonia when necessary to avoid freezing. In the earth's shadow, the controller is suspended and the radiator wing is oriented to face the earth, the local maximum thermal environment which further prevents freezing of the ammonia. This control architecture is shown to provide adequate heat rejection and avoid freezing of the ammonia, even though the physical system consists of large transport delays and time-varying dynamics which change dramatically due to orbit motion and variable heat loads.

  1. Biological Bases of Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  2. Issues in deep space radiation protection.

    PubMed

    Wilson, J W; Shinn, J L; Tripathi, R K; Singleterry, R C; Clowdsley, M S; Thibeault, S A; Cheatwood, F M; Schimmerling, W; Cucinotta, F A; Badhwar, G D; Noor, A K; Kim, M Y; Badavi, F F; Heinbockel, J H; Miller, J; Zeitlin, C; Heilbronn, L

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. PMID:11669118

  3. Issues in deep space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  4. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J. M.; Nachtwey, D. S.

    1986-01-01

    NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

  5. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  6. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  7. Protecting Lunar Colonies From Space Radiation

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-08-01

    When Apollo 7 astronaut Walter Cunningham blasted off from Earth on 11 October 1968, the last thing he was thinking about was radiation risks or any risks at all. “Fear doesn’t even enter your mind because you have confidence in yourself, your own ability, your training, and your knowledge,” Cunningham told Space Weather. As a crew member of the first manned mission in the Apollo program and the first three-man American space mission, Cunningham spent 11 days in Earth orbit, testing life-support, propulsion, and control systems on a redesigned command module. In retrospect, compared with immediate risks such as those associated with launch and reentry, “exposure to radiation, which could have long-term effects—we just never gave that a thought,” Cunningham said.

  8. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  9. Sizing-tube-fin space radiators

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1978-01-01

    Temperature and size considerations of the tube fin space radiator were characterized by charts and equations. An approach of accurately assessing rejection capability commensurate with a phase A/B level output is reviewed. A computer program, based on Mackey's equations, is also presented which sizes the rejection area for a given thermal load. The program also handles the flow and thermal considerations of the film coefficient.

  10. Towards Space Exploration of Moon, Mars Neos: Radiation Biological Basis

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine; Baumstark-Khan, Christa; Berger, Thomas; Reitz, Guenther

    2016-07-01

    , with varying maximal efficiencies. Furthermore, there is always the added risk of acute exposure to high proton fluxes during a solar particle event (SPE), which can threaten immediate survival of the astronauts in case of insufficient shielding by eliciting the acute radiation syndrome. Its symptoms depend on absorbed total radiation dose, type of radiation, the dose distribution in the body and the individual radiation sensitivity. After the prodromal stage with nausea and vomiting and a subsequent symptom-free phase, depending on dose, the hematopoietic syndrome with suppression of the acquired immune system and thrombocytopenia (0.7-4 Sv), the gastrointestinal tract syndrome (5-12 Sv) or the central nervous system syndrome (> 20 Sv) develop and they are accompanied by exacerbated innate immune responses. Exposure to large SPE has to be avoided by warning systems and stay inside a radiation shelter during the event. Treatment options encompass e.g. the administration of colony-stimulating factors (CSF), growth factors and blood transfusions to overcome the hematopoietic syndrome and the administration of antibiotics against secondary infections. A concerted action of ground-based studies and space experiments is required to improve the radiobiological basis of space radiation risk assessment and countermeasure development. References: Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B and Wear M (2001) Space Radiation and Cataracts in Astronauts. Rad Res 156, 460-466

  11. Space radiation concerns for manned exploration.

    PubMed

    Stanford, M; Jones, J A

    1999-07-01

    Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally. International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima. Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew. PMID:11542526

  12. Space radiation concerns for manned exploration

    NASA Astrophysics Data System (ADS)

    Stanford, Michael; Jones, Jeffrey A.

    1999-09-01

    Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally, International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima, Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew.

  13. Miniature detector measures deep space radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  14. Space Radiation Effects in Advanced Flash Memories

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2001-01-01

    Memory storage requirements in space systems have steadily increased, much like storage requirements in terrestrial systems. Large arrays of dynamic memories (DRAMs) have been used in solid-state recorders, relying on a combination of shielding and error-detection-and correction (EDAC) to overcome the extreme sensitivity of DRAMs to space radiation. For example, a 2-Gbit memory (with 4-Mb DRAMs) used on the Clementine mission functioned perfectly during its moon mapping mission, in spite of an average of 71 memory bit flips per day from heavy ions. Although EDAC worked well with older types of memory circuits, newer DRAMs use extremely complex internal architectures which has made it increasingly difficult to implement EDAC. Some newer DRAMs have also exhibited catastrophic latchup. Flash memories are an intriguing alternative to DRAMs because of their nonvolatile storage and extremely high storage density, particularly for applications where writing is done relatively infrequently. This paper discusses radiation effects in advanced flash memories, including general observations on scaling and architecture as well as the specific experience obtained at the Jet Propulsion Laboratory in evaluating high-density flash memories for use on the NASA mission to Europa, one of Jupiter's moons. This particular mission must pass through the Jovian radiation belts, which imposes a very demanding radiation requirement.

  15. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  16. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Public... 2010 (Pub. L. 111-117), National Aeronautics and Space Administration (NASA) is publishing this...

  17. Space Weather Status for Exploration Radiation Protection

    NASA Technical Reports Server (NTRS)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  18. Approaches to radiation guidelines for space travel

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables.

  19. Approaches to radiation guidelines for space travel.

    PubMed

    Fry, R J

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem to the blood forming organs. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation effects and this will be taken into account. In 1973 a committee of the National Research Council made a separate study of HZE particle effects and it was concluded that the attendant risks did not pose a hazard for low inclination near-earth orbit missions. Since that time work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. PMID:11539618

  20. Martian regolith as space radiation shielding.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1991-01-01

    In current Mars scenario descriptions, an entire mission is estimated to take 500-1000 days round trip with a 100-600 day stay time on the surface. To maintain radiation dose levels below permissible limits, dose estimates must be determined for the entire mission length. With extended crew durations anticipated on Mars, the characterization of the radiation environment on the surface becomes a critical aspect of mission planning. The most harmful free-space radiation is due to high energy galactic cosmic rays (GCR) and solar flare protons. The carbon dioxide atmosphere of Mars has been estimated to provide a sufficient amount of shielding from these radiative fluxes to help maintain incurred doses below permissible limits. However, Mars exploration crews are likely to incur a substantial dose while in transit to Mars that will reduce the allowable dose that can be received while on the surface. Therefore, additional shielding may be necessary to maintain short-term dose levels below limits or to help maintain career dose levels as low as possible. By utilizing local resources, such as Martian regolith, shielding materials can be provided without excessive launch weight requirements from Earth. The scope of this synopsis and of Ref. 3 focuses on presenting our estimates of surface radiation doses received due to the transport and attenuation of galactic cosmic rays and February 1956 solar flare protons through the Martian atmosphere and through additional shielding provided by Martian regolith. PMID:11537624

  1. Pion Production Data Needed for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2010-01-01

    A recent discovery concerning the importance of hadron production in space radiation is that pions can contribute up to twenty percent of the dose from galactic cosmic ray interactions (S. Aghara, S. Blattnig, J. Norbury, R. Singleterry, Nuclear Instruments and Methods, Vol. 267, 2009, p. 1115). Although the contribution for dose equivalent will be smaller, the dose contribution could be important for fluence based radiation models. Pion production cross sections will be an essential ingredient to such models, and it is of interest to investigate the adequacy of the pion production experimental data base for energies relevant to space radiation. The pion production threshold in nucleon - nucleon reactions is at 280 MeV and, in an interesting accident of nature, this lies near the peak of the galactic cosmic ray proton spectrum. Therefore, pion production data are needed from threshold up to energies around 50 GeV/nucleon, where the galactic cosmic ray fluence is of decreasing importance. Total and differential cross section data for pion production in this energy range will be reviewed. The availability and accuracy of theoretical models will also be discussed. It will be shown that there are a significant lack of data in this important energy range and that theoretical models still need improvement.

  2. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  3. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given. PMID:12793737

  4. Space Station body mounted radiator design

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.; Duschatko, R. J.

    1987-01-01

    Consideration has been given to utilizing the external area of the Space Station common modules or resource nodes to provide heat rejection. A program was undertaken to define the best body mounted radiator design, to define and build a full size test article and to conduct testing to verify performance. Trade studies were conducted and a preferred design selected. The selected design employed high performance grooved heat pipes of an off-the-shelf design. Twenty panels, each about 1.2 m wide by 5.6 m long are installed on each module rejecting a total of about 12 kW. The radiators are interfaced with the module thermal control loop by use of a refrigerant 21 loop with an on-orbit operable disconnect at each panel. A one-panel test article has been designed and is currently being fabricated. Testing is scheduled to be conducted in June of 1987.

  5. Synchrotron Radiation Wake in Free Space

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-08-31

    In this paper, we derive the transverse radiation force of a bunch of ultrarelativistic charged particles coherently radiating in free space assuming that the bending radius is much larger than the beam dimensions. In contrast to a similar recent study, where the authors decompose the total transverse force and find only a part that is responsible for the distortion of the beam orbit, we derive a full expression for the force and leave the issues of the beam dynamics for a separate consideration. Another approach to the calculation of the transverse force has been previously developed. In many cases considered in this paper, the calculations are extremely cumbersome; they were systematically performed with the use of symbolic engine of the computer program MATHEMATICA.

  6. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  7. The ionizing radiation environment in space and its effects

    SciTech Connect

    Adams, Jim; Falconer, David; Fry, Dan

    2012-11-20

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  8. Martian regolith as space radiation shielding

    NASA Technical Reports Server (NTRS)

    Simonsen, L. C.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.

    1991-01-01

    Mars exploration crews will be exposed to such high radiation dosages in route from earth that as to sharply reduce the allowable dose they should receive while on the Martian surface. An account is presently given of the possibility of using Martian regolith as crew shielding to maintain very low short-term dose limits. NASA-Langley's nucleon and heavy-ion transport computer codes are used to predict the propagation and interaction of the free-space nucleons and heavy ions through the Martian atmosphere and then through various thicknesses of regolith. The largest reduction in dose occurs in the first 15-20 cm of regolith material.

  9. Nuclear Cross Sections for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  10. Measuring space radiation with ADIS instruments

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McKibben, R. B.; Merk, J.

    2010-09-01

    Measurements of radiation in space, cosmic rays and Solar energetic particles, date back to the dawn of space flight. Solid state detectors, the basis of most modern high energy charged particle instruments, first flew in space in the 1960's. Modern particle spectrometers, such as ACE/CRIS, ACE/SIS and Ulysses/HET, can measure the elemental and isotopic composition of ions through the iron peak. This is achieved by using position sensing detectors (PSD's) arranged into hodoscopes to measure particle trajectories through the instrument, allowing for pathlength corrections to energy loss measurements. The Angle Detecting Inclined Sensor (ADIS) technique measures particle angle of incidence using a simple system of detectors inclined to the instrument axis. It achieves elemental resolution well beyond iron, and isotopic resolution for moderate mass elements without the complexity of position sensing detectors. An ADIS instrument was selected to fly as the High Energy Particle Sensor (HEPS) on NPOESS, but was de-scoped with the rest of the space weather suite. Another ADIS instrument, the Energetic Heavy Ion Sensor (EHIS), is being developed for GOES-R. UNH has built and tested a engineering unit of the EHIS. Applications for manned dosimetery on the Crew Exploration Vehicle (CEV) are also being explored. The basic ADIS technique is explained and accelerator data for heavy ions shown.

  11. Freeware for reporting radiation dosimetry following the administration of radiopharmaceuticals.

    PubMed

    Gómez Perales, Jesús Luis; García Mendoza, Antonio

    2015-09-01

    This work describes the development of a software application for reporting patient radiation dosimetry following radiopharmaceutical administration. The resulting report may be included within the patient's medical records. The application was developed in the Visual Basic programming language. The dosimetric calculations are based on the values given by the International Commission on Radiological Protection (ICRP). The software is available in both Spanish and English and can be downloaded at no cost from www.radiopharmacy.net. PMID:26092354

  12. Administratively required dental radiographs: radiation recommendation series. Final report

    SciTech Connect

    Not Available

    1981-09-01

    This publication is part of the continuing Radiation Recommendation Series published by the Bureau of Radiological Health. This Series was established to provide physicians, medical physicists, technologists, and others involved in the radiological process with guidance on appropriate radiological health principles in the medical radiation area. Administrative requirements for radiographs are found in many segments of the United States health care system. Such requirements are not intrinsically bad. If the resulting x-ray examinations provide a net public health benefit, they are certainly justified. However, where such examinations do not benefit the care and management of the patient, the requirements should be reviewed to determine whether they can be eliminated. This document presents an FDA radiation recommendation on administratively required dental x-ray examinations. In general such examinations are not requested to further the patient's dental health, but rather as a means of monitoring claims. However, the administrative use of radiographs that have been taken in the normal course of patient care is usually appropriate, as long as the patient's right to privacy is respected.

  13. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  14. Radiation Hazards and Countermeasures for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2004-01-01

    Protection of the astronauts from space radiation is NASA's moral and legal responsibility. There can be no manned deep space missions without adequate protection from the ionizing radiation in space. There are tow parts to radiation protection, determining the effects of space radiation on humans so that adequate exposure limits can be set and providing radiation protection that insures those limits will not be exceeded. This talk will review the status of work on these two parts and identify areas that are currently being investigated and gaps in the research that have been identified.

  15. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  16. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  17. Parts Selection for Space Systems - An Overview and Radiation Perspective

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2008-01-01

    This viewgraph presentation describes the selection of electronic parts for aerospace systems from a space radiation perspective. The topics include: 1) The Trade Space Involved with Part Selection; 2) Understanding Risk; 3) Technical/Design Aspects; 4) Programmatic Overview; 5) Radiation Perspective; 6) Reliability Considerations; 7) An Example Ad hoc Battle; and 8) Sources of Radiation Data.

  18. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  19. NASA Human Research Program Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik; Ponomarev, Artem; Hada, Megumi

    2013-01-01

    The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.

  20. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  1. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    NASA Technical Reports Server (NTRS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    functional conditions of impacted cells/organisms. The administration of an experimental anti-radiation vaccine may provide an immunologically based, adjunct method of prevention or prophylaxis against clinical ARS. The administration of experimental anti-radiation serum (ARS) and the use of the blood dialysis methods, such as immune plasma-sorption, may assist in the clearance of radiation-specific toxins and may enhance established strategies for the mitigation of the biological effects leading to ARS, and should be evaluated for use on exploration-class space missions.

  2. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  3. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  4. The Near-Earth Space Radiation for Electronics Environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  5. Radiation Hazards and Countermeasures for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Adams, James

    2004-01-01

    The protection of astronauts from the hazards of ionizing radiation in space is a moral and legal obligation of NASA. If there are to be manned deep-space missions, means must be found to provide this protection. There are two parts to providing this protection: understanding the effects of space radiation on humans so that radiation exposure limits can be established; and developing countermeasures so that exposures can be kept below these limits. This talk will cover both parts of this problem.

  6. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract Inventory AGENCY: National Aeronautic and Space Administration. ACTION: Notice of public... of the Consolidated Appropriations Act of 2010 (Pub. L. 111-117), National Aeronautic and...

  7. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  8. National Aeronautics and Space Administration 1999 Accountability Report

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with the resulting scientific and engineering program accomplishments. The report covers activities from October 1, 1998, through September 30, 1999, with a discussion of some subsequent events. Program accomplishments included the deployment and operation of the Chandra X-ray Observatory, the delivery of supplies and equipment needed to live and operate on the International Space Station, and the development of the first global 3-D map of Mars. Achievements are highlighted in the Statement of the Administrator and summarized in the performance section of this report.

  9. RADECS Short Course Session I: The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael; Bourdarie, Sebastien

    2007-01-01

    The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.

  10. Power lines harmonic radiation in circumterrestrial space

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    2014-05-01

    Currently, one of the main areas in the near-Earth space research is the space weather exploration and forecasting. This study mainly relates to solar activity influence on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth) and does not reflect a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth's surface and influence on the atmosphere-ionosphere-magnetosphere chain. The powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites. Consequences of anthropogenic impacts on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. The available experimental data, as well as theoretical estimations, allow with a high degree of certainty to say that the permanent satellite monitoring of the ionospheric and magnetospheric anthropogenic EM perturbations can be used for: a) objective assessment and prediction of the space weather conditions; b) evaluation of the daily or seasonal changes in the level of energy consumption; c) construction of a map for estimation of near space EM pollution. The examples of power

  11. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  12. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  13. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  14. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  15. Passive radiation shielding considerations for the proposed space elevator

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  16. Space Radiation Transport Code Development: 3DHZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and

  17. A space radiation transport method development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.

  18. A space radiation transport method development.

    PubMed

    Wilson, J W; Tripathi, R K; Qualls, G D; Cucinotta, F A; Prael, R E; Norbury, J W; Heinbockel, J H; Tweed, J

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. PMID:15880919

  19. Radiation measurement on the International Space Station.

    PubMed

    Akopova, A B; Manaseryan, M M; Melkonyan, A A; Tatikyan, S Sh; Potapov, Yu

    2005-02-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380 km and inclination 51.6 degrees are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z > or = 2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during the last years it has already been successfully used on board the MIR station, Space Shuttles and "Kosmos" spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2 x 10(3) keV/micrometers and the value of equivalent dose 360 microSv/day was estimated. The flux of biologically dangerous heavy particles with Z > or = 2 was measured (3.85 x 10(3) particles/cm2). PMID:15856556

  20. Space activities and radiation protection of crew members

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel

    Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.

  1. The effects of space radiation on flight film

    NASA Technical Reports Server (NTRS)

    Holly, Mark H.

    1995-01-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  2. The effects of space radiation on flight film

    SciTech Connect

    Holly, M.H.

    1995-09-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  3. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  4. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  5. High LET, passive space radiation dosimetry and spectrometry

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Keegan, R.P.; Frigo, L.A.; Sanner, D.; Rowe, V.

    1995-03-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation. Separate abstracts were prepared for articles from this report.

  6. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2004-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  7. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human mission to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  8. Space radiation hazards to Project Skylab photographic film, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, C. W.; Neville, C. F.

    1971-01-01

    The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.

  9. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  10. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  11. Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.

    2007-01-01

    This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.

  12. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described. PMID:25551493

  13. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  14. Effects of Nuclear Interactions on Accuracy of Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation risk to astronauts and electronic equipments is one major obstacle in long term human space explorations. Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect the accuracy of predictions from such radiation transport. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials. These results tell us at what energies nuclear cross sections are the most important for radiation risk evaluations, and how uncertainties in our knowledge about nuclear fragmentations relate to uncertainties in space transport predictions.

  15. Radiation environment study of near space in China area

    NASA Astrophysics Data System (ADS)

    Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong

    2015-10-01

    Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.

  16. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  17. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  18. Modeling of Radiation Risks for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fletcher, Graham

    2004-01-01

    Prior to any human space flight, calculations of radiation risks are used to determine the acceptable scope of astronaut activity. Using the supercomputing facilities at NASA Ames Research Center, Ames researchers have determined the damage probabilities of DNA functional groups by space radiation. The data supercede those used in the current Monte Carlo model for risk assessment. One example is the reaction of DNA with hydroxyl radical produced by the interaction of highly energetic particles from space radiation with water molecules in the human body. This reaction is considered an important cause of DNA mutations, although its mechanism is not well understood.

  19. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  20. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  1. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  2. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  3. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  4. Description of transport codes for space radiation shielding.

    PubMed

    Kim, Myung-Hee Y; Wilson, John W; Cucinotta, Francis A

    2012-11-01

    Exposure to ionizing radiation in the space environment is one of the hazards faced by crews in space missions. As space radiations traverse spacecraft, habitat shielding, or tissues, their energies and compositions are altered by interactions with the shielding. Modifications to the radiation fields arise from atomic interactions of charged particles with orbital electrons and nuclear interactions leading to projectile and target fragmentation, including secondary particles such as neutrons, protons, mesons, and nuclear recoils. The transport of space radiation through shielding can be simulated using Monte Carlo techniques or deterministic solutions of the Boltzmann equation. To determine shielding requirements and to resolve radiation constraints for future human missions, the shielding evaluation of a spacecraft concept is required as an early step in the design process. To do this requires (1) accurate knowledge of space environmental models to define the boundary condition for transport calculations, (2) transport codes with detailed shielding and body geometry models to determine particle transmission into areas of internal shielding and at each critical body organ, and (3) the assessment of organ dosimetric quantities and biological risks by applying the corresponding response models for space radiation against the particle spectra that have been accurately determined from the transport code. This paper reviews current transport codes and analyzes their accuracy through comparison to laboratory and spaceflight data. This paper also introduces a probabilistic risk assessment approach for the evaluation of radiation shielding. PMID:23032892

  5. Physical basis of radiation protection in space travel

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Cucinotta, Francis A.

    2011-10-01

    The health risks of space radiation are arguably the most serious challenge to space exploration, possibly preventing these missions due to safety concerns or increasing their costs to amounts beyond what would be acceptable. Radiation in space is substantially different from Earth: high-energy (E) and charge (Z) particles (HZE) provide the main contribution to the equivalent dose in deep space, whereas γ rays and low-energy α particles are major contributors on Earth. This difference causes a high uncertainty on the estimated radiation health risk (including cancer and noncancer effects), and makes protection extremely difficult. In fact, shielding is very difficult in space: the very high energy of the cosmic rays and the severe mass constraints in spaceflight represent a serious hindrance to effective shielding. Here the physical basis of space radiation protection is described, including the most recent achievements in space radiation transport codes and shielding approaches. Although deterministic and Monte Carlo transport codes can now describe well the interaction of cosmic rays with matter, more accurate double-differential nuclear cross sections are needed to improve the codes. Energy deposition in biological molecules and related effects should also be developed to achieve accurate risk models for long-term exploratory missions. Passive shielding can be effective for solar particle events; however, it is limited for galactic cosmic rays (GCR). Active shielding would have to overcome challenging technical hurdles to protect against GCR. Thus, improved risk assessment and genetic and biomedical approaches are a more likely solution to GCR radiation protection issues.

  6. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrator to exercise the Secretary's authority to license or permit and otherwise regulate commercial space transportation and to discharge the Secretary's responsibility to encourage, facilitate, and promote...

  7. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  8. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space

  9. Space Radiation Effects on Electronics: Simple Concepts and New Challenges

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation covers the following topics: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) NASA Approaches to Commercial Electronics; 5) Final Thoughts.

  10. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    NASA Technical Reports Server (NTRS)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  11. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  12. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  13. Space shuttle rendezous, radiation and reentry analysis code

    NASA Technical Reports Server (NTRS)

    Mcglathery, D. M.

    1973-01-01

    A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.

  14. Radiator selection for Space Station Solar Dynamic Power Systems

    NASA Astrophysics Data System (ADS)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  15. Nanodosimetry-based quality factors for radiation protection in space.

    PubMed

    Schulte, Reinhard W; Wroe, Andrew J; Bashkirov, Vladimir A; Garty, Guy Y; Breskin, Amos; Chechik, Rachel; Shchemelinin, Sergei; Gargioni, Elisabetta; Grosswendt, Bernd; Rosenfeld, Anatoly B

    2008-01-01

    Evaluation and monitoring of the cancer risk from space radiation exposure is a crucial requirement for the success of long-term space missions. One important task in the risk calculation is to properly weigh the various components of space radiation dose according to their assumed contribution to the cancer risk relative to the risk associated with radiation of low ionization density. Currently, quality factors of radiation both on the ground and in space are defined by national and international commissions based on existing radiobiological data and presumed knowledge of the ionization density distribution of the radiation field at a given point of interest. This approach makes the determination of the average quality factor ofa given radiation field a rather complex task. In this contribution, we investigate the possibility to define quality factors of space radiation exposure based on nanodosimetric data. The underlying formalism of the determination of quality factors on the basis of nanodosimetric data is described, and quality factors for protons and ions (helium and carbon) of different energies based on simulated nanodosimetric data are presented. The value and limitations of this approach are discussed. PMID:19205298

  16. Space environment simulation at radiation test of nonmetallic materials

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.; Klinshpont, E. R.; Tupikov, V. I.

    1999-05-01

    Russia [1] (B.A. Briskman, V.I. Toupikov, E.N. Lesnovsky, Proceedings of the Seventh International Symposium on Materials in Space Environment, Toulouse, France, 16-20 June 1997, ESA, SP-399, p. 537) has proposed new international standard for the testing of materials to simulated space radiation. The proposal was submitted to ISO (The International Organization for Standards) Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). The second version of the draft was approved at the Beijing meeting (1998). The standard extends to space ionizing radiation: protons, electrons, solar ultraviolet, soft X-radiation, bremsstrahlung, that effect the polymeric materials of space engineering. The special feature of interaction of the space ionizing radiation with materials is the localization of the main part of absorbed energy in thin near-surface layers. Numerous problems appear in simulating the ionizing radiation impact, which require a solution for correct conduction of the on-ground tests.

  17. Experimental radiation cooled magnetrons for space

    NASA Technical Reports Server (NTRS)

    Brown, W. C.; Pollock, M.

    1991-01-01

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  18. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  19. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    NASA Astrophysics Data System (ADS)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  20. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    NASA Astrophysics Data System (ADS)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  1. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  2. A voyage to Mars: space radiation, aging, and nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions, such as a voyage to Mars, astronauts will be exposed to doses and types of radiation that are not experienced in low earth orbit where the space shuttle and International Space Station operate. Astronauts who participate in exploratory class missions outside the magne...

  3. Overview of the National Aeronautics and Space Administration tether activities

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1989-01-01

    NASA research concerning the use of tethers in space is reviewed, including joint research with the Italian Space Agency. Tether applications under consideration are described, such as a tethered fuel depot and a tethered gravity laboratory platform for the Space Station, providing artificial gravity to and from Mars, payload recovery and waste management, aerothermodynamic magnetospheric physics, and electrodynamic propulsion, braking, and power generation for the Space Shuttle. Also, tether flight demonstrations are examined, including the Small Expendable Deployer System, the Get-Away Tether Experiment, the Tether Elevator Crawler System, and the Kinetic Isolation Tether Experiment.

  4. Acceptability of risk from radiation: Application to human space flight

    SciTech Connect

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Space radiation studies. [Spacelab 2 Payload

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The overall data flow diagram for the nuclear radiation monitor to fly on Spacelab 2 was revised. The use of structured techniques for the software design appears to be working well. An example of the PASCAL pseudocode written to develop and document the software design is included.

  6. Radiation-shielding requirements on long-duration space missions

    SciTech Connect

    Letaw, J.R.; Clearwater, S.

    1986-07-21

    An analysis of radiation shielding requirements on long duration space missions is presented. The report finds the principal radiation hazards to be galactic cosmic radiation (cosmic rays) and radiation from solar flares. Galactic cosmic radiation is a continuous source of radiation delivering a dose equivalent to the blood-forming organs varying from 20 REM/year to 50 REM/year over the 11-year solar cycle. Solar flares are randomly distributed events that are occasionally associated with lethal particle fluxes. The following recommendations are made: investigate alternative shielding materials that may be more effective against radiation hazards discussed here; a solar-flare storm shelter with a minimum of 7.5 cm aluminum shielding (or shielding of equivalent effect) is required at all times for space flights outside the magnetosphere. Spacecraft designed to transport people outside the magnetosphere for long durations during solar minimum must provide at least 7.5 cm aluminum shielding of all living spaces. Acceptable dose limits for the full-scale exploration and industrialization of space must be studied.

  7. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  8. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  9. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  10. Optimized Shielding for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.

    2000-01-01

    Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  11. Optimized shielding for space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  12. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  13. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  14. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  15. Space radiation risks to the central nervous system

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  16. Space radiation incident on SATS missions

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    A special orbital radiation study was conducted in order to evaluate mission encountered energetic particle fluxes. This information is to be supplied to the project subsystem engineers for their guidance in designing flight hardware to withstand the expected radiation levels. Flux calculations were performed for a set of 20 nominal trajectories placed at several altitudes and inclinations. Temporal variations in the ambient electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model, extrapolated to the tentative SATS launch epoch with linear time terms. Orbital flux integrations ware performed with the latest proton and electron environment models, using new computational methods. The results are presented in graphical and tabular form. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

  17. Solid State Radiation Dosimeters for Space and Medical Applications

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  18. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  19. [Radiation Environment Study of Near Space in China Area].

    PubMed

    Mei, Xiao-dong; Sun, Ji-lin; Li, Zheng-qiang; Chen, Xing-feng; Xing, Jin; Xu, Hua; Qie, Li-li; Lü, Yang; Li, Yang; Liu, Li

    2016-03-01

    Aerospace activity in near space (20-50 km) has become a research hotspot for aviation big countries worldwide. Solar radiation study, as the prerequisite to carry out aerospace activity, is facing the barrier of lacking of observation in near space layer. Ozone is the most important factor that affects radiation value in this layer. Based on ECMWF reanalysis data, this input key parameter and its horizontal, vertical and temporal characteristics are analyzedwith results showing obvious regional features in temporal-spatial distribution and varieties. With meteorological data and surface parameters, near space over China is divided into 5 parts. Key factors' value is confirmed over each division. With SBDART radiation transfer model, solar radiation and ultraviolet radiation simulation in near space are conducted separately. Results show that it is influenced by latitude, total ozone and its vertical distribution, radiation varies under complex rules. The average year and monthly solar radiation strengthens changes with latitude reduction, while annual range changes reversely. Air absorbing is related to latitude and land-sea contrast and shows different values and seasonal variations. The ultraviolet radiation over South China Sea reaches its maximum value and minimum annual range, as well as minimum monthly range with value strengthening in summer and weakening in winter. In other areas radiation increases in summer while weakens in winter, monthly range shows double peaks with higher value in spring and autumn, lower in summer and winter. Air absorption in ultraviolet radiation is influenced by multiple factors, vertical varieties over areas besides South China Sea enhance in summer time. The vertical changes of monthly ranges affected by air absorption show consistence in higher and lower layer in June and July, while in other months ranges are bigger in higher layer. PMID:27400492

  20. Administrator Bolden on the SpaceX Falcon 9 Launch

    NASA Video Gallery

    While rocket launches from the Cape are considered a common occurrence to some, the historic significance of today’s achievement by SpaceX should not be lost. This is the first in a new generat...

  1. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123.

    PubMed

    Dietze, G; Bartlett, D T; Cool, D A; Cucinotta, F A; Jia, X; McAulay, I R; Pelliccioni, M; Petrov, V; Reitz, G; Sato, T

    2013-08-01

    -energy radiation fields in space are described. Results of calculations and measurements of radiation fields in spacecraft are given. Some data for shielding possibilities are also presented. Chapter 6 addresses methods of determining mean absorbed doses and dose equivalents in organs and tissues of the human body. Calculated conversion coefficients of fluence to mean absorbed dose in an organ or tissue are given for heavy ions up to Z=28 for energies from 10 MeV/u to 100 GeV/u. For the same set of ions and ion energies, mean quality factors in organs and tissues are presented using, on the one hand, the Q(L) function defined in Publication 60 (ICRP, 1991), and, on the other hand, a Q function proposed by the National Aeronautics and Space Administration. Doses in the body obtained by measurements are compared with results from calculations, and biodosimetric measurements for the assessment of mission doses are also presented. In Chapter 7, operational measures are considered for assessment of the exposure of astronauts during space missions. This includes preflight mission design, area and individual monitoring during flights in space, and dose recording. The importance of the magnitude of uncertainties in dose assessment is considered. Annex A shows conversion coefficients and mean quality factors for protons, charged pions, neutrons, alpha particles, and heavy ions(2 < Z ≤2 8), and particle energies up to 100 GeV/u. PMID:23958389

  2. Countermeasures against space radiation induced oxidative stress in mice.

    PubMed

    Kennedy, A R; Guan, J; Ware, J H

    2007-06-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with L: -selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities. PMID:17387501

  3. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  4. Heat pipe radiators for space. [vacuum tests

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1977-01-01

    An optimized flight-weight prototype fluid-header panel (heatpipe radiator system) was tested in a vacuum environment over a wide range of coolant inlet temperatures, coolant flow rates, and environmental absorbed heat fluxes. The maximum performance of the system was determined. Results are compared with earlier data obtained on a smaller fluid-header feasibility panel, and computer predictions. Freeze-thaw tests are described and the change in thaw recovery time due to the addition of a low-freezing point feeder heat pipe is evaluated. Experimental panel fin-temperature distributions are compared with calculated results.

  5. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B.

    1991-10-01

    This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.

  6. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  7. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  8. Radiation hazards on space missions outside the magnetosphere.

    PubMed

    Letaw, J R; Silberberg, R; Tsao, C H

    1989-01-01

    Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of approximately 0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to approximately 25 Gy (skin dose) and up to approximately 2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation. PMID:11537305

  9. Overview of HZETRN and BRNTRN Space Radiation Shielding Codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Badavi, F. F.

    1997-01-01

    The NASA Radiation Health Program has supported basic research over the last decade in radiation physics to develop ionizing radiation transport codes and corresponding data bases for the protection of astronauts from galactic and solar cosmic rays on future deep space missions. The codes describe the interactions of the incident radiations with shield materials where their content is modified by the atomic and nuclear reactions through which high energy heavy ions are fragmented into less massive reaction products and reaction products are produced as radiations as direct knockout of shield constituents or produced as de-excitation products in the reactions. This defines the radiation fields to which specific devices are subjected onboard a spacecraft. Similar reactions occur in the device itself which is the initiating event for the device response. An overview of the computational procedures and data base with some applications to photonic and data processing devices will be given.

  10. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  11. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  12. Review of Nuclear Physics Experiments for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  13. Space Radiation and Exploration - Information for the Augustine Committee Review

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Semones, Edward; Kim, Myung-Hee; Jackson, Lori

    2009-01-01

    Space radiation presents significant health risks including mortality for Exploration missions: a) Galactic cosmic ray (GCR) heavy ions are distinct from radiation that occurs on Earth leading to different biological impacts. b) Large uncertainties in GCR risk projections impact ability to design and assess mitigation approaches and select crew. c) Solar Proton Events (SPEs) require new operational and shielding approaches and new biological data on risks. Risk estimates are changing as new scientific knowledge is gained: a) Research on biological effects of space radiation show qualitative and quantitative differences with X- or gamma-rays. b) Expert recommendations and regulatory policy are changing. c) New knowledge leads to changes in estimates for the number of days in space to stay below Permissible Exposure Limits (PELS).

  14. Space Radiation and the Challenges Towards Effective Shielding Solutions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  15. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  16. Opportunities for electron microscopy in space radiation biology

    SciTech Connect

    Lett, J.T.

    1986-01-01

    Densely ionizing, particulate radiations in outer space are likely to cause to mammalian tissues biological damage that is particularly amenable to examination by the techniques of electron microscopy. This situation arises primarily from the fact that once the density of ionization along the particle track exceeds a certain value, small discrete lesions involving many adjacent cells may be caused in organized tissues. Tissue damage produced by ionization densities below the critical value also afford opportunities for electron microscopic evaluation, as is shown by the damage produced in optic and proximate tissues of the New Zealand white rabbit in terrestrial experiments. Late radiation sequelae in nondividing, or terminally differentiating, tissues, and in stem cell populations, are of special importance in these regards. It is probable that evaluations of the hazards posed to astronauts by galactic particulate radiations during prolonged missions in outer space will not be complete without adequate electron microscopic evaluation of the damage those radiations cause to organized tissues.

  17. Lightweight moving radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Knapp, K.

    1981-01-01

    Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.

  18. Visual Risk Assessment of Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hussein, Hesham F.; Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Protecting astronauts from space radiation exposure during an interplanetary mission is an important challenge for mission design and operations. If sufficient protection is not provided near solar maximum, the risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). Polyethylene shielded "storm shelters" inside spacecraft have been shown to limit total exposure from a large SPE to a permissible level, preventing acute risks and providing a potential approach to fulfill the ALARA (as low as reasonably achievable) requirement. For accurate predictions of radiation dose to astronauts involved in future space exploration missions, detailed variations of radiation shielding properties are required. Radiation fluences and doses vary considerably across both the spacecraft geometry and the body-shielding distribution. A model using a modern CAD tool ProE(TradeMark), which is the leading engineering design platform at NASA, has been developed to account for these local variations in the radiation distribution. Visual assessment of radiation distribution at different points inside a spacecraft module and in the human body for a given radiation environment are described. Results will ultimately guide in developing requirements for maximal protection for astronauts from space radiation.

  19. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  20. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  1. Risks of radiation cataracts from interplanetary space missions.

    PubMed

    Lett, J T; Lee, A C; Cox, A B

    1994-11-01

    Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars. PMID:11538452

  2. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  3. Nuclear model calculations and their role in space radiation research.

    PubMed

    Townsend, L W; Cucinotta, F A; Heilbronn, L H

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. PMID:12539757

  4. Nuclear model calculations and their role in space radiation research

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.

  5. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  6. Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.

  7. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  8. Space radiation susceptibility of ultra stable crystal oscillators

    NASA Astrophysics Data System (ADS)

    Brunet, M.; Dutrey, J. F.; Laporte, J. B.; Bourriau, J.; Calvel, P.

    1992-06-01

    The radiation susceptibility of several quartz oscillators for space use (USO) with classical and BVA (electrodeless quartz resonator) type resonators, AT and SC (Stress Compensation) cut, is reported. Susceptibility of each USO was measured at low dose rate, 1 and 0.1 rad per hour, using a cobalt 60 source. In parallel, a space radiation exposure analysis was made taking into account the radation environment during the in flight data recording. A deposited dose calculation analysis was conducted using an up to data three dimensional Monte Carlo transport code. Results of aging rate per day are then compared to several in flight data.

  9. Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu

    1996-01-01

    Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.

  10. Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits

    SciTech Connect

    Wu, H.; Atwell, W.; Cucinotta, F.A.; Yang, C.

    1996-03-01

    Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.

  11. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  12. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema

    Blakely, Eleanor

    2011-04-28

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  13. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  14. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    SciTech Connect

    Blakely, Eleanor

    2003-07-16

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  15. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  16. Some comments on space flight and radiation limits

    SciTech Connect

    Thornton, W.E.

    1997-04-30

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by {open_quotes}experts{close_quotes} and the media. Career astronauts` and cosmonauts` views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of {open_quotes}voluntary{close_quotes} participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and {open_quotes}official{close_quotes} Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure.

  17. Effects of space radiation on electronic microcircuits

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.

    1989-01-01

    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed.

  18. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  19. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  20. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. PMID:11863032

  1. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  2. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  3. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  4. Performance deficit produced by partial body exposures to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  5. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  6. The Effects of Space Radiation on Linear Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    Permanent and transient effects are discussed that are induced in linear integrated circuits by space radiation. Recent developments include enhanced damage at low dose rate, increased damage from protons due to displacement effects, and transients in digital comparators that can cause circuit malfunctions.

  7. Radiation environment and hazards for a geosynchronous space station

    NASA Technical Reports Server (NTRS)

    Wright, J. J.; Fishman, G. J.

    1976-01-01

    An evaluation was made of the potential radiation hazards to the crew and equipment of a geosynchronous space station. Tissue dose rates for electron, bremsstrahlung, galactic cosmic rays, and solar proton events are included for parking longitudes of 110 and 290 degrees at orbit inclinations of 0, 30, and 45 degrees.

  8. Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Dokgo, Kyunghwan; Choi, Enjin; Park, Jong-Sun; Kim, Kyung-Chan; Kim, Hang-Pyo

    2014-03-01

    There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O¡¯Neill 2010.

  9. Space life sciences: radiation risk assessment and radiation measurements in low Earth orbit.

    PubMed

    2004-01-01

    The volume contains papers presented at COSPAR symposia in October 2002 about radiation risk assessment and radiation measurements in low Earth orbit. The risk assessment symposium brought together multidisciplinary expertise including physicists, biologists, and theoretical modelers. Topics included current knowledge about known and predicted radiation environments, radiation shielding, physics cross section models, improved ion beam transport codes, biological demonstrations of specific shielding materials and applications to a manned mission to Mars, advancements in biological measurement of radiation-induced protein expression profiles, and integration of physical and biological parameters to assess key elements of radiation risk. Papers from the radiation measurements in low Earth orbit symposium included data about dose, linear energy transfer spectra, and charge spectra from recent measurements on the International Space Station (ISS), comparison between calculations and measurements of dose distribution inside a human phantom and the neutron component inside the ISS; and reviews of trapped antiprotons and positrons inside the Earth's magnetosphere. PMID:15880912

  10. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  11. Long titanium heat pipes for high-temperature space radiators

    SciTech Connect

    Girrens, S.P.; Ernst, D.M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  12. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; Peterson, Leif E.; Plante, Ianik; Pluth, Janice M.; Ponomarev, Artem L.; Scott Carnell, Lisa A.; Slaba, Tony C.; Sridharan, Deepa; Xu, Xiaojing

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  13. Development and testing of coatings for orbital space radiation environments.

    PubMed

    Pellicori, Samuel F; Martinez, Carol L; Hausgen, Paul; Wilt, David

    2014-02-01

    Specific coating processes and materials were investigated in the quest to develop multilayer coatings with greater tolerance to space radiation exposure. Ultraviolet reflection (UVR) and wide-band antireflection (AR) multilayer coatings were deposited on solar cell covers and test substrates and subsequently exposed to simulated space environments and also flown on the Materials International Space Station Experiment-7 (MISSE-7) to determine their space environment stability. Functional solar cells integrated with these coatings underwent simulated UV and MISSE-7 low earth orbit flight exposure. The effects of UV, proton, and atomic oxygen exposure on coatings and on assembled solar cells as related to the implemented deposition processes and material compositions were small. The UVR/AR coatings protected flexible polymer substrate materials that are intended for future flexible multijunction cell arrays to be deployed from rolls. Progress was made toward developing stable and protective coatings for extended space-mission applications. Test results are presented. PMID:24514237

  14. Configuration studies for active electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-07-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043-1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.

  15. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  16. Quality factors for space radiation: A new approach

    NASA Astrophysics Data System (ADS)

    Borak, Thomas B.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; McBeth, Rafe A.; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA (Z , β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA (Z , β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA (Z , β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The

  17. Quality factors for space radiation: A new approach.

    PubMed

    Borak, Thomas B; Heilbronn, Lawrence H; Townsend, Lawrence W; McBeth, Rafe A; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA(Z,β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA(Z,β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA(Z,β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The revised

  18. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite nearly two decades of research investigating the use of dietary antioxidant supplementation during conventional chemotherapy and radiation therapy, controversy remains about the efficacy and safety of this complementary treatment. Several studies of concurrent antioxidant administration with...

  19. New measurements for hadrontherapy and space radiation: biology

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  20. National Aeronautics and Space Administration 2003 Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Imagine knowing that we are not alone, but that life is abundant in our solar system and throughout the universe. Imagine a world where we can safely travel anywhere, anytime, on our home planet, and in space. Imagine a world in which long-term weather forecasts are reliable, and natural disasters are predictable and perhaps even preventable. NASA is changing our understanding of the world, exploring the unknown, and creating new awareness about who we are and what our place is in the cosmos. For the first time in history, we have the tools, the insight and ability to seek answers to some of humanity's most profound questions: 1) How did we get here? 2) Where are we going? 3) Are we alone? In addition to pursuing these compelling questions, NASA helps the Nation to meet its challenges and address its urgent national needs. Among these are the requirements to improve the security and safety of our air transportation system and counter the looming shortage of U.S. scientists and engineers in our next generation of Americans.

  1. The Impact on Space Radiation Requirements and Effects on ASIMS

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.; Swift, G.

    1995-01-01

    The evolution of highly miniaturized electronic and mechanical systems will be accompanied by new problems and issues regarding the radiation response of these systems in the space environment. In this paper we discuss some of the more prominent radiation problems brought about by miniaturization. For example, autonomous micro-spacecraft will require large amounts of high density memory, most likely in the form of stacked, multichip modules of DRAM's, that must tolerate the radiation environment. However, advanced DRAM's (16 to 256 Mbit) are quite susceptible to radiation, particularly single event effects, and even exhibit new radiation phenomena that were not a problem for older, less dense memory chips. Another important trend in micro-spacecraft electronics is toward the use of low-voltage microelectronic systems that consume less power. However, the reduction in operating voltage also caries with it an increased susceptibility to radiation. In the case of application specific integrated microcircuits (ASIM's), advanced devices of this type, such as high density field programmable gate arrays (FPGA's) exhibit new single event effects (SEE), such as single particle reprogramming of anti-fuse links. New advanced bipolar circuits have been shown recently to degrade more rapidly in the low dose rate space environment than in the typical laboratory total dose radiation test used to qualify such devices. Thus total dose testing of these parts is no longer an appropriately conservative measure to be used for hardness assurance. We also note that the functionality of micromechanical Si-based devices may be altered due to the radiation-induced deposition of charge in the oxide passivation layers.

  2. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  3. The NASA Microelectronics Space Radiation Effects Program (MSREP) at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Coss, J.; Nichols, D.; Shaw, D.

    1991-01-01

    The primary objective of the Microelectronics Space Radiation Effects Program (MSREP) at the Jet Propulsion Laboratory (JPL) is to assist NASA in the selection of radiation hardened microelectronic parts for insertion in NASA space systems through radiation testing and research. Prior to presenting examples of the research and testing on Single Event Effects (SEE) and Total Ionizing Dose (TID) effects, the space radiation environment and radiation requirements for the CRAFT/Cassini program, a typical JPL space project, are discussed.

  4. National Aeronautics and Space Administration Training Grant Supplement

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    2005-01-01

    The following section summarizes the impact of the Ohio Space Grant Consortium (OSGC) in Ohio and to NASA over the last four-year period (February 1, 2001 to April 30, 2005) and highlights the important accomplishments of the consortium. The strength of the OSGC network of universities, community colleges, government agencies, industry, and outreach affiliates is well-established and is growing. The OSGC Consortium Management Structure was designed and remains committed to using the talents and diversity of everyone within this collaborative network, and operational policies and procedures are such that all consortium members are active contributors resulting in quality OSGC programs in research, education and service, while receiving a relatively small amount of NASA funds. The number of quality activities, both on- and off-campus, and collaborations/partnerships that OSGC has established with NASA and government agencies, state and local government, educational institutions, and private industry, has been impressive. Further desired university affiliate expansion requires additional funds. Diversity is shown in the OSGC 12-member Executive Committee by the presence of three campus representatives from Central State University, Wilberforce University, and The Ohio State University (two underrepresented minority, one female). One additional female campus representative (Cleveland State University) is currently on sabbatical leave and a valuable alternate member attends. Other additional female and underrepresented minority members are on the larger OSGC Advisory committee. All committee members participate fully in all consortium management and policy decisions. The OSGC Executive Committee strives to achieve and communicate a culture of trust, respect, teamwork, open communication, creativity, and empowerment. These programs have shown results and impact by their visibility and importance to Ohio and to NASA, resulting in strategic alliances created throughout

  5. Biological effects of space radiation and development of effective countermeasures

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  6. Biological Effects of Space Radiation and Development of Effective Countermeasures.

    PubMed

    Kennedy, Ann R

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703

  7. Investigation of radiation doses in open space using TLD detectors.

    PubMed

    Reitz, G; Facius, R; Bilski, P; Olko, P

    2002-01-01

    The low energy component of the cosmic radiation field is strongly modified by the shielding of the spacecraft and it is time and location dependent. Thermoluminescent lithium fluoride detectors have been applied to determine the radiation doses inside the ESA-Facility BIOPAN. The BIOPAN facility was mounted outside and launched on a Foton spacecraft and opened to space to allow exposure of several experiments to open space. Standard TLD-600. TLD-700 chips, two layers MTS-Ns sintered pellets with different effective thickness of the sensitive layer and MTS-N of different thickness have been exposed with different shielding thicknesses in front of them. The measured TL signal in the 0.1 mm thick detector just shielded by an aluminised Kapton foil of 25 microm thickness in front yielded a dose of 29.8 Gy (calibrated with 137Cs gamma rays) for an exposure time of 12.7 days: after 2.5 g.cm(-2) shielding the doses dropped to 3 mGy. The monitoring of radiation doses and its depth dose distribution outside the spacecraft are of great interest for radiation protection of astronauts working in open space. The knowledge of depth-dose distribution is a prerequisite to determine the organ doses an astronaut will receive during an extravehicular activity (EVA). The BIOPAN experiments are to be continued in the future. PMID:12382937

  8. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  9. Biological Effects of Space Radiation and Development of Effective Countermeasures

    PubMed Central

    Kennedy, Ann R.

    2014-01-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703

  10. Standardization Process for Space Radiation Models Used for Space System Design

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  11. Probabilistic assessment of radiation risk for astronauts in space missions

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; De Angelis, Giovanni; Cucinotta, Francis A.

    2011-04-01

    Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ϕ. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions. Internal documentation of NASA Constellation Trade Study (F.A. Cucinotta, personal communication).

  12. Comparison of Martian Radiation Environment with International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The radiation experiment was provided by the Johnson Space Center, Houston, Tex. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Space Radiation Cancer Risk Projections and Uncertainties - 2010

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2011-01-01

    Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks.

  14. Space Radiation Cancer Risks and Uncertainties for Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.

    2001-01-01

    Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.

  15. Space radiation cancer risks and uncertainties for Mars missions.

    PubMed

    Cucinotta, F A; Schimmerling, W; Wilson, J W; Peterson, L E; Badhwar, G D; Saganti, P B; Dicello, J F

    2001-11-01

    Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks. PMID:11604093

  16. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  17. Space Radiation Risk Assessment for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Ponomarev, Artem; Atwell, Bill; Cucinotta, Francis A.

    2007-01-01

    For lunar exploration mission design, radiation risk assessments require the understanding of future space radiation environments in support of resource management decisions, operational planning, and a go/no-go decision. The future GCR flux was estimated as a function of interplanetary deceleration potential, which was coupled with the estimated neutron monitor rate from the Climax monitor using a statistical model. A probability distribution function for solar particle event (SPE) occurrence was formed from proton fluence measurements of SPEs occurred during the past 5 solar cycles (19-23). Large proton SPEs identified from impulsive nitrate enhancements in polar ice for which the fluences are greater than 2 10(exp 9) protons/sq cm for energies greater than 30 MeV, were also combined to extend the probability calculation for high level of proton fluences. The probability with which any given proton fluence level of a SPE will be exceeded during a space mission of defined duration was then calculated. Analytic energy spectra of SPEs at different ranks of the integral fluences were constructed over broad energy ranges extending out to GeV, and representative exposure levels were analyzed at those fluences. For the development of an integrated strategy for radiation protection on lunar exploration missions, effective doses at various points inside a spacecraft were calculated with detailed geometry models representing proposed transfer vehicle and habitat concepts. Preliminary radiation risk assessments from SPE and GCR were compared for various configuration concepts of radiation shelter in exploratory-class spacecrafts.

  18. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere. PMID:11537609

  19. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  20. NASA Self-Assessment of Space Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  1. Inheritance of induction radiation sensitivity of space flight environments and γ-radiation on rice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Wang, J.; Wei, L.; Li, Z.; Sun, Y.

    There are many factors affecting living things during space flight, such as microgravity, cosmic radiation, etc. A large number of plant mutants have been obtained after space flight on satellite in China in the last decade and some commercial crop varieties were released. However, little consideration has so far been given to the genetic mechanisms underlying sensitivity of plant seeds to space flight environments. To reveal the genetic mechanisms associated with induction radiation sensitivity (IRS), a set of 226 recombination inbred lines (RILs) derived from Lemont (japonica)/ Teqing (indica) F13, were analyzed using 164 well-distributed DNA markers and assayed for the traits related to IRS including rate of survival seedling (RSS), seedling height (SH), seed setting rate (SSR) and total physiological damage (TPD) in replicated trials after space flight on Chinese Shenzhou IV Spacecraft andγ -radiation treatment (35000 rad) on the ground in 2002. Seedling growth of Lemont was accelerated after space flight with the SH of 116.2% of ground control while growth suppression was happened for Teqing with the SH of 85.7% of ground control. γ -radiation treatment resulted in significant decrease in all tested traits for the two parents, indicating space flight and γ -radiation treatment had different biological effects on the two parents. Significant differences were detected among the RILs for their responses to space flight environments and γ -radiation, reflected as the difference in the four tested traits. Space flight resulted in stimulation on growth for 57.1% lines whileγ -radiation had suppression on growth for most lines. Seventeen putative main-effect QTLs was identified for the four traits related to IRS under space flight and γ -radiation, which totally explained significant portions of the total trait variation (4.4% for RSS, 27.2% for SH, 4% for SSR and 15.8% for TPD for space flight; 10.4% for RSS, 15.1% for SH, 8.2% for SSR and 6.1% for TPD for

  2. Validation of a comprehensive space radiation transport code.

    PubMed

    Shinn, J L; Cucinotta, F A; Simonsen, L C; Wilson, J W; Badavi, F F; Badhwar, G D; Miller, J; Zeitlin, C; Heilbronn, L; Tripathi, R K; Clowdsley, M S; Heinbockel, J H; Xapsos, M A

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation. PMID:11542474

  3. Issues in space radiation protection: galactic cosmic rays.

    PubMed

    Wilson, J W; Kim, M; Schimmerling, W; Badavi, F F; Thibeault, S A; Cucinotta, F A; Shinn, J L; Kiefer, R

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes. PMID:7989194

  4. Issues in Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  5. Analysis of space radiation data of semiconductor memories

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.; Stauffer, C. A.

    1996-01-01

    This article presents an analysis of radiation effects for several select device types and technologies aboard the Combined Release and Radiation Effects Satellite (CRRES) satellite. These space-flight measurements covered a period of about 14 months of mission lifetime. Single Event Upset (SEU) data of the investigated devices from the Microelectronics Package (MEP) were processed and analyzed. Valid upset measurements were determined by correcting for invalid readings, hard failures, missing data tapes (thus voids in data), and periods over which devices were disabled from interrogation. The basic resolution time of the measurement system was confirmed to be 2 s. Lessons learned, important findings, and recommendations are presented.

  6. The impact of the new biology on radiation risks in space

    NASA Technical Reports Server (NTRS)

    Dicello, John F.

    2003-01-01

    Radiation is considered to be one of three or four major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions, both orbital and interplanetary. Space habitats are stressful and dangerous environments. Health and medical consequences arising from microgravity, stress, and trauma include weakened immune systems, increased viral activity, and loss of bone mass. The greatest risks from radiation are generally assumed to be cancers and possibly damage to the central nervous system. Synergistic effects arising from the other environmental hazards along with abscopal and exogenic factors are likely. Space programs represent an exceptional opportunity for examining the biological consequences of low-dose exposures of humans to radiation at every level of progression. Although astronauts are a relatively small population, they are healthy, physically active volunteers who undergo extensive testing and medical examinations before, during, and after protracted exposures with periodic follow-up examinations. The radiation environments along with other hazards are likewise monitored and documented. Extensive international research programs are in progress. Seven years ago the U.S. National Aeronautics and Space Administration established the National Space Biomedical Research Institute through a cooperative agreement with a consortium of research and academic institutions in order to address radiation issues through a concerted, programmatic effort. Advanced technologies are rapidly being incorporated into these programs to determine the significance of new biological data and to evaluate the interplay among the different medical hazards. Programmatic in vivo and in vitro studies of the processes leading to carcinogenesis are in progress. Drugs and dietary supplements are being examined at the cellular and in vivo levels to assess their potential as dose-modifying agents. The infrastructure of this new approach, recent

  7. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  8. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  9. Analysis of a Radiation Model of the Shuttle Space Suit

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Kim, Myung-Hee; Qualls, Garry D.; Wilson, John W.

    2003-01-01

    The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.

  10. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  11. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  12. Space weather circulation model of plasma clouds as background radiation medium of space environment.

    NASA Astrophysics Data System (ADS)

    Kalu, A. E.

    A model for Space Weather (SW) Circulation with Plasma Clouds as background radiation medium of Space Environment has been proposed and discussed. Major characteristics of the model are outlined and the model assumes a baroclinic Space Environment in view of observed pronounced horizontal electron temperature gradient with prevailing weak vertical temperature gradient. The primary objective of the study is to be able to monitor and realistically predict on real- or near real-time SW and Space Storms (SWS) affecting human economic systems on Earth as well as the safety and Physiologic comfort of human payload in Space Environment in relation to planned increase in human space flights especially with reference to the ISS Space Shuttle Taxi (ISST) Programme and other prolonged deep Space Missions. Although considerable discussions are now available in the literature on SW issues, routine Meteorological operational applications of SW forecast data and information for Space Environment are still yet to receive adequate attention. The paper attempts to fill this gap in the literature of SW. The paper examines the sensitivity and variability in 3-D continuum of Plasmas in response to solar radiation inputs into the magnetosphere under disturbed Sun condition. Specifically, the presence of plasma clouds in the form of Coronal Mass Ejections (CMEs) is stressed as a major source of danger to Space crews, spacecraft instrumentation and architecture charging problems as well as impacts on numerous radiation - sensitive human economic systems on Earth. Finally, the paper considers the application of model results in the form of effective monitoring of each of the two major phases of manned Spaceflights - take-off and re-entry phases where all-time assessment of spacecraft transient ambient micro-incabin and outside Space Environment is vital for all manned Spaceflights as recently evidenced by the loss of vital information during take-off of the February 1, 2003 US Columbia

  13. Risk of Skin Cancer from Space Radiation. Chapter 11

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu

    2003-01-01

    We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.

  14. Radiation-conduction interaction in large space structures

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.; Smith, S. O.

    1984-01-01

    The effects of a penumbra due to the long wave radiation emitted by the earth or to solar energy reflected from the earth on temperature distributions, deflections and stresses in plates are studied to determine their importance in the design of space structures. An examination of the state of stress in a thin plate exposed to the sun suggests that deflections are only slightly modified by the penumbra, but that stresses in the vicinity of the shadow line are more affected. Even with the smoothing due to the penumbra, these stresses should be considered in the design of space structures. A simple relationship is given by which albedo viewfactors can be easily derived from the direct viewfactor, thus simplifying the radiation analysis.

  15. Worst-case space radiation environments for geocentric missions

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Seltzer, S. M.

    1976-01-01

    Worst-case possible annual radiation fluences of energetic charged particles in the terrestrial space environment, and the resultant depth-dose distributions in aluminum, were calculated in order to establish absolute upper limits to the radiation exposure of spacecraft in geocentric orbits. The results are a concise set of data intended to aid in the determination of the feasibility of a particular mission. The data may further serve as guidelines in the evaluation of standard spacecraft components. Calculations were performed for each significant particle species populating or visiting the magnetosphere, on the basis of volume occupied by or accessible to the respective species. Thus, magnetospheric space was divided into five distinct regions using the magnetic shell parameter L, which gives the approximate geocentric distance (in earth radii) of a field line's equatorial intersect.

  16. The applicability and availability of Former Soviet Union (FSU) space-related capabilities and facilities to energy-related space activities of Department of Energy, Department of Defense and National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Pellechi, M.

    1993-01-01

    A senior-level Department of Energy (DOE), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) team visited the former Soviet Union (FSU) from 16-28 Oct. 1992. The purpose of the visit was to investigate the applicability and availability of FSU space-related capabilities and facilities to the energy-related space activities of the three agencies. This included renewable energy, nuclear power and propulsion, radiation effects, remote sensing, optics, and lasers. The U.S. delegation was successful in identifying some capabilities that would be useful to the three organizations. Efforts to utilize some of the FSU capabilities viewed are being initiated. Concurrently, there will be a technical assessment performed on the information gained from this and other recent visits to the FSU relative to space research.

  17. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  18. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed

  19. On-Line Tool for the Assessment of Radiation in Space - Deep Space Mission Enhancements

    NASA Technical Reports Server (NTRS)

    Sandridge, Chris a.; Blattnig, Steve R.; Norman, Ryan B.; Slaba, Tony C.; Walker, Steve A.; Spangler, Jan L.

    2011-01-01

    The On-Line Tool for the Assessment of Radiation in Space (OLTARIS, https://oltaris.nasa.gov) is a web-based set of tools and models that allows engineers and scientists to assess the effects of space radiation on spacecraft, habitats, rovers, and spacesuits. The site is intended to be a design tool for those studying the effects of space radiation for current and future missions as well as a research tool for those developing advanced material and shielding concepts. The tools and models are built around the HZETRN radiation transport code and are primarily focused on human- and electronic-related responses. The focus of this paper is to highlight new capabilities that have been added to support deep space (outside Low Earth Orbit) missions. Specifically, the electron, proton, and heavy ion design environments for the Europa mission have been incorporated along with an efficient coupled electron-photon transport capability to enable the analysis of complicated geometries and slabs exposed to these environments. In addition, a neutron albedo lunar surface environment was also added, that will be of value for the analysis of surface habitats. These updates will be discussed in terms of their implementation and on how OLTARIS can be used by instrument vendors, mission designers, and researchers to analyze their specific requirements.12

  20. Special Issue: 4th International Workshop on Space Radiation (IWSRR)

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    This special issue of the journal "Radiation and Environmental Biophysics" contains 20 peer-reviewed papers contributed by leading space radiation researcher's world-wide attending the 4th IWSRR. Manuscripts cover a broad range of topics ranging from radiation environments and transport in shielding and planetary surfaces to new results in understanding the biological effects of protons and high-charge and energy (HZE) nuclei on the risk of cancer, and degenerative diseases such as central nervous system effects, heart disease, and cataracts. The issue provides a snapshot of the state-of-the-art of the research in this field, demonstrating both the important results gathered in the past few years with experiments at accelerators, and the need for more research to quantify the risk and develop countermeasures.

  1. Radiation shielding requirements for manned deep space missions

    SciTech Connect

    Santoro, R.T.; Ingersoll, D.T.

    1991-04-01

    Galactic cosmic rays (GCR) and, particularly, solar flares (SF) constitute the major radiation hazards in deep space. The dose to astronauts from these radiation sources and the shielding required to mitigate its effect during a 480 day Mars mission is estimated here for a simplistic spacecraft geometry. The intent is to ball park'' the magnitude of the doses for the constant GCR background and for SF's that occur randomly during the mission. The spacecraft shielding and dose data are given only for primary GCR and SF radiation, recognizing that secondary particles produced by primary particle reactions in the spacecraft and High Z-High Energy particles will also contribute to the dose suffered by the astronauts. 22 refs., 7 figs., 2 tabs.

  2. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  3. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described. PMID:17211657

  4. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  5. Space Radiation Analysis for the Mark III Spacesuit

    NASA Technical Reports Server (NTRS)

    Atwell, Bill; Boeder, Paul; Ross, Amy

    2013-01-01

    NASA has continued the development of space systems by applying and integrating improved technologies that include safety issues, lightweight materials, and electronics. One such area is extravehicular (EVA) spacesuit development with the most recent Mark III spacesuit. In this paper the Mark III spacesuit is discussed in detail that includes the various components that comprise the spacesuit, materials and their chemical composition that make up the spacesuit, and a discussion of the 3-D CAD model of the Mark III spacesuit. In addition, the male (CAM) and female (CAF) computerized anatomical models are also discussed in detail. We combined the spacesuit and the human models, that is, we developed a method of incorporating the human models in the Mark III spacesuit and performed a ray-tracing technique to determine the space radiation shielding distributions for all of the critical body organs. These body organ shielding distributions include the BFO (Blood-Forming Organs), skin, eye, lungs, stomach, and colon, to name a few, for both the male and female. Using models of the trapped (Van Allen) proton and electron environments, radiation exposures were computed for a typical low earth orbit (LEO) EVA mission scenario including the geostationary (GEO) high electron environment. A radiation exposure assessment of these mission scenarios is made to determine whether or not the crew radiation exposure limits are satisfied, and if not, the additional shielding material that would be required to satisfy the crew limits.

  6. Proceedings of the Symposium on the Protection Against Radiation Hazards in Space Book 1: Radiation Environment in Space. Effects of Space Radiation on Radio Sensitive Objects. Biological Effects of Space Radiation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.

  7. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  8. BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap

    NASA Technical Reports Server (NTRS)

    Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard

    2006-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.

  9. An inductive assessment of radiation risks in space.

    PubMed

    Dicello, J F; Zaider, M; Varma, M N

    1994-10-01

    Procedures for the assessment of risks or vulnerabilities from radiation in space are evaluated in terms of model-independent inductive approaches. The reliability of risks calculated for space applications on the basis of accelerator-based physical and biological data is examined from a microdosimetric perspective. Probability distributions for energy deposition in biologically significant sites extend over several decades in lineal energy even for monoenergetic high-energy particles of relatively high atomic number. Because the response depends on a large number of variables and because of the difficulty of incorporating all such factors into calculations, a precise correlation between a physical descriptor of the field and observed effects in space is not feasible. For the same reasons, it is equally difficult to estimate the accuracies of such risk assessments. We use recently published microdosimetric spectra for HZE particles and biological weighting functions, including those derived from biological measurements with maximum entropy techniques, to illustrate some problems associated with the evaluations of risks from radiation fields in space. PMID:11540034

  10. Geant4 electromagnetic physics updates for space radiation effects simulation

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Nieminen, Petteri; Incerti, Sebastien; Santin, Giovanni; Ivantchenko, Vladimir; Grichine, Vladimir; Allison, John; Karamitos, Mathiew

    The Geant4 toolkit is used in many applications including space science studies. The new Geant4 version 10.0 released in December 2013 includes a major revision of the toolkit and offers multi-threaded mode for event level parallelism. At the same time, Geant4 electromagnetic and hadronic physics sub-libraries have been significantly updated. In order to validate the new and updated models Geant4 verification tests and benchmarks were extended. Part of these developments was sponsored by the European Space Agency in the context of research aimed at modelling radiation biological end effects. In this work, we present an overview of results of several benchmarks for electromagnetic physics models relevant to space science. For electromagnetic physics, recently Compton scattering, photoelectric effect, and Rayleigh scattering models have been improved and extended down to lower energies. Models of ionization and fluctuations have also been improved; special micro-dosimetry models for Silicon and liquid water were introduced; the main multiple scattering model was consolidated; and the atomic de-excitation module has been made available to all models. As a result, Geant4 predictions for space radiation effects obtained with different Physics Lists are in better agreement with the benchmark data than previous Geant4 versions. Here we present results of electromagnetic tests and models comparison in the energy interval 10 eV - 10 MeV.

  11. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  12. How Space Radiation Risk from Galactic Cosmic Rays at the International Space Station Relates to Nuclear Cross Sections

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Adams, J. H., Jr.

    2005-01-01

    Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.

  13. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft

  14. Radiation exposures during space flight and their measurement.

    PubMed

    Benton, E V; Henke, R P

    1983-01-01

    The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations. PMID:11542745

  15. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  16. Recent developments in the National Aeronautics and Space Administration (NASA) space tracking facilities in Australia

    NASA Astrophysics Data System (ADS)

    Coleby, R. S.

    Following NASA's announcement in 1979 of a plan to consolidate its deep space tracking and earth orbiting spacecraft tracking networks into three centers - Canberra, Madrid and Goldstone - substantial engineering changes have been made to the NASA facilities within Australia. The paper describes these engineering and organizational changes and recent developments which strengthen the capabilities of the Australian facilities at the Canberra Deep Space Communication Complex.

  17. Radiation from long pulse train electron beams in space plasmas

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Banks, P. M.

    1985-01-01

    A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.

  18. Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.

    2010-01-01

    The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,

  19. Combined effects of space flight factors and radiation on humans

    NASA Technical Reports Server (NTRS)

    Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)

    1999-01-01

    The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.

  20. Mitochondria as Sub-cellular Targets of Space Radiation

    NASA Astrophysics Data System (ADS)

    Hei, Tom; Zhang, Bo; Davidson, Mercy

    High linear energy transfer (LET) radiation including alpha particles and heavy ions is the major type of radiation find in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation, to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. Mitochondria are the sole energy center of a cell and normal mitochondria are highly dynamic organelles that move along microtubules or microfilaments and continuously fuse and divide in healthy cells. A balance between mitochondrial fusion and fission is essential to maintain normal mitochondrial function. Targeted cytoplasmic irradiation by high LET alpha particles induced DNA oxidative damage and double strand breaks in wild type rho+ human small airway epithelial (SAE) cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-kappaB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in rho+ SAE cells. In contrast, SAE cells with depleted mitochondrial DNA (rho0) and, therefore, no oxidative metabolic functions, exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET alpha particles. The results indicate that normal mitochondrial function is essential in mediating radiation induced genotoxic damages in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation protection.

  1. Development of a Space Radiation Monte Carlo Computer Simulation

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence S.

    1997-01-01

    The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.

  2. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan; Trevino, Luis; Paul, Heather

    2005-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to thus become the single largest expendable during an eight hour EVA. We can significantly reduce the amount of expendable water consumed in the sublimator by using a radiator to reject heat from the Astronaut during an EVA. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 260 W (900 Btu/h) of heat were rejected in Lunar and Mars environments with temperatures as cold as -170 C (- 275 F). Further, the RAFT-X endured several freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit.

  3. Review of advanced radiator technologies for spacecraft power systems and space thermal control

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Peterson, George P.

    1994-01-01

    A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.

  4. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  5. Modeling Natural Space Ionizing Radiation Effects on External Materials

    NASA Technical Reports Server (NTRS)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  6. Basic mechanisms of radiation effects in the natural space radiation environment

    SciTech Connect

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  7. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  8. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  9. Effect of Deep Space Radiation on Human Hematopoietic Cells

    NASA Astrophysics Data System (ADS)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  10. Of Status and Suits: Personal Space Invasions in an Administrative Setting.

    ERIC Educational Resources Information Center

    Rosenfeld, Paul; And Others

    1987-01-01

    Examined whether status would affect avoidance of personal space invasions. Drinking behavior of male passersby at water fountain in administration building was recorded while either low status, high status, or no confederate stood near fountain. Results showed a significantly lower rate of drinking when high status confederate stood nearby than…

  11. The simulated space proton environment for radiation effects on Space Telescope Imaging Spectrograph (STIS)

    NASA Technical Reports Server (NTRS)

    Becher, Jacob; Fowler, Walter

    1992-01-01

    The space telescope imaging spectrograph (STIS) is a second generation instrument planned for the Hubble Space Telescope (HST) which is currently in orbit. Candidate glasses and other transmitting materials are being considered for order sorters, in-flight calibration filters, detector windows, and calibration lamps. The glasses for in-flight calibration filters showed significant drop in UV transmission, but can probably still be used on STIS. The addressed topics include the Hubble radiation environment, simulation of orbital exposure at Harvard Cyclotron Laboratory, measurement of spectral transmission, and comments on individual samples.

  12. Heliophysics: Space Storms and Radiation: Causes and Effects

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  13. Heliophysics: Space Storms and Radiation: Causes and Effects

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-05-01

    Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliunas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  14. Effects of space radiation on thin polymers and nonmetallics

    NASA Technical Reports Server (NTRS)

    Fogdall, L. B.; Cannaday, S. S.; Slemp, W. S.

    1977-01-01

    Advanced materials for various spacecraft systems in the 1980s and 1990s have been evaluated in situ after exposure to space radiation. Emphasis has been placed on materials having little or no previous base of environmental effects data. Applications ranging from earth orbit to near-sun have been covered. High temperature polymers and composites have been included. Silica composites may offer improved reflectance stability compared with metallized fluorocarbons. Directional reflectance properties of FEP are a function of charged particle energy and flux as well as total exposure fluence and material characteristics. Data obtained on polyimides and polyxylylenes under high temperature radiation exposure conditions will be discussed in the context of near-sun solar sailing and rendezvousing.

  15. Plans for a new ground based space radiation research facility in the USA

    SciTech Connect

    Thieberger, P. ||

    1993-12-31

    The availability of energetic heavy ion beams at particle accelerator laboratories is essential to simulate components of the space radiation environment. Such ion beams are needed for radiobiological research, to assess radiation shielding requirements for space missions, to calculate spacecraft radiation detectors, and to study space radiation effects on electronic devices and systems. Such ground-based studies are complementary to obviously more realistic, but also much more difficult and more expensive space-based research. The purity of the accelerator beam and their monoenergetic and unidirectional nature are indispensible to gain a detailed understanding of the effecst caused by the complex radiation fields encountered in space.

  16. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  17. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as 150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze/thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  18. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Trevino, Luis; Stephan, Ryan; Paul, Heather

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as -150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  19. Space radiation-induced effects in polymer photodetectors

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Le, Dang T.; Durstock, Michael F.; Taylor, Barney E.; Claus, Richard O.; Zeng, Tingying; Morath, Christian P.; Cardimona, David A.

    2002-09-01

    Self-assembled polymer photo-detectors (PPDs) composed of ruthenium complex N3 and PPDs based on thin films of poly(p-phenylene vinlyene) with sulfonated polystyrene are examined for their ability to function in a simulated space radiation environment. Examination of the PPD pre- and post- response data following gamma-ray irradiation ranging in total dose from 10 krad(Si) to 100 krad(Si) are examined. The output photovoltage was observed to decrease for all irradiated devices. The brief study was performed at room temperature and a discussion of the preliminary data and results are presented.

  20. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  1. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    PubMed

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  2. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  3. Effects of target fragmentation on evaluation of LET spectra from space radiations: implications for space radiation protection studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.

    1996-01-01

    We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.

  4. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples. PMID:15644352

  5. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  6. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  7. The Role of Space Experiments in the Radiation Qualification of Electronic and Photonic Devices and Systems

    NASA Technical Reports Server (NTRS)

    Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.

    2005-01-01

    Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.

  8. Materials for Shielding Astronauts from the Hazards of Space Radiations

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    1997-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.

  9. Space Radiation Risks for Astronauts on Multiple International Space Station Missions

    PubMed Central

    Cucinotta, Francis A.

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

  10. Space Research Data Management in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Ludwig, G. H.

    1986-01-01

    Space related scientific research has passed through a natural evolutionary process. The task of extracting the meaningful information from the raw data is highly involved and will require data processing capabilities that do not exist today. The results are presented of a three year examination of this subject, using an earlier report as a starting point. The general conclusion is that there are areas in which NASA's data management practices can be improved and recommends specific actions. These actions will enhance NASA's ability to extract more of the potential data and to capitalize on future opportunities.

  11. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  12. A New Active Space Radiation Instruments for the International Space Station, A-DREAMS

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo

    For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.

  13. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  14. Radiation dose and shielding for the space station

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.

    1988-01-01

    Significant differences in dose prediction for Space Station arise depending on whether or not the magnetic field model is extrapolated into the future. The basis for these calculations is examined in detail, and the importance of the residual atmospheric layer at altitudes below 1000 km, with respect to radiation attenuation, is emphasized. Dosimetry results from Shuttle flights are presented and compared with the computed results. It is recommended that, at this stage, no extrapolation of the magnetic field into the future be included in the calculations. A model adjustment, to replace this arbitrary procedure, is presented. Dose predictions indicate that, at altitudes below 500 km and at low inclination, and with nominal module wall thickness (0.125 in. aluminum), orbit stay times of 90 days in Space Station would result in quarterly radiation doses to the crew, which are well within present limits for both males and females. Countermeasures would be required for stay times of a year or more and the measure of increasing shielding is examined.

  15. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  16. Human Research Program Space Radiation Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  17. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  18. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  19. Fetal radiation dose estimates for I-131 sodium iodide in cases where conception occurs after administration

    SciTech Connect

    Sparks, R.B.; Stabin, M.G.

    1999-01-01

    After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossover could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.

  20. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. A space radiation shielding model of the Martian radiation environment experiment (MARIE).

    PubMed

    Atwell, W; Saganti, P; Cucinotta, F A; Zeitlin, C J

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. PMID:15791735

  2. Shuttle radiation dose measurements in the International Space Station orbits.

    PubMed

    Badhwar, Gautam D

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions. PMID:11754644

  3. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  4. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu

    1993-01-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  5. Fall 2015 NASA Internship, and Space Radiation Health Project

    NASA Technical Reports Server (NTRS)

    Patience, Luke

    2015-01-01

    This fall, I was fortunate enough to have been able to participate in an internship at NASA's Lyndon B. Johnson Space Center. I was placed into the Human Health & Performance Directorate, where I was specifically tasked to work with Dr. Zarana Patel, researching the impacts of cosmic level radiation on human cells. Using different laboratory techniques, we were able to examine the cells to see if any damage had been done due to radiation exposure, and if so, how much damage was done. Cell culture samples were exposed at different doses, and fixed at different time points so that we could accumulate a large pool of quantifiable data. After examining quantifiable results relative to the impacts of space radiation on the human body at the cellular and chromosomal level, researchers can defer to different areas of the space program that have to do with astronaut safety, and research and development (extravehicular mobility unit construction, vehicle design and construction, etc.). This experience has been very eye-opening, and I was able to learn quite a bit. I learned some new laboratory techniques, and I did my best to try and learn new ways to balance such a hectic work and school schedule. I also learned some very intimate thing about working at NASA; I learned that far more people want to watch you succeed, rather than watch you fail, and I also learned that this is a place that is alive with innovators and explorers - people who have a sole purpose of exploring space for the betterment of humanity, and not for any other reason. It's truly inspiring. All of these experiences during my internship have impacted me in a really profound way, so much that my educational and career goals are completely different than when I started. I started out as a biotechnology major, and I discovered recently toward the end of the internship, that I don't want to work in a lab, nor was I as enthralled by biological life sciences as a believed myself to be. Taking that all into

  6. Radiation effects in space: The Clementine I mission

    SciTech Connect

    Guzik, T. G.; Clayton, E.; Wefel, J. P.

    1994-12-20

    The space radiation environment for the CLEMENTINE I mission was investigated using a new calculational model, CHIME, which includes the effects of galactic cosmic rays (GCR), anomalous component (AC) species and solar energetic particle (SEP) events and their variations as a function of time. Unlike most previous radiation environment models, CHIME is based upon physical theory and is {open_quotes}calibrated{close_quotes} with energetic particle measurements made over the last two decades. Thus, CHIME provides an advance in the accuracy of estimating the interplanetary radiation environment. Using this model we have calculated particle energy spectra, fluences and linear energy transfer (LET) spectra for all three major components of the CLEMENTINE I mission during 1994: (1) the spacecraft in lunar orbit, (2) the spacecraft during asteroid flyby, and (3) the interstate adapter USA in Earth orbit. Our investigations indicate that during 1994 the level of solar modulation, which dominates the variation in the GCR and AC flux as a function of time, will be decreasing toward solar minimum levels. Consequently the GCR and AC flux will be increasing during Y, the year and, potentially, will rise to levels seen during previous solar minimums. The estimated radiation environment also indicates that the AC will dominate the energetic particle spectra for energies below 30-50 MeV/nucleon, while the GCR have a peak flux at {approximately}300 MeV/nucleon and maintain a relatively high flux level up to >1000 MeV/nucleon. The AC significantly enhances the integrated flux for LET in the range 1 to 10 MeV/(mg/cm{sup 2}), but due to the steep energy spectra of the AC a relatively small amount of material ({approximately}50 mils of Al) can effectively shield against this component. The GCR are seen to be highly penetrating and require massive amounts of shielding before there is any appreciable decrease in the LET flux.

  7. Radiation-Hardened Software for Space Flight Science Applications

    NASA Astrophysics Data System (ADS)

    Mehlitz, P. C.; Penix, J. J.; Markosian, L. Z.

    2005-12-01

    Hardware faults caused by radiation-induced Single Event Effects (SEEs) are a serious issue in space flight, especially affecting scientific missions in earth orbits crossing the poles or the South Atlantic Anomaly. Traditionally, SEEs are treated as a hardware problem, for example mitigated by radiation-hardened processors and shielding. Rad-hardened processors are expensive, exhibit a decade performance gap compared to COTS technology, have a larger form factor and require more power. Shielding is ineffective for high energy particles and increases launch weight. Hardware approaches cannot dynamically adapt protection levels for different radiation scenarios depending on solar activity and flight phase. Future hardware will exacerbate the problem due to higher chip densities and lower power levels. An alternative approach is to use software to mitigate SEEs. This "Radiation Hardened Software" (RHS) approach has two components: (1) RHS library and application design guidelines To increase robustness, we combine SEE countermeasures in three areas: prevention and detection; recovery; and reconfiguration. Prevention and detection includes an application- and heap-aware memory scanner, and dynamically adapted software Error Correction Codes to handle cache and multi-bit errors. Recovery mechanisms include exception firewalls and transaction-based software design patterns, to minimize data loss. Reconfiguration includes a heap manager to avoid damaged memory areas. (2) Software-based SEE Simulation Probabilistic effects require extensive simulation, with test environments that do not require original flight hardware and can simulate various SEE profiles. We use processor emulation software, interfaced to a debugger, to analyze SEE propagation and optimize RHS mechanisms. The simulator runs unmodified binary flight code, enables injecting randomized transient and permanent memory errors, providing execution traces and precise failure reproduction. The goal of RHS is to

  8. Radiation-Tolerant, SpaceWire-Compatible Switching Fabric

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2011-01-01

    Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.

  9. Development of the 3DHZETRN code for space radiation protection

    NASA Astrophysics Data System (ADS)

    Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert

    Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.

  10. Time-dependent radiation hazard estimations during space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander

    Cosmic particle radiation is a limiting factor for the out of magnetosphere crewed flights. The cosmic radiation uncrewed flights inside heliosphere and crewed flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot time flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long term crewed missions set much higher requirements to the radiation shielding, primarily because of long exposition term. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and coronal mass ejections (CME). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. CME are shot term events, comparing to GCR modulation time, but are much more energetic. The probability of CME increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and affection of CME and GCR would be minimized. Applying time dependent models of GCR spectra [1] and estimations of CME we show the time dependence of the radiation dose in a realistic human phantom [2] inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and

  11. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  12. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  13. Detection of DNA Damage by Space Radiation in Human Fibroblast Cells Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Wong, Michael; Beno, Jonathan; Countryman, Stefanie; Stodieck, Louis; Karouia, Fathi; Zhang, Ye

    2015-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the early discovery of the Van Allen Belt, reports on effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a small number of changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells fixed on Days 3 and 14 after reaching orbit were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used marker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground control. Human fibroblast cells were also exposed to low dose rate gamma rays, as well as to protons and Fe ions. Comparison of the pattern and distribution of the foci after gamma ray and charged particle exposure to our flight results confirmed that the foci found in the flown cells were indeed induced by space radiation.

  14. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical

  15. Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.

    2000-01-01

    As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.

  16. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    PubMed

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place. PMID:27575350

  17. Safe days in space with acceptable uncertainty from space radiation exposure.

    PubMed

    Cucinotta, Francis A; Alp, Murat; Rowedder, Blake; Kim, Myung-Hee Y

    2015-04-01

    The prediction of the risks of cancer and other late effects from space radiation exposure carries large uncertainties mostly due to the lack of information on the risks from high charge and energy (HZE) particles and other high linear energy transfer (LET) radiation. In our recent work new methods were used to consider NASA's requirement to protect against the acceptable risk of no more than 3% probability of cancer fatality estimated at the 95% confidence level. Because it is not possible that a zero-level of uncertainty could be achieved, we suggest that an acceptable uncertainty level should be defined in relationship to a probability distribution function (PDF) that only suffers from modest skewness with higher uncertainty allowed for a normal PDF. In this paper, we evaluate PDFs and the number or "safe days" in space, which are defined as the mission length where risk limits are not exceeded, for several mission scenarios at different acceptable levels of uncertainty. In addition, we briefly discuss several important issues in risk assessment including non-cancer effects, the distinct tumor spectra and lethality found in animal experiments for HZE particles compared to background or low LET radiation associated tumors, and the possibility of non-targeted effects (NTE) modifying low dose responses and increasing relative biological effectiveness (RBE) factors for tumor induction. Each of these issues skew uncertainty distributions to higher fatality probabilities with the potential to increase central values of risk estimates in the future. Therefore they will require significant research efforts to support space exploration within acceptable levels of risk and uncertainty. PMID:26177847

  18. Safe days in space with acceptable uncertainty from space radiation exposure

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Alp, Murat; Rowedder, Blake; Kim, Myung-Hee Y.

    2015-04-01

    The prediction of the risks of cancer and other late effects from space radiation exposure carries large uncertainties mostly due to the lack of information on the risks from high charge and energy (HZE) particles and other high linear energy transfer (LET) radiation. In our recent work new methods were used to consider NASA's requirement to protect against the acceptable risk of no more than 3% probability of cancer fatality estimated at the 95% confidence level. Because it is not possible that a zero-level of uncertainty could be achieved, we suggest that an acceptable uncertainty level should be defined in relationship to a probability distribution function (PDF) that only suffers from modest skewness with higher uncertainty allowed for a normal PDF. In this paper, we evaluate PDFs and the number or "safe days" in space, which are defined as the mission length where risk limits are not exceeded, for several mission scenarios at different acceptable levels of uncertainty. In addition, we briefly discuss several important issues in risk assessment including non-cancer effects, the distinct tumor spectra and lethality found in animal experiments for HZE particles compared to background or low LET radiation associated tumors, and the possibility of non-targeted effects (NTE) modifying low dose responses and increasing relative biological effectiveness (RBE) factors for tumor induction. Each of these issues skew uncertainty distributions to higher fatality probabilities with the potential to increase central values of risk estimates in the future. Therefore they will require significant research efforts to support space exploration within acceptable levels of risk and uncertainty.

  19. Radiation from plutonium 238 used in space applications

    NASA Technical Reports Server (NTRS)

    Keenan, T. K.; Vallee, R. E.; Powers, J. A.

    1972-01-01

    The principal mode of the nuclear decay of plutonium 238 is by alpha particle emission at a rate of 17 curies per gram. Gamma radiation also present in nuclear fuels arises primarily from the nuclear de-excitation of daughter nuclei as a result of the alpha decay of plutonium 238 and reactor-produced impurities. Plutonium 238 has a spontaneous fission half life of 4.8 x 10 to the 10th power years. Neutrons associated with this spontaneous fission are emitted at a rate of 28,000 neutrons per second per gram. Since the space fuel form of plutonium 238 is the oxide pressed into a cermet with molybdenum, a contribution to the neutron emission rate arises from (alpha, n) reactions with 0-17 and 0-18 which occur in natural oxygen.

  20. High thermal-transport capacity heat pipes for space radiators

    NASA Technical Reports Server (NTRS)

    Carlson, Albert W.; Gustafson, Eric; Roukis, Susan L.

    1987-01-01

    This paper presents the results of performance tests of several dual-slot heat pipe test articles. The dual-slot configuration has a very high thermal transport capability and has been identified as a very promising candidate for the radiator system for the NASA Space Station solar dynamic power modules. Two six-foot long aluminum heat pipes were built and tested with ammonia and acetone. A 20-ft long heat pipe was also built and tested with ammonia. The test results have been compared with performance predictions. A thermal transport capacity of 2000 W at an adverse tilt of 1 in. and a 1000 W capacity at an adverse tilt of 2 in. were achieved on the 20-ft long heat pipe. These values are in close agreement with the predicted performance limits.

  1. Proton radiation testing of digital micromirror devices for space applications

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth; Ninkov, Zoran; Fodness, Bryan C.; Robberto, Massimo; Heap, Sally; Kim, Alex G.

    2013-09-01

    Scientists are interested in using digital micromirror devices (DMD) as slit-masks in multiobject spectrometers on future space missions. A favored orbit is at the second Lagrangian point (L2). A requirement for mission planning is to determine how long such microelectrical mechanical systems devices would remain operational given the L2 radiation environment, which is primarily composed of solar protons and cosmic rays. To this end, we initiated DMD proton testing. Three DMDs were irradiated with high-energy protons (35 to 50 MeV) at the Lawrence Berkeley National Laboratory 88 in. Cyclotron. Assuming a typical spacecraft shielding of 100 mils of aluminum, our tests imply that DMDs remain fully operable in a five-year mission at L2 with a margin of safety of 4.5.

  2. Degradation of thermal shield materials in the space radiation environment

    NASA Astrophysics Data System (ADS)

    Shimoji, S.; Kimura, H.; Koitabashi, M.; Imamura, T.; Kasai, R.; Matsushita, M.

    1983-12-01

    Changes in temperature distribution data of Experimental Technology Satellite 4 after its 3 months mission term are discussed. Analysis of the data suggested that the thermal shields loose their function in the space radiation environment. The effect of energetic particles on the shield materials was investigated. Electron beams of 500 keV and proton beams of 900 keV were irradiated on silver-Teflon and aluminized Kapton films. The fluences were changed between 10 to the 14th and 10 to the 16th power sqcm. Temperature varied between -100 and 100C. Solar absorptance, infrared emittance, tensile strength and elongation rate were measured. Thermogravimetry, infrared spectroscopy and X-ray diffraction were performed. Electron fluxes have remarkable effects on the mechanical properties, proton fluxes on the thermophysical properties of silver-Teflon film. Kapton films do not change much.

  3. Nuclear fragmentation measurements for hadrontherapy and space radiation protection

    SciTech Connect

    De Napoli, M.; Agodi, C.; Blancato, A. A.; Cavallaro, M.; Cirrone, G. A. P.; Cuttone, G.; Sardina, D.; Scuderi, V.; Battistoni, G.; Bondi, M.; Cappuzzello, F.; Carbone, D.; Nicolosi, D.; Raciti, G.; Tropea, S.; Giacoppo, F.; Morone, M. C.; Pandola, L.; Rapisarda, E.; Romano, F.; and others

    2013-04-19

    Nuclear fragmentation measurements are necessary in hadrontherapy and space radiation protection, to predict the effects of the ion nuclear interactions within the human body. Nowadays, a very limited set of carbon fragmentation cross sections has been measured and in particular, to our knowledge, no double differential fragmentation cross sections at intermediate energies are available in literature. We have measured the double differential cross sections and the angular distributions of the secondary fragments produced in the {sup 12}C fragmentation at 62 AMeV on a thin carbon target. The experimental data have been also used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before.

  4. The emittance of space radiator materials measured at elevated temperatures

    SciTech Connect

    Mirtich, M.J.; DiFilippo, F.; Barry, J.; Kussmaul, M.

    1994-09-01

    The spectral emittances of textured space radiator materials between 1.7 and 14.7 {mu}m have been evaluated at room temperature and elevated temperature (630{degrees}C) in air. Heating in air caused a permanent increase in spectral emittance for all materials tested: HCl/ion beam textured 304 stainless steel, untextured Ti (6 percent Al, 4 percent V), and sandblasted Ti (6 percent Al, 4 percent V). Changes in the surface chemistry and/or surface morphology of these materials were also observed. Elevated temperature spectral emittance was measured in an argon atmosphere and compared to the measurements in air. Similarity between the room temperature and elevated temperature spectral emittance measurements was also investigated, and limited agreement was found.

  5. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  6. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  7. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  8. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  9. 40 CFR 23.8 - Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the...

  10. Methods of space radiation dose analysis with applications to manned space systems

    NASA Technical Reports Server (NTRS)

    Langley, R. W.; Billings, M. P.

    1972-01-01

    The full potential of state-of-the-art space radiation dose analysis for manned missions has not been exploited. Point doses have been overemphasized, and the critical dose to the bone marrow has been only crudely approximated, despite the existence of detailed man models and computer codes for dose integration in complex geometries. The method presented makes it practical to account for the geometrical detail of the astronaut as well as the vehicle. Discussed are the major assumptions involved and the concept of applying the results of detailed proton dose analysis to the real-time interpretation of on-board dosimetric measurements.

  11. Cellular changes in microgravity and the design of space radiation experiments

    NASA Astrophysics Data System (ADS)

    Morrison, D. R.

    1994-10-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effecrs are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  12. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  13. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  14. Cosmic-ray induced radiation in low-orbit space objects

    SciTech Connect

    Sandmeier, H.A.

    1980-09-01

    The induced radiation whole body dose received by astronauts in earth orbit is calculated. The induced radiation results from the interaction of primary cosmic rays with the mass of the satellite or space station. (ACR)

  15. Overcoming black body radiation limit in free space: metamaterial superemitter

    NASA Astrophysics Data System (ADS)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.

  16. Space Radiation Effects on Graphite-Epoxy Composite Materials

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.; Sykes, G. F., Jr.

    1984-01-01

    Radiation effects on engineering properties, dimensional stability, and chemistry on state of the art composite systems were characterized. T300/934 graphite-epoxy composite was subjected to 1.0 MeV electron radiation for a total dose of 1.0 x 10(10) rads at a rate of 5.0 x 10(7) rads/hour. This simulates a worst case exposure equivalent to 30 years in space. Mechanical testing was performed on he 4-ply unidirectional laminates over the temperature range of -250 F (116K) to +250 F (394K). A complete set of in-plane tensile elastic and strength properties were obtained (E sub 1, E sub 2, nu sub 12, G sub 12, X sub T, Y sub T, and S). In addition electron microscopy was used to study and analyze the fracture surfaces of all specimens tested. Results indicate that little difference in properties is noted at room temperature, but significant differences are observed at both low and elevated temperatures.

  17. Effects of ionization radiation on BICMOS components for space application

    NASA Astrophysics Data System (ADS)

    Rancoita, P. G.; Croitoru, N.; ‘Angelo, P. D.; de Marchi, M.; Favalli, A.; Seidman, A.; Colder, A.; Levalois, M.; Marie, P.; Fallica, G.; Leonardi, S.; Modica, R.

    2002-12-01

    In this paper experimental results on radiation effects on a BICMOS high-speed standard commercial technology, manufactured by ST-Microelectronics, are reported. Bipolar transistors were irradiated by neutrons, ions, or by both of them. Fast neutrons, as well as other types of particles, produce defects, mainly by displacing silicon atoms from their lattice positions to interstitial locations, i.e. generating vacancy-interstitial pairs, the so-called Frenkel pairs. Defects introduce trapping energy states which degrade the common emitter current gain . The gain degradation has bee investigated for collector current, Ic, between 1 μA and1 mA. It was found a linear dependence of Δ(1/β) = 1/β- 1/βi(where βi and β are the gain after and before tirradiation) as a function of the concentration of Frenkel pairs. The bipolar transistors made on this technology have shown to be particularly radiation resistant. For instance, npn small area transistors have a gain variation (-i)/, lower than 10% for doses of about 0.5 MRad and collector currents of 1 μA, well suited for low power consumption space application

  18. First intramuscular administration in the U.S. space program. [of motion sickness drugs

    NASA Technical Reports Server (NTRS)

    Bagian, James P.

    1991-01-01

    In the past, the only kind of medicines used for symptomatic treatment of space motion sickness (SMS) in space had been oral, transdermal, or suppositories. This paper describes the effect of the first intramuscular (IM) administration of Phenergan (50-mg in single dose) on SMS in one subject who exhibited grade-3 symptoms and signs which persisted unabated throughout the first and the second flight days aboard the Space Shuttle. Thirty minutes after the injection, the subject had completely recovered. His symptoms were gone, his appetite was back, and he had no recurrences for the remainder of the flight. Since that experiment, intramuscular injections have been given nine more times on subsequent flights, with similar results.

  19. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  20. The impact of WARC '79 on space applications and research. [World Administrative Radio Conference

    NASA Technical Reports Server (NTRS)

    Kiebler, J. W.

    1980-01-01

    Prior to the 1979 World Administrative Radio Conference (WARC), no frequency bands were allocated for remote sensing measurements. Actions taken by the WARC insure that frequencies will be available for such use, and that operations can be conducted without harmful interference on a worldwide basis for the benefit of all nations. New global allocations for Space Research will permit worldwide acquisition of research data via relay satellites. Wideband allocations for deep-space research will allow more accurate position determination of deep-space probes and transmission of higher resolution data. The WARC had an impact on a number of other applications and research areas such as: meteorological satellites, land-mobile satellites, search and rescue systems, solar power satellites, standard-frequency satellites, radio astronomy and the search for extraterrestrial intelligence. The actions taken at the WARC affecting these services and applications will be described in the paper.

  1. Radiation belt measurements strategy for space weather applications

    NASA Astrophysics Data System (ADS)

    Bourdarie, Sebastien; Maget, Vincent; Lazaro, Didier; Daglis, Yannis; Sandberg, Ingmar

    2015-04-01

    In the framework of the EU-FP7 MAARBLE project, the Salammbô code and an ensemble Kalman filter is being used to reproduce the electron radiation belt dynamics during storms. One of the most widely used and reliable methods of assessing a data assimilation scheme is that of the twin experiments. The identical-twin experiments consist in a numerical procedure where synthetic data can be generated by the model to which data assimilation is applied, subject to a specified stochastic forcing term. The data with assigned errors are then evaluated for their effectiveness in obtaining optimal state estimates. The convergence of the unassimilated model fields from the second run towards those of the first run ("true" state) can then be measured. This set up is used here to define what is the minimum data required and along which orbits to still ensure a good estimate of the true state. The number of data being assimilated (cadence as well as distinct orbits) will be considered as a parameter such as to check data assimilation tool performance in each case. This analysis will be very useful in the case of optimizing a space surveillance system for ionizing particles. MAARBLE has received fundings from the European Community's Seventh Framework Programme (FP7-SPACE-.2010-1, SP1 Cooperation, Collaborative project) under grant agreement n284520. This paper reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

  2. Personalized Cancer Risk Assessments for Space Radiation Exposures.

    PubMed

    Locke, Paul A; Weil, Michael M

    2016-01-01

    Individuals differ in their susceptibility to radiogenic cancers, and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure, and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here, we examine other risk factors that could potentially be included in risk calculations. These include personal and family medical history, the presence of pre-malignant cells that could undergo malignant transformation as a consequence of radiation exposure, the results from phenotypic assays of radiosensitivity, heritable genetic polymorphisms associated with radiosensitivity, and postflight monitoring. Inclusion of these additional risk or risk reduction factors has the potential to personalize risk estimates for individual astronauts and could influence the determination of safe days in space. We consider how this type of assessment could be used and explore how the provisions of the federal Genetic Information Non-discrimination Act could impact the collection, dissemination and use of this information by NASA. PMID:26942127

  3. Personalized Cancer Risk Assessments for Space Radiation Exposures

    PubMed Central

    Locke, Paul A.; Weil, Michael M.

    2016-01-01

    Individuals differ in their susceptibility to radiogenic cancers, and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure, and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here, we examine other risk factors that could potentially be included in risk calculations. These include personal and family medical history, the presence of pre-malignant cells that could undergo malignant transformation as a consequence of radiation exposure, the results from phenotypic assays of radiosensitivity, heritable genetic polymorphisms associated with radiosensitivity, and postflight monitoring. Inclusion of these additional risk or risk reduction factors has the potential to personalize risk estimates for individual astronauts and could influence the determination of safe days in space. We consider how this type of assessment could be used and explore how the provisions of the federal Genetic Information Non-discrimination Act could impact the collection, dissemination and use of this information by NASA. PMID:26942127

  4. GERMcode: A Stochastic Model for Space Radiation Risk Assessment

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2012-01-01

    A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and high charge and energy (HZE) particles that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of HZE particles in tissue and shielding materials is made with a stochastic approach that includes both particle track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. For NSRL applications, the GERMcode evaluates a set of biophysical properties, such as the Poisson distribution of particles or delta-ray hits for a given cellular area and particle dose, the radial dose on tissue, and the frequency distribution of energy deposition in a DNA volume. By utilizing the ProE/Fishbowl ray-tracing analysis, the GERMcode will be used as a bi-directional radiation transport model for future spacecraft shielding analysis in support of Mars mission risk assessments. Recent radiobiological experiments suggest the need for new approaches to risk assessment that include time-dependent biological events due to the signaling times for activation and relaxation of biological processes in cells and tissue. Thus, the tracking of the temporal and spatial distribution of events in tissue is a major goal of the GERMcode in support of the simulation of biological processes important in GCR risk assessments. In order to validate our approach, basic radiobiological responses such as cell survival curves, mutation, chromosomal

  5. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  6. IEEE Nuclear and Space Radiation Effects Conference: Notes on the Early Conferences

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Galloway, Kenneth F.

    2013-01-01

    This paper gathers the remembrances of several key contributors who participated in the earliest Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conferences (NSREC).

  7. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  8. Is the Adaptive Response an Efficient Protection Against the Detrimental Effects of Space Radiation

    NASA Astrophysics Data System (ADS)

    Mortazavi, S. M. Javad; Cameron, J. R.; Niroomand-rad, A.

    2003-07-01

    exposure to high-energy neutrons, protons and HZE particles during a deep space mission, needs an efficient protection against the detrimental effects of space radiation. Recent findings concerning the induction of adaptive response by neutrons and high cumulative doses of gamma radiation in human cells have opened a new horizon for possible implications of adaptive response in radiation protection and esp ecially in protection against detrimental effects of high levels of radiation during a long-term space journey. We demonstrated significant adaptive response in humans after exposure to high levels of natural radiation. Individuals whose cumulative radiation doses were up to 950 mSv, showed a significant adaptive response after exposure to 1.5 Gy gamma radiation. These doses are much lower than those received by astronauts during a sixmonth space mission. Screening the adaptive response of candidates for long-term space missions will help scientists identify individuals who not only show low radiation susceptibility but also demonstrate a high magnitude of radioadaptive response. In selected individuals, chronic exposure to elevated levels of space radiation during a long-term mission can considerably decrease their radiation susceptibility and protect them against the unpredictable exposure to relatively high radiation levels due to solar activity. Keywords: Space radiation, adaptive response, chromosome aberrations. Introduction In recent decades, humans successfully experienced relatively long time space missions. No doubt, in the near future deep space journeys as long as a few years will be inevitable. Despite current advances, there are still some great problems that limit the duration of such long-term space missions. Radiation risk due to exposure to high levels of cosmic rays and the effects of microgravity are clearly the most important problems that need to be solved before a long-term

  9. National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.

  10. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2007-01-01

    In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining

  11. Evaluation of the effects of solar radiation on glass. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Harada, Y.

    1979-01-01

    The degradation of glass used on space structures due to electromagnetic and particulate radiation in a space environment was evaluated. The space environment was defined and a simulated space exposure apparatus was constructed. Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance, while optical crown glass and ultra low expansion glass darkened appreciably. Specimen selection and preparation, exposure conditions, and the effect of simulated exposure are discussed. A selective bibliography of the effect of radiation on glass is included.

  12. What Reliability Engineers Should Know about Space Radiation Effects

    NASA Technical Reports Server (NTRS)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  13. The effect of space radiation of the nervous system

    NASA Astrophysics Data System (ADS)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  14. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  15. Impact of the 1985 Space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  16. Impact of the 1985 space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts: (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  17. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  18. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  19. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  20. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  1. Intellectual Property Rights at the National Aeronautics and Space Administration, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Williams, Vernon E.

    1994-01-01

    At a fundamental level, intellectual property is the core work product of a technical organization. The National Aeronautics and Space Administration (NASA), produces a variety of intellectual property including: patents, trademarks, data rights, copyright and rights associated with National Security. For a scientific organization to properly manage its work product it has to manage its intellectual property. This paper endeavors to describe how the intellectual property rights are generated and allocated at NASA. The author then goes on to discuss how the intellectual property might be managed to meet the objectives of program implementation, technology transfer and security.

  2. Detection of DNA Damage by Space Radiation in Human Fibroblast Cells Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Zhang, Ye

    2016-01-01

    Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370 C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.

  3. Detection of DNA damage by space radiation in human fibroblast cells flown on the International Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Feiveson, Alan; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao; Wong, Michael

    2016-07-01

    Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional γg-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.

  4. Education and public outreach initiatives from the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Daou, Doris

    2011-06-01

    From the dawn of consciousness, humans have looked up and wondered about what the universe holds. It is that sense of wonder and thirst for knowledge that astronomy has helped fuel. In this paper we look at how education and public outreach has been a major element in preparing the next generation of astronomers and in sharing with the public the excitement of discoveries we make when we explore the Universe. The National Aeronautics and Space Administration (NASA) has a clear set of goals and objectives related to education and public outreach. These goals follow directly from NASA's mission ``to inspire the next generation of explorers''. Making progress towards achieving these goals has become an important part of the broad justification for public support of space science. Here we will describe a number of education and public outreach initiatives that are examples of the plethora of NASA funded programs and resources.

  5. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  6. An Improved Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.

    2000-01-01

    A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.

  7. Application of Interval Predictor Models to Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy,Daniel P.; Norman, Ryan B.; Blattnig, Steve R.

    2016-01-01

    This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.

  8. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  9. Radiation Protection Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  10. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  11. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  12. [Estimation of the radiation risk of determined effects of human exposure in space].

    PubMed

    Petrov, V M; Vasina, Iu I; Vlasov, A G; Shurshakov, V A

    2001-01-01

    Subject of the paper is possibility to estimate radiation risk of determined consequences of exposure to solar space rays as a probability of violation of established dose limits. Analysis of specifies of spacecrew exposure to solar space rays in a long-term, particularly interplanetary mission suggests that immediate introduction of the principle in the radiation health policy can result in serious errors, mainly exaggeration, in determination of radiation risk. Proposed are approaches to radiation risk estimation with consideration of the specific of human exposure in space. PMID:11915752

  13. Operational radiation monitoring in near-Earth space based on the system of multiple small satellites

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Brilkov, I. A.; Vlasova, N. A.; Kalegaev, V. V.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2015-11-01

    The operational monitoring of radiation conditions in different orbits in near-Earth space is crucial for ensuring the radiation safety of space flights. The intensity of ionizing radiation fluxes in near-Earth space varies within several orders of magnitude. Therefore, existing averaged empirical models cannot always be used to estimate specific radiation conditions in orbits. The forecast of solar cosmic rays is even less reliable. This paper presents a version of the global system of radiation monitoring in near-Earth space based on the system of multiple small satellites. The considered system of satellites with identical radiometric equipment will provide operational information on the fluxes of electrons and protons of Earth radiation belts and solar cosmic rays, which will make it possible to create 3D pictures of the distribution of particle fluxes in real time.

  14. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    SciTech Connect

    Buckner, Mark A; Hanson, Gregory R; Bryan, William L

    2009-04-28

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  15. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  16. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr.; Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  17. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  18. [The model of radiation shielding of the service module of the International space station].

    PubMed

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model. PMID:11915750

  19. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction

    SciTech Connect

    Andratschke, Nicolaus; Schnaitera, Andrea; Weber, Wolfgang A.; Caia, Lu; Schill, Sabine; Wiedenmann, Nicole; Schwaiger, Markus; Molls, Michael; Nieder, Carsten . E-mail: cnied@hotmail.com

    2006-04-01

    Purpose: To test whether the clinically available growth factor erythropoietin (EPO) influences radiation-induced normal-tissue damage in a model of kidney dysfunction. Methods: Animal experiments were conducted to test the role of EPO administration in a C3H mouse model of unilateral kidney irradiation with 6, 8, and 10 Gy and to assess the effects of 2 different dose levels of EPO. The kidney function was assessed before radiotherapy, as well as 19, 25, 31, and 37 weeks thereafter by means of {sup 99m}Tc-dimercaptosuccinat scans (static scintigraphy). Results: Concomitant EPO administration significantly increased the degree of radiation-induced kidney dysfunction. A dose of 2,000 IU/kg body weight per injection tended to cause more damage than the lower dose of 500 IU/kg. Conclusion: Administration of growth factors concomitant to radiotherapy might modify the development of kidney dysfunction. Although insulin-like growth factor-1 has previously been shown to protect the kidney, such an effect could not be demonstrated for EPO. The latter agent even increased the development of nephropathy.

  20. Second-order discretization in space and time for radiation hydrodynamics

    SciTech Connect

    Edwards, J. D.; Morel, J. E.; Lowrie, R. B.

    2013-07-01

    We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)