Science.gov

Sample records for administrative region sar

  1. Basic Law of the Hong Kong Special Administrative Region (SAR) of China [4 April 1990].

    PubMed

    1990-04-01

    On December 19, 1984, the Chinese and British Governments signed the joint declaration allowing the Peoples' Republic of China to resume sovereignty over Hong Kong effective July 1, 1997. To assure the prosperity and stability of Hong Kong, China will establish a Hong Kong Special Administrative Region allowing the socialist system and the policies practiced in Hong Kong to co-exist under the principle of "one country, two systems" as elaborated by the Chinese Government in the Sino-British joint declaration. Under the laws of China, the following Basic Law of the Hong Kong Special Administrative Region of the People's Republic of China is enacted, prescribing the systems to be practiced in the Hong Kong Special Administrative Region, necessary in order to assure implementation of the policies of China toward Hong Kong. The law covers: 1) General Principles, allowing the previous capitalist system to remain unchanged for 50 years, etc. 2) It establishes the relationship between the Central Authorities and the Hong Kong Special Administrative Region; e.g., China will defend Hong Kong, Hong Kong will possess independent judicial power. Chapter 3 defines the fundamental rights and duties of Hong Kong residents, and defines in chapter 4) the political structure that includes the Chief Executive, the Executive Authorities, the Legislature, the Judiciary, the District Organizations, and Public Servants. Chapter 5 contains information about the economy, public finance, monetary affairs, trade, industry, commerce, land leases, shipping, and civil aviation. Chapter 6 deals with education, science, culture, sports, religion, and labor and social services. Chapter 7 defines the responsibilities for external affairs. Chapter 8 specifies the interpretation and amendment of the Basic Law, ending with chapter 9 Supplementary Provisions, selection of the Chief Executive, formation of the Legislative Council, voting procedures, and the national laws to be applied in the Hong Kong

  2. Use of SAR in Regional Methane Exchange Studies

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.; Durden, S. L.

    1994-01-01

    Significant sources of uncertainty in global trace gas budgets are due to lack of knowledge concerning the areal and temporal extent of source and sink areas. Synthetic aperture radar (SAR) is particularly suited to studies of northern ecosystems because of its all-weather operating capability which enables the acquisition of seasonal data. As key controls on methane exchange, the ability to differentiate major vegetation communities, inundation, and leaf area index (LAI) with satellite and airborne SAR data would increase the accuracy and precision of regional and seasonal estimates of methane exchange. The utility of SAR data for monitoring key controls on methane emissions from Arctic and boreal ecosystems is examined.

  3. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    SciTech Connect

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  4. Geological Interpretation of PSInSAR Data at Regional Scale

    PubMed Central

    Meisina, Claudia; Zucca, Francesco; Notti, Davide; Colombo, Alessio; Cucchi, Anselmo; Savio, Giuliano; Giannico, Chiara; Bianchi, Marco

    2008-01-01

    Results of a PSInSAR™ project carried out by the Regional Agency for Environmental Protection (ARPA) in Piemonte Region (Northern Italy) are presented and discussed. A methodology is proposed for the interpretation of the PSInSAR™ data at the regional scale, easy to use by the public administrations and by civil protection authorities. Potential and limitations of the PSInSAR™ technique for ground movement detection on a regional scale and monitoring are then estimated in relationship with different geological processes and various geological environments.

  5. Application of SAR Remote Sensing in Land Surface Processes Over Tropical region

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1996-01-01

    This paper outlines the potential applications of polarimetric SAR systems over tropical regions such as mapping land use and deforestation, forest regeneration, wetland and inundation studies, and mapping land cover types for biodiversity and habitat conservation studies.

  6. InSAR and GPS time series analysis: Crustal deformation in the Yucca Mountain, Nevada region

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hammond, W. C.; Blewitt, G.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Several previous studies have successfully demonstrated that long time series (e.g. >5 years) of GPS measurements can be employed to detect tectonic signals with a vertical rate greater than 0.3 mm/yr (e.g. Hill and Blewitt, 2006; Bennett et al. 2009). However, GPS stations are often sparse, with spacing from a few kilometres to a few hundred kilometres. Interferometric SAR (InSAR) can complement GPS by providing high horizontal spatial resolution (e.g. meters to tens-of metres) over large regions (e.g. 100 km × 100 km). A major source of error for repeat-pass InSAR is the phase delay in radio signal propagation through the atmosphere. The portion of this attributable to tropospheric water vapour causes errors as large as 10-20 cm in deformation retrievals. InSAR Time Series analysis with Atmospheric Estimation Models (InSAR TS + AEM), developed at the University of Glasgow, is a robust time series analysis approach, which mainly uses interferograms with small geometric baselines to minimise the effects of decorrelation and inaccuracies in topographic data. In addition, InSAR TS + AEM can be used to separate deformation signals from atmospheric water vapour effects in order to map surface deformation as it evolves in time. The principal purposes of this study are to assess: (1) how consistent InSAR-derived deformation time series are with GPS; and (2) how precise InSAR-derived atmospheric path delays can be. The Yucca Mountain, Nevada region is chosen as the study site because of its excellent GPS network and extensive radar archives (>10 years of dense and high-quality GPS stations, and >17 years of ERS and ENVISAT radar acquisitions), and because of its arid environment. The latter results in coherence that is generally high, even for long periods that span the existing C-band radar archives of ERS and ENVISAT. Preliminary results show that our InSAR LOS deformation map agrees with GPS measurements to within 0.35 mm/yr RMS misfit at the stations which is the

  7. Monitoring and analyzing surface subsidence based on SBAS-InSAR in Beijing region, China

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Guo, J. M.; Li, X.

    2015-12-01

    Surface subsidence is the main regional environmental geological disaster in plain area in China. The rapid growth of population, the over-exploitation of groundwater and the rapid development of urbanization impacts the occurrence and development of surface subsidence to some extent. The city of Beijing, located in the Beijing Plain, is one of international metropolis in China that experiences the severe surface subsidence. Because of conventional measurement methods with low spatial resolution, differential interferometric synthetic aperture radar(D-InSAR) is susceptible to signal decorrelation and atmospheric delay, persistent scatterer interferometric synthetic aperture radar(PS-InSAR) is based on a large number of SAR images, but small baseline subset interferometric synthetic aperture radar (SBASInSAR) only needs a small number of images and performs better than PS-InSAR for obtaining nonlinear deformation information, in this paper, SBAS-InSAR was used to obtain the high resolution surface subsidence information in Beijing region, China. A spatial-temporal analysis of the surface subsidence in Beijing region during the years of 2007- 2010 was performed utilizing eighteen C-band ENVISAT ASAR images (from August 1, 2007 to September 29, 2010). The results show that subsidence in Beijing region is severe uneven, subsidence funnels appear in Changping District, Shunyi District, Tongzhou District, Daxing District, etc., and many subsidence funnels are interconnected and have an eastward expansion trend; during the period of 2007 to 2010, the subsidence velocities are in the range of -158.5 mm/year to 12.4 mm/year and the maximum subsidence of subsidence center is over 400 mm; surface subsidence is influenced by groundwater exploitation and urbanization significantly.

  8. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity

    SciTech Connect

    Lu Yanning; Neo, T.L.; Liu, D.Xi.; Tam, James P.

    2008-07-04

    SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.

  9. A method for the quantitative evaluation of SAR distribution in deep regional hyperthermia.

    PubMed

    Baroni, C; Giri, M G; Meliadó, G; Maluta, S; Chierego, G

    2001-01-01

    The Specific Absorption Rate (SAR) distribution pattern visualization by a matrix of E-field light-emitting sensors has demonstrated to be a useful tool to evaluate the characteristics of the applicators used in deep regional hyperthermia and to perform a quality assurance programme. A method to quantify the SAR from photographs of the sensor array--the so-called 'Power Stepping Technique'--has already been proposed. This paper presents a new approach to the quantitative determination of the SAR profiles in a liquid phantom exposed to electromagnetic fields from the Sigma-60 applicator (BSD-2000 system for deep regional hyperthermia). The method is based on the construction of a 'calibration curve' modelling the light-output of an E-field sensor as a function of the supplied voltage and on the use of a reference light source to 'normalize' the light-output readings from the photos of the sensor array, in order to minimize the errors introduced by the non-uniformity of the photographic process. Once the calibration curve is obtained, it is possible, with only one photo, to obtain the quantitative SAR distribution in the operating conditions. For this reason, this method is suitable for equipment characterization and also for the control of the repeatability of power deposition in time. PMID:11587076

  10. Offshore Wind Mapping Mediterranean area using SAR. A case study of retrieval around peninsular regions.

    NASA Astrophysics Data System (ADS)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete; Sempreviva, Anna Maria

    2013-04-01

    Satellite observations like Scatterometers e.g. QuickScat, and Synthetic Aperture Radars (SAR) of the ocean surface provide information about the spatial wind variability over large areas. This is very valuable, for mapping offshore wind resources for offshore wind farm installation, where the most suitable locations within a given region must be identified using at least 5 year wind data over the whole domain. This is a special issue in the Mediterranean, where spatial information is not readily available because buoys or masts are sparse, with long periods of missing data, and measurements represent only one point. Here, we focus on the SAR images that have the advantage of high spatial resolution (down to 100m) allowing to derive information close to the coast but with the disadvantage of low time resolution causing lack of information on regimes with low time scale. We retrieved SAR (ENVISAT ASAR scenes acquired in Wide Swath Mode-WSM-) wind speed in the Mediterranean from March 2002 to April 2012 using the Johns Hopkins University, Applied Physics Laboratory (JHU/APL) software APL/NOAA SAR Wind Retrieval System (ANSWRS version 2.0) (Monaldo 2000; Monaldo et al. 2006). The ANSWRS software produces per default wind speed fields initialized using wind directions determined by the Navy Operational Global Atmospheric Prediction System (NOGAPS) models interpolated in time and space to match the satellite data. NOGAPS data are available at 6-hour intervals mapped to a 1° latitude/longitude grid. Here, we present a case study in Calabria, a long, narrow and mountainous peninsula in South Italy that causes a significant wind conditions variability from one coast to the other. We considered a 10m mast, measuring hourly wind speed and direction located at the coastline at the harbor of the town Crotone, belonging to the marine network of sensors of ISPRA (Institute for Environmental Protection and Research). Three points of the SAR images were chosen at offshore

  11. Fast SAR Image Change Detection Using Bayesian Approach Based Difference Image and Modified Statistical Region Merging

    PubMed Central

    Ni, Weiping; Yan, Weidong; Bian, Hui; Wu, Junzheng

    2014-01-01

    A novel fast SAR image change detection method is presented in this paper. Based on a Bayesian approach, the prior information that speckles follow the Nakagami distribution is incorporated into the difference image (DI) generation process. The new DI performs much better than the familiar log ratio (LR) DI as well as the cumulant based Kullback-Leibler divergence (CKLD) DI. The statistical region merging (SRM) approach is first introduced to change detection context. A new clustering procedure with the region variance as the statistical inference variable is exhibited to tailor SAR image change detection purposes, with only two classes in the final map, the unchanged and changed classes. The most prominent advantages of the proposed modified SRM (MSRM) method are the ability to cope with noise corruption and the quick implementation. Experimental results show that the proposed method is superior in both the change detection accuracy and the operation efficiency. PMID:25258740

  12. Healthy life expectancy in Hong Kong Special Administrative Region of China.

    PubMed Central

    Law, C. K.; Yip, P. S. F.

    2003-01-01

    Sullivan's method and a regression model were used to calculate healthy life expectancy (HALE) for men and women in Hong Kong Special Administrative Region (Hong Kong SAR) of China. These methods need estimates of the prevalence and information on disability distributions of 109 diseases and HALE for 191 countries by age, sex and region of the world from the WHO's health assessment of 2000. The population of Hong Kong SAR has one of the highest healthy life expectancies in the world. Sullivan's method gives higher estimates than the classic linear regression method. Although Sullivan's method accurately calculates the influence of disease prevalence within small areas and regions, the regression method can approximate HALE for all economies for which information on life expectancy is available. This paper identifies some problems of the two methods and discusses the accuracy of estimates of HALE that rely on data from the WHO assessment. PMID:12640475

  13. The deformation of ice-debris landforms in the Khumbu Region from InSAR

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Barker, A. D.; Hallet, B.

    2014-12-01

    We present new interferometric synthetic aperture radar (InSAR) results for the Khumbu region, Nepal, using PALSAR data from the ALOS1 satellite. Glaciers and ice-debris landforms represent a critical water resource to communities in the Himalayas and other relatively arid alpine environments. Changes in climate have impacted this resource as the volume of ice decreases. The monitoring of rock glaciers and debris covered glaciers is critical to the assessment of these natural resources and associated hazards (e.g. Glacial Lake Outburst Floods--GLOFs). Satellite data provide one means to monitor ice-containing landforms over broad regions. InSAR measures the subtle deformation of the surface, with mm precision, that is related to deformation or changes in ice volume within rock glaciers and debris-covered glaciers. While previous work in the region had used C-band (6 cm wavelength) SAR data from the ERS satellite, we utilize L-band data (24 cm) from the ALOS satellite, which provides better coherence, especially where the phase gradient is large. After processing 20 differential interferograms that span from 2008 to 2011, we focus on the 5 interferograms with the best overall coherence. Based on three 45-day interferograms and two 3-year interferograms, all of which have relatively small perpendicular baselines (<260 m), we report line-of-sight surface displacement rates within the Khumbu region and calculate the down-slope surface speed of the active glaciers. From the 3-year interferograms, we map the boundary of active movement along the perimeter of the debris-covered toe of Khumbu Glacier. Movement over this longer time period leads to a loss of coherence, clearly delimiting actively moving areas. Of particular note, active movement is detected in the glacier-moraine dam of Imja Lake, which has implications for GLOF hazard. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the

  14. Long-Term Monitoring of Water Dynamics in the Sahel Region Using the Multi-Sar

    NASA Astrophysics Data System (ADS)

    Bertram, A.; Wendleder, A.; Schmitt, A.; Huber, M.

    2016-06-01

    Fresh water is a scarce resource in the West-African Sahel region, seasonally influenced by droughts and floods. Particularly in terms of climate change, the importance of wetlands increases for flora, fauna, human population, agriculture, livestock and fishery. Hence, access to open water is a key factor. Long-term monitoring of water dynamics is of great importance, especially with regard to the spatio-temporal extend of wetlands and drylands. It can predict future trends and facilitate the development of adequate management strategies. Lake Tabalak, a Ramsar wetland of international importance, is one of the most significant ponds in Niger and a refuge for waterbirds. Nevertheless, human population growth increased the pressure on this ecosystem, which is now degrading for all uses. The main objective of the study is a long-term monitoring of the Lake Tabalak's water dynamics to delineate permanent and seasonal water bodies, using weather- and daytime-independent multi-sensor and multi-temporal Synthetic Aperture Radar (SAR) data available for the study area. Data of the following sensors from 1993 until 2016 are used: Sentinel-1A, TerraSARX, ALOS PALSAR-1/2, Envisat ASAR, RADARSAT-1/2, and ERS-1/2. All SAR data are processed with the Multi-SAR-System, unifying the different characteristics of all above mentioned sensors in terms of geometric, radiometric and polarimetric resolution to a consistent format. The polarimetric representation in Kennaugh elements allows fusing single-polarized data acquired by older sensors with multi-polarized data acquired by current sensors. The TANH-normalization guarantees a consistent and therefore comparable description in a closed data range in terms of radiometry. The geometric aspect is solved by projecting all images to an earth-fixed coordinate system correcting the brightness by the help of the incidence angle. The elevation model used in the geocoding step is the novel global model produced by the TanDEM-X satellite

  15. Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI

    NASA Astrophysics Data System (ADS)

    Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P.

    2015-11-01

    Land subsidence occurred at the Venice coastland over the 2008-2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr-1. For instance, settlements of 30-35 mm yr-1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr-1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr-1 confirms the general stability of the historical center.

  16. Monitoring Structure and Regional-Level Displacements for Lisbon Using Mltitemporal InSAR Techniques

    NASA Astrophysics Data System (ADS)

    Roque, Dora; Perissin, Daniele Falcao, Ana Paula; Fonseca, Ana Maria; Henriques, Maria Joao

    2015-05-01

    The city of Lisbon is the capital of Portugal and has been devastated by catastrophic events in the past, such as earthquakes and tsunamis. This study provides a regional analysis of displacements for the city and its neighbourhoods, between 2008 and 2010, through the application of mutitemporal InSAR techniques on Envisat ASAR images. Smaller areas with identified problems were subjected to a more refined processing. Besides, the behaviour of some key infrastructures, such as important buildings or railways, was carefully analysed in order to evaluate their safety. Subsidence was detected at the regional and small areas, in which the highest subsidence rates were verified on industrial parks or on landfills close to the river. Seasonal trends were found for the small areas, mainly related with structure thermal expansion or variations in underground water.

  17. 40 CFR 108.4 - Investigation by Regional Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Investigation by Regional Administrator... PROGRAMS EMPLOYEE PROTECTION HEARINGS § 108.4 Investigation by Regional Administrator. Upon receipt of any request meeting the requirements of § 108.3, the Regional Administrator shall conduct a full...

  18. Monitoring small reservoirs in semi-arid region by satellite SAR data

    NASA Astrophysics Data System (ADS)

    Nicolina Papa, Maria; Mitidieri, Francesco; Amitrano, Donato; Ruello, Giuseppe; Di Martino, Gerardo; Iodice, Antonio; Riccio, Daniele

    2016-04-01

    The work presents a novel tool for the monitoring of small reservoirs in semi-arid regions. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In semi-arid regions, small reservoirs are widely employed for facing seasonal variability in water availability due to the alternation of a rainy (3 months) and a dry (9 months) season. Beside their crucial importance, the small reservoirs are not appropriately monitored, they are often built for the initiative of small local communities and even basic data as their location and capacity are not available. Another major problem is linked to soil erosion due to water and consequent reservoirs' sedimentation that reduces the amount of available water and the life span of reservoirs. This lack of data prevents the implementation of strategies for the optimization of water resources management. It is therefore necessary to improve the data availability through the development of cost-effective monitoring techniques and to adapt the hydrological modeling to the limited available data. In this context the use if satellite data can highly contribute to the achievement of crucial information at low costs, high resolution in time and wide areas. In the present work, we used COSMO-SkyMed Stripmap (3m resolution) and Spotligth (1m resolution) Synthetic Aperture Radar (SAR) data acquired under the aegis of the 2007 Italian Space Agency Announcement of Opportunity and of the HydroCIDOT project. The shorelines of the reservoirs were extracted from the series of SAR images by employing an innovative change-detection framework. A digital elevation model (DEM) of the study area was obtained via standard interferometry processing of images acquired at the end of the dry season, when small reservoirs are completely empty, and information about the surface usually covered by water can be retrieved. The obtained DEM and shorelines were used for bathymetry extraction of reservoirs. For the

  19. The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33-q34

    SciTech Connect

    Brunialti, A.L.B.; Guenet, J.L.; Harding, C.O.; Wolff, J.A.

    1996-08-15

    The autosomal recessive mouse mutation sarcosinemia (sar), which was discovered segregating in the progeny of a male whose premeiotic germ cells had been treated with the mutagen ethylnitrosourea, is characterized by a deficiency in sarcosine dehydrogenase activity. Using an intersubspecific cross, we mapped the sar locus to mouse chromosome 2, approximately 15-18 cM from the centromere. The genetic localization of this locus in the mouse allows the identification of a candidate region in human (9q33-q34) where the homologous disease should map. 15 refs., 2 figs.

  20. Titan's North Polar Region: Lake Distribution, Statistics, and Implied Methane Hydrology from Cassini SAR

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander; Aharonson, O.; Lewis, K.; Mitchell, K.; Lunine, J.; Lorenz, R. D.; Wall, S.; Mitri, G.; Elachi, C.; Cassini RADAR Team

    2007-10-01

    Recent observations of Titan's Surface from Cassini's Synthetic Aperture Radar (SAR) have revealed quasi-circular to complex features which are interpreted as liquid hydrocarbon lakes (Stofan et al., 2007). We use the global distribution of lake features to investigate methane transport in Titan's hydrologic cycle, which includes atmospheric, surface, and sub-surface interaction. Specifically, the latitudinal and longitudinal division of hydrocarbon lakes combined with derived topographic information is used to model subsurface transport and place limitations on the properties of an isotropic porous regolith. Our analysis of the dataset, which covers 22% of the surface, has led to the identification of multiple lake morphologies which are correlated across the polar region. Radar dark lake features are limited to latitudes above 65°N and vary in size from the limits of observation (a few km2) to more than 100,000 km2. Granular and sub-granular lake features, which are distinguished by increased radar backscatter relative to their surroundings as compared to dark lakes, can be found as low as 55°N. Sub-granular lake features are inferred to be empty basins while granular lake features are interpreted as transitional between dark and sub-granular. The orientation, size, and statistical correlations between dark, granular, and sub-granular lake features provide constraints on precipitation conditions and the importance of subsurface transport. Using preliminary porous media properties inferred from Huygens probe results at 10°S, timescales for flow between observed dark and empty lakes are calculated by solving the groundwater flow equation. Derived lake equilibration timescales are compared to the time between collocated SAR observations in order to place limitations on the permeability of an isotropic porous regolith. For permeabilities of 10-5cm2, equilibrium timescales are found to be in the 10's of years and are similar to Titan's seasonal cycles and lake

  1. 40 CFR 108.4 - Investigation by Regional Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator. 108.4 Section 108.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EMPLOYEE PROTECTION HEARINGS § 108.4 Investigation by Regional Administrator. Upon receipt of any request meeting the requirements of § 108.3, the Regional Administrator shall conduct a full...

  2. 40 CFR 108.4 - Investigation by Regional Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator. 108.4 Section 108.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EMPLOYEE PROTECTION HEARINGS § 108.4 Investigation by Regional Administrator. Upon receipt of any request meeting the requirements of § 108.3, the Regional Administrator shall conduct a full...

  3. 40 CFR 108.4 - Investigation by Regional Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator. 108.4 Section 108.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EMPLOYEE PROTECTION HEARINGS § 108.4 Investigation by Regional Administrator. Upon receipt of any request meeting the requirements of § 108.3, the Regional Administrator shall conduct a full...

  4. Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein

    SciTech Connect

    Deng,Y.; Liu, J.; Zheng, Q.; Yong, W.; Lu, M.

    2006-01-01

    Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct a-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest a possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.

  5. Investigating Subsidence Resulting from Ground Water Withdrawal in the Cedar Valley, Utah Region Using InSAR

    NASA Astrophysics Data System (ADS)

    Katzenstein, K.

    2012-12-01

    Ground water withdrawal has long been known as a potential source of land subsidence, particularly in arid regions where natural ground water recharge is low relative to the volumes of water produced. Throughout the last decade, Interferometric Synthetic Aperture Radar (InSAR) has proved to be a valuable tool to quantify aquifer system response to ground water withdrawal in arid portions of the western United States. The vast spatial coverage (~10,000 square miles minimum) and precise vertical resolution (<1 centimeter) make the InSAR method extremely useful in detecting small perturbations of surface elevation resulting from a wide range of natural and anthropogenic sources. This study utilized InSAR to investigate the source of ground fissures observed near the Enoch Graben and Quichapa Lake in Cedar Valley, UT. InSAR data were processed covering the time periods of November 14, 1992 - October 17, 2000 (ERS-1 and ERS-2 data) and October 26, 2004 - August 31, 2010 (Envisat dat). Individual and stacked interferograms delineate subsidence features in the vicinity of the observed ground fissuring with cumulative magnitudes as high as 11 cm and 17 cm for the Enoch graben and Quichapa Lake areas respectively. Additional subsidence was detected in other areas within Cedar Valley that correspond well with the locations of active municipal ground water wells. Additionally, several subsidence features not associated with the fissures of interest were observed. One in particular located between the small communities of Enterprise and Beryl, Utah exhibits over 50 cm of subsidence during the period of this study. This agricultural area is typified by pivot irrigation with ground water produced from the local alluvial aquifer. True subsidence magnitudes may be much higher as a large portion of the area in the vicinity of the pivot irrigation is decorrelated in the InSAR result. The magnitudes and locations of all subsidence features observed are presented and discussed.

  6. 40 CFR 108.4 - Investigation by Regional Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Investigation by Regional Administrator. 108.4 Section 108.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EMPLOYEE PROTECTION HEARINGS § 108.4 Investigation by Regional Administrator. Upon receipt of...

  7. Surface soil moisture retrieval over a Mediterranean semi-arid region using X-band TerraSAR-X SAR data

    NASA Astrophysics Data System (ADS)

    Azza, Gorrab; Zribi, Mehrez; Baghdadi, Nicolas; Mougenot, Bernard; Boulet, Gilles; Lili-Chabaane, Zohra

    2015-04-01

    Mapping surface soil moisture with meter-scale spatial resolution is appropriate for multi- domains particularly hydrology and agronomy. It allows water resources and irrigation management decisions, drought monitoring and validation of multi-hydrological water balance models. In the last years, various studies have demonstrated the large potential of radar remote sensing data, mainly from C frequency band, to retrieve soil moisture. However, the accuracy of the soil moisture estimation, by inversing backscattering radar coefficients (σ°), is affected by the influence of surface roughness and vegetation biomass contributions. In recent years, different empirical, semi empirical and physical approaches are developed for bare soil conditions, to estimate accurately spatial soil moisture variability. In this study, we propose an approach based on the change detection method for the retrieval of surface soil moisture at a higher spatial resolution. The proposal algorithm combines multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements. Seven thetaprobe stations are installed at different depths over the central semi arid region of Tunisia (9°23' - 10°17' E, 35° 1'-35°55' N). They cover approximately the entire of our study site and provide regional scale information. Ground data were collected over agricultural bare soil fields simultaneously to various TerraSAR-X data acquired during 2013-2014 and 2014-2015. More than fourteen test fields were selected for each spatial acquisition campaign, with variations in soil texture and in surface soil roughness. For each date, we considered the volumetric water content with thetaprobe instrument and gravimetric sampling; we measured also the roughness parameters with pin profilor. To retrieve soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our analyses are

  8. Contemporary Deformation of the Taipei Region in Northern Taiwan from GPS and InSAR Measurements

    NASA Astrophysics Data System (ADS)

    Chang, W. L.; Wang, C. C.; Chiu, C. Y.; Rau, R. J.; Chang, C. P.

    2014-12-01

    Despite two large historical earthquakes documented in 1694 and 1909 near the Taipei area of northern Taiwan, relatively low seismicity has been recorded instrumentally since 1973, with the largest event being magnitude 5.1 in 1988 beneath the Tatun volcano group. Low spatial correlation of seismic activity with the three known Pliocene-Pleistocene faults across the area, all trended NE-SW (Fig. 1), suggests that the relation between preset interseismic stress accumulation and the active faults of the Taipei area should be analyzed to provide independent information for seismic hazard evaluation other than the previous paleoseismic researches. With GPS data from 29 continuous stations observed from 2006 to 2013 and 83 campaign GPS sites surveyed since 2002 in the Taipei region, we employed the GAMIT/GLOBK software to calculate the time series of station positions under the ITRF2005 reference frame and therefore to estimate the regional velocity field. The influences of earthquakes and changing instruments have been evaluated and removed, and we also reduced the common-mode errors by using a spatial filtering technique to reduce the scattering effect in the time series. Our results show that the velocity field is about 2.1 ~ 5.1 mm/yr, in azimuths between 5 and 75 degrees, relative to the Paisha GPS site (S01R) at Panghu that has been considered as a stable continental margin station. Our plane strain analysis revealed a substantial NW-SE extension strain rate of about 0.2 mstrain/yr in an area of ~40-km wide across the Sanchiao fault and the Taipei basin. Similar to, our GPS data also revealed vertical deformation in the northern Taiwan consistent with the Permanent Scatter Interferometric Synthetic Aperture Radar (PSInSAR) measurements, which revealed (1) a slight uplift in the Western Foothills, the Tatun volcano group, and the Linkou Tableland; (2) the subsidence around the border of the Taipei Basin.

  9. Application of SEASAT-1 Synthetic Aperture Radar (SAR) data to enhance and detect geological lineaments and to assist LANDSAT landcover classification mapping. [Appalachian Region, West Virginia

    NASA Technical Reports Server (NTRS)

    Sekhon, R.

    1981-01-01

    Digital SEASAT-1 synthetic aperture radar (SAR) data were used to enhance linear features to extract geologically significant lineaments in the Appalachian region. Comparison of Lineaments thus mapped with an existing lineament map based on LANDSAT MSS images shows that appropriately processed SEASAT-1 SAR data can significantly improve the detection of lineaments. Merge MSS and SAR data sets were more useful fo lineament detection and landcover classification than LANDSAT or SEASAT data alone. About 20 percent of the lineaments plotted from the SEASAT SAR image did not appear on the LANDSAT image. About 6 percent of minor lineaments or parts of lineaments present in the LANDSAT map were missing from the SEASAT map. Improvement in the landcover classification (acreage and spatial estimation accuracy) was attained by using MSS-SAR merged data. The aerial estimation of residential/built-up and forest categories was improved. Accuracy in estimating the agricultural and water categories was slightly reduced.

  10. Titan's mid-latitude surface regions with Cassini VIMS and SAR

    NASA Astrophysics Data System (ADS)

    Solomonidou, Anezina; Coustenis, Athena; Drossart, Pierre; Brown, Robert H.; Sohl, Frank; Stephan, Katrin; Jaumann, Ralf; Rodriguez, Sebastien; Bratsolis, Emmanuel; Schmitt, Bernard; Le Gall, Alice; Lopes, Rosaly; Malaska, Michael; Janssen, Michael; Maltagliati, Luca; Villanueva, Edward; Matsoukas, Christos

    2016-07-01

    We investigate the surface of Saturn's moon Titan by means of two Cassini instruments used in synergy. We apply a radiative transfer code to VIMS hyperspectral data to correct the strong atmospheric contribution and extract information on surface composition (Hirtzig et al. 2014; Solomonidou et al. 2014; 2015). We then put this in the context of terrain morphology by use of denoised Synthetic Aperture Radar (SAR) images (Bratsolis et al. 2012). We examine here the mid-latitude zones extending from 50ºN to 50ºS, which includes key geological features identified in Lopes et al. (2010, 2015) and Malaska et al. (2015): mountains, plains, labyrinths, dune fields, and possible cryovolcanic and/or evaporitic deposits. We find that many of the different units show compositional variations while units of significant geomorphological differences seem to consist of very similar material mixtures. The Huygens landing site and the candidate evaporitic regions are compositionally similar to the variable plains. We also find that temporal variations of surface albedo exist for two of the candidate cryovolcanic regions Tui Regio and Sotra Patera, suggesting the presence of surface activity, while a number of other regions such as Hotei Regio and the undifferentiated plains remain unchanged (Solomonidou et al. 2015). The surface albedo variations, together with the presence of volcanic-like morphological features, suggest that the active regions are possibly related to the deep interior, possibly via cryovolcanic processes (with important implications for the satellite's astrobiological potential) as also indicated by recent interior structure models of Titan and corresponding calculations of the spatial pattern of maximum tidal stresses (Sohl et al. 2014). In previous studies (Lopes et al. 2015; Solomonidou et al. 2015) we showed that a variety of surface processes could be linked to the formation of the various geomorphological units (aeolian, fluvial, sedimentary, lacustrine

  11. Slope deformations in high-mountain regions as observed by InSAR: Examples from the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Frey, Holger; Strozzi, Tazio; Caduff, Rafael; Huggel, Christian; Klimeš, Jan; Vilímek, Vít; Wiesmann, Andreas; Kääb, Andreas; Cochachin, Alejo; Plummer, Stephen

    2016-04-01

    Steep topography, the world's highest concentration of tropical glaciers, numerous glacial lakes and strong seismic activity combined with a densely populated valley bottom in the Rio Santa basin characterize the Cordillera Blanca in Peru. Besides glacier-related processes, a variety of landslide types and processes is present outside the glaciated areas, favoured by the steep terrain, geological conditions, sparse vegetation, intense precipitation, and strong seismicity. This combination of high hazard potentials and vulnerabilities results in a long list of natural disasters. Information on surface displacements is very valuable for early detection of emerging hazard potentials and their assessment. Interferometric processing of SAR data (InSAR) provides the possibility to remotely detect different types of surface displacement processes, also in remote locations where no other monitoring data are available. This contribution, developed under the ESA-funded S:GLA:MO project (sglamo.gamma-rs.ch), shows the potential of InSAR products for hazard assessments and glaciological investigations in high-mountain regions. We present a selection of different surface displacements as observed in the Cordillera Blanca based on InSAR data: a landslide zone near the Rampac Grande village, where in 2009 a landslide caused casualties and property loss; a landslide at the entry of the Santa Cruz Valley, northern Cordillera Blanca, where the displacement history could be reconstructed over five years; surface displacements at the interior moraine slopes surrounding Laguna Palcacocha, a major glacier lake above the city of Huaraz, which are compared to and complemented by geophysical investigations in the field; surface displacements at the moraine damming Laguna Safuna Alta, a glacier lake in the northern part of the Cordillera Blanca; glacier velocities across the entire Cordillera Blanca, revealing ice flow velocities of more than 200 m yr-1 at certain locations at the end of

  12. Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama

    1994-01-01

    Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.

  13. Active landslides detection at regional scale: comparing multitemporal InSAR with "handmade" inventories

    NASA Astrophysics Data System (ADS)

    Derron, Marc-Henri; Michoud, Clément; Jaboyedoff, Michel; Runne Lauknes, Tom

    2013-04-01

    Advanced multitemporal differential SAR interferometry has proved to be able to detect unexpected active landslides in areas difficult to access. That makes this technique very useful to complete inventories. But that does not mean that applying A-DInSAR is a sufficient tool to build an inventory. Some A-DInSAR results have been compared in areas where independent landslides inventories exists, in Norway (J. Dehls at the Geological Survey of Norway) and Italy (A. Tamburini, TRE Milano). Roughly, depending on the surface cover, geomorphology and images availability, from 0 to 50% of the already known landslides can be detected with A-DInSAR results. We are testing a similar approach in Switzerland, in the county of Vaud where two landslides inventories are available (DUTI 1985, Jaboyedoff 2009). A set of 24 Envisat ASAR images (single frame/ single track) have been processed with PS-INSAR and SBAS techniques. Because of the large variety of surface cover (urban, forested, rocky) and morphology (plane and mountainous areas), both techniques provides very different results depending on local conditions.

  14. 51. Roof plans, General Services Administration, Construction Management Division, Region ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Roof plans, General Services Administration, Construction Management Division, Region 2, New York, October 29, 1976. Scale 1/31=1. - U.S. Navy Fleet Supply Base, Storehouse No. 1, 830 Third Avenue, Brooklyn, Kings County, NY

  15. InSAR Tropospheric Correction Methods: A Statistical Comparison over Different Regions

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Walters, R. J.; Wright, T. J.; Hooper, A. J.; Parker, D. J.

    2015-12-01

    Observing small magnitude surface displacements through InSAR is highly challenging, and requires advanced correction techniques to reduce noise. In fact, one of the largest obstacles facing the InSAR community is related to tropospheric noise correction. Spatial and temporal variations in temperature, pressure, and relative humidity result in a spatially-variable InSAR tropospheric signal, which masks smaller surface displacements due to tectonic or volcanic deformation. Correction methods applied today include those relying on weather model data, GNSS and/or spectrometer data. Unfortunately, these methods are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the high-resolution interferometric phase by assuming a linear or a power-law relationship between the phase and topography. For these methods, the challenge lies in separating deformation from tropospheric signals. We will present results of a statistical comparison of the state-of-the-art tropospheric corrections estimated from spectrometer products (MERIS and MODIS), a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and power-law empirical methods. We evaluate the correction capability over Southern Mexico, Italy, and El Hierro, and investigate the impact of increasing cloud cover on the accuracy of the tropospheric delay estimation. We find that each method has its strengths and weaknesses, and suggest that further developments should aim to combine different correction methods. All the presented methods are included into our new open source software package called TRAIN - Toolbox for Reducing Atmospheric InSAR Noise (Bekaert et al., in review), which is available to the community Bekaert, D., R. Walters, T. Wright, A. Hooper, and D. Parker (in review), Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment

  16. Subsidence monitoring update for Emilia-Romagna region (Italy) by integrated use of InSAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Bitelli, Gabriele; Bonsignore, Flavio; Del Conte, Sara; Novali, Fabrizio; Pellegrino, Immacolata; Vittuari, Luca

    2014-05-01

    The alluvial plain sector (Po Plain) of Emilia Romagna region (Northern Italy) is a subsiding sedimentary basin, due to both natural and human-induced subsidence phenomena. Different Institutions without a plan consistent at regional scale initially monitored subsidence. In 1999 ARPA (Regional Agency for Environmental Prevention) Emilia-Romagna, on behalf of the Emilia-Romagna Region and in collaboration with DICAM Department of the Bologna University, established a network composed by 2300 leveling benchmarks, connected to 60 GNSS points, covering the whole Po Plain sector of the region. In 2005-2006 a first radar interferometry (PSInSAR™) analysis was conducted, exploiting both ESA (ERS - Envisat) and Radarsat satellite data. ARPA, on behalf of the Emilia-Romagna Region, with advisory from DICAM and in collaboration with TRE Tele-Rilevamento Europa, has recently updated the regional subsidence map of the Po Plain sector, using a new integrated approach: in the last campaign, the measurement of the vertical displacement was in fact obtained by the combined use of permanent GNSS stations and advanced InSAR data. The integrated use of these complementary techniques allows to take advantage of the strengths offered by each approach, overcoming their weaknesses. A SqueeSAR™ analysis of Radarsat radar images, acquired between 2006 and 2011, was carried out over the whole regional plain territory (more than 13.000 km2), allowing to obtain a map of vertical displacement for more than 2.000.000 measurement points (MP), with an average point density of 200MP/km2. In parallel, the data from 17 permanent GNSS stations with a long acquisition period were processed with appropriate time series analysis in order to calibrate and validate the InSAR results. The final calibrated outcomes have permitted to obtain a complete and homogeneous map of the subsidence phenomena at regional scale, defining a both "absolute" and relative velocity datum with respect to the ITRF

  17. Regional Sea Level Variations from GRACE, InSAR and a Regional Atmospheric Climate Model Output Products

    NASA Astrophysics Data System (ADS)

    Hsu, C. W.; Velicogna, I.; Rignot, E. J.; Wahr, J. M.

    2014-12-01

    We generate static regional sea level variations (sea level fingerprints, SLF) from ice sheets, glaciers and land hydrology using 10 years of monthly NASA/DLR GRACE satellite data and 40 years of ice sheet mass balance from the mass budget method (surface mass balance from a regional atmospheric climate model minus ice discharge along the periphery). We evaluate the impact of the spatial distribution in ice sheet mass balance on the inferred regional sea level pattern. Based on the results, we derive requirements on the spatial scale of mass loss needed to resolve the regional pattern of sea level change. In the calculation of the water and ice mass changes over land, we also need to restore the amplitude of the GRACE signal before calculating the regional sea level pattern. Here, we describe an improved scaling factor method that comprises both a seasonal and a long-term component. We discuss the impact of these components on the retrieved regional sea level pattern. Using the SLF, we identify the sources of observed sea level variations. We show that the cumulative SLF describe a large portion of the trend and annual amplitude of the observed sea level variations at both the global and basin scales. When comparing the cumulative SLF with observations of sea level change from steric corrected altimetry, we find an excellent agreement at the global and basin scales. We discuss differences in sea level pattern between the last decade and the prior 40 years. This work was conducted at the University of California Irvine and at Caltech's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  18. Simultaneous Inversion of GPS and InSAR for Regional Kinematics and Transients

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2009-12-01

    The growth of continuous GPS networks and acquisition of InSAR data require fully time-dependent methods for their tectonic analyses. We are working on developing the merger of the kinematic block-model approach with transient deformation with the aim of interpreting the entire geodetic time series. The steady linear motions of the GPS sites are estimated through parameters that describe the block motions (angular velocities) plus elastic strain rates from locked faults and anelastic strain rates from distributed deformation. Through the kinematic model, the steady site velocities have a high degree of spatial correlation. Transients such as earthquakes, after-slip, slow-slip events and volcanic sources are described by a small number of free parameters that are estimated by direct inversion of the position time series simultaneously with the kinematic model parameters. InSAR data are used as line-of-sight displacements between two times (acquisition dates) and are matched by the time-dependent deformation model. We utilize both continuous and survey-mode GPS time series. To date we have applied the method to Cascadia, New Zealand, Sumatra, Papua (Indonesia), Yellowstone (Payne et al., this meeting), and Japan (Ohzono et al., this meeting). In addition to the information we can gain about the kinematics and transients, the method has applications in event detection and outlier removal.

  19. Business Education and Regional Variation: An Administrative Perspective.

    ERIC Educational Resources Information Center

    McKenna, John F.; And Others

    1991-01-01

    Responses to a survey of 319 American Assembly of Collegiate Schools of Business-accredited colleges of business and accounting programs (58 percent) found substantial agreement among administrators, although regional differences were found regarding breadth (versus specialization) and relevance (versus theory development). (JOW)

  20. 44 CFR 350.11 - Action by FEMA Regional Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Action by FEMA Regional Administrator. 350.11 Section 350.11 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS REVIEW AND APPROVAL OF STATE AND LOCAL RADIOLOGICAL...

  1. 44 CFR 350.11 - Action by FEMA Regional Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Action by FEMA Regional Administrator. 350.11 Section 350.11 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS REVIEW AND APPROVAL OF STATE AND LOCAL RADIOLOGICAL...

  2. 44 CFR 350.11 - Action by FEMA Regional Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Action by FEMA Regional Administrator. 350.11 Section 350.11 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS REVIEW AND APPROVAL OF STATE AND LOCAL RADIOLOGICAL...

  3. Characterizing Magmatic Sources in the Central Andes Volcanic Zone with a Regional InSAR Time Series Survey

    NASA Astrophysics Data System (ADS)

    Henderson, S. T.; Pritchard, M. E.

    2011-12-01

    The Central Andes Volcanic Zone (CVZ) contains many intriguing areas of ongoing crustal deformation detectable with InSAR. Foremost among these are the 1-2cm/yr radar line-of-sight (LOS) inflations near Uturuncu Volcano in Bolivia and the Lazufre volcanic area spanning the border of Chile and Argentina (Pritchard and Simons 2002). These two deformation sources are intriguing in that they are long-lived (>10yrs), have large diameters (>50km), and have modeled sources at mid-crustal depths (10-20km). For Uturuncu, the best-fitting source depths coincide with the seismically imaged Altiplano-Puna Magma Body (eg. Chimielowsi et al. 1999, Zandt et al. 2003). Regional InSAR time series analysis enables the spatial and temporal comparison of the Uturuncu and Lazufre signals with other deformations in a sub-region of the CVZ from 1992 to the present. Our study focuses on volcanic deformation, but we also resolve non-magmatic deformation signals including landslides and salars. The study region benefits from a large InSAR dataset of 631 ERS and ENVISAT interferograms, distributed between two descending tracks and two ascending tracks, covering up to 870 kilometers along the volcanic arc. We employ an inversion method based on the SBAS algorithm (Berardino 2002), but modified to avoid interpolation across dates with incoherent values. This modification effectively deals with the heterogeneous spatial extents and data gaps present in individual interferograms for long tracks. With our time series results we investigate the timing of possible magma migrations and we explore the parameters of forward models that match observations. Results indicate continuing monotonic inflation styles at Uturuncu and Lazufre with maximum LOS uplift at 1.0cm/yr and 2.5cm/yr respectively (Pritchard and Simons 2004, Froger et al. 2007, Ruch et al. 2009). We discuss evidence for 2mm/yr broad LOS deflation collocated with the Uturuncu inflation signal and comment on possible models for its origin

  4. Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador (South America)

    NASA Astrophysics Data System (ADS)

    Mayorga Torres, Tannia

    2014-05-01

    Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador (South America) 1. INTRODUCTION Monitoring landslides is a mandatory task in charge on the National Institute of Geological Research (INIGEMM) in Ecuador. It is a small country, supposedly will be faster doing monitoring, but what about its geographic characteristics? Lamentably, due to human and financial resources is not possible to put monitoring systems in unstable terrain areas. However, getting ALOS data to accessible price and using open source software to produce interferograms, could be a first step to know steep areas covered by vegetation and where mass movements are not visible. Under this statement, this study is part of the final research in a master study developed at CONAE during 2009-2011, with oral defense in August 2013. As a new technique used in Ecuador, the study processed radar data from ERS-1/2 and ALOS sensor PALSAR for getting differential interferograms, using ROI_PAC software. Stacking DInSAR is applied to get an average of displacement that indicates uplift and subsidence in the whole radar scene that covers two provinces in the Andes region. 2. PROBLEM Mass movements are present in the whole territory, independently of their magnitude and dynamic (slow or fast), they are a latent threat in winter season specially. There are registers of monitoring, such as two GPS's campaigns and artisanal extensometers, which are used to contrast with DInSAR results. However, the campaigns are shorter and extensometers are no trust on all. 3. METHODOLOGY Methodology has four phases of development: (1) Pre-processing of RAW data; (2) Processing of RAW data in ROI_PAC; (3) Post-processing for getting interferograms in units of cm per year; (4) Analysis of the results and comparison with ground truth. Sandwell & Price (1998) proposed Stacking technique to increase the fringes and decrease errors due to the atmosphere, to average several interferograms. L band penetrates

  5. Stress interaction at the Lazufre volcanic region, as constrained by InSAR, seismic tomography and boundary element modelling

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul; Spica, Zack; Legrand, Denis

    2016-04-01

    The Azufre-Lastarria volcanic complex in the central Andes has been recognized as a major region of magma intrusion. Both deep and shallow inflating reservoirs inferred through InSAR time series inversions, are the main sources of a multi-scale deformation accompanied by pronounced fumarolic activity. The possible interactions between these reservoirs, as well as the path of propagating fluids and the development of their pathways, however, have not been investigated. Results from recent seismic noise tomography in the area show localized zones of shear wave velocity anomalies, with a low shear wave velocity region at 1 km depth and another one at 4 km depth beneath Lastarria. Although the inferred shallow zone is in a good agreement with the location of the shallow deformation source, the deep zone does not correspond to any deformation source in the area. Here, using the boundary element method (BEM), we have performed an in-depth continuum mechanical investigation of the available ascending and descending InSAR data. We modelled the deep source, taking into account the effect of topography and complex source geometry on the inversion. After calculating the stress field induced by this source, we apply Paul's criterion (a variation on Mohr-Coulomb failure) to recognize locations that are liable for failure. We show that the locations of tensile and shear failure almost perfectly coincide with the shallow and deep anomalies as identified by shear wave velocity, respectively. Based on the stress-change models we conjecture that the deep reservoir controls the development of shallower hydrothermal fluids; a hypothesis that can be tested and applied to other volcanoes.

  6. Development of a self-administrated quality of life questionnaire for sarcopenia in elderly subjects: the SarQoL

    PubMed Central

    Beaudart, Charlotte; Biver, Emmanuel; Reginster, Jean-Yves; Rizzoli, René; Rolland, Yves; Bautmans, Ivan; Petermans, Jean; Gillain, Sophie; Buckinx, Fanny; Van Beveren, Julien; Jacquemain, Marc; Italiano, Patrick; Dardenne, Nadia; Bruyere, Olivier

    2015-01-01

    Background: the impact of sarcopenia on quality of life is currently assessed by generic tools. However, these tools may not detect subtle effects of this specific condition on quality of life. Objective: the aim of this study was to develop a sarcopenia-specific quality of life questionnaire (SarQoL, Sarcopenia Quality of Life) designed for community-dwelling elderly subjects aged 65 years and older. Settings: participants were recruited in an outpatient clinic in Liège, Belgium. Subjects: sarcopenic subjects aged 65 years or older. Methods: the study was articulated in the following four stages: (i) Item generation—based on literature review, sarcopenic subjects' opinion, experts' opinion, focus groups; (ii) Item reduction—based on sarcopenic subjects' and experts' preferences; (iii) Questionnaire generation—developed during an expert meeting; (iv) Pretest of the questionnaire—based on sarcopenic subjects' opinion. Results: the final version of the questionnaire consists of 55 items translated into 22 questions rated on a 4-point Likert scale. These items are organised into seven domains of dysfunction: Physical and mental health, Locomotion, Body composition, Functionality, Activities of daily living, Leisure activities and Fears. In view of the pretest, the SarQoL is easy to complete, independently, in ∼10 min. Conclusions: the first version of the SarQoL, a specific quality of life questionnaire for sarcopenic subjects, has been developed and has been shown to be comprehensible by the target population. Investigations are now required to test the psychometric properties (internal consistency, test–retest reliability, divergent and convergent validity, discriminant validity, floor and ceiling effects) of this questionnaire. PMID:26433796

  7. Magnitude and extent of land subsidence in central Mexico revealed by regional InSAR ALOS time-series survey

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Wdowinski, S.; Amelung, F.; Cabral-Cano, E.

    2013-05-01

    Massive groundwater extraction is very common in Mexico and is well known to result in land subsidence. However, most surveys dedicated to land subsidence focus on one single city, mainly Mexico City, and thus fail to provide a comprehensive picture of the problem. Here we use a space-based radar remote sensing technique, known as Interferometric Synthetic Aperture Radar (InSAR) to detect land subsidence in the entire central Mexico area. We used data from the Japanese satellite ALOS, processed over 600 SAR images acquired between 2007-2011 and produced over 3000 interferograms to cover and area of 200,000 km2 in central Mexico. We identify land subsidence in twenty-one areas, including seventeen cities, namely from east to west, Puebla, Mexico city, Toluca de Lerdo, Queretaro, San Luis de la Paz, south of San Luis de la Paz, Celaya, south of Villa de Reyes, San Luis Potosi, west of Villa de Arista, Morelia, Salamanca, Irapuato, Silao, Leon, Aguascalientes, north of Aguascalientes, Zamora de Hidalgo, Guadalajara, Ahuacatlan, and Tepic. Subsidence rates of 30 cm/yr are observed in Mexico City, while in the other locations typical rates of 5-10 cm/yr are noticed. Regional surveys of this type are necessary for the development of hazard mitigation plans and efficient use of ground-based monitoring. We additionally correlate subsidence with land use, surface geology, and faults distribution and suggest that groundwater extraction for agricultural, urban, and industrial uses are the main causes of land subsidence. We also reveal that the limits of the subsiding areas often correlate with existing faults, motion on these faults being driven by water extraction rather than by tectonic activity. In all the subsiding locations we observe high ground velocity gradients emphasizing the significant risks associated with land subsidence in central Mexico. Averaged 2007-2011 ground velocity map from ALOS InSAR time-series in central Mexico, revealing land subsidence in 21

  8. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data

    PubMed Central

    Widhalm, Barbara; Bartsch, Annett; Heim, Birgit

    2015-01-01

    A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized. Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes

  9. Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data

    NASA Astrophysics Data System (ADS)

    Dang, V. K.; Doubre, C.; Weber, C.; Gourmelen, N.; Masson, F.

    2014-03-01

    Since the 1990s the land subsidence due to the rapid urbanization has been considered a severely destructive hazard in the center of Hanoi City. Although previous studies and measurements have quantified the subsiding deformation in Hanoi center, no data exist for the newly established districts in the south and the west, where construction development has been most significant and where groundwater pumping has been very intensive over the last decade. With a multi-temporal InSAR approach, we quantify the spatial distribution of the land subsidence in the entire Hanoi urban region using ALOS images over the 2007-2011 period. The map of the mean subsidence velocity reveals that the northern bank of the Red River appears stable, whereas some areas in southern bank are subsiding with a mean vertical rate up to 68.0 mm yr-1, especially within the three new urban districts of Hoang Mai, Ha Dong - Thanh Xuan and Hoai Duc - Tu Liem. We interpret the spatial distribution of the surface deformation as the combination of the nature of the unsaturated layer, the lowering of groundwater in the aquifers due to pumping withdrawal capacity, the increase of built-up surfaces and the type of building foundation. The piezometric level in Qp aquifer lowers particularly after 2008, whereas the groundwater level in Qh aquifer remains steady, even if it loses its seasonal fluctuation in urban areas and drawdowns in neighboring water production plants. The time evolution deduced from the InSAR time series is consistent with previous leveling data and shows that the lowering rate of the surface slightly decreases till 2008. The analysis of groundwater levels in instrumented wells shows a correlation between the behavior of groundwater with the urban development and the acceleration of groundwater withdrawal. Also, the time variations suggest that the deformation became non-stationary, with upward and downward transient displacements related to the charge and discharge of the aquifers.

  10. Calibration of 2D Hydraulic Inundation Models with SAR Imagery in the Floodplain Region of the Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.

    2014-05-01

    Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature

  11. Monitoring small land subsidence phenomena in the Marmara see region by new SAR generation satellite ESA Sentinel 1

    NASA Astrophysics Data System (ADS)

    Cantone, Alessio; Riccardi, Paolo; Pasquali, Paolo; Defilippi, Marco; Peternier, Achille

    2015-04-01

    The Marmara see region is a large and dense urbanized area affected by tectonics deformations due to the presence of the underlying North Anatolia Fault. This area is affected by strong seismic phenomena (Izmith and Duzce earthquake), and by landslide and small surface deformation. The new generation ESA SAR satellites Copernicus Sentinel-1 system TOPS (Terrain Observation with Progressive Scans in azimuth) permit a short acquisition repetition cycle, an extreme large coverage, a high spatial resolution to respect the covered area and a small baseline separation. All of those characteristics suggest an intensive exploitation of these data through the usage of the interferometry technology and in particular the stacking interferometry for the small terrain displacement monitoring. The Sentinel-1 mission is made up of a constellation of two satellites (A and B units) each carrying a C-band SAR sensor. The objective of the S-1 mission is to acquire systematically with a 12-day repeat orbit cycle for each satellite with a small orbital baselines, characteristics particularly suited for interferometry application. In the near future, when both satellites will be active, there will be an acquisition every 6 days, covering the whole area. The first TOPSAR interferogram has been successfully produced, and the SARScape® stacking processing chains (SBAS and PSI) have been update to support this new sensor. The SBAS (Small Baseline) technique seems to be the best candidate for this application relatively to the morphology and large extension of Marmara region. Moreover the new incremental SBAS will permit a velocity map (at about 25 meters spatial resolution) estimation at near real time at each Sentinel-1 acquisition. We are collecting imaging over the Marmara since October 2014 within the framework of European FP7 Marsite project. In February-March 2015 we will have enough acquisition to perform the first SBAS TOPSAR monitoring of this area. The SBAS processing chain has

  12. SARS Basics

    MedlinePlus

    ... waiting room or office. Top of Page CDC’s response to SARS during the 2003 outbreak CDC worked ... Center to provide round-the-clock coordination and response. Committed more than 800 medical experts and support ...

  13. Comparison Of Multi-Frequency SAR Land Cover Signatures For Multi-Site Semi-Arid Regions Of Africa

    NASA Astrophysics Data System (ADS)

    Spies, Bernard; Lamb, Alistair; Brown, Sarah, Balzter, Heiko; Fisher, Peter

    2013-12-01

    This study shows the analysis and comparison of different SAR backscatter signatures (σ0 distributions) for distinguishable land cover types over two semi-arid test sites in Africa. The two sites that were chosen are located in Tanzania and Chad, where existing multi- frequency data was available from the different synthetic aperture radar (SAR) archives. Images were grouped into wet and dry season for the Tanzania site, whereas only dry season imagery was available for the Chad site. An IsoData unsupervised classification was applied on all three sets of images to classify seven land cover classes. Random samples were taken from each of the classes, resulting in σ0 distributions for the different classes for each site. These SAR land cover signatures are interpreted and discussed, with further steps identified.

  14. Sub-Regional Sea Ice Preferences of Pacific Walrus in the Bering Sea Using SAR Data

    NASA Astrophysics Data System (ADS)

    Sacco, A.; Mahoney, A. R.; Eicken, H.; Johnson, M. A.; Ray, C.

    2014-12-01

    The Pacific walrus (O. r. divergens) uses winter sea ice in the Bering Sea for numerous parts of its natural history including courtship, foraging, and migration. Recent and predicted loss of sea ice has caused the Pacific walrus to be considered for an elevated status under the Endangered Species Act. Study of the ice conditions during this period is required to investigate changes in the Bering Sea ice pack and its effects on walrus sustainability. Using Radarsat-1 data and second-order texture statistics, a classification system was devised to separate sea ice into three distinguishable classes based on walrus needs of open water availability in the pack ice: discontinuous pack ice, continuous pack ice, and open water. Classifications are performed on sub-regional image areas to facilitate classification of heterogeneous seascapes which are thought to be distinguishable by walrus. Spatial, as well as temporal, changes in the seascape cover, based on the classification, are achieved. These results are then combined with ship-based observations of walrus to quantify walrus habitat preference. The three-class algorithm has a success rate of 94% for the discontinuous ice and continuous pack ice. Radarsat-1 images from 2004 - 2008 were analyzed for changes in seasonal and annual discontinuous ice extent. After classification, the spatial extent of discontinuous ice was found to vary throughout 2004 - 2008 in the Bering Sea shelf. Walrus are also shown to prefer discontinuous pack far from the southernmost ice edge. Maps of walrus habitat preference and persistent areas of sea ice seascapes are created and then can be used for the walrus' status consideration under the Endangered Species Act in addition to general species management issues.

  15. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the

  16. Satellite SAR imagery for site discovery, change detection and monitoring activities in cultural heritage sites: experiments on the Nasca region, Peru

    NASA Astrophysics Data System (ADS)

    Tapete, D.; Cigna, F.; Masini, N.; Lasaponara, R.

    2012-04-01

    Besides their suitability for multi-temporal and spatial deformation analysis, the Synthetic Aperture Radar (SAR) image archives acquired by space-borne radar sensors can be exploited to support archaeological investigations over huge sites, even those partially or totally buried and still to be excavated. Amplitude information is one of the main properties of SAR data from which it is possible to retrieve evidences of buried structures, using feature extraction and texture analysis. Multi-temporality allows the reconstruction of past and recent evolution of both landscape and built-up environment, with the possibility to detect natural and/or anthropogenic changes, including human-induced damages to the conservation of cultural heritage. We present the methodology and first results of the experiments currently undertaken using SAR data in the Nasca region (Southern Peru), where two important civilizations such as Paracas and Nasca developed and flourished from 4th century BC to the 6th century AD. The study areas include a wide spectrum of archaeological and environmental elements to be preserved, among which: the archaeological site of Cahuachi and its surroundings, considered the largest adobe Ceremonial Centre in the World; the Nasca lines and geoglyphs in the areas of Palpa, Atarco and Nasca; the ancient networks of aqueducts and drainage galleries in the Puquios area, built by Nasca in the 1st-6th centuries AD. Archaeological prospection and multi-purpose remote sensing activities are currently carried out in the framework of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), with the direct involvement of researchers from the Institute for Archaeological and Monumental Heritage and the Institute of Methodologies for Environmental Analysis, Italian National Research Council. In this context, C- and L-band SAR images covering the Nasca region since 2001 were identified for the purposes of this research and, in particular, the following

  17. Experience on healthcare utilization in seven administrative regions of Tanzania

    PubMed Central

    2012-01-01

    Health care utilization in many developing countries, Tanzania included, is mainly through the use of traditional medicine (TRM) and its practitioners despite the presence of the conventional medicine. This article presents findings on the study that aimed to get an experience of health care utilization from both urban and rural areas of seven administrative regions in Tanzania. A total of 33 health facility managers were interviewed on health care provision and availability of supplies including drugs, in their respective areas. The findings revealed that the health facilities were overburden with higher population to serve than it was planned. Consequently essential drugs and other health supplies were available only in the first two weeks of the month. Conventional health practitioners considered traditional health practitioners to be more competent in mental health management, and overall, they were considered to handle more HIV/AIDS cases knowingly or unknowingly due to shear need of healthcare by this group. In general conventional health practitioners were positive towards traditional medicine utilization; and some of them admitted using traditional medicines. Traditional medicines like other medical health systems worldwide have side effects and some contentious ethical issues that need serious consideration and policy direction. Since many people will continue using traditional/alternative medicine, there is an urgent need to collaborate with traditional/alternative health practitioners through the institutionalization of basic training including hygiene in order to improved healthcare in the community and attain the Millennium Development Goals by 2015. PMID:22284539

  18. Monitoring landslide-induced deformation with TerraSAR-X Persistent Scatterer Interferometry (PSI): Gimigliano case study in Calabria Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bianchini, S.; Cigna, F.; Del Ventisette, C.; Moretti, S.; Casagli, N.

    2012-04-01

    Landslide phenomena represent a major geological hazard worldwide, threatening human lives and settlements, especially in urban areas where the potential socio-economic losses and damages are stronger because of the higher value of the element at risk exposure and vulnerability. The impact of these natural disasters in highly populated and vulnerable areas can be reduced or prevented by performing a proper detection of such ground movements, in order to support an appropriate urban planning. Mapping and monitoring of active landslides and vulnerable slopes can greatly benefit from radar satellite data analysis, due to the great cost-benefits ratio, non-invasiveness and high precision of remote sensing techniques. This work illustrates the potential of Persistent Scatterer Interferometry (PSI) using X-band SAR (Synthetic Aperture Radar) data for a detailed detection and characterization of landslide ground displacements at local scale. PSI analysis is a powerful tool for mapping and monitoring slow surface displacements, just particularly in built-up and urbanized areas where many radar benchmarks (the PS, Persistent Scatterers) are retrieved. We exploit X-band radar data acquired from the German satellite TerraSAR-X on Gimigliano site located in Calabria Region (Italy). The use of TerraSAR-X imagery significantly improves the level of detail of the analysis and extends the applicability of space-borne SAR interferometry to faster ground movements, due to higher spatial resolutions (up to 1 m), higher PS targets density and shorter repeat cycles (11 days) of X-band satellites with respect to the medium resolution SAR sensors, such as ERS1/2, ENVISAT and RADARSAT1/2. 27 SAR scenes were acquired over a 116.9 Km2 extended area from the satellite TerraSAR-X in Spotlight mode, along descending orbits, with a look angle of 34°, from November 2010 to October 2011. The images were processed by e-GEOS with the Persistent Scatterers Pairs (PSP) technique, providing the

  19. Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2005-10-10

    The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell-cell fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of {alpha}-helical packing in promoting S glycoprotein-mediated membrane fusion.

  20. Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region

    NASA Astrophysics Data System (ADS)

    Gorrab, A.; Zribi, M.; Baghdadi, N.; Lili Chabaane, Z.

    2015-10-01

    The goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple

  1. Data Administration at a Regional University: A Case Study.

    ERIC Educational Resources Information Center

    Gose, Frank J.

    Data administration (DA) is a position that has emerged with the growth of information technologies. A review of DA literature confirms that, although DA is widely associated with database management systems (DBMS), there is no standard DA job description, DA staffing and location within the organization vary, and DA functions range in description…

  2. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.

    PubMed

    Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972

  3. Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China

    PubMed Central

    Cao, Chunxiang; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun

    2016-01-01

    Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972

  4. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  5. Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data

    NASA Astrophysics Data System (ADS)

    Athayde Pinto, Carolina de; Paradella, Waldir Renato; Mura, José Claudio; Gama, Fabio Furlan; Ribeiro dos Santos, Athos; Silva, Guilherme Gregório; Hartwig, Marcos Eduardo

    2015-01-01

    The Azul mining complex, located in the Carajás Mineral Province, Amazon region, encompasses the most important manganese mine in Brazil. Vale S.A. company operates three simultaneous open pit excavations (mines 1, 2, and 3) in the area, which are conducted on rock alteration products of low geomechanical quality related to sandstones, siltstones, and a lateritic cover. In order to monitor ground deformation, 33 TerraSAR-X (TSX-1) StripMap images covering the period of March 2012-April 2013 were used in the investigation. An advanced differential interferometric synthetic aperture radar (A-DInSAR) approach based on persistent scatterer interferometry (PSI) using an interferometric point target analysis algorithm was applied, and the results showed that most of the area was considered stable during the time span of the synthetic aperture radar acquisitions. However, persistent scatterers (PS) with high deformation rates were mapped over a waste pile, probably related to settlements, and also along the north flank of mine 1, indicative of cut slope movements toward the center of the pit. A spatial relationship of geological structures with PS was observed for this sector of the mine, given by PS showing deformation rates concentrated along a structural corridor with faults, fractures, and folds related to the Carajás fault system. Though only ground-based radar measurements for wall benches of mine 1 were available for a short time period of the TSX-1 coverage, the PS movement patterns showed concordance with geotechnical field measurements. The investigation emphasized the important role that satellite-based A-DInSAR can play for deformation monitoring and risk assessment in this kind of mining area.

  6. Magnitude and extent of land subsidence in central Mexico revealed by regional InSAR ALOS time-series survey

    NASA Astrophysics Data System (ADS)

    Chaussard, Estelle; Amelung, Falk; Wdowinski, Shimon; Cabral-Cano, Enrique

    2013-04-01

    The societal impacts of land subsidence are colossal, both in terms of decrease in water resources and in threat to human life due to buildings damages and increase in flood risk from rivers. Most subsidence surveys in Mexico focus on Mexico City, known to subside since the 1950s, while a few studies have documented the occurrence of land subsidence in other medium to large-seized cities of central Mexico. However, because most works target one single city, they fail to reveal the bigger picture. Here we use Interferometric Synthetic Aperture Radar (InSAR) time-series analysis of ALOS L-band SAR data to resolve land subsidence in an area of 200,000 km2 in central Mexico. We processed over 600 SAR images acquired between 2007-2011 and produced over 3000 interferograms. The data reveal significant subsidence in seventeen cities, including sixteen with over 100, 000 inhabitants and allow mapping of subsidence with high spatial and temporal resolutions. Land subsidence is detected, from east to west, in Puebla (population of 2.5 million), Mexico city (population of 21 million), Toluca de Lerdo (population of 427K), Queretaro (population of 825K), San Luis de la Paz (population of 101K), Celaya (population of 266K), San Luis Potosi (population of 936K), Morelia (population of 537K), Salamanca (population of 144K), Irapuato (population of 317K), Silao (population of 147K), Leon (population of 1.4 million), Aguascalientes (population of 735K), Zamora de Hidalgo (population of 186K), Guadalajara (population of 3.8 million), Ahuacatlan (population of 6.5K), and Tepic (population of 261K). We additionally identify subsidence in 3 agricultural areas outside major urban centers: 20 km southwest of the city of San Luis de la Paz, south of Villa de Reyes (40 km south of San Luis Potosi), and west of villa de Arista (50 km north of San Luis Potosi). The time-series suggest nearly constant rates of subsidence at most the locations over the 2-years period spanned by the SAR

  7. 20 CFR 658.423 - Handling of other complaints by the Regional Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Handling of other complaints by the Regional Administrator. 658.423 Section 658.423 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Job Service...

  8. Towards "Biliteracy and Trilingualism" in Hong Kong (SAR): Problems, Dilemmas and Stakeholders' Views

    ERIC Educational Resources Information Center

    Li, David C. S.

    2009-01-01

    Despite the Hong Kong SAR (Special Administrative Region) government's determination to implement the "mother tongue education" policy amid strong social resistance one year after the handover, English remains a prestigious language in society. The need for Putonghua (Mandarin/Standard Chinese) is also increasing following ever-expanding trade and…

  9. 20 CFR 658.702 - Initial action by the Regional Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Initial action by the Regional Administrator... investigation shall be extended 20 additional working days. (e) If the Regional Administrator determines that... MSFW Monitor Advocate. (f)(1) The State agency shall have 20 working days to comment on the...

  10. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  11. Detection of the Hebei Spirit oil spill on SAR imagery and its temporal evolution in a coastal region of the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Sung; Park, Kyung-Ae; Li, Xiaofeng; Lee, Moonjin; Hong, Sungwook; Lyu, Sang Jin; Nam, Sooyong

    2015-09-01

    To investigate the evolution of a disastrous oil spill from a vessel collision, known as the Hebei Spirit accident, off the coast of Korea in the Yellow Sea on 6 December 2007, oil slicks were identified from Synthetic Aperture Radar (SAR) images using a neural network (NN) and an adaptive threshold method. The results from the two objective methods showed good agreement, enough for the estimation of the extent of oil patches and their trajectories, with the exception of negligible errors at the boundaries. Quantitative analyses showed that the detected oil slicks moved southward, corresponding to the prevailing wind and tidal currents, and gradually dissipated during the spill, except for an extraordinary rapid decrease in onshore regions at the initial stage. The initial dissipation of the spilt oil was induced by tidal mixing in the tidal front zone. The spatial and temporal variations of the oil slicks confirmed the influence of atmospheric and oceanic environmental factors. The overall horizontal migration of the oil spills detected from consecutive SAR images was mainly driven by Ekman drift during the winter monsoon rather than the tidal residual current.

  12. Administration of Education in the Asian Region. Bulletin of the UNESCO Regional Office for Education in Asia, No. 15.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    This volume contains a series of articles describing the management of education in various countries of the Asian region and discussing a few of the regional problems. Many of these problems are the result of old administrative machinery trying to cope with growth in the size and complexity of education and with a new view of education as a key…

  13. 23. OVERVIEW OF SAR3 AREA, SHOWING CORNER OF SAR3 WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. OVERVIEW OF SAR-3 AREA, SHOWING CORNER OF SAR-3 WITH TAILRACE, ADMINISTRATIVE OFFICE, TOILET SHED, AND RETAINING WALLS AT FORMER EMPLOYEE HOUSING SITE. VIEW TO SOUTHEAST. PANORAMA 1/2. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  14. Segmentation Of Multifrequency, Multilook SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald; Chellappa, Rama

    1993-01-01

    Segmentation of multifrequency, multilook synthetic-aperture radar (SAR) image intensity data into regions, within each of which backscattering characteristics of target scene considered homogeneous, enhanced by use of two statistical models. One represents statistics of multifrequency, multilook speckled intensities of SAR picture elements; other represents statistics of labels applied to regions into which picture elements grouped. Each region represents different type of terrain, terrain cover, or other surface; e.g., forest, agricultural land, sea ice, or water. Segmentation of image into regions of neighboring picture elements accomplished by method similar to that described in "Algorithms For Segmentation Of Complex-Amplitude SAR Data" (NPO-18524).

  15. Establishment of nature reserves in administrative regions of mainland China.

    PubMed

    Guo, Ziliang; Cui, Guofa

    2015-01-01

    Nature reserves are widely considered as one available strategy for protecting biodiversity, which is threatened by habitat fragmentation, and wildlife extinction. The Chinese government has established a goal of protecting 15% of its land area by 2015. We quantitated the characteristics and distribution of nature reserves in mainland China and evaluated the expansion process for national nature reserves. National nature reserves occupy 64.15% of the total area of nature reserves. Steppe and meadow ecosystem, ocean and seacoast ecosystem, and wild plant nature reserves represent lower percentages, particularly in national nature reserves, in which they comprised 0.76%, 0.54%, and 0.69%, respectively, of the area. Furthermore, medium and small nature reserves compose 92.32% of all nature reserves. The land area under any legal protection has reached 14.80%, although only 9.78% is strictly protected. However, if 9 super-large national nature reserves, located in Southwest and Northwest China were removed, the percentage of strictly protected area decreases to 2.66% of the land area of China. The areas contained in nature reserves in each province are not proportional to the areas of the provinces, particularly for national nature reserves, with higher protection rates in Southwest and Northwest China than in other regions. Of the 31 provinces, 22 provinces feature strict protection of less than 4% of their areas by national nature reserves; these provinces are mainly located in East, Central, South, and North China. Moreover, the unevenness indexes of the distribution of nature reserves and national nature reserves are 0.39 and 0.58, respectively. The construction of nature reserves has entered a steady development stage after a period of rapid expansion in mainland China. In recent years, the total area of national nature reserves has increased slowly, while the total area of nature reserves has not increased, although the number of nature reserves continues

  16. Establishment of Nature Reserves in Administrative Regions of Mainland China

    PubMed Central

    Guo, Ziliang; Cui, Guofa

    2015-01-01

    Nature reserves are widely considered as one available strategy for protecting biodiversity, which is threatened by habitat fragmentation, and wildlife extinction. The Chinese government has established a goal of protecting 15% of its land area by 2015. We quantitated the characteristics and distribution of nature reserves in mainland China and evaluated the expansion process for national nature reserves. National nature reserves occupy 64.15% of the total area of nature reserves. Steppe and meadow ecosystem, ocean and seacoast ecosystem, and wild plant nature reserves represent lower percentages, particularly in national nature reserves, in which they comprised 0.76%, 0.54%, and 0.69%, respectively, of the area. Furthermore, medium and small nature reserves compose 92.32% of all nature reserves. The land area under any legal protection has reached 14.80%, although only 9.78% is strictly protected. However, if 9 super-large national nature reserves, located in Southwest and Northwest China were removed, the percentage of strictly protected area decreases to 2.66% of the land area of China. The areas contained in nature reserves in each province are not proportional to the areas of the provinces, particularly for national nature reserves, with higher protection rates in Southwest and Northwest China than in other regions. Of the 31 provinces, 22 provinces feature strict protection of less than 4% of their areas by national nature reserves; these provinces are mainly located in East, Central, South, and North China. Moreover, the unevenness indexes of the distribution of nature reserves and national nature reserves are 0.39 and 0.58, respectively. The construction of nature reserves has entered a steady development stage after a period of rapid expansion in mainland China. In recent years, the total area of national nature reserves has increased slowly, while the total area of nature reserves has not increased, although the number of nature reserves continues

  17. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  18. SiSAR: advanced SAR simulation

    NASA Astrophysics Data System (ADS)

    Klaus, Ferdinand

    1995-11-01

    SiSAR was planned as a realistic as possible, modular, user-friendly and fast SAR raw data simulator running on ordinary workstations. Interest in (interferometric) SAR products is growing on an international scale. There is a concentration of manpower and financial resources. Dead ends, respectively failures, have to be avoided during design and mission of every SAR project by simulating the system thoroughly before the experiment. Another reason to make use of extensive reproducible simulations during design and development is the reduction of time and manpower costs. As it comes down to verifying and comparing different processing algorithms we see that (interferometric) SAR simulation is an indispensable tool for testing individual processing steps. SiSAR is a modular SAR raw data simulator for realistic description of the functions of a SAR-system. It contains an implementation of diverse models to characterize radar targets, various approaches to describe the trajectory and the motion of the footprint on the target surface and different raw data formation algorithms. Beyond there is a wide supply of tools for manipulation, analysis and user-friendly simulation handling. Results obtained by SiSAR and some first simulated interferometric SAR raw data are shown in the paper.

  19. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.

    2012-12-01

    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and

  20. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  1. Severe acute respiratory syndrome (SARS)

    MedlinePlus

    ... when the virus spread from small mammals in China. When someone with SARS coughs or sneezes, infected ... causes SARS include: Antibody tests for SARS Direct isolation of the SARS virus Rapid polymerase chain reaction ( ...

  2. An Assessment of the Altimetric Information Derived from Spaceborne SAR (RADARSAT-1, SRTM3) and Optical (ASTER) Data for Cartographic Application in the Amazon Region

    PubMed Central

    de Oliveira, Cleber Gonzales; Paradella, Waldir Renato

    2008-01-01

    ASTER DEMs. Despite showing systematic errors, the findings justify the usage of SRTM3 as a primary elevation source for semi-detailed topographic mapping in the region. It is suggested a combination of altimetry derived for SRTM3 and planimetry extracted from high-resolution SAR (ALOS/PALSAR, TerraSAR-X, RADARSAT-2) or if available optical data for semi-detailed topographic mapping programs in the Brazilian Amazon, where terrain information is seldom available or presents low quality.

  3. Surface transport detected by pairs of COSMO-SkyMed ScanSAR images in the Qingdao region (Yellow Sea) during a macro-algal bloom in July 2008

    NASA Astrophysics Data System (ADS)

    Ciappa, Achille; Pietranera, Luca; Coletta, Alessandro; Jiang, Xingwei

    2010-02-01

    In early summer 2008 an extended macro-algal bloom in the Qingdao coastal area caused the presence of huge algal aggregates at the sea surface clearly visible in SAR images. The event was observed by WideRegion ScanSAR data (X-band) acquired in July 2008 by the two currently operative COSMO-SkyMed satellites. The current constellation (two of four satellites operative by 2010) provides pairs of overlapping images with a time shift of 48 min, with a repeat time from 12 to 24 h. The full constellation will allow a peak daily acquisition capability of 24 min in the ScanSAR mode. The double acquisition with a short time lag, similar to a time derivative in the overlapping area, allows an accurate 'feature tracking' and automated extraction of the surface transport not previously available. Considering that SAR images are unaffected by cloud cover, accurate surface transport patterns greatly improve the forecasting capability in the case of marine environmental emergencies.

  4. Quantifying the dynamics of water bodies, wetlands and biomass in the Poyang Lake region: A multi-polarization SAR remote sensing approach

    NASA Astrophysics Data System (ADS)

    Sang, Huiyong

    Field measurements were combined with synthetic aperture radar (SAR) images to evaluate the use of C-band multi-polarized radar remote sensing for estimating plant parameters (plant height, fresh biomass, dry biomass and vegetation water content) of wetland vegetation, and mapping the dynamics of water bodies, wetlands (natural wetlands and rice paddies) and flooding extents in the Poyang Lake region. The capacity of L-band SAR in land cover mapping was also investigated by integrating with optical imagery. Hydrological patterns in Poyang Lake are the dominant factor controlling the spatial and temporal variations of wetland species in Poyang Lake. Water levels in this region are primarily governed by five rivers (Ganjiang river, Xiushui river, Raohe river, Fuhe river, and Xinjiang river). Its northern region is also influenced by the backflow from Yangtze River. The above-ground total biomass increased steadily from March following the hydrological cycle. Wetland species colonizing at different altitudes were gradually flooded from late spring to summer. Carex spp. died during flooding periods and started another growth cycle in autumn after flooding receded. Canopy volume dominates the radar backscattering mechanism in Carex spp. wetlands during their growth period, but the temporal variation of radar backscatter from these wetlands is mainly influenced by flooding. Tall wetland species (Miscanthus sacchariflorus, Phragmites communis Trin., and others) still emerged above water surfaces during flooding peaks and started to senesce in autumn. Surface backscattering mechanism is dominant during the early growing stage and the senescent period of tall vegetation. Plant canopy variation controlled the temporal dynamics of radar backscatters from Phragmites communis Min. Radar backscattering mechanisms from Miscanthus sacchariflorus wetlands were more complicated during the flooding periods. The variations of ground water depth and plant structure of Miscanthus

  5. Age-specific prevalence of hepatitis B virus infection in young pregnant women, Hong Kong Special Administrative Region of China

    PubMed Central

    Sahota, Daljit S; Law, Lai-Wa; Cheng, Yvonne KY; Leung, Tak-Yeung

    2014-01-01

    Abstract Objective To investigate the age-specific prevalence of hepatitis B virus (HBV) infection in young pregnant women in Hong Kong Special Administrative Region (SAR), China, and to determine whether an increase in prevalence occurs during adolescence. Methods HBV prevalence was quantified using data from routine antenatal screening for hepatitis B surface antigen (HBsAg) in 10 808 women aged 25 years or younger born in Hong Kong SAR and managed at a single hospital between 1998 and 2011. The effect on prevalence of maternal age, parity and birth before or after HBV vaccine availability in 1984 was assessed, using Spearman’s correlation and multiple logistic regression analysis. Findings Overall, 7.5% of women were HBsAg-positive. The prevalence ranged from 2.3% to 8.4% in those aged ≤ 16 and 23 years, respectively. Women born in or after 1984 and those younger than 18 years of age were less likely to be HBsAg-positive (odds ratio, OR: 0.679; 95% confidence interval, CI: 0.578–0.797) and (OR: 0.311; 95% CI: 0.160–0.604), respectively. For women born before 1984, there was no association between HBsAg carriage and being younger than 18 years of age (OR: 0.60; 95% CI: 0.262–1.370) Logistic regression analysis showed that the prevalence of HBsAg carriage was influenced more by the woman being 18 years old or older (adjusted OR, aOR: 2.80; 95% CI: 1.46–5.47) than being born before 1984 (aOR: 1.42; 95% CI: 1.21–1.67). Conclusion Immunity to HBV in young pregnant women who had been vaccinated as neonates decreased in late adolescence. PMID:25378739

  6. 20 CFR 658.422 - Handling of non-JS-related complaints by the Regional Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to 29 CFR part 42. (b) Upon referring the complaint in accordance with paragraph (a) of this section... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Handling of non-JS-related complaints by the Regional Administrator. 658.422 Section 658.422 Employees' Benefits EMPLOYMENT AND TRAINING...

  7. 40 CFR 145.25 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Memorandum of Agreement with the Regional Administrator. 145.25 Section 145.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE UIC PROGRAM REQUIREMENTS State Program Submissions § 145.25 Memorandum of Agreement with the...

  8. 40 CFR 145.25 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Memorandum of Agreement with the Regional Administrator. 145.25 Section 145.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... program, including: (i) Provisions for coordination of compliance monitoring activities by the State...

  9. Institutional Innovation and Public Extension Services Provision: The Marche Regional Administration Reform in Central Italy

    ERIC Educational Resources Information Center

    Pascucci, Stefano; De Magistris, Tiziana

    2011-01-01

    This paper describes how Marche Regional Administration (MRA) introduced an innovative institutional reform of an Agricultural Knowledge and Information System (AKIS) in central Italy. In order to study the main features of the MRA reform we used a methodological approach based on three steps: (i) first we applied a desk analysis to sketch the…

  10. 40 CFR 123.24 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... review of permits for discharges of non-process wastewater may be waived regardless of flow. (e) Whenever...); (4) Discharges from publicly owned treatment works with a daily average discharge exceeding 1 million... proposed permits that the State will send to the Regional Administrator for review, comment and,...

  11. 40 CFR 123.24 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... review of permits for discharges of non-process wastewater may be waived regardless of flow. (e) Whenever...); (4) Discharges from publicly owned treatment works with a daily average discharge exceeding 1 million... proposed permits that the State will send to the Regional Administrator for review, comment and,...

  12. 40 CFR 123.24 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... review of permits for discharges of non-process wastewater may be waived regardless of flow. (e) Whenever...); (4) Discharges from publicly owned treatment works with a daily average discharge exceeding 1 million... proposed permits that the State will send to the Regional Administrator for review, comment and,...

  13. 40 CFR 123.24 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... review of permits for discharges of non-process wastewater may be waived regardless of flow. (e) Whenever...); (4) Discharges from publicly owned treatment works with a daily average discharge exceeding 1 million... proposed permits that the State will send to the Regional Administrator for review, comment and,...

  14. 40 CFR 123.24 - Memorandum of Agreement with the Regional Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regional Administrator. 123.24 Section 123.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE PROGRAM REQUIREMENTS State Program Submissions § 123.24 Memorandum of... authorized by EPA to issue permits in accordance with § 123.23(b) on the Federal Indian reservation of...

  15. SAR Product Control Software

    NASA Astrophysics Data System (ADS)

    Meadows, P. J.; Hounam, D.; Rye, A. J.; Rosich, B.; Börner, T.; Closa, J.; Schättler, B.; Smith, P. J.; Zink, M.

    2003-03-01

    As SAR instruments and their operating modes become more complex, as new applications place more and more demands on image quality and as our understanding of their imperfections becomes more sophisticated, there is increasing recognition that SAR data quality has to be controlled more completely to keep pace. The SAR product CONtrol software (SARCON) is a comprehensive SAR product control software suite tailored to the latest generation of SAR sensors. SARCON profits from the most up-to-date thinking on SAR image performance derived from other spaceborne and airborne SAR projects and is based on the newest applications. This paper gives an overview of the structure and the features of this new software tool, which is a product of a co-operation between teams at BAE SYSTEMS Advanced Technology Centre and DLR under contract to ESA (ESRIN). Work on SARCON began in 1999 and is continuing.

  16. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  17. Coastal Sea Level From CRYOSAT-2 SAR and SAR-In Altimetry

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Knudsen, P.; Stenseng, L.

    2014-12-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using bor SAR-altimetry and SAR-In altimetry. With this technological leap forward Cryosat-2 is now able to observe sea level in very small water bodies and also to provide coastal sea level very close to the shore. We perform an investigation into the retrieval of sea surface height around Denmark and Greenland. These regions have been chosen as the coastal regions around Denmark falls within the SAR mask and the coastal regions of Greenland falls in under the SAR-in mask employed on Cryosat-2. SAR-in was mainly used in coastal regions of Greenland because of its huge topographic changes as Cryosat-2 is designed to map the margins of the ice-sheet. The coastal region around Denmark is a test region of the EU FP7 sponsored project LOTUS esablishing SAR altimetry product in preparation for Sentinel-3. With the increased spatial resolution of Cryosat-2 SAR we provide valuable sea level observations within the Straits around Denmark which are crucial to constrain the waterflow in and out of the Baltic Sea. The investigation of SAR-in data in Greenland adds an entire new dimension to coastal altimetry. An amazing result of the investigation is the ability of Cryosat-2 to detect and recover sea level even though the coast (sealevel) is up to 15 km away from the nadir location of the satellite. This ability of capture and use returns from outside the main (-3Db) loop in theory enables Cryosat-2 SAR-in to map sea level height of fjords more frequently than the 369 days repeat.

  18. Derivation of soil moisture and snow wetness from satellite SAR images over a permafrost region in interior Alaska

    NASA Astrophysics Data System (ADS)

    Adewuyi, Adeniyi Abiodun

    The empirically adopted integral equation model (EA-IEM) was implemented for soil moisture and snow wetness derivations from active microwave data under bare soil or pure snow cover and sparsely vegetated conditions in the permafrost region. Since the permafrost region consists of land mixed with snow cover, MODIS image was used as a reference to separate the original backscattering coefficient radar image into soil and snow backscattering coefficient subimages. The EA-IEM provides simplified mathematical expressions to calculate the soil and snow dielectric constants. A sensitivity analysis was performed and then the range of model parameters for snow wetness retrieval was determined. The Newton-Rhapson iteration was used to generate the calibrated surface root-mean-square (rms) height and calibrated correlation length by using the absolute difference between the retrieved volumetric soil moisture from the backscattering coefficient of RADARSAT-1 (a Canadian satellite radar sensor) and the measured volumetric soil moisture. The absolute difference is less than the threshold value set to be 106. In this study, two empirical roughness models were developed that allow for the parameterization of the soil surface roughness. The first empirical roughness model was established between the calibrated correlation length values and the backscattering coefficient observations, while the second model was implemented between the calibrated surface RMS height values and the backscattering coefficient values. Further incorporating these two empirical roughness models into the EA-IEM provides a robust way of retrieving volumetric liquid water content (LWC) over a large area. Liquid water content is then calculated from the radar backscattering coefficient without iteration. Four strategies were adopted to calibrate and validate the derived volumetric liquid water content data at two NCRS-SCAN sites: Nenana and Ward Farm in Alaska, USA. The first strategy combined the two data

  19. Regional Design Approach in Designing Climatic Responsive Administrative Building in the 21st Century

    NASA Astrophysics Data System (ADS)

    Haja Bava Mohidin, Hazrina Binti; Ismail, Alice Sabrina

    2015-01-01

    The objective of this paper is to explicate on the study of modern administrative building in Malaysia which portrays regional design approach that conforms to the local context and climate by reviewing two case studies; Perdana Putra (1999) and former Prime Minister's Office (1967). This paper is significant because the country's stature and political statement was symbolized by administrative building as a national icon. In other words, it is also viewed as a cultural object that is closely tied to a particular social context and nation historical moment. Administrative building, therefore, may exhibit various meanings. This paper uses structuralism paradigm and semiotic principles as a methodological approach. This paper is of importance for practicing architects and society in the future as it offers new knowledge and understanding in identifying the suitable climatic consideration that may reflect regionalist design approach in modern administrative building. These elements then may be adopted in designing public buildings in the future with regional values that are important for expressing national culture to symbolize the identity of place and society as well as responsive to climate change.

  20. Precursory deformation and depths of magma storage revealed by regional InSAR time series surveys: example of the Indonesian and Mexican volcanic arcs

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2012-12-01

    Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1

  1. School-Site Administrators: A California County and Regional Perspective on Labor Market Trends. Issues & Answers. REL 2010-No. 084

    ERIC Educational Resources Information Center

    White, Melissa Eiler; Fong, Anthony B.; Makkonen, Reino

    2010-01-01

    This study explores the differences among California's counties and regions in their needs for new school-site administrators in the coming decade, as driven by a combination of projected administrator retirements and projected student enrollment changes. The projected need for new school-site administrators, based solely on these combined…

  2. Cryosat-2 SAR and SAR-In Altimetry for Coastal Sea Level

    NASA Astrophysics Data System (ADS)

    Baltazar Andersen, Ole; Knudsen, Per; Abulaitijiang, Adil; Stenseng, Lars

    2015-04-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry as well as SAR altimetry. With this technological leap forward Cryosat-2 is now able to observe sea level in very small water bodies and also to provide coastal sea level very close to the shore. We perform an investigation into the retrieval of sea surface height around Denmark and Greenland. These regions have been chosen as the coastal regions around Denmark falls within the SAR mask and the coastal regions of Greenland falls in under the SAR-in mask employed on Cryosat-2. SAR-in was mainly used in coastal regions of Greenland because of its huge topographic changes as Cryosat-2 is designed to map the margins of the ice-sheet. The coastal region around Denmark is a test region of the EU sponsored project LOTUS in which With the increased spatial resolution of Cryosat-2 SAR we provide valuable sea level observations within the Straits around Denmark which are crucial to constrain the waterflow in and out of the Baltic Sea. The investigation of SAR-in data in Greenland adds an entire new dimension to coastal altimetry. An amazing result of the investigation is the ability of Cryosat-2 to detect and recover sea level even though the coast (sealevel) is up to 15 km away from the nadir location of the satellite. This ability of capture and use returns from outside the main (-3Db) loop in theory enables Cryosat-2 SAR-in to map sea level height of fjords more frequently than the 369 days repeat.

  3. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions

    NASA Astrophysics Data System (ADS)

    Cutler, M. E. J.; Boyd, D. S.; Foody, G. M.; Vetrivel, A.

    2012-06-01

    Quantifying the above ground biomass of tropical forests is critical for understanding the dynamics of carbon fluxes between terrestrial ecosystems and the atmosphere, as well as monitoring ecosystem responses to environmental change. Remote sensing remains an attractive tool for estimating tropical forest biomass but relationships and methods used at one site have not always proved applicable to other locations. This lack of a widely applicable general relationship limits the operational use of remote sensing as a method for biomass estimation, particularly in high biomass ecosystems. Here, multispectral Landsat TM and JERS-1 SAR data were used together to estimate tropical forest biomass at three separate geographical locations: Brazil, Malaysia and Thailand. Texture measures were derived from the JERS-1 SAR data using both wavelet analysis and Grey Level Co-occurrence Matrix methods, and coupled with multispectral data to provide inputs to artificial neural networks that were trained under four different training scenarios and validated using biomass measured from 144 field plots. When trained and tested with data collected from the same location, the addition of SAR texture to multispectral data showed strong correlations with above ground biomass (r = 0.79, 0.79 and 0.84 for Thailand, Malaysia and Brazil respectively). Also, when networks were trained and tested with data from all three sites, the strength of correlation (r = 0.55) was stronger than previously reported results from the same sites that used multispectral data only. Uncertainty in estimating AGB from different allometric equations was also tested but found to have little effect on the strength of the relationships observed. The results suggest that the inclusion of SAR texture with multispectral data can go someway towards providing relationships that are transferable across time and space, but that further work is required if satellite remote sensing is to provide robust and reliable

  4. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  5. UAVSAR: InSAR and PolSAR Test Bed for the Proposed NI-SAR Mission

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Hensley, S.; Lou, Y.

    2014-12-01

    UAVSAR, which first became operational in 2009, has served as an operational testbed for the NI-SAR L-band radar concept and a unique instrument in its own right. UAVSAR supports a broad array of basic and applied geoscience, covering on smaller scale all the disciplines NI-SAR would be able to address on a global scale. Although designed specifically to provide high accuracy repeated flight tracks and precise imaging geometry for InSAR-based solid earth studies, its fully polarimetric operation, low noise, and consistent calibration accuracy has made it a premier instrument for PolSAR-based studies also. Since 2009 it has successfully imaged more than 16 million km2 and >4300 quad-polarimetric data products are now publicly available online. Upgrades made in the last year to automate the repeat track processing serve as a model for generating large volumes of InSAR products: Since January 2014 more than 700 interferometric products have been released, exceeding the output of all previous years combined. Standardly available products now include browse images of all InSAR acquisitions and coregistered single-look complex image stacks suitable for standard time series analysis. Here we present an overview of the wide range of studies utilizing UAVSAR data including those based on polarimetry and pair-wise and times series interferometry, highlighting both the unique capabilities of UAVSAR and the ways in which NI-SAR would be able to dramatically extend the capabilities. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. The Staphylococcus aureus Protein-Coding Gene gdpS Modulates sarS Expression via mRNA-mRNA Interaction

    PubMed Central

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng

    2015-01-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5′ untranslated region (5′UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. PMID:26056387

  7. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  8. Multi-Temporal SAR Interferometry for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Narayan, A. B.; Tiwari, A.; Dikshit, O.; Singh, A. K.

    2016-06-01

    In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  9. A comparative evaluation of SAR and SLAR

    SciTech Connect

    Mastin, G.A.; Manson, J.J.; Bradley, J.D.; Axline, R.M.; Hover, G.L.

    1993-11-01

    Synthetic aperture radar (SAR) was evaluated as a potential technological improvement over the Coast Guard`s existing side-looking airborne radar (SLAR) for oil-spill surveillance applications. The US Coast Guard Research and Development Center (R&D Center), Environmental Branch, sponsored a joint experiment including the US Coast Guard, Sandia National Laboratories, and the Naval Oceanographic and Atmospheric Administration (NOAA), Hazardous Materials Division. Radar imaging missions were flown on six days over the coastal waters off Santa Barbara, CA, where there are constant natural seeps of oil. Both the Coast Guard SLAR and the Sandia National Laboratories SAR were employed to acquire simultaneous images of oil slicks and other natural sea surface features that impact oil-spill interpretation. Surface truth and other environmental data were also recorded during the experiment. The experiment data were processed at Sandia National Laboratories and delivered to the R&D Center on a computer workstation for analysis by experiment participants. Issues such as optimal spatial resolution, single-look vs. multi-look SAR imaging, and the utility of SAR for oil-spill analysis were addressed. Finally, conceptual design requirements for a possible future Coast Guard SAR were outlined and evaluated.

  10. Possible SARS Coronavirus Transmission during Cardiopulmonary Resuscitation

    PubMed Central

    Loutfy, Mona; McDonald, L. Clifford; Martinez, Kenneth F.; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L.; Mederski, Barbara; Green, Karen; Low, Donald E.

    2004-01-01

    Infection of healthcare workers with the severe acute respiratory syndrome–associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control. PMID:15030699

  11. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... REGULATIONS (CONTINUED) GENERAL Environmental Program Pt. 1940, Subpt. G, Exh. J Exhibit J to Subpart G of Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's...

  12. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... REGULATIONS (CONTINUED) GENERAL Environmental Program Pt. 1940, Subpt. G, Exh. J Exhibit J to Subpart G of Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's...

  13. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... REGULATIONS (CONTINUED) GENERAL Environmental Program Pt. 1940, Subpt. G, Exh. J Exhibit J to Subpart G of Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's...

  14. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... REGULATIONS (CONTINUED) GENERAL Environmental Program Pt. 1940, Subpt. G, Exh. J Exhibit J to Subpart G of Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's...

  15. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... REGULATIONS (CONTINUED) GENERAL Environmental Program Pt. 1940, Subpt. G, Exh. J Exhibit J to Subpart G of Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's...

  16. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  17. Segmentation Of Multifrequency Complex-Amplitude SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Chellappa, Ramalingam

    1994-01-01

    Several mathematical models and associated algorithms implement method of segmenting multifrequency, highly speckled, high-resolution, complex-amplitude (amplitude and phase) synthetic-aperture-radar (SAR) digitized image into regions, within each of which radar backscattering characteristics are similar or homogeneous from place to place. Typically, each region represents different type of terrain or other surface; e.g., forest, agricultural land, sea ice, or water. Method of segmentation of SAR scene into regions is product of generalization, to multifrequency case, of single-frequency method described in "Algorithms for Segmentation of Complex-Amplitude SAR Data" (NPO-18524).

  18. Measurement of Sinkhole Formation and Progression with InSAR

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Blom, R. G.

    2013-12-01

    The Bayou Corne Sinkhole initially formed in August 2012 from sidewall collapse of a brine cavern within the Napoleonville Salt Dome in southeastern Louisiana. The sinkhole, initially ~1 hectare in size, has expanded to ~10 hectare surface coverage by July 2013, as material continued to fill the subterranean void. Here we show that synthetic aperture radar (SAR) interferometry (InSAR) could have reliably forecast the formation and location of the Bayou Corne Sinkhole at least a month in advance from the large precursory surface deformation that occurred in the area where the sinkhole later formed. The Mississippi delta region has been imaged since 2009 using the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), and radar data over the Napoleonville Salt Dome had been acquired on 2 July 2012, only a month before the sinkhole developed. Using radar interferometry, we show significant surface deformation of up to 250 mm occurred between 23 June 2011, and 2 July 2012, in an extended area encompassing the sinkhole site. The InSAR results show no measurable deformation prior to 23 June 2011. The measured precursory deformation pattern is consistent with compressive loading at the surface due to removal of support caused by a vertically oriented subsurface fracture. The measured strains relate directly to subsurface geology, salt rock properties, and internal stresses caused by the salt dome sidewall collapse. Measurements made with UAVSAR since the sinkhole formation, between August 2012 and July 2013, show progression of the surface deformation well beyond the limited extent of the sinkhole itself, with growth of the sinkhole following the direction of maximum surface deformation. These results show that even in radar-challenging environments such as the swamplands of Bayou Corne, L-band InSAR can be used to study the underlying geophysics of sinkhole formation and, furthermore, that InSAR data collected operationally for hazard monitoring could

  19. Previous Employment and Job Satisfaction Conditions: The Case of Regional Administration

    NASA Astrophysics Data System (ADS)

    Amalia, Myronaki; Nikolaos, Antonakas

    2009-08-01

    In the present work we study the different dimensions of satisfaction and the way of constitution of satisfaction of an important sample of the employees in the Regional administration of Crete and in their connection with the variable of the previous employment. We found statistically important differences for the components of satisfaction from the life, collaboration in and outside from the department, in the social satisfaction and the variable of the years in the service (labour group with <5 years in the service, group with 5-9 years in the service and labour group with 10-15 years in the service). The group with total few years in the work <5, presented smaller social and labour satisfaction than the other previous employment groups. In the other hand the group with many years in the service presents bigger satisfaction than the other groups. Finally, is important to note that the sample present some interesting characteristics.

  20. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  1. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from multi-year InSAR time series analysis and continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; D'Oreye, Nicolas; Smets, Benoît; Nobile, Adriano; Samsonov, Sergey; De Rauw, Dominique; Mashagiro, Niche; Kervyn, Francois

    2016-04-01

    The Kivu Region in Central Africa is a topographic dome cut by the depression of the western branch of the East African Rift, where the Nubia plate and the Victoria micro-plate are diverging by approximately 2-3 mm/yr (Stamps et al. 2008). Two closely spaced and frequently active volcanoes, Nyiragongo and Nyamulagira, are located at the plate boundary. Here, deformation signals from transient deformation events (i.e. earthquakes, eruptions, rifting episodes, intrusions or other subsurface mass movements) are intertwined with the more perpetual nature of inter-seismic strain accumulation and gradual magma accumulation. Here, we present deformation results from six years of operation of the 15- station KivuGNet (Kivu Geodetic Network) in the Kivu Region and multi-year InSAR time series of the region using the MSBAS approach (Samsonov & d'Oreye, 2012). Since 2009, KivuGNet has captured transient deformation from a) the 2010 eruption of Nyamulagira, b) the 2011-2012 eruption of Nyamulagira c) the Mw5.8 August 7, 2015 Katana earthquake at the western border of Lake Kivu. Importantly, the GPS data also show an ongoing deformation signal, which is most readily explained by long-term magma accumulation under the volcanic region. We use the GPS and InSAR deformation signals to constrain and compare source parameters of simplistic elastic models for the different time periods. Although not well constrained, most of the time periods indicate the presence of a deep (~15-30 km) magmatic source centered approximately under Nyamulagira or to the southeast of Nyamulagira, that inflates between eruptions and deflates during eruptions.

  2. SARS/avian coronaviruses.

    PubMed

    Monceyron Jonassen, C

    2006-01-01

    In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by

  3. Surface deformation in areas of abandoned mining: a case study of InSAR applied in the Northumberland region of the UK

    NASA Astrophysics Data System (ADS)

    Mccormack, Harry; Bateson, Luke; Banton, Carl; Holley, Rachel; Lawrence, David; Cigna, Francesca; Watson, Ian; Burren, Richard

    2013-04-01

    The United Kingdom has a rich history of coal mining probably dating back to Roman times, and this was a driving force behind the industrial revolution. Although the amount of mining has decreased significantly in recent years, the effects of mining on ground stability are widespread, complex and under-monitored. The Coal Authority is responsible for protecting the public and environment in coal mining areas. Particularly they are responsible for administering coal mining subsidence damage claims and preventing problems due to rising groundwater in old mining areas. Drawing on the expertise of Fugro NPA (FNPA) and the British Geological Survey (BGS), the aim of this project was to show how a wide-area ground stability dataset with associated geological interpretation could help the Coal Authority better administer their subsidence claims and groundwater management. This work was performed within the Terrafirma project. The study area chosen was the Northumberland and Durham coalfield where the last active mine closed in 2005. More than 20 seams have been mined and as depths increased this led to the need to pump water to prevent the mines from flooding. As the mines shut down the pumping stopped, causing the water level to rise and recover. Using interferometric synthetic aperture radar (InSAR) techniques FNPA produced a surface deformation dataset which was interpreted by BGS to add value in the form of geological interpretation. The dataset covers two epochs; 1995-2000 and 2002-2008. During the earlier epoch eight to nine 'hotspots' of subsidence were identified, mainly in the south of the study area. All but one of the subsidence areas shows a strong spatial correlation with areas of past mining. However there is a discrepancy in the timing of InSAR deformations and the timing of subsidence that would be expected given the type of workings. It is suspected that the spatial and temporal pattern of deformation relates not only to material extraction but also to

  4. Ship detection in SAR images using efficient land masking methods

    NASA Astrophysics Data System (ADS)

    Mashaly, Ahmed S.; AbdElkawy, Ezz F.; Mahmoud, Tarek A.

    2014-06-01

    Synthetic Aperture Radar (SAR) has an important contribution in monitoring ships in the littoral regions. This stems from the substantial information that SAR images have which can facilitate the ships detection operation. Coastline images produced by SAR suffer from many deficiencies which arise from the presence of speckles and strong signals returned from land and rough sea. The first step in many ship detection systems is to mark and reject the land in SAR images (land masking). This is performed to reduce the number of false alarms that might be introduced if the land is processed by ship detector. In this paper, two powerful methods for land masking are introduced. One is based on mathematical morphology while the other is based on Lee-Jurkevich coastline detection and mean estimator algorithm. From experimental results, the proposed methods give promising results for both strongly marking the land area in SAR images and efficiently preserving the details of coastlines as well.

  5. SAR calibration: A technology review

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Politis, D. T.; Shuchman, R. A.

    1983-01-01

    Various potential applications of amplitude-calibrated SAR systems are briefly described, along with an estimate of calibration performance requirements. A review of the basic SAR calibration problem is given. For background purposes and to establish consistent definition of terms, various conventional SAR performance parameters are reviewed along with three additional parameters which are directly related to calibrated SAR systems. Techniques for calibrating a SAR are described. Included in the results presented are: calibration philosophy and procedures; review of the calibration signal generator technology development with results describing both the development of instrumentation and internal calibration measurements for two SAR systems; summary of analysis and measurements required to determine optimum retroreflector design and configuration for use as a reference for the absolute calibration of a SAR system; and summary of techniques for in-flight measurements of SAR antenna response.

  6. Brain regions mediating α3β4 nicotinic antagonist effects of 18-MC on nicotine self-administration.

    PubMed

    Glick, Stanley D; Sell, Elizabeth M; McCallum, Sarah E; Maisonneuve, Isabelle M

    2011-11-01

    18-Methoxycoronaridine (18-MC), a putative anti-addictive agent, has been shown to decrease the self-administration of several drugs of abuse in rats. 18-MC is a potent antagonist at α3β4 nicotinic receptors. Consistent with high densities of α3β4 nicotinic receptors being located in the medial habenula and the interpeduncular nucleus, 18-MC has been shown to act in these regions to decrease both morphine and methamphetamine self-administration. The present study was conducted to determine if 18-MC's effect on nicotine self-administration is mediated by acting in these same brain regions. Because moderate densities of α3β4 receptors occur in the dorsolateral tegmentum, ventral tegmental area, and basolateral amygdala, these brain areas were also examined as potential sites of action of 18-MC. Local administration of 18-MC into either the medial habenula, the basolateral amygdala or the dorsolateral tegmentum decreased nicotine self-administration. Surprisingly, local administration of 18-MC into the interpeduncular nucleus increased nicotine self-administration while local administration of 18-MC into the ventral tegmental area had no effect on nicotine self-administration. Similar effects were produced by local administration of either mecamylamine or conotoxin AuIB. These data are consistent with the hypothesis that 18-MC decreases nicotine self-administration by indirectly modulating the dopaminergic mesolimbic pathway via blockade of α3β4 nicotinic receptors in the medial habenula, basolateral amygdala, and dorsolateral tegmentum. The data also suggest that an action of 18-MC in the interpeduncular nucleus may attenuate aversive and/or depressive effects of nicotine. PMID:21871879

  7. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  8. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    USGS Publications Warehouse

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  9. Ethno-botanical survey of edible wild fruits in Benguet, Cordillera administrative region, the Philippines

    PubMed Central

    Chua-Barcelo, Racquel Tan

    2014-01-01

    Objective To conduct a survey on the common name/s, traditional uses and cultural importance of the edible wild fruits in different municipalities of Benguet, Cordillera administrative region. Methods Interviews using questionnaires with barangay leaders and indigenous people were conducted with 176 key informants from June 2011 to July 2013. Results A total of 36 fruit species were found in different municipalities of Benguet. These fruit species belong to 27 genera and 20 families. Among the 13 municipalities of Benguet, Kibungan has the highest number of species. There are many uses of wild fruits which ranged from food (snack/dessert/table food), forage (especially for birds, monkeys and wild animals such as cloud rat and grass eaters), offertory, processed/preserved (as jam, jellies, candies, juice and wine), condiment or ingredient (for cooking), source of dye or ink, decoration (to garnish food) and as medicine to common ailments or health problems. Based on the inventory and calculated cultural importance index, Garcinia binucao (balokok) belonging to Clusiaceae is the most abundant fruit, hence it is the commonly used fruit for various purposes such as food, forage, processing/preservation and condiment/ingredient; Vaccinium myrtoides (ayusip) for offerings and as source of dye/ink; Saurauia elegans (uyok) for decoration, and, Antidesma bunius (bugnay) for medicine. Conclusions Benguet province in the Cordillera region provides a diversity of edible wild fruits. The data gathered from the study signifies that collection, processing and utilization of edible wild fruits are still part of the daily activities of the people in Benguet. PMID:25183144

  10. Support of NASA quality requirements by defense contract administration services regions

    NASA Technical Reports Server (NTRS)

    Farrar, Hiram D.

    1966-01-01

    Defense Contract Administration Services Regions (DCASR) quality assurance personnel performing under NASA Letters of Delegation must work closely with the assigned technical representative of the NASA centers. It is realized that technical personnel from the NASA Centers cannot make on-site visits as frequently as they would like to. However, DCASR quality assurance personnel would know the assigned NASA technical representative and should contact him when problems arise. The technical representative is the expert on the hardware and should be consulted on any problem area. It is important that the DCASR quality assurance personnel recommend to the delegating NASA Center any new or improved methods of which they may be aware which would assist in achieving the desired quality and reliability in NASA hardware. NASA expects assignment of competent personnel in the Quality Assurance functional area and is not only buying the individual's technical skill, but also his experience. Suggestions by field personnel can many times up-grade the quality or the hardware.

  11. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  12. InSAR observations of localized deformation of volcanic deposits apparently triggered by regional earthquakes: Examples from Hawai`i and Lascar volcano, Chile

    NASA Astrophysics Data System (ADS)

    Jay, J.; Poland, M. P.; Pritchard, M. E.; Calder, E. S.; Whelley, P.; Pavez, A.

    2009-12-01

    We document that large earthquakes (e.g., Mw > 6.7) can induce surface deformation on volcanic deposits (lava and pyroclastic flows) using satellite interferometric synthetic aperture radar (InSAR) data. The observed deformation may provide clues to the material properties of the deposits or the subsurface, and to the intensity of ground shaking. InSAR data spanning 1993 to 2009 show long-term subsidence of the pyroclastic flow deposit from the 19-20 April 1993 eruption of Lascar volcano in northern Chile. We constructed 39 InSAR interferograms using data obtained from the JERS-1 (L-band), ERS-1 and -2 (C-band), and Envisat (C-band) radar satellites spanning the time intervals 1993-1994, 1995-2001, and 2003-2009, respectively. We remove topographic effects with the 3 m/pixel DEM of Pavez et al., (2005). Time periods of individual interferograms range from one month to four years. Rates of subsidence were highest immediately after emplacement and have decreased with time, a general trend that is consistent with a model of a rapidly de-aerating deposit followed by gradual sedimentary compaction. Over the time period covered by the available data, subsidence rates are seen to show two sudden, isolated increases that are concurrent with the 1995 Antofagasta earthquake (Mw 8.1) and the 2007 Tocopilla earthquake (Mw 7.7). The centers of both earthquakes are about 280 km from Lascar. In the two-month interferogram spanning the 1995 earthquake, the subsidence rate is ~2.4 cm/yr (extrapolating the 2 months to an entire year), an increase from the ~1.1 cm/yr subsidence rate observed from 1993 to 1994. Likewise, concurrent with the 2007 earthquake, a deformation pattern with a subsidence rate of ~2.3 cm/yr (again extrapolated to the entire year) is seen to reappear after 7 years of little to no deformation of the deposit (~0.2 cm/yr). This phenomenon suggests that shaking helps to accelerate/intensify the compaction by aiding grain reorientation into a more densely packed

  13. Numerical modeling of land subsidence due to groundwater withdrawal in Aguascalientes Valley using regional coefficients of deformation determined by InSAR analysis.

    NASA Astrophysics Data System (ADS)

    Pacheco, J.; Cabral, E.; Wdowinski, S.; Hernandez-Marin, M.; Ortíz, J. Á.; Solano Rojas, D. E.; Oliver-Cabrera, T.

    2014-12-01

    Land subsidence due to groundwater over-exploitation is a deformation process affecting many cities around the world. This type of subsidence develops gradual vertical deformations reaching only a few centimeters per year, but can affect large areas. Consequently, inhabitants of subsiding areas are not aware of the process until others effects are observed, such as ground surface faulting, damage to building, or changes in the natural superficial drain. In order to mitigate and forecast subsidence consequences, it is useful to conduct numerical modeling of the subsidence process. Modeling the subsidence includes the following three basic tasks: a) Delimitation of the shape of the deforming body; b) Determination of the forces that are causing the deformations; and c) Determination of the mechanical properties of the deforming body according with an accepted rheological model. In the case of a land subsidence process, the deforming body is the aquifer system that is being drained. Usually, stratigraphic information from pumping wells, and other geophysical data are used to define the boundaries and shape of the aquifer system. The deformation governing forces, or stresses, can be calculated using the theory of "effective stress". Mechanical properties are usually determined with laboratory testing of samples from shallow strata, because the determination of these properties in samples from the deepest strata is economically or technically unviable. Consequently, the results of the numerical modeling do not necessarily match the observed subsidence evolution and ground faulting. We present in this work numerical simulation results of the land subsiding of the Valley of Aguascalientes, Mexico. Two analyses for the same subsiding area are presented. In the first of them, we used the mechanical properties of only the shallow strata, whereas in the second analysis we used "macroscopic" mechanical properties data determined for the whole aquifer system using InSAR

  14. Occupational exposure assessment on an FM mast: electric field and SAR values.

    PubMed

    Valič, Blaž; Kos, Bor; Gajšek, Peter

    2012-01-01

    Electric field strengths normally exceed the reference levels for occupational exposure in close vicinity to large frequency modulation (FM) transmitters. Thus, a detailed investigation on compliance with basic restrictions is needed before any administrative protection measures are applied. We prepared a detailed numerical model of a 20-kW FM transmitter on a 32-m mast. An electrically isolated anatomical human model was placed in 3 different positions inside the mast in the region where the values of the electric field were highest. The electric field strengths in this region were up to 700 V/m. The highest calculated whole-body specific absorption rate (SAR) was 0.48 W/kg, whereas the maximum 10-g average SAR in the head and trunk was 1.66 W/kg. The results show that the reference levels in the FM frequency range are very conservative for near field exposure. SAR values are not exceeded even for fields 10 times stronger than the reference levels. PMID:22721534

  15. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  16. Polarization effects and multipolarization SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Imaging radar polarimeters are usually implemented using a Synthetic Aperture Radar (SAR) approach to give a high resolution image in two dimensions: range and azimuth. For each pixel in the image a polarimetric SAR gives sufficient information to characterize the polarimetric scattering properties of the imaged area (or target) as seen by the radar. Using a polarimetric SAR system as opposed to a single-polarization SAR system provides significantly more information about the target scattering mechanisms and allows better discrimination between different types of surfaces. In these notes a brief overview of SAR polarimetry is offered. The notes are intended as a text to accompany a lecture on SAR polarimetry as part of an AGARD-NATO course. Covered in the notes are the following: the polarization properties of electromagnetic waves; the concepts of radar scattering and measuring radar backscatter with a SAR; polarization synthesis; scattering matrix, Stokes matrix, and covariance matrix representations of polarimetric SAR data; polarization signature plots; design and calibration of polarimetric SAR systems; polarization filtering for target detection; fitting a simple model to polarimetric SAR measurements of naturally occurring features; and supervised classification of polarimetric SAR data.

  17. Understanding SARS with Wolfram approach.

    PubMed

    Li, Da-Wei; Pan, Yu-Xi; Duan, Yun; Hung, Zhen-De; Xu, Ming-Qing; He, Lin

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses. PMID:14732867

  18. Bistatic SAR: Proof of Concept.

    SciTech Connect

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  19. Continuous regional arterial infusion for acute pancreatitis: a propensity score analysis using a nationwide administrative database

    PubMed Central

    2013-01-01

    Introduction Although continuous regional arterial infusion (CRAI) of a protease inhibitor and an antibiotic may be effective in patients with severe acute pancreatitis, CRAI has not yet been validated in large patient populations. We therefore evaluated the effectiveness of CRAI based on data from a national administrative database covering 1,032 Japanese hospitals. Methods In-hospital mortality, length of stay and costs were compared in the CRAI and non-CRAI groups, using propensity score analysis to adjust for treatment selection bias. Results A total of 17,415 eligible patients with acute pancreatitis were identified between 1 July and 30 September 2011, including 287 (1.6%) patients who underwent CRAI. One-to-one propensity-score matching generated 207 pairs with well-balanced baseline characteristics. In-hospital mortality rates were similar in the CRAI and non-CRAI groups (7.7% vs. 8.7%; odds ratio, 0.88; 95% confidence interval, 0.44–1.78, P = 0.720). CRAI was associated with significantly longer median hospital stay (29 vs. 18 days, P < 0.001), significantly higher median total cost (21,800 vs. 12,600 United States dollars, P < 0.001), and a higher rate of interventions for infectious complications, such as endoscopic/surgical necrosectomy or percutaneous drainage (2.9% vs. 0.5%, P = 0.061). Conclusions CRAI was not effective in reducing in-hospital mortality rate in patients with acute pancreatitis, but was associated with longer hospital stay and higher costs. Randomized controlled trials in large numbers of patients are required to further evaluate CRAI for this indication. PMID:24088324

  20. EARSEC SAR processing system

    NASA Astrophysics Data System (ADS)

    Protheroe, Mark; Sloggett, David R.; Sieber, Alois J.

    1994-12-01

    Traditionally, the production of high quality Synthetic Aperture Radar imagery has been an area where a potential user would have to expend large amounts of money in either the bespoke development of a processing chain dedicated to his requirements or in the purchase of a dedicated hardware platform adapted using accelerator boards and enhanced memory management. Whichever option the user adopted there were limitations based on the desire for a realistic throughput in data load and time. The user had a choice, made early in the purchase, for either a system that adopted innovative algorithmic manipulation, to limit the processing time of the purchase of expensive hardware. The former limits the quality of the product, while the latter excludes the user from any visibility into the processing chain. Clearly there was a need for a SAR processing architecture that gave the user a choice into the methodology to be adopted for a particular processing sequence, allowing him to decide on either a quick (lower quality) product or a detailed slower (high quality) product, without having to change the algorithmic base of his processor or the hardware platform. The European Commission, through the Advanced Techniques unit of the Joint Research Centre (JRC) Institute for Remote Sensing at Ispra in Italy, realizing the limitations on current processing abilities, initiated its own program to build airborne SAR and Electro-Optical (EO) sensor systems. This program is called the European Airborne Remote Sensing Capabilities (EARSEC) program. This paper describes the processing system developed for the airborne SAR sensor system. The paper considers the requirements for the system and the design of the EARSEC Airborne SAR Processing System. It highlights the development of an open SAR processing architecture where users have full access to intermediate products that arise from each of the major processing stages. It also describes the main processing stages in the overall

  1. Assessing ScanSAR Interferometry for Deformation Studies

    NASA Astrophysics Data System (ADS)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    , we consider several vastly different study sites. Phoenix, Arizona is an urban area which is located in an arid region with very little vegetation. C-band data over Phoenix is generally coherent over 5+ years. ERS data collected through the 1990s is used to monitor land subsidence in and around the Phoenix metropolitan area. We contrast these measurements with both broad and narrow deformation features in the vegetated Houston, Texas and London, U.K. areas. We find that low resolution ScanSAR data can be used to detect narrow features with small spatial extent. Several additional interferograms demonstrate the general applicability of C-band ScanSAR interferometry to WInSAR community interests, e.g., the Hector Mine earthquake, aseismic fault motion and Long Valley and Yellowstone deformation over time. With the September 2006 implementation of a new burst synchronization strategy for Envisat, 90% of all ScanSAR acquisitions exhibit at least 50% burst overlap. Our results demonstrate that these new data can be successfully used for a number of InSAR applications.

  2. Office of Native American Public Administration Programs as Required by Four Corners Regional Commission. Final Report.

    ERIC Educational Resources Information Center

    Winchell, Dick G.; Esse, Robert J.

    Arizona State University's (ASU's) Native American Public Administration Program (NAPAP) increased its level of services to the Navajo Nation in 1980 and expanded opportunities for public administration education for Native Americans on the ASU campus. The 1980 program had three major components: coursework, workshops, and the activities made…

  3. The Impact of Leadership Styles of Special Education Administrators in Region 10 on Performance-Based Monitoring Analysis System

    ERIC Educational Resources Information Center

    Key, Gloria C.

    2009-01-01

    This study uncovered and analyzed the relationship between districts' percentage levels for special education identification, according to a state level measure, and leadership profiles of current special education administrators within Texas Region 10 school districts. The leadership profiles were measured using the Multifactor Leadership…

  4. 41 CFR 105-54.309 - Added responsibilities of service and staff office heads and regional administrators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Added responsibilities of service and staff office heads and regional administrators. 105-54.309 Section 105-54.309 Public... 54.3-Advisory Committee Procedures § 105-54.309 Added responsibilities of service and staff...

  5. 41 CFR 105-54.309 - Added responsibilities of service and staff office heads and regional administrators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Added responsibilities of service and staff office heads and regional administrators. 105-54.309 Section 105-54.309 Public... 54.3-Advisory Committee Procedures § 105-54.309 Added responsibilities of service and staff...

  6. 41 CFR 105-54.309 - Added responsibilities of service and staff office heads and regional administrators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Added responsibilities of service and staff office heads and regional administrators. 105-54.309 Section 105-54.309 Public... 54.3-Advisory Committee Procedures § 105-54.309 Added responsibilities of service and staff...

  7. 41 CFR 105-54.309 - Added responsibilities of service and staff office heads and regional administrators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Added responsibilities of service and staff office heads and regional administrators. 105-54.309 Section 105-54.309 Public... 54.3-Advisory Committee Procedures § 105-54.309 Added responsibilities of service and staff...

  8. 41 CFR 105-54.309 - Added responsibilities of service and staff office heads and regional administrators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Added responsibilities of service and staff office heads and regional administrators. 105-54.309 Section 105-54.309 Public... 54.3-Advisory Committee Procedures § 105-54.309 Added responsibilities of service and staff...

  9. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  10. Mass measles immunization campaign: experience in the Hong Kong Special Administrative Region of China.

    PubMed Central

    Chuang, Shuk Kwan; Lau, Yu Lung; Lim, Wei Ling; Chow, Chun Bong; Tsang, Thomas; Tse, Lai Yin

    2002-01-01

    After the 1988 measles outbreak, annual notification rates for measles in Hong Kong SAR between 1989 and 1999 were 0.4-4.9 per 100 000, with peaks in 1992, 1994 and 1997. The first half-year incidence rates per 100 000 were 2.3 in 1997, 0.5 in 1995 and 1.2 in 1996. Monthly notification rates increased from a baseline of <10 cases to 59 in May 1997. Serological surveillance showed only 85.5% of children aged 1-19 years had measles antibodies. An epidemic, mainly because of failure of the first dose to produce immunity, seemed imminent in mid-1997. A mass immunization campaign targeted children aged 1-19 from July to November 1997. The overall coverage was 77%. The rate of adverse events was low. After the campaign, measles notification fell to 0.9 per 100 000 in 1998. A two-dose strategy and supplementary campaigns will maintain measles susceptibility at levels low enough to make measles elimination our goal. PMID:12163924

  11. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    NASA Astrophysics Data System (ADS)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  12. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    NASA Astrophysics Data System (ADS)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  13. SAR based adaptive GMTI

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2010-04-01

    We consider ground moving target indication (GMTI) and target velocity estimation based on multi-channel synthetic aperture radar (SAR) images. Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Moreover, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. Adaptive beamforming techniques, including Capon and generalizedlikelihood ratio test (GLRT), are used to form velocity versus cross-range images for each range bin of interest. The velocity estimation ambiguities caused by the multi-channel array geometry are analyzed. We also demonstrate the effectiveness of our approaches using the Air Force Research Laboratory (AFRL) publicly-released Gotcha SAR based GMTI data set.

  14. Landslide Mapping Using SqueeSAR Data

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Bellotti, F.; Alberti, S.; Allievi, J.; Del Conte, S.; Tamburini, A.; Broccolato, M.; Ratto, S.; Alberto, W.

    2011-12-01

    SqueeSAR represents the most recent advancement of PSInSAR algorithm. By exploiting signal radar returns both from Permanent and Distributed Scatterers (PS and DS), it is able to detect millimetre displacements over long periods and large areas and to obtain a significant increase in the spatial density of ground measurement points. SqueeSAR analysis is complementary to conventional geological and geomorphological studies in landslide mapping over wide areas, traditionally based on aerial-photo interpretation and field surveys. However, whenever surface displacement rates are low (mm to cm per year), assessing landslide activity is difficult or even impossible without a long-term monitoring tool, as in the case of Deep-seated Gravitational Slope Deformations (DGSD), typically characterized by large areal extent and subtle surface displacement. The availability of surface displacement time series per each measurement point allows one to have both a synoptic overview, at regional scale, as well as an in depth characterization of the instability phenomena analyzed, a meaningful support to the design of traditional monitoring networks and the efficiency testing of remedial works. When data archives are available, SqueeSAR can also provide valuable information before the installation of any terrestrial measurement system. The Italian authorities increasing interest in the application of SqueeSAR as a standard monitoring tool to help hydrogeological risk assessment, resulted in a national project, Piano Straordinario di Telerilevamento (PST), founded by the Ministry of the Environment. The aim of the project was to create the first interferometric database on a national scale for mapping unstable areas. More than 12,000 ERS and ENVISAT radar scenes acquired over Italy were processed spanning the period 1992-2010, proving that, in less than ten years, radar interferometry has become a standard monitoring tool. Recently, many regional governments in Italy have applied

  15. Region-specific tolerance to cocaine-regulated cAMP-dependent protein phosphorylation following chronic self-administration.

    PubMed

    Edwards, Scott; Graham, Danielle L; Bachtell, Ryan K; Self, David W

    2007-04-01

    Chronic cocaine self-administration can produce either tolerance or sensitization to certain cocaine-regulated behaviours, but whether differential alterations develop in the biochemical response to cocaine is less clear. We measured cocaine-induced phosphorylation of multiple cAMP-dependent and -independent protein substrates in mesolimbic dopamine terminal regions following chronic self-administration. Changes in self-administering rats were compared to changes produced by passive yoked injection to identify reinforcement-related regulation, whereas acute and chronic yoked groups were compared to identify the development tolerance or sensitization in the biochemical response to cocaine. Microwave-fixed brain tissue was collected immediately following 4 h of intravenous cocaine administration, and subjected to Western blot analysis of phosphorylated and total protein substrates. Chronic cocaine produced region- and substrate-specific tolerance to cAMP-dependent protein phosphorylation, including GluR1(S845) phosphorylation in striatal and amygdala subregions and NR1(S897) phosphorylation in the CA1 subregion of the hippocampus. Tolerance also developed to cAMP-independent GluR1(S831) phosphorylation in the prefrontal cortex. In contrast, sensitization to presynaptic regulation of synapsin(S9) phosphorylation developed in the hippocampal CA3 subregion while cAMP-dependent tyrosine hydroxylase(S40) phosphorylation decreased in striatal dopamine terminals. Cocaine-induced ERK and CREB(S133) phosphorylation were dissociated in many brain regions and failed to develop either tolerance or sensitization with chronic administration. Positive reinforcement-related correlations between cocaine intake and protein phosphorylation were found only in self-administering animals, while negative dose-related correlations were found primarily with yoked administration. These regional- and substrate-specific adaptations in cocaine-induced protein phosphorylation are discussed in

  16. Educational Planning, Administration and Management in Asia and Pacific. A Regional Study.

    ERIC Educational Resources Information Center

    Ming, Cheng Kai

    Asia and the Pacific region is a vast area with a great variety of countries and territories in terms of economic development, political ideology, and cultural heritage. Education in the region is diverse both in terms of structure and policies, and of educational thoughts and practices in schools. The entire region has made considerable progress…

  17. Bayesian SAR imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhaofu; Tan, Xing; Xue, Ming; Li, Jian

    2010-04-01

    We introduce a maximum a posteriori (MAP) algorithm and a sparse learning via iterative minimization (SLIM) algorithm to synthetic aperture radar (SAR) imaging. Both MAP and SLIM are sparse signal recovery algorithms with excellent sidelobe suppression and high resolution properties. The former cyclically maximizes the a posteriori probability density function for a given sparsity promoting prior, while the latter cyclically minimizes a regularized least squares cost function. We show how MAP and SLIM can be adapted to the SAR imaging application and used to enhance the image quality. We evaluate the performance of MAP and SLIM using the simulated complex-valued backscattered data from a backhoe vehicle. The numerical results show that both MAP and SLIM satisfactorily suppress the sidelobes and yield higher resolution than the conventional matched filter or delay-and-sum (DAS) approach. MAP and SLIM outperform the widely used compressive sampling matching pursuit (CoSaMP) algorithm, which requires the delicate choice of user parameters. Compared with the recently developed iterative adaptive approach (IAA), MAP and SLIM are computationally more efficient, especially with the help of fast Fourier transform (FFT). Also, the a posteriori distribution given by the algorithms provides us with a basis for the analysis of the statistical properties of the SAR image pixels.

  18. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  19. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  20. Simulation of SAR backscatter for forest vegetation

    NASA Astrophysics Data System (ADS)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  1. Recent regional shortening in the interior of the orogenic Puna Plateau of the southern central Andes: New InSAR observations from the Salar de Pocitos, Salta, NW Argentina.

    NASA Astrophysics Data System (ADS)

    Eckelmann, Felix; Motagh, Mahdi; Bookhagen, Bodo; Strecker, Manfred; Freymark, Jessica; Bekeschus, Benjamin; Alonso, Ricardo

    2013-04-01

    The Altiplano-Puna Plateau of the southern central Andes, with an average elevation of about 3.5 km and an area of 500,000 km2, is the world's second highest plateau after the Tibetan plateau. The southern sector of the plateau, the Argentine Puna, is characterized by a pattern of basement-cored ranges with the highest peaks above 6000 m asl and intervening Cenozoic sedimentary basins. Most of the ranges have a nearly N-S trend and enclose the sedimentary basins which exhibit internal drainage and several km-thick continental evaporate and clastic deposits. Like its Cenozoic counterparts this plateau is thought to be characterized by active extension, which superseded contractile deformation in the late Miocene. Often, extensional structures are associated with mafic volcanism. In contrast, the plateau flanks are subjected to sustained contraction and a migration of deformation toward the foreland. Here, we present new Interferometric Synthetic Aperture Radar (InSAR) measurements based on ENVISAT and ERS data to document that the southern central part of the Puna is still dominated by contraction, despite widespread evidence for extensional tectonism. We report a time series of InSAR from the Salar de Pocitos basin spanning about seven years (ENVISAT from 2005 to 2009; ERS from 2002 to 2009). The basin is located at approximately 24.5° S, 67° W, with a minimum elevation of 3650 m asl. In this region, the transition from regional shortening to horizontal extension associated with mafic volcanism is generally assumed to have taken place quite rapidly between 7 and 5 Ma. The Pocitos basin forms a N-S orientated, salt-bearing, hydrologically-isolated basin with a surface area of 435 Km2. To the west, it is bounded by an anticline involving Tertiary and Quaternary sediments; to the east it is bounded by a reverse-faulted range. Late Miocene volcanic edifices delimit the basin to the north, whereas structural blocks close it to the south. The Tertiary and Quaternary

  2. Modeling of SAR signatures of shallow water ocean topography

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kozma, A.; Kasischke, E. S.; Lyzenga, D. R.

    1984-01-01

    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present.

  3. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  4. Guidelines for Federal Aviation Administration Regional Aviation Education Coordinators and Aviation Education Facilitators.

    ERIC Educational Resources Information Center

    Strickler, Mervin K., Jr.

    This publication is designed to provide both policy guidance and examples of how to work with various constituencies in planning and carrying out appropriate Federal Aviation Administration (FAA) aviation education activities. Information is provided on the history of aerospace/aviation education, FAA educational materials, aerospace/aviation…

  5. 78 FR 65641 - Recommendation From the Western Area Power Administration To Pursue Regional Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...Study/AOS.htm . The information gathered and analyzed by Western subject matter experts, combined with...: Send written comments to Western at: AOS@wapa.gov . Information regarding the recommendation, including... Area Power Administration, 2900 4th Avenue North, Billings, MT 59101-1266. FOR FURTHER...

  6. Decentralization and Regionalization in Educational Administration: Comparisons of Venezuela, Colombia and Spain.

    ERIC Educational Resources Information Center

    Hanson, E. Mark

    A nation's transition from dictatorship to democracy generally involves institutional reform attempts with new priorities serving a wider range of people and goals. This study describes and compares the goals, means, and outcomes of administrative reforms in the public educational systems of three Hispanic nations (Venezuela, Colombia, and Spain).…

  7. Surface displacement studies using differential SAR interferometry: an overview

    NASA Astrophysics Data System (ADS)

    Gupta, Sonal; Sajith V., K.; Arora, Manoj K.; Sharma, Mukut L.

    2006-12-01

    The differential SAR interferometry (DInSAR) has been increasing used to monitor ground surface displacements, which may be caused by various natural disasters such as earthquakes, landslides, mining activities, avalanches etc. Conventionally, these displacements were being estimated through field measurements, which are time consuming, hazardous and with data collected over few point locations. Since all the development and rehabilitation works after a natural disaster strikes is carried out on regional basis, any information at spatial level is advantageous in planning, management and monitoring activities. In recent years, the application of Differential SAR interferometry is gaining momentum to estimate the surface displacements at millimeter level accuracy. The displacement maps produced via this technique provide information at spatial level in the region thereby assisting in judicious developmental and planning works in an efficient and cost-effective manner. The aim of this paper is provide an overview of the use of Differential SAR Interferometry (DinSAR) technology for the study of surface displacements. As a case study, land subsidence occurred due to coal mining in Jharia coal fields, Jharkhand, have been estimated through this technique. All the procedural steps in implementing the approach based on DinSAR have been explained in a simplified manner.

  8. Using airborne and satellite SAR for wake mapping offshore

    NASA Astrophysics Data System (ADS)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  9. Gene expression in distinct regions of rat tendons in response to jump training combined with anabolic androgenic steroid administration.

    PubMed

    Marqueti, Rita Cássia; Marqueti, Rita de Cássia; Heinemeier, Katja Maria; Durigan, João Luiz Quaglioti; de Andrade Perez, Sérgio Eduardo; Schjerling, Peter; Kjaer, Michael; Carvalho, Hernandes Faustino; Selistre-de-Araujo, Heloisa Sobreiro

    2012-04-01

    The aim of this study was to evaluate the expression of key genes responsible for tendon remodeling of the proximal and distal regions of calcaneal tendon (CT), intermediate and distal region of superficial flexor tendon (SFT) and proximal, intermediate and distal region of deep flexor tendon (DFT) submitted to 7 weeks of jumping water load exercise in combination with AAS administration. Wistar male rats were grouped as follows: sedentary (S), trained (jumping water load exercise) (T), sedentary animals treated with AAS (5 mg/kg, twice a week) and animals treated with AAS and trained (AAST). mRNA levels of COL1A1, COL3A1, TIMP-1, TIMP-2, MMP-2, IGF-IEa, GAPDH, CTGF and TGF-β-1 were evaluated by quantitative PCR. Our main results indicated that mRNA levels alter in different regions in each tendon of sedentary animals. The training did not alter the expression of COL1A1, COL3A, IGF-IEa and MMP-2 genes, while AAS administration or its combination with training reduced their expression. This study indicated that exercise did not alter the expression of collagen and related growth factors in different regions of rat tendon. Moreover, the pattern of gene expression was distinct in the different tendon regions of sedentary animals. Although, the RNA yield levels of CT, SFT and DFT were not distinct in each region, these regions possess not only the structural and biochemical difference, but also divergence in the expression of key genes involved in tendon adaptation. PMID:21842416

  10. Results of the application of persistent scatterers interferometry for surface displacements monitoring in the Azul open pit manganese mine (Carajás Province, Amazon region) using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Pinto, Carolina d. A.; Paradella, Waldir R.; Mura, José C.; Gama, Fabio F.; dos Santos, Athos R.; Silva, Guilherme G.

    2014-10-01

    Brazil has 10% of global Mn reserves with its most important mine located in the Amazon region. The Azul deposit is related to sandstones and siltstones of the Águas Claras Formation (Archean), situated in the central portion of the Carajás Strike-Slip System. Vale S.A. mining company operates the Azul mining complex with three simultaneous excavations (mines 1, 2 and 3) conducted on rock materials of low geomechanical qualities. Mining operations are openpit, with 4-8 m-high benches and depth of 80 m. A stack of 19 TerraSAR-X (TSX) images was used for the investigation covering the period of March 20-October 4, 2012. In order to minimize the topography phase error in the interferometric process, a high resolution DEM was generated based on a panchromatic GeoEye-1 stereo pair. Persistent Scatterers Interferometry (PSI) analysis was carried out using the IPTA (Interferometric Point Target Analysis) software and led to the detection of 40,193 point-wise persistent scatterers (PS), with an average density of 5,387 PS/km2. It was concluded that most of the mining area can be considered stable during the TSX coverage. High deformation rates related to settlements were mapped over a waste pile, while small deformation rates were detected along the north and south flanks of mine 1and were interpreted as cut slope movements toward the center of the pit. Despite only ground-based radar measurements were available for a short time period during the TSX coverage, and covering a sector of bench walls along the south flank of mine 1, the PSs movement patterns showed concordance with the field measurements. The investigation emphasized the important role that PSI technique can play in planning and risk assessment in this mining area. Monitoring of this type of deformation by PSI can usefully complement other commonly used field geotechnical measurements due to the synoptic SAR coverage over a dense grid, providing ground deformation data independently of field access and with

  11. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  12. TerraSAR InSAR Investigation of Active Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Lei, L.; Burgmann, R.

    2009-12-01

    We aim to utilize advanced analysis of TerraSAR-X data to investigate the dynamics and interactions of solid Earth deformation processes, such as earthquakes and fault creep, and Earth surface processes, such as land subsidence and groundwater movements, in a densely populated, urban region, the San Francisco Bay Area. Ongoing deformation imaging reveals a number of natural hazards including elastic strain accumulation about seismologic faults, active landsliding, land subsidence and rebound, and settling of unconsolidated sediments that are highly susceptible to liquefaction. Up to now, we have ordered and received 20 more TerraSAR-X Spotlight Single Look Complex (SLC) images and a few Stripmap SLC images delivered by DLR and got a few preliminary results. The TerraSAR-X images were acquired over the San Francisco Bay Area particularly around an area of active landsliding, coastal subsidence and shallow Hayward fault creep near the city of Berkeley. Berkeley is situated between latitude 37.45 and 38.00, longitude 237.30 and 238.00. The data acquisition interval is from November, 2008 to now. Four types of Spotlight images and one type of Stripmap images in time sequence were ordered and acquired: spot_012, spot_038, spot_049, spot_075 and strip_003, having different look angles and pass directions. Access to the SAR data is via ftp about 10 days after acquisition date. The data is supplied in TerraSAR-X standard SLC COSAR (COmplex SAR) format with orbital information in an Extensible Markup Language (XML) header. The file contains integer real-complex components with double sampling and calibration constants for values. I am using ROI_PAC to do the interferograms. But ROI_PAC was designed to process the raw data rather SLC images. So there are some problems in azimuth processing with TerraSAR SLC data especially the Spotlight data. We now have some preliminary results of Stripmap interferograms and Spotlight interferograms but still work on those problems and

  13. A Guide to 1998-99 SARs and ISIRs.

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, Washington DC. Student Financial Assistance Programs.

    This guide for administrators of student financial aid programs at postsecondary education institutions is intended to assist in interpreting the codes that appear in the Student Aid Report (SAR), which is sent directly to the student, and in the Institutional Student Information Record (ISIR), which is an electronic report sent directly to…

  14. A Guide to 1999-2000 SARs and ISIRs.

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, Washington DC. Student Financial Assistance Programs.

    This guide is intended to help financial aid administrators (FAAs) interpret student financial aid information that appears in the Student Aid Report (SAR), a paper output document sent to the student, or in an Institutional Student Information Record (ISIR), which is an electronic record sent to the institution. The guide explains the codes and…

  15. Bistatic SAR: Imagery & Image Products.

    SciTech Connect

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  16. A Method of Forest Type Classification Using PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Wang, Xinshuang; Chen, Erxue; Li, Zengyuan; Yao, Wangqiang; Li, Wenmei; Li, Xiao

    2013-01-01

    Forest type mapping is of great significance for regional forest carbon estimation as forest types distribution information is always the critical prior input information to forest carbon stock mapping model using remote sensing. Polarimetric interferometric synthetic aperture radar (Pol-InSAR) data acquired by DLR airborne SAR system (ESAR) in the Traunstein test site in Germany was used to study forest type classification method in this paper. A new unsupervised PolInSAR classification method based on coherent optimization R matrix was proposed to distinguish coniferous forest, deciduous forest and other land cover types. It not only considers the full polarimetric information of single Polarimetric SAR (PolSAR) data set but also the coherent information of a pair of PolSAR data. The results show that the classification algorithm proposed in this paper is the best method with higher accuracy comparing with the classical method based on T6 matrix.

  17. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration.

    PubMed

    Zanos, Panos; Georgiou, Polymnia; Metaxas, Athanasios; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2015-07-23

    Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use. PMID:26037668

  18. Measuring Thermokarst Subsidence Using InSAR: Potential and Pitfalls

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Chen, A. C.; Gusmeroli, A.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Thawing of ice-rich permafrost results in irregular, depressed landforms known as thermokarst terrain. The significant subsidence leading to thermokarst features can expand lakes, drain lakes, accelerate thaw, disturb the soil column, and promote erosion. Consequently, it affects many permafrost-region processes including vegetation succession, hydrology, and carbon storage and cycling. Many remote sensing studies identify thermokarst landforms and catalog their ever-changing areas. Yet the intrinsic dynamic thermokarst process, namely surface subsidence, remains a challenge to map and is seldom examined using remote sensing methods. Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that uses a time-series of satellite SAR images to measure cm-level land surface deformation. We demonstrate the capabilities and limitations of space-borne InSAR data to map thermokarst subsidence at a site located near Prudhoe Bay, on the North Slope of Alaska. A pipeline access road was constructed at this site in the 1970s, and is likely to have triggered the thawing of the region's permafrost, causing subsequent expansion of thermokarst-landform terrain. Our InSAR analysis using ALOS PALSAR images reveals that the thermokarst landforms in this region have undergone up to 10 cm of surface subsidence each summer from 2007 to 2010. This pilot study demonstrates the application of InSAR to map localized mass movement in permafrost terrain. We also illustrate how the effectiveness and accuracy of InSAR measurements are limited by several factors such as loss of interferometric coherence due to fast changes of ground surface conditions, spatial and temporal resolutions of InSAR data, and difficulty separating long-term and seasonal deformation signals.

  19. Optimizing deep hyperthermia treatments: are locations of patient pain complaints correlated with modelled SAR peak locations?

    NASA Astrophysics Data System (ADS)

    Canters, R. A. M.; Franckena, M.; van der Zee, J.; van Rhoon, G. C.

    2011-01-01

    During deep hyperthermia treatment, patient pain complaints due to heating are common when maximizing power. Hence, there exists a good rationale to investigate whether the locations of predicted SAR peaks by hyperthermia treatment planning (HTP) are correlated with the locations of patient pain during treatment. A retrospective analysis was performed, using the treatment reports of 35 patients treated with deep hyperthermia controlled by extensive treatment planning. For various SAR indicators, the average distance from a SAR peak to a patient discomfort location was calculated, for each complaint. The investigated V0.1 closest (i.e. the part of the 0.1th SAR percentile closest to the patient complaint) performed the best, and leads to an average distance between the SAR peak and the complaint location of 3.9 cm. Other SAR indicators produced average distances that were all above 10 cm. Further, the predicted SAR peak location with V0.1 provides a 77% match with the region of complaint. The current study demonstrates that HTP is able to provide a global indication of the regions where hotspots during treatment will most likely occur. Further development of this technology is necessary in order to use HTP as a valuable toll for objective and advanced SAR steering. The latter is especially valid for applications that enable 3D SAR steering.

  20. SAR Ice Classification Using Fuzzy Screening Method

    NASA Astrophysics Data System (ADS)

    Gill, R. S.

    2003-04-01

    A semi-automatic SAR sea ice classification algorithm is described. It is based on combining the information in the original SAR data with those in the three 'image' products derived from it, namely Power-to-Mean Ratio (PMR), the Gamma distribution and the second order texture parameter entropy, respectively. The latter products contain information which is often useful during the manual interpretation of the images. The technique used to fuse the information in these products is based on a method c lled Multi Experts Multi Criteria Decision Making fuzzy a screening. The Multiple Experts in this case are the above four 'image' products. The two criteria used currently for making decisions are the Kolmogorov-Smirnov distribution matching and the statistical mean of different surface classes. The algorithm classifies an image into any number of predefined classes of sea ice and open water. The representative classes of these surface types are manually identified by the user. Further, as SAR signals from sea ice covered regions and open water are ambiguous, it was found that a minimum of 4 pre-identified surface classes (calm and turbulent water and sea ice with low and high backscatter values) are required to accurately classify an image. Best results are obtained when a total of 8 surface classes (2 each of sea ice and open water in the near range and a similar number in the far range of the SAR image) are used. The main advantage of using this image classification scheme is that, like neural networks, no prior knowledge is required of the statistical distribution of the different surface types. Furthermore, unlike the methods based on neural networks, no prior data sets are required to train the algorithm. All the information needed for image classification by the method is contained in the individual SAR images and associated products. Initial results illustrating the potential of this ice classification algorithm using the RADARSAT ScanSAR Wide data are presented

  1. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  2. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  3. Wetlands Maps of Central Canada based on L-band SAR Imagery

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Moghaddam, M.; Clewley, D.; McDonald, K. C.; Podest, E.; Chapman, B. D.

    2013-12-01

    'Random Forests' decision tree classifier takes in the processed SAR and other data layers, along with the training/testing data, and uses them to produce a thematic wetlands map. The accuracy of the resulting classification product is quantified by calculating producer and user error statistics for all validation pixels within the mapped region. Thematic change maps are generated from the SAR-derived maps, thereby allowing decadal changes in wetland extent and type to be identified. These change maps provide information on wetland dynamics and responses to anthropogenic and climatic influences over a large spatial area. This work was done in part within the ALOS Kyoto & Carbon Initiative, with portions carried out at the University of Southern California and at the Jet Propulsion Laboratory under contract to National Aeronautics and Space Administration. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.

  4. Studies of ice sheet hydrology using SAR

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.; Vornberger, P. L.

    1989-01-01

    Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.

  5. SAR Image Segmentation Using Morphological Attribute Profiles

    NASA Astrophysics Data System (ADS)

    Boldt, M.; Thiele, A.; Schulz, K.; Hinz, S.

    2014-08-01

    In the last years, the spatial resolution of remote sensing sensors and imagery has continuously improved. Focusing on spaceborne Synthetic Aperture Radar (SAR) sensors, the satellites of the current generation (TerraSAR-X, COSMO-SykMed) are able to acquire images with sub-meter resolution. Indeed, high resolution imagery is visually much better interpretable, but most of the established pixel-based analysis methods have become more or less impracticable since, in high resolution images, self-sufficient objects (vehicle, building) are represented by a large number of pixels. Methods dealing with Object-Based Image Analysis (OBIA) provide help. Objects (segments) are groupings of pixels resulting from image segmentation algorithms based on homogeneity criteria. The image set is represented by image segments, which allows the development of rule-based analysis schemes. For example, segments can be described or categorized by their local neighborhood in a context-based manner. In this paper, a novel method for the segmentation of high resolution SAR images is presented. It is based on the calculation of morphological differential attribute profiles (DAP) which are analyzed pixel-wise in a region growing procedure. The method distinguishes between heterogeneous and homogeneous image content and delivers a precise segmentation result.

  6. Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine.

    PubMed

    Yang, Chun; Han, Mei; Zhang, Ji-Chun; Ren, Qian; Hashimoto, Kenji

    2016-05-30

    Clinical use of the rapid antidepressant drug ketamine is limited, due to psychotomimetic side effects. R-ketamine appears to be a potent, long-lasting and safer antidepressant, relative to S-ketamine (esketamine), since it is free of psychotomimetic side effects. Repeated, intermittent administration of esketamine (10mg/kg, once per week for 8-weeks), but not R-ketamine, caused loss of parvalbumin (PV)-immunoreactivity in the medial prefrontal cortex and hippocampus of mouse brains, regions associated with psychosis. This study suggests that repeated intermittent use of R-ketamine is safer than esketamine in the treatment of depression. PMID:27043274

  7. A review of accessibility of administrative healthcare databases in the Asia-Pacific region

    PubMed Central

    Milea, Dominique; Azmi, Soraya; Reginald, Praveen; Verpillat, Patrice; Francois, Clement

    2015-01-01

    Objective We describe and compare the availability and accessibility of administrative healthcare databases (AHDB) in several Asia-Pacific countries: Australia, Japan, South Korea, Taiwan, Singapore, China, Thailand, and Malaysia. Methods The study included hospital records, reimbursement databases, prescription databases, and data linkages. Databases were first identified through PubMed, Google Scholar, and the ISPOR database register. Database custodians were contacted. Six criteria were used to assess the databases and provided the basis for a tool to categorise databases into seven levels ranging from least accessible (Level 1) to most accessible (Level 7). We also categorised overall data accessibility for each country as high, medium, or low based on accessibility of databases as well as the number of academic articles published using the databases. Results Fifty-four administrative databases were identified. Only a limited number of databases allowed access to raw data and were at Level 7 [Medical Data Vision EBM Provider, Japan Medical Data Centre (JMDC) Claims database and Nihon-Chouzai Pharmacy Claims database in Japan, and Medicare, Pharmaceutical Benefits Scheme (PBS), Centre for Health Record Linkage (CHeReL), HealthLinQ, Victorian Data Linkages (VDL), SA-NT DataLink in Australia]. At Levels 3–6 were several databases from Japan [Hamamatsu Medical University Database, Medi-Trend, Nihon University School of Medicine Clinical Data Warehouse (NUSM)], Australia [Western Australia Data Linkage (WADL)], Taiwan [National Health Insurance Research Database (NHIRD)], South Korea [Health Insurance Review and Assessment Service (HIRA)], and Malaysia [United Nations University (UNU)-Casemix]. Countries were categorised as having a high level of data accessibility (Australia, Taiwan, and Japan), medium level of accessibility (South Korea), or a low level of accessibility (Thailand, China, Malaysia, and Singapore). In some countries, data may be available but

  8. SAR/InSAR observation by an HF sounder

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    2007-03-01

    Application of SAR imaging algorithm to spaceborne HF sounder observation was studied. Two types of image ambiguity problems were addressed in the application. One is surface/subsurface image ambiguity arising from deep penetration of HF wave, and another is mirror image ambiguity that is inherent to dipole antenna SAR. A numerical model demonstrated that the surface/subsurface ambiguity can be mitigated by taking a synthetic aperture large enough to defocus subsurface objects. In order to resolve the mirror image ambiguity problem, an image superposition technique was proposed. The performance of the technique was demonstrated by using simulation data of the HF sounder observation to confirm the feasibility of HF SAR and HF InSAR observation.

  9. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  10. Characterization of sarR, a Modulator of sar Expression in Staphylococcus aureus

    PubMed Central

    Manna, Adhar; Cheung, Ambrose L.

    2001-01-01

    The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sar and agr). The sar locus is composed of three overlapping transcripts (sar P1, P3, and P2 transcripts from P1, P3, and P2 promoters, respectively), all encoding the 372-bp sarA gene. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of sar promoters. We previously partially purified a ∼12 kDa protein with a DNA-specific column containing a sar P2 promoter fragment. In this study, the putative gene, designated sarR, was identified and found to encode a 13.6-kDa protein with homology to SarA. Transcriptional and immunoblot studies revealed the sarR gene to be expressed in other staphylococcal strains. Recombinant SarR protein bound sar P1, P2, and P3 promoter fragments in gel shift and footprinting assays. A sarR mutant expressed a higher level of P1 transcript than the parent, as confirmed by promoter green fluorescent protein fusion assays. As the P1 transcript is the predominant sar transcript, we confirmed that the sarR mutant expressed more SarA than the parental strain. We thus proposed that SarR is a regulatory protein that binds to the sar promoters to down-regulate P1 transcription and the ensuing SarA protein expression. PMID:11159982

  11. Polymorphism of SARS-CoV genomes.

    PubMed

    Shang, Lei; Qi, Yan; Bao, Qi-Yu; Tian, Wei; Xu, Jian-Cheng; Feng, Ming-Guang; Yang, Huan-Ming

    2006-04-01

    In this work, severe acute respiratory syndrome associated coronavirus (SARS-CoV) genome BJ202 (AY864806) was completely sequenced. The genome was directly accessed from the stool sample of a patient in Beijing. Comparative genomics methods were used to analyze the sequence variations of 116 SARS-CoV genomes (including BJ202) available in the NCBI GenBank. With the genome sequence of GZ02 as the reference, there were 41 polymorphic sites identified in BJ202 and a total of 278 polymorphic sites present in at least two of the 116 genomes. The distribution of the polymorphic sites was biased over the whole genome. Nearly half of the variations (50.4%, 140/278) clustered in the one third of the whole genome at the 3' end (19.0 kb-29.7 kb). Regions encoding Orf10-11, Orf3/4, E, M and S protein had the highest mutation rates. A total of 15 PCR products (about 6.0 kb of the genome) including 11 fragments containing 12 known polymorphic sites and 4 fragments without identified polymorphic sites were cloned and sequenced. Results showed that 3 unique polymorphic sites of BJ202 (positions 13 804, 15 031 and 20 792) along with 3 other polymorphic sites (26 428, 26 477 and 27 243) all contained 2 kinds of nucleotides. It is interesting to find that position 18379 which has not been identified to be polymorphic in any of the other 115 published SARS-CoV genomes is actually a polymorphic site. The nucleotide composition of this site is A (8) to G (6). Among 116 SARS-CoV genomes, 18 types of deletions and 2 insertions were identified. Most of them were related to a 300 bp region (27,700-28,000) which encodes parts of the putative ORF9 and ORF10-11. A phylogenetic tree illustrating the divergence of whole BJ202 genome from 115 other completely sequenced SARS-CoVs was also constructed. BJ202 was phylogeneticly closer to BJ01 and LLJ-2004. PMID:16625834

  12. Determining Titan surface topography from Cassini SAR data

    USGS Publications Warehouse

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  13. Earth observing SAR data processing systems at the Jet Propulsion Laboratory - Seasat to EOS SAR

    NASA Technical Reports Server (NTRS)

    Nichols, David A.; Curlander, John C.

    1991-01-01

    The evolution of SAR digital data processing and management ground systems developed at the JPL for earth science missions is discussed. Attention is given to the SAR ground data system requirements, the early data processing systems, the Seasat SAR system, and the SIR-B data processing system. Special consideration is given to two currently operational SAR data systems: the JPL aircraft SAR processing system that flies on the NASA DC-8 and the Alaska SAR Facility at Fairbanks.

  14. SAR imaging - Seeing the unseen

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1982-01-01

    The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.

  15. SARS Antibody Test for Serosurveillance

    PubMed Central

    Hsueh, Po-Ren; Kao, Chuan-Liang; Lee, Chun-Nan; Chen, Li-Kuan; Ho, Mei-Shang; Sia, Charles; De Fang, Xin; Lynn, Shugene; Chang, Tseng Yuan; Liu, Shi Kau; Walfield, Alan M.

    2004-01-01

    A peptide-based enzyme-linked immunosorbent assay (ELISA) can be used for retrospective serosurveillance of severe acute respiratory syndrome (SARS) by helping identify undetected chains of disease transmission. The assay was developed by epitope mapping, using synthetic peptides from the spike, membrane, and nucleocapsid protein sequences of SARS-associated coronavirus. The new peptide ELISA consistently detected seroconversion by week 2 of onset of fever, and seropositivity remained through day 100. Specificity was 100% on normal blood donor samples, on serum samples associated with infection by other pathogens, and on an interference panel. The peptide-based test has advantages of safety, standardization, and automation over previous immunoassays for SARS. The assay was used for a retrospective survey of healthy healthcare workers in Taiwan who treated SARS patients. Asymptomatic seroconversions were detected in two hospitals that had nosocomial disease. PMID:15498156

  16. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  17. Clinical and experimental study on regional administration of phosphorus 32 glass microspheres in treating hepatic carcinoma

    PubMed Central

    Liu, Lu; Jiang, Zao; Teng, Gao-Jun; Song, Ji-Zhi; Zhang, Dong-Sheng; Guo, Qing-Ming; Fang, Wen; He, Shi-Cheng; Guo, Jin-He

    1999-01-01

    there appeared some well-differentiated tumor cells and enhanced effect of the autoimmunocytes. At an absorbed dose of 366Gy or less, some tumor cells still remained active proliferative ability. The definite anticancer effect appeared as early as 3d after intratumoral injection of 32P-GMS. II. The cumulative amount of 32P-GMS in the target tissue after trans-hepatic artery instillation attained more than 90% of the tot al dose administrated. Semiquantitative analysis of ultrastructral morphology in the experimental group showed no statistical difference between the nuclear abnormality ( nabn) and mitochondrial variability (Mvar) at week 1 or 2 , but revealed prominent difference ( χ2 = 6.70-9.68, P < 0.01, χ2 = 65.09-115.09, P < 0.001) as compared with those in the other groups. In the experimental group the nabn in tissues showed no significant difference between week 8 and week 16. no apparent changes were found in the stomach, spleen, kidney and lung tissues of the experimental pigs. III. The therapeutical results of HCC patients in group A were closely approximated to those of group C, no hematological toxic side effects were noted, and the systemic reaction was mild. In some patients 2 mos-3 mos after treatment some secondary foci appeared around the periphery of the primary lesion. In general better effectiveness was obtained in patients with small lesion. After analyzing by RIDIT method, the therapeutic result in group B was significantly better than that in group C, and secondary foci around the original lesion were rarely seen at 3mos after treatment. In group C the collateral circulation was reestablished along the periphery of primary foci and the secondary foci appeared more frequently, and were required to undergo several courses of treatment. In group B, 4 cases of HCC were treated surgically as their mass decreased in size after 32P-GMS treatment. Resected specimens showed that the tumor was encapsulated by fibrotic tissue and most of the tumor cells

  18. Reversal of an aluminium induced alteration in redox status in different regions of rat brain by administration of centrophenoxine.

    PubMed

    Nehru, Bimla; Bhalla, Punita

    2006-10-01

    Aluminium is one of the most studied neurotoxin, and its effects on nervous system are both structural and functional, involving various regions of brain. Aluminium toxicity is known to have multiple mechanisms of action in the central nervous system. Affinity of aluminium for thiol substrates is considered a possible molecular mechanism involved in aluminium neurotoxicity. The reduced glutathione (GSH) is especially important for cellular defence against aluminium toxicity. This study pertains to the modulatory action of centrophenoxine on GSH status in aluminium exposed different brain regions of the female rats. Aluminium was administered orally at a dose of 40 mg/Kg x b x wt x /day for a period of eight weeks whereas, centrophenoxine was administered intraperitoneally at a dose of 100 mg/Kg x b x wt x /day for a period of six weeks. The study was carried out in different regions of brain namely cerebrum, cerebellum, medulla oblongata and hypothalamus. Animals exposed to aluminum, registered a significant decrease in the levels of reduced glutathione, and oxidized glutathione as well as in the activity of glutathione reductase in all the different regions studied when compared to normal control animals. Post-treatment with centrophenoxine, showed a significant improvement in the thiol levels in different regions. Centrophenoxine when administered alone also had a profound effect on the levels of reduced glutathione as well as on the activity of glutathione reductase. From the present results, it can be stated that centrophenoxine administration, as a thiol-antioxidant, arrests the aluminium induced cellular damage by improving the thiol status in brain regions. PMID:16969688

  19. The X-SAR System

    NASA Technical Reports Server (NTRS)

    Oettl, Herwig

    1986-01-01

    During the past few years, there has been significant progress made in the planning for an X-band SAR, designed to fly in the shuttle together with the SIR-C system of NASA/JPL. New work and studies have been initiated to enable the goal of two missions in 1990 to be met. The antennas of X-SAR and SIR-C will be placed side-by-side on a pivoted steerable foldable structure, which will allow antenna movement without changing the attitude of the shuttle. This figure also shows the pallet, underneath the antenna structure, which houses the electronic sub-systems of both radars. Although the two radar systems, X-band SAR and the L- and C-band SAR of SIR-C, have different technical designs, their overall system performance, in terms of image quality, is expected to be similar. The current predicted performance of the X-SAR system based on results of the continuing Phase B studies is detailed. Differences between the performance parameters of X-SAR and those of SIR-C are only detailed in as far as they affect planning decisions to be made by experimenters.

  20. Managing the Schools of the Future--Focus on Principals. Proceedings of the Commonwealth Council for Educational Administration Regional Conference (4th, Nicosia, Cyprus, January 1980).

    ERIC Educational Resources Information Center

    Commonwealth Council for Educational Administration, Armidale (Australia).

    The Fourth Regional Conference of the Commonwealth Council for Educational Administration, held in Nicosia, Cyprus, in January 1980, focused on the possible impact of foreseeable changes in educaiton on the school administrator's role. The 16 papers presented (published in this volume) addressed the development of Cyprus's dual educational system;…

  1. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  2. Neuropeptide Y administration acutely increases hypothalamic corticotropin-releasing factor immunoreactivity: lack of effect in other rat brain regions

    SciTech Connect

    Haas, D.A.; George, S.R.

    1987-12-21

    The effect of acute central administration of Neuropeptide Y (NPY) to adult male rats on the brain content of corticotropin-releasing factor immunoreactivity (CRF-ir) was investigated. The brain regions studied included frontal cortex, hippocampus, medulla-pons, midbrain-thalamus, cerebellum, neurointermediate lobe of pituitary, median eminence and the remaining hypothalamus. CRF-ir was determined in each of these regions using radioimmunoassay specific for rat CRF. CRF-ir was found to be significantly increased in the major site of CRF localization in the brain, the hypothalamus, in NPY-treated rats as compared to vehicle-treated controls either 15 minutes (p<0.025) or 45 minutes (p<0.005) post-injection. This increase was localized to the median eminence (p<0.05 after 15 minutes, p<0.01 after 45 minutes). No statistically significant differences were noted in any of the other brain regions assessed. Plasma adrenocorticotropin levels were also found to increase following NPY treatment, an effect which became significant after 45 minutes (p<0.05). These data show that NPY can alter the content of hypothalamic CRF and may play a role in its regulation. 33 references, 4 figures.

  3. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  4. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  5. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Neal, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analyzed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analyzed using data from the European Remote Sensing Satellites (ERS), Japanese Earth Resources Satellite (JERS) and the U. S. Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  6. Indicators of breast cancer severity and appropriateness of surgery based on hospital administrative data in the Lazio Region, Italy

    PubMed Central

    Schifano, Patrizia; Papini, Paolo; Agabiti, Nera; Scarinci, Marina; Borgia, Piero; Perucci, Carlo A

    2006-01-01

    Background Administrative data can serve as an easily available source for epidemiological and evaluation studies. The aim of this study is to evaluate the use of hospital administrative data to determine breast cancer severity and the appropriateness of surgical treatment. Methods the study population consisted of 398 patients randomly selected from a cohort of women hospitalized for first-time breast cancer surgery in the Lazio Region, Italy. Tumor severity was defined in three different ways: 1) tumor size; 2) clinical stage (TNM); 3) severity indicator based on HIS data (SI). Sensitivity, specificity, and positive predictive value (PPV) of the severity indicator in evaluating appropriateness of surgery were calculated. The accuracy of HIS data was measured using Kappa statistic. Results Most of 387 cases were classified as T1 and T2 (tumor size), more than 70% were in stage I or II and the SI classified 60% of cases in medium-low category. Variation from guidelines indications identified under and over treatments. The accuracy of the SI to predict under-treatment was relatively good (58% of all procedures classified as under-treatment using pT where also classified as such using SI), and even greater predicting over-treatment (88.2% of all procedures classified as over treatment using pT where also classified as such using SI). Agreement between clinical chart and hospital discharge reports was K = 0.35. Conclusion Our findings suggest that administrative data need to be used with caution when evaluating surgical appropriateness, mainly because of the limited ability of SI to predict tumor size and the questionable quality of HIS data as observed in other studies. PMID:16464258

  7. Advanced fractal approach for unsupervised classification of SAR images

    NASA Astrophysics Data System (ADS)

    Pant, Triloki; Singh, Dharmendra; Srivastava, Tanuja

    2010-06-01

    Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran's I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.

  8. Integration of SAR and DEM data: Geometrical considerations

    NASA Technical Reports Server (NTRS)

    Kropatsch, Walter G.

    1991-01-01

    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.

  9. Regional and subcellular localization of Li+ and other cations in the rat brain following long-term lithium administration.

    PubMed

    Lam, H R; Christensen, S

    1992-10-01

    Rats were given LiCl in their diet (40 mmol/kg dry weight) for at least 3 months to elucidate the regional and subcellular localization of Li+ in the brain as well as the effect of chronic lithium administration on the distribution of other cations. At steady-state the mean concentrations of Li+ were 0.66 mmol/kg wet weight in the whole brain and 0.52 mM in plasma. The tissue/plasma concentration ratio exceeded unity in all anatomical regions. No region showed excessive accumulation of Li+. Whole brain or regional contents of Na+ or K+ were unaffected by lithium treatment. Subcellular Li+ localization was demonstrated in nuclear, crude mitochondrial, and microsomal fractions of whole brain homogenate. Subfractionation of the crude mitochondrial fraction revealed energy-independent intrasynaptosomal and intramitochondrial Li+ and K+ localization at 0-4 degrees C. Li+ administered in vivo disappeared within 10 min from synaptosomes incubated at 37 degrees C. Li+ added in vitro at 1 mM attained a synaptosomal steady-state concentration within 30 min at 37 degrees C. In control rats, synaptosomal concentrations and synaptosomal/medium concentration gradients of cations paralleled their respective in vivo concentrations and gradients. Lithium treatment caused synaptosomal depletion of K+ and Mg2+ and hence probably partial membrane depolarization. Addition of 1 mM Li+ in vitro also caused synaptosomal Mg2+ depletion. The results indicate that Li+ is "accumulated" in brain sediments and synaptosomes following its long-term treatment. The estimated intracellular and intrasynaptosomal Li+ concentrations are lower than predicted by passive distribution according to the Nernst equation, evidencing active extrusion of Li+. PMID:1402889

  10. SAR data exploitation: computational technology enabling SAR ATR algorithm development

    NASA Astrophysics Data System (ADS)

    Majumder, Uttam K.; Casteel, Curtis H., Jr.; Buxa, Peter; Minardi, Michael J.; Zelnio, Edmund G.; Nehrbass, John W.

    2007-04-01

    A fundamental issue with synthetic aperture radar (SAR) application development is data processing and exploitation in real-time or near real-time. The power of high performance computing (HPC) clusters, FPGA, and the IBM Cell processor presents new algorithm development possibilities that have not been fully leveraged. In this paper, we will illustrate the capability of SAR data exploitation which was impractical over the last decade due to computing limitations. We can envision that SAR imagery encompassing city size coverage at extremely high levels of fidelity could be processed at near-real time using the above technologies to empower the warfighter with access to critical information for the war on terror, homeland defense, as well as urban warfare.

  11. On Ambiguities in SAR Design

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2006-01-01

    Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .

  12. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  13. Comparing The Results Of Terrasar-X And Envisat Sar Images With Ps-InSAR Methods On Slow Motion Landslides: Koyulhisar, Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet; Poyraz, Fatih; Özgür Hastaoğlu, Kemal; Türk, Tarık; Tatar, Orhan; Birdal, Anıl Can

    2015-04-01

    In recent years, PS-InSAR method has been used widely on monitoring slow motion landslides. The motion amounts obtained by PS-InSAR method is avaliable only in LOS(line of sight) and it can't provide information about three dimensional motions. Nevertheless, motions caused by landslides are usually 3 dimensional and also they are not homogeneous. This is one of the biggest handicaps of monitoring landslides with SAR method. In this study, annual motion rates of the PS points that are located in Koyulhisar landslide region are obtained from differently resolutioned sar images of Envisat and Terrasar-x satellite's frames through PS-InSAR method and by using StaMPS software. Throughout the landslide region a profile has been established in North-South line, and the correlation of the results obtained from the sar images lining on this profile. All results are observed to have %80 correlation with each other. By means of these results a subsidence area has been found in the northern region and an uplifting area has been found in the southern region. Through this study, general information about the landslide mechanism has been obtained.

  14. SARS Patients and Their Close Contacts

    MedlinePlus

    ... Fact Sheet for SARS Patients and Their Close Contacts Format: Select one PDF [256 KB] Recommend on ... that are not now known. What does "close contact" mean? In the context of SARS, close contact ...

  15. Catalogue of Workforce Information Sources: Decision Making Assistance for Regional Economic Development. U.S. Department of Labor, Employment and Training Administration

    ERIC Educational Resources Information Center

    US Department of Labor, 2009

    2009-01-01

    In early 2006, The U.S. Department of Labor (DOL), Employment and Training Administration (ETA) began an initiative called Workforce Innovation in Regional Economic Development (WIRED) to help regions create competitive conditions, integrate economic and workforce development activities, and demonstrate that talent development can successfully…

  16. Method for removing RFI from SAR images

    DOEpatents

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  17. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  18. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  19. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  20. The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    PubMed Central

    Tan, Jinzhi; Vonrhein, Clemens; Smart, Oliver S.; Bricogne, Gerard; Bollati, Michela; Kusov, Yuri; Hansen, Guido; Mesters, Jeroen R.; Schmidt, Christian L.; Hilgenfeld, Rolf

    2009-01-01

    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved

  1. Registration Of SAR Images With Multisensor Images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Burnette, Charles F.; Van Zyl, Jakob J.

    1993-01-01

    Semiautomated technique intended primarily to facilitate registration of polarimetric synthetic-aperture-radar (SAR) images with other images of same or partly overlapping terrain while preserving polarization information conveyed by SAR data. Technique generally applicable in sense one or both of images to be registered with each other generated by polarimetric or nonpolarimetric SAR, infrared radiometry, conventional photography, or any other applicable sensing method.

  2. Progress towards SAR based ecosystem analysis

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing

    1991-01-01

    Recent progress towards a synthetic aperture radar (SAR) based system for determining forest ecosystem attributes is discussed. Our SAR data processing and analysis sequence, from calibration through classification, is described. In addition, the usefulness of SAR image data for identifying ecosystem classes is discussed.

  3. SAR and InSAR georeferencing algorithms for inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Greco, M.; Kulpa, K.; Pinelli, G.; Samczynski, P.

    2011-10-01

    This paper presents the concept of Synthetic Aperture Radar (SAR) and Interferemetric SAR (InSAR) georeferencing algorithms dedicated for SAR based augmented Inertial Navigation Architecture (SARINA). The SARINA is a novel concept of the Inertial Navigation System (INS), which utilized the SAR radar as an additional sensor to provide information about the platform trajectory position and compensate an aircraft drift due to Inertial Measurement Unit (IMU) errors, Global Positioning System (GPS) lack of integrity, etc.

  4. SAR digital spotlight implementation in MATLAB

    NASA Astrophysics Data System (ADS)

    Dungan, Kerry E.; Gorham, LeRoy A.; Moore, Linda J.

    2013-05-01

    Legacy synthetic aperture radar (SAR) exploitation algorithms were image-based algorithms, designed to exploit complex and/or detected SAR imagery. In order to improve the efficiency of the algorithms, image chips, or region of interest (ROI) chips, containing candidate targets were extracted. These image chips were then used directly by exploitation algorithms for the purposes of target discrimination or identification. Recent exploitation research has suggested that performance can be improved by processing the underlying phase history data instead of standard SAR imagery. Digital Spotlighting takes the phase history data of a large image and extracts the phase history data corresponding to a smaller spatial subset of the image. In a typical scenario, this spotlighted phase history data will contain much fewer samples than the original data but will still result in an alias-free image of the ROI. The Digital Spotlight algorithm can be considered the first stage in a "two-stage backprojection" image formation process. As the first stage in two-stage backprojection, Digital Spotlighting filters the original phase history data into a number of "pseudo"-phase histories that segment the scene into patches, each of which contain a reduced number of samples compared to the original data. The second stage of the imaging process consists of standard backprojection. The data rate reduction offered by Digital Spotlighting improves the computational efficiency of the overall imaging process by significantly reducing the total number of backprojection operations. This paper describes the Digital Spotlight algorithm in detail and provides an implementation in MATLAB.

  5. Development of VHF CARABAS II SAR

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Ulander, Lars M.; Gustavsson, Anders; Larsson, Bjoern

    1996-06-01

    There is an increasing interest in imaging radar systems operating at low frequencies. Examples of military and civilian applications are detection of stealth-designed man- made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. The developed CARABAS technology is a contribution to this field of low frequency SAR imagery. The used wavelengths offer a potential of penetration below the upper scattering layer in combination with high spatial resolution. The first prototype of the system (CARABAS I) has been tested in environments ranging from rain forests to deserts, collecting a considerably amount of data often in parallel with other SAR sensors. The work on data analysis proceeds and results obtained so far seem promising, especially for application in forested regions. The experiences gained are used in the development of a new upgraded system (CARABAS II), which is near completion and initial airborne radar tests for system verifications followed by some major field campaign are scheduled to take place during 1996. This paper will summarize the CARABAS I system characteristics and system performance evaluation. The major imperfections discovered in the radar functioning will be identified, and we explain some of the modification made in the system design for CARABAS II. A new algorithm for future real-time CARABAS data processing has been derived, with a structure well-suited for a multi-processor environment. Motion compensation and radio frequency interference mitigation are both included in this scheme. Some comments on low frequency SAR operation at UHF-based versus VHF-band will be given.

  6. Realtime processor of SAR systems

    NASA Astrophysics Data System (ADS)

    Schotter, R.

    Attention is given to potential applications of a synthetic aperture radar (SAR) real time processor which was developed for Space Shuttle-based earth sensing, and which may prove useful in military surveillance, ocean wave studies, ship movements in territorial waters, land conservation, geology, and mineralogical prospecting. The SAR processor's signal processing task is characterized by complex algorithms and large quantities of raw data/time unit. A 'pipeline' configuration has been judged optimal for this type of processing, and it will consist of digital hardware modules for Fourier transform, digital filtering, two-dimensional image memory, and complex multiplication.

  7. Squint mode SAR processing algorithms

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Jin, M.; Curlander, J. C.

    1989-01-01

    The unique characteristics of a spaceborne SAR (synthetic aperture radar) operating in a squint mode include large range walk and large variation in the Doppler centroid as a function of range. A pointing control technique to reduce the Doppler drift and a new processing algorithm to accommodate large range walk are presented. Simulations of the new algorithm for squint angles up to 20 deg and look angles up to 44 deg for the Earth Observing System (Eos) L-band SAR configuration demonstrate that it is capable of maintaining the resolution broadening within 20 percent and the ISLR within a fraction of a decibel of the theoretical value.

  8. Polarization Filtering of SAR Data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  9. Multi-frequency, polarimetric SAR analysis for archaeological prospection

    NASA Astrophysics Data System (ADS)

    Stewart, Christopher; Lasaponara, Rosa; Schiavon, Giovanni

    2014-05-01

    The aim of this study is to assess the sensitivity to buried archaeological structures of C- and L-band Synthetic Aperture Radar (SAR) in various polarisations. In particular, single and dual polarised data from the Phased Array type L-band SAR (PALSAR) sensor on-board the Advanced Land Observing Satellite (ALOS) is used, together with quadruple polarised (quad pol) data from the SAR sensor on Radarsat-2. The study region includes an isolated area of open fields in the eastern outskirts of Rome where buried structures are documented to exist. Processing of the SAR data involved multitemporal averaging, analysis of target decompositions, study of the polarimetric signatures over areas of suspected buried structures and changes of the polarimetric bases in an attempt to enhance their visibility. Various ancillary datasets were obtained for the analysis, including geological and lithological charts, meteorological data, Digital Elevation Models (DEMs), optical imagery and an archaeological chart. For the Radarsat-2 data analysis, results show that the technique of identifying the polarimetric bases that yield greatest backscatter over anomaly features, and subsequently changing the polarimetric bases of the time series, succeeded in highlighting features of interest in the study area. It appeared possible that some of the features could correspond with structures documented on the reference archaeological chart, but there was not a clear match between the chart and the results of the Radarsat-2 analysis. A similar conclusion was reached for the PALSAR data analysis. For the PALSAR data, the volcanic nature of the soil may have hindered the visibility of traces of buried features. Given the limitations of the accuracy of the archaeological chart and the spatial resolution of both the SAR datasets, further validation would be required to draw any precise conclusions on the sensitivity of the SAR data to buried structures. Such a validation could include geophysical

  10. Surface deformation of Taipei basin detected by Differential SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chang, C.; Yen, J.; Lin, M.

    2006-12-01

    Taiwan island is located between the southeastern periphery of the Eurasian plate and the Philippine Sea plate. The two converging plates produced very active tectonics, and can be seen by the high seismicity and deformation rate. Taipei, the highest populated area, center of politics, and economics in Taiwan, is in Taipei basin at the northern part of the island. There are several faults in and surrounding the basin, and the city is threatened with a high geological hazard potential that we should keep monitoring the crustal deformation to prevent and mitigate the disaster effect. The aims of our study is to apply the DInSAR technique to determine the surface deformation of Taipei basin area, and discussing the relation between the manifestation of deformation and the tectonically active region, Shanjiao fault. In the past few years, Differential SAR Interferometry (DInSAR) has been proved to be a powerful technique for monitoring the neotectonic activities and natural hazards. High spatial sampling rate of DInSAR technique allows studies of surface deformations with centimeter accuracy. In this area, we used ERS-1/2 SAR images acquired from 1993 to 2005 to generate 10 differential interferograms and processed the data using DIAPASON developed by CNES and SRTM global DEM.From our results, the deformation rate in Taipei is generally high in the western end of the basin along the Shanjiao fault and decrease eastward, while the subsidence center often appeared in the center of the Taipei basin. The neotectonic activity of the Shanjiao fault appeared to be insignificant by itself but it seemed to separate the subsiding basin from the surrounding areas. Further comparison between our DInSAR results and isopach of the Taipei basin revealed that the subsidence centers appeared in the interferograms did not coincide with the location where the sediments are thickest. Our results from differential interferometry will be compared to other geodetic measurements such as the

  11. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  12. Lights, Camera, "SAR"!

    ERIC Educational Resources Information Center

    Mino, Mary

    2014-01-01

    Working effectively in groups is essential for college graduates (Hart Research Associates, 2013). University and college administrators have responded to this need by increasing the number of group communication courses by 25% (Bertelsen & Goodboy, 2009). However, it is the quality of course instruction that determines how well prepared…

  13. Developing an Error Model for Ionospheric Phase Distortions in L-Band SAR and InSAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Agram, P. S.

    2014-12-01

    Many of the recent and upcoming spaceborne SAR systems are operating in the L-band frequency range. The choice of L-band has a number of advantages especially for InSAR applications. These include deeper penetration into vegetation, higher coherence, and higher sensitivity to soil moisture. While L-band SARs are undoubtedly beneficial for a number of earth science disciplines, their signals are susceptive to path delay effects in the ionosphere. Many recent publications indicate that the ionosphere can have detrimental effects on InSAR coherence and phase. It has also been shown that the magnitude of these effects strongly depends on the time of day and geographic location of the image acquisition as well as on the coincident solar activity. Hence, in order to provide realistic error estimates for geodetic measurements derived from L-band InSAR, an error model needs to be developed that is capable of describing ionospheric noise. With this paper, we present a global ionospheric error model that is currently being developed in support of NASA's future L-band SAR mission NISAR. The system is based on a combination of empirical data analysis and modeling input from the ionospheric model WBMOD, and is capable of predicting ionosphere-induced phase noise as a function of space and time. The error model parameterizes ionospheric noise using a power spectrum model and provides the parameters of this model in a global 1x1 degree raster. From the power law model, ionospheric errors in deformation estimates can be calculated. In Polar Regions, our error model relies on a statistical analysis of ionospheric-phase noise in a large number of SAR data from previous L-band SAR missions such as ALOS PALSAR and JERS-1. The focus on empirical analyses is due to limitations of WBMOD in high latitude areas. Outside of the Polar Regions, the ionospheric model WBMOD is used to derive ionospheric structure parameters for as a function of solar activity. The structure parameters are

  14. Bioelectromagnetic effects measurements - SAR and induced current.

    PubMed

    Dlugosz, Tomasz

    2015-01-01

    The paper discusses several theoretical and practical aspects of the application of currents flowing through the body of a radiotelephone operator and Specific Absorption Rate (SAR). SAR is known as the physical quantity which is a perfect solution for biological experiments. Unfortunately, SAR cannot be measured directly. Contrary to SAR, which is limited to the penetration depth, a current induced in a point of a body is measurable in any other point of the body. The main objective of this paper is to show that the current induced in a human body when using a radiotelephone or mobile phone is significant and should be analyzed as widely as SAR is. Computer simulations of a human's hand with a radiotelephone were made. Experiments were also conducted. The results of the experiments show that induced current is also as important as SAR and it cannot be omitted in bioelectromagnetic experiments. In biomedical studies both parameters: induced current and SAR play a major role. PMID:25585976

  15. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  16. Operational Use of Civil Space-Based Synthetic Aperture Radar (SAR)

    NASA Technical Reports Server (NTRS)

    Montgomery, Donald R. (Editor)

    1996-01-01

    Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the motion of the aircraft or spacecraft carrying the radar to synthesize an antenna aperture larger than the physical antenna to yield a high-spatial resolution imaging capability. SAR systems can thus obtain high-spatial resolution geophysical measurements of the Earth over wide surface areas, under all-weather, day/night conditions. This report was prepared to document the results of a six-month study by an Ad Hoc Interagency Working Group on the Operational Use of Civil (i.e., non-military) Space-based Synthetic Aperture Radar (SAR). The Assistant Administrator of NOAA for Satellite and Information Services convened this working group and chaired three meetings of the group over a six-month period. This action was taken in response to a request by the Associate Administrator of NASA for Mission to Planet Earth for an assessment of operational applications of SAR to be accomplished in parallel with a separate study requested of the Committee on Earth Studies of the Space Studies Board of the National Research Council on the scientific results of SAR research missions. The representatives of participating agencies are listed following the Preface. There was no formal charter for the working group or long term plans for future meetings. However, the working group may be reconstituted in the future as a coordination body for multiagency use of operational SAR systems.

  17. [Severe acute respiratory syndrome (SARS)].

    PubMed

    Gillissen, Adrian; Ruf, Bernhard R

    2003-06-15

    Severe acute respiratory syndrome (SARS) is a viral disease, observed primarily in Southern China in November 2002, with variable flu-like symptoms and pneumonia, in approx. 5% leading to death from respiratory distress syndrome (RDS). The disease was spread over more than 30 states all over the globe by SARS-virus-infected travelers. WHO and CDC received first information about a new syndrome by the end of February 2003, after the first cases outside the Republic of China had been observed. A case in Hanoi, Vietnam, led to the first precise information about the new disease entity to WHO, by Dr. Carlo Urbani, a co-worker of WHO/Doctors without Borders, who had been called by local colleagues to assist in the management of a patient with an unknown severe disease by the end of February 2003. Dr. Urbani died from SARS, as did many other health care workers. In the meantime, more than 7,000 cases have been observed worldwide, predominantly in China and Hong Kong, but also in Taiwan, Canada, Singapore, and the USA, and many other countries, and more than 600 of these patients died from RDS. Since the beginning of March 2003, when WHO and CDC started their activities, in close collaboration with a group of international experts, including the Bernhard-Nocht-Institute in Hamburg and the Department of Virology in Frankfurt/Main, a previously impossible success in the disclosure of the disease was achieved. Within only 8 weeks of research it was possible to describe the infectious agent, a genetically modified coronavirus, including the genetic sequence, to establish specific diagnostic PCR methods and to find possible mechanisms for promising therapeutic approaches. In addition, intensifying classical quarantine and hospital hygiene measures, it was possible to limit SARS in many countries to sporadic cases, and to reduce the disease in countries such as Canada and Vietnam. This review article summarizes important information about many issues of SARS (May 15th, 2003

  18. Multiscale Segmentation of Polarimetric SAR Image Based on Srm Superpixels

    NASA Astrophysics Data System (ADS)

    Lang, F.; Yang, J.; Wu, L.; Li, D.

    2016-06-01

    Multi-scale segmentation of remote sensing image is more systematic and more convenient for the object-oriented image analysis compared to single-scale segmentation. However, the existing pixel-based polarimetric SAR (PolSAR) image multi-scale segmentation algorithms are usually inefficient and impractical. In this paper, we proposed a superpixel-based binary partition tree (BPT) segmentation algorithm by combining the generalized statistical region merging (GSRM) algorithm and the BPT algorithm. First, superpixels are obtained by setting a maximum region number threshold to GSRM. Then, the region merging process of the BPT algorithm is implemented based on superpixels but not pixels. The proposed algorithm inherits the advantages of both GSRM and BPT. The operation efficiency is obviously improved compared to the pixel-based BPT segmentation. Experiments using the Lband ESAR image over the Oberpfaffenhofen test site proved the effectiveness of the proposed method.

  19. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  20. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  1. Corticosterone administration upregulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions

    PubMed Central

    Fan, Yan; Chen, Ping; Li, Ying; Cui, Kui; Noel, Daniel M.; Cummins, Elizabeth D.; Brown, Russell W.; Zhu, Meng-Yang

    2013-01-01

    Stress has been reported to activate the locus coeruleus (LC)–noradrenergic system. In the present study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase of DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, the present study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task-dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of

  2. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations

  3. Inter-Tidal Flats Segmentation Of SAR Images Using A Waterfall Hierarchical Algorithm

    NASA Astrophysics Data System (ADS)

    Soares, F.; Catalao, J.; Nico, G.

    2012-01-01

    In this work we describe a scheme to identify 1D structures in SAR images and applied it to a dataset consisting of two TerraSAR-X images acquired over the region of Lisbon with a temporal baseline of 22 days. The aim of this application it to identify the inter-tidal flats along the south bank of the Tagus river. First results show that a proper recognition of the inter-tidal zone is achieved.

  4. Can Italian Healthcare Administrative Databases Be Used to Compare Regions with Respect to Compliance with Standards of Care for Chronic Diseases?

    PubMed Central

    Gini, Rosa; Schuemie, Martijn J.; Francesconi, Paolo; Lapi, Francesco; Cricelli, Iacopo; Pasqua, Alessandro; Gallina, Pietro; Donato, Daniele; Brugaletta, Salvatore; Donatini, Andrea; Marini, Alessandro; Cricelli, Claudio; Damiani, Gianfranco; Bellentani, Mariadonata; van der Lei, Johan; Sturkenboom, Miriam C. J. M.; Klazinga, Niek S.

    2014-01-01

    Background Italy has a population of 60 million and a universal coverage single-payer healthcare system, which mandates collection of healthcare administrative data in a uniform fashion throughout the country. On the other hand, organization of the health system takes place at the regional level, and local initiatives generate natural experiments. This is happening in particular in primary care, due to the need to face the growing burden of chronic diseases. Health services research can compare and evaluate local initiatives on the basis of the common healthcare administrative data.However reliability of such data in this context needs to be assessed, especially when comparing different regions of the country. In this paper we investigated the validity of healthcare administrative databases to compute indicators of compliance with standards of care for diabetes, ischaemic heart disease (IHD) and heart failure (HF). Methods We compared indicators estimated from healthcare administrative data collected by Local Health Authorities in five Italian regions with corresponding estimates from clinical data collected by General Practitioners (GPs). Four indicators of diagnostic follow-up (two for diabetes, one for IHD and one for HF) and four indicators of appropriate therapy (two each for IHD and HF) were considered. Results Agreement between the two data sources was very good, except for indicators of laboratory diagnostic follow-up in one region and for the indicator of bioimaging diagnostic follow-up in all regions, where measurement with administrative data underestimated quality. Conclusion According to evidence presented in this study, estimating compliance with standards of care for diabetes, ischaemic heart disease and heart failure from healthcare databases is likely to produce reliable results, even though completeness of data on diagnostic procedures should be assessed first. Performing studies comparing regions using such indicators as outcomes is a promising

  5. Controlling Data Collection to Support SAR Image Rotation

    SciTech Connect

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  6. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore.

    PubMed

    Wilder-Smith, Annelies; Teleman, Monica D; Heng, Bee H; Earnest, Arul; Ling, Ai E; Leo, Yee S

    2005-07-01

    We conducted a study among healthcare workers (HCWs) exposed to patients with severe acute respiratory syndrome (SARS) before infection control measures were instituted. Of all exposed HCWs, 7.5% had asymptomatic SARS-positive cases. Asymptomatic SARS was associated with lower SARS antibody titers and higher use of masks when compared to pneumonic SARS. PMID:16022801

  7. The SARS-associated stigma of SARS victims in the post-SARS era of Hong Kong.

    PubMed

    Siu, Judy Yuen-man

    2008-06-01

    This article explores the disease-associated stigma attached to the SARS victims in the post-SARS era of Hong Kong. I argue that the SARS-associated stigma did not decrease over time. Based on the ethnographic data obtained from 16 months of participant observation in a SARS victims' self-help group and semistructured interviews, I argue that the SARS-associated stigma was maintained, revived, and reconstructed by the biomedical encounters, government institutions, and public perception. I also provide new insight on how the SARS-associated stigma could create problems for public health development in Hong Kong. As communicable diseases will be a continuing threat for the human society, understanding how the disease-associated stigma affects the outcomes of epidemic control measures will be crucial in developing a more responsive public health policy as well as medical follow-up and social support service to the diseased social groups of future epidemic outbreaks. PMID:18503014

  8. Marketing Strategies Used to Promote Master of Business Administration Programs in Colleges and Universities in the Middle Atlantic Region.

    ERIC Educational Resources Information Center

    Sable, Paul F.

    Enrollments in Masters of Business Administration (MBA) programs and the use and effectiveness of marketing techniques for managing MBA enrollments were investigated in 1984. A 94-item questionnaire completed by 56 MBA programs offered at colleges and universities in the Middle Atlantic States addressed administration, awareness of marketing and…

  9. Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge.

    PubMed

    Cao, Huiluo; Dong, Chunming; Bougouffa, Salim; Li, Jiangtao; Zhang, Weipeng; Shao, Zongze; Bajic, Vladimir B; Qian, Pei-Yuan

    2016-01-01

    In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far. PMID:26953077

  10. Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz.

    PubMed

    Dimbylow, P J

    2002-08-21

    Finite-difference time-domain (FDTD) calculations of whole-body averaged specific energy absorption rate (SAR) have been performed from 100 MHz to 3 GHz at the basic 2 mm resolution of the voxel (volume pixel) model NORMAN without any rescaling to larger cell sizes. The reduction in the voxel size from previous work allows SAR to be calculated at higher frequencies. Additionally, the calculations have been extended down to 10 MHz, covering the whole-body resonance regions at a resolution of 4 mm. As well as for the adult phantom, SAR values are calculated for scaled versions representing 10-, 5- and 1-year-old children for both grounded and isolated conditions. External electric field levels are derived from limits of whole-body averaged SAR and localized SAR in the ankle, and compared with NRPB investigation levels and ICNIRP reference levels. The ICNIRP field reference levels alone would not provide a conservative estimate of the localized SAR exposure in the leg for grounded conditions. It would be necessary to invoke the secondary reference level on limb current to provide compliance with basic restrictions on localized SAR averaged over 10 g. PMID:12222849

  11. Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge

    PubMed Central

    Cao, Huiluo; Dong, Chunming; Bougouffa, Salim; Li, Jiangtao; Zhang, Weipeng; Shao, Zongze; Bajic, Vladimir B.; Qian, Pei-Yuan

    2016-01-01

    In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far. PMID:26953077

  12. Monitoring of Land Subsidence in Ravenna Municipality Using Integrated SAR - GPS Techniques: Description and First Results

    NASA Astrophysics Data System (ADS)

    Artese, G.; Fiaschi, S.; Di Martire, D.; Tessitore, S.; Fabris, M.; Achilli, V.; Ahmed, A.; Borgstrom, S.; Calcaterra, D.; Ramondini, M.; Artese, S.; Floris, M.; Menin, A.; Monego, M.; Siniscalchi, V.

    2016-06-01

    The Emilia Romagna Region (N-E Italy) and in particular the Adriatic Sea coastline of Ravenna, is affected by a noticeable subsidence that started in the 1950s, when the exploitation of on and off-shore methane reservoirs began, along with the pumping of groundwater for industrial uses. In such area the current subsidence rate, even if lower than in the past, reaches the -2 cm/y. Over the years, local Authorities have monitored this phenomenon with different techniques: spirit levelling, GPS surveys and, more recently, Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with DInSAR and GPS techniques applied to the study of the land subsidence in the Ravenna territory. With regard to the DInSAR, the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques have been used. Different SAR datasets have been exploited: ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1. Some GPS campaigns have been also carried out in a subsidence prone area. 3D vertices have been selected very close to existing persistent scatterers in order to link the GPS measurement results to the SAR ones. GPS data were processed into the International reference system and the comparisons between the coordinates, for the first 6 months of the monitoring, provided results with the same trend of the DInSAR data, even if inside the precision of the method.

  13. Six years of land subsidence in shanghai revealed by JERS-1 SAR data

    USGS Publications Warehouse

    Damoah-Afari, P.; Ding, X.-L.; Li, Z.; Lu, Zhiming; Omura, M.

    2008-01-01

    Differential interferometric synthetic aperture radar (SAR) (DInSAR) has proven to be very useful in mapping and monitoring land subsidence in many regions of the world. Shanghai, China's largest city, is one of such areas suffering from land subsidence as a result of severe withdrawal of groundwater for different usages. DInSAR application in Shanghai with the C-band European Remote Sensing 1 & 2 (ERS-1/2) SAR data has been difficult mainly due to the problem of decorrelation of InSAR pairs with temporal baselines larger than 10 months. To overcome the coherence loss of C-band InSAR data, we used eight L-band Japanese Earth Resource Satellite (JERS-1) SAR data acquired during 2 October 1992 to 15 July 1998 to study land subsidence phenomenon in Shanghai. Three of the images were used to produce two separate digital elevation models (DEMs) of the study area to remove topographic fringes from the interferograms used for subsidence mapping. Six interferograms were used to generate 2 different time series of deformation maps over Shanghai. The cumulative subsidence map generated from each of the time series is in agreement with the land subsidence measurements of Shanghai city from 1990-1998, produced from other survey methods. ?? 2007 IEEE.

  14. Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz

    NASA Astrophysics Data System (ADS)

    Dimbylow, P. J.

    2002-08-01

    Finite-difference time-domain (FDTD) calculations of whole-body averaged specific energy absorption rate (SAR) have been performed from 100 MHz to 3 GHz at the basic 2 mm resolution of the voxel (volume pixel) model NORMAN without any rescaling to larger cell sizes. The reduction in the voxel size from previous work allows SAR to be calculated at higher frequencies. Additionally, the calculations have been extended down to 10 MHz, covering the whole-body resonance regions at a resolution of 4 mm. As well as for the adult phantom, SAR values are calculated for scaled versions representing 10-, 5- and 1-year-old children for both grounded and isolated conditions. External electric field levels are derived from limits of whole-body averaged SAR and localized SAR in the ankle, and compared with NRPB investigation levels and ICNIRP reference levels. The ICNIRP field reference levels alone would not provide a conservative estimate of the localized SAR exposure in the leg for grounded conditions. It would be necessary to invoke the secondary reference level on limb current to provide compliance with basic restrictions on localized SAR averaged over 10 g.

  15. Maintaining Relevancy in Programs of Agriculture. Proceedings: Southern Regional Meeting, Land Grant College and University Presidents and Administrators of Agriculture (Atlanta, Georgia, April 20-21, 1972).

    ERIC Educational Resources Information Center

    Southern Regional Education Board, Atlanta, GA. Inst. for Higher Educational Opportunity.

    Recommendations for maintaining relevant programs which resulted from this meeting of college and university presidents and administrators are applicable to all colleges and universities offering programs of agriculture in the region. Given in this report are two major presentations entitled "The Integration of Knowledge in a Specialized Society"…

  16. Directory of Personnel in Research, Technology, Education, Administration and Management. Development Activities in the Marine Environment of the Coastal Plains Region.

    ERIC Educational Resources Information Center

    Mecca, Christyna E.

    Listed in this directory are individuals concerned currently with marine activities on the coasts of North Carolina, South Carolina, and Georgia, and the adjacent offshore area, known administratively as the Coastal Plains Region. The categories for the listings include educational institutions, state and county agencies, and federal agencies. The…

  17. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  18. Applying PolSAR and PolInSAR to Forest Structure Information Extraction

    NASA Astrophysics Data System (ADS)

    Chen, E.; Li, Z.; Li, W.; Feng, Q.; Zhou, W.; Pottier, E.; Hong, W.

    2013-01-01

    The key research activities and achievements in the field of applying PolSAR and PolInSAR to forest structure information extraction in DRAGON 2 are summarized in this paper. The limitation of the ALOS PolInSAR dataset acquired in the Culai test site for forest height extraction because of its long temporal baseline (46 days), and how the PolInSAR coherence optimization methods can help improve the topography inversion accuracy under forest canopy were presented. We have analyzed and evaluated the capability of multiple polarization parameters extracted from different frequency PolSAR data for forest scar mapping in the Shibazhan test site, and developed the land cover classification method based on SVM (Support Vector Machine) using PolSAR data. With the L-band E-SAR PolInSAR data acquired in the test site in Germany, we developed forest above ground biomass (AGB) estimation approach based on polarization coherence tomography (PCT).

  19. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  20. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  1. Assessment of slope stability using PS-InSAR technique

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Varshney, P.; Tiwari, A.; Singh, A. K.; Dikshit, O.

    2014-11-01

    In this research work, PS-InSAR approach is envisaged to monitor slope stability of landslides prone areas in Nainital and Tehri region of Uttarakhand, India. For the proposed work, Stanford Method for Persistent Scatterers (StaMPS) based PS-InSAR is used for processing ENVISAT ASAR C-Band data stacks of study area which resulted in a time series 1D-Line of Sight (LOS) map of surface displacement. StaMPS efficiently extracted the PS pixels on the unstable slopes in both areas and the time series 1D-LOS displacement map of PS pixels indicates that those areas in Nainital and Tehri region have measurement pixels with maximum displacement away from the satellite of the order of 22 mm/year and 17.6 mm/year respectively

  2. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Chellappa, Rama; Dubois, Pascale; Kwok, Ronald; Van Zyl, Jacob

    1991-01-01

    An unsupervised selection of polarimetric features useful for the segmentation and analysis of polarimetric synthetic aperture radar (SAR) data is presented. The technique is based on multidimensional clustering of the parameters composing the polarimetric covariance matrix of the data. Clustering is performed on the logarithm of these quantities. Once the polarimetric cluster centers have been determined, segmentation of the polarimetric data into regions is performed using a maximum likelihood polarimetric classifier. Segmentation maps are further improved using a Markov random field to describe the statistics of the regions and computing the maximum of the product of the local conditional densities. Examples with real polarimetric SAR imagery are given to illustrate the potential of this method.

  3. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  4. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  5. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  6. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  7. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  8. Building detection in SAR imagery

    SciTech Connect

    Steinbach, Ryan Matthew

    2015-04-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. I present two techniques that are effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed techniques assume that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint, where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. For the first technique, constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. The second technique calculates weights for the connections and then performs a series of increasingly relaxed hard and soft thresholds. This results in groups of various levels on their validity. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results demonstrate the outcome of the two techniques. The two techniques are compared and discussed.

  9. Multiresolution FOPEN SAR image formation

    NASA Astrophysics Data System (ADS)

    DiPietro, Robert C.; Fante, Ronald L.; Perry, Richard P.; Soumekh, Mehrdad; Tromp, Laurens D.

    1999-08-01

    This paper presents a new technique for FOPEN SAR (foliage penetration synthetic aperture radar) image formation of Ultra Wideband UHF radar data. Planar Subarray Processing (PSAP) has successfully demonstrated the capability of forming multi- resolution images for X and Ka band radar systems under MITRE IR&D and the DARPA IBC program. We have extended the PSAP algorithm to provide the capability to form strip map, multi- resolution images for Ultra Wideband UHF radar systems. The PSAP processing can accommodate very large SAR integration angles and the resulting very large range migration. It can also accommodate long coherent integration times and wide swath coverage. Major PSAP algorithm features include: multiple SAR sub-arrays providing different look angles at the same image area that can enable man-made target responses to be distinguished from other targets and clutter by their angle dependent specular characteristics, the capability to provide a full resolution image in these and other selected areas without the processing penalty of full resolution in non required areas, and the capability to include angle-dependent motion compensation within the image formation process.

  10. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  11. 4. NORTH ELEVATION, SHOWING ADMINISTRATIVE OFFICES AT LEFT REAR, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION, SHOWING ADMINISTRATIVE OFFICES AT LEFT REAR, AND SWITCH RACK AT RIGHT REAR. VIEW TO SOUTH-SOUTHEAST. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  12. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  13. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  14. A TDMA MIMO SAR radar for automated position-keeping

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Lin, Xingping; Cumber, Steven; Fish, Ensign John; Pham, Khanh; Blasch, Erik; Chen, Genshe; Shen, Dan; Jia, Bin; Wang, Gang

    2015-05-01

    This paper presents a time division multiple access (TDMA) multiple-input and multiple-output (MIMO) synthetic aperture radar (SAR) with a sliding range window for automated position-keeping, which can be applied in vessel tracking/escorting, offshore deepwater drillship equipment servicing, etc. A MIMO SAR sensor predefines a special part of the target (i.e., the drillship, ship, or submarine) as the measurement target and does not need special assistant devices/targets installed on the target vessel/platform, so its application is convenient. In the measurement process, the sensor scans the target with multiple ranging gates, forms images of multiple sections of the target, detects the predefined part/target in these images, and then obtains the range and angle of the predefined target for relative localization. Our MIMO SAR has 13 transmitting antennas and 8 receiving antennas. All transmitting antennas share a transmitter and all receiving antennas share a receiver using switches to reduce cost. The MIMO SAR radar has 44 effective SAR phase centers, and the azimuth angle resolution is θ0.5/44 (finest, θ 0.5 is the antenna element's 3dB beamwidth). The transmitter transmits a chirped linear frequency modulated continuous wave (LFMCW) signal, and the receiver only processes the signal limited in the beat frequency region defined by the distance from the measurement target to the sensor and the interested measurement target extension, which is determined by the receiver bandwidth. With the sliding range window, the sensor covers a large range, and in the covered range window, it provides high accuracy measurements.

  15. SAR image construction from periodically gapped phase-history data

    NASA Astrophysics Data System (ADS)

    Larsson, Erik G.; Li, Jianwei J.

    2002-08-01

    It is known that high-resolution synthetic aperture radar (SAR) imaging can be cast as a spectral analysis problem, and consequently a number of sophisticated spectral estimation methods have been applied to SAR imaging. These method include the classical Capon method and the closely related Amplitude and Phase Estimation (APES) algorithm. In this paper, we show how Capon and APES can be extended to deal with spectral analysis of periodically gapped (PG) data, i.e. data where samples are missing in a periodic fashion. This problem is highly relevant for SAR imaging with angular diversity since in that case the measured phase-history data matrix contains missing columns. Our extension of Capon and APES is based on a transform that maps a one-dimensional (1D) periodically gapped time-series into a uniformly sampled two-dimensional (2D) data set. We show that the stationarity properties of the 1D signal are left unchanged by the transformation, and as a result the conventional 2D Capon and APES methods can be applied to the transformed data. An associated inverse transform is used to extract the 1D spectral estimate from the 2D one. The new method is computationally and conceptually non-intricate and it does not involve any interpolation of the missing data. Despite its striking simplicity, numerical results indicate that the new method can be a promising tool for SAR imaging with angular diversity as well as for time-series analysis. In SAR applications, the new method may be particularly suitable for accurate imaging of a small region of interest.

  16. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  17. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  18. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  19. Drift Ice Classification Using SAR Image Data by a Self-Organizing Neural Network

    NASA Astrophysics Data System (ADS)

    Fukumi, Minoru; Mitsukura, Yasue; Nagao, Taketsugu; Akamatsu, Norio

    This paper proposes a segmentation method of SAR (Synthetic Aperture Radar) images which uses a SOM(Self-Organizing Map). SAR images are obtained by observation using microwave sensor. They are segmented into the drift ice (thick, thin), and sea regions manually, and then features are extracted from partitioned data. However they are not necessarily effective for neural network learning because they can include incorrectly segmented data. Therefore, in particular, a multi-step SOM is used as a learning method to improve reliability of teacher data, and carries out classification. This process enable us to fix all mistook data and segment the SAR data using just data. The validity of this method was demonstrated by computer simulations using the actual SAR images.

  20. SAR Computation inside Fetus by RF Coil during MR Imaging Employing Realistic Numerical Pregnant Woman Model

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Ikehira, Hiroo

    This paper presents the computational electromagnetic dosimetry inside an anatomically based pregnant woman models exposed to electromagnetic wave during magnetic resonance imaging. The two types of pregnant woman models corresponding to early gestation and 26 weeks gestation were used for this study. The specific absorption rate (SAR) in and around a fetus were calculated by radiated electromagnetic wave from highpass and lowpass birdcage coil. Numerical calculation results showed that high SAR region is observed at the body in the vicinity of gaps of the coil, and is related to concentrated electric field in the gaps of human body such as armpit and thigh. Moreover, it has confirmed that the SAR in the fetus is less than International Electrotechnical Commission limit of 10W/kg, when whole-body average SARs are 2W/kg and 4W/kg, which are the normal operating mode and first level controlled operating mode, respectively.

  1. Three-dimensional surface reconstruction from multistatic SAR images.

    PubMed

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets. PMID:16121463

  2. Algorithms For Segmentation Of Complex-Amplitude SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Ramalingam

    1993-01-01

    Several algorithms implement improved method of segmenting highly speckled, high-resolution, complex-amplitude synthetic-aperture-radar (SAR) digitized images into regions, within each backscattering characteristics similar or homogeneous from place to place. Method provides for approximate, deterministic solution by two alternative algorithms almost always converging to local minimums: one, Iterative Conditional Modes (ICM) algorithm, which locally maximizes posterior probability density of region labels; other, Maximum Posterior Marginal (MPM) algorithm, which maximizes posterior marginal density of region labels at each pixel location. ICM algorithm optimizes reconstruction of underlying scene. MPM algorithm minimizes expected number of misclassified pixels, possibly better in remote sensing of natural scenes.

  3. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; The Radar Team

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  4. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones.

    PubMed

    Hamblin, Denise L; Anderson, Vitas; McIntosh, Robert L; McKenzie, Ray J; Wood, Andrew W; Iskra, Steve; Croft, Rodney J

    2007-05-01

    This paper investigates the influence of EEG electrode caps on specific absorption rate (SAR) in the head from a GSM900 mobile phone (217-Hz modulation, peak power output 2 W). SAR measurements were recorded in an anthropomorphic phantom using a precision robotic system. Peak 10 g average SAR in the whole head and in just the temporal region was compared for three phantom arrangements; no cap, 64-electrode "Electro-Cap," and 64-electrode "Quick-Cap". Relative to the "no cap" arrangement, the Electro-Cap and Quick-Cap caused a peak SAR (10 g) reduction of 14% and 18% respectively in both the whole head and in the temporal region. Additional computational modeling confirmed that SAR (10 g) is reduced by the presence of electrode leads and that the extent of the effect varies according to the orientation of the leads with respect to the radiofrequency (RF) source. The modeling also indicated that the nonconductive shell between the electrodes and simulated head material does not significantly alter the electrode lead shielding effect. The observed SAR reductions are not likely to be sufficiently large to have accounted for null EEG findings in the past but should nonetheless be noted in studies aiming to measure and report human brain activity under similar exposure conditions. PMID:17518289

  5. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  6. A coherence estimation method for multi-temporal D-InSAR deformation monitoring in coal mining areas

    NASA Astrophysics Data System (ADS)

    Gao, Junhai; Ge, Daqing; Wu, Linxin; Yin, Zuoru; Deng, Zhiyi; Wang, Yan; Liao, Mingsheng; Zhang, Ling

    2005-10-01

    Regional surface subsidence induced by underground coal mining is very common and is a serious environmental problem in China. The mining subsidence not only causes damages to surface buildings but also change the pattern of surface drainage in a densely urbanized area. Monitoring and Analyzing the spatial distribution of the endangered surface may be helpful for land-use planning and for land reclamation. Interferometry SAR (InSAR) can be used to effectively monitor the succession of the spatial extent and the magnitude of subsidence in coal mining areas. In this paper, the multi-temporal D-InSAR method was applied for the generation of deformation map in coal mining area. With the "Interferometry Coherence Estimation Minimum Span Tree (ICEMST)" model, the optimized SAR images combination for D-InSAR processing for long term surface subsidence monitoring were predicted. With the estimation of ICEMST, several scenes SAR SLC data with time spanned more than half a year and spatial baseline more than 400m long were combined for D-InSAR processing to study the succession of land subsidence induced by underground coal mining and groundwater exploration in the test site, Kailuan coal mine area, a typical mining industrial area in north China, which has 125 years coal mining history. After being processed with the conventional "2 Pass" differential InSAR method, the deformation caused by underground coal mining in the line of sight (LOS) was transformed into vertical subsidence map. The experiment shows that the short time span is more suitable for D-InSAR application in mining areas than the long time span, for the lower correlation due to densely growing vegetation, seasonal changing factors and large water plashes. The time decorrelation, spatial decorrelation and the D-InSAR error resources were analyzed and discussed, and the Connor Reflectors method integrated with D-InSAR and GPS are presented, which will be a key practical technology for information obtain in

  7. The German Bight: A validation of CryoSat-2 altimeter data in SAR mode

    NASA Astrophysics Data System (ADS)

    Fenoglio-Marc, L.; Dinardo, S.; Scharroo, R.; Roland, A.; Dutour Sikiric, M.; Lucas, B.; Becker, M.; Benveniste, J.; Weiss, R.

    2015-06-01

    The retrieval of the three geophysical parameters - sea surface height above the reference ellipsoid (SSH), significant wave height (SWH) and wind speed at 10 m above the sea surface (U10) - is the main goal of satellite altimetry and of primary importance for climate research. The Synthetic Aperture Radar (SAR) altimetry is expected to provide improved precision and along-track resolution compared to the conventional low-resolution mode (LRM) radar altimetry. CryoSat-2 enables a quantitative comparison of SAR and Pseudo-LRM (PLRM) data derived respectively from a coherent and an incoherent processing of the same SAR echoes. In this paper we perform their cross-validation and validation against in situ and model data to derive precision and accuracy at 1 Hz in open ocean, at distances larger than 10 km from the coast. The analysis is performed in the German Bight during 2011 and 2012. Both the PLRM and the SAR scheme include waveform zero-padding and identical environmental, geophysical, and atmospheric attenuation corrections. A Look Up Table is additionally used in SAR to correct for approximations of the Point Target Response (PTR) applied in the retracking procedure. The regional cross-validation analysis proves the good consistency between PLRM and SAR data, with no bias and rms differences of 3 cm, 21 cm, and 0.26 m/s for SSH, SWH, and U10, respectively. The precision of SSH and SWH is higher in SAR than in PLRM (by a factor of 2), while the precision of U10 is 1.4 times better in PLRM than in SAR. At 2 m waveheight, the SAR precision is 0.9 cm for SSH, 6.6 cm for SWH. and 5.8 cm/s for U10. The in situ analysis shows that SSH and U10 have comparable accuracy in SAR and PLRM, while SWH has a significantly higher accuracy in SAR. With a maximum distance of 20 km between altimeter and in situ data, the minimum values obtained for their rms differences are 7 cm, 14 cm, and 1.3 m/s for SAR and 6 cm, 29 cm, and 1.4 m/s for PLRM.

  8. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  9. Decadal Change Characterization in Northern Wetlands Based on Analysis of L-band SAR Satellite Data

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Moghaddam, M.; McDonald, K. C.; Podest, E.; Chapman, B. D.

    2009-12-01

    Northern wetlands are believed to have hitherto served as carbon sinks, sequestering about one third of the total global pool of soil carbon. The warmer, drier conditions occurring throughout the Arctic as a consequence of global warming may now be causing them to evolve from carbon sinks into major sources of greenhouse gases. The ability to characterize long-term changes in the condition of northern wetlands is therefore essential to the development of accurate global carbon budgets. L-band synthetic aperture radar (SAR) offers a unique tool for monitoring changes in the characteristics of vegetated wetlands. It is sensitive to vegetation structure, biomass, and moisture content, and can penetrate vegetation canopies to detect standing water underneath. We have been using L-band SAR imagery from two different spaceborne sensors separated in time by approximately one decade, JERS and PALSAR, to produce a thematic map of change in the type and extent of wetlands in Alaska. Summer and winter JERS imagery characterizes the wetlands status for the 1997 time frame while dual-polarized PALSAR imagery captures the wetlands status for the summer of 2007 time frame. To produce each classified wetlands map, the SAR imagery is supplemented with ancillary information derived from the SAR and other sources. The classification algorithm applied to each set of imagery is based upon the Random Forests technique, by using a multitude of decision trees. To ensure that a sufficiently wide spectrum of ground reference points are included in each map segment to be able to develop a representative set of decision trees, we classify over large geographic regions. Since our PALSAR imagery is provided at resolutions 3-8 times that of our JERS imagery, classifying it requires much more computer memory than does classifying JERS for the same size region. We have investigated resampling strategies to address computational limitations, and have found it necessary to average the PALSAR imagery

  10. La Red Regional Replad: Una Estrategia Innovadora para la Capacitacion de Administradores Educacionales (The Regional Network Replad: An Innovative Strategy for the Training and Preparation of Educational Administrators).

    ERIC Educational Resources Information Center

    Jimenez Espinoza, Jorge

    This document presents an overview, analysis, and historical assessment of the Major Project for Education in Latin America and the Caribbean. Conferences, regional meetings, and outcomes from the inception of the project in 1979 are described. This project stresses the establishment of a regional network for exchange of information, experiences,…

  11. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units.

    PubMed

    Booth, Timothy F; Kournikakis, Bill; Bastien, Nathalie; Ho, Jim; Kobasa, Darwyn; Stadnyk, Laurie; Li, Yan; Spence, Mel; Paton, Shirley; Henry, Bonnie; Mederski, Barbara; White, Diane; Low, Donald E; McGeer, Allison; Simor, Andrew; Vearncombe, Mary; Downey, James; Jamieson, Frances B; Tang, Patrick; Plummer, Frank

    2005-05-01

    Severe acute respiratory syndrome (SARS) is characterized by a risk of nosocomial transmission; however, the risk of airborne transmission of SARS is unknown. During the Toronto outbreaks of SARS, we investigated environmental contamination in SARS units, by employing novel air sampling and conventional surface swabbing. Two polymerase chain reaction (PCR)-positive air samples were obtained from a room occupied by a patient with SARS, indicating the presence of the virus in the air of the room. In addition, several PCR-positive swab samples were recovered from frequently touched surfaces in rooms occupied by patients with SARS (a bed table and a television remote control) and in a nurses' station used by staff (a medication refrigerator door). These data provide the first experimental confirmation of viral aerosol generation by a patient with SARS, indicating the possibility of airborne droplet transmission, which emphasizes the need for adequate respiratory protection, as well as for strict surface hygiene practices. PMID:15809906

  12. Sentinel-3 SAR Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  13. Quantifying methane ebullition in thermokarst lakes with space borne synthetic aperture radar (SAR)

    NASA Astrophysics Data System (ADS)

    Engram, M. J.; Walter Anthony, K.; Meyer, F. J.; Grosse, G.

    2011-12-01

    Northern high latitude wetlands and thermokarst lakes in permafrost regions have been identified as strong sources for methane (CH4), a powerful greenhouse gas. Quantifying the spatial distribution and magnitude of CH4 sources in these regions has become increasingly important in the current scenario of global warming and amidst concerns of partial release of the large permafrost soil carbon pool through thawing by thermokarst lakes. Ebullition (bubbling) is an important mode of CH4 emission from thermokarst lakes to the atmosphere. However, due to its sporadic behavior, large uncertainties remain in estimating the magnitude of ebullition emissions from lakes. Synthetic Aperture Radar (SAR) remote sensing of lake ice is a potentially valuable tool to constrain bottom-up estimates of lake ebullition in regions where lake ice forms. Here we explored various SAR imaging parameters as they correlate to field measurements of CH4 ebullition bubbles in the ice of ten thermokarst lakes on the northern Seward Peninsula, Alaska. We found that ebullition bubbles trapped in frozen lakes were strongly correlated with L-band single polarized horizontal (HH) SAR (R2 = 0.70, P = 0.002) and with the 'roughness' component of a classic Pauli decomposition of PALSAR L-band quad-polarized signal (R2 = 0.77, P = 0.001). We found no such correlation with ERS-2 C-band single polarized vertical (VV) SAR. We present the results of our single-pol and quad-pol SAR geospatial analysis, a discussion of probable scattering mechanisms of ebullition bubbles in frozen thermokarst lakes and our recommendation for the optimal season for SAR observation. Our results indicate that calibrated L-band SAR could be a valuable tool for estimating methane ebullition in lakes on a regional scale by evaluating the backscatter intensity from early winter lake ice.

  14. Cascades of InSAR in the Cascades - outlook for the use of InSAR and space-based imaging catalogues in a Subduction Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lohman, R. B.

    2015-12-01

    Interferometric synthetic aperture radar (InSAR) has long demonstrated its utility to studies of subduction zone earthquakes, crustal events and volcanic processes, particularly in regions with very good temporal data coverage (e.g., Japan), or arid regions where the timescale of surface change is long compared to the repeat time of the available SAR imagery (e.g., portions of South America). Recently launched and future SAR missions with open data access will increase the temporal sampling rates further over many areas of the globe, resulting in a new ability to lower the detection threshold for earthquakes and, potentially, interseismic motion and transients associated with subduction zone settings. Here we describe some of the anticipated detection abilities for events ranging from earthquakes and slow slip along the subduction zone interface up to landslides, and examine the variations in land use around the circum-Pacific and how that and its changes over time will affect the use of InSAR. We will show the results of an effort to combine Landsat and other optical imagery with SAR data catalogues in the Pacific Northwest to improve the characterization of ground deformation signals, including the identification of "spurious" signals that are not related to true ground deformation. We also describe prospects for working with other communities that are interested in variations in soil moisture and vegetation structure over the same terrain.

  15. A Case Study of Two Regional State Universities Qualifying as Learning Organizations Based on Administration and Staff Viewpoints

    ERIC Educational Resources Information Center

    Rich, Tammy Morrison

    2011-01-01

    This case study of 2 state universities qualifying as learning organizations, based on administration and staff viewpoints, was completed using a qualitative methodology. The idea of what a learning organization is can be different depending on who or what is being analyzed. For this study, the work of theorists including W. Edwards Deming,…

  16. The Compound and Homologous Eruptions from the SAR 11429

    NASA Astrophysics Data System (ADS)

    Dhakal, Suman Kumar; Zhang, Jie

    2016-05-01

    Super Active Regions (SARs) are ARs which shows extremely high rate of solar eruptions. NOAA AR 11429 was a SAR which produced 47 C-Class, 15 M-Class and 3 X-Class flares and 8 CMEs during its passage from the front disk of the Sun. This SAR had anti-Hale and delta-spot magnetic configuration and many sub-regions of magnetic flux emergence. With the aid of multi-wavelength observations of the Solar Dynamics Observatory (SDO), the Solar Terrestrial Relations Observatory (STEREO) and nonlinear force-free model for the magnetic field in the solar corona, we found the existence of many magnetic flux structures (flux bundles) in the corona of the AR. The energy released by these co-existing flux bundles within short time, resulted in compound erutpions from the AR on March 9 and 10, 2012. In the period of 38 hours, after the CME eruption on March 9, the continuous shearing and cancellation and new magnetic flux emergence resulted in another CME on March 10. Both of the events showed the compound nature and the similarity of the foot-points and EUV dimming made these eruptions homologous.

  17. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  18. A Simple Model for a SARS Epidemic

    ERIC Educational Resources Information Center

    Ang, Keng Cheng

    2004-01-01

    In this paper, we examine the use of an ordinary differential equation in modelling the SARS outbreak in Singapore. The model provides an excellent example of using mathematics in a real life situation. The mathematical concepts involved are accessible to students with A level Mathematics backgrounds. Data for the SARS epidemic in Singapore are…

  19. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of

  20. (abstract) Examining Sea Ice SAR Signatures in the Arctic

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin

    1993-01-01

    This research examines the seasonal changes of the sea ice cover in the Arctic Basin as it responds to atmospheric and oceanic conditions. Monitoring this process provides a means of determining the onset and extent of the annual seasonal stages, which is thought to be an indicator for detecting climate change in the polar regions. Much of the response of sea ice to seasonal conditions results in changes in the phase of water (both in the ice and snow cover), surface roughness, and internal properties such as air bubbles. Imagery from SAR has proven to be an important tool for revealing these changes since radar backscatter is affected by both surface roughness and dielectric properties of water and salt. The major ice types and ice features may have unique SAR backscatter signatures because of the inherent variations in surface roughness, salinity, and internal properties in each category.

  1. Intelligent low rate compression of speckled SAR imagery

    SciTech Connect

    Ives, R.W.; Eichel, P.; Magotra, N.

    1997-05-01

    This paper describes a compression technique under development at Sandia National Laboratories for the compression of complex synthetic aperture radar (SAR) imagery at very low overall bit rates. The methods involved combine several elements of existing and new lossy and lossless compression schemes in order to achieve an overall compression ratio of large SAR scenes of at least 50:1, while maintaining reasonable image quality. It is assumed that the end user will be primarily interested in specific regions of interest within the image (called chips), but that the context in which these chips appear within the entire scene is also of importance to an image analyst. The term intelligent is used to signify an external cuer which locates the chips of interest.

  2. Knowledge based SAR images exploitations

    NASA Astrophysics Data System (ADS)

    Wang, David L.

    1987-01-01

    One of the basic functions of SAR images exploitation system is the detection of man-made objects. The performance of object detection is strongly limited by performance of segmentation modules. This paper presents a detection paradigm composed of an adaptive segmentation algorithm based on a priori knowledge of objects followed by a top-down hierarchical detection process that generates and evaluates object hypotheses. Shadow information and inter-object relationships can be added to the knowledge base to improve performance over that of a statistical detector based only on the attributes of individual objects.

  3. Regularization Analysis of SAR Superresolution

    SciTech Connect

    DELAURENTIS,JOHN M.; DICKEY,FRED M.

    2002-04-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. In a previous report the application of the concept to synthetic aperture radar was investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. This work treats the problem from the standpoint of regularization. Both the operator inversion approach and the regularization approach show that the ability to superresolve SAR imagery is severely limited by system noise.

  4. Making Mosaics Of SAR Imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.; Pang, Amy A.

    1990-01-01

    Spaceborne synthetic-aperture-radar (SAR) images useful for mapping of planets and investigations in Earth sciences. Produces multiframe mosaic by combining images along ground track, in adjacent cross-track swaths, or in ascending and descending passes. Images registered with geocoded maps such as ones produced by MAPJTC (NPO-17718), required as input. Minimal intervention by operator required. MOSK implemented on DEC VAX 11/785 computer running VMS 4.5. Most subroutines in FORTRAN, but three in MAXL and one in APAL.

  5. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    NASA Astrophysics Data System (ADS)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  6. Reconnaissance with slant plane circular SAR imaging.

    PubMed

    Soumekh, M

    1996-01-01

    This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle. PMID:18285213

  7. An unusual SAR arc observed during ring current development, 4 August 1972. [Stable Auroral Red

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Brace, L. H.; Burrows, J. R.; Hoffman, J. H.; Klumpar, D. M.; James, H. G.; Whitteker, J. H.; Nagy, A. F.; Stathopoulos, E.

    1980-01-01

    An unusual SAR arc observed during the growth phase of the ring current is described. Proton precipitation was observed, with electron temperature enhancements throughout the region, and an F-region trough present at the equatorward boundary; a high flux of low energy at the SAR arc location and a 'slot' in the ambient electron density are characteristic of this event. Comparisons are made with S3-A spacecraft observations made in the equatorial region at the same time and with Isis-II observations of a more normal SAR arc; the kinetic Alfven process described by Hasegawa and Mima (1978) appears to account for the acceleration of these low energy electrons, although an auroral-type acceleration process cannot be excluded.

  8. SARS and Population Health Technology

    PubMed Central

    2003-01-01

    The recent global outbreak of SARS (severe acute respiratory syndrome) provides an opportunity to study the use and impact of public health informatics and population health technology to detect and fight a global epidemic. Population health technology is the umbrella term for technology applications that have a population focus and the potential to improve public health. This includes the Internet, but also other technologies such as wireless devices, mobile phones, smart appliances, or smart homes. In the context of an outbreak or bioterrorism attack, such technologies may help to gather intelligence and detect diseases early, and communicate and exchange information electronically worldwide. Some of the technologies brought forward during the SARS epidemic may have been primarily motivated by marketing efforts, or were more directed towards reassuring people that "something is being done," ie, fighting an "epidemic of fear." To understand "fear epidemiology" is important because early warning systems monitoring data from a large number of people may not be able to discriminate between a biological epidemic and an epidemic of fear. The need for critical evaluation of all of these technologies is stressed. PMID:12857670

  9. InSAR Terrain Mapping Using ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Atwood, D.; Guritz, R.; Muskett, R.; Lingle, C.; Sauber, J.

    2006-12-01

    High quality geodetic ground control is time-consuming and costly to acquire in remote regions, where logistical operations are difficult to support. Hence, there is a strong interest in establishing new sources of ground control points that can be used in conjunction with Interferometric SAR (InSAR) for producing accurate digital elevation models (DEMs). In January 2003, NASA launched the Geoscience Laser Altimeter System (GLAS) into high polar orbit onboard the Ice, Cloud, and land Elevation Satellite (ICESat). A major objective of this spaceborne laser altimeter system, with orbital coverage extending from 86° N to 86° S, is to provide elevation measurements of the Earth's topography with unprecedented accuracy. The intent of our project is to assess the accuracy of ICESat elevation data and evaluate its utility as ground control for topographic mapping. Our study area lies near Barrow, Alaska; 15,650 sq. km of coastal plain adjacent to the Arctic Ocean, characterized by vast expanses of tundra, lakes, and arctic wetlands of such low relief as to be nearly devoid of terrain features. Accuracy of the ICESat elevation measurements is assessed through comparison with differential GPS (DGPS) data, acquired along ICESat ground tracks crossing our study area. Using DGPS as the reference, ICESat yields a mean offset of -0.04 ± 0.15 m for fast static measurements on frozen tundra lakes and 0.22 ± 0.96 m for two kinematic DGPS profiles along the ICESat ground track. These results suggests that ICESat-derived elevations on the Arctic coastal plain are more than sufficiently accurate for use as ground control in DEM generation. The only clear limitation of the ICESat data is the non-uniform distribution of the ICESat tracks within the 33 day near-repeat sub-cycle. Although the coverage is poor at equatorial latitudes, track separation in the Arctic is on the order of tens of kilometers because of orbital convergence at the Poles. To test whether these data can be used

  10. Vertical ground movements for Prague and Ostrava-Karviná areas determined by PSInSAR

    NASA Astrophysics Data System (ADS)

    Schenk, V.; Wegmüller, U.; Kadlecik, P.; Schenkova, Z.

    2009-04-01

    Permanent Scatterers Interferometry SAR (PSInSAR) allows precise measurements of ground movements to be detected. This remote sensing technique assesses displacements along the satellite line of sight and detects vertical movements of targets on the Earth surface (called permanent scatterers). They are representing particularly by man-made objects (e.g. individual buildings) and by rock outcrops in a landscape. For area of Prague were processed 78 ERS1/2 SAR scenes for period from 1992 to 2005. Subsidence and uplift rates in the Prague area reach millimetres to centimetres per year. The PSInSAR analysis identifies primarily vertical movements of local significance, mostly subsiding of buildings and/or object complexes in the urban area. The second investigated Ostrava-Karviná area is heavily affected by long-term undermining activities. The PSInSAR data for this area relate to the 1995-2000 period (acquired by processing ERS1/2 48 SAR scenes). Displacements for the urban area of Ostrava town display subsiding effects, because of coal-mining decrease, while in the Karviná coal mining area they are still in a progress. Some areas located in the undermined region move down up to several decimetres per year. Detectable rate of vertical movement obtained by the PSInSAR application reaches at most 1.5 centimetres per year. Since in a few locations rates of movements are rather high, three scenes from 2007 by differential interferometry SAR were processed using the ALOS PALSAR approach to determine these intensive movements. The work was supported by the Targeted Research Programme of the Academy of Sciences of the Czech Republic (1QS300460551) and by Ministry of Education, Youth and Sport of the Czech Republic (LC506).

  11. InSAR Scientific Computing Environment on the Cloud

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Shams, K. S.; Gurrola, E. M.; George, B. A.; Knight, D. S.

    2012-12-01

    In response to the needs of the international scientific and operational Earth observation communities, spaceborne Synthetic Aperture Radar (SAR) systems are being tasked to produce enormous volumes of raw data daily, with availability to scientists to increase substantially as more satellites come online and data becomes more accessible through more open data policies. The availability of these unprecedentedly dense and rich datasets has led to the development of sophisticated algorithms that can take advantage of them. In particular, interferometric time series analysis of SAR data provides insights into the changing earth and requires substantial computational power to process data across large regions and over large time periods. This poses challenges for existing infrastructure, software, and techniques required to process, store, and deliver the results to the global community of scientists. The current state-of-the-art solutions employ traditional data storage and processing applications that require download of data to the local repositories before processing. This approach is becoming untenable in light of the enormous volume of data that must be processed in an iterative and collaborative manner. We have analyzed and tested new cloud computing and virtualization approaches to address these challenges within the context of InSAR in the earth science community. Cloud computing is democratizing computational and storage capabilities for science users across the world. The NASA Jet Propulsion Laboratory has been an early adopter of this technology, successfully integrating cloud computing in a variety of production applications ranging from mission operations to downlink data processing. We have ported a new InSAR processing suite called ISCE (InSAR Scientific Computing Environment) to a scalable distributed system running in the Amazon GovCloud to demonstrate the efficacy of cloud computing for this application. We have integrated ISCE with Polyphony to

  12. Politics and the management of public health disasters: reflections on the SARS epidemic in greater China.

    PubMed

    Hui, D L H; Ng, M K

    2007-01-01

    This paper examines the problems of coordination between and within six jurisdictional players, namely the Hong Kong SAR Government, the Guangdong Province, the Central Authority (PRC), the Taiwanese Government, the Taipei Government and the World Health Organization during the SARS episode from November 2002 until August 2003. We found that the diverging political interests and entrenched administrative practices accounted for the poor coordination between and within these players. The obsession with "political correctness" has severely hampered "rational" decision making among the jurisdictional players. The highly fragmented and compartmentalised intra-jurisdictional public health system means that marshalling resources from health and non-health sectors is difficult. PMID:18277522

  13. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    NASA Astrophysics Data System (ADS)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  14. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Engram, M.; Anthony, K. W.; Meyer, F. J.; Grosse, G.

    2013-11-01

    Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns from floating and grounded lake ice in two regions of Alaska: the northern Seward Peninsula (NSP) where methane ebullition is common in lakes and the Arctic Coastal Plain (ACP) where ebullition is relatively rare. We found average backscatter intensities of -13 dB and -16 dB for late winter floating ice on the NSP and ACP, respectively, and -19 dB for grounded ice in both regions. Polarimetric analysis revealed that the mechanism of L-band SAR backscatter from floating ice is primarily roughness at the ice-water interface. L-band SAR showed less contrast between floating and grounded lake ice than C-band; however, since L-band is sensitive to ebullition bubbles trapped by lake ice (bubbles increase backscatter), this study helps elucidate potential confounding factors of grounded ice in methane studies using SAR.

  15. InSAR time series analysis for monitoring of natural and anthropogenic hazards with high temporal resolution (Invited)

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; d'Oreye, N.; Gonzalez, P. J.; Tiampo, K. F.

    2013-12-01

    Modern Synthetic Aperture Radar (SAR) satellites and satellite constellations are capable of acquiring data at high spatial resolution and increasing temporal resolution allowing detection of ground deformation signals with a minimal delay. Advanced interferometric SAR (InSAR) processing techniques, such as Small Baseline Subset (SBAS) and Multidimensional Small Baseline Subset (MSBAS) are capable of producing time series of ground deformation with a very high sub-centimeter precision. Additionally MSBAS allows combination of various InSAR data into a single set of vertical and horizontal deformation time series further improving their temporal resolution and precision. Developed methodologies are ready for operational monitoring of natural and anthropogenic hazards, including landslides, volcanoes, earthquakes and tectonic motion and ground subsidence caused by mining and groundwater extraction. Here we present various case studies where an InSAR time series analysis was able to map ground deformation with superior resolution and precision, including mining subsidence in the Greater Luxembourg region and southern Saskatchewan, groundwater extraction related subsidence in the Greater Vancouver Region, volcanic deformation in the Virunga Volcanic Province, and tectonic deformation and landslide in northern California. Often, InSAR is the best cost-efficient solution with no restrictions on spatial coverage, weather or lighting condition and timing. It is anticipated that the use of SAR data for mapping hazards will increase in the future as data access improves.

  16. SAR image formation toolbox for MATLAB

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy A.; Moore, Linda J.

    2010-04-01

    While many synthetic aperture radar (SAR) image formation techniques exist, two of the most intuitive methods for implementation by SAR novices are the matched filter and backprojection algorithms. The matched filter and (non-optimized) backprojection algorithms are undeniably computationally complex. However, the backprojection algorithm may be successfully employed for many SAR research endeavors not involving considerably large data sets and not requiring time-critical image formation. Execution of both image reconstruction algorithms in MATLAB is explicitly addressed. In particular, a manipulation of the backprojection imaging equations is supplied to show how common MATLAB functions, ifft and interp1, may be used for straight-forward SAR image formation. In addition, limits for scene size and pixel spacing are derived to aid in the selection of an appropriate imaging grid to avoid aliasing. Example SAR images generated though use of the backprojection algorithm are provided given four publicly available SAR datasets. Finally, MATLAB code for SAR image reconstruction using the matched filter and backprojection algorithms is provided.

  17. The Alaska SAR processor - Operations and control

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1989-01-01

    The Alaska SAR (synthetic-aperture radar) Facility (ASF) will be capable of receiving, processing, archiving, and producing a variety of SAR image products from three satellite-borne SARs: E-ERS-1 (ESA), J-ERS-1 (NASDA) and Radarsat (Canada). Crucial to the success of the ASF is the Alaska SAR processor (ASP), which will be capable of processing over 200 100-km x 100-km (Seasat-like) frames per day from the raw SAR data, at a ground resolution of about 30 m x 30 m. The processed imagery is of high geometric and radiometric accuracy, and is geolocated to within 500 m. Special-purpose hardware has been designed to execute a SAR processing algorithm to achieve this performance. This hardware is currently undergoing acceptance testing for delivery to the University of Alaska. Particular attention has been devoted to making the operations semi-automated and to providing a friendly operator interface via a computer workstation. The operations and control of the Alaska SAR processor are described.

  18. SAR and LIDAR fusion: experiments and applications

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  19. Next generation SAR demonstration on space station

    SciTech Connect

    Edelstein, Wendy; Kim, Yunjin; Freeman, Anthony; Jordan, Rolando

    1999-01-22

    This paper describes the next generation synthetic aperture radar (SAR) that enables future low cost space-borne radar missions. In order to realize these missions, we propose to use an inflatable, membrane, microstrip antenna that is particularly suitable for low frequency science radar missions. In order to mitigate risks associated with this revolutionary technology, the space station demonstration will be very useful to test the long-term survivability of the proposed antenna. This experiment will demonstrate several critical technology challenges associated with space-inflatable technologies. Among these include space-rigidization of inflatable structures, controlled inflation deployment, flatness and uniform separation of thin-film membranes and RF performance of membrane microstrip antennas. This mission will also verify the in-space performance of lightweight, high performance advanced SAR electronics. Characteristics of this SAR instrument include a capability for high resolution polarimetric imaging. The mission will acquire high quality scientific data using this advanced SAR to demonstrate the utility of these advanced technologies. We will present an inflatable L-band SAR concept for commercial and science applications and a P-band design concept to validate the Biomass SAR mission concept. The ionospheric effects on P-band SAR images will also be examined using the acquired data.

  20. Monitoring of the effects of fire in North American boreal forests using ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; French, N. H. F.; Bourgeau-Chavez, L. L.

    1997-01-01

    ERS synthetic aperture radar (SAR) imagery represents a tool for monitoring the effects of fires in boreal regions. Fire-scar signatures from ERS SAR collected over Canada and Alaska are presented. The temporal variability exhibited throughout the growing season is underlined. The investigation showed that these signatures have a seasonal trend related to the patterns of soil moisture originating from snow melts in the spring and precipitation during the growing season. These signatures appear in all the regions of the North American boreal forest and remain visible for up to 13 years after a fire.

  1. Topographic slope from the SAR interferometric phase gradient

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Rosen, Paul A.

    1993-01-01

    A new algorithm for the direct calculation of topographic slope maps from synthetic aperture radar (SAR) interferograms is presented. The algorithm derives slope maps without first requiring the creation of a digital elevational model (DEM) from the interferogram, thus obviating the need for high SNR in the interferogram and altitude calibration points for the scene. SAR data useful for interferometry has been collected by the Active Microwave Imager on board the ERS-1 satellite, when it was in a short period repeat orbit. Two passes of the radar sensor form a cross-track interferometric baseline. For a point target at some position (x,y,h), the interferometric phase difference phi is proportional to the difference in path lengths for the two sensor positions to the scatterer. Given the phase difference as measured in the complex interferogram and an accurate baseline geometry, the position of the scatterer, most significantly the height h, can be determined through triangulation. The interferometric phase measurement however is known only modulo 2-pi, and hence it is necessary to determine the correct multiple of 2-pi to add to the phase at each point to obtain an estimate of the actual phase with respect to an absolute datum. This phase unwrapping process is required for creating DEM's, and is difficult or impossible for regions of low SNR or SAR image layover. The new algorithm described here derives slope maps without requiring phase unwrapping.

  2. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Muse, P.; Simons, M.; Lin, N.; Dicaprio, C. J.

    2010-12-01

    We present a technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale InSAR Time Series analysis), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. As opposed to single pixel InSAR time series techniques, MInTS takes advantage of both spatial and temporal characteristics of the deformation field. We use a weighting scheme which accounts for the presence of localized holes due to decorrelation or unwrapping errors in any given interferogram. We represent time-dependent deformation using a dictionary of general basis functions, capable of detecting both steady and transient processes. The estimation is regularized using a model resolution based smoothing so as to be able to capture rapid deformation where there are temporally dense radar acquisitions and to avoid oscillations during time periods devoid of acquisitions. MInTS also has the flexibility to explicitly parametrize known time-dependent processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). We use cross validation to choose the regularization penalty parameter in the inversion of for the time-dependent deformation field. We demonstrate MInTS using a set of 63 ERS-1/2 and 29 Envisat interferograms for Long Valley Caldera.

  3. Aoutomatic Oil Spill Detection Using TerraSAR-X Data

    NASA Astrophysics Data System (ADS)

    Zulipiye, Kaiyoumu; Balik Sanli, Fusun

    2016-07-01

    Oil release into the ocean may affect marine ecosystems and cause environmental pollution. Thus, oil spill detection and identification becomes critical important. Characterized by synoptic view over large regions, remote sensing has been proved to be a reliable tool for oil spill detection. Synthetic Aperture Radar (SAR) imagery shows returned signal that clearly distinguish oil from oil-free surface under optimal wind conditions, which makes it the most frequent used remote sensing technique in oil spill detection. Algorithms of automatic oil spill detection has already been developed for different SAR sensors, including RADARSAT and ENVISAT. In this study, we want to apply automatic oil spill detection algorithms on TerraSAR-X data which is previously developed for ASAR data. The applied methodology includes two steps as segmentation and classification. First segmentation algorithms compiled by C# have been applied under a Bayesian framework adopting a multi-level logistic. After segmentation different classification methods such as feature selection, filter, and embedded selection have been applied. As a result the used classifiers for oil spill detection will be compared, and the complete processing chain will be evaluated.

  4. Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration

    PubMed Central

    Smith, Hilary R.; Beveridge, Thomas J.R.; Nader, Michael A.; Porrino, Linda J.

    2014-01-01

    Background Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. Methods Rhesus monkeys (n=4) self-administered cocaine (0.3 mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (n=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. Results Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. Conclusions These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users. PMID:24529965

  5. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  6. Coastal and Wetlands Applications for an InSAR Mission

    NASA Astrophysics Data System (ADS)

    Dixon, T.; Amelung, F.; Gourmelen, N.; Kim, S.; Osmanoglu, B.; Wdowinski, S.

    2006-12-01

    Interferometric Synthetic Aperture Radar (InSAR) has found wide application in the study of Earth surface change, including earthquake and volcano deformation, motion of glaciers and ice sheets, and ground subsidence due to fluid extraction. In the last few years, InSAR may have significant application in studies of wetlands, coastal regions, and related environmental problems. These are becoming increasingly important as global warming contributes to sea level rise, with consequent modification or loss of coastal habitat, and increased storm frequency/intensity, with consequent increased hazard to coastal communities. Most of these applications would benefit from increased data availability and spatial resolution. A common problem for many InSAR studies in these areas is the influence of spatially and temporally variable tropospheric water vapor. Multiple interferograms can be used to average down tropospheric noise, or selectively edit image pairs where tropospheric noise is high. Alternately, the Permanent Scatterer (PSInSAR) technique can produce an average surface change rate over several months or years for coastal land applications where the assumption of steady state deformation is reasonable (e.g., some land subsidence applications). This technique also effectively identifies tropospheric noise. Common to both approaches is the need for large numbers of images, closely spaced in time. Wetland water levels also change on short time scales (days to weeks) implying the need for frequent coverage. Hence, such applications benefit from mission scenarios emphasizing repeat times shorter than 7 days. Assuming global coverage is desirable, the requirement for rapid re-survey suggests that multi-satellite constellations should be considered.

  7. Geometric accuracy in airborne SAR images

    NASA Technical Reports Server (NTRS)

    Blacknell, D.; Quegan, S.; Ward, I. A.; Freeman, A.; Finley, I. P.

    1989-01-01

    Uncorrected across-track motions of a synthetic aperture radar (SAR) platform can cause both a severe loss of azimuthal positioning accuracy in, and defocusing of, the resultant SAR image. It is shown how the results of an autofocus procedure can be incorporated in the azimuth processing to produce a fully focused image that is geometrically accurate in azimuth. Range positioning accuracy is also discussed, leading to a comprehensive treatment of all aspects of geometric accuracy. The system considered is an X-band SAR.

  8. Design considerations of GeoSAR

    NASA Astrophysics Data System (ADS)

    Kim, Yunjin; Hensley, Scott; Veilleux, Louise; Edelstein, W.; Lou, Yun-Ling; Burken, A.; Skotnicky, W. F.; Sato, T.; Brown, W.

    1996-06-01

    The primary purpose of GeoSAR is to demonstrate the feasibility of interferometric topographic mapping through foliage penetration. GeoSAR should become a commercially viable instrument after the feasibility demonstration. To satisfy both requirements, we have designed a dual frequency (UHF- and X-band) interferometric radar. For foliage penetration, a lower frequency (UHF) radar is used. To obtain better height accuracy for low backscatter areas, we proposed a high frequency (X-band) interferometric system. In this paper, we present a possible GeoSAR system configuration and associated performance estimation.

  9. Primary studies of Chinese spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Wang, Zhen-Song; Wu, Guo-Xiang; Guo, Hua-Dong; Wei, Zhong-Quan; Zhu, Min-Hui

    1993-01-01

    The primary studies on spaceborne synthetic aperture radar (SAR) in China are discussed. The SAR will be launched aboard a Chinese satellite and operated at L-band with HH polarization. The purpose of the mission in consideration is dedicated to resources and environment uses, especially to natural disaster monitoring. The ground resolution is designed as 25 m x 25 m for detailed mode and 100 m x 100 m for wide scan-SAR mode. The off-nadir angle can be varied from 20 to 40 deg. The key system concepts are introduced.

  10. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  11. Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin

    2014-05-01

    Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination

  12. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar: synthesis, stability and interaction with hPEPT1.

    PubMed

    Eriksson, André H; Elm, Peter L; Begtrup, Mikael; Brodin, Birger; Nielsen, Robert; Steffansen, Bente

    2005-05-01

    The aim of the present study was to improve the synthetic pathway of bioreversible dipeptide derivatives as well as evaluate the potential of using l-Glu-Sar as a pro-moiety for delivering three newly synthesised nucleoside and pyrimidine l-Glu-Sar derivatives. l-Glu(trans-2-thymine-1-yl-tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown on permeable supports. Affinity was estimated in a competition assay, using [14C] labelled Gly-Sar (glycylsarcosine). Translocation was measured as pHi-changes induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All dipeptide derivatives released the model drugs quantitatively by specific base-catalysed hydrolysis at pH>6.0. II was labile in aqueous buffer solution, whereas I and III showed appropriate stability for oral administration. In 10% porcine intestinal homogenate, the half-lives of the dipeptide derivatives indicated limited enzyme catalyzed degradation. All compounds showed good affinity to hPEPT1, but the Compounds I and III showed not to be translocated by hPEPT1. The translocation of the l-Glu-Sar derivative of acyclovir, l-Glu(acyclovir)-Sar was also investigated and showed not to take place. Consequently, l-Glu-Sar seems to be a poor pro-moiety for hPEPT1-mediated transport. PMID:15854810

  13. Similarity measures of full polarimetric SAR images fusion for improved SAR image matching

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-06-01

    China's first airborne SAR mapping system (CASMSAR) developed by Chinese Academy of Surveying and Mapping can acquire high-resolution and full polarimetric (HH, HV, VH and VV) Synthetic aperture radar (SAR) data. It has the ability to acquire X-band full polarimetric SAR data at a resolution of 0.5m. However, the existence of speckles which is inherent in SAR imagery affects visual interpretation and image processing badly, and challenges the assumption that conjugate points appear similar to each other in matching processing. In addition, researches show that speckles are multiplicative speckles, and most similarity measures of SAR image matching are sensitive to them. Thus, matching outcomes of SAR images acquired by most similarity measures are not reliable and with bad accuracy. Meanwhile, every polarimetric SAR image has different backscattering information of objects from each other and four polarimetric SAR data contain most basic and a large amount of redundancy information to improve matching. Therefore, we introduced logarithmically transformation and a stereo matching similarity measure into airborne full polarimetric SAR imagery. Firstly, in order to transform the multiplicative speckles into additivity ones and weaken speckles' influence on similarity measure, logarithmically transformation have to be taken to all images. Secondly, to prevent performance degradation of similarity measure caused by speckles, measure must be free or insensitive of additivity speckles. Thus, we introduced a stereo matching similarity measure, called Normalized Cross-Correlation (NCC), into full polarimetric SAR image matching. Thirdly, to take advantage of multi-polarimetric data and preserve the best similarity measure value, four measure values calculated between left and right single polarimetric SAR images are fused as final measure value for matching. The method was tested for matching under CASMSAR data. The results showed that the method delivered an effective

  14. National Oceanic and Atmospheric Administration hydrographic survey data used in a U.S. Geological Survey regional geologic framework study along the Delmarva Peninsula

    USGS Publications Warehouse

    Pendleton, Elizabeth A.; Brothers, Laura L.; Thieler, E. Robert; Danforth, William W.; Parker, Castle E.

    2014-01-01

    The U.S. Geological Survey obtained raw Reson multibeam data files from Science Applications International Corporation and the National Oceanic and Atmospheric Administration for 20 hydrographic surveys and extracted backscatter data using the Fledermaus Geocoder Toolbox from Quality Positioning Service. The backscatter mosaics produced by the U.S. Geological Survey for the inner continental shelf of the Delmarva Peninsula using National Oceanic and Atmospheric Administration data increased regional geophysical surveying efficiency, collaboration among government agencies, and the area over which geologic data can be interpreted by the U.S. Geological Survey. This report describes the methods by which the backscatter data were extracted and processed and includes backscatter mosaics and interpolated bathymetric surfaces.

  15. SEASAT SAR performance evaluation study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The performance of the SEASAT synthetic aperture radar (SAR) sensor was evaluated using data processed by the MDA digital processor. Two particular aspects are considered the location accuracy of image data, and the calibration of the measured backscatter amplitude of a set of corner reflectors. The image location accuracy was assessed by selecting identifiable targets in several scenes, converting their image location to UTM coordinates, and comparing the results to map sheets. The error standard deviation is measured to be approximately 30 meters. The amplitude was calibrated by measuring the responses of the Goldstone corner reflector array and comparing the results to theoretical values. A linear regression of the measured against theoretical values results in a slope of 0.954 with a correlation coefficient of 0.970.

  16. Study of the influence of the laterality of mobile phone use on the SAR induced in two head models

    NASA Astrophysics Data System (ADS)

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2013-05-01

    The objective of this paper is to investigate and to analyse the influence of the laterality of mobile phone use on the exposure of the brain to radio-frequencies (RF) and electromagnetic fields (EMF) from different mobile phone models using the finite-difference time-domain (FDTD) method. The study focuses on the comparison of the specific absorption rate (SAR) induced on the right and left sides of two numerical adult and child head models. The heads are exposed by both phone models operating in GSM frequency bands for both ipsilateral and contralateral configurations. A slight SAR difference between the two sides of the heads is noted. The results show that the variation between the left and the right sides is more important at 1800 MHz for an ipsilateral use. Indeed, at this frequency, the variation can even reach 20% for the SAR10g and the SAR1g induced in the head and in the brain, respectively. Moreover, the average SAR induced by the mobile phone in the half hemisphere of the brain in ipsilateral exposure is higher than in contralateral exposure. Owing to the superficial character of energy deposition at 1800 MHz, this difference in the SAR induced for the ipsilateral and contralateral usages is more significant at 1800 MHz than at 900 MHz. The results have shown that depending on the phantom head models, the SAR distribution in the brain can vary because of differences in anatomical proportions and in the geometry of the head models. The induced SAR in child head and in sub-regions of the brain is significantly higher (up to 30%) compared to the adult head. This paper confirms also that the shape/design of the mobile and the location of the antenna can have a large influence at high frequency on the exposure of the brain, particularly on the SAR distribution and on the distinguished brain regions.

  17. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Zhang, Aining; Zhou, Fuqun; Brisco, Brian

    2014-05-01

    Alfalfa presents a huge potential biofuel source in the Prairie Provinces of Canada. However, it remains a challenge to find an ideal single satellite sensor to monitor the regional spatial distribution of alfalfa on an annual basis. The primary interest of this study is to identify alfalfa spatial distribution through effectively differentiating alfalfa from grasslands, given their spectral similarity and same growth calendars. MODIS and RADARSAT-2 ScanSAR narrow mode were selected for regional-level grassland and alfalfa differentiation in the Prairie Provinces, due to the high frequency revisit of MODIS, the weather independence of ScanSAR as well as the large area coverage and the complementary characteristics SAR and optical images. Combining MODIS and ScanSAR in differentiating alfalfa and grassland is very challenging, since there is a large spatial resolution difference between MODIS (250 m) and ScanSAR narrow (50 m). This study investigated an innovative image fusion technique for combining MODIS and ScanSAR and obtaining a synthetic image which has the high spatial details derived from ScanSAR and the colour information from MODIS. The field trip was arranged to collect ground truth to label and validate the classification results. The fusion classification result shows significant accuracy improvement when compared with either ScanSAR or MODIS alone or with other commonly-used data combination methods, such as multiple files composites. This study has shown that the image fusion technique used in this study can combine the structural information from high resolution ScanSAR and colour information from MODIS to significantly improve the classification accuracy between alfalfa and grassland.

  18. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  19. Contrasting regional Fos expression in adolescent and young adult rats following acute administration of the antidepressant paroxetine.

    PubMed

    Karanges, Emily A; Ramos, Linnet; Dampney, Bruno; Suraev, Anastasia S; Li, Kong M; McGregor, Iain S; Hunt, Glenn E

    2016-03-01

    Adolescents and adults may respond differently to antidepressants, with poorer efficacy and greater probability of adverse effects in adolescents. The mechanisms underlying this differential response are largely unknown, but likely relate to an interaction between the neural effects of antidepressants and brain development. We used Fos immunohistochemistry to examine regional differences in adolescent (postnatal day (PND) 28) and young adult (PND 56) male, Wistar rats given a single injection of the selective serotonin reuptake inhibitor paroxetine (10mg/kg). Paroxetine induced widespread Fos expression in both adolescent and young adult rats. Commonly affected areas include the bed nucleus of the stria terminalis (dorsolateral), medial preoptic area, paraventricular hypothalamic and thalamic nuclei and central nucleus of the amygdala. Fos expression was generally lower in adolescents with significantly greater Fos expression observed in young adults in the prelimbic cortex, supraoptic nucleus, basolateral amygdala, lateral parabrachial and Kölliker-Fuse nuclei. However, a small subset of regions showed greater adolescent Fos expression including the nucleus accumbens shell, lateral habenula and dorsal raphe. Paroxetine increased plasma corticosterone concentrations in young adults, but not adolescents. Plasma paroxetine levels were not significantly different between the age groups. These results indicate a different c-Fos signature of acute paroxetine in adolescent rats, with greater activation in key mesolimbic and serotonergic regions, but a more subdued cortical, brainstem and hypothalamic response. This suggests that the atypical response of adolescents to paroxetine may be related to a blunted neuroendocrine response, combined with insufficient top-down regulation of limbic regions involved in reward and impulsivity. PMID:26876759

  20. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-08-01

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  1. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  2. Multiscale InSAR Time Series (MInTS) analysis of surface deformation

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Musé, P.; Simons, M.; Lin, Y. N.; Agram, P. S.; Dicaprio, C. J.

    2012-02-01

    We present a new approach to extracting spatially and temporally continuous ground deformation fields from interferometric synthetic aperture radar (InSAR) data. We focus on unwrapped interferograms from a single viewing geometry, estimating ground deformation along the line-of-sight. Our approach is based on a wavelet decomposition in space and a general parametrization in time. We refer to this approach as MInTS (Multiscale InSAR Time Series). The wavelet decomposition efficiently deals with commonly seen spatial covariances in repeat-pass InSAR measurements, since the coefficients of the wavelets are essentially spatially uncorrelated. Our time-dependent parametrization is capable of capturing both recognized and unrecognized processes, and is not arbitrarily tied to the times of the SAR acquisitions. We estimate deformation in the wavelet-domain, using a cross-validated, regularized least squares inversion. We include a model-resolution-based regularization, in order to more heavily damp the model during periods of sparse SAR acquisitions, compared to during times of dense acquisitions. To illustrate the application of MInTS, we consider a catalog of 92 ERS and Envisat interferograms, spanning 16 years, in the Long Valley caldera, CA, region. MInTS analysis captures the ground deformation with high spatial density over the Long Valley region.

  3. Multiscale InSAR Time Series (MInTS) analysis of surface deformation

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Muse, P.; Simons, M.; Lin, Y. N.; Agram, P. S.; DiCaprio, C. J.

    2011-12-01

    We present a new approach to extracting spatially and temporally continuous ground deformation fields from interferometric synthetic aperture radar (InSAR) data. We focus on unwrapped interferograms from a single viewing geometry, estimating ground deformation along the line-of-sight. Our approach is based on a wavelet decomposition in space and a general parametrization in time. We refer to this approach as MInTS (Multiscale InSAR Time Series). The wavelet decomposition efficiently deals with commonly seen spatial covariances in repeat-pass InSAR measurements, such that coefficients of the wavelets are essentially spatially uncorrelated. Our time-dependent parametrization is capable of capturing both recognized and unrecognized processes, and is not arbitrarily tied to the times of the SAR acquisitions. We estimate deformation in the wavelet-domain, using a cross-validated, regularized least-squares inversion. We include a model-resolution-based regularization, in order to more heavily damp the model during periods of sparse SAR acquisitions, compared to during times of dense acquisitions. To illustrate the application of MInTS, we consider a catalog of 92 ERS and Envisat interferograms, spanning 16 years, in the Long Valley caldera, CA, region. MInTS analysis captures the ground deformation with high spatial density over the Long Valley region.

  4. Statistical Modeling of SAR Images: A Survey

    PubMed Central

    Gao, Gui

    2010-01-01

    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last. PMID:22315568

  5. An algorithm for segmenting polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2015-05-01

    We have developed an algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 imagery using neural nets. The algorithm uses a feedforward neural net with one hidden layer to segment different surface classes. The weights are refined through an iterative filtering process characteristic of a relaxation process. Features selected from studies of fully polarimetric complex single look TerraSAR-X data and multilook SIR-C data are used as input to the net. The seven bands from Landsat 5 data are used as input for the Landsat neural net. The Cloude-Pottier incoherent decomposition is used to investigate the physical basis of the polarimetric SAR data segmentation. The segmentation of a SIR-C ocean surface scene into four classes is presented. This segmentation algorithm could be a very useful tool for investigating complex polarimetric SAR phenomena.

  6. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  7. Image based SAR product simulation for analysis

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  8. Tracking ocean wave spectrum from SAR images

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.; Beal, R. C.; Monaldo, F. M.; Tilley, D. G.

    1984-01-01

    An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction.

  9. SAR/LANDSAT image registration study

    NASA Technical Reports Server (NTRS)

    Murphrey, S. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.

  10. Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Sun, Xian; Thiele, Antje; Hinz, Stefan

    2015-10-01

    Synthetic aperture radar (SAR) systems, such as TanDEM-X, TerraSAR-X and Cosmo-SkyMed, acquire imagery with high spatial resolution (HR), making it possible to observe objects in urban areas with high detail. In this paper, we propose a new top-down framework for three-dimensional (3D) building reconstruction from HR interferometric SAR (InSAR) data. Unlike most methods proposed before, we adopt a generative model and utilize the reconstruction process by maximizing a posteriori estimation (MAP) through Monte Carlo methods. The reason for this strategy refers to the fact that the noisiness of SAR images calls for a thorough prior model to better cope with the inherent amplitude and phase fluctuations. In the reconstruction process, according to the radar configuration and the building geometry, a 3D building hypothesis is mapped to the SAR image plane and decomposed to feature regions such as layover, corner line, and shadow. Then, the statistical properties of intensity, interferometric phase and coherence of each region are explored respectively, and are included as region terms. Roofs are not directly considered as they are mixed with wall into layover area in most cases. When estimating the similarity between the building hypothesis and the real data, the prior, the region term, together with the edge term related to the contours of layover and corner line, are taken into consideration. In the optimization step, in order to achieve convergent reconstruction outputs and get rid of local extrema, special transition kernels are designed. The proposed framework is evaluated on the TanDEM-X dataset and performs well for buildings reconstruction.

  11. SAR Polarimetry for Oil at Sea Observation

    NASA Astrophysics Data System (ADS)

    Migliaccio, M.; Nunziata, F.

    2013-03-01

    Synthetic aperture radar (SAR) oil slick observation is a topic of great applicative relevance which has been physically recast by a set of new polarimetric approaches that, exploiting the departure from Bragg scattering, allow observing oil at sea in a very robust and effective way. In this study, these polarimetric approaches are reviewed and their performances are discussed with respect to some thought experiments undertaken on quad-pol full-resolution L- and C-band SAR data.

  12. Regional Variations of Antioxidant Capacity and Oxidative Stress Responses in HIV-1 Transgenic Rats With and Without Methamphetamine Administration

    PubMed Central

    Pang, Xiaosha; Panee, Jun; Liu, Xiangqian; Berry, Marla J.; Chang, Sulie L.; Chang, Linda

    2013-01-01

    HIV infection and methamphetamine (Meth) abuse both may lead to oxidative stress. This study used HIV-1 transgenic (HIV-1Tg) rats to investigate the independent and combined effects of HIV viral protein expression and low dose repeated Meth exposure on the glutathione (GSH)-centered antioxidant system and oxidative stress in the brain. Total GSH content, gene expression and/or enzymatic activities of glutamylcysteine synthetase (GCS), gamma-glutamyltransferase (GGT), glutathione reductase (GR), glutathione peroxidase (GPx), glutaredoxin (Glrx), and glutathione-s-transferase (GST) were measured. The protein expression of cystine transporter (xCT) and oxidative stress marker 4-hydroxynonenal (HNE) were also analyzed. Brain regions studied include thalamus, frontal and remainder cortex, striatum, cerebellum and hippocampus. HIV-1Tg rats and Meth exposure showed highly regional specific responses. In the F344 rats, the thalamus had the highest baseline GSH concentration and potentially higher GSH recycle rate. HIV-1Tg rats showed high transcriptional responses to GSH depletion in the thalamus. Both HIV-1Tg and Meth resulted in decreased GR activity in thalamus, and decreased Glrx activity in frontal cortex. However, the increased GR and Glrx activities synergized with increased GSH concentration, which might have partially prevented Meth-induced oxidative stress in striatum. Interactive effects between Meth and HIV-1Tg were observed in thalamus on the activities of GCS and GGT, and in thalamus and frontal cortex on Glrx activity and xCT protein expression. Findings suggest that HIV viral protein and low dose repeated Meth exposure have separate and combined effects on the brain’s antioxidant capacity and the oxidative stress response that are regional specific. PMID:23546885

  13. A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies

    NASA Astrophysics Data System (ADS)

    Notti, Davide; Calò, Fabiana; Cigna, Francesca; Manunta, Michele; Herrera, Gerardo; Berti, Matteo; Meisina, Claudia; Tapete, Deodato; Zucca, Francesco

    2015-11-01

    Recent advances in multi-temporal Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) have greatly improved our capability to monitor geological processes. Ground motion studies using DInSAR require both the availability of good quality input data and rigorous approaches to exploit the retrieved Time Series (TS) at their full potential. In this work we present a methodology for DInSAR TS analysis, with particular focus on landslides and subsidence phenomena. The proposed methodology consists of three main steps: (1) pre-processing, i.e., assessment of a SAR Dataset Quality Index (SDQI) (2) post-processing, i.e., application of empirical/stochastic methods to improve the TS quality, and (3) trend analysis, i.e., comparative implementation of methodologies for automatic TS analysis. Tests were carried out on TS datasets retrieved from processing of SAR imagery acquired by different radar sensors (i.e., ERS-1/2 SAR, RADARSAT-1, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, COSMO-SkyMed) using advanced DInSAR techniques (i.e., SqueeSAR™, PSInSAR™, SPN and SBAS). The obtained values of SDQI are discussed against the technical parameters of each data stack (e.g., radar band, number of SAR scenes, temporal coverage, revisiting time), the retrieved coverage of the DInSAR results, and the constraints related to the characterization of the investigated geological processes. Empirical and stochastic approaches were used to demonstrate how the quality of the TS can be improved after the SAR processing, and examples are discussed to mitigate phase unwrapping errors, and remove regional trends, noise and anomalies. Performance assessment of recently developed methods of trend analysis (i.e., PS-Time, Deviation Index and velocity TS) was conducted on two selected study areas in Northern Italy affected by land subsidence and landslides. Results show that the automatic detection of motion trends enhances the interpretation of DInSAR data, since it provides an objective

  14. Statistical Relation of Dynamic Sar Arc Characteristics To Substorms and Storms

    NASA Astrophysics Data System (ADS)

    Ievenko, I. B.; Alexeyev, V. N.

    latitude interval of SAR arc ob- servation is the statistical mapping of a more dynamic region of outer plasmasphere L-shells into which the ring currrent penetrates during substorms at Kp=3-5. 5) Most probable values of hourly average parameters of SAR arc and geomagnetic activity in used rows of data are: Im=140 R, Vm=20 m/s, AL=-230 nT, Dst=-40 nT.

  15. Improved Oceanographic Measurements with CryoSat SAR Altimetry

    NASA Astrophysics Data System (ADS)

    Cotton, David; Benveniste, Jérôme; Cipollini, Paolo; Andersen, Ole; Cancet, Mathilde; Ambrózio, Américo; Restano, Marco; Nilo Garcia, Pablo; Martin, Francisco

    2016-07-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry, which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, Envisat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  16. SAR arcs we have seen: Evidence for variability in stable auroral red arcs

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei

    2016-01-01

    Since 1987, an all-sky airglow imaging system has operated from a site at the Millstone Hill/Haystack Observatory in Westford, MA. During the ~2.5 solar cycles from 1987 to 2014, many studies using all-sky images, in conjunction with incoherent scatter radar and satellite data, described subauroral, ionospheric disturbances observed during individual geomagnetic storms. The most prominent storm time optical feature from a subauroral site is a stable auroral red (SAR) arc. The standard use of a SAR arc's position is to locate the ionospheric footprint of the narrow plasmapause-ring current interaction region where heat conduction from the inner magnetosphere excites emission within the F layer trough. When mapped from an emission altitude of 400 km to the geomagnetic equatorial plane, SAR arcs from Millstone Hill give the location of the plasmapause at radial distances between 2 to 4.5 Earth radii. A total of 314 SAR arcs have been observed during the 27 years of imaging at Millstone Hill. We find no single morphology for all SAR arcs, but rather patterns that occasionally depart from stability in space and time. We have classified these into five categories: longevity, multiplicity, zonal structure, latitudinal inhomogeneity, and tilt with respect to geomagnetic coordinates. In each case, the implications for the inner magnetosphere sources that drive SAR arcs are explored. While individual SAR arc variability characteristics have been noted in previous studies, here we describe for the first time all five types from the same site—an aspect not yet addressed in either magnetosphere or ionosphere modeling studies.

  17. InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh; Amelung, Falk

    2015-12-01

    We quantify the bias and uncertainty of interferometric synthetic aperture radar (InSAR) displacement time series and their derivatives, the displacement velocities, by analyzing the systematic and stochastic components of the temporal variation of the tropospheric delay. The biases due to the systematic seasonal delay depend on the SAR acquisition times, whereas the uncertainties depend on the standard deviation of the random delay, the number of acquisitions, the total time span covered, and the covariance of the time series of the stochastic delay between a pixel and the reference. We study the contribution of the wet delay to the InSAR observations along the western India plate boundary using (i) Moderate Resolution Imaging Spectroradiometer precipitable water vapor, (ii) stratified tropospheric delay estimated from the ERA-I global atmospheric model, and (iii) seven Envisat InSAR swaths. Our analysis indicates that the amplitudes of the annual delay vary by up to ~10 cm in this region equivalent to a maximum displacement bias of ~24 cm in InSAR line of sight direction between two epochs (assuming Envisat IS6 beam mode). The stratified tropospheric delay correction mitigates this bias and reduces the scatter due to the stochastic delay. For ~7 years of Envisat acquisitions along the western India plate boundary, the uncertainty of the InSAR velocity field due to the residual stochastic wet delay after stratified tropospheric delay correction using the ERA-I model is in the order of ~2 mm/yr over 100 km and ~4 mm/yr over 400 km. We discuss the implication of the derived uncertainties on the full variance-covariance matrix of the InSAR data.

  18. Studies of Aleutian volcanoes based on two decades of SAR imagery

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Dzurisin, D.

    2015-12-01

    With its global coverage and all-weather imaging capability, interferometric synthetic aperture radar (InSAR) has become an increasingly important technique for studying magma dynamics at volcanoes in remote regions, such as the Aleutian Islands. The spatial distribution of surface deformation derived from InSAR data enables the construction of detailed mechanical models to aid the investigation of magmatic processes. We processed nearly 12,000 SAR images of Aleutian volcanoes acquired by ERS-1, JERS-1, ERS-2, Radarsat-1, Envisat, ALOS, and TerraSAR-X from the early 1990s to 2010. We combined these SAR images to produce about 25,000 interferograms, which we analyzed for evidence of surface deformation at most of the arc's Holocene volcanoes. This talk summarizes deformation processes at Aleutian volcanoes observed with InSAR, including: (1) time-varying volcanic inflation and magmatic intrusion, (2) deformation preceding and accompanying seismic swarms , (3) persistent volcano-wide subsidence at calderas that last erupted tens of years ago, (4) episodic magma intrusion and associated tectonic stress release, (5) subsidence caused by a decrease in pore fluid pressure in active hydrothermal systems, (6) subsidence of surface lava and pyroclastic flows, and (7) a lack of deformation at some volcanoes with recent eruptions, where deformation might be expected. Our work demonstrates that deformation patterns and associated magma supply mechanisms at Aleutian volcanoes are diverse and vary in both space and time. By combining InSAR results with information from the geologic record, accounts of historical eruptions, and data from seismology, petrology, gas geochemistry, and other sources, we have developed conceptual models for the magma plumbing systems and behaviors of many volcanoes in the Aleutian arc. We realize that these models are simplistic, but it is our hope that they will serve as foundations that will be refined as additional information becomes available.

  19. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  20. Regional relation between skin blood flow and sweating to passive heating and local administration of acetylcholine in young, healthy humans

    PubMed Central

    Kenney, W. Larry; Alexander, Lacy M.

    2013-01-01

    Regional variation in sweating over the human body is widely recognized yet variation in vasomotor responses and mechanisms causing this variation remain unclear. This study aimed to explore the relation between regional sweating rates (RSR) and skin blood flow (SkBF) responses to thermal and pharmacological stimuli in young, healthy subjects. In nine subjects (23 ± 3 yr), intradermal microdialysis (MD) probes were inserted into the ventral forearm, abdomen, thigh, and lower back and perfused with lactated Ringer solution. RSR over each MD membrane were measured using ventilated capsules with a laser Doppler probe housed in each capsule for measurement of red cell flux (laser Doppler flux, LDF) as an index of SkBF. Subjects completed a whole body heating protocol to 1°C rise in oral temperature and an acetylcholine dose response (ACh 1 × 10−7-0.1 M; mean skin temperature 34°C). Maximal LDF were obtained at the end of both protocols (50 mM sodium nitroprusside).During heating RSR varied among sites (P < 0.0001) and was greater on the back versus other sites (P < 0.05), but LDF was similar between sites (P = 0.343). RSR and SkBF showed a strong relation during initial (arm: r = 0.77 ± 0.09, thigh: r = 0.81 ± 0.08, abdomen: r = 0.89 ± 0.04, back: r = 0.86 ± 0.04) but not latter stages of heating. No differences in RSR (P = 0.160) or SkBF (LDF, P = 0.841) were observed between sites during ACh perfusion. Taken together, these data suggest that increases in SkBF are necessary to initiate and increase sweating, but further rises in RSR are not fully dependent on SkBF in a dose-response manner. Furthermore, RSR cannot be explained by cholinergic sensitivity or variation in SkBF. PMID:23389110

  1. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    SciTech Connect

    Kobayashi, Haruo . E-mail: hk1664@iwate-u.ac.jp; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-03-15

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.

  2. Online Health Education on SARS to University Students during the SARS Outbreak

    ERIC Educational Resources Information Center

    Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng

    2005-01-01

    Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…

  3. 20. OVERVIEW OF SAR3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OVERVIEW OF SAR-3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR-3 SWITCH RACK, MAINTENANCE YARD, AND GREENSPOT BRIDGE. NOTE ALSO LARGE PIPE CONDUCTING TAILRACE WATER INTO IRRIGATION SYSTEM. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  4. A persistent scatterer method for retrieving accurate InSAR ground deformation map over vegetation-decorrelated areas

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zebker, H. A.; Knight, R. J.

    2015-12-01

    InSAR is commonly used to measure surface deformation between different radar passes at cm-scale accuracy and m-scale resolution. However, InSAR measurements are often decorrelated due to vegetation growth, which greatly limits high quality InSAR data coverage. Here we present an algorithm for retrieving InSAR deformation measurements over areas with significant vegetation decorrelation through the use of adaptive interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. The interpolation filter restores phase continuity in space and greatly reduces errors in phase unwrapping. We apply this algorithm to process L-band ALOS interferograms acquired over the San Luis Valley, Colorado and the Tulare Basin, California. In both areas, groundwater extraction for irrigation results in land deformation that can be detected using InSAR. We show that the PS-based algorithm reduces the artifacts from vegetation decorrelation while preserving the deformation signature. The spatial sampling resolution achieved over agricultural fields is on the order of hundreds of meters, usually sufficient for groundwater studies. The improved InSAR data allow us further to reconstruct the SBAS ground deformation time series and transform the measured deformation to head levels using the skeletal storage coefficient and time delay constant inferred from a joint InSAR-well data analysis. The resulting InSAR-head and well-head measurements in the San Luis valley show good agreement with primary confined aquifer pumping activities. This case study demonstrates that high quality InSAR deformation data can be obtained over vegetation-decorrrelated region if processed correctly.

  5. Estimation of Soil Moisture and Biomass Changes Using SAR Data During EFEDA-Spain Experiment

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Zyl, J. Van; Evans, D.

    1993-01-01

    During the 1991 MAC-EUROPE campaign, the Castilla La-Mancha region of Spain was surveyed by the Multi-frequency (P-,L-, C-band) polarimetric AIRSAR of Jet Propulsion Laboratory. The experiment was devised to demonstrate the role of SAR imagery in detecting and estimating surface parameters such as soil moisture and canopy water content.

  6. The relationship between localised SAR in the arm and wrist current.

    PubMed

    Dimbylow, P J

    2001-01-01

    Calculations are presented of the specific energy absorption rate, SAR, in the lower arm of the NRPB anatomically realistic voxel model. NORMAN, for induced currents from 100 kHz to 80 MHz. The wrist region has a narrow cross section and contains little high conductivity muscle, comprising mainly low conductivity bone, tendon and fat. Consequently there is a channelling of the current through the high conductivity muscle, which produces high, localised values of the SAR. Values averaged over 10 g and 100 g of tissue are calculated as a function of the current flowing through the wrist. PMID:11572647

  7. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  8. Target Detection in SAR Images Based on a Level Set Approach

    SciTech Connect

    Marques, Regis C.P.; Medeiros, Fatima N.S.; Ushizima, Daniela M.

    2008-09-01

    This paper introduces a new framework for point target detection in synthetic aperture radar (SAR) images. We focus on the task of locating reflective small regions using alevel set based algorithm. Unlike most of the approaches in image segmentation, we address an algorithm which incorporates speckle statistics instead of empirical parameters and also discards speckle filtering. The curve evolves according to speckle statistics, initially propagating with a maximum upward velocity in homogeneous areas. Our approach is validated by a series of tests on synthetic and real SAR images and compared with three other segmentation algorithms, demonstrating that it configures a novel and efficient method for target detection purpose.

  9. NOTE: SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi)

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2010-08-01

    Specific energy absorption rate (SAR) values have been calculated in a 10 year old sitting voxel model from exposure to electromagnetic fields at 2.4 and 5 GHz, frequencies commonly used by Wi-Fi devices. Both plane-wave exposure of the model and irradiation from antennas in the near field were investigated for a variety of exposure conditions. In all situations studied, the SAR values calculated were considerably below basic restrictions. For a typical Wi-Fi exposure scenario using an inverted F antenna operating at 100 mW, a duty factor of 0.1 and an antenna-body separation of 34 cm, the maximum peak localized SAR was found to be 3.99 mW kg-1 in the torso region. At 2.4 GHz, using a power of 100 mW and a duty factor of 1, the highest localized SAR value in the head was calculated as 5.7 mW kg-1. This represents less than 1% of the SAR previously calculated in the head for a typical mobile phone exposure condition.

  10. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Jacob, Alexander; Gamba, Paolo

    2015-05-01

    With more than half of the world population now living in cities and 1.4 billion more people expected to move into cities by 2030, urban areas pose significant challenges on local, regional and global environment. Timely and accurate information on spatial distributions and temporal changes of urban areas are therefore needed to support sustainable development and environmental change research. The objective of this research is to evaluate spaceborne SAR data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban Extractor. The proposed processing chain includes urban extraction based on spatial indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several improvements i.e., SAR data preprocessing, enhancement, and post-processing. ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-VV data at 30 m resolution were selected over 10 global cities and a rural area from six continents to demonstrate the robustness of the improved method. The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from ENVISAT ASAR data and built-up areas can be mapped at 30 m resolution with very good accuracy using only one or two SAR images. These findings indicate that operational global urban mapping is possible with spaceborne SAR data, especially with the launch of Sentinel-1 that provides SAR data with global coverage, operational reliability and quick data delivery.

  11. Extreme Magnetosphere-Ionosphere Coupling at the Plasmapause: a - In-A Bright SAR Arc

    NASA Astrophysics Data System (ADS)

    Baumgardner, J.; Wroten, J.; Semeter, J.; Mendillo, M.; Kozyra, J.

    2007-05-01

    Heat conduction from the ring current - plasmapause interaction region generates high electron temperature within the ionosphere that drive stable auroral red (SAR) arc emission at 6300 A. On the night of 29 October 1991, a SAR arc was observed using an all-sky imager and meridional imaging spectrograph at Millstone Hill. At xxxx UT, the SAR arc was south of Millstone at approximate L = 2 and reached emission levels of 13,000 rayleighs (R). Over two solar cycle of imaging observations have been made at Millstone Hill, and SAR arc brightness levels (excluding this event) averaged ~ 500 R. Simultaneous observations using the incoherent scatter radar (ISR), a DMSP satellite pass, the MSIS neutral atmosphere and SAR arc modeling using the Rees and Roble formalism succeeded in simulations of the observed emission. The reason for the unusual brightness was not the extreme temperatures achieved (and therefore heat conduction input), but the fact that the end of the plasmapause field line where the elevated Te values were measured did not occur in the ionospheric trough, but equatorward of it, thereby having far more ambient electrons to heat and subsequently collide with atomic oxygen. This unusual spatial geometry probably resulted from unusual convection patterns early in a superstorm scenario.

  12. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  13. Evaluation Of A Sea Ice Algorithm For SAR Data From The Bay Of Bothnia

    NASA Astrophysics Data System (ADS)

    Berg, Anders; Eriksson, Leif

    2010-04-01

    A sea ice drift algorithm published by M. Thomas et. al. (2008) has been implemented and evaluated. Input to the algorithm is Synthetic Aperture Radar (SAR) images, which are processed using phase correlation in a multi-resolution processing system. The algorithm has been tested with horizontally co-polarized (HH) ENVISAT ASAR Wide Swath images and RADARSAT-2 ScanSAR images. The possible benefits of using cross-polarized (HV) RADARSAT-2 ScanSAR data are investigated, and initial testing of the algorithm for L-band SAR data from ALOS PALSAR has been done. The validity of the produced motion fields has been tested in three different ways. Most of the SAR images in this analysis were acquired over the Bay of Bothnia. Five meteorological stations located in this region have been collecting wind data with a temporal resolution of three hours. It is confirmed that the wind data correlates with the derived sea ice motion. Another source of validation data that has been used is the daily ice charts published by the Swedish Meteorological and Hydrological Institute (SMHI). The third method used for validation is straightforward, visual tracking of sea ice features. The algorithm is facing some difficulties when it comes to ice tracking close to the shoreline, in archipelagoes etc, since the motionless solution will be favoured. It can however be suppressed by filtering areas of land. This addition gives a more robust algorithm.

  14. SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi).

    PubMed

    Findlay, R P; Dimbylow, P J

    2010-08-01

    Specific energy absorption rate (SAR) values have been calculated in a 10 year old sitting voxel model from exposure to electromagnetic fields at 2.4 and 5 GHz, frequencies commonly used by Wi-Fi devices. Both plane-wave exposure of the model and irradiation from antennas in the near field were investigated for a variety of exposure conditions. In all situations studied, the SAR values calculated were considerably below basic restrictions. For a typical Wi-Fi exposure scenario using an inverted F antenna operating at 100 mW, a duty factor of 0.1 and an antenna-body separation of 34 cm, the maximum peak localized SAR was found to be 3.99 mW kg(-1) in the torso region. At 2.4 GHz, using a power of 100 mW and a duty factor of 1, the highest localized SAR value in the head was calculated as 5.7 mW kg(-1). This represents less than 1% of the SAR previously calculated in the head for a typical mobile phone exposure condition. PMID:20647607

  15. Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth.

    PubMed

    Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris

    2009-01-01

    The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year(-1) occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587

  16. Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth

    PubMed Central

    Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris

    2009-01-01

    The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587

  17. Water vapor retrieval by LEO and GEO SAR: techniques and performance evaluation.

    NASA Astrophysics Data System (ADS)

    Fermi, Alessandro; Silvio Marzano, Frank; Monti Guarnieri, Andrea; Pierdicca, Nazzareno; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    The millimetric sensitivity of SAR interferometry has been proved fruitful in estimating water-vapor maps, that can then be processed into higher level ZWD and PWV products. In the paper, we consider two different SAR surveys: Low Earth Orbiting (LEO) SAR, like ESA Sentinel-1, and Geosynchronous Earth Orbiting SAR. The two system are complementary, where LEO coverage is world-wide, while GEO is regional. On the other hand, LEO revisit is daily-to weekly, whereas GEO provides images in minutes to hours. Finally, LEO synthetic aperture is so short, less than a second, that the water-vapor is mostly frozen, whereas in the long GEO aperture the atmospheric phase screen would introduce a total decorrelation, if not compensated for. In the paper, we first review the Differential Interferometric techniques to get differential delay maps - to be then converted into water-vapor products, and then evaluate the quality in terms of geometric resolution, sensitivity, percentage of scene coverage, revisit, by referring to L and C band system, for both LEO and GEO. Finally, we discuss an empirical model for time-space variogram, and show a preliminary validation by campaign conducted with Ground Based Radar, as a proxy of GEO-SAR, capable of continuous scanning wide areas (up to 15 km) with metric resolution.

  18. Statistical modeling of targets and clutter in single-look non-polarimetric SAR imagery

    SciTech Connect

    Salazar, J.S.; Hush, D.R.; Koch, M.W.; Fogler, R.J.; Hostetler, L.D.

    1998-08-01

    This paper presents a Generalized Logistic (gLG) distribution as a unified model for Log-domain synthetic aperture Radar (SAR) data. This model stems from a special case of the G-distribution known as the G{sup 0}-distribution. The G-distribution arises from a multiplicative SAR model and has the classical K-distribution as another special case. The G{sup 0}-distribution, however, can model extremely heterogeneous clutter regions that the k-distribution cannot model. This flexibility is preserved in the unified gLG model, which is capable of modeling non-polarimetric SAR returns from clutter as well as man-made objects. Histograms of these two types of SAR returns have opposite skewness. The flexibility of the gLG model lies in its shape and shift parameters. The shape parameter describes the differing skewness between target and clutter data while the shift parameter compensates for movements in the mean as the shape parameter changes. A Maximum Likelihood (ML) estimate of the shape parameter gives an optimal measure of the skewness of the SAR data. This measure provides a basis for an optimal target detection algorithm.

  19. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  20. Ice Sheet Monitoring Using Latest Generation SAR Satellites

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Li, X.

    2015-12-01

    Remote sensing is a crucial component to gain insight in the worlds ice sheets and glaciers. Spaceborne Synthetic Aperture Radar data have proven to be a key resource to monitor the great ice sheets in Antarctica and Greenland. International efforts undertaken during the last International Polar Year resulted in the collection of vast amounts of data to generate the first continent-wide ice velocity map of Antarctica, a series of full velocity maps of Greenland, and time series data in key regions. The Antarctic grounding line was also mapped at unprecedented accuracy using InSAR. The end of several SAR missions since 2010 has posed a significant challenge in the effort to provide ongoing data acquisitions. New generation missions show potential to not only fill the data gap, but to make the collection of ice sheet data part of the ongoing acquisition scenarios, therefore ensuring data continuity. New modes, like the TOPSAR mode used for Sentinel-1A, provide new opportunities but also pose processing challenges, particularly if the entire area monitored is in motion. Several future missions are in various stages of development, thus further adding to the suite of sensors potentially available to collect data in Polar Regions going forward. The NASA-ISRO L-and S-band mission, planned for launch in 2020, will be a pure science mission with an open data policy, thus again changing the data availability and data access situation for the better. In international collaboration through the Polar Space Task Group, space agencies coordinate their science acquisitions in Polar Regions. With broad input from the larger ice sheet science community, we have worked closely with space agencies to define science requirements and to develop acquisition scenarios that maximize science value for ice sheets. Here we highlight the collaboration effort, summarize the input of the ice sheet science community to the Polar Space Task Group, and present the acquisition plans that resulted

  1. Outdoor measurement of SAR in a full-sized human model exposed to 29. 9 MHz in the near field

    SciTech Connect

    Olsen, R.G.; Griner, T.A.

    1989-01-01

    Localized and averaged specific absorption rates (SARs) were obtained in a full-size muscle-equivalent human model exposed to near-field 29.9 MHz irradiation at an outdoor facility. The model was positioned erect on a metallic groundplane 1.22 m (4 ft) from the base of a 10.8-m (35 ft) whip antenna with an input power of 1.0 kW. For whole-body SAR, a mean value of 0.83 W/kg was determined using two gradient-layer calorimeters in a twin-well configuration. The localized SARs at 12 body locations were measured using nonperturbing temperature probes and were highest in the ankle region. We conclude that averaged SAR measurements in a full-size phantom are feasible using a twin-calorimeter approach; measurements in the field are practical when human-size (183 x 61 x 46 cm) calorimeters are used.

  2. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    NASA Astrophysics Data System (ADS)

    Meroni, A.; Bahr, T.

    2013-05-01

    Having access to SAR data can be highly important and critical especially for disaster mapping. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. Therefore, we present in this paper the operational processing of SAR data within a GIS environment for rapid disaster mapping. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. A series of COSMO-SkyMed acquisitions was processed in ArcGIS® using a single-sensor, multi-mode, multi-temporal approach. The relevant processing steps were combined using the ArcGIS ModelBuilder to create a new model for rapid disaster mapping in ArcGIS, which can be accessed both via a desktop and a server environment.

  3. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary

    2015-11-01

    Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.

  4. Identification of modeled ocean plumes in Greenland gyre ERS-1 SAR data

    NASA Technical Reports Server (NTRS)

    Carsey, Frank D.; Garwood, Roland W., Jr.

    1993-01-01

    Oceanic convective plumes modeled with a thermobaric large-eddy simulation and driven by conditions similar to those of the Greenland Sea are compared to observations from ERS-1 Synthetic Aperture Radar (SAR) data from the Greenland Sea for the winter of 1992. In both form and size the two representations are seen to compare favorably. The plume-filled area of the SAR image occupies a region about 20 km by 90 km at the ice edge of the open water in 'Nordbukta', the large seasonal ice retreat, in the 'Odden' ice protuberance in the southern Greenland gyre. In the SAR data the plumes appear to be ice covered while the convective-return areas are open.

  5. Geologic interpretation of Seasat SAR imagery near the Rio Lacantum, Mexico

    NASA Technical Reports Server (NTRS)

    Rebillard, PH.; Dixon, T.

    1984-01-01

    A mosaic of the Seasat Synthetic Aperture Radar (SAR) optically processed images over Central America is presented. A SAR image of the Rio Lacantum area (southeastern Mexico) has been digitally processed and its interpretation is presented. The region is characterized by low relief and a dense vegetation canopy. Surface is believed to be indicative of subsurface structural features. The Seasat-SAR system had a steep imaging geometry (incidence angle 23 + or - 3 deg off-nadir) which is favorable for detection of subtle topographic variations. Subtle textural features in the image corresponding to surface topography were enhanced by image processing techniques. A structural and lithologic interpretation of the processed images is presented. Lineaments oriented NE-SW dominate and intersect broad folds trending NW-SE. Distinctive karst topography characterizes one high relief area

  6. SAR Image Segmentation Using Voronoi Tessellation and Bayesian Inference Applied to Dark Spot Feature Extraction

    PubMed Central

    Zhao, Quanhua; Li, Yu; Liu, Zhenggang

    2013-01-01

    This paper presents a new segmentation-based algorithm for oil spill feature extraction from Synthetic Aperture Radar (SAR) intensity images. The proposed algorithm combines a Voronoi tessellation, Bayesian inference and Markov Chain Monte Carlo (MCMC) scheme. The shape and distribution features of dark spots can be obtained by segmenting a scene covering an oil spill and/or look-alikes into two homogenous regions: dark spots and their marine surroundings. The proposed algorithm is applied simultaneously to several real SAR intensity images and simulated SAR intensity images which are used for accurate evaluation. The results show that the proposed algorithm can extract the shape and distribution parameters of dark spot areas, which are useful for recognizing oil spills in a further classification stage. PMID:24233074

  7. Acute binge pattern cocaine administration induces region-specific effects in D1-r- and D2-r-expressing cells in eGFP transgenic mice.

    PubMed

    Lawhorn, C; Edusei, E; Zhou, Y; Ho, A; Kreek, M J

    2013-12-01

    Cocaine addiction is driven by genetic, neurologic and environmental components. The D1-like (D1 and D5) and D2-like (D2, D3 and D4) families of dopamine receptors play an important role in modulating the effects of cocaine administration on drug-seeking behavior. The advent of bacterial artificial chromosome-eGFP (enhanced green fluorescent protein) transgenic mice that express eGFP driven by the endogenous D1-receptor (D1-r) or D2-receptor (D2-r) promoters provides a unique opportunity to distinguish between these subpopulations of cells. In an effort to identify cocaine-induced alterations in D1-r- versus D2-r-expressing cells during the initial stages of addiction, we examined cells that expressed D1-rs in Drd1-eGFP mice, or D2-rs in Drd2-eGFP mice, after an acute, 1-day binge pattern of cocaine administration. We used multiphoton confocal microscopy and Visiopharm© software, to conduct unbiased stereological counts of D1-r-labeled or D2-r-labeled cells in various striatal regions. Mice were sacrificed at 30 min and 24-h post cocaine or saline administration. Compared to saline controls, Drd1-eGFP mice that received cocaine had a higher count of D1-r-labeled cells in the dorsolateral (DL) striatum, at the 30-min and 24-h time-points. No changes in the nucleus accumbens (NAc) core or shell were observed in Drd1-eGFP mice. Drd2-eGFP mice that received cocaine had fewer D2-r-labeled cells in the DL striatum and NAc core compared to saline controls. This effect was observed at the 30-min time-point but not at 24h. Drd2-eGFP mice that received cocaine also had fewer numbers of D2-r-labeled cells in the NAc core compared to saline controls, but no significant differences in the number of D2-r-labeled cells in the NAc shell. These results suggest that acute binge pattern cocaine administration may induce region-specific alterations in D1-r or D2-receptor gene expression, and may help elucidate the differential role of dopamine receptors in the initial stages of the

  8. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    NASA Astrophysics Data System (ADS)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  9. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype.

    PubMed

    Thrash, J Cameron; Temperton, Ben; Swan, Brandon K; Landry, Zachary C; Woyke, Tanja; DeLong, Edward F; Stepanauskas, Ramunas; Giovannoni, Stephan J

    2014-07-01

    Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size. PMID:24451205

  10. Assessment of DInSAR Potential in Simulating Geological Subsurface Structure

    NASA Astrophysics Data System (ADS)

    Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.

    2013-12-01

    High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations

  11. ICAO's anti-SARS airport activities.

    PubMed

    Finkelstein, Silvio; Curdt-Christiansen, Claus M

    2003-11-01

    To prevent SARS from spreading through air travel and in order to rebuild the confidence of the traveling public in the safety of air travel, ICAO has set up an "Anti-SARS Airport Evaluation Project." The first phase of this project was to develop a set of protective measures for international airports in affected areas to adopt and implement and then to send out, on the request of Contracting States, a team of inspectors to evaluate and assess airports and issue a "statement of evaluation" that the airport inspected complies with the ICAO anti-SARS protective measures. In cooperation with the World Health Organization (WHO), the first part of phase 1 was completed in early June this year, and the second part of phase 1 followed soon after. By mid-July, five international airports in Southeast Asia had been inspected and found to be in full compliance with the ICAO anti-SARS protective measures. The success of this ICAO project is believed to have contributed significantly to the recovery of international air travel and related industries now taking place. Phase 2 of the project is now being developed. It is aimed at preventing a resurgence of SARS, but it also contains elements to make the methodology developed applicable to future outbreaks of any other communicable disease in which the mode of transmission could involve aviation and/or the need to prevent the spread of the disease by air travel. PMID:14620481

  12. Low complexity efficient raw SAR data compression

    NASA Astrophysics Data System (ADS)

    Rane, Shantanu; Boufounos, Petros; Vetro, Anthony; Okada, Yu

    2011-06-01

    We present a low-complexity method for compression of raw Synthetic Aperture Radar (SAR) data. Raw SAR data is typically acquired using a satellite or airborne platform without sufficient computational capabilities to process the data and generate a SAR image on-board. Hence, the raw data needs to be compressed and transmitted to the ground station, where SAR image formation can be carried out. To perform low-complexity compression, our method uses 1-dimensional transforms, followed by quantization and entropy coding. In contrast to previous approaches, which send uncompressed or Huffman-coded bits, we achieve more efficient entropy coding using an arithmetic coder that responds to a continuously updated probability distribution. We present experimental results on compression of raw Ku-SAR data. In those we evaluate the effect of the length of the transform on compression performance and demonstrate the advantages of the proposed framework over a state-of-the-art low complexity scheme called Block Adaptive Quantization (BAQ).

  13. SARS revisited: managing "outbreaks" with "communications".

    PubMed

    Menon, K U

    2006-05-01

    "Risk communications" has acquired some importance in the wake of our experience of SARS. Handled well, it helps to build mutual respect between a government or an organisation and the target groups with which it is communicating. It helps nurture public trust and confidence in getting over the crisis. The World Health Organization (WHO) has also come to recognise its importance after SARS and organised the first Expert Consultation on Outbreak Communications conference in Singapore in September 2004. This article assesses the context and the key features which worked to Singapore's advantage. Looking at the data now widely available on the Internet of the experience of SARS-infected countries like China, Taiwan, Canada, the article identifies the key areas of strategic communications in which Singapore fared particularly well. Another issue discussed is whether Singapore's experience has universal applicability or whether it is limited because of Singapore's unique cultural, historical and geographical circumstances. Finally, the article also looks at some of the post-SARS enhancements that have been put in place following the lessons learnt from SARS and the need to confront new infectious outbreaks like avian flu. PMID:16830005

  14. Monitoring delta subsidence with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2014-12-01

    Can subsidence in river deltas be monitored in near real-time at the spatial and temporal resolution needed for informing critical management decisions? Interferometric Synthetic Radar Aperture (InSAR) is a satellite-based technique that can map ground deformation with millimeter-scale vertical resolution over thousands of square kilometers. InSAR has enormous potential to shed light on the dynamics of actively subsiding deltas, but the technique is not commonly applied outside of major cities due to the difficulty of performing InSAR in wet, vegetated settings. Given these limitations, how can InSAR best serve the global effort to monitor sinking deltas? Here, an overview of InSAR processing is provided that addresses delta-specific challenges, including frequent cloud-cover in tropical areas; noisy signals in wetlands and flooded fields; dense forests that interact unpredictably with different radar wavelengths; flat landscapes that hinder image stacking algorithms; rapid urban development that can render Digital Elevation Models (DEMs) inaccurate; and a lack of in situ GPS (Global Positioning System) receivers for InSAR calibration. InSAR has unique value for monitoring subsidence in deltas, and some natural and anthropogenic drivers of subsidence can be resolved by InSAR. High-resolution InSAR measurements from the Ganges-Brahmaputra Delta (GBD) are then presented and validated against GPS data. Surface motion is shown to reflect subsurface stratigraphy, and sediment compaction is shown to be the most important factor in this delta on short (non-tectonic) timescales. Average compaction rates throughout the eastern delta range from 0 to > 18 mm/y, varying by more than an order of magnitude depending on the ages and grain sizes of surface and subsurface sediment layers. Fastest subsidence is observed in Holocene organic-rich mud, and slowest subsidence is observed along the Meghna River and in areas with surface or subsurface sand deposits. Although groundwater

  15. Statistical Approach To Determination Of Texture In SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald

    1993-01-01

    Paper presents statistical approach to analysis of texture in synthetic-aperture-radar (SAR) images. Objective: to extract intrinsic spatial variability of distributed target from overall spatial variability of SAR image.

  16. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways.

    PubMed

    Ding, Yanqing; He, Li; Zhang, Qingling; Huang, Zhongxi; Che, Xiaoyan; Hou, Jinlin; Wang, Huijun; Shen, Hong; Qiu, Liwen; Li, Zhuguo; Geng, Jian; Cai, Junjie; Han, Huixia; Li, Xin; Kang, Wei; Weng, Desheng; Liang, Ping; Jiang, Shibo

    2004-06-01

    We previously identified the major pathological changes in the respiratory and immune systems of patients who died of severe acute respiratory syndrome (SARS) but gained little information on the organ distribution of SARS-associated coronavirus (SARS-CoV). In the present study, we used a murine monoclonal antibody specific for SARS-CoV nucleoprotein, and probes specific for a SARS-CoV RNA polymerase gene fragment, for immunohistochemistry and in situ hybridization, respectively, to detect SARS-CoV systematically in tissues from patients who died of SARS. SARS-CoV was found in lung, trachea/bronchus, stomach, small intestine, distal convoluted renal tubule, sweat gland, parathyroid, pituitary, pancreas, adrenal gland, liver and cerebrum, but was not detected in oesophagus, spleen, lymph node, bone marrow, heart, aorta, cerebellum, thyroid, testis, ovary, uterus or muscle. These results suggest that, in addition to the respiratory system, the gastrointestinal tract and other organs with detectable SARS-CoV may also be targets of SARS-CoV infection. The pathological changes in these organs may be caused directly by the cytopathic effect mediated by local replication of the SARS-CoV; or indirectly as a result of systemic responses to respiratory failure or the harmful immune response induced by viral infection. In addition to viral spread through a respiratory route, SARS-CoV in the intestinal tract, kidney and sweat glands may be excreted via faeces, urine and sweat, thereby leading to virus transmission. This study provides important information for understanding the pathogenesis of SARS-CoV infection and sheds light on possible virus transmission pathways. This data will be useful for designing new strategies for prevention and treatment of SARS. PMID:15141376

  17. Characterizing hydrologic changes of Great Dismal Swamp using SAR/InSAR technology

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; Zhu, Z.

    2015-12-01

    Great Dismal Swamp is one of the largest, northernmost peatlands on the Atlantic Coastal Plain, and the swamp is underlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The peatlands play a role as the sink of large amount of soil organic carbon and methane. However, the disturbance of the peatland negatively impacted the ecosystem and contributed to the climate change caused by the released greenhouse gas. Our SAR/InSAR methods observed the hydrologic changes in the peatlands, which is a key factor to conserve the wetland, through several methods. First, we compared averaged SAR intensity from C- and L-band SAR sensors with groundwater level changes, and deduced a linear relationship between the SAR backscattering intensity and the groundwater level change. Second, we extracted the inundated area during wet season from InSAR coherence. Third, we measured the relative water level changes in the inundated area using the interferometric phases. Finally, we estimated the groundwater level changes corresponding to the soil moisture changes from time-series InSAR method. Our results can provide the unique opportunity to understand the occurring hydrologic and vegetation changes in the Great Dismal Swamp.

  18. Satellite SAR data assessment for Silk Road archaeological prospection

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Lasaponara, Rosa; Masini, Nicola; Yang, Ruixia

    2015-04-01

    The development of Synthetic Aperture Radar (SAR) in terms of multi-band, multi-polarization and high-resolution data, favored the application of this technology also in archaeology [1]. Different approaches based on both single and multitemporal data analysis, exploiting the backscattering and the penetration of radar data, have been used for a number of archaeological sites and landscapes [2-5]. Nevertheless, the capability of this technology in archaeological applications has so far not been fully assessed. It lacks a contribution aimed at evaluating the potential of SAR technology for the same study area by using different bands, spatial resolutions and data processing solutions. In the framework of the Chinese-Italian bilateral project "Smart management of cultural heritage sites in Italy and China: Earth Observation and pilot projects", we addressed some pioneering investigations to assess multi-mode (multi-band, temporal, resolution) satellite SAR data (including X-band TerraSAR, C-band Envisat and L-band ALOS PALSAR) in archaeological prospection of the Silk road [6]. The Silk Road, a series of trade and cultural transmission routes connecting China to Europe, is the witness of civilization and friendship between the East and West dated back to 2000 years ago, that left us various relics (e.g. lost cities) to be uncovered and investigated.. In particular, the assessment has been performed in the Xinjiang and Gansu section pf the Silk Road focusing on : i) the subsurface penetration capability of SAR data in the arid and semi-arid region ii) and sensitivity of SAR imaging geometry for the detection of relics As regards the point i) , apart from the soil moisture, the penetration is seriously restricted by the soil porosity. For instance, negligible penetration signs were detected in Yumen Frontier Pass either using X- or L-band SAR data due to the occurrence of Yardang landscape. As regards the point ii), the flight path of SAR images in parallel with the

  19. The Radarsat SAR multi-beam antenna

    NASA Astrophysics Data System (ADS)

    Martins-Camelo, L.; Cooper, R. T.; Zimcik, D. G.

    1984-10-01

    Radarsat, the Canadian radar imaging satellite, will have a Synthetic Aperture Radar (SAR) antenna as one of its sensors. The requirements on the performance of the SAR antenna are such as to make it a complex system. Radarsat is required to have some unique characteristics which present some new challenges to the antenna designers. The requirements for switchability among 4 shaped beams and high power of transmit operation are major design constraints which strongly impact on the antenna complexity, weight, and cost. A trade-off study was carried out to select the preferred antenna type for the Radarsat SAR function. The antenna types analyzed were planar-array and array-fed reflector. A set of comparison criteria was developed. The antenna concepts studied were then compared against these criteria, and a final decision was reached.

  20. Super resolution for FOPEN SAR data

    NASA Astrophysics Data System (ADS)

    Shekarforoush, Hassan; Banerjee, Amit; Chellappa, Rama

    1999-07-01

    Detecting targets occluded by foliage in Foliage penetrating (FOPEN) Ultra-Wide-Band Synthetic Aperture Radar (UWB SAR) images is an important and challenging problem. Given the different nature of FOPEN SAR imagery and very low signal- to-clutter ratio in UWB SAR data, conventional detection algorithms usually fail to yield robust target detection results on raw data with minimum false alarms. Hence improving the resolving power by means of a super-resolution algorithm plays an important role in hypothesis testing for false alarm mitigation and target localization. In this paper we present a new single-frame super-resolution algorithm based on estimating the polyphase components of the observed signal projected on an optimal basis. The estimated polyphase components are then combined into a single super-resolved image using the standard inverse polyphase transform, leading to improved target signature while suppressing noise.

  1. New approaches in interferometric SAR data processing

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    It is well established that interferometric synthetic aperture radar (SAR) images can be inverted to perform surface elevation mapping. Among the factors critical to the mapping accuracy are registration of the interfering SAR images and phase unwrapping. A novel registration algorithm is presented that determines the registration parameters through optimization. A new figure of merit is proposed that evaluates the registration result during the optimization. The phase unwrapping problem is approached through a new method involving fringe line detection. The algorithms are tested with two SEASAT SAR images of terrain near Yellowstone National Park. These images were collected on Seasat orbits 1334 and 1420, which were very close together in space, i.e., less than 100 m. The resultant elevation map is compared with the USGS digital terrain elevation model.

  2. Stop outbreak of SARS with infrared cameras

    NASA Astrophysics Data System (ADS)

    Wu, Yigang M.

    2004-04-01

    SARS (Severe Acute Respiratory Syndrome, commonly known as Atypical Pneumonia in mainland China) caused 8422 people affected and resulting in 918 deaths worldwide in half year. This disease can be transmitted by respiratory droplets or by contact with a patient's respiratory secretions. This means it can be spread out very rapidly through the public transportations by the travelers with the syndrome. The challenge was to stop the SARS carriers traveling around by trains, airplanes, coaches and etc. It is impractical with traditional oral thermometers or spot infrared thermometers to screen the tens of travelers with elevated body temperature from thousands of normal travelers in hours. The thermal imager with temperature measurement function is a logical choice for this special application although there are some limitations and drawbacks. This paper discusses the real SARS applications of industrial infrared cameras in China from April to July 2003.

  3. INTA-SAR real-time processor

    SciTech Connect

    Gomez, B.; Leon, J.

    1996-10-01

    This paper presents the INTASAR real time processor development based on a DSP open architecture for processing Synthetic Aperture Radar (SAR) signal. The final designed architecture must consider three different constraints sources: (a) SAR signal characteristics : high dynamic range, and complex SAR imaging algorithms with high computational load (multiprocessing is convenient). (b) Flexible: in connectivity and algorithms to be programmed. (c) Suitable: for on-board and ground working. The real time constraints will be defined by the image acquisition time, within it the INTASAR system will process the rawdata image and finally presents the results in the system monitor. At ground, however, the real time processing is not a constraint, but the high quality image is. The first algorithm implemented in the system was a Range - Doppler one. With the multiprocessor architecture selected, a pipeline processing method is used. 17 refs., 4 figs., 2 tabs.

  4. SARS: lessons learned from other coronaviruses.

    PubMed

    Navas-Martin, Sonia; Weiss, Susan R

    2003-01-01

    The identification of a new coronavirus as the etiological agent of severe acute respiratory syndrome (SARS) has evoked much new interest in the molecular biology and pathogenesis of coronaviruses. This review summarizes present knowledge on coronavirus molecular biology and pathogenesis with particular emphasis on mouse hepatitis virus (MHV). MHV, a member of coronavirus group 2, is a natural pathogen of the mouse; MHV infection of the mouse is considered one of the best models for the study of demyelinating disease, such as multiple sclerosis, in humans. As a result of the SARS epidemic, coronaviruses can now be considered as emerging pathogens. Future research on SARS needs to be based on all the knowledge that coronavirologists have generated over more than 30 years of research. PMID:14733734

  5. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  6. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  7. Regional administrative health registries as a resource in clinical epidemiologyA study of options, strengths, limitations and data quality provided with examples of use.

    PubMed

    Sørensen, H T

    1997-01-01

    The present thesis, which is based on a review and 12 published articles, concerns clinical epidemiological methods [176-187].The Nordic countries have for many years established numerous registries. The establishment in Denmark of the National Population Registry in 1924 and the personal registration number (the CPR number) in 1968 allowed person-identification of remarkable quality, and made it possible to gather information on the same person in several registries. This situation is unique to the Nordic countries.The administrative registries were not primarily established for research purposes but have often proved a valuable tool in research. Despite the extensive use of registries in research, the methodological literature on this subject is limited. The purpose of the present thesis was: 1) to analyse strengths and limitations in using regional administrative registries in research, 2) to develop a framework for evaluation of existing registries for use in clinical epidemiological research, 3) to develop methods for evaluation of the data quality in regional registries, and 4) to evaluate four regional Danish administrative health registries for use in clinical epidemiological research.The analyses of strengths, limitations and data quality were based on studies of data from the regional hospital information systems, health service registries, and public health officers' surveillance system for strong analgesics and notifiable diseases.Against the background of the studies, the many advantages of using registries in research are discussed. The most important advantage is that data already exist and time consumption is thus considerably reduced, compared with studies based on collection of primary data. Costs are also considerably reduced. Other advantages included the generally large sample sizes, which provide great precision in estimates and which allow the study of rare exposures, diseases and other effects. Typically, the registries are complete as far

  8. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  9. Longitudinal Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus-Specific Antibody in SARS Patients

    PubMed Central

    Chang, Shan-Chwen; Wang, Jann-Tay; Huang, Li-Min; Chen, Yee-Chun; Fang, Chi-Tai; Sheng, Wang-Huei; Wang, Jiun-Ling; Yu, Chong-Jen; Yang, Pan-Chyr

    2005-01-01

    The serum antibodies to severe acute respiratory syndrome (SARS) coronavirus of 18 SARS patients were checked at 1 month and every 3 months after disease onset. All of them except one, who missed blood sampling at 1 month, tested positive for the immunoglobulin G (IgG) antibody at 1 month. Fifteen out of 17 tested positive for the IgM antibody at 1 month. The serum IgM antibody of most patients became undetectable within 6 months after the onset of SARS. The IgG antibody of all 17 patients, whose serum was checked 1 year after disease onset, remained positive. PMID:16339072

  10. Advanced InSAR Processing in the Footsteps of SqueeSAR

    NASA Astrophysics Data System (ADS)

    Even, Markus

    2015-05-01

    Several years ago a promising approach for processing InSAR time series was introduced under the name SqueeSAR [1]. The successful application of this framework poses some delicate questions. This paper focuses on the problem that real data do rarely behave perfectly Gaussian. An augmentation of the stochastic model underlying the phase linking step is presented and the applicability under the assumption of complex elliptically symmetric distribution is discussed. Results from tests with two time series of TerraSAR-X HRS data are presented and preliminary conclusions drawn.

  11. SAR measurement in MRI: an improved method

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Indovina, Pietro Luigi; Barone, Fabrizio

    2009-03-01

    During an MR procedure, the patient absorbs a portion of the transmitted RF energy, which may result in tissue heating and other adverse effects, such as alterations in visual, auditory and neural functions. The Specific Absorption Rate (SAR), in W/kg, is the RF power absorbed per unit mass of tissue and is one of the most important parameters related with thermal effects and acts as a guideline for MRI safety. Strict limits to the SAR levels are imposed by patient safety international regulations (CEI - EN 60601 - 2 - 33) and SAR measurements are required in order to verify its respect. The recommended methods for mean SAR measurement are quite problematic and often require a maintenance man intervention and long stop machine. For example, in the CEI recommended pulse energy method, the presence of a maintenance man is required in order to correctly connect the required instrumentation; furthermore, the procedure is complex and requires remarkable processing and calculus. Simpler are the calorimetric methods, also if in this case long acquisition times are required in order to have significant temperature variations and accurate heat capacity knowledge (CEI - EN 60601 - 2- 33). The phase transition method is a new method to measure SAR in MRI which has the advantages to be very simple and to overcome all the typical calorimetric method problems. It does not require in gantry temperature measurements, any specific heat or heat capacity knowledge, but only mass and time measurement. Furthermore, in this method, it is possible to show that all deposited SAR power can be considered acquired and measured.

  12. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    ERIC Educational Resources Information Center

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  13. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  14. Enhanced Processing and Analysis of Cassini SAR Images of Titan

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Aharonson, O.; Hayes, A. G.; Deledalle, C. A.; Kirk, R. L.

    2011-12-01

    SAR images suffer from speckle noise, which hinders interpretation and quantitative analysis. We have adapted a non-local algorithm for de-noising images using an appropriate multiplicative noise model [1] for analysis of Cassini SAR images. We illustrate some examples here that demonstrate the improvement of landform interpretation by focusing on transport processes at Titan's surface. Interpretation of the geomorphic features is facilitated (Figure 1); including revealing details of the channels incised into the terrain, shoreline morphology, and contrast variations in the dark, liquid covered areas. The latter are suggestive of sub-marine channels and gradients in the bathymetry. Furthermore, substantial quantitative improvements are possible. We show that a derived Digital Elevation Model from radargrammetry [2] using the de-noised images is obtained with a greater number of matching points (up to 80%) and a better correlation (59% of the pixels give a good correlation in the de-noised data compared with 18% in the original SAR image). An elevation hypsogram of our enhanced DEM shows evidence that fluvial and/or lacustrine processes have affected the topographic distribution substantially. Dune wavelengths and interdune extents are more precisely measured. Finally, radarclinometry technics applied to our new data are more accurate in dunes and mountainous regions. [1] Deledalle C-A., et al., 2009, Weighted maximum likelihood denoising with iterative and probabilistic patch-based weights, Telecom Paris. [2] Kirk, R.L., et al., 2007, First stereoscopic radar images of Titan, Lunar Planet. Sci., XXXVIII, Abstract #1427, Lunar and Planetary Institute, Houston

  15. A tool for bistatic sar geometry determinations

    NASA Astrophysics Data System (ADS)

    Hawkins, R.; Gibson, J.; Antonik, P.; Saper, R.; Seymour, M.; St Hilaire, M.; Livingstone, C.

    The geometry of wide angle bistatic SAR is somewhat more complex than that of conventional SAR because the transmitter and receiver are displaced considerably. Constant bistatic range contours projected onto the geoid form ellipse-like profiles with the transmitter and receiver located at the two foci. Constant Doppler lines intersect the range ellipses and allow under special circumstances a simple orthogonal basis for processing and analysis. This paper illustrates a simple GUI- based tool developed in a MatLab that uses satellite orbit parameters and RADARSAT-1 data to simulate the bistatic geometry and scattering for a tower- based receiver.

  16. SAR simulation of three-dimensional scenes

    NASA Astrophysics Data System (ADS)

    Franceschetti, Giorgio; Marino, Raimundo; Migliaccio, Maurizio; Riccio, Daniele

    1994-12-01

    In this paper we examine the SAR raw signal simulation of extended mountainous natural terrain. In order to cope with this goal we need to consider some problems relative to the evaluation of the backscattering pattern and of the efficient and correct inclusion of the SAR system unit response. In particular, and with regard to the first issue inclusion of the third dimension requires accommodation of its coarse description. Subjective and objective norms in order to judge the simulation results are presented and discussed, together with a number of examples.

  17. FOPEN ultrawideband SAR imaging by wavelet interpolation

    NASA Astrophysics Data System (ADS)

    Guo, Hanwei; Liang, Diannong; Wang, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Wave number Domain Imaging algorithm can deal with the problem of foliage-penetrating ultra-wide band synthesis aperture radar (FOPEN UWB SAR) imaging. Stolt interpolation is a key role in Imaging Algorithm and is unevenly interpolation problem. There is no fast computation algorithm on Stolt interpolation. In this paper, A novel 4-4 tap of integer wavelet filters is used as Stolt interpolation base function. A fast interpolation algorithm is put forwards to. There is only plus and shift operation in wavelet interpolation that is easy to realize by hardware. The real data are processed to prove the wavelet interpolation valid for FOPEN UWB SAR imaging.

  18. CCD architecture for spacecraft SAR image processing

    NASA Technical Reports Server (NTRS)

    Arens, W. E.

    1977-01-01

    A real-time synthetic aperture radar (SAR) image processing architecture amenable to future on-board spacecraft applications is currently under development. Using state-of-the-art charge-coupled device (CCD) technology, low cost and power are inherent features. Other characteristics include the ability to reprogram correlation reference functions, correct for range migration, and compensate for antenna beam pointing errors on the spacecraft in real time. The first spaceborne demonstration is scheduled to be flown as an experiment on a 1982 Shuttle imaging radar mission (SIR-B). This paper describes the architecture and implementation characteristics of this initial spaceborne CCD SAR image processor.

  19. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  20. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  1. Satellite SAR data assessment for Silk Road archaeological prospection

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Lasaponara, Rosa; Masini, Nicola; Yang, Ruixia

    2015-04-01

    The development of Synthetic Aperture Radar (SAR) in terms of multi-band, multi-polarization and high-resolution data, favored the application of this technology also in archaeology [1]. Different approaches based on both single and multitemporal data analysis, exploiting the backscattering and the penetration of radar data, have been used for a number of archaeological sites and landscapes [2-5]. Nevertheless, the capability of this technology in archaeological applications has so far not been fully assessed. It lacks a contribution aimed at evaluating the potential of SAR technology for the same study area by using different bands, spatial resolutions and data processing solutions. In the framework of the Chinese-Italian bilateral project "Smart management of cultural heritage sites in Italy and China: Earth Observation and pilot projects", we addressed some pioneering investigations to assess multi-mode (multi-band, temporal, resolution) satellite SAR data (including X-band TerraSAR, C-band Envisat and L-band ALOS PALSAR) in archaeological prospection of the Silk road [6]. The Silk Road, a series of trade and cultural transmission routes connecting China to Europe, is the witness of civilization and friendship between the East and West dated back to 2000 years ago, that left us various relics (e.g. lost cities) to be uncovered and investigated.. In particular, the assessment has been performed in the Xinjiang and Gansu section pf the Silk Road focusing on : i) the subsurface penetration capability of SAR data in the arid and semi-arid region ii) and sensitivity of SAR imaging geometry for the detection of relics As regards the point i) , apart from the soil moisture, the penetration is seriously restricted by the soil porosity. For instance, negligible penetration signs were detected in Yumen Frontier Pass either using X- or L-band SAR data due to the occurrence of Yardang landscape. As regards the point ii), the flight path of SAR images in parallel with the

  2. Modeling magnitude statistics of multilook SAR interferograms by generalizing G distributions

    NASA Astrophysics Data System (ADS)

    Gao, Gui; Shi, Gongtao

    2015-06-01

    Statistical analysis of multilook interferograms is a foundational issue in sensor signal processing of multiple-channel synthetic aperture radar (SAR), such as slow ground moving target indication (GMTI) in along-track interferometric (ATI) SAR. By an approximate derivation of the product of two modified Bessel functions, we propose in this paper a distribution (denoted simply as ΓIn) to model the interferometric magnitude of homogeneous clutter and analyze the capability of approximation using ΓIn according to numerical calculations. Following this, under the frame of the product model and by utilizing ΓIn, we analytically provide two distributions, KIn and Gn0, corresponding to heterogeneous and extremely heterogeneous terrain clutter, respectively. We show that the proposed ΓIn,KIn and G In0 are the multi-channel generalizations of the well-known Γ, K and G0, respectively, which belong to the special cases of G distribution for single-channel SAR images. Finally, the estimators of the proposed models are obtained by applying the Method of Log Cumulants (MoLC), which can accurately calculate the contained parameters. Experiments performed on the National Aeronautics and Space Administration Jet Propulsion Laboratory's (NASA/JPL) AirSAR images that used the Kullback-Leibler (KL) divergence as a similarity measurement verified the performance of the proposed models and estimators.

  3. Investigating Land Movements of Saline Soils by SAR Based Methodologies

    NASA Astrophysics Data System (ADS)

    Magagnini, L.; Teatini, P.; Strozzi, T.; Ulazzi, E.; Simeoni, U.

    2011-12-01

    Solonchaks, more commonly known as saline soils, are a soil variety confined to the arid and semi-arid climatic zones. Theseflat areas are characterized by a shallow water table and an evapotranspiration considerably greater than precipitation. Salts dissolved in the soil moisture remain behind after evaporation/transpiration of the water and accumulate at the soil surface. Detecting ground displacement by SAR-based methodologies is challenging in these regions. On one hand, solonchaks have a stable soil structure becausea salt crust is well developed and are usually uncultivated. On the other hand, earth depressions are usually waterlogged due to groundwater capillary rise and hygroscopic water absorbed bysaltparticles. Moreover, sparse vegetation is present even if limited to halophytic shrubs. Although poorly developed, the assessment of land subsidence can be of interest when, as in the northern coast of the Caspian Sea, Kazakhstan, large exploitation of subsurface natural resources are planned. Due to the lack of traditional monitoring surveys,SAR-based interferometry represents the unique methodology that can be used to investigate the recent/present ground displacements of this large region. With a temperature ranging from-25 to +42°C and a precipitation less than 200 mm/yr, large depressions with solonchak in them characterize the whole area. The presence of salt-affected soils is in close relation to the oscillations of the sea level and the massive presence of salt domes. Due to the extreme flatness of the coastland, on the order of 0.001%, even a small land sinking produces a significant inland encroachment of the sea. Small BAseline Subset (SBAS) and Interferometric Point Target Analysis (IPTA) have been applied to understand the capability SAR-based techniques of monitoring land displacements in these environments. The SBAS approach is developed to maximize the spatial and temporal coherence through the construction of small baseline interferograms

  4. Circular Polarization Characteristics of South Polar Lunar Craters using Chandrayaan-1 Mini-SAR and LRO Mini-RF

    NASA Astrophysics Data System (ADS)

    Calla, Om Prakash Narayan; Mathur, Shubhra; Jangid, Monika; Gadri, Kishan Lal

    2015-07-01

    The paper presents a case study of inconsistent behaviour of Chandrayaan-1 Mini-SAR and LRO Mini-RF data over south polar lunar craters. The paper includes analysis of Stokes parameters and characterization of received time-varying electromagnetic fields over the south pole lunar craters. For the study, Chandrayaan-1 Mini-SAR and LRO Mini-RF data at 2.38 GHz are used. Total five lunar craters in south polar region are analyzed to study the effect of various parameters on the polarization of the signal. We have compared linear horizontal (LH) and linear vertical (LV) polarization components of received radar signal over the same targets using two different SAR data. Ratios of received LH to LV components are also derived over the five craters. It is observed that Chandrayaan-1 Mini-SAR is receiving high LH component as compared to LV component. This is not consistent with the scattering theory (Fawwaz et al. in Microwave remote sensing active and passive, Artech House Inc., New York, 1981), which states that for incidence angle greater than 15°, the vertical polarized component of a received signal should be always high as compared to horizontal polarized component over rough surfaces. These inconsistent results of Chandrayaan-1 Mini-SAR are observed over all five craters. In the paper, various effects of sensor parameters like incident angle, ellipticity angle, orientation angle etc. on scattering mechanism are discussed to understand the inconsistent behaviour of two SAR data over same target.

  5. Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhang, Q.; Yang, C.; Zhang, J.; Zhu, W.; Qu, F.; Liu, Y.

    2015-11-01

    Fenwei basin, China, composed by several sub-basins, has been suffering severe geo-hazards in last 60 years, including large scale land subsidence and small scale ground fissure, which caused serious infrastructure damages and property losses. In this paper, we apply different InSAR techniques with different SAR data to monitor these hazards. Firstly, combined small baseline subset (SBAS) InSAR method and persistent scatterers (PS) InSAR method is used to multi-track Envisat ASAR data to retrieve the large scale land subsidence covering entire Fenwei basin, from which different land subsidence magnitudes are analyzed of different sub-basins. Secondly, PS-InSAR method is used to monitor the small scale ground fissure deformation in Yuncheng basin, where different spatial deformation gradient can be clearly discovered. Lastly, different track SAR data are contributed to retrieve two-dimensional deformation in both land subsidence and ground fissure region, Xi'an, China, which can be benefitial to explain the occurrence of ground fissure and the correlation between land subsidence and ground fissure.

  6. Climate change effects on Glacier recession in Himalayas using Multitemporal SAR data and Automatic Weather Station observations

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, S. K.; Venkataraman, G.

    2009-04-01

    The Himalaya is the highest but the youngest mountain belt (20 to 60 million years B.P.) of the earth running in arc shape for about 2500 km. It has more than 90 peaks above 6000 m and contains about 50% of all glaciers outside of the polar environments (Bahadur, 1993). All glaciers in this region are in general recession since last 150 years (Paul et al.,1979). Gangotri, Siachen, Bara Shigri and Patsio are major glaciers in this region which are showing retreat with different rates and their respective tributary glaciers are completely disconnected from main body of glaciers. Spaceborne synthetic aperture radar data provide an important tool for monitoring the fluctuation of the glaciers. In this paper attempt has been made for quantifying the glacier retreat using multitemporal synthetic aperture radar (SAR) data. SAR intensity and phase information will be exploited separately under SAR intensity tracking and interferometric SAR (InSAR) coherence tracking (Strozzi et al., 2002) respectively. Glacier retreat study have been done using time series coregistered multi temporal SAR images. Simultaneously InSAR coherence thresholding is applied for tracking the snout of Gangotri glacier. It is observed that glacier is retreating at the rate of 21 m/a. Availability of high resolution spotlight mode TerraSAR-X SAR data will supplement the ENVISAT ASAR and ERS-1/2 based observations. The observatory in the proximity of Gangotri glacier has been made functional at Bhojbasa and all weather parameters viz. Snow fall, temperature, pressure, air vector, column water vapor and humidity are recorded twice a day as per WMO standards manually and automatically. Three Automatic Weather Stations (AWS) have been established in the glacier area at Bhojbasa , Kalindipass and Nandaban. Since Himalayan environment is presently under great stress of decay and degeneration, AWS data will be analyzed in the context of climate change effects on fluctuation of glaciers. References 1.Jagdish

  7. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    PubMed Central

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; McEachern, Donna; Meaux, Isabelle; Barrière, Cédric; Stuckey, Jeanne; Meagher, Jennifer; Bai, Longchuan; Liu, Liu; Hoffman-Luca, Cassandra Gianna; Lu, Jianfeng; Shangary, Sanjeev; Yu, Shanghai; Bernard, Denzil; Aguilar, Angelo; Dos-Santos, Odette; Besret, Laurent; Guerif, Stéphane; Pannier, Pascal; Gorge-Bernat, Dimitri; Debussche, Laurent

    2014-01-01

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53. PMID:25145672

  8. Photogrammetric processing of a TerraSAR-X image: evaluation of products

    NASA Astrophysics Data System (ADS)

    Ioannidis, C.; Bourexis, F.; Tsigenopoulos, G.

    2013-08-01

    TerraSAR-X was the first from a series of very high resolution SAR satellites, which have significantly enlarged the range of cartographic applications of SAR data. For such applications the use of photogrammetric processing, either independently or combined with optical images became meaningful. In this paper the procedures that may be applied on a single SAR image are developed and the quality and accuracy of their products are investigated regarding the impact of using various models or changing the parameters of external data (GCPs, DTM). A Spotlight mode TerraSAR-X image is used for a case study. The area is a mountainous terrain, of 5x10km size, located in the north-eastern region of Athens, Greece. Three alternative registration/georeferencing methods are investigated: the Physical Sensor Model (Range- Doppler method), the DLT and the 2nd order RPF. Orthoimage production using four different DTMs of various quality and density are investigated. Geometric accuracy and quality are investigated using Independent Check Points and through an analysis of the slopes and aspects of the terrain in combination with the geometry of the sensor. Automatic techniques for the extraction of the road network are used; however the results are not satisfactory. In addition, a manual extraction of the roads using visual interpretation is made and the results are evaluated in terms of completeness, correctness and quality. According to the results derived from the above procedures, the use of high resolution TerraSAR- Χ images is very promising for a variety of applications for which medium scale geometric accuracies are required.

  9. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity.

    PubMed

    Putz, Mihai V; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-03-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) "wave" and "conversion factor" in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244

  10. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Zhiming

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  11. Deforestation monitoring in the Amazon River estuary by multi-temporal Envisat ScanSAR data

    NASA Astrophysics Data System (ADS)

    Chen, F.; Ishwaran, N.; Brito Pezzuti, J. C.

    2016-04-01

    In this study, we have capitalized on the all-weather, all-day operational capability of spaceborne synthetic aperture radar (SAR) systems and used multi-temporal (from 2002 to 2006), multi-track (track 174, 360 and 447) Envisat ScanSAR amplitude images for deforestation mapping and change detection in the Amazon River estuary. A synergistic approach to deforestation mapping was adopted using SAR backscattering anomalies, the neighbouring forest constraint and DEM-derived slopes based on the three following characteristics: (1) backscattering is reduced in regions suspected to have undergone deforestation; (2) open regions without neighbouring forests were identified for removal; and (3) false-alarms linked to water bodies are mitigated using the shape threshold of flat-slope objects. Our results show that deforestation in the Amazon River estuary continues to be a serious problem, particularly along the rivers, streams or roads, which are more susceptible to anthropogenic activities than other areas. Up to 2006, the deforested portion accounts for 4.6 per cent (3,096,000 pixels) of the entire study site of approximately 458,000 square kilometers (67,320,000 pixels). However, this figure, validated by Landsat ETM images, may have overestimated deforestation to some extent. Nevertheless, multi-temporal analysis using SAR systems, as done in this study, have a clear potential for surveillance of deforestation in the Amazon, particularly in light of the frequent cloud cover typical of the area and the limitations of deforestation monitoring by means of optical satellite imagery.

  12. GIAnT - Generic InSAR Analysis Toolbox

    NASA Astrophysics Data System (ADS)

    Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.

    2012-12-01

    noise covariance models through the processing chain for robust estimation of uncertainties in the deformation estimates. We will demonstrate the ease of use of our framework with results ranging from regional scale analysis around Long Valley, CA and Parkfield, CA to continental scale analysis in Western South America. We will also present preliminary results from a new time-series approach that simultaneously estimates deformation over the complete spatial domain at all time epochs on a distributed computing platform. GIAnT has been developed entirely using open source tools and uses Python as the underlying platform. We build on the extensive numerical (NumPy) and scientific (SciPy) computing Python libraries to develop an object-oriented, flexible and modular framework for time-series InSAR applications. The toolbox is currently configured to work with outputs from ROI-PAC, ISCE and DORIS, but can easily be extended to support products from other SAR/InSAR processors. The toolbox libraries include support for hierarchical data format (HDF5) memory mapped files, parallel processing with Python's multi-processing module and support for many convex optimization solvers like CSDP, CVXOPT etc. An extensive set of routines to deal with ASCII and XML files has also been included for controlling the processing parameters.

  13. SAR measurements of coastal features in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Redondo, Jose M.; Martinez Benjamin, Juan Jose; Diez, Margarita; Lopez Gonzalez-Nieto, Pilar

    2013-04-01

    The Synthetic Aperture Radar (SAR) is a useful tool to study both marine water dynamics and its pollution, this is relevant near the coastline, where river pollution may be also important. Oil spills and natural slicks are detected with SAR [1-3] to reveal river and vessel pollution as well as the complex eddy and current interaction in the ocean surface near the coastline. In the framework of the ESA and European Union contracts, more than 1000 SAR images of the North-west Mediterranean Sea area taken between December 1996 and December 2008 are presented using self-similar traces that may be used to parametrize mixing at both limits of the Rossby Deformation Radius scale. Results show the ability to identify different SAR signatures and at the same time provide calibrations for the different local configurations of vortices, spirals, oil spills and tensioactive slicks that eventually allow predicting the behaviour of different tracers and pollutants in the NW Mediterranean Sea. Thanks to different polarization and intensity levels in satellite imagery can be used to distinguish between natural and man-made sea surface features due to their distinct self-similar as a function of spill parameters, environmental conditions and history of both oil release and weather conditions. (Environmental factors determine [4] spreading, drift and weathering of oil on the sea surface - see: Behaviour oil at sea). Detecting the low contrast patches depends also on the speckle noise which always presents in the image. Application of different filters (available for example in several image processing software (Matlab, Envi, IDL) to the radar data decreases noise level and improves the feature detecting in the image [1] Bezerra, M.O., Diez, M., Medeiros, C., Rodriguez, A., Bahia, E., Sanchez-Arcilla, A. and Redondo, J.M. 1998. Study on the influence of waves on coastal diffusion using image analysis. Applied Scientific Research 59, pp.191-204. [2] Carrillo, A., A., Sanchez,, M

  14. Remotely Sensing Tundra Fire Impacts Using InSAR

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Jafarov, E. E.; Williams, C. A.; Rogan, J.; Zebker, H. A.

    2013-12-01

    Fire is a major disturbance affecting the arctic tundra and boreal forests, with a significant impacts on the ecosystem, soil hydrology, carbon cycling, and permafrost. The increasing trend in frequency and severity of large fires since 1980, associated with progressively drier conditions, is expected to continue and lead to still greater impacts. In this study, we explore the use of Interferometric Synthetic Aperture Radar (InSAR) to map and quantify several results of tundra fires, including fire severity, the increase in permafrost active layer thickness (ALT), and changes in organic layer thickness. Here we present as an example observations of the Anaktuvuk River fire on the North Slope of Alaska, which burned over 1,000 km2 of tundra in the summer of 2007. Fire causes an abrupt change in the surface scattering characteristics and results in a large drop in InSAR coherence. The magnitude of coherence loss is proportional to the amount of vegetation burned, and thus fire severity. Coherence between two PALSAR images taken by the Japanese ALOS satellite before and after the Anaktuvuk River fire shows a spatial pattern consistent with a map of burn severity based on optical MODIS images using differential Normalized Burn Ratio. Additionally, we used InSAR to calculate the seasonal ground subsidence for the 2006 and 2009 thaw seasons representing pre- and post-fire conditions, and estimated the change in ALT using a retrieval algorithm. Our results are consistent with the 8 to 24 cm ALT increases derived from in situ probing measurements, which we relate to the change in the organic layer thickness due to the fire. Our results illustrate the potential of InSAR for remote sensing of fire impacts in Arctic regions. (a) Burn severity for the Anaktuvuk Rivre Fire based on differential Normalized Burn Ratio (dNBR) from MODIS images. (b) Interferometric coherence loss due to the fire. Spatial mean has been subtracted. Negative values (yellow and red colors) indicate

  15. The "Myth" of the Minimum SAR Antenna Area Constraint

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Johnson, W. T. K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J.

    1998-01-01

    A design constraint traceable ot the early days of spaceborne Synthetic Aperture Radar (SAR) is known as the minimum antenna area constraint for SAR. In this paper, it is confirmed that this constraint strictly applies only to the case where both the best possible resolution and the widest possible swath are the design goals. SAR antennas with area smaller than the constraint allows are shown to be possible, have been used on spaceborne SAR missions in the past, and should permit further, lower-cost SAR mission in the future.

  16. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    NASA Astrophysics Data System (ADS)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY

  17. Epidemic Models for SARS and Measles

    ERIC Educational Resources Information Center

    Rozema, Edward

    2007-01-01

    Recent events have led to an increased interest in emerging infectious diseases. This article applies various deterministic models to the SARS epidemic of 2003 and a measles outbreak in the Netherlands in 1999-2000. We take a historical approach beginning with the well-known logistic curve and a lesser-known extension popularized by Pearl and Reed…

  18. Acousto-Optical/Electronic Processor For SAR

    NASA Technical Reports Server (NTRS)

    Bicknell, T. J.; Farr, W. H.

    1992-01-01

    Lightweight, compact, low-power apparatus processes synthetic-aperture-radar (SAR) returns in real time, providing imagery aboard moving aircraft or spacecraft platform. Processor includes optical and electronic subsystems that, together, resolve range and azimuth coordinates of radar targets by combination of spatial and temporal integrations.

  19. SARS: An Emerging Global Microbial Threat.

    PubMed Central

    Hughes, James M.

    2004-01-01

    In March 2003, the Institute of Medicine published an update to its 1992 landmark report on emerging infections. The new report, Microbial Threats to Health: Emergence, Detection, and Response, describes the current spectrum of global microbial threats, factors affecting their emergence or resurgence, and measures that should be undertaken to effectively address them. Coincident with this publication came increasing reports of severe atypical pneumonia of unknown etiology among persons in southeast Asia. This new disease, designated severe acute respiratory syndrome (SARS), spread globally in a matter of weeks, infecting primarily close contacts of index patients (e.g., household members and healthcare workers caring for index patients) but also resulting in community transmission in some areas. An unprecedented worldwide collaborative effort was undertaken to determine the cause of the illness and implement prevention measures. A previously unrecognized coronavirus was identified as the causative agent, and health officials throughout the world struggled to implement measures to contain its spread, including isolation of suspect SARS cases and quarantine of exposed persons. The emergence of SARS is a timely reminder of the need to expect the unexpected and to ensure strong national and global public health partnerships when preparing for and responding to infectious diseases. Effectively addressing the threat of SARS will require enhanced global infectious disease surveillance, the development of rapid diagnostics, new therapies, and vaccines, implementation of aggressive evidence-based infection control strategies, and effective communication. Images Fig. 2 Fig. 3 PMID:17060979

  20. Ambiguity noise analysis of a SAR system

    NASA Astrophysics Data System (ADS)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang

    2015-12-01

    The presence of range and azimuth (or Doppler) ambiguities in synthetic aperture radars (SARs) is well known. The ambiguity noise is related to the antenna pattern and the value of pulse repetition frequency (PRF). Because a new frequency modulated continuous wave (FMCW) SAR has the characters of low cost and small size, and the capacity of real-time signal processing, the antenna will likely vibrate or deform due to a lack of the stabilized platform. And the value of PRF cannot be much high because of the high computation burden for the real-time processing. The aim of this study is to access and improve the performance of a new FMCW SAR system based on the ambiguity noise. First, the quantitative analysis of the system's ambiguity noise level is performed; an antenna with low sidelobes is designed. The conclusion is that the range ambiguity noise is small; the azimuth ambiguity noise is somewhat increased, however, it is sufficiently small to have marginal influence on the image quality. Finally, the ambiguity noise level is measured using the imaging data from a Ku-band FMCW SAR. The results of this study show that the measured noise level coincides with the theoretical noise level.

  1. Discovery and SAR of hydantoin TACE inhibitors

    SciTech Connect

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G.

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  2. The Seamless SAR Archive (SSARA) Project and Other SAR Activities at UNAVCO

    NASA Astrophysics Data System (ADS)

    Baker, S.; Crosby, C. J.; Meertens, C. M.; Fielding, E. J.; Bryson, G.; Buechler, B.; Nicoll, J.; Baru, C.

    2014-12-01

    The seamless synthetic aperture radar archive (SSARA) implements a seamless distributed access system for SAR data and derived data products (i.e. interferograms). SSARA provides a unified application programming interface (API) for SAR data search and results at the Alaska Satellite Facility and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives. Interest from the international community has prompted an effort to incorporate ESA's Virtual Archive 4 Geohazard Supersites and Natural Laboratories (GSNL) collections and other archives into the federated query service. SSARA also provides Digital Elevation Model access for topographic correction via a simple web service through OpenTopography and tropospheric correction products through JPL's OSCAR service. Additionally, UNAVCO provides data storage capabilities for WInSAR PIs with approved TerraSAR-X and ALOS-2 proposals which allows easier distribution to US collaborators on associated proposals and facilitates data access through the SSARA web services. Further work is underway to incorporate federated data discovery for GSNL across SAR, GPS, and seismic datasets provided by web services from SSARA, GSAC, and COOPEUS.

  3. Opium Field Detection in South Oxfordshire Using SAR Polarimetry

    NASA Astrophysics Data System (ADS)

    Walker, Nick; Marino, Armando

    2011-03-01

    To-date the use of satellite imagery to monitor the growth of illicit crops such as marijuana, opium and coca has mostly been conducted using optical frequencies. However, it is well known that while optical imagery can be hampered by localised aerosols such as thin clouds, cirrus, haze and smoke, these do not present a problem for Synthetic Aperture Radar (SAR). In recent years a new generation of satellite borne sensors have also been equipped with enhanced polarimetric capabilities, which can potentially help with detecting and classifying different terrain types. For these reasons we believe it is useful to consider whether high resolution polarimetric SAR data can be applied to illicit crop detection.In this paper we present the results of an experiment whereby opium poppy fields were successfully detected in the south Oxfordshire region in the UK using RadarSat-2 quad-polarisation imagery. It should be noted that these crops are not being grown illicitly but instead are being cultivated for medicinal reasons in parts of the UK. It is interesting to note that the poppies cultivated for opium in the UK have white flowers rather than the more familiar red as can be seen from the photograph in Figure 1, which was taken 11 days earlier in the season compared to Figure 4 and Figure 5.

  4. A Comparative Study on Water Vapor Extracted from Interferometric SAR Images and Synchronized Data

    NASA Astrophysics Data System (ADS)

    Cheng, Shilai

    between spatial linear trend and height dependent stratification, and between stationary term and turbulence signal, was developed. Secondly, point-based Precipitable Water Vapor (PWV) from SAR APS and GPS meteorology are compared based on the proposed model in order to assess the precision of water vapor signal obtained from SAR. Two implementation methods, a differential and a pseudo absolute mode, were proposed to build the comparison links between SAR differential water vapor and GPS absolute water vapor. Thirdly, the spatial statistical properties of water vapor components have been investigated by analyzing water vapor signal obtained from SAR APS, synchronous MERIS near infrared images, MM5 Integrated Water Vapor (IWV) in differential comparison mode and in different spatial scales. Furthermore, in a demonstration example, absolute water vapor signal in fine scale was recovered from differential APS maps with MERIS at master date. By introducing these ideas and data analysis methods, this thesis provides an insight on water vapor signal from Radar Interferometric images. This insight would be firstly significant toward final solution of atmospheric correction in SAR interferometry. While, the water vapor study at small scale is not only beneficial for hydrological study and regional weather (e.g., rainfall) predication, but also promising in meteorological applications in future. In addition, this water vapor study can be extended in improving of atmospheric error modeling for satellite observing technologies, especially in microwave ranging way, such as GNSS, coastal satellite altimetry and VIBL.

  5. Modeling and a correlation algorithm for spaceborne SAR signals

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y.; Jin, M.

    1982-01-01

    A mathematical model of a spaceborne synthetic aperture radar (SAR) response is presented. Thhe associated SAR system performance, in terms of the resolution capability, is also discussed. The analysis of spaceborne SAR target response indicates that the SAR correlation problem is a two-dimensional one with a linear shift-variant response function. A new digital processing algorithm is proposed here in order to realize an economical digital SAR correlation system. The proposed algorithm treats the two-dimensional correlation by a combination of frequency domain fast correlation in the azimuth dimension and a time-domain convolver type of operation in the range dimension. Finally, digitally correlated SEASAT satellite SAR imagery is used in an exemplary sense to validate the SAR response model and the new digital processing technique developed.

  6. Characteristics of Ionospheric Signals in L-band SAR/INSAR Data and Methods for their Correction

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.

    2009-12-01

    The impact of ionospheric propagation effects on the signal properties of L-band SAR systems is significant. Recent theoretical analyses of ionospheric distortions in low-frequency SAR signals have indicated many effects that are likely to affect the quality of SAR, interferometric SAR (InSAR), and polarimetric SAR (PolSAR) data acquired in L-band. Faraday rotation, relative range shifts, internal deformations of the image amplitude, range and azimuth blurring, and interferometric phase errors are some of the most significant effects. Several examples have been published that show unambiguous detection of total electron content (TEC), including TEC gradients. While SAR is sensitive to ionospheric delay on all spatial scales, it is the small scale ionospheric disturbances that have the most significant impact on InSAR applications. The significance of the ionosphere for InSAR-derived deformation analysis depends on three general conditions: i) the spatio-temporal signature of the ionospheric path delay and its manifestation in the SAR observables; ii) the spatio-temporal properties of the deformation signal and the temporal sampling of this signal; iii) the sophistication of the applied InSAR technique and the assumptions inherent to the processing method. With this paper we will introduce the spatio-temporal characteristics of ionospheric signals in L-band SAR and InSAR data both from theory and observations. We will focus our investigations on the equatorial anomaly region located ±15 degrees about the magnetic equator, and the Polar Regions, as most small scale ionospheric anomalies occur in these areas. Data from the Japan Aerospace Exploration Agency’s (JAXA) Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor aboard the Advanced Land Observing Satellite (ALOS) will be used to investigate demonstrate and catalogue typical ionospheric signals observed by L-band SAR systems. Ionospheric theory will be presented to explain the origin of observed

  7. Global database of InSAR earthquake source models: A tool for independently assessing seismic catalogues

    NASA Astrophysics Data System (ADS)

    Ferreira, A. M.; Weston, J. M.; Funning, G. J.

    2011-12-01

    Earthquake source models are routinely determined using seismic data and are reported in many seismic catalogues, such as the Global Centroid Moment Tensor (GCMT) catalogue. Recent advances in space geodesy, such as InSAR, have enabled the estimation of earthquake source parameters from the measurement of deformation of the Earth's surface, independently of seismic information. The absence of an earthquake catalogue based on geodetic data prompted the compilation of a large InSAR database of CMT parameters from the literature (Weston et al., 2011, hereafter referred to as the ICMT database). Information provided in published InSAR studies of earthquakes is used to obtain earthquake source parameters, and equivalent CMT parameters. Multiple studies of the same earthquake are included in the database, as they are valuable to assess uncertainties in source models. Here, source parameters for 70 earthquakes in an updated version of the ICMT database are compared with those reported in global and regional seismic catalogues. There is overall good agreement between parameters, particularly in fault strike, dip and rake. However, InSAR centroid depths are systematically shallower (5-10 km) than those in the EHB catalogue, but this is reduced for depths from inversions of InSAR data that use a layered half-space. Estimates of the seismic moment generally agree well between the two datasets, but for thrust earthquakes there is a slight tendency for the InSAR-determined seismic moment to be larger. Centroid locations from the ICMT database are in good agreement with those from regional seismic catalogues with a median distance of ~6 km between them, which is smaller than for comparisons with global catalogues (17.0 km and 9.2 km for the GCMT and ISC catalogues, respectively). Systematic tests of GCMT-like inversions have shown that similar mislocations occur for several different degree 20 Earth models (Ferreira et al., 2011), suggesting that higher resolution Earth models

  8. Sinking Chao Phraya delta plain, Thailand, derived from SAR interferometry time series analysis

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Mio, A.; Saito, Y.

    2013-12-01

    The Bangkok Metropolitan region and its surrounding provinces are located in a low-lying delta plain of the Chao Phraya River. Extensive groundwater use from the late 1950s has caused the decline of groundwater levels in the aquifers and Holocene clay compaction beneath the Bangkok Region, resulting in significant subsidence of the ground. This ground deformation has been monitored using leveling surveys since 1978, and differential InSAR (Interferometric Synthetic Aperture Radar) analysis. It shows that the Bangkok Metropolitan region is subsiding at a rate of about 20 mm/year during the recent years due to law-limited groundwater pumping, although the highest subsidence rate as high as 120 mm/year was recorded in 1981. The subsidence rate in the Bangkok area has significantly decreased since the late 1980s; however, the affected area has spread out to the surrounding areas. The maximum subsidence rate up to 30 mm/year occurred in the outlying southeast and southwest coastal zones in 2002. In this study, we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain (Lower Central Plain), Thailand, using ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired between July 2007 and September 2010. We derive a single reference time series interferogram from the stacking of unwrapped phases under the assumptions that those phases are smoothly and continuously connected, and apply a smoothness-constrained inversion algorithm that optimizes the displacement from the phase unwrapping of multitemporal differential SAR interferograms. The SAR interferometry time series analysis succeeds to monitor the incremental line-of-sight (LOS)-change between SAR scene acquisitions. LOS displacements are converted to vertical displacements, based on the assumption that the ground displacement in this area occurs only in the vertical directions. This reveals an overall pattern of subsidence

  9. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  10. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  11. Detecting slow moving targets in SAR images

    NASA Astrophysics Data System (ADS)

    Linnehan, Robert; Perlovsky, Leonid; Mutz, Chris W.; Schindler, John

    2004-08-01

    Ground moving target indication (GMTI) radars can detect slow-moving targets if their velocities are high enough to produce distinguishable Doppler frequencies. However, no reliable technique is currently available to detect targets that fall below the minimum detectable velocity (MDV) of GMTI radars. In synthetic aperture radar (SAR) images, detection of moving targets is difficult because of target smear due to motion, which could make low-RCS targets fall below stationary ground clutter. Several techniques for SAR imaging of moving targets have been discussed in the literature. These techniques require sufficient signal-to-clutter ratio (SCR) and adequate MDV for pre-detection. Other techniques require complex changes in hardware. Extracting the maximum information from SAR image data is possible using adaptive, model-based approaches. However, these approaches lead to computational complexity, which exceeds current processing power for more than a single object in an image. This combinatorial complexity is due to the need for having to consider a large number of combinations between multiple target models and the data, while estimating unknown parameters of the target models. We are developing a technique for detecting slow-moving targets in SAR images with low signal-to-clutter ratio, without minimal velocity requirements, and without combinatorial complexity. This paper briefly summarizes the difficulties related to current model-based detection algorithms. A new concept, dynamic logic, is introduced along with an algorithm suitable for the detection of very slow-moving targets in SAR images. This new mathematical technique is inspired by the analysis of biological systems, like the human brain, which combines conceptual understanding with emotional evaluation and overcomes the combinatorial complexity of model-based techniques.

  12. Coupling Regular Tessellation with Rjmcmc Algorithm to Segment SAR Image with Unknown Number of Classes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, Y.; Zhao, Q. H.

    2016-06-01

    This paper presents a Synthetic Aperture Radar (SAR) image segmentation approach with unknown number of classes, which is based on regular tessellation and Reversible Jump Markov Chain Monte Carlo (RJMCMC') algorithm. First of all, an image domain is portioned into a set of blocks by regular tessellation. The image is modeled on the assumption that intensities of its pixels in each homogeneous region satisfy an identical and independent Gamma distribution. By Bayesian paradigm, the posterior distribution is obtained to build the region-based image segmentation model. Then, a RJMCMC algorithm is designed to simulate from the segmentation model to determine the number of homogeneous regions and segment the image. In order to further improve the segmentation accuracy, a refined operation is performed. To illustrate the feasibility and effectiveness of the proposed approach, two real SAR image is tested.

  13. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  14. Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco

    2013-04-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may

  15. Comparison of the effects of central and peripheral aluminum administration on regional 2-deoxy-D-glucose incorporation in the rat brain

    SciTech Connect

    Lipman, J.J.; Tolchard, S. )

    1989-01-01

    Intracerebroventricular (ICV) Injection of aluminum tartrate (ALT 205.7 mcg) in the rat induces a progressive encephalopathy characterized by neurobehavioral derangements. The condition is associated with a reduced ability of cerebral synaptosomes to incorporate radiolabeled 2-Deoxy-D-glucose (2DG) in vitro. The present study surveyed and compared the in vivo regional cerebral glucose uptake (rCGlu) capacity of rats injected with ALT 7 or 14 days previously either by the ICV or intraperitoneal routes. ICV injection produces transient rCGlu depression in caudate-putamen, geniculate bodies and periaquaeductal gray, resolving by day 14. Thalamic nuclei exhibit depressed rCGlu by the 7th day undergoing further depression by day 14. The rCGlu of occipitoparietal cortices, normal at day 7, was increased by day 14. In contrast, peripheral aluminum administration produced transient rCGlu depression in olfactory bulbs, frontal and occipitoparietal cortices, nucleus accumbens and cerebellum, and transiently increased rCGlu in the geniculate nuclei. These effects, present by day 7, had resolved by day 14 when rCGlu has increased in the previously normal pontine nuclei and decreased in the previously normal hippocampus.

  16. Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles

    PubMed Central

    Desai, Diti; Prabhakar, Neeraj; Mamaeva, Veronika; Karaman, Didem Şen; Lähdeniemi, Iris AK; Sahlgren, Cecilia; Rosenholm, Jessica M; Toivola, Diana M

    2016-01-01

    Targeted delivery of drugs is required to efficiently treat intestinal diseases such as colon cancer and inflammation. Nanoparticles could overcome challenges in oral administration caused by drug degradation at low pH and poor permeability through mucus layers, and offer targeted delivery to diseased cells in order to avoid adverse effects. Here, we demonstrate that functionalization of mesoporous silica nanoparticles (MSNs) by polymeric surface grafts facilitates transport through the mucosal barrier and enhances cellular internalization. MSNs functionalized with poly(ethylene glycol) (PEG), poly(ethylene imine) (PEI), and the targeting ligand folic acid in different combinations are internalized by epithelial cells in vitro and in vivo after oral gavage. Functionalized MSNs loaded with γ-secretase inhibitors of the Notch pathway, a key regulator of intestinal progenitor cells, colon cancer, and inflammation, demonstrated enhanced intestinal goblet cell differentiation as compared to free drug. Drug-loaded MSNs thus remained intact in vivo, further confirmed by exposure to simulated gastric and intestinal fluids in vitro. Drug targeting and efficacy in different parts of the intestine could be tuned by MSN surface modifications, with PEI coating exhibiting higher affinity for the small intestine and PEI–PEG coating for the colon. The data highlight the potential of nanomedicines for targeted delivery to distinct regions of the tissue for strict therapeutic control. PMID:26855569

  17. A general framework and related procedures for multiscale analyses of DInSAR data in subsiding urban areas

    NASA Astrophysics Data System (ADS)

    Peduto, Dario; Cascini, Leonardo; Arena, Livia; Ferlisi, Settimio; Fornaro, Gianfranco; Reale, Diego

    2015-07-01

    In the last decade Differential Synthetic Aperture Radar (DInSAR) data were successfully tested in a number of case studies for the detection, mapping and monitoring of ground displacements associated with natural or anthropogenic phenomena. More recently, several national and regional projects all around the world provided rich data archives whose confident use, however, should rely on multidisciplinary experts in order to avoid misleading interpretations. To this aim, the present work first introduces a general framework for the use of DInSAR data; then, focusing on the analysis of subsidence phenomena and the related consequences to the exposed facilities, a set of original procedures is proposed. By drawing a multiscale approach the study highlights the different goals to be pursued at different scales of analysis via high/very high resolution SAR sensors and presents the results with reference to the case study of the Campania region (southern Italy) where widespread ground displacements occurred and damages of different severity were recorded.

  18. Corner Reflectors as the Tie Between InSAR and GNSS Measurements: Case Study of Resource Extraction in Australia

    NASA Astrophysics Data System (ADS)

    Garthwaite, Matthew C.; Lawrie, Sarah; Dawson, John; Thankappan, Medhavy

    2015-05-01

    The combination of continuous Global Navigation Satellite System (GNSS) measurements over a sparse network of points covering Australia with relatively low frequency but high spatial density observations from Interferometric Synthetic Aperture Radar (InSAR) is fundamental to the new geodetic reference frame being developed for Australia. Recognising the economic importance of improved positional accuracy and the potential for geodetic tools to contribute to an understanding of energy related issues, the Australian Government has funded an innovative regional geodetic network of GNSS survey marks and co-located radar corner reflectors. This new network has been installed in the Surat Basin, Queensland where regional subsidence is expected due to significant resource extraction from the subsurface. In this contribution we present initial observations of the a-priori line-of-sight height error derived from corner reflector response in TerraSAR-X, Sentinel-1A, RADARSAT-2 and ALOS-2 SAR imagery of the Surat Basin.

  19. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  20. Ground Deformation Mapping of Houston-Galveston, Texas Using InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    QU, F.; Lu, Z.; Bawden, G. W.; Kim, J. W.

    2014-12-01

    Houston-Galveston region in Texas has been subsiding due to the combined effects of groundwater withdrawal, hydrocarbon extraction, soil compaction, and active faulting. This human- and partially nature-induced ground deformation has gradually threatened the stability of urban infrastructure and caused the loss of wetland habitat along the Gulf of Mexico. Interferometric synthetic aperture radar (InSAR) exploiting multiple SAR images has the capability of obtaining ground motions in high spatial resolution over large coverage. In this study, ERS-1/2 (1993-2000), ENVISAT (2004-2010), and ALOS (2007-2011) datasets are used to unravel the characteristics of ground deformation from 1993 to 2011 over the Houston-Galveston area. The persistent scatterer InSAR (PSInSAR) time-series analysis technique is employed to estimate the spatial and temporal variations of ground motions during 20 years. The ERS-1/2 PSInSAR products have measured subsidence (up to 5 cm/yr) in the northwest Houston area as well as a slight uplift (1 cm/yr) in the southeast region from 1993 to 2000. The subsidence rate (up to 2 cm/yr) between 2004 and 2011 has been obtained from ENVISAT and ALOS data. Our results indicate that the pattern of ground deformation was nearly concentric around the location of intense groundwater withdrawal and the subsiding area has been shrinking and migrating toward the northeast after 2000. In addition, an approximately 2 cm of differential subsidence across faults are observed. Presence of faults can induce localized surface displacements, aggravate localized subsidence, discontinue the integrity of ground water flow, and limit the horizontal spread of subsidence funnels. Finally, our long-term measurement of ground deformation has also been validated by GPS observations in study area.

  1. Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Heinrichs, John

    1994-01-01

    Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.

  2. DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI

    NASA Astrophysics Data System (ADS)

    He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun

    2009-10-01

    The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.

  3. Estimating Sea Ice Parameters from Multi-Look SAR Images Using - and Second-Order Variograms

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Yu; Zhao, Quanhua

    2016-06-01

    The spatial structures revealed in SAR intensity imagery provide essential information characterizing the natural variation processes of sea ice. This paper proposes a new method to extract the spatial structures of sea ice based on two spatial stochastic models. One is a multi-Gamma model, which characterizes continuous variations corresponding to ice-free area or the background. The other is a Poisson line mosaic model, which characterizes the regional variations of sea ice with different types. The linear combination of the two models builds the mixture model to represent spatial structures of sea ice within SAR intensity imagery. To estimate different sea ice parameters, such as its concentration, scale etc. We define two kinds of geostatistic metrics, theoretical first- and second-order variograms. Their experimental alternatives can be calculated from the SAR intensity imagery directly, then the parameters of the mixture model are estimated through fitting the theoretical variograms to the experimental ones, and by comparing the estimated parameters to the egg code, it is verified that the estimated parameters can indicate sea ice structure information showing in the egg code. The proposed method is applied to simulated images and Radarsat-1 images. The results of the experiments show that the proposed method can estimate the sea ice concentration and floe size accurately and stably within SAR testing images.

  4. Estimation and characterization of physical and inorganic chemical indicators of water quality by using SAR images

    NASA Astrophysics Data System (ADS)

    Shareef, Muntadher A.; Toumi, Abdelmalek; Khenchaf, Ali

    2015-10-01

    Recently, remote sensing is considering one of the most important tools in studies of water scattering and water characterization. Traditional methods for monitoring pollutants depended on optical satellite rather than Radar data. Thus, many of Water Quality Parameters (WQP) from optical imagery are still limited. In this paper, a new approach based on the TerraSAR-X images has been presented which it is used to map the region of interest and to estimate physical and chemical WQPs. This approach based on a Small Perturbation Model (SPM) for the electromagnetic scattering is applied by using the Elfouhaily spectrum. A series of inversions have been included in this model started by finding the reflectivity from backscattering coefficients which are calculated from SAR images. Another inversion has been applied to find dielectric constant from the calculation models of the reflectivity (in HH and VV polarizations). Then, a Stogryn Debye formulation has been used to estimate temperature and salinity of water surface from SAR images. After many derivations we got a new model able to estimate temperature and salinity directly from backscattering coefficients obtained from radar images. Inorganic chemical parameters which are represented by Total Dissolved Salts (TDS) and the Electrical Conductivity (EC) are estimated directly from salinity. A tow dataset of instu data have been used to validate this work. The validation included a comparison between parameters measured in situ and those estimated from Terra SAR-X image.

  5. InSAR and the Hector Mine Earthquake: Crustal Deformation v Atmospheric Anomaly

    NASA Astrophysics Data System (ADS)

    Calzia, J.

    2005-12-01

    A series of SAR interferograms of the southwestern Mojave Desert record the apparent development and collapse of a topographic anomaly near the epicenter of the 16 Oct 1999 Mw7.1 Hector Mine Earthquake. Interferograms generated from Feb 1999 to June 2000 ERS data, using GAMMA software, record the development of an elliptical uplift, centered about 20 km north-northeast of the epicenter. The uplift covers approximately 2700 km2 and a regional amplitude of 2.8 cm; peak amplitude is nearly 7 cm. Although NOAA records indicate no rain fall in the area of the anomaly for October 1999, the close correlation between topography and interference fringes suggests atmospheric stratification between the highest peak and valley floor. Reprocessing the SAR data, using DIAPASON software, resulted in inversion of the anomaly from uplift to depression. This inversion suggests that the topographic anomaly is not caused by crustal deformation, but is a near-surface atmospheric anomaly caused by local transient conditions such as dust or smoke. Although InSAR offers a powerful new tool for earthquake prediction, this study confirms the impact that minor atmosphere contaminants can have on the interpretation of SAR data.

  6. SAR Altimetry for Mean Sea Surface Determination in the Arctic DTU15MSS

    NASA Astrophysics Data System (ADS)

    Piccioni, G.; Andersen, O. B.; Stenseng, L.

    2015-12-01

    A reliable MSS that includes high-latitude regions within the 82 degree parallel is required for the Sentinel-3 data processing. In this paper we present the new DTU15MSS which is an update of the DTU13MSS with more years of CryoSat-2. CryoSat-2 offers a unique dataset in the Arctic Ocean for testing SAR altimetry with nearly five years of high-resolution SAR altimetry. In the Arctic Ocean older conventional altimetry satellites (ERS-1/ERS-2/Envisat) have only been able to provide sparse data for the past 20 years. Here we present the development of the DTU13MSS in the Arctic being the latest release of the global high resolution mean sea surface from DTU Space based on 4 years/repeat of Cryostat-2. The analysis shows that Laser Altimetry from the ICESat satellite being the basis of DTU10 and DTU13MSS between 82 and 86N is now obsolete for mean sea surface determination. The study also highlight the problems of integrating altimetry from various modes (LRM, SAR and SAR-in) as well as the problems relating to the fact that the averaging period of CryoSat-2 is adjacent to the 20 years (1993-2012) period used to develop DTU13MSS. Evaluation of the new MSS is performed and comparison with existing MSS models is performed to evaluate the impact of these updates into MSS computation.

  7. A lithological classification method from fully polarimetric SAR data using Cloude-Pottier decomposition and SVM

    NASA Astrophysics Data System (ADS)

    Xie, Minghui; Zhang, Qi; Chen, Shengbo; Zha, Fengli

    2015-10-01

    This article puts forward a kind of lithological classification method to take advantage of the fully polarimetric SAR data for lithological classification by the combination of cloude-pottier decomposition and support vector machine(SVM). Cloude-pottier target decomposition method is used to extract three characteristic parameters from the fully polarimetric SAR data as polarization entropy(H), scattering Angle(α), and the anisotropic(A) in xingcheng region, Liaoning province. And these parameters are taken as a sample vector and selected as the radial basis function for the SVM classifier. Thus the lithological classification from the fully polarimetric SAR images is implemented for the study area. By the comparation to the geological map, the classification results can consist with the actual rock distribution very well, and the overall classification precision reaches 80.0871%. But wishart supervised classification precision reaches 73.3837% , It shows that the method is feasible and effective for full polarization SAR image classification. Compared with the conventional classification method, it greatly improves the accuracy of interpretation.

  8. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  9. Change detection of polarimetric SAR images based on the KummerU Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Zou, Pengfei; Li, Zhen; Zhang, Ping

    2014-11-01

    In the society of PolSAR image segmentation, change detection and classification, the classical Wishart distribution has been used for a long time, but it especially suit to low-resolution SAR image, because in traditional sensors, only a small number of scatterers are present in each resolution cell. With the improving of SAR systems these years, the classical statistical models can therefore be reconsidered for high resolution and polarimetric information contained in the images acquired by these advanced systems. In this study, SAR image segmentation algorithm based on level-set method, added with distance regularized level-set evolution (DRLSE) is performed using Envisat/ASAR single-polarization data and Radarsat-2 polarimetric images, respectively. KummerU heterogeneous clutter model is used in the later to overcome the homogeneous hypothesis at high resolution cell. An enhanced distance regularized level-set evolution (DRLSE-E) is also applied in the later, to ensure accurate computation and stable level-set evolution. Finally, change detection based on four polarimetric Radarsat-2 time series images is carried out at Genhe area of Inner Mongolia Autonomous Region, NorthEastern of China, where a heavy flood disaster occurred during the summer of 2013, result shows the recommend segmentation method can detect the change of watershed effectively.

  10. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  11. Synergistic measurements of ocean winds and waves from SAR

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Xiaofeng; Perrie, William; He, Yijun

    2015-09-01

    In this study we present a synergistic method to retrieve both ocean surface wave and wind fields from spaceborne quad-polarization (QP) synthetic aperture radar (SAR) imaging mode data. This algorithm integrates QP-SAR wind vector retrieval model and the wave retrieval model, with consideration to the nonlinear mapping relationship between ocean wave spectra and SAR image spectra, in order to synergistically retrieve wind fields and wave directional spectra. The method does not require a priori information on the sea state. It combines the observed VV-polarized SAR image spectra with the retrieved wind vectors from the VH-polarized SAR image, to estimate the wind-generated wave directional spectra. The differences between the observed SAR spectra and optimal SAR image spectra associated with the wind waves are interpreted as the contributions from the swell waves. The retrieved ocean wave spectra are used to estimate the integrated spectral wave parameters such as significant wave heights, wavelengths, wave directions and wave periods. The wind and wave parameters retrieved by QP-SAR are validated against those measured by the National Data Buoy Center (NDBC) directional wave buoys under different sea states. The validation results show that the QP-SAR SAR has potential to simultaneously measure the ocean surface waves and wind fields from space.

  12. Federated query services provided by the Seamless SAR Archive project

    NASA Astrophysics Data System (ADS)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  13. Application Of SAR Retracking Techniques To CryoSat-2 Data Over West Iberian Coast And Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome

    2011-02-01

    In the context of the ESA-funded Research & Development project SAMOSA, a novel analytic model for mean return power of the radar altimeter echo in SAR mode has been developed. In parallel the ESA/ESRIN Research and Development Data Exploitation Team has developed an alternative and independent numerical solution for SAR waveform modelling. This was done essentially for the purposes of the SAMOSA model validation on ESA side for acceptance of the SAMOSA contract deliverables. Such altimeter echo waveform retracking techniques have been devised, mainly, with the purpose of its application in the Sentinel-3 (S-3) Ground Segment (PDGS), where the SAR oceanographic products are destined to become operational over the oceanic coastal zone. In the scope of quality assessment of CryoSat-2 SAR oceanographic products, the afore-mentioned SAR Retracking techniques have been applied over open ocean regions. The application region is twofold: an internal basin, as the Tyrrhenian Sea, where moderately calm sea conditions are expected and an open ocean stretch off the Western Iberian Coast where high ocean waves are encountered, in order to assess the techniques over the full sea-state spectrum. Particular attention has been dedicated to the validation process of the results. That shall be accomplished with a comparison of the sea state obtained from multi-mission grid maps in the analyzed regions at the observation time or with a novel and more original approach: using the SAR L1b products originate from the CryoSat-2 Full Bit Rate (FBR) data; these can be reduced to LRM- equivalent level (also known as pseudo-LRM in the SAMOSA jargon) and retracked by means of conventional altimetry retracking schemes; afterwards, such results will be compared with the results coming from L1b SAR data. The results from SAR L1b are expected to match or theoretically over-perform the pseudo-LRM outcomes. This shall allow even to quantify the benefits of the SAR altimetry with respect the

  14. Nisar Spacecraft Concept Overview: Design Challenges for a Proposed Flagship Dual-Frequency SAR Mission

    NASA Technical Reports Server (NTRS)

    Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.

    2015-01-01

    NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.

  15. On the use of Numerical Weather Models for improving SAR geolocation accuracy

    NASA Astrophysics Data System (ADS)

    Nitti, D. O.; Chiaradia, M.; Nutricato, R.; Bovenga, F.; Refice, A.; Bruno, M. F.; Petrillo, A. F.; Guerriero, L.

    2013-12-01

    Precise estimation and correction of the Atmospheric Path Delay (APD) is needed to ensure sub-pixel accuracy of geocoded Synthetic Aperture Radar (SAR) products, in particular for the new generation of high resolution side-looking SAR satellite sensors (TerraSAR-X, COSMO/SkyMED). The present work aims to assess the performances of operational Numerical Weather Prediction (NWP) Models as tools to routinely estimate the APD contribution, according to the specific acquisition beam of the SAR sensor for the selected scene on ground. The Regional Atmospheric Modeling System (RAMS) has been selected for this purpose. It is a finite-difference, primitive equation, three-dimensional non-hydrostatic mesoscale model, originally developed at Colorado State University [1]. In order to appreciate the improvement in target geolocation when accounting for APD, we need to rely on the SAR sensor orbital information. In particular, TerraSAR-X data are well-suited for this experiment, since recent studies have confirmed the few centimeter accuracy of their annotated orbital records (Science level data) [2]. A consistent dataset of TerraSAR-X stripmap images (Pol.:VV; Look side: Right; Pass Direction: Ascending; Incidence Angle: 34.0÷36.6 deg) acquired in Daunia in Southern Italy has been hence selected for this study, thanks also to the availability of six trihedral corner reflectors (CR) recently installed in the area covered by the imaged scenes and properly directed towards the TerraSAR-X satellite platform. The geolocation of CR phase centers is surveyed with cm-level accuracy using differential GPS (DGPS). The results of the analysis are shown and discussed. Moreover, the quality of the APD values estimated through NWP models will be further compared to those annotated in the geolocation grid (GEOREF.xml), in order to evaluate whether annotated corrections are sufficient for sub-pixel geolocation quality or not. Finally, the analysis will be extended to a limited number of

  16. Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the N5W iron mine (Carajás, Brazil) using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.

    2014-10-01

    We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.

  17. Automated inundation monitoring using TerraSAR-X multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Gebhardt, S.; Huth, J.; Wehrmann, T.; Schettler, I.; Künzer, C.; Schmidt, M.; Dech, S.

    2009-04-01

    The Mekong Delta in Vietnam offers natural resources for several million inhabitants. However, a strong population increase, changing climatic conditions and regulatory measures at the upper reaches of the Mekong lead to severe changes in the Delta. Extreme flood events occur more frequently, drinking water availability is increasingly limited, soils show signs of salinization or acidification, species and complete habitats diminish. During the Monsoon season the river regularly overflows its banks in the lower Mekong area, usually with beneficial effects. However, extreme flood events occur more frequently causing extensive damage, on the average once every 6 to 10 years river flood levels exceed the critical beneficial level X-band SAR data are well suited for deriving inundated surface areas. The TerraSAR-X sensor with its different scanning modi allows for the derivation of spatial and temporal high resolved inundation masks. The paper presents an automated procedure for deriving inundated areas from TerraSAR-X Scansar and Stripmap image data. Within the framework of the German-Vietnamese WISDOM project, focussing the Mekong Delta region in Vietnam, images have been acquired covering the flood season from June 2008 to November 2008. Based on these images a time series of the so called watermask showing inundated areas have been derived. The product is required as intermediate to (i) calibrate 2d inundation model scenarios, (ii) estimate the extent of affected areas, and (iii) analyze the scope of prior crisis. The image processing approach is based on the assumption that water surfaces are forward scattering the radar signal resulting in low backscatter signals to the sensor. It uses multiple grey level thresholds and image morphological operations. The approach is robust in terms of automation, accuracy, robustness, and processing time. The resulting watermasks show the seasonal flooding pattern with inundations starting in July, having their peak at the end

  18. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    NASA Astrophysics Data System (ADS)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  19. Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  20. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  1. Synergistic combination technique for SAR image classification

    NASA Astrophysics Data System (ADS)

    Burman, Bhaskar

    1998-07-01

    Classification of earth terrain from satellite radar imagery represents an important and continually developing application of microwave remote sensing. The basic objective of this paper is to derive more information, through combining, than is present in any individual element of input data. Multispectral data has been used to provide complementary information so as to utilize a single SAR data for the purpose of land-cover classification. More recently neural networks have been applied to a number of image classification problems and have shown considerable success in exceeding the performance of conventional algorithms. In this work, a comparison study has been carried out between a conventional Maximum Likelihood (ML) classifier and a neural network (back-error-propagation) classifier in terms of classification accuracy. The results reveal that the combination of SAR and MSS data of the same scene produced better classification accuracy than either alone and the neural network classification has an edge over the conventional classification scheme.

  2. SARS: Safeguards Accounting and Reporting Software

    NASA Astrophysics Data System (ADS)

    Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.

    In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.

  3. SAR observations in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Sheres, David

    1992-01-01

    The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.

  4. International collaboration in SAR ground data systems

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    A set of considerations that are pertinent to future international cooperation in the area of synthetic aperture radar (SAR) ground data systems are presented. The considerations are as follows: (1) success of future spaceborne SAR missions will require multi-agency and/or multi-national collaboration; (2) ground processing is typically performed by each agency for their user base; (3) international standards are required to achieve a uniform data product independent of the processing center; (4) to reduce the aggregate cost of the ground data systems, collaboration is required in design and development; (5) effective utilization of the data by an international user community; (6) commercialization of data products; and (7) security of data systems.

  5. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  6. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  7. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  8. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  9. DInSAR and PSI methods for the recognition of landslides: an experience in the Romanian Subcarpathians

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Anne, Puissant; Mihai, Micu

    2015-04-01

    Landslide is one of the common natural hazards in Romania, especially in the Curvature area of the Romanian Subcarpathians. In this region, landslides cause considerable damages to critical infrastructures, build-up environment and cultivated areas. Most of the slopes are affected by translational and rotational landslide types. The objective of this work is to locate and inventory landslides in the Buzau County, and possibly to characterize their dynamics. As the vegetation is abundant in the study area, series of L-band ALOS/PALSAR images are processed using advanced multi-temporal differential SAR interferometry (DInSAR & PSI). To analyze the DInSAR results, an object-oriented segmentation method is proposed to identify possible landslide candidates in the interferograms; to analyze the PSI results, a statistical method is used to identify PS characterized by the same evolution pattern in the time series. Both techniques have proved to be able to detect unrecognised active landslides in the area, and allowed to complete existing geomorphological inventories. Around 700 new areas of landslides were detected after the analysis of the DInSAR results by an expert. However it represents 30% the zones that were detected in total. The false results remained difficult to isolate without a manual assessment. That means that applying SAR interferometry is not a sufficient tool to build exhausting inventories, and depending on the characteristics of the images (frame/track, baseline), the characteristics of the terrain (landcover, slope gradient, geomorphology) and the characteristics of the landslide (size, displacement rate), only a certain percentage (roughly less than 50%) of the already known landslides are detected with InSAR. Moreover, because of the large variety of landcover (urban, forest, cultivated areas, bare soils) and slope morphology in the study area, DInSAR and PSI techniques provide different results depending on local conditions.

  10. Rapid Disaster Analysis based on SAR Techniques

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Soergel, U.

    2015-03-01

    Due to all-day and all-weather capability spaceborne SAR is a valuable means for rapid mapping during and after disaster. In this paper, three change detection techniques based on SAR data are discussed: (1) initial coarse change detection, (2) flooded area detection, and (3) linear-feature change detection. The 2011 Tohoku Earthquake and Tsunami is used as case study, where earthquake and tsunami events provide a complex case for this study. In (1), pre- and post-event TerraSAR-X images are coregistered accurately to produce a false-color image. Such image provides a quick and rough overview of potential changes, which is useful for initial decision making and identifies areas worthwhile to be analysed further in more depth. In (2), the post-event TerraSAR-X image is used to extract the flooded area by morphological approaches. In (3), we are interested in detecting changes of linear shape as indicator for modified man-made objects. Morphological approaches, e.g. thresholding, simply extract pixel-based changes in the difference image. However, in this manner many irrelevant changes are highlighted, too (e.g., farming activity, speckle). In this study, Curvelet filtering is applied in the difference image not only to suppress false alarms but also to enhance the change signals of linear-feature form (e.g. buildings) in settlements. Afterwards, thresholding is conducted to extract linear-shaped changed areas. These three techniques mentioned above are designed to be simple and applicable in timely disaster analysis. They are all validated by comparing with the change map produced by Center for Satellite Based Crisis Information, DLR.

  11. Synthesis and SAR of vinca alkaloid analogues.

    PubMed

    Voss, Matthew E; Ralph, Jeffery M; Xie, Dejian; Manning, David D; Chen, Xinchao; Frank, Anthony J; Leyhane, Andrew J; Liu, Lei; Stevens, Jason M; Budde, Cheryl; Surman, Matthew D; Friedrich, Thomas; Peace, Denise; Scott, Ian L; Wolf, Mark; Johnson, Randall

    2009-02-15

    Versatile intermediates 12'-iodovinblastine, 12'-iodovincristine and 11'-iodovinorelbine were utilized as substrates for transition metal based chemistry which led to the preparation of novel analogues of the vinca alkaloids. The synthesis of key iodo intermediates, their transformation into final products, and the SAR based upon HeLa and MCF-7 cell toxicity assays is presented. Selected analogues 27 and 36 show promising anticancer activity in the P388 murine leukemia model. PMID:19147348

  12. Processing of polarametric SAR images. Final report

    SciTech Connect

    Warrick, A.L.; Delaney, P.A.

    1995-09-01

    The objective of this work was to develop a systematic method of combining multifrequency polarized SAR images. It is shown that the traditional methods of correlation, hard targets, and template matching fail to produce acceptable results. Hence, a new algorithm was developed and tested. The new approach combines the three traditional methods and an interpolation method. An example is shown that demonstrates the new algorithms performance. The results are summarized suggestions for future research are presented.

  13. Interferometric SAR coherence classification utility assessment

    SciTech Connect

    Yocky, D.A.

    1998-03-01

    The classification utility of a dual-antenna interferometric synthetic aperture radar (IFSAR) is explored by comparison of maximum likelihood classification results for synthetic aperture radar (SAR) intensity images and IPSAR intensity and coherence images. The addition of IFSAR coherence improves the overall classification accuracy for classes of trees, water, and fields. A threshold intensity-coherence classifier is also compared to the intensity-only classification results.

  14. Operational SAR Data Processing in GIS Environments for Rapid Disaster Mapping

    NASA Astrophysics Data System (ADS)

    Bahr, Thomas

    2014-05-01

    The use of SAR data has become increasingly popular in recent years and in a wide array of industries. Having access to SAR can be highly important and critical especially for public safety. Updating a GIS with contemporary information from SAR data allows to deliver a reliable set of geospatial information to advance civilian operations, e.g. search and rescue missions. SAR imaging offers the great advantage, over its optical counterparts, of not being affected by darkness, meteorological conditions such as clouds, fog, etc., or smoke and dust, frequently associated with disaster zones. In this paper we present the operational processing of SAR data within a GIS environment for rapid disaster mapping. For this technique we integrated the SARscape modules for ENVI with ArcGIS®, eliminating the need to switch between software packages. Thereby the premier algorithms for SAR image analysis can be directly accessed from ArcGIS desktop and server environments. They allow processing and analyzing SAR data in almost real time and with minimum user interaction. This is exemplified by the November 2010 flash flood in the Veneto region, Italy. The Bacchiglione River burst its banks on Nov. 2nd after two days of heavy rainfall throughout the northern Italian region. The community of Bovolenta, 22 km SSE of Padova, was covered by several meters of water. People were requested to stay in their homes; several roads, highways sections and railroads had to be closed. The extent of this flooding is documented by a series of Cosmo-SkyMed acquisitions with a GSD of 2.5 m (StripMap mode). Cosmo-SkyMed is a constellation of four Earth observation satellites, allowing a very frequent coverage, which enables monitoring using a very high temporal resolution. This data is processed in ArcGIS using a single-sensor, multi-mode, multi-temporal approach consisting of 3 steps: (1) The single images are filtered with a Gamma DE-MAP filter. (2) The filtered images are geocoded using a reference

  15. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  16. Design of Block Copolymer Costabilized Nonionic Microemulsions and Their In Vitro and In Vivo Assessment as Carriers for Sustained Regional Delivery of Ibuprofen via Topical Administration.

    PubMed

    Djekic, Ljiljana; Martinovic, Martina; Stepanović-Petrović, Radica; Tomić, Maja; Micov, Ana; Primorac, Marija

    2015-08-01

    Nonionic surfactants (caprylocaproyl macrogol-8 glycerides, octoxynol-12, polysorbate-20, and polyethylene glycol-40 hydrogenated castor oil) (47.03%, w/w), costabilizer (poloxamer 407) (12%-20%, w/w), oil (isopropyl myristate) (5.22%, w/w), water (q.s. ad 100%, w/w), and ibuprofen (5%, w/w) were used to develop oil-in-water microemulsions with Newtonian flow behavior, low viscosity (from 368 ± 38 to 916 ± 46 mPa s), and average droplet size from 14.79 ± 0.31 to 16.54 ± 0.75 nm. Ibuprofen in vitro release from the microemulsions was in accordance with zero-order kinetics (R0(2) > 0.99) for at least 12 h. The maximum drug release rate (3.55%h(-1) ) was from the microemulsion M3 comprising 16%, w/w of poloxamer 407. The release rate of ibuprofen from the reference hydrogel followed Higuchi kinetics (RH(2) > 0.99), and drug amount released after the 6th hour was negligible. In a rat model of inflammation, the microemulsion M3 was significantly more efficacious than the reference hydrogel in exerting antihyperalgesic effects in prophylactic topical treatment, whereas they were comparable in therapeutic treatment as well as in producing antiedematous effect in both protocols. No obvious skin irritation was observed in in vivo studies. The developed nonionic surfactants-based microemulsions containing the optimal concentration of poloxamer 407 could be promising carriers for sustained regional delivery of ibuprofen via topical administration. PMID:26045240

  17. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions.

    PubMed

    Fan, Yan; Chen, Ping; Li, Ying; Cui, Kui; Noel, Daniel M; Cummins, Elizabeth D; Peterson, Daniel J; Brown, Russell W; Zhu, Meng-Yang

    2014-02-01

    Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. In this study, corticosterone (CORT) was orally administrated to rats for 21 days to mimic stress status. In situ hybridization measurements showed that CORT ingestion significantly increased mRNA levels of norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH) in the LC region. Immunofluorescence staining and western blotting revealed that CORT treatment also increased protein levels of NET and DBH in the LC, as well as NET protein levels in the hippocampus, the frontal cortex and the amygdala. However, CORT-induced increase in DBH protein levels only appeared in the hippocampus and the amygdala. Elevated NET and DBH expression in most of these areas (except for NET protein levels in the LC) was abolished by simultaneous treatment with combination of corticosteroid receptor antagonist mifepristone and spironolactone (s.c. for 21 days). Also, treatment with mifepristone alone prevented CORT-induced increases of NET expression and DBH protein levels in the LC. In addition, behavioral tasks showed that CORT ingestion facilitated escape in avoidance trials using an elevated T-maze, but interestingly, there was no significant effect on the escape trial. Corticosteroid receptor antagonists failed to counteract this response in CORT-treated rats. In the open-field task, CORT treatment resulted in less activity in a defined central zone compared to controls and corticosteroid receptor antagonist treatment alleviated this increase. In conclusion, this study demonstrates that chronic exposure to CORT results in a phenotype that mimics stress-induced alteration of noradrenergic phenotypes, but the effects on behavior are task dependent. As the sucrose consumption test strongly suggests CORT ingestion-induced depression-like behavior, further elucidation of underlying mechanisms may improve our understanding of the correlation between stress and the development of depression. PMID

  18. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  19. Epidemiologic clues to SARS origin in China.

    PubMed

    Xu, Rui-Heng; He, Jian-Feng; Evans, Meiron R; Peng, Guo-Wen; Field, Hume E; Yu, De-Wen; Lee, Chin-Kei; Luo, Hui-Min; Lin, Wei-Sheng; Lin, Peng; Li, Ling-Hui; Liang, Wen-Jia; Lin, Jin-Yan; Schnur, Alan

    2004-06-01

    An epidemic of severe acute respiratory syndrome (SARS) began in Foshan municipality, Guangdong Province, China, in November 2002. We studied SARS case reports through April 30, 2003, including data from case investigations and a case series analysis of index cases. A total of 1,454 clinically confirmed cases (and 55 deaths) occurred; the epidemic peak was in the first week of February 2003. Healthcare workers accounted for 24% of cases. Clinical signs and symptoms differed between children (<18 years) and older persons (> or =65 years). Several observations support the hypothesis of a wild animal origin for SARS. Cases apparently occurred independently in at least five different municipalities; early case-patients were more likely than later patients to report living near a produce market (odds ratio undefined; lower 95% confidence interval 2.39) but not near a farm; and 9 (39%) of 23 early patients, including 6 who lived or worked in Foshan, were food handlers with probable animal contact. PMID:15207054

  20. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms