Science.gov

Sample records for admittance characterization based

  1. Analytical admittance characterization of high mobility channel

    SciTech Connect

    Mammeri, A. M.; Mahi, F. Z.; Varani, L.

    2015-03-30

    In this contribution, we investigate the small-signal admittance of the high electron mobility transistors field-effect channels under a continuation branching of the current between channel and gate by using an analytical model. The analytical approach takes into account the linearization of the 2D Poisson equation and the drift current along the channel. The analytical equations discuss the frequency dependence of the admittance at source and drain terminals on the geometrical transistor parameters.

  2. Carcinoembryonic antigen admittance biosensor based on Au and ZnO nanoparticles using FFT admittance voltammetry.

    PubMed

    Norouzi, Parviz; Gupta, Vinod Kumar; Faridbod, Farnoush; Pirali-Hamedani, Morteza; Larijani, Bagher; Ganjali, Mohammad Reza

    2011-03-01

    In this work, a highly sensitive carcinoembryonic antigen fast Fourier transform admittance biosensor is introduced. The proposed biosensor is based on bilayer films of ZnO/Au nanoparticles as an immobilization matrix. These layers are prepared by self-assembly and deposition method on a gold electrode surface, respectively. Carcinoembryonic antibody (anti-CEA) was immobilized on gold nanoparticles and positively charged horseradish peroxidase (HRP) was used to block sites against nonspecific binding. The admittance biosensor was developed based on fast Fourier transform continuous square wave voltammetry, which produces a sensitive, fast (less than 20 s) and reliable response for determination of carcinoembryonic antigen. The technique was applied as a detector in a flow injection system. The admittances reduction current of the biosensor decreases linearly in two concentrations ranges of CEA from 0.1 to 70 ng/mL and from 70 to 200 ng/mL with a detection limit of 0.01 ng/mL in presence of 0.5 mM H(2)O(2) as an eluent solution.

  3. Vibration characteristic analysis method for the quartz microgyroscope based on the admittance circle

    NASA Astrophysics Data System (ADS)

    Wang, Haoxu; Dong, Peitao; Xie, Liqiang; Wu, Xuezhong

    2014-03-01

    The vibration characteristic analysis method for a quartz microgyroscope based on the admittance circle is reported in this paper. Admittance theory is introduced and the admittance circle principle is analysed to study the vibration characteristics of the quartz microgyroscope. The prototype gyroscope was fabricated by micro-electromechanical systems (MEMS) technology. The admittance and phase diagram of the work mode were obtained by vibration mode test systems. Then the admittance circle of the work mode was drawn, and the parameter identification of the transfer function between the voltage and current was completed to analyse the vibration characteristics. Therefore, the vibration characteristic analysis method based on the admittance circle can be used to build the transfer function of the quartz microgyroscope, which is helpful for the design of a high performance quartz microgyroscope.

  4. Electrical admittance of piezoelectric parallelepipeds: application to tensorial characterization of piezoceramics

    SciTech Connect

    Diallo, O.; Bavencoffe, M.; Feuillard, G.; Clezio, E. Le; Delaunay, T.

    2014-01-15

    This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.

  5. Admittance measurements in the temperature range (8-77) K for characterization of MIS structures based on MBE n-Hg0.78Cd0.22Te with and without graded-gap layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2017-03-01

    Admittance of MIS structures based on MBE n-Hg1-xCdxTe (x=0.22-0.23) with Al2O3 as insulator is experimentally investigated for the cases of the presence and absence of near-surface graded-gap layers with high content of CdTe. It is shown that the structures with graded-gap layers are characterized by a significant hysteresis of electrical characteristics, a deep and broad dip in the low-frequency capacitance-voltage characteristic, and high values of the differential resistance of the space charge region in the strong inversion. It is found that already at 77 K, the capacitance-voltage characteristics of structures with graded-gap layers have a high-frequency behavior relative to the recharge time of surface states in the frequency range of (1-2000) kHz. At frequencies exceeding 200 kHz and a temperature of (9-15) K, the capacitance-voltage characteristics of the structures without graded-gap layers have a high-frequency behavior relative to the recharge time of surface states located near the Fermi energy for an intrinsic semiconductor. Peculiarities of determining the density of surface states and the electron concentration in MIS structures with and without graded-gap layers are studied.

  6. Electrical characterization and thermal admittance spectroscopy analysis of InGaN/GaN MQW blue LED structure

    NASA Astrophysics Data System (ADS)

    Bourim, El-Mostafa; Han, Jeong In

    2015-11-01

    Characterizations of InGaN/GaN-quantum wells based LED heterostructure were undertaken by static and dynamic electrical measurements at different temperatures. The analysis of the current-voltage ( I- V) characteristics demonstrated different mechanisms involved in the current charge transport in the LED device. Experimental admittance spectra have been investigated in broad frequency range, at various temperature and different direct current biases. A specific extraction of the quantum well conductance, based on Nicollian and Goetzberger's model related to interface state conductance in Metal-Insulator-Semiconductor structure, has shown the effect of the quantum structure on the electric transport, and hence a correlation between the I- V electrical characteristics and the admittance spectroscopy has revealed the different conduction mechanisms involved in the charge transport in the InGaN/GaN LED. Activation energies and carrier capture velocity obtained from Arrhenius plots, determined from the thermally activated quantum well conductance peaks which are revealed with the used model, have confirmed that quantum well parameters are related to the carrier emission from confined levels in quantum wells. [Figure not available: see fulltext.

  7. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong

    2014-10-01

    Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.

  8. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array.

    PubMed

    Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; Oh, Tong In

    2014-10-07

    Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.

  9. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  10. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.

    PubMed

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-04-12

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator.

  11. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator

    PubMed Central

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-01-01

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator. PMID:28417944

  12. Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.

    PubMed

    Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N

    2016-12-01

    This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.

  13. Admittance-Adaptive Model-Based Approach to Mitigate Biodynamic Feedthrough.

    PubMed

    Venrooij, Joost; Mulder, Max; Mulder, Mark; Abbink, David A; van Paassen, Marinus M; van der Helm, Frans C T; Bulthoff, Heinrich H

    2016-09-12

    Biodynamic feedthrough (BDFT) refers to the feedthrough of vehicle accelerations through the human body, leading to involuntary control device inputs. BDFT impairs control performance in a large range of vehicles under various circumstances. Research shows that BDFT strongly depends on adaptations in the neuromuscular admittance dynamics of the human body. This paper proposes a model-based approach of BDFT mitigation that accounts for these neuromuscular adaptations. The method was tested, as proof-of-concept, in an experiment where participants inside a motion simulator controlled a simulated vehicle through a virtual tunnel. Through evaluating tracking performance and control effort with and without motion disturbance active and with and without cancellation active, the effectiveness of the cancellation was evaluated. Results show that the cancellation approach is successful: the detrimental effects of BDFT were largely removed.

  14. Sixteen-Year Change in Acoustic-Admittance Measures among Older Adults: Data from a Population-Based Study

    ERIC Educational Resources Information Center

    Nondahl, David M.; Cruickshanks, Karen J.; Wiley, Terry L.; Tweed, Ted S.; Dalton, Dayna S.

    2013-01-01

    Purpose: The primary purpose of this study was to measure the 16-year change in peak compensated static acoustic admittance (Peak Y[subscript tm]) in a population-based cohort of older adults, and to determine whether age was associated with any observed change in Peak Y[subscript tm]. Other tympanometric measures also were taken and analyzed.…

  15. Sixteen-Year Change in Acoustic-Admittance Measures among Older Adults: Data from a Population-Based Study

    ERIC Educational Resources Information Center

    Nondahl, David M.; Cruickshanks, Karen J.; Wiley, Terry L.; Tweed, Ted S.; Dalton, Dayna S.

    2013-01-01

    Purpose: The primary purpose of this study was to measure the 16-year change in peak compensated static acoustic admittance (Peak Y[subscript tm]) in a population-based cohort of older adults, and to determine whether age was associated with any observed change in Peak Y[subscript tm]. Other tympanometric measures also were taken and analyzed.…

  16. Analysis of SVC’s Impact on Out-of-step Oscillation Based on Direct Method Considering Admittance Effect

    NASA Astrophysics Data System (ADS)

    He, Jing-bo; Ding, Jian; Feng, Li; Ren, Jian-wen; Tang, Wei; Yang, Cheng; Wang, Jing-jin; Song, Yun-ting

    2017-05-01

    The widely employment of power electronic equipment in modern power system, may affect grid structure and system operation because of their diverse dynamic characteristics. In this paper, the impact of the static var compensators (SVC) on out-of-step oscillation is investigated based on the equal area criterion by considering SVC’s admittance effect. Firstly, the variation pattern of bus voltage which is connected to SVC is concluded. Then the derivation of equation considering the admittance effect is given, which explains the ability of SVC to suppress out-of-step oscillation. SVC’s impact on migration of out-of-step oscillation centre (OSOC) is discussed based on the expression of OSOC’s electrical location. Moreover, the influence of SVC’s response speed and capacity on its effect are presented by qualitative analysis. Finally, simulations on a two-end equivalent test system are carried out to verify the correctness of the theoretical analysis. It is found that the capacity and a response speed of SVC have significant effect on the out-of-step oscillation, while SVC have no d istinct influence on location of OSOC.

  17. Applications of Admittance Spectroscopy in Photovoltaic Devices Beyond Majority Carrier Trapping Defects: Preprint

    SciTech Connect

    Li, J. V.; Crandall, R. S.; Repins, I. L.; Nardes, A. M.; Levi, D. H.; Sulima, O.

    2011-07-01

    Admittance spectroscopy is commonly used to characterize majority-carrier trapping defects. In today's practical photovoltaic devices, however, a number of other physical mechanisms may contribute to the admittance measurement and interfere with the data interpretation. Such challenges arise due to the violation of basic assumptions of conventional admittance spectroscopy such as single-junction, ohmic contact, highly conductive absorbers, and measurement in reverse bias. We exploit such violations to devise admittance spectroscopy-based methods for studying the respective origins of 'interference': majority-carrier mobility, non-ohmic contact potential barrier, minority-carrier inversion at hetero-interface, and minority-carrier lifetime in a device environment. These methods are applied to a variety of photovoltaic technologies: CdTe, Cu(In,Ga)Se2, Si HIT cells, and organic photovoltaic materials.

  18. Admittance spectroscopy of solar cells based on GaPNAs layers

    SciTech Connect

    Baranov, A. I. Gudovskikh, A. S.; Zelentsov, K. S.; Nikitina, E. V.; Egorov, A. Yu.

    2015-04-15

    Admittance spectroscopy is used to study defect levels in the layers of a GaPNAs quaternary solid solution. Centers with an activation energy of 0.22 eV and a capture cross section of ∼2.4 × 10{sup −15} cm{sup 2} are found in doped n-GaPNAs layers grown on GaP substrates. These centers correspond to already known Si{sub Ga} + V{sub P} defects in n-GaP; annealing decreases their concentration by several times. A level with an activation energy of 0.23–0.24 eV and capture cross section of ∼9.0 × 10{sup −20} cm{sup 2} is found in undoped GaPNAs layers grown on Si and GaP substrates. The concentration of these centers substantially decreases upon annealing, and, at annealing temperatures exceeding 600°C, there is absolutely no response from these defects. For undoped GaPNAs layers grown on GaP substrates, a level with an activation energy of 0.18 eV and capture cross section of ∼1.1 × 10{sup −16} cm{sup 2} is also found. The concentration of these centers remains unchanged upon annealing.

  19. Performance analysis of a plasmonic sensor based on gold nanoparticle film in infrared light using the admittance loci method

    NASA Astrophysics Data System (ADS)

    Brahmachari, Kaushik; Ray, Mina

    2015-02-01

    A theoretical design of surface plasmon resonance (SPR) structure operating in attenuated total reflection (ATR) mode and comprising of silicon or chalcogenide (2S2G) prism material coated with gold film having different nanoparticle sizes has been reported along with some interesting performance related simulation results at the operating wavelength of 1200 nm in infrared. The admittance loci based technique has been employed for the appropriate choice of the metal layer thickness. The sensitivity and other performance parameters of the structure based on the choice of the high index prism material and correct gold nanoparticle size have also been presented. In comparison to other conventional prism based plasmonic structures, the proposed model provides the extra degree of freedom, i.e., variations of nanoparticle size in addition to the variation in layer thickness and the use of different high index prism materials like silicon, 2S2G materials, etc. Moreover, the width of the SPR curve can be controlled by using different high index prism materials as well as by changing gold nanoparticle size. Higher sensitivity can be achieved with 2S2G while higher detection accuracy is provided by silicon as prism material.

  20. Admittance-frequency response in zinc oxide varistor ceramics

    SciTech Connect

    Alim, M.A. )

    1989-01-01

    The lumped parameter/complex plane analysis technique revealed several contributions to the terminal admittance of the ZnO-Bi/sub 2/O/sub 3/ based varistor grain-boundary ac response. The terminal capacitance has been elucidated via the multiple trapping phenomena, a barrier layer polarization, and a resonance effect. The characterization of the trapping relaxation behavior provided a better understanding of a previously reported loss-peak. The possible nonuniformity in this trapping activity associated with its conductance term observed via the depression angle of a semicircular relaxation in the complex capacitance plane is postulated.

  1. Fibre optic sensors for load-displacement measurements and comparisons to piezo sensor based electromechanical admittance signatures

    NASA Astrophysics Data System (ADS)

    Maheshwari, Muneesh; Annamdas, Venu Gopal Madhav; Pang, John H. L.; Tjin, Swee Chuan; Asundi, Anand

    2015-04-01

    Structural health monitoring techniques using smart materials are on rise to meet the ever ending demand due to increased construction and manufacturing activities worldwide. The civil-structural components such as slabs, beams and columns and aero-components such as wings are constantly subjected to some or the other forms of external loading. This article thus focuses on condition monitoring due to loading/unloading cycle for a simply supported aluminum beam using multiple smart materials. On the specimen, fibre optic polarimetric sensor (FOPS) and fibre Bragg grating (FBG) sensors were glued. Piezoelectric wafer active sensor (PWAS) was also bonded at the centre of the specimen. FOPS and FBG provided the global and local strain measurements respectively whereas, PWAS predicted boundary condition variations by electromechanical admittance signatures. Thus these multiple smart materials together successfully assessed the condition of structure for loading and unloading tests.

  2. Grasp admittance center. A concept

    NASA Astrophysics Data System (ADS)

    Shimoga, K. B.; Goldenberg, A. A.

    1991-05-01

    The ultimate goal of the research on articulated hands in general is to use them to do tasks in a way similar to that of humans. A systematic analysis reveals that the day-to-day tasks of humans include some common task primitives such as twist, turn, insert, pullout, push, pull, lift, and place. During each of these operations, the grasp dynamic behavior plays an important role and more so in tasks involving manipulation of delicate objects. Introduced in this paper is the concept of the grasp admittance center, a notion that aims to make an articulated grasp exhibit a directionally decoupled dynamic behavior. An admittance center is conceptualized as the superposition of compliance, accommodation, and mobility centers in a desired coordinate frame. A grasp with an admittance center will have three useful features: stability, decoupled force motion relation, and decoupled time-response. These features are also useful to other closed kinematic chain robotic devices such as the cooperating multiarms and multilegged mobile robots engaged in non-quasistatic (dynamic) manipulation tasks. As a preparation to demonstrate the concept experimentally, a method of synthesizing articulated grasps so as to achieve an admittance center has been developed as well as a method of choosing appropriate location and related parameters for the center. The sensitivity of the center to its parameter imprecision has also been analyzed.

  3. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)

    NASA Astrophysics Data System (ADS)

    Itoh, Atsushi; Ichihashi, Motoko

    2011-01-01

    We previously used a quartz crystal microbalance (QCM) to identify a frequency f2 that allows measurement of the mass load without being affected by the viscous load of a liquid in the liquid phase. Here, we determined that frequency in order to separately measure the density and viscosity of a Newtonian liquid. Martin et al separately measured the density and viscosity of a liquid by immersing two quartz resonators, i.e. a smooth-surface resonator and a textured-surface resonator, in the liquid. We used a QCM based on admittance analysis (QCM-A) in the current study to separately measure the viscosity and density of a liquid using only a textured-surface resonator. In the current experiments, we measured the density and viscosity of 500 µl of 10%, 30%, and 50% aqueous glycerol solutions and compared the measured values to reference values. The density obtained had an error of ±1.5% of reference values and the viscosity had an error of about ±5% of reference values. Similar results were obtained with 500 µl of 10%, 30%, and 50% ethanol solutions. Measurement was possible with a quartz resonator, so measurements were made with even smaller samples. The density and viscosity of a liquid were successfully determined with an extremely small amount of liquid, i.e. 10 µl, with almost the same precision as when using 500 µl of the liquid.

  4. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  5. Online Stability in Human-Robot Cooperation with Admittance Control.

    PubMed

    Dimeas, Fotios; Aspragathos, Nikos

    2016-01-01

    In the design of a compliant admittance controller for physical human-robot interaction, it is necessary to ensure stable and effective cooperation. The stability of the admittance controller is mainly threatened by a stiff environment. Many methods that guarantee stability in arbitrary environments, impose conservative control gains that limit the effectiveness of the cooperation. Inspired by previous work in frequency domain stability observers, a method is proposed in this paper to detect unstable behavior and stabilize the robot with online adaptation of the admittance control gains. The introduced instability index is based on frequency domain analysis, which very quickly detects unstable behavior by monitoring high frequency oscillation in the force signal. To treat the instability, an adaptation scheme of the admittance parameters is proposed, that relaxes conservative gains and improves the cooperation by considering the effect of variable admittance on the operators' effort. We investigate two human-robot co-manipulation tasks; cooperation within a zero stiffness environment and cooperation in contact with a stiff double-wall virtual environment. The proposed methods are validated experimentally with a number of subjects in cooperation with an LWR manipulator.

  6. Harmonic admittance and dispersion equations--the theorem.

    PubMed

    Plessky, Viktor P; Biryukov, Sergey V; Koskela, Julius

    2002-04-01

    The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the harmonic admittance. Here, we show that a strict reverse relationship also exists: the harmonic admittance of a periodic system of electrodes may always be expressed as the ratio of two determinants, which have been specifically constructed to describe the eigen-modes of the open- and short-circuited systems. There is no need to solve these equations to find the admittance. The existence of a connection between the excitation and propagation problems was recognized within the coupling-of-modes theory by Chen and Haus and was recently used to model surface transverse waves by Koskela et al., but a rigorous mathematical proof was only found later by Biryukov. Here, we reproduce this theorem in detail, give some examples of calculations based on this theorem, and compare the results with measured admittance curves.

  7. New aperture admittance model for open-ended waveguides

    NASA Astrophysics Data System (ADS)

    Stuchly, S. S.; Sibbald, C. L.; Anderson, J. M.

    1994-02-01

    A new model for the aperture admittance of open ended waveguide structures radiating into a homogeneous, lossy dielectric is presented. The model is based on the physical and the mathematical properties of the driving point admittance of passive, stable one-port networks. The model parameters, which depend upon the geometry of the waveguide and aperture, are determined from a relatively small number of computed admittances. This computed data is obtained by a full-wave moment method solution and, hence, includes the effects of radiation and energy storage in the near field and evanescent waveguide modes. The accuracy of the numerical method is demonstrated by comparison with measured values. As an example, the model parameters are determined for the coaxial-line geometry. The accuracy of the model, for both the direct and inverse problem, is verified and a rigorous sensitivity and uncertainty analysis is performed. The new model has important applications in the field of dielectric spectroscopy.

  8. Global variations in the geoid/topography admittance of venus.

    PubMed

    Simons, M; Hager, B H; Solomon, S C

    1994-05-06

    Global representations of geoid height and topography are used to map variations in the geoid/topography ratio (admittance) of Venus. The admittance values are permissive of two mutually exclusive models for convection-driven topography. In the first, compressive highland plateaus are expressions of present mantle downwelling, broad volcanic rises are expressions of mantle upwelling, and lowlands overlie regions with no substantial vertical motion in the mantle. In the second, compressive highland plateaus are remnants of an earlier regime of high crustal strain, and most other long-wavelength topographic variations arise from normal convective tractions at the base of the lithosphere.

  9. Negative admittance in resistive metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Varpula, A.; Novikov, S.; Sinkkonen, J.; Utriainen, M.

    2008-03-01

    The negative admittance effect is observed in a WO3-based resistive gas sensor MOS1 from Environics Oy. The effect is caused by electron trapping (i.e. oxygen ionization) at the grain boundary. The results show that the current component related to the modulation of the grain-boundary barrier dominates in dry clean air and the charging or discharging current dominates in humid air conditions. An equivalent electrical circuit model for the sensor response is presented.

  10. Special Features of Admittance in Mis Structures Based on Graded-Gap MBE n-Hg1- x Cd x Te ( x = 0.31-0.32) in a Temperature Range OF 8-300 K

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Vasil'ev, V. V.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Kuz'min, V. D.; Remesnik, V. G.

    2014-09-01

    Admittance of MIS structures based on graded-gap n-Hg1- х Cd х Te ( x = 0.31-0.32) grown by molecular beam epitaxy (MBE) is investigated in a wide temperature range (8-300 K). It is shown that the temperature and frequency dependences of the differential resistance of space charge region for structures with a graded-gap layer are qualitatively similar to those for structures without a graded-gap layer. It is found that for MIS structures based on MBE n-Hg1- х Cd х Te ( x = 0.31-0.32), regardless of the presence of a graded-gap layer, the differential resistance of space charge region is limited by the processes of Shockley-Read generation in the temperature range of 25-100 K.

  11. System for measuring optical admittance of a thin film stack

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Hui; Wu, Kai; Kuo, Chien-Cheng; Ma, Sheng-Ju; Lee, Cheng-Chung

    2009-07-01

    A new method based on the polarization interferometer structure has been applied to measure the optical admittance, the refractive index and thickness of a thin film. The structure is a vibration insensitive optical system. There is one Twyman-Green interferometer part to induce a phase difference and one Fizeau interferometer part to induce the interference in the system. The intensities coming from four different polarizers were measured at the same time to prevent mechanical vibration influence. Using the polarization interferometer, the optical admittance, the refractive index and thickness of a single layer of Ta2O5 thin film has been measured. The measurement results were compared with the results obtained by ellipsometer. The results meet reasonable values in both refractive index and thickness.

  12. A new method for determining acoustic-liner admittance in a rectangular duct with grazing flow from experimental data

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1984-01-01

    A method is developed for determining acoustic liner admittance in a rectangular duct with grazing flow. The axial propagation constant, cross mode order, and mean flow profile is measured. These measured data are then input into an analytical program which determines the unknown admittance value. The analytical program is based upon a finite element discretization of the acoustic field and a reposing of the unknown admittance value as a linear eigenvalue problem on the admittance value. Gaussian elimination is employed to solve this eigenvalue problem. The method used is extendable to grazing flows with boundary layers in both transverse directions of an impedance tube (or duct). Predicted admittance values are compared both with exact values that can be obtained for uniform mean flow profiles and with those from a Runge Kutta integration technique for cases involving a one dimensional boundary layer.

  13. Derivation of Piezoelectric Losses from Admittance Spectra

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuan; Ural, Seyit O.; Rajapurkar, Aditya; Tuncdemir, Safakcan; Amin, Ahmed; Uchino, Kenji

    2009-04-01

    High power density piezoelectrics are required to miniaturize devices such as ultrasonic motors, transformers, and sound projectors. The power density is limited by the heat generation in piezoelectrics, therefore, clarification of the loss mechanisms is necessary. This paper provides a methodology to determine the electromechanical losses, i.e., dielectric, elastic and piezoelectric loss factors in piezoelectrics by means of a detailed analysis of the admittance/impedance spectra. This method was applied to determine the piezoelectric losses for lead zirconate titanate ceramics and lead magnesium niobate-lead titanate single crystals. The analytical solution provides a new method for obtaining the piezoelectric loss factor, which is usually neglected in practice by transducer designers. Finite element simulation demonstrated the importance of piezoelectric losses to yield a more accurate fitting to the experimental data. A phenomenological model based on two phase-shifts and the Devonshire theory of a polarizable-deformable insulator is developed to interpret the experimentally observed magnitudes of the mechanical quality factor at resonance and anti-resonance.

  14. Characterization of interface defects in ALD Al2O3/p-GaSb MOS capacitors using admittance measurements in range from kHz to GHz

    NASA Astrophysics Data System (ADS)

    Gu, Siyuan; Min, Jie; Taur, Yuan; Asbeck, Peter M.

    2016-04-01

    Atomic layer deposited (ALD) Al2O3/p-type GaSb Metal-Oxide-Semiconductor (MOS) capacitors are studied with capacitance-voltage (C-V) and conductance-voltage (G-V) measurements using AC signal frequencies covering the range from kHz to GHz. The potential and limitations of the measurements at GHz frequencies for oxide and interface defect characterization are described. The effect of bulk oxide traps in communication with the GaSb valence band via hole tunneling is highlighted. Modeling indicates that the C-V and G-V frequency dispersions observed in the accumulation, flat-band and depletion regions of the Al2O3/p-GaSb MOS capacitors are due to combined contributions of bulk-oxide traps and interface traps.

  15. Structures that Contribute to Middle-Ear Admittance in Chinchilla

    PubMed Central

    Rosowski, John J.; Ravicz, Michael E.; Songer, Jocelyn E.

    2009-01-01

    We describe measurements of middle-ear input admittance in chinchillas (Chinchilla lanigera) before and after various manipulations that define the contributions of different middle-ear components to function. The chinchilla’s middle-ear air spaces have a large effect on the low-frequency compliance of the middle ear, and removing the influences of these spaces reveals a highly admittant tympanic membrane and ossicular chain. Measurements of the admittance of the air spaces reveal that the high-degree of segmentation of these spaces has only a small effect on the admittance. Draining the cochlea further increases the middle-ear admittance at low frequencies and removes a low-frequency (less than 300 Hz) level dependence in the admittance. Spontaneous or sound-driven contractions of the middle-ear muscles in deeply anesthetized animals were associated with significant changes in middle-ear admittance. PMID:16944166

  16. Admittance of T-stub graphene nanoribbon structure.

    PubMed

    Lan, Jin; Ye, En-jia; Sui, Wen-quan; Zhao, Xuean

    2013-01-14

    In this work, we studied ac responses of T-stub structures that are composed of armchair and zigzag graphene ribbons. Compared with uniform graphene ribbons, the T-stub structures show extraordinary properties. The ac responses of armchair and zigzag T-stub structures show different behaviors for different edge configurations. The imaginary part of admittance can be capacitive or inductive depending on the Fermi energy and structural parameters. These properties provide deeper understanding of dynamic processes of electrons in graphene-based nanodevices.

  17. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.

    PubMed

    Gui, Kai; Liu, Honghai; Zhang, Dingguo

    2017-07-01

    Traditional joint space admittance controller for N-DOF robotic systems is complexity and easily leads to incongruous movement among all joints. Our study introduces a central pattern generator (CPG) network into one-dimension joint space admittance control for the custom-made lower limb robotic exoskeleton with four DOFs, to guarantee the coordinated movement and security of users. The predefined trajectories for four joints are produced by CPG. Unilateral knee joint torque of subjects is detected based on corresponding muscle EMG signals. The torque is transformed into an additional set of state variables for CPG based on the one-dimension admittance controller. CPG harmonically adjusts the predefined trajectories by the additional state variables. Finally, the robotic exoskeleton completes the predefined trajectories with a classical PID controller.

  18. Gastro-oesophageal reflux disease increases the risk of intensive care unit admittance and mechanical ventilation use among patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study.

    PubMed

    Tsai, Chen-Liang; Lin, Yu-Huei; Wang, Meng-Ting; Chien, Li-Nien; Jeng, Chii; Chian, Chih-Feng; Perng, Wann-Cherng; Chiang, Chi-Huei; Chiou, Hung-Yi

    2015-03-24

    Gastro-oesophageal reflux disease (GORD) is common among chronic obstructive pulmonary disease (COPD) patients and may have a deleterious effect on COPD prognosis. However, few studies have investigated whether GORD increases the risk of severe outcomes such as intensive care unit (ICU) admittance or mechanical ventilator use among COPD patients. Propensity score matching by age, sex, comorbidities and COPD severity was used to match the 1,210 COPD patients with GORD sourced in this study to 2,420 COPD patients without GORD. The Kaplan-Meier method was used to explore the incidence of ICU admittance and machine ventilation with the log rank test being used to test for differences. Cox regression analysis was used to explore the risk of ICU admittance and mechanical ventilation use for patients with and without GORD. During the 12-month follow-up, GORD patients and non-GORD patients had 5.22 and 3.01 ICU admittances per 1000 person-months, and 4.34 and 2.41 mechanical ventilation uses per 1000 person-month, respectively. The log rank test revealed a difference in the incidence of ICU admittance and machine ventilation between the two cohorts. GORD was found to be an independent predicator of ICU admittance (adjusted hazard ratio (HRadj) 1.75, 95% confidence interval (CI) 1.28-2.38) and mechanical ventilation (HRadj 1.92, 95% CI 1.35-2.72). This is the first investigation to detect a significantly higher incidence rate and independently increased risk of admission to an ICU and mechanical ventilation use among COPD patients who subsequently developed GORD during the first year following their GORD diagnosis than COPD patients who did not develop GORD.

  19. Development of an electromechanical admittance approach for application in the vibration control of intelligent structures

    NASA Astrophysics Data System (ADS)

    Providakis, C. P.; Kontoni, D.-P. N.; Voutetaki, M. E.

    2007-04-01

    The present work considers the possibility of vibration control of a distributed dynamical system, such as flexible plates using local piezoelectric (PZT) actuators/sensors and the electromechanical admittance concept. When PZT actuators bonded on structures are used in active vibration and acoustic control, the desired deformation field in the structure is obtained through the application of localized line forces and moments generated by applying an appropriate electrical field on the outer surfaces of the PZT patches. The electromechanical admittance generated at the electrical terminals of a PZT-driven smart structure is then extracted to synthesize a desired damping performance. This is achieved by a FEM-based minimization of the difference between the computed and the desired electromechanical admittance signature for investigated frequency ranges.

  20. Mesoscopic admittance of a double quantum dot

    SciTech Connect

    Cottet, Audrey; Mora, Christophe; Kontos, Takis

    2011-03-15

    We calculate the mesoscopic admittance G({omega}) of a double quantum dot (DQD), which can be measured directly using microwave techniques. This quantity reveals spectroscopic information on the DQD and is also directly sensitive to a Pauli spin blockade effect. We then discuss the problem of a DQD coupled to a high quality photonic resonator. When the photon correlation functions can be developed along a random-phase-approximation-like scheme, the response of the resonator gives an access to G({omega}).

  1. Automatically calibrating admittances in KATE's autonomous launch operations model

    NASA Astrophysics Data System (ADS)

    Morgan, Steve

    1992-09-01

    This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).

  2. BSN Program Admittance Criteria: Should Emotional Intelligence Be Included?

    PubMed

    Smith, Tanya

    2017-01-01

    Emotional intelligence refers to the ability to identify and monitor emotions and remain aware of how emotions affect thoughts and actions. Emotional intelligence has been discussed as a better predictor of personal and occupational success than performance on intellectual intelligence tests. Despite the importance of one's emotional intelligence, BSN (Bachelor of Science in Nursing) nursing schools routinely admit candidates based on the student's cumulative college course grade point average (GPA). Nursing is a profession that requires one's ability to empathize, care, and react in emotionally sound manners. Is the GPA enough to determine if a student will evolve into a professional nurse? This article will explore the routine admittance criteria for BSN nursing programs and propose the concept of using the emotional intelligence tool as an adjunct to the cumulative college course GPA. The emotional intelligence theory will be identified and applied to the nursing profession. © 2016 Wiley Periodicals, Inc.

  3. Automatically calibrating admittances in KATE's autonomous launch operations model

    NASA Technical Reports Server (NTRS)

    Morgan, Steve

    1992-01-01

    This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).

  4. Admittance relay helps wash out system instability

    SciTech Connect

    Sweezy, G.; Swift, G.; Zhang, Z.

    1996-01-01

    This article describes how delta-current admittance relays detect severe power system disturbances and initiate a power reduction signal on the dc transmission system to help stabilize the integrated ac/HVDC transmission system. It is always desirable to transmit as much power as possible over major transmission line interconnections, and the 500 kV line linking Manitoba in Canada to Minnesota in the US is a good example. A static var system (SVS) is part of this strategy. Note the southern end of an HVDC line through which the power is delivered from northern hydro-electric generation. The ability to quickly control dc-delivered power combined with the complication of SVS switching and the installation of series capacitors has led to special circumstances requiring an unusual approach to maintenance of system stability. The availability of a new protection-oriented computing platform has made the required algorithms feasible.

  5. A Method to Measure the Relationship Between Biodynamic Feedthrough and Neuromuscular Admittance.

    PubMed

    Venrooij, J; Abbink, D A; Mulder, M; van Paassen, M M

    2011-08-01

    Biodynamic feedthrough (BDFT) refers to a phenomenon where accelerations cause involuntary limb motions, which can result in unintentional control inputs that can substantially degrade manual control. It is known that humans can adapt the dynamics of their limbs by adjusting their neuromuscular settings, and it is likely that these adaptations have a large influence on BDFT. The goal of this paper is to present a method that can provide evidence for this hypothesis. Limb dynamics can be described by admittance, which is the causal dynamic relation between a force input and a position output. This paper presents a method to simultaneously measure BDFT and admittance in a motion-based simulator. The method was validated in an experiment. Admittance was measured by applying a force disturbance signal to the control device; BDFT was measured by applying a motion disturbance signal to the motion simulator. To allow distinguishing between the operator's responses to each disturbance signal, the perturbation signals were separated in the frequency domain. To show the impact of neuromuscular adaptation, subjects were asked to perform three different control tasks, each requiring a different setting of the neuromuscular system (NMS). Results show a dependence of BDFT on neuromuscular admittance: A change in neuromuscular admittance results in a change in BDFT dynamics. This dependence is highly relevant when studying BDFT. The data obtained with the proposed measuring method provide insight in how exactly the settings of the NMS influence the level of BDFT. This information can be used to gain fundamental knowledge on BDFT and also, for example, in the development of a canceling controller.

  6. Admittance to specialized palliative care (SPC) of patients with an assessed need: a study from the Danish palliative care database (DPD).

    PubMed

    Adsersen, Mathilde; Thygesen, Lau Caspar; Neergaard, Mette Asbjoern; Bonde Jensen, Anders; Sjøgren, Per; Damkier, Anette; Groenvold, Mogens

    2017-09-01

    Admittance to specialized palliative care (SPC) has been discussed in the literature, but previous studies examined exclusively those admitted, not those with an assessed need for SPC but not admitted. The aim was to investigate whether admittance to SPC for referred adult patients with cancer was related to sex, age, diagnosis, geographic region or referral unit. A register-based study with data from the Danish Palliative Care Database (DPD). From DPD we identified all adult patients with cancer, who died in 2010-2012 and who were referred to and assessed to have a need for SPC (N = 21,597).The associations were investigated using logistic regression models, which also evaluated whether time from referral to death influenced the associations. In the adjusted analysis, we found that admittance was higher for younger patients [e.g., 50-59 versus 80 + years: odds ratio (OR) = 2.03; 1.78-2.33]. There was lower odds of admittance for patients with hematological malignancies and patients from two regions: Capital Region of Denmark and Region of Southern Denmark. Lower admittance among men and patients referred from hospital departments was explained by later referral. In this first nationwide study of admittance to SPC among patients with a SPC need, we found difference in admittance according to age, diagnosis and region. This indicates that prioritization of the limited resources means that certain subgroups with a documented need have reduced likelihood of admission to SPC.

  7. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    NASA Astrophysics Data System (ADS)

    Tesar, J. S.; Lambert, R. F.

    1984-06-01

    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  8. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Tesar, J. S.; Lambert, R. F.

    1984-01-01

    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  9. Frequency dependence of the admittance of a quantum point contact

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Beletskii, N. N.; Berman, G. P.; Campbell, D. K.; Doolen, G. D.; Dudiy, S. V.

    1998-10-01

    Using a Boltzmann-like kinetic equation derived in the semiclassical approximation for the partial Wigner distribution function, we determine the ac admittance of a two-dimensional quantum point contact (QPC) for applied ac fields in the frequency range ω~0-50 GHz. We solve self-consistently an integral equation for the spatial distribution of the potential inside the QPC, taking into account the turning points of the semiclassical trajectories. The admittance of the QPC is a strong function of the gate voltage. This gate voltage can be used to ``tune'' the number of open channels (N) for electron transport. We show that, for most values of gate voltage, the imaginary part of the total admittance is positive for N>1, so that the QPC has an inductive character, because of the predominant role of the open channels. In contrast, for N=0 or 1, for most values of the gate voltage, the imaginary part of the admittance is negative, corresponding to capacitive behavior. For gate voltages near values at which channels open or close, very strong nonlinear effects arise, and the admittance oscillates rapidly (with its imaginary part sometimes changing sign) both as the function of gate voltage (at fixed frequency) and as a function of frequency (at fixed gate voltage). Experimental observation of these oscillations would provide an important test of our semiclassical approach to the ac response of a QPC. We explore the low-frequency regime and investigate the extent to which one can understand the admittance in terms of a static conductance and a ``quantum capacitance'' and a ``quantum inductance.'' We show that it is possible to choose the gate voltage so that there is a large, low-frequency regime in which the admittance is well approximated by a linear function of frequency. In this regime, the admittance can be treated by ``equivalent circuit'' concepts. We study how this approach breaks down at higher frequencies, where strongly nonlinear behavior of the admittance

  10. Development of a trans-admittance mammography (TAM) using 60×60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Liu, Qin; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun

    2010-04-01

    We have developed a trans-admittance mammography (TAM) system as a supplementary or alternative method of the X-ray mammography to diagnose the breast cancer. Mechanical structure of the system is similar to the X-ray mammography with the breast placed between two plates. The pair of plates is movable to accommodate breasts with different sizes and rotatable to provide multiple images with different projection angles. Without using ionizing radiation, it acquires a projection image of tissue admittivity values. One plate is a flat solid electrode where we apply a constant sinusoidal voltage with a variable frequency. The other is equipped with 60×60 array of current-sensing electrodes, of which potentials are kept at the signal reference level. The electrode array is connected to six switching modules and each module routes current signals from 600 electrodes to two ammeter modules. Each ammeter module includes six channels of ammeters and each one of them comprises an independent current-to-voltage converter, voltage amplifier, ADC and digital phase-sensitive demodulator. Each ammeter sequentially measures exit currents from 50 electrodes chosen by the corresponding switching module. An FPGA controls six ammeters to collect real- and imaginary-parts of trans-admittance data from 300 electrodes. A separate FPGA arbitrates data and command exchanges between a DSP-based main controller and ammeter modules. It also generates a sinusoidal voltage signal to be applied to the breast. All the 3600 complex current data from 12 ammeter modules are transferred to the main controller, which is interfaced to a PC through an isolated USB. The system is provided with a program to display real- and imaginary-parts of measured trans-admittance maps. The measured maps at multiple frequencies are incorporated into a frequency-difference anomaly detection algorithm. In this paper, we describe the design and construction of the system.

  11. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode.

    PubMed

    Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R

    2015-01-01

    An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation.

  12. A novel grounded to floating admittance converter with electronic control

    NASA Astrophysics Data System (ADS)

    Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank

    2017-07-01

    This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.

  13. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    SciTech Connect

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  14. Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.

    PubMed

    Ravicz, Michael E; Rosowski, John J

    2012-10-01

    The middle-ear input admittance relates sound power into the middle ear (ME) and sound pressure at the tympanic membrane (TM). ME input admittance was measured in the chinchilla ear canal as part of a larger study of sound power transmission through the ME into the inner ear. The middle ear was open, and the inner ear was intact or modified with small sensors inserted into the vestibule near the cochlear base. A simple model of the chinchilla ear canal, based on ear canal sound pressure measurements at two points along the canal and an assumption of plane-wave propagation, enables reliable estimates of Y(TM,) the ME input admittance at the TM, from the admittance measured relatively far from the TM. Y(TM) appears valid at frequencies as high as 17 kHz, a much higher frequency than previously reported. The real part of Y(TM) decreases with frequency above 2 kHz. Effects of the inner-ear sensors (necessary for inner ear power computation) were small and generally limited to frequencies below 3 kHz. Computed power reflectance was ~0.1 below 3.5 kHz, lower than with an intact ME below 2.5 kHz, and nearly 1 above 16 kHz.

  15. Chinchilla middle-ear admittance and sound power: High-frequency estimates and effects of inner-ear modifications

    PubMed Central

    Ravicz, Michael E.; Rosowski, John J.

    2012-01-01

    The middle-ear input admittance relates sound power into the middle ear (ME) and sound pressure at the tympanic membrane (TM). ME input admittance was measured in the chinchilla ear canal as part of a larger study of sound power transmission through the ME into the inner ear. The middle ear was open, and the inner ear was intact or modified with small sensors inserted into the vestibule near the cochlear base. A simple model of the chinchilla ear canal, based on ear canal sound pressure measurements at two points along the canal and an assumption of plane-wave propagation, enables reliable estimates of YTM, the ME input admittance at the TM, from the admittance measured relatively far from the TM. YTM appears valid at frequencies as high as 17 kHz, a much higher frequency than previously reported. The real part of YTM decreases with frequency above 2 kHz. Effects of the inner-ear sensors (necessary for inner ear power computation) were small and generally limited to frequencies below 3 kHz. Computed power reflectance was ∼0.1 below 3.5 kHz, lower than with an intact ME below 2.5 kHz, and nearly 1 above 16 kHz. PMID:23039439

  16. 9 CFR 117.3 - Admittance of animals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT LICENSED...

  17. 9 CFR 117.3 - Admittance of animals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT LICENSED...

  18. 9 CFR 117.3 - Admittance of animals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT LICENSED...

  19. 9 CFR 117.3 - Admittance of animals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT LICENSED...

  20. 9 CFR 117.3 - Admittance of animals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT LICENSED...

  1. Admittance Spectroscopy in CZTSSe: Metastability Behavior and Voltage Dependent Defect Study

    SciTech Connect

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2016-11-21

    Admittance spectroscopy has been performed on a CZTSSe device with a carrier injection pretreatment and under electronically relaxed conditions to demonstrate metastability behavior. We show that the measurements with the carrier injection pretreatment demonstrate two admittance signatures while the relaxed measurement demonstrates only one admittance signature with a different activation energy. Additionally, voltage dependent admittance spectroscopy was performed using the carrier injection pretreatment method at each of the applied voltage bias. The activation energies of the two admittance signatures were calculated and are shown to be independent of the voltage bias.

  2. Admittance control of an upper limb exoskeleton--reduction of energy exchange.

    PubMed

    Kim, Hyunchul; Miller, Levi Makaio; Li, Zhi; Roldan, Jay Ryan; Rosen, Jacob

    2012-01-01

    The synergy of human arms and wearable robot systems (e.g. exoskeletons) is enabled by a control algorithm that maximizes the transparency between the two subsystems. The transparency can be improved by integrating the admittance control along with an arm redundancy resolution algorithm. Recent research effort resulted in a new criterion for the human arm redundancy resolution for unconstrained arm motions estimating the swivel angle with prediction errors of less than 5°. The proposed criterion for the arm redundancy resolution defines the mouth as the primary target of the the human hand during unconstrained arm motions in free space. It was postulated based on experimental data analysis that this criterion is based on a neural mechanism directing the hand towards the head for self-feeding. In conjunction with the proposed redundancy resolution criteria a task space admittance control algorithm is introduced based on multiple force sensor inputs obtained at the interface between the human arm and the exoskeleton system. The system performance was evaluated by five healthy subjects performing a peg-in-hole task for three different target locations. The velocities and interaction forces at the upper arm, lower arm, handle and tip were recorded and further used to power exchange between the subject and the device. Results indicated that the proposed control scheme outperforms the purely reactive task space admittance control with energy exchange reduced to 11.22%. Improving the quality of the human control of a wearable robot system may allow the robot to be a natural and transparent extension of the operator's body.

  3. Multiparameter admittance spectroscopy for metal-oxide-semiconductor systems

    NASA Astrophysics Data System (ADS)

    Piscator, J.; Raeissi, B.; Engström, O.

    2009-09-01

    Admittance spectroscopy is extended for measuring capacitance and conductance on metal-oxide-semiconductor (MOS) structures as a function of gate voltage, frequency, and temperature. An automatic setup has been designed for collecting data along these dimensions in one measurement cycle. The theory for admittance spectroscopy has been developed by starting from basic charge carrier statistics. Using numerical integration of energy dependent parameters instead of the commonly used analytical solution, conductance dispersion curves are obtained which do not need to be adjusted by assuming lateral surface potential variations at the oxide-semiconductor interface. Also, we find that interface state densities extracted by using traditional methods are four times lower than those obtained by using our theory. Experimental data presented in three-dimensional plots are compared with theoretical calculations, revealing the possibilities and limitations of the conductance method.

  4. Exact linear admittance of n+-n-n+ semiconductor structures

    NASA Astrophysics Data System (ADS)

    Eranen, S.; Sinkkonen, J.

    1985-10-01

    With the self-consistent solution of the linearized Boltzmann equation in the relaxation-time approximation for a spatially inhomogeneous electron system, the admittance of n+-n-n+ semiconductor structures is studied as a function of the length L of the moderately doped n region. It is shown that a one-dimensional treatment of the velocity space leads to the exact, analytical solution of the problem. In addition to the conventional admittance and the geometric capacitance of the n region, the equivalent circuit of the structure also includes the contact resistance and, as a new feature, the contact capacitance. For the strongly screened cases (L>>LD) the contact capacitance is approximately the permittivity ɛ of the n region divided by the Debye length LD and, further, becomes exactly equal to ɛL/6L2D in the weak-screening regime (LD>>L).

  5. Admittance plethysmographic evaluation of undulatory massage for the edematous limb.

    PubMed

    Yamazaki, Z; Fujimori, Y; Wada, T; Togawa, T; Yamakoshi, K; Shimazu, H

    1979-03-01

    A new apparatus, called Hadomer has been developed for the treatment of peripheral lymphedema and venous disorder. It has cuffs with 5 rooms, through which the air pressure moves from periphery to proximal point, just like surging waves. The peripheral stagnant lymph and venous blood are displaced toward the heart by this pneumatic massage. Hadomer has been applied to more than 400 patients with the edematous limbs, with satisfactory results, such as decrease of swelling, pain and induration. These clinical results have been also confirmed by electrical admittance plethysmography which is useful to measure noninvasively the edematous volume and the blood flow. The admittance of the edematous limbs is high and after massaging with Hadomer it approaches normal range. The blood flow in the diseased limbs is less than the healthy one and it is observed better after pneumatically massaging.

  6. Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier.

    PubMed

    Kuling, Irene A; Smeets, Jeroen B J; Lammertse, Piet; Onneweer, Bram; Mugge, Winfred

    2015-01-01

    In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity). The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms) to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms) will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass). Additional analyses showed that the subjects' decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes.

  7. Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier

    PubMed Central

    Kuling, Irene A.; Smeets, Jeroen B. J.; Lammertse, Piet; Onneweer, Bram; Mugge, Winfred

    2015-01-01

    In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity). The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms) to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms) will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass). Additional analyses showed that the subjects’ decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes. PMID:26361353

  8. Nozzle Admittance and Damping Analysis Using the LEE Method

    NASA Astrophysics Data System (ADS)

    Mu-xin, Wang; Pei-jin, Liu; Wen-jing, Yang; Xiang-geng, Wei

    2017-04-01

    The nozzle admittance is very important in the theoretical analysis of nozzle damping in combustion instability. The linearized Euler equations (LEE) are used to determine the nozzle admittance with consideration of the mean flow properties. The acoustic energy flux through the nozzle is calculated to evaluate the nozzle damping upon longitudinal oscillation modes. Then the parametric study, involving the nozzle convergent geometry, convergent half angle and nozzle size, is carried out. It is shown that the imaginary part of the nozzle admittance plays a non-negligible role in the determination of the nozzle damping. Under the conditions considered in this work (f*=1,000 Hz, de*=0.18 m), the acoustic energy flux released from the nozzle with a 30o convergent half angle is highest (30o:6.0 × 10^4 kg s^{-3}, 45o:5.2 × 10^4 kg s^{-3}, 60o: 4.9 × 10^4 kg s^{-3}). The change of nozzle convergent geometry is more sensitive for the large size nozzle to increase the nozzle damping.

  9. Thermal-Mechanical Noise Based CMUT Characterization and Sensing

    PubMed Central

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Since the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics where a direct connection to CMUT array element terminals is not available. These measurements can be performed in air at the wafer level, suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm diameter CMUT-on-CMOS array designed for intravascular imaging in the 10-20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element method and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  10. Variations in acoustic admittance related to type of ear tip. A plea for a standardized method.

    PubMed

    Himelfarb, M Z; Rapoport, Y; Shanon, E

    1976-11-01

    In order to assess the validity of using various ear tips, tympanometry and acoustic admittance were studied in 20 young healthy subjects, and three different types of ear tip used to seal the external auditory canal. Significant variations in the admittance components and tympanometry curves were observed, resulting most probably from changes in the canal volume and the physical nature of the tipe. It appears advisable to develop and adopt an appropriate, standard ear tip for studies of admittance audiometry.

  11. Increasing Immunization Compliance by Reducing Provisional Admittance

    ERIC Educational Resources Information Center

    Davis, Wendy S.; Varni, Susan E.; Barry, Sara E.; Frankowski, Barbara L.; Harder, Valerie S.

    2016-01-01

    Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase…

  12. Increasing Immunization Compliance by Reducing Provisional Admittance

    ERIC Educational Resources Information Center

    Davis, Wendy S.; Varni, Susan E.; Barry, Sara E.; Frankowski, Barbara L.; Harder, Valerie S.

    2016-01-01

    Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase…

  13. The long-wavelength admittance and effective elastic thickness of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Kirby, J. F.; Swain, C. J.

    2014-06-01

    The strength of the cratonic lithosphere has been controversial. On the one hand, many estimates of effective elastic thickness (Te) greatly exceed the crustal thickness, but on the other the great majority of cratonic earthquakes occur in the upper crust. This implies that the seismogenic thickness of cratons is much smaller than Te, whereas in the ocean basins they are approximately the same, leading to suspicions about the large Te estimates. One region where such estimates have been questioned is the Canadian Shield, where glacial isostatic adjustment (GIA) and mantle convection are thought to contribute to the long-wavelength undulations of the topography and gravity. To date these have not been included in models used to estimate Te from topography and gravity which conventionally are based only on loading and flexure. Here we devise a theoretical expression for the free-air (gravity/topography) admittance that includes the effects of GIA and convection as well as flexure and use it to estimate Te over the Canadian Shield. We use wavelet transforms for estimating the observed admittances, after showing that multitaper estimates, which have hitherto been popular for Te studies, have poor resolution at the long wavelengths where GIA and convection predominate, compared to wavelets. Our results suggest that Te over most of the shield exceeds 80 km, with a higher-Te core near the southwest shore of Hudson Bay. This means that the lack of mantle earthquakes in this craton is simply due to its high strength compared to the applied stresses.

  14. Gravity/Topography Admittances and Lithospheric Evolution on Mars: The Importance of Finite-Amplitude Topography

    NASA Technical Reports Server (NTRS)

    McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Head, J. W., III; Phillips, Roger J.; Simons, Mark

    2001-01-01

    We calculate localized gravity/topography admittances for Mars, in order to estimate elastic lithosphere thickness. A finite-amplitude correction to modeled gravity is required to properly interpret admittances in high-relief regions of Mars. Additional information is contained in the original extended abstract.

  15. Bio-telemetric device for measurement of left ventricular pressure-volume loops using the admittance technique in conscious, ambulatory rats

    PubMed Central

    Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A

    2011-01-01

    This paper presents the design, construction and testing of a device to measure pressure volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 minutes and runs for 24 hours. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated in thirteen rats with an acute preparation with 2-D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested in six rats with a 24-hour chronic preparation. Stability of the animal preparation and careful calibration are important factors affecting the success of the device. PMID:21606560

  16. Quality control of dairy products using single frequency admittance measurements

    NASA Astrophysics Data System (ADS)

    Mabrook, M. F.; Darbyshire, A. M.; Petty, M. C.

    2006-02-01

    A reusable device for the detection of adulteration in dairy products such as milk and cream has been developed. The ac electrical admittance spectra of different samples have been studied using both uncoated and alkyl mercaptan-coated gold electrodes. Uncoated gold electrodes exhibited a polarization at around 250 Hz for full fat milk, while mercaptan-coated gold electrodes showed a similar effect at around 2 kHz. The characteristics at 100 kHz and 8 °C for all skimmed milk samples revealed a linear decrease in conductance with increasing water content over the entire range of water concentration. In contrast, the conductance of full fat milk, single and double cream, showed a linear decrease only at added water concentration higher than 6%. At lower concentrations, these dairy products exhibited anomalous conductivity maxima.

  17. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    NASA Astrophysics Data System (ADS)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p < 0.05) comparing baseline VTI to phenylephrine VTI (246 ± .05 ms to 320 ± .07 ms) and baseline admittance waveform maximum to phenylephrine admittance waveform maximum (0.0148 ± .002 siemens to 0.0151 ± .002 siemens). Conclusion: Chronic minimally invasive admittance measurement techniques that monitor relative change in blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  18. Surface acoustic admittance of highly porous open-cell, elastic foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1983-01-01

    This work presents a comprehensive study of the surface acoustic admittance properties of graded sizes of open-cell foams that are highly porous and elastic. The intrinsic admittance as well as properties of samples of finite depth were predicted and then measured for sound at normal incidence over a frequency range extending from about 35-3500 Hz. The agreement between theory and experiment for a range of mean pore size and volume porosity is excellent. The implications of fibrous structure on the admittance of open-cell foams is quite evident from the results.

  19. Admittance spectroscopy of CdTe /CdS solar cells subjected to varied nitric-phosphoric etching conditions

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Taele, B. M.; Welch, G. P.; Oelting, S.

    2007-01-01

    In this work we investigate the electric and structural properties of CdTe /CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the characteristics of unetched devices and it is shown that despite the larger height of back-contact barrier such samples show well defined admittance spectra, as well as allow for extraction of as much as five defect levels in the range of 0.08-0.9eV above the valence band. In contrast, admittance characteristics of the etched samples show a decrease of the number of the detectable trap levels with increasing etching time. (Hence it is usual for only one or two trap levels to be reported in the literature for finished devices.) The latter leads to the anomalous Arrhenius energy plots as well as the breakdown of low-frequency capacitance characteristics for samples etched with times larger than 30s. The observed effects are attributed to physical thinning of the cells, the etching out of grain boundaries, and the tellurium enrichment of the CdTe surface by NP etching. We also perform analysis of the back-contact barrier height as extracted from dark I-V measurements at different temperatures. The dependence of this barrier height on NP etching time is compared with that of conversion efficiency, from which conclusions are drawn about both positive and negative effects of the nitric-phosphoric etch.

  20. Athermal compensation of the stress-induced surface deflection of optical coatings using iso-admittance layers.

    PubMed

    Lemarquis, Frédéric

    2014-02-01

    Mechanical stress in optical thin films can induce surface deflection of optical coatings. In the case of a substrate coated on both sides, a method is proposed which can provide perfect cancellation of this deflection, independently of the deposition process or any other external parameter, such as the temperature sensitivity of the mechanical stress. It is straightforward to implement this method, based on iso-admittance layers, since the thickness of such layers can be used to freely compensate for deflection effects only, without having any influence on the film's optical properties. This method is illustrated by two possible solutions for the design problem B from the Optical Interference Coatings (OIC) 2013 meeting.

  1. 48 CFR 3022.101-70 - Admittance of union representatives to DHS installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY ACQUISITION REGULATION (HSAR) SOCIOECONOMIC PROGRAMS... representatives to DHS installations. (a) Admittance of union representatives to Transportation Security... with the contractor's work under a DHS contract nor violate safety or security regulations that may...

  2. Evaluation of anomaly detection algorithm using trans-admittance mammography with 60 × 60 electrode array.

    PubMed

    Zhao, Mingkang; Wi, Hun; Oh, Tong In; Woo, Eung Je

    2013-01-01

    Electrical impedance imaging has a potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. Specially, tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. We applied the anomaly detection algorithm to the high density trans-admittance mammography system for estimating the size and position of breast cancer. We tested 4 different size of anomaly with 3 different conductivity contrasts at 5 different depths. From a frequency difference trans-admittance map, we can readily observe the transversal position and estimate its size and depth. However, the size estimation was dependent on the admittivity contrast between anomaly and background. It requires the robust detection algorithm regardless of the conductivity contrast.

  3. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    SciTech Connect

    Zubkov, V. I. Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas'ev, A. V.; Bogdanov, S. A.; Vikharev, A. L.; Butler, J. E.

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  4. Global Admittance Estimates of Elastic and Crustal Thickness of Venus: Results from Top, Hot Spot, and Bottom Loading Models

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Anderson, F. S.

    2005-01-01

    We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.

  5. An assessment of the accuracy of admittance and coherence estimates using synthetic data

    NASA Astrophysics Data System (ADS)

    Crosby, A. G.

    2007-10-01

    Previous work has shown that estimates of the admittance between topography and free-air gravity anomalies are often biased by spectral leakage, even after the application of multiple prolate spheroidal wavefunction data-tapers. Despite this, a number of authors who have used the free-air admittance method to estimate the weighted-average effective elastic thickness of the lithosphere (Te) and to identify topography supported by mantle convection have not tested their methods using synthetic data with a known relationship between topography and gravity. In this paper, I perform a range of such tests using both synthetic surface data and synthetic line-of-sight (LOS) accelerations of satellites orbiting around an extra-terrestrial planet. It is found that spectral leakage can cause the estimated admittance and coherence to be significantly in error-but only if the box in which they are estimated is too small. The definition of `small' depends on the redness of the gravity spectrum. There is minimal error in the whole-box weighted-average estimate of Te if the admittance between surface gravity and topography is estimated within a box at least 3000-km-wide. When the synthetic (uniform) Te is less than 20 km and the coherence is high, the errors in Te are mostly +/-5 km for all box sizes greater than 1000 km. On the other hand, when the true Te is greater than 20 km and the box size is 1000 km, the best-fitting Te is likely to be at least 5-10 km less than the true Te. However, even when the coherence is high, it is not possible to use elastic plate admittance models to distinguish between real and spurious small fractions of internal loading when the boxes are smaller than 2000 km in width. Noise in the gravity introduces error and uncertainty, but no additional bias, into the estimates of the admittance. It does, however, bias estimates of Te calculated using the coherence between Bouguer gravity and topography. The admittance at wavelengths between 1000 and 4000 km

  6. Effects of wall admittance changes on duct transmission and radiation of sound.

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.; Zorumski, W. E.

    1973-01-01

    This paper is concerned with the effect of changes in duct wall acoustic properties on the transmission of sound through ducts. Two special problems are considered. The first problem is that of a rectangular infinite-length duct with airflow and a single change in duct wall acoustic admittance. The second problem is that of an axisymmetric field in a finite circular duct without airflow and with an arbitrary number of duct wall acoustic admittance changes. Results for the first problem show the effect of wall admittance change and flow on the acoustic power transmission within the duct. Results for the second problem show the interactive effects of multiple duct liner sections on power radiated from a finite duct.

  7. Fermi level pinning at GaN-interfaces: Correlation of electrical admittance and transient spectroscopy

    SciTech Connect

    Witte, H.; Krtschil, A.; Lisker, M.; Rudloff, D.; Christen, J.; Krost, A.; Stutzmann, M.; Scholz, F.

    2000-07-01

    In GaN layers grown by molecular beam epitaxy as well as metal organic vapor phase epitaxy significant differences were found in the appearance of deep defects detected by thermal admittance spectroscopy as compared for deep level transient spectroscopy measurements. While, thermal admittance spectroscopy measurements which were made under zero bias conditions only show thermal emissions at activation energies between 130 and 170 meV, further deep levels existing in these GaN layers were evidenced by transient spectroscopy. This discrepancy is explained by a pinning effect of the Fermi level at the metal/GaN interface induced by high a concentration of the deep levels showing up in thermal admittance spectroscopy. The authors compare their results with a GaAs:Te Schottky-diode as a reference sample. Here, both spectroscopic methods give exactly the same deep level emissions.

  8. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.

    PubMed

    Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang

    2016-05-01

    Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.

  9. Inconsistent Definitions of the Pressure-Coupled Response and the Admittance of Solid Propellants

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.

    2003-01-01

    When an acoustic wave is present in a solid propellant combustion environment, the mass flux from the combustion zone oscillates at the same frequency as the acoustics. The acoustic wave is either amplified or attenuated by the response of the combustion to the acoustic disturbance. When the acoustic wave is amplified, this process is called combustion instability. The amplification is quantitatively measured by a response function. The ability to predict combustion stability for a solid propellant formulation is essential to the formulator to prevent or minimize the effects of instabilities, such as an oscillatory thrust. Unfortunately, the prediction of response values for a particular propellant remains a technical challenge. Most predictions of the response of propellants are based on test data, but there are a number of questions about the reliability of the standard test method, the T-burner. Alternate methods have been developed to measure the response of a propellant, including the ultrasound burner, the magnetic flowmeter and the rotating valve burner, but there are still inconsistencies between the results obtained by these different methods. Aside from the experimental differences, the values of the pressure-coupled responses obtained by different researchers are often compared erroneously, for the simple reason that inconsistencies in the definitions of the responses and admittances are not considered. The use of different definitions has led to substantial confusion since the first theoretical treatments of the problem by Hart and McClure in 1959. The definitions and relations derived here seek to alleviate this problem.

  10. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  11. Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.

  12. Frequency dispersion in the admittance of the polycrystalline Cu2S/CdS solar cell

    NASA Astrophysics Data System (ADS)

    Hmurcik, L. V.; Serway, R. A.

    1987-01-01

    The admittance versus frequency for the Cu2S/CdS solar cell was measured. In the dark, the dispersion fits a model of a simple Debye capacitor, with deviation due to grain-boundary scattering at low frequencies. Under illumination, the dispersion becomes a function of surface roughness. Modeled in fractal geometry, the admittance varies as (i x omega) exp m. A second term of this type occurs at high frequencies and at illuminations greater than 0.1 percent AM 1. In this case, the depletion layer extends deep into the CdS due to insufficient charge states at the interface.

  13. Application of the A.C. Admittance Technique to Double Layer Studies on Polycrystalline Gold Electrodes

    DTIC Science & Technology

    1992-02-24

    Chemistry University of California Davis, CA 95616 U.S.A. tOn leave from the Instituto de Fisica e Quimica de Sao Carlos, USP, Sao Carlos, SP 13560...input of the PAR 174A through an attentuator. The attentuator was introduced in order to avoid signal noise from the a.c. signal generator which is...surface begins. A.C. Admittance Measurements A.C. admittance data were gathered as a function of d.c. potential and frequency. In general , the gold

  14. Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.

    PubMed

    Motallebzadeh, Hamid; Maftoon, Nima; Pitaro, Jacob; Funnell, W Robert J; Daniel, Sam J

    2017-02-01

    Admittance measurement is a promising tool for evaluating the status of the middle ear in newborns. However, the newborn ear is anatomically very different from the adult one, and the acoustic input admittance is different than in adults. To aid in understanding the differences, a finite-element model of the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up to 2000 Hz. Material properties were taken from previous measurements and estimates. The simulation results were within the range of clinical admittance measurements made in newborns. Sensitivity analyses of the material properties show that in the canal model, the maximum admittance and the frequency at which that maximum admittance occurs are affected mainly by the stiffness parameter; in the middle-ear model, the damping is as important as the stiffness in influencing the maximum admittance magnitude but its effect on the corresponding frequency is negligible. Scaling up the geometries increases the admittance magnitude and shifts the resonances to lower frequencies. The results suggest that admittance measurements can provide more information about the condition of the middle ear when made at multiple frequencies around its resonance.

  15. Experimental determination of the admittances of aluminized propellants by the impedance tube method

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Daniel, B. R.; Zinn, B. T.

    1980-01-01

    The adaptation of the impedance tube concept for the determination of the pressure coupled admittances and response functions of burning solid propellants is discussed. The results obtained in experiments with UTP-3001 and UTP-19360 aluminized propellants are presented. It is shown that the admittance Y remains constant during the quasi-steady burn period of a test, indicating constant driving of the gas phase disturbance by the burning solid propellant. The measured real part of the admittance is positive, indicating that the burning aluminized propellant is driving the gas phase oscillations. In addition, the measured high gas phase damping, provided by the aluminum oxide particles in the gas phase, suggests that the latter can significantly increase the damping in unstable solid rockets over the investigated frequency range. Finally, it is shown that the wave structure obtained by numerically solving the impedance tube wave equations which utilize the determined propellant admittance as an initial condition and the determined value of G to describe the gas phase losses is in excellent agreement with the measured wave structure.

  16. Experimental determination of the admittances of aluminized propellants by the impedance tube method

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Daniel, B. R.; Zinn, B. T.

    1980-01-01

    The adaptation of the impedance tube concept for the determination of the pressure coupled admittances and response functions of burning solid propellants is discussed. The results obtained in experiments with UTP-3001 and UTP-19360 aluminized propellants are presented. It is shown that the admittance Y remains constant during the quasi-steady burn period of a test, indicating constant driving of the gas phase disturbance by the burning solid propellant. The measured real part of the admittance is positive, indicating that the burning aluminized propellant is driving the gas phase oscillations. In addition, the measured high gas phase damping, provided by the aluminum oxide particles in the gas phase, suggests that the latter can significantly increase the damping in unstable solid rockets over the investigated frequency range. Finally, it is shown that the wave structure obtained by numerically solving the impedance tube wave equations which utilize the determined propellant admittance as an initial condition and the determined value of G to describe the gas phase losses is in excellent agreement with the measured wave structure.

  17. Admittance model for the shuttle remote manipulator system in four configurations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Loukas; Tolson, Robert H.

    1993-01-01

    A possible scenario for robot task performance in space is to mount two small, dexterous arms to the end of the Shuttle Remote Manipulator System (SRMS). As these small robots perform tasks, the flexibility of the SRMS may cause unsuccessful task executions. In order to simulate the dynamic coupling between the SRMS and the arms, admittance models of the SRMS in four brakes locked configurations were developed. The admittance model permits calculation of the SRMS end-effector response due to end-effector disturbing forces. The model will then be used in conjunction with a Stewart Platform, a vehicle emulation system. An application of the admittance model was shown by simulating the disturbing forces using two SRMS payloads, the Dextrous Orbital Servicing System (DOSS) manipulator and DOSS carrying a 1000 lb. cylinder. Mode by mode comparisons were conducted to determine the minimum number of modes required in the admittance model while retaining dynamic fidelity. It was determined that for all four SRMS configurations studied, between 4 and 6 modes of the SRMS structure (depending on the excitation loads) were sufficient to retain tolerance of 0.01 inches and 0.01 deg. These tolerances correspond to the DOSS manipulator carrying no object. When the DOSS carries the 1000 lb. cylinder, between 15 and 20 modes were sufficient, approximately three or four times as many modes as for the unloaded case.

  18. An analysis of light-induced admittance changes in rod outer segments

    PubMed Central

    Falk, G.; Fatt, P.

    1973-01-01

    1. Measurements were made of the time course and amplitude of the change in real part of admittance, ΔG, of a suspension of frog rod outer segments, following a flash of light bleaching about 1% of the rhodopsin content of the rods. The measurements, based on the use of a specially designed marginal oscillator, covered the frequency range between 500 Hz and 17 MHz. 2. The components of response, previously described for rods prepared by a method involving exposure to strongly hypertonic sucrose solutions, are present in similar form when rods are isolated and maintained in isotonic solutions made up with equi-osmotic concentrations of NaCl and sucrose or with Na2SO4. 3. Component I, identified as a slowly developing positive ΔG apparent at very low frequencies, is frequency-independent up to the characteristic frequency of admittance for the suspension, fY (about 2 MHz for rods suspended in a solution having the conductivity of Ringer solution), but decreases at still higher frequencies. 4. Component II, identified as a rapidly developing positive ΔG which appears only above a critical frequency about 2·5 decades below fY, increases approximately logarithmically with frequency to reach a limiting amplitude in the region of fY. 5. The amplitude of component II, ΔGII, measured in the region of fY, varies linearly with the conductivity of the suspending medium, Go, under conditions in which the conductivity of the rod interior is also a linear function of the external conductivity. The relation for a flash bleaching 1% of the rhodopsin content of the dark-adapted rod is [Formula: see text] 6. Measurements made on rods suspended in a low-conductivity solution, which has the effect of reducing the conductivity of the rod interior to about one ninth its value for rods suspended in Ringer solution, reveal a decline in component II for frequencies above 8 MHz. 7. To explain the frequency dependence of component II and its dependence on conductivity, it is proposed

  19. Amplitude Higgs Mode and Admittance in Superconductors with a Moving Condensate

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2017-01-01

    We consider the amplitude (Higgs) mode in a superconductor with a condensate flow (supercurrent). We demonstrate that, in this case, the amplitude mode corresponding to oscillations δ |Δ |Ωexp (i Ω t ) of the superconducting gap is excited by an external ac electric field EΩexp (i Ω t ) already in the first order in |EΩ|, so that δ |Δ |Ω∝(v0EΩ) , where v0 is the velocity of the condensate. The frequency dependence δ |Δ |Ω has a resonance shape with a maximum at Ω =2 Δ . In contrast to the standard situation without the condensate flow, the oscillations of the amplitude δ |Δ (t )| contribute to the admittance YΩ. We provide a formula for admittance of a superconductor with a supercurrent. The predicted effect opens new ways of experimental investigation of the amplitude mode in superconductors and materials with superconductivity competing with other states.

  20. Modeling the energy balance in Marseille: Sensitivity to roughness length parameterizations and thermal admittance

    NASA Astrophysics Data System (ADS)

    Demuzere, M.; De Ridder, K.; van Lipzig, N. P. M.

    2008-08-01

    During the ESCOMPTE campaign (Experience sur Site pour COntraindre les Modeles de Pollution atmospherique et de Transport d'Emissions), a 4-day intensive observation period was selected to evaluate the Advanced Regional Prediction System (ARPS), a nonhydrostatic meteorological mesoscale model that was optimized with a parameterization for thermal roughness length to better represent urban surfaces. The evaluation shows that the ARPS model is able to correctly reproduce temperature, wind speed, and direction for one urban and two rural measurements stations. Furthermore, simulated heat fluxes show good agreement compared to the observations, although simulated sensible heat fluxes were initially too low for the urban stations. In order to improve the latter, different roughness length parameterization schemes were tested, combined with various thermal admittance values. This sensitivity study showed that the Zilitinkevich scheme combined with and intermediate value of thermal admittance performs best.

  1. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    SciTech Connect

    Kalia, Sameer; Neerja; Mahajan, Aman Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K.

    2016-05-06

    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance –frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.

  2. Amplitude Higgs Mode and Admittance in Superconductors with a Moving Condensate.

    PubMed

    Moor, Andreas; Volkov, Anatoly F; Efetov, Konstantin B

    2017-01-27

    We consider the amplitude (Higgs) mode in a superconductor with a condensate flow (supercurrent). We demonstrate that, in this case, the amplitude mode corresponding to oscillations δ|Δ|_{Ω}exp(iΩt) of the superconducting gap is excited by an external ac electric field E_{Ω}exp(iΩt) already in the first order in |E_{Ω}|, so that δ|Δ|_{Ω}∝(v_{0}E_{Ω}), where v_{0} is the velocity of the condensate. The frequency dependence δ|Δ|_{Ω} has a resonance shape with a maximum at Ω=2Δ. In contrast to the standard situation without the condensate flow, the oscillations of the amplitude δ|Δ(t)| contribute to the admittance Y_{Ω}. We provide a formula for admittance of a superconductor with a supercurrent. The predicted effect opens new ways of experimental investigation of the amplitude mode in superconductors and materials with superconductivity competing with other states.

  3. Frequencies, Input Admittances and Bandwidths of the Natural Bending Eigenmodes in Xylophone Bars

    NASA Astrophysics Data System (ADS)

    Bretos, J.; Santamaría, C.; Moral, J. Alonso

    1997-05-01

    The results are reported of experimental measurements of the response of xylophone bars to a random signal applied at their centre and at one end. Empirical values are obtained with these spectra for the frequencies, input admittances and bandwidths corresponding to the natural blending eigenmodes of xylophone bars. The results explain the acoustical behaviour of the vibrating elements of xylophones and show that it is possible to estimate the vibrational effects of the geometrical shapes of such bars.

  4. Analysis of MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs structure based on DLTS measurements

    NASA Astrophysics Data System (ADS)

    Kochowski, S.; Drewniak, Ł.; Nitsch, K.; Paszkiewicz, R.; Paszkiewicz, B.

    2013-08-01

    In this paper MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs has been analyzed by a comparison of the results obtained from admittance and DLTS spectroscopy. Two groups of peaks with different magnitude and different gate voltage dependence have been observed in DLTS and admittance spectra. Based on the analysis of the peaks behavior, it has been concluded that they are associated with the response of bulk traps and interface states, respectively. In order to characterize bulk traps and interface states responsible for the occurrence of two groups of peaks in normalized conductance spectra we have used the equivalent circuit with two CPE-R branches. The time constant values estimated for both peaks from admittance analysis have been compared with the time constant determined from DLTS analysis. Some discrepancies have been noted between the time constants obtained for interface states whereas the time constants for bulk traps were compatible. It has been also demonstrated that when conductance peaks overlap, the admittance experimental data can be fitted by the equivalent electrical model with only one CPE-R branch. However, in this case incomplete information about the analyzed process has been obtained despite the fact that all model validity criteria can be fulfilled and the model seems to be correct.

  5. An Assessment of the Accuracy of Admittance and Coherence Estimates Using Synthetic Data

    NASA Astrophysics Data System (ADS)

    Crosby, A.

    2006-12-01

    The estimation of the effective elastic thickness of the lithosphere (T_e) using spectral relationships between gravity and topography has become a controversial topic in recent years. However, one area which has received relatively little attention is the bias in estimates of T_e and the internal loading fraction (F_2) which results from spectral leakage and noise when using the multi-tapered free-air admittance method. In this study, I use grids of synthetic data to assess the magnitude of that bias. I also assess the bias which occurs when T_e within other planets is estimated using the admittance between observed and topographic line-of-sight accelerations of orbiting satellites. I find that leakage can cause the estimated admittance and coherence to be significantly in error, but only if the box in which they are estimated is too small. The definition of `small' depends on the redness of the gravity spectrum. On the Earth, there is minimal error in the estimate of T_e if the admittance between surface gravity and topography is estimated within a box at least 3000-km-wide. When the true T_e is less than 20~km and the true coherence is high, the errors in the estimate of T_e are mostly less than 5~km for all box sizes greater than 1000~km. On the other hand, when the true T_e is greater than 20~km and the box size is 1000~km, the best-fit T_e is likely to be at least 5-10~km less than the true T_e. Even when the true coherence is high, it is not possible to use the free-air admittance to distinguish between real and spurious small fractions of internal loading when the boxes are smaller than 2000~km in size. Furthermore, the trade-off between T_e and F_2 means that even small amounts of leakage can shift the best-fit values of T_e and F_2 by an appreciable amount when the true F_2 is greater than zero. Geological noise in the gravity is caused by subsurface loads, the flexural surface expression of which has been erased by erosion and deposition. I find that

  6. Using an admittance algorithm for bone drilling procedures.

    PubMed

    Accini, Fernando; Díaz, Iñaki; Gil, Jorge Juan

    2016-01-01

    Bone drilling is a common procedure in many types of surgeries, including orthopedic, neurological and otologic surgeries. Several technologies and control algorithms have been developed to help the surgeon automatically stop the drill before it goes through the boundary of the tissue being drilled. However, most of them rely on thrust force and cutting torque to detect bone layer transitions which has many drawbacks that affect the reliability of the process. This paper describes in detail a bone-drilling algorithm based only on the position control of the drill bit that overcomes such problems and presents additional advantages. The implication of each component of the algorithm in the drilling procedure is analyzed and the efficacy of the algorithm is experimentally validated with two types of bones.

  7. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments

    PubMed Central

    2014-01-01

    Background In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. Methods A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. Results The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF

  8. Admittance models for open ended coaxial probes and their place in dielectric spectroscopy.

    PubMed

    Gabriel, C; Chan, T Y; Grant, E H

    1994-12-01

    Starting from a rigorous formulation for the admittance of an open ended coaxial probe, this paper identifies the simplifying assumptions that are introduced to obtain more practical solutions. The predictions of the models are compared to each other and to experimental data obtained on an independently calibrated experimental set-up. The advantages and limitations of a model are determined by the theoretical derivation and the numerical solution. The model identified as most suitable for the measurement of the dielectric properties of biological materials is used to determine the relative permittivity and conductivity of muscle and skull bone in the frequency range 1 MHz to 20 GHz.

  9. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    PubMed

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the

  10. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  11. Measuring the complex admittance of a nearly isolated graphene quantum dot

    SciTech Connect

    Zhang, Miao-Lei; Wei, Da; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen

    2014-08-18

    We measured the radio-frequency reflection spectrum of an on-chip reflection line resonator coupled to a graphene double quantum dot (DQD), which was etched almost isolated from the reservoir and reached the low tunnel rate region. The charge stability diagram of DQD was investigated via dispersive phase and magnitude shift of the resonator with a high quality factor. Its complex admittance and low tunnel rate to the reservoir was also determined from the reflected signal of the on-chip resonator. Our method may provide a non-invasive and sensitive way of charge state readout in isolated quantum dots.

  12. Damage monitoring using fiber optic sensors and by analysing electro-mechanical admittance signatures obtained from piezo sensor

    NASA Astrophysics Data System (ADS)

    Maheshwari, Muneesh; Annamdas, Venu Gopal M.; Pang, John Hock Lye; Tjin, Swee C.; Asundi, Anand

    2015-12-01

    Damage monitoring is the need of the hour in this age of infrastructure. Many methods are being used for damage monitoring in different mechanical and civil structures. Some of them are strain based methods in which abruptly increased strain signifies the presence of damage in the structure. This article focuses on crack monitoring of a fixedfixed beam using fiber optic sensors which can measure strain locally or globally. The two types of fiber optic sensors used in this research are fiber Bragg grating (FBG) and fiber optic polarimetric sensors (FOPS). FBG and FOPS are used for local strain monitoring (at one point only) and global strain monitoring (in the entire specimen) respectively. At the centre of the specimen, a piezoelectric wafer active sensor (PWAS) is also attached. PWAS is used to obtain electromechanical admittance (EMA) signatures. Further, these EMA signatures are analysed to access the damage state in the beam. These multiple smart materials together provide improved information on damages in the specimen which is very valuable for the structural health monitoring (SHM) of the specimen.

  13. Optical admittance spectroscopy studies near the band edge of gallium nitride

    NASA Astrophysics Data System (ADS)

    Evwaraye, A. O.; Smith, S. R.; Elhamri, S.

    2014-01-01

    Nominally undoped n-type GaN layers grown by metalorganic chemical vapor deposition on silicon substrates were investigated using Thermal Admittance Spectroscopy and Optical Admittance Spectroscopy (OAS). A defect level was observed at Ec - 0.051 eV, and it is correlated with the nitrogen vacancy (NV) which is a donor in GaN. Illuminating the samples with a monochromatic light with wavelengths ranging from 200 nm to 450 nm, the OAS spectrum was measured at different temperatures and with different excitation light intensities. A dominant peak was observed in the OAS spectrum at λ = 365 nm (3.40 eV); this is attributed to transitions from the valence band to the donor level. Our results show that the saturation level, Gm, of the photoconductance is a function of both light intensity and temperature. The photoconductance decay, after the illumination has been terminated, is non-exponential but it is fully described by the stretched exponential function. The value of β ranges from 0.78 to 0.86. The analysis suggests that the observed photoconductance decay is due to thermal emission of photo-excited carriers from the donor level.

  14. Experimental estimation of in vacuo structural admittance using random sources in a non-anechoic room.

    PubMed

    Williams, Earl G; Tippmann, Jeffery D; Rakotonarivo, Sandrine T; Waters, Zachary J; Roux, Philippe; Kuperman, W A

    2017-07-01

    Identification of unexploded ordinance buried in the sediment in the littoral waters throughout the world is a problem of great concern. When illuminated by low-frequency sonar some of these targets exhibit an elastic response that can be used to identify them. This elastic behavior is embodied and identified by a quantity called the in vacuo structural admittance matrix Ys, a relationship between the sonar-induced forces and resulting vibration on its surface. When it is known it can be combined with surface impedances to predict the three-dimensional bistatic scattering in any fluid-like media and for any burial state (depth and orientation). At the heart of this is the measurement of Ys and it is demonstrated in this paper that this can be accomplished by studying the target in a simple (acoustically unaltered) in-air laboratory environment. The target chosen in this study is a thick spherical shell that was illuminated by a nearly spatially isotropic array of remote loudspeakers. Ys is constructed from ensemble averages of the cross-correlations of eight collocated accelerometers and microphones placed on the surface of the object. The structural admittance determined from the data showed excellent agreement with theory.

  15. Localized Gravity/Topography Admittance and Correlation Spectra on Mars: Implications for Regional and Global Evolution

    NASA Technical Reports Server (NTRS)

    McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Simons, Mark; Wieczorek, Mark A.; Phillips, Roger J.; Neumann, Gregory A.; Aharonson, Oded; Head, James W.

    2002-01-01

    [i] From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T(sub e)) required to support the observed topographic load since the time of loading. We convert T(sub e) to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary shape ) in lieu of topography referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T, values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.

  16. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge

    2014-05-01

    Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

  17. Characterization of soil behavior using electromagnetic wave-based technique

    NASA Astrophysics Data System (ADS)

    Dong, Xiaobo

    samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica

  18. Global Admittance Estimates of Elastic and Crustal Thickness of Venus: Preliminary Results from Top and Bottom Loading Models

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Smrekar, S. E.

    2001-01-01

    Initial elastic and crustal thickness estimates (Te and Zc) for a global set of local admittance inversions with a one degree spacing for Venus provide a global map for interpreting subsurface structure. Additional information is contained in the original extended abstract.

  19. 76 FR 31306 - Admittance to Practice and Roster of Registered Patent Attorneys and Agents Admitted to Practice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Patent and Trademark Office Admittance to Practice and Roster of Registered Patent Attorneys and Agents... Attorney, Office of Enrollment and Discipline, United States Patent and Trademark Office (USPTO), P.O. Box... regulations governing the recognition and conduct of agents, attorneys or other persons...

  20. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    PubMed Central

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  1. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    NASA Technical Reports Server (NTRS)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  2. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    NASA Technical Reports Server (NTRS)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  3. The effect of flying and low humidity on the admittance of the tympanic membrane and middle ear system.

    PubMed

    Morse, Robert Peter

    2013-10-01

    Many passengers experience discomfort during flight because of the effect of low humidity on the skin, eyes, throat, and nose. In this physiological study, we have investigated whether flight and low humidity also affect the tympanic membrane. From previous studies, a decrease in admittance of the tympanic membrane through drying might be expected to affect the buffering capacity of the middle ear and to disrupt automatic pressure regulation. This investigation involved an observational study onboard an aircraft combined with experiments in an environmental chamber, where the humidity could be controlled but could not be made to be as low as during flight. For the flight study, there was a linear relationship between the peak compensated static admittance of the tympanic membrane and relative humidity with a constant of proportionality of 0.00315 mmho/% relative humidity. The low humidity at cruise altitude (minimum 22.7 %) was associated with a mean decrease in admittance of about 20 % compared with measures in the airport. From the chamber study, we further found that a mean decrease in relative humidity of 23.4 % led to a significant decrease in mean admittance by 0.11 mmho [F(1,8) = 18.95, P = 0.002], a decrease of 9.4 %. The order of magnitude for the effect of humidity was similar for the flight and environmental chamber studies. We conclude that admittance changes during flight were likely to have been caused by the low humidity in the aircraft cabin and that these changes may affect the automatic pressure regulation of the middle ear during descent.

  4. Localized Gravity/Topography Correlation and Admittance Spectra one the Moon

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Araki, H.; Noda, H.; Sasaki, S.; Iwata, T.; Hanada, H.

    2009-04-01

    Lunar surface and structure can be separate into two parts. The lunar near side crust and far side crust differ remarkably in thickness. This difference probably caused by difference of thermal evolution and state (elastic thickness) and catering history on both side. The correlations and admittance between the topography and gravity anomalies provide important information on the level of isostatic compensation of the lithosphere at the geological timescale, and reflect its thermo-mechanical state. Therefore, localized correlation and admittance analysis is one of the most important studies of selenodesy. A global correlation between topography and gravity of the Moon obtained by Clementine and Lunar Prospector missions, respectively, reveals high value at long wavelength and low value at short wavelength. Such characteristics are distinguished from those of the Earth and other terrestrial planets, whose global correlation between topography and gravity is low at long wavelength. The distinct correlation between topography and gravity of the Moon may indicate that the lunar topography is supported by multiple compensation mechanism. Further, an incomplete coverage of Doppler tracking data prior to Kaguya (SELENE) gravity experiment probably contributed to the correlation. Because the Moon is synchronously rotating with its revolution around the Earth, a spacecraft orbiting over the far side is not visible from ground stations. In either case, it is significant to decompose local correlation from global ones in order to investigate internal structure of the Moon from spherical harmonic model of gravity (LP75G [1]) and topography (GLTM-2 [2]). Japanese lunar exploration Kaguya (SELENE) has two kinds of selenodesical experiments. One is RSAT/VRAD (gravity mapping with direct tracking over far-side) experiment and another is Laser ALTimeter (LALT; topography mapping) experiment. These two experiments enable us to conduct localized analysis for the Moon. Therefore we

  5. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  6. Automated clustering-based workload characterization

    NASA Technical Reports Server (NTRS)

    Pentakalos, Odysseas I.; Menasce, Daniel A.; Yesha, Yelena

    1996-01-01

    The demands placed on the mass storage systems at various federal agencies and national laboratories are continuously increasing in intensity. This forces system managers to constantly monitor the system, evaluate the demand placed on it, and tune it appropriately using either heuristics based on experience or analytic models. Performance models require an accurate workload characterization. This can be a laborious and time consuming process. It became evident from our experience that a tool is necessary to automate the workload characterization process. This paper presents the design and discusses the implementation of a tool for workload characterization of mass storage systems. The main features of the tool discussed here are: (1)Automatic support for peak-period determination. Histograms of system activity are generated and presented to the user for peak-period determination; (2) Automatic clustering analysis. The data collected from the mass storage system logs is clustered using clustering algorithms and tightness measures to limit the number of generated clusters; (3) Reporting of varied file statistics. The tool computes several statistics on file sizes such as average, standard deviation, minimum, maximum, frequency, as well as average transfer time. These statistics are given on a per cluster basis; (4) Portability. The tool can easily be used to characterize the workload in mass storage systems of different vendors. The user needs to specify through a simple log description language how the a specific log should be interpreted. The rest of this paper is organized as follows. Section two presents basic concepts in workload characterization as they apply to mass storage systems. Section three describes clustering algorithms and tightness measures. The following section presents the architecture of the tool. Section five presents some results of workload characterization using the tool.Finally, section six presents some concluding remarks.

  7. Multimode model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  8. Model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.

    2017-02-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.

  9. Characterization and performance of ceria based SOFCs

    SciTech Connect

    Milliken, C.; Elangovan, S.; Khandkar, A.C.

    1995-12-31

    Alkaline earth doped ceria based electrolytes have been used for solid oxide fuel cells operating at 700 C--800 C with power densities between 250--400 mW/cm{sup 2}. Cells with stable operating characteristics have been demonstrated on H{sub 2} + 3 % H{sub 2}O/air and agree well with the theoretical model by Riess for mixed conducting electrolytes. The characterization and performance of such cells have been evaluated using a mixed-conducting electrolyte model.

  10. Defect studies of Vanadium doped 4H-SiC using optical admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wonwoo

    2005-03-01

    Semi-insulating SiC is an excellent candidate for a variety of applications, including microwave FET's and other devices for high power and high temperature applications. Vanadium acts as an amphoteric impurity in 4H-SiC with a V^3+/4+ acceptor level thought to be within 1 eV of the conduction band edge and a V^4+/5+ donor level known to be 1.6 eV below the conduction band edge. Vanadium is an efficient carrier trap and recombination center. We have studied vanadium doped 4H-SiC with the optical admittance spectroscopy (OAS) at room temperature. After taking into account phonon-assisted optical transitions, the estimated threshold energies can be compared with defect levels measured using thermal techniques. Compared with data reported in the literature, our results show that the defect level Ec -1.5 eV is close to the vanadium donor level and the other level Ec -0.67 eV is within the range of the value attributed to the vanadium acceptor level.

  11. Defects studies in wide band gap semiconductors using optical admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wonwoo; Zvanut, Mary E.

    2004-11-01

    Semi-insulating SiC and GaN are excellent candidates for a variety of applications including microwave field effect transistors and other devices for high power and high temperature applications. Vanadium doping is one way to make semi-insulating material (SI). Vanadium acts as an amphoteric impurity in 4H-SiC with a V^3+/4+ acceptor level reported to be 0.8 eV below the conduction band edge and V^5+/4+ donor level reported to be 1.6 eV below the conduction band edge. Optical admittance spectroscopy (OAS) is a technique which measures the AC capacitance and conductance in the depletion region of a Schottky diode under illumination as a function of photon energy. OAS may be used to determine the deep levels of impurities such as vanadium. We have studied the OAS spectra of SI SiC, and will discuss the relevance of the spectra we observe with respect to the deep defect levels reported in the literature.

  12. Admittance spectroscopy and electrical properties of Co3O4-doped ZnO

    NASA Astrophysics Data System (ADS)

    Hong, Youn-Woo; Lee, Young-Jin; Kim, Sei-Ki; Paik, Jong-Hoo; Kim, Jin-Ho

    2014-09-01

    The varistor characteristics of 0.1-3.0 at. % Co-doped ZnO have been investigated. Three kinds of deep bulk trap levels of 0.16, 0.25, and ~0.31 eV were identified as donor levels by admittance spectroscopy. Oxygen vacancy ( V o ·) appeared preferentially in 0.5-3.0 at. % Co-doped ZnO. From J-E characteristics nonohmic behavior was seen in this binary system while the nonlinear coefficient α changed between 3 and 35 depending on the composition. For 1.0 at. % Co-doped ZnO, two distinguishable activation energies of 0.65 eV and 1.04 eV related with grain boundary phenomena were confirmed above and below ~520 K by impedance and modulus spectroscopy. It is believed that the varistor behavior of Co-doped ZnO stems from the formation of double Schottky barrier by the valence change of Co ions in ZnO grains as well as oxygen chemisorption at the grain boundaries on heating and subsequent cooling.

  13. The effect of dissipation on the resistive admittance of an elastic medium.

    PubMed

    Photiadis, Douglas M

    2012-03-01

    The effect of dissipation on the real part of the admittance of an elastic half-space is typically thought to be unimportant if the loss factor ζ of the elastic medium is small. However, dissipation induces losses in the near field of the source and, provided the size of the source is small enough, this phenomenon can be more important than elastic wave radiation. Such losses give rise to a fundamental limit in the quality factor of an oscillator attached to a substrate. Near field losses associated with strains in the elastic substrate can actually be larger than intrinsic losses in the oscillator itself if the internal friction of the substrate is larger than the internal friction of the oscillator. For a uniform stress applied to a disk of radius a, a monopole source, such phenomena become significant for k(L)a<ζ, while for higher order multipole sources of order l, near field losses are important for (k(L)a)(l+1)<ζ, a far less restrictive constraint. © 2012 Acoustical Society of America

  14. Force-assisted ultrasound imaging system through dual force sensing and admittance robot control.

    PubMed

    Fang, Ting-Yun; Zhang, Haichong K; Finocchi, Rodolfo; Taylor, Russell H; Boctor, Emad M

    2017-06-01

    Ultrasound imaging has been a gold standard for clinical diagnoses due to its unique advantages compared to other imaging modalities including: low cost, noninvasiveness, and safeness to the human body. However, the ultrasound scanning process requires applying a large force over extended periods of time, often in uncomfortable postures in order to maintain the desired orientation. This physical requirement over sonographers' careers often leads to musculoskeletal pain and strain injuries. To address this problem, we propose a cooperatively controlled robotic ultrasound system to reduce the force sonographers apply. The proposed system consists of two key components: a six-axis robotic arm that holds and actuates the ultrasound probe, and a dual force sensor setup that enables cooperative control and adaptive force assistance. With the admittance force control, the robotic arm complies with the motion of the operator, while assisting with force during the scanning. We validated the system through a user study involving expert sonographers and lay people and demonstrated 32-73% reduction in human applied force and 8- 18% improvement in image stability. These results indicate that the system has the potential to not only reduce the burden on the sonographer, but also provide more stable ultrasound scanning.

  15. Central venous oxygen saturation and thoracic admittance during dialysis: new approaches to hemodynamic monitoring.

    PubMed

    Cordtz, Joakim; Olde, Bo; Solem, Kristian; Ladefoged, Soeren D

    2008-07-01

    Intradialytic hypotension (IDH) is one of the most important short-term complications to hemodialysis (HD). Inadequate cardiac filling due to a reduction in the central blood volume is believed to be a major etiological factor. The aim of this study was to evaluate whether these pathophysiologic events are reflected in the central venous oxygen saturation (ScO(2)) and thoracic admittance (TA) during dialysis. Twenty ambulatory HD patients, 11 hypotension prone (HP) and 9 hypotension resistant, with central vascular access, were monitored during 3 HD sessions each. ScO(2), TA, finger blood pressure (BP), and relative change in blood volume (DeltaBV) were measured and sampled continuously. The relative TA decrease and DeltaBV were both largest in the HP group (p<0.05 for both), whereas ScO(2) decreased only in HP patients (p<0.001). Baseline TA was lower in the HP group (p<0.01). Changes in ScO(2) and TA correlated much closer than did changes in ScO(2) and DeltaBV (r=0.43 and 0.18, respectively). Our results suggest that an intradialytic decrease in cardiac output, as reflected by a fall in ScO(2), is a common feature to HD patients prone to IDH. In patients using a central vascular access, ScO(2) and TA measurements may be more specific to the pathophysiologic events preceding IDH than DeltaBV-the current standard monitoring method.

  16. An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth

    NASA Technical Reports Server (NTRS)

    Brian, A. W.; Smrekar, S. E.; Stofan, E. R.

    2004-01-01

    Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.

  17. Comparison and Interpretation of Admittance Spectroscopy and Deep Level Transient Spectroscopy from Co-Evaporated and Solution-Deposited Cu2ZnSn(Sx, Se1-x)4 Solar Cells

    SciTech Connect

    Caruso, A. E.; Lund, E. A.; Kosyak, V.; Pruzan, D. S.; Miskin, C.; Agrawal, R.; Beall, Carolyn; Repins, Ingrid; Scarpulla, M. A.

    2016-11-21

    Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in the solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.

  18. FRET based characterization of DNA-based assemblies

    NASA Astrophysics Data System (ADS)

    Buckhout-White, Susan; Gray, Rochester; Ancona, Mario; Goldman, Ellen R.; Medintz, Igor L.

    2014-05-01

    The "spectroscopic ruler" based on fluorescence resonance energy transfer (FRET) is explored as a method for detailed structural characterization of DNA nanostructures in solution. The approach is most directly useful for assessing the positional relationships among chromophores organized by the DNA, but it can also be used to characterize the geometry and kinematics of the DNA scaffold itself. By accumulating data for the distances separating various donor-acceptor pairs, and correlating them with the expected distances, one can quantify the shape and deformability of the structure. A 8x16nm "mini-origami" rectangle is used as the model test structure and the dye-pairs are chosen to investigate anisotropy in the origami's mechanical properties. Not unexpectedly, our analysis finds a strong anisotropy in the stiffness, with the measured spacing across the origami weave deviating much more from expectation than the spacing aligned along the weave pattern.

  19. Model-based target and background characterization

    NASA Astrophysics Data System (ADS)

    Mueller, Markus; Krueger, Wolfgang; Heinze, Norbert

    2000-07-01

    Up to now most approaches of target and background characterization (and exploitation) concentrate solely on the information given by pixels. In many cases this is a complex and unprofitable task. During the development of automatic exploitation algorithms the main goal is the optimization of certain performance parameters. These parameters are measured during test runs while applying one algorithm with one parameter set to images that constitute of image domains with very different domain characteristics (targets and various types of background clutter). Model based geocoding and registration approaches provide means for utilizing the information stored in GIS (Geographical Information Systems). The geographical information stored in the various GIS layers can define ROE (Regions of Expectations) and may allow for dedicated algorithm parametrization and development. ROI (Region of Interest) detection algorithms (in most cases MMO (Man- Made Object) detection) use implicit target and/or background models. The detection algorithms of ROIs utilize gradient direction models that have to be matched with transformed image domain data. In most cases simple threshold calculations on the match results discriminate target object signatures from the background. The geocoding approaches extract line-like structures (street signatures) from the image domain and match the graph constellation against a vector model extracted from a GIS (Geographical Information System) data base. Apart from geo-coding the algorithms can be also used for image-to-image registration (multi sensor and data fusion) and may be used for creation and validation of geographical maps.

  20. Mechanical characterization of seismic base isolation elastomers

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1991-01-01

    From the various devices proposed for seismic isolators, the laminated elastomer bearing is emerging as the preferred device for large buildings/structures, such as nuclear reactor plants. The laminated bearing is constructed from alternating thin layers of elastomer and metallic plates (shims). The elastomer is usually a carbon filled natural rubber that exhibits damping when subjected to shear. Recently, some blends of natural and synthetic rubbers have appeared. Before candidate elastomers can be used in seismic isolation bearings, their response to design-basis loads and beyond- design-basis loads must be determined. This entails the development of constitutive models and and then the determination of associated material parameters through specimen testing. This paper describes the methods used to obtain data for characterizing the mechanical response of elastomers used for seismic isolation. The data provides a data base for use in determining material parameters associated with nonlinear constitutive models. In addition, the paper presents a definition for a damping ratio that does not exhibit the usual reduction at higher strain cycles. 2 refs., 6 figs., 1 tab.

  1. Abdominal admittance helps to predict the amount of fluid accumulation in patients with acute heart failure syndromes.

    PubMed

    Taniguchi, Tatsunori; Hamano, Go; Koide, Masao; Hirooka, Keiji; Koretsune, Yukihiro; Kusuoka, Hideo; Ohtani, Tomohito; Sakata, Yasushi; Yasumura, Yoshio

    2016-04-01

    Predicting fluid volume that needs to be removed in acute heart failure syndromes (AHFS) patients remains challenging. Thoracic admittance (TA), the reciprocal of thoracic impedance measured by bioelectrical impedance, reflects the amount of fluid in the thorax. Abdominal organs play an important role in AHFS as systemic fluid reservoirs. We investigated the relationship between abdominal admittance (AA) at the time of admission for AHFS and net fluid loss (NFL) during hospitalization. Sixty-two consecutive patients hospitalized for AHFS [age 71±10 years, left ventricular ejection fraction (LVEF) 39±17%] were studied. The admittance values, i.e. the reciprocals of the impedance values, were derived using a BioZ(®) (CardioDynamics, San Diego, CA, USA). The change in weight from admission to discharge was used as a surrogate of amount of NFL. At the time of admission, a significant correlation was detected between TA and AA (r=0.46, p=0.0001). TA at admission was significantly correlated with the LV structural variables (end-diastolic dimension and end-systolic dimension), and serum sodium level. AA at admission was significantly correlated with New York Heart Association (NYHA) class and plasma BNP, and also correlated with LVEF and variables related to systemic congestion [minimal inferior vena cava (IVC) diameter and tricuspid regurgitation grade]. Neither TA nor AA values were significantly correlated with weight at admission. During hospitalization, TA and AA declined from 44±8kΩ(-1) to 36±6kΩ(-1) (p<0.0001) and from 74±25kΩ(-1) to 56±17kΩ(-1) (p<0.0001), respectively. Weight fell from 60.1±10.8kg to 54.5±9.4kg (p<0.0001), while NFL was 5.8kg (range, 0.1-17.5kg). In univariate analyses, the admission NYHA class, TA, AA, weight, and IVC diameter correlated with NFL. Multivariate analysis demonstrated that only admission weight [standardized partial regression coefficient (SPRC)=0.596], AA (SPRC=0.529), and NYHA class (SPRC=0.277) were independent

  2. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke

    2017-04-01

    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii

  3. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    SciTech Connect

    Anthony L. Crawford

    2012-08-01

    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.

  4. [Structural and ultrastructural changes in thrombocytes of patients with measles before admittance to the hospital and after discharge].

    PubMed

    Bakuzanashvili, Kh N; Dzhavakhadze, M V

    2005-06-01

    Thrombocytes have been studied at the admittance to the hospital of patients with measles and after their discharge using light and electron microscopy. Response of thrombocytes to antigen penetrated into the organism has been shown, however, it appears to be absolutely different before and after the treatment. Structural indices of thrombocytes were studied in their functional aspect. Obtained parameters of thrombocytes at the admittance of patients to the hospital indicate that giant forms of thrombocytes are prevailed and "biological net" is absent, while before discharge of patients the number of mature thrombocytes increases, and amount of giant forms decrease to the minimum. There appears a "biological net", playing an important role in the adsorption of the antigen. Proceeding from this, functional possibilities of thrombocytes, first of all, are directed to defense of the macroorganism from viral antigen. In its turn, measles virus having an influence on the thrombocytes can induce relieve of granules from their body, which also can seem to be the defensive reaction against the antigen.

  5. Surface characterization based upon significant topographic features

    NASA Astrophysics Data System (ADS)

    Blanc, J.; Grime, D.; Blateyron, F.

    2011-08-01

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  6. Observation of lower defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cells by admittance spectroscopy

    SciTech Connect

    Jiang, Minlin; Lan, Fei; Tao, Quan; Li, Guangyong E-mail: gul6@pitt.edu; Zhao, Bingxin; Wu, Jiamin; Gao, Di E-mail: gul6@pitt.edu

    2016-06-13

    The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance of CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  7. Thermal Characterization of Metakaolin-Based Geopolymer

    NASA Astrophysics Data System (ADS)

    Samal, Sneha; Thanh, Nhan Phan; Marvalova, Bohdana; Petrikova, Iva

    2017-09-01

    Thermal characterization of geopolymer powder was investigated at room and elevated temperatures. The physical, chemical and mass change with respect to various temperatures have been studied. The physical properties such as density, porosity, and particle size were analyzed in geopolymer powder. The chemical and phase compositions were determined by x-ray fluorescence. The surface images of solid blocks of geopolymer were examined at room and elevated temperatures using scanning electron microscopy. Thermal expansion, shrinkage, and mass loss behavior towards the elevated temperatures were investigated by differential scanning calorimetry (DSC). The endothermic peak arising in the DSC curve is due to evaporation of water, chemical, gases and weight loss.

  8. Advantages of admittance spectroscopy over time-of-flight technique for studying dispersive charge transport in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Tsung, K. K.; So, S. K.

    2009-10-01

    We show that admittance spectroscopy (AS) is a better technique than time of flight (TOF) to study the charge transport properties in dispersive materials. The hole transport properties of N ,N'-diphenyl-N ,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine (NPB) doped with different traps were evaluated by AS and TOF techniques. It was found that both techniques can show clear signals for measuring the mobility of NPB doped with shallow traps. When NPB was doped with deep traps, the AS signals were still clear for mobility extraction. In sharp contrast, the TOF transients become featureless and the carrier transit time cannot be determined. The validity of AS in mobility determination was demonstrated by comparing the extracted AS to TOF mobilities. Generally, the hole mobilities extracted by these two techniques were in excellent agreement. In addition, we will demonstrate that AS can be employed to measure carrier dispersion.

  9. Effluent Based Characterization of Aerospace Wiring

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Yost, William T.; Perey, Daniel F.

    2004-02-01

    This paper discusses a wire insulation characterization method under development, which identifies the relative molecular weight and binding energy of effluents given off during wire heating and is aimed at nondestructively assessing wire insulation degradation. An overview of how this technique can be used to monitor wire insulation emissions is presented. A series of measurements made on wire specimens (MIL-W-22759/11-20) with polytetraflouroethylene (PTFE or Teflon®) insulation is presented. A change of up to 55% in the emission concentration of a particular effluent was observed by repeated heating the wire specimens. Temperature measurements of the conductor and insulation were correlated to effluent emission concentrations. A basis for the changes in effluent concentration is also presented and leads to a determination of binding energies and associated time constants.

  10. Characterization and supply of coal based fuels

    SciTech Connect

    Not Available

    1987-09-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base. Provide quality assurance for both the parent coals and the fuel forms. Deliver premium coal-based fuels to combustor developers as needed for their contract work. During the third quarter of this contract (May 1 through July 31, 1987) the primary activities were involved with: Completion and submission for approval by the DOE of the topical report describing the market survey, the coal selection and the fuel specification methodologies used in carrying out Task 1. The determination of the washability of the first five coals selected in Task 1. Upgrading and improvement of the pilot wash circuit to improve both the product quality and yield. Initiation of a data base survey to select an appropriate coal for the Vortec contract; and continuation of the coal procurement, cleaning, fuel preparation and delivery activities.

  11. Alumina Superfines Based Geopolymeres: Developments and Characterization

    NASA Astrophysics Data System (ADS)

    Nagem, Nilton F.; Costa, Marcos Aurélio S.; Silva, Valeria G.; Henriques, Andreia B.; Mansur, Alexandra A. P.; Peres, Antonio E. C.; Mansur, Herman S.

    The superfine material generated in the Bayer process was used in one innovatively way as a precursor to geopolymerization techniques because of the presence of Gibbsite. Gibbsite can play a role in system adjustment because of the SiO2/Al2O3 ratio. Furthermore in the geopolymeric system it was studied the influenceof the additives such as kaolin, metakaolin and sodium trisilicate in an alkaline media. Others conditions to form the geopolymer were also evaluated such as solid/liquid ratio, SiO2/Al2O3 ratio and total alkaline. The raw materials and geopolymeric products were characterized by several techniques e.g. XRD, DSC, FTIR and SEM. Through the FTIR technique it was observed an increase in intensity and bandwidth in the region centered at 1010 cm-1, which is related to the asymmetric vibration Si(Al)-O, this is an indicating of the possible geopolymer formation This broadening of the band promotes a relative disappearance (overlapping) peaks at 965 and 935 cm-1 associated with raw material (ESPDust).

  12. Chemical characterization of carbohydrate-based biosurfactants

    USDA-ARS?s Scientific Manuscript database

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  13. Characterization of ceria-based SOFCs

    SciTech Connect

    Doshi, R.; Roubort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700 C) offer many advantages over conventional zirconia-based fuel cells operating at higher temperatures. Cathode performance is being improved by using better materials and/or microstructures. Fabrication of thin dense electrolytes is also necessary to achieve high cell performances.

  14. Characterization and modeling of CNT based actuators

    NASA Astrophysics Data System (ADS)

    Riemenschneider, Johannes

    2009-10-01

    In order to get an understanding of the general characteristics of carbon nanotube (CNT) based actuators, the system response of the actuator was analyzed. Special techniques were developed in order to generate a reproducible characteristic measure for the material: the R-curve. In addition, the dynamic response of the system was evaluated in different states of the actuator. A model was generated to capture the general behavior of the system. Finally an actuator incorporating a solid electrolyte was built and tested, showing similar characteristics to an actuator with an aqueous electrolyte.

  15. Characterization of ceria-based SOFCs

    SciTech Connect

    Doshi, R.; Routbort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700{degrees}C) offer many advantages over the conventional zirconia-based fuel cells operating at higher temperatures. Reduced operating temperatures result in: (1) Application of metallic interconnects with reduced oxidation problems (2) Reduced time for start-up and lower energy consumption to reach operating temperatures (3) Increased thermal cycle ability for the cell structure due to lower thermal stresses of expansion mismatches. While this type of fuel cell may be applied to stationary applications, mobile applications require the ability for rapid start-up and frequent thermal cycling. Ceria-based fuel cells are currently being developed in the U.K. at Imperial College, Netherlands at ECN, and U.S.A. at Ceramatec. The cells in each case are made from a doped ceria electrolyte and a La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} cathode.

  16. Characterization of electrospun lignin based carbon fibers

    NASA Astrophysics Data System (ADS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  17. Characterization of electrospun lignin based carbon fibers

    SciTech Connect

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  18. Castor Oil Based Polyurethanes: Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Macalino, AD; Salen, VA; Reyes, LQ

    2017-09-01

    In this study, polyurethanes based on castor oil and 1,6-hexamethylene diisocyanate (HMDI) were synthesized with varying weight ratio of the castor oil and HMDI. The formation of urethane linkages was verified through the use of a fourier transform infrared spectroscopy (FTIR). The hydrophilicity of the films was evaluated through the use of a contact angle meter and it was found that the contact angle of all the films were below 90 degrees which confirms their hydrophilicity. The thermal stability of the PU films were studies through the use of a thermal gravimetric analyzer and found that all of the polyurethane films exhibited two weight loss events at elevated temperatures wherein the first weight loss event was observed to occur at 285°C to 384°C while the second weight loss event was observed at around 521°C to 551°C. The hardness, elastic modulus, and tensile elongation of the PU films were determined by using a universal testing machine (UTM) where it was found out that the hardness and the elastic modulus of the film is directly proportional with HMDI loading while the tensile elongation is inversely proportional to it. Lastly, it was known through the swelling studies of the PU films that it does not swell, this is due to the presence of unreacted triglycerides in the material, which prevents water from permeating to the films.

  19. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  20. [Synchrotron-based characterization methods applied to ancient materials (I)].

    PubMed

    Anheim, Étienne; Thoury, Mathieu; Bertrand, Loïc

    2015-12-01

    This article aims at presenting the first results of a transdisciplinary research programme in heritage sciences. Based on the growing use and on the potentialities of micro- and nano-characterization synchrotron-based methods to study ancient materials (archaeology, palaeontology, cultural heritage, past environments), this contribution will identify and test conceptual and methodological elements of convergence between physicochemical and historical sciences.

  1. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  2. Defect characterization of GaAs/InP layers and MESFETs devices by admittance and photoluminescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Ben Hamida, A.; Bremond, Georges E.; Garcia Perez, M. A.; Guillot, Gerard; Azoulay, Rozette; Chertouk, Mourad; Clei, A.

    1993-11-01

    GaAs layers as well as GaAs MESFET devices on InP are studied by means of DLTS and PL spectroscopies. We correlate the compensation observed on the Si-n-doped GaAs layers to the incorporation of Si that moves from a SiGa donor site to form a complex defect involving Si and As or Ga vacancies. A study of defects on MESFETs grown with various buffer layer thicknesses shows that the thicker this layer is the higher is the defect concentration. This behavior is assumed to be related to the compensation effect.

  3. Fabrication and preliminary characterization of infrared photodetectors based on graphene

    NASA Astrophysics Data System (ADS)

    Mroczyński, R.; Kwietniewski, N.; Piotrowski, J.; Judek, J.; Zdrojek, M.; Szczepański, P.

    2016-12-01

    In this work, we report the technology of infrared photodetectors based on graphene layers (GLs). In the course of this work the new set of photolithography masks was especially designed to fabricate test structures. The new masks-set contains a matrix of different types of photodetector structures with varied active area dimensions, as well as additional module for characterization of electro-physical parameters of graphene and graphene-based devices. After careful optimization of consecutive technological steps, test structures were fabricated. First results of electrical characterization of obtained graphene-based photodetectors demonstrated that the developed technology was successful, however, further detailed optical characterization towards sensing parameters and potential applications in infrared detectors is necessary.

  4. Direct recovery of the electrical admittivities in 2D electrical tomography by using Calderon's method and two-terminal/electrode excitation strategies

    NASA Astrophysics Data System (ADS)

    Cao, Zhang; Xu, Lijun

    2013-07-01

    Calderon's method was used to reconstruct electrical admittivity, i.e. conductivity as well as permittivity, for electrical tomography in this paper. It is a direct algorithm of the image reconstruction, as the value of the real and imaginary parts of the admittivity at any position can be obtained independently. A new way to construct the Dirichlet-to-Neumann map from the data collected through two-terminal/electrode excitation strategy was also introduced to calculate the scattering transform. The image reconstruction was implemented through numerical integration. Since the Gauss-Legendre quadrature was applied and can be predetermined, the image reconstruction process was fast and resulted in images of good quality. Both simulated and experimental results validated the feasibility and effectiveness of the proposed method in dual-modality electrical tomography.

  5. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  6. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  7. Characterizing Task-Based OpenMP Programs

    PubMed Central

    Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats

    2015-01-01

    Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023

  8. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  9. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  10. Synthesis, characterization and biological evaluation of tryptamine based benzamide derivatives.

    PubMed

    Aftab, Kiran; Aslam, Kinza; Kousar, Shazia; Nadeem, Muhammad Jawad Ul Hasan

    2016-03-01

    Benzamides and tryptamine are biologically significant compounds, therefore, various benzamide analogous of tryptamine have been efficiently synthesized using tryptamine and different benzoyl chlorides, in order to find new biologically active compounds. The resulting products were then characterized by melting point determination, calculation of Rf values and LC-MS techniques. At last, structure activity relationship (SAR) of the synthesized compounds was evaluated against two microbial strains; Bacillus subtilis and Aspergillus niger. All the five prepared products have shown high yield, sharp characterization and significant resistance against the growth of tested microorganism, providing a new range of tryptamine based benzamide derivatives having significant antimicrobial activities.

  11. Elastic characterization of nanoporous gold foams using laser based ultrasonics.

    PubMed

    Ahn, Phillip; Balogun, Oluwaseyi

    2014-03-01

    A resonance based laser ultrasonics technique is explored for the characterization of low density nanoporous gold foams. Laser generated zero group velocity (ZGV) lamb waves are measured in the foams using a Michelson interferometer. The amplitude spectra obtained from the processed time-domain data are analyzed using a theoretical model from which the foam Young's modulus and Poisson's ratio are obtained. The technique is non-contact and nondestructive, and the ZGV resonance modes are spatially localized, allowing for spatial mapping of the bulk sample properties. The technique may be suitable for process control monitoring and mechanical characterization of low density nanoporous structures.

  12. Seismic base isolation: Elastomer characterization, bearing modeling and system response

    SciTech Connect

    Kulak, R.F.; Wang, C.Y.; Hughes, T.H.

    1991-01-01

    This paper discusses several major aspects of seismic base isolation systems that employ laminated elastomer bearings. Elastomer constitutive models currently being used to represent the nonlinear elastic and hysteretic behavior are discussed. Some aspects of mechanical characterization testing of elastomers is presented along with representative tests results. The development of a finite element based mesh generator for laminated elastomer bearings is presented. Recent advances in the simulation of base isolated structures to earthquake motions are presented along with a sample problem. 13 refs., 19 figs., 1 tab.

  13. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  14. Estimation of Ultrafilter Performance Based on Characterization Data

    SciTech Connect

    Peterson, Reid A.; Geeting, John GH; Daniel, Richard C.

    2007-08-02

    Due to limited availability of test data with actual waste samples, a method was developed to estimate expected filtration performance based on physical characterization data for the Hanford Waste Treatment and Immobilization Plant. A test with simulated waste was analyzed to demonstrate that filtration of this class of waste is consistent with a concentration polarization model. Subsequently, filtration data from actual waste samples were analyzed to demonstrate that centrifuged solids concentrations provide a reasonable estimate of the limiting concentration for filtration.

  15. Formulation and Characterization of ADN-Based Liquid Monopropellants

    NASA Astrophysics Data System (ADS)

    Wingborg, N.; Eldsäter, C.; Skifs, H.

    2004-10-01

    Ternary ionic solutions are promising green propellants to replace monopropellant hydrazine. Ammonium dinitramide, ADN, is well suited as oxidizer in these propellants due to its high solubility. This paper presents the formulation of different ADN-based liquid monopropellants and the characterization of their properties such as stability, density, viscosity and sensitivity. To be able to use ADN-based monopropellants for propulsion applications, ADN must be produced in a way to minimize the effect on the environment and in sufficient quantities. This paper thus also briefly presents the industrial production of ADN in Sweden and the efforts made to optimize the process.

  16. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  17. Characterization of base roughness for granular chute flows.

    PubMed

    Jing, L; Kwok, C Y; Leung, Y F; Sobral, Y D

    2016-11-01

    Base roughness plays an important role in the dynamics of granular flows but is still poorly understood due to the difficulty of its quantification. For a bumpy base made of spheres, at least two factors should be considered in order to characterize its geometric roughness, namely, the size ratio of flow to base particles and the packing arrangement of base particles. In this paper, we propose an alternative definition of base roughness, R_{a}, as a function of both the size ratio and the distribution of base particles. This definition is generalized for random and regular packings of multilayered spheres. The range of possible values of R_{a} is presented, and optimal arrangements for maximizing base roughness are studied. Our definition is applied to granular chute flows in both two- and three-dimensional configurations, and is shown to successfully predict whether slip occurs at the base. A transition is observed from slip to nonslip conditions as R_{a} increases. Critical values of R_{a} are identified for the construction of a nonslip base at various angles of inclination.

  18. Admittance spectroscopy in kesterite solar cells: Defect signal or circuit response

    NASA Astrophysics Data System (ADS)

    Paul Weiss, Thomas; Redinger, Alex; Luckas, Jennifer; Mousel, Marina; Siebentritt, Susanne

    2013-05-01

    Unlike Cu(In,Ga)Se2 based solar cells, Cu2ZnSn(S,Se)4 solar cells show a strong increase in series resistance with decreasing temperature. In this study we deduce the series resistance from temperature dependent current-voltage measurements on a 5.5% efficient Cu2ZnSnSe4 solar cell. By applying a simple circuit model an increasing series resistance with decreasing temperature alone results in a capacitance step within the C-f profile. We show that this step needs to be distinguished from a step caused by a defect state or a carrier freeze-out. Consequently, the deduced activation energy is strongly distorted by the circuit response.

  19. Shell-NASA Vibration-Based Damage Characterization

    NASA Technical Reports Server (NTRS)

    Rollins, John M.

    2014-01-01

    This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.

  20. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  1. BASE: Bayesian Astrometric and Spectroscopic Exoplanet Detection and Characterization Tool

    NASA Astrophysics Data System (ADS)

    Schulze-Hartung, Tim

    2012-08-01

    BASE is a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The tool fulfills two major tasks of exoplanet science, namely the detection of exoplanets and the characterization of their orbits. BASE was developed to provide the possibility of an integrated Bayesian analysis of stellar astrometric and Doppler-spectroscopic measurements with respect to their binary or planetary companions’ signals, correctly treating the astrometric measurement uncertainties and allowing to explore the whole parameter space without the need for informative prior constraints. The tool automatically diagnoses convergence of its Markov chain Monte Carlo (MCMC[2]) sampler to the posterior and regularly outputs status information. For orbit characterization, BASE delivers important results such as the probability densities and correlations of model parameters and derived quantities. BASE is a highly configurable command-line tool developed in Fortran 2008 and compiled with GFortran. Options can be used to control the program’s behaviour and supply information such as the stellar mass or prior information. Any option can be supplied in a configuration file and/or on the command line.

  2. Improved Fourier-based characterization of intracellular fractal features

    PubMed Central

    Xylas, Joanna; Quinn, Kyle P.; Hunter, Martin; Georgakoudi, Irene

    2012-01-01

    A novel Fourier-based image analysis method for measuring fractal features is presented which can significantly reduce artifacts due to non-fractal edge effects. The technique is broadly applicable to the quantitative characterization of internal morphology (texture) of image features with well-defined borders. In this study, we explore the capacity of this method for quantitative assessment of intracellular fractal morphology of mitochondrial networks in images of normal and diseased (precancerous) epithelial tissues. Using a combination of simulated fractal images and endogenous two-photon excited fluorescence (TPEF) microscopy, our method is shown to more accurately characterize the exponent of the high-frequency power spectral density (PSD) of these images in the presence of artifacts that arise due to cellular and nuclear borders. PMID:23188308

  3. Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures.

    PubMed

    Ashry, Islam; Zhang, Baigang; Khalifa, Moataz B; Calderone, Joseph A; Santos, Webster L; Heflin, James R; Robinson, Hans D; Xu, Yong

    2014-08-25

    We report a non-contact method that utilizes fluorescence lifetime (FL) to characterize morphological changes of a tunable plasmonic nanostructure with nanoscale accuracy. The key component of the plasmonic nanostructure is pH-responsive polyelectrolyte multilayers (PEMs), which serve as a dynamically tunable "spacer" layer that separates the plasmonic structure and the fluorescent materials. The validity of our method is confirmed through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. Applying the FL-based approach, we find that a monolayer polycation film responds to pH changes with significantly less hysteresis than a thicker multilayer film with polyelectrolytes of both charges. Additionally, we characterize an active and tunable plasmonic nanostructure composed of self-assembled fluorescent dye (Texas Red), pH-sensitive PEMs, and gold nanospheres adsorbed on the PEM surface. Our results point towards the possibility of using stimulus-sensitive polymers to construct active and tunable plasmonic nanodevices.

  4. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  5. Maintaining power: women's experiences from labour onset before admittance to maternity ward.

    PubMed

    Carlsson, Ing-Marie; Ziegert, Kristina; Sahlberg-Blom, Eva; Nissen, Eva

    2012-02-01

    In Sweden pregnant women are encouraged to remain at home until the active phase of labour. Recommendation is based on evidence, that women who seek care and are admitted in the latent phase of labour are subjected to more obstetric interventions and suffer more complications than women who remain at home until the active phase of labour. The aim of this study was to obtain a deeper understanding of how women, who remain at home until the active phase of labour, experience the period from labour onset until admission to labour ward. Interviews were conducted with 19 women after they had given birth to their first child. A Constructivist Grounded theory method was used. 'Maintaining power' was identified as the core category, explaining the women's experience of having enough power, when the labour started. Four related categories: 'to share the experience with another', 'to listen to the rhythm of the body', 'to distract oneself' and 'to be encased in a glass vessel', explained how the women coped and thereby maintained power. The first time mothers in this study, who managed to stay at home during the latent phase of labour, had a sense of power that was expressed as a driving force towards the birth, a bodily and mental strength and the right to decide over their own bodies. This implies that women who maintain power have the ability to make choices during the birth process. The professionals need to be sensitive, supportive and respectful to women's own preferences in the health-care encounter, to promote the existing power throughout the birthing process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Correlation of stability to varied CdCl2 treatment and related defects in CdS/CdTe PV devices as measured by thermal admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Enzenroth, R. Albert; Barth, K. L.; Sampath, W. S.

    2005-11-01

    A correlation between the CdCl2 treatment and the change in conversion efficiency with light and heat stress indoors (stability) has been shown previously by our group for CdS/CdTe:Cu PV devices. In the present work CdTe devices were fabricated with various CdCl2 treatments and with and without a Cu containing back contact. The electrical characteristics of the defects acting as traps in these devices were studied using thermal admittance spectroscopy (TAS). The activation energy Et-EV, the apparent capture cross section and the densities of state functions (using Walter's method) of the traps in the devices were estimated.

  7. Temporal variation of the Rayleigh admittance: Implication for S-wave velocity changes in the toe of the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi

    2016-04-01

    A cabled seafloor network with 20 stations (DONET: Dense Oceanfloor Network System for Earthquake and Tsunamis) has been constructed on the accretionary prism at the Nankai subduction zone of Japan between March 2010 and August 2011, which means that the observation period became more than 4 years. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, we estimated the Rayleigh admittance at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement in the frequency band of microseisms, particularly for the fundamental Rayleigh mode of 0.1-0.2 Hz. The pattern of the transfer function depends on the S-wave velocity structure at shallow depths beneath stations (Ruan et al., 2014, JGR). Therefore, plotting the Rayleigh admittance as functions of time and frequency, we investigated temporal variations of S-wave velocity within the accretionary prism. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In the frequency domain, we smoothed the two kinds of spectra (displacement and pressure) with ±2 neighboring samples, and estimated the amplitude transfer function of displacement/pressure. Here, we used the ambient noise of the two records. To display their temporal variations, we plot the averaged transfer function with intervals of 7 days. As a result, we found a long-term temporal variation of the Rayleigh admittance at two stations. These stations are located at the southern part of the array and near the trench, where the activities of very-low frequency earthquakes (VLFEs) within the accretionary prism on 2004, 2009, and 2011 have been previously reported. The admittance at a frequency of 0.1 Hz has gradually decreased during the observation period, which

  8. Genomic and transcriptomic characterization of skull base chordoma

    PubMed Central

    Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-01

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492

  9. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-08-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  10. Atomic force microscopy-based characterization and design of biointerfaces

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.

    2017-03-01

    Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

  11. Characterizing Exoplanets with 2-meter Class Space-based Coronagraphs

    NASA Astrophysics Data System (ADS)

    Robinson, T. D.; Marley, M. S.; Stapelfeldt, K. R.

    2015-12-01

    Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. In this presentation, we explore how instrumental and astrophysical parameters will affect the ability of such missions to obtain spectral and photometric observations that are useful for characterizing their planetary targets. We discuss the development of an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. To be consistent with near-future missions and technologies, we assume a baseline set of telescope and instrument parameters that include a 2 meter diameter primary aperture, an operational wavelength range of 0.4-1.0 μm, and an instrument spectral resolution of λ/Δλ=70. We present applications of our baseline noise simulator to a variety of spectral models of different planet types, emphasizing Earth-like planets. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization—including nearby Earth twins and super-Earths—we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to detect the base of key absorption bands (for water vapor and molecular oxygen) to coronagraph raw contrast performance, exozodiacal light levels, and the distance to the planetary system. We will also discuss prospects for detecting ocean glint, a habitability signature, from nearby Earth-like planets, as well as the extension of our models to a more distant future Large UV-Optical-InfraRed (LUVOIR) mission.

  12. Deep level defect studies in semi-insulating 4H- and 6H-silicon carbide using optical admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wonwoo

    The objective of this study is to determine the deep vanadium defect levels in semi-insulating 4H- and 6H- silicon carbide using optical admittance spectroscopy. Also infrared spectroscopy and electron paramagnetic resonance spectroscopy are conducted to support the evidence of vanadium donor and acceptor levels obtained from OAS measurements. Vanadium acts as an amphoteric impurity in silicon carbide with a V3+/4+ acceptor level and V4+/5+ donor level. Although the value for the donor level is well established, the V3+/4+ defect level remains controversial. OAS shows that the vanadium donor level is isolated near Ec-1.7 eV, and the vanadium acceptor level is located at Ec-0.75 eV at a cubic site and Ec-0.94 eV at a hexagonal site in 4H-SiC, while the vanadium donor level of 6H-SiC samples is about Ec-1.5 eV. The acceptor levels of 6H-SiC were assigned to Ec-0.67 eV, E c -0.70 eV at two cubic sites, and Ec-0.87 eV at a hexagonal site. IR spectra demonstrated that the signatures of the vanadium V 3+ and V4+ charge states are present in the samples. EPR and photo-induced EPR are used to identify the V3+/4+ and V4+/5+ levels as well as the V3+ and V 4+ charge states. EPR spectra represent both V3+ and V4+ in 4H- and 6H samples consistent with FTIR data. EPR and photo-induced EPR suggest that the va nadium acceptor level is between 0.7 eV and 0.86 eV, while the donor level is near Ec-1.5 eV in 6H-SiC. The donor level of 4H-SiC is located at Ec-1.6 eV. Thus, the data obtained from EPR and FTIR support the assignment of the vanadium defect levels determined by OAS. Vanadium complexes induced by other elements such as titanium, hydrogen, and nitrogen atoms are also observed in OAS spectra and will be discussed in the text.

  13. Synthesis and characterization of chitosan-based hydrogels.

    PubMed

    Li, Qianzhu; Yang, Dongzhi; Ma, Guiping; Xu, Qiang; Chen, Xiangmei; Lu, Fengmin; Nie, Jun

    2009-03-01

    Biocompatible hydrogels based on water-soluble chitosan-ethylene glycol acrylate methacrylate (CS-EGAMA) and polyethylene glycol diamethacrylate (PEGDMA) were synthesized by photopolymerization. Characterization of morphology, weight loss, water state of hydrogel, pH-sensitivity and cytotoxicity were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), swelling test and methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. The results indicated that the hydrogels were sensitive to pH of the medium, no cytotoxicity for L929 and SW1353, satisfactory for the composite to be used in bioapplications.

  14. Genetic algorithm for flaw characterization based on thermographic inspection data

    NASA Astrophysics Data System (ADS)

    Rajic, Nikolas

    2002-03-01

    A genetic algorithm is applied to the task of aw characterization based on active thermal inspection data. Experimental observations pertaining to test samples with axisymmetric inclusion aws are used to validate the approach, with encouraging results. Errors in identification are discussed and can, at least in part, be attributed to the use of a relatively primitive fitness function formulation and the assumption in the heat-transfer model of negligible heat-loss through convection and radiation. The general approach however appears sound and can be modified to include important heat-transfer mechanisms and alternative fitness function formulations.

  15. Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks

    PubMed Central

    Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D.; Ravi, Sathya N.; Bendlin, Barbara B.; Johnson, Sterling C.; Singh, Vikas

    2016-01-01

    There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points — quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer’s disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant’s brain connectivity into the future. PMID:27812274

  16. APT Characterization of Some Iron-Based Bulk Metallic Glasses

    SciTech Connect

    Miller, Michael K; Liu, Chain T; Wright, J. A.; Tang, W.; Hildal, K.

    2006-01-01

    A microstructural characterization was performed on 3 iron-based bulk metallic glasses. These alloys were an arc cast Fe{sub 61}Y{sub 2}Zr{sub 8}Co{sub 6}Al{sub 1}Mo{sub 7}B{sub 15}A2 alloy, a twin roll cast Fe{sub 68}Y{sub 2}Zr{sub 2}Nb{sub 2}Cr{sub 1.5}V{sub 4.5}B{sub 20} DarpaQ21 alloy and a vacuum induction melted Fe{sub 50.7}Y{sub 1.5}Cr{sub 14.5}Mo{sub 13}C{sub 14.8}B{sub 5.5} Darva101-Y alloy. The alloys were characterized by scanning electron microscopy and atom probe tomography in the as-cast condition. Some micrometer and nanometer scale precipitates were observed in all 3 alloys indicating that the alloy compositions are not fully optimized in the as-cast state. The Darva101-Y alloy was also characterized after annealing above the onset of crystallization temperature for 1 h at 610 C. This annealing treatment produced a mixture of crystalline phase: M{sub 6}(BC) and Fe{sub 14}Y{sub 2}B in addition to a high temperature M{sub 23}C{sub 6} phase that is indicated from XRD and previous research.

  17. Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks.

    PubMed

    Hwang, Seong Jae; Adluru, Nagesh; Collins, Maxwell D; Ravi, Sathya N; Bendlin, Barbara B; Johnson, Sterling C; Singh, Vikas

    2016-01-01

    There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function. To do so, one typically performs so-called tractography procedures on diffusion MR brain images and derives measures of brain connectivity expressed as graphs. The nodes correspond to distinct brain regions and the edges encode the strength of the connection. The scientific interest is in characterizing the evolution of these graphs over time or from healthy individuals to diseased. We pose this important question in terms of the Laplacian of the connectivity graphs derived from various longitudinal or disease time points - quantifying its progression is then expressed in terms of coupling the harmonic bases of a full set of Laplacians. We derive a coupled system of generalized eigenvalue problems (and corresponding numerical optimization schemes) whose solution helps characterize the full life cycle of brain connectivity evolution in a given dataset. Finally, we show a set of results on a diffusion MR imaging dataset of middle aged people at risk for Alzheimer's disease (AD), who are cognitively healthy. In such asymptomatic adults, we find that a framework for characterizing brain connectivity evolution provides the ability to predict cognitive scores for individual subjects, and for estimating the progression of participant's brain connectivity into the future.

  18. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    NASA Astrophysics Data System (ADS)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  19. Transuranic waste form characterization and data base. Executive summary

    SciTech Connect

    Not Available

    1980-09-30

    The Transuranic Waste Form Characterization and Data Base (Volume 1) provides a wide range of information from which a comprehensive data base can be established and from which standards and criteria can be developed for the present NRC waste management program. Supplementary information on each of the areas discussed in Volume 1 is presented in Appendices A through K (Volumes 2 and 3). The structure of the study (Volume 1) is outlined and appendices of Volumes 2 and 3 correlate with each main section of the report. The Executive Summary reviews the sources, quantities, characteristics and treatment of transuranic wastes in the United States. Due to the variety of potential treatment processes for transuranic wastes, the end products for long-term storage may have corresponding variations in quantities and characteristics.

  20. Pyrazine-based organometallic complex: synthesis, characterization, and supramolecular chemistry.

    PubMed

    Bhowmick, Sourav; Chakraborty, Sourav; Das, Atanu; Rajamohanan, P R; Das, Neeladri

    2015-03-16

    The design, synthesis, and characterization of a new pyrazine-based ditopic platinum(II) organometallic complex are reported. The molecular structure of the organoplatinum pyrazine dipod was determined by single-crystal X-ray crystallography. The potential utility of this organometallic ditopic acceptor as a building block in the construction of neutral metallasupramolecular macrocycles containing the pyrazine motif was explored. Pyrazine motifs containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry, and elemental analysis. The geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size. The ability of the pyrazine-based organoplatinum complex to act as a host for nitroaromatic guest (2,4-dinitrotoluene and PA) molecules was explored by isothermal titration calorimetry (ITC). The binding stoichiometry and thermodynamic parameters of these host-guest complexation reactions were evaluated using ITC. Theoretical calculations were performed to obtain insight into the binding pattern between the organometallic host and nitroaromatic guests. The preferable binding propensity of the binding sites of complex 1 for both nitroaromatics (PA and 2,4-dinitrotoluene) determined by molecular simulation studies corroborates well with the experimental results as obtained by ITC experiments.

  1. Network fingerprint: a knowledge-based characterization of biomedical networks

    PubMed Central

    Cui, Xiuliang; He, Haochen; He, Fuchu; Wang, Shengqi; Li, Fei; Bo, Xiaochen

    2015-01-01

    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerprint”, which contains similarities to basic networks. This knowledge-based multidimensional characterization provides a more intuitive way to decipher molecular networks, especially for large-scale network comparisons and clustering analyses. As an example, we extracted network fingerprints of 44 disease networks in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The comparisons among the network fingerprints of disease networks revealed informative disease-disease and disease-signaling pathway associations, illustrating that the network fingerprinting framework will lead to new approaches for better understanding of biomedical networks. PMID:26307246

  2. Characterization of glass-infiltrated alumina-based ceramics

    PubMed Central

    Bona, Alvaro Della; Mecholsky, John J; Barrett, Allyson A; Griggs, Jason A

    2010-01-01

    Objective characterize the microstructure, composition, and important properties of glass-infiltrated alumina-based ceramics similar to the In-Ceram system. Methods Materials used were: IA- In-Ceram Alumina (Vita); IAE- IA electrophoretically deposited (Vita); AEM- IA using a vacuum driven method (Vita); VC- Vitro-Ceram (Angelus); TC- Turkom-Cera (Turkom-Ceramic); CC- Ceramcap (Foto-Ceram); and AG- Alglass (EDG). Ceramic specimens were fabricated following manufacturers’ instructions and ISO6872 standard and polished successively through 1μm alumina abrasive. Semi-quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stereology (Vv). The elastic modulus (E) and Poisson’s ratio (ν) were determined using time-of-flight data measured in an ultrasonic pulser/receiver and the density (ρ) was determined using a helium pycnometer. Vicker’s indentation was used to calculate hardness (H). Bar specimens (25×4×1.2mm3) were loaded in three-point bending to fracture using a universal testing machine with cross-head speed of 1mm/min. Flexural strength (σ3P) was calculated and statistically analyzed using ANOVA, Tukey (α=0.05) and Weibull (m= modulus, σ0= characteristic strength). Results SEM and EDS analyses revealed similar microstructure for all ceramics, except for a lead-based matrix in CC and a zirconia phase in VC. TC, AG and CC showed significantly lower mean σ3P values than the other ceramics (p 0.05). AEM showed the greatest m (16). Conclusion Despite few differences in microstructure and composition, the IA, IAE, AEM and VC ceramics have similar properties. Significance The glass-infiltrated alumina-based ceramics from different manufacturers presented distinct characteristics. It is necessary to characterize new commercially available materials to understand their properties. PMID:18692231

  3. Starch nanocrystals based hydrogel: Construction, characterizations and transdermal application.

    PubMed

    Bakrudeen, Haja Bava; Sudarvizhi, C; Reddy, B S R

    2016-11-01

    Bio-based nanocomposites were prepared using starch nanocrystals obtained by acid hydrolysis of native starches using different acid sources. In recent times, focuses on starch nanocrystals (SNCs) have been increasing in number of research works dedicated to the development of bio-nanocomposites by blending with different biopolymeric matrices. The work mainly deals with the preparation of starch nanocrystals using different native starches by acid hydrolysis using hydrochloric acid and trifluroacetic acid. The as-prepared starch nanocrystals are having high crystallinity and more platelet morphologies, and used as a drug carrying filler material in the hydrogel formulations with the care of different polymer matrices. The condensed work also concentrates on the dispersion of antiviral drug in the hydrogels, which are applied onto biocompatible bio-membrane to be formulating a complete transdermal patch. The acid hydrolysed starch nanocrystals were thoroughly characterized using TEM, SEM, particle size analysis and zeta potential. Their thermal stability and the crystalline properties were also characterized using TG-DSC and XRD respectively. The physiochemical interaction and compatibility between the drug and the SNCs filler in the polymeric hydrogels were evaluated using FT-IR analysis. The formulated hydrogels were subjected to evaluation of in vitro permeation studies using Franz diffusion studies. The in vitro study was indicated substantial guarantee for the fabrication of drug dispersed in polymeric hydrogels using SNCs as filler matrices for a successful transdermal drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microcontroller-based system for analyzing and characterizing solar panels

    SciTech Connect

    Jabbar, Muhandis Abdul Prawito

    2016-04-19

    A solar cell is one of many alternative energy which is still being developed and it works by converting sunlight into electricity. In order to use a solar cell, a deep knowledge about the solar cell’s characteristics is needed. The current and voltage (I-V) produced when the light hits the solar cell surface with a certain value of intensity and at a certain value of temperature becomes the basic study to determine solar cell characteristics. In the past decade, there were so many developments of devices to characterize solar cells and solar panels. One of them used a MOSFET device for varying electronic load to observe solar cell current and voltage responses. However, many devices which have been developed even device on the market using many expensive tools and quite complex. Therefore in this research, a simple low cost electronic controlled device for solar cell characterization is built based on MOSFET method and a microcontroller but still has high reliability and accuracy.

  5. Chemical functionalization and characterization of graphene-based materials.

    PubMed

    Bottari, Giovanni; Herranz, Ma Ángeles; Wibmer, Leonie; Volland, Michel; Rodríguez-Pérez, Laura; Guldi, Dirk M; Hirsch, Andreas; Martín, Nazario; D'Souza, Francis; Torres, Tomás

    2017-07-31

    Graphene-based materials (GBMs), with graphene, their most known member, at the head, constitute a large family of materials which has aroused the interest of scientists working in different research fields such as chemistry, physics, or materials science, to mention a few, arguably as no other material before. In this review, we offer a general overview on the most relevant synthetic approaches for the covalent and non-covalent functionalization and characterization of GBMs. Moreover, some representative examples of the incorporation into GBMs of electroactive units such as porphyrins, phthalocyanines, or ferrocene, among others, affording electron donor-acceptor (D-A) hybrids are presented. For the latter systems, the photophysical characterization of their ground- and excited-state features has also been included, paying particular attention to elucidate the fundamental dynamics of the energy transfer and charge separation processes of these hybrids. For some of the presented architectures, their application in solar energy conversion schemes and energy production has been also discussed.

  6. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  7. [Colorimetric characterization of LCD based on wavelength partition spectral model].

    PubMed

    Liu, Hao-Xue; Cui, Gui-Hua; Huang, Min; Wu, Bing; Xu, Yan-Fang; Luo, Ming

    2013-10-01

    To establish a colorimetrical characterization model of LCDs, an experiment with EIZO CG19, IBM 19, DELL 19 and HP 19 LCDs was designed and carried out to test the interaction between RGB channels, and then to test the spectral additive property of LCDs. The RGB digital values of single channel and two channels were given and the corresponding tristimulus values were measured, then a chart was plotted and calculations were made to test the independency of RGB channels. The results showed that the interaction between channels was reasonably weak and spectral additivity property was held well. We also found that the relations between radiations and digital values at different wavelengths varied, that is, they were the functions of wavelength. A new calculation method based on piecewise spectral model, in which the relation between radiations and digital values was fitted by a cubic polynomial in each piece of wavelength with measured spectral radiation curves, was proposed and tested. The spectral radiation curves of RGB primaries with any digital values can be found out with only a few measurements and fitted cubic polynomial in this way and then any displayed color can be turned out by the spectral additivity property of primaries at given digital values. The algorithm of this method was discussed in detail in this paper. The computations showed that the proposed method was simple and the number of measurements needed was reduced greatly while keeping a very high computation precision. This method can be used as a colorimetrical characterization model.

  8. Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fei, Teng; Cai, Huiwu; Zhang, Yanqiang; Liu, Long; Zhang, Suojiang

    2016-04-01

    Four energetic salts (including two ionic liquids) based on 2-(dimethylamino)-N,N,N-trimethylethanaminium and N,N‧-dialkyl-N,N,N‧,N‧-tetramethylethane-1,2-diaminium was prepared and characterized by 1H- and 13C-NMR, infrared and Raman spectroscopies, and elemental analysis. Their physicochemical properties such as melting and decomposition temperatures, density, viscosity, heat of formation, detonation performance, and specific impulse were measured or calculated. With thermal stability up to 200°C, the resulting ionic liquids show densities from 1.02 to 1.19 g cm-3 and heats of formation from 85.1 to 154.4 kJ mol-1. Moreover, 2-(dimethylamino)-N,N,N-trimethylethanaminium dicyanamide is hypergolic with the oxidizer (100% HNO3) and exhibits potential as a green fuel for bipropellants.

  9. Vortex-based spatiotemporal characterization of nonlinear flows

    NASA Astrophysics Data System (ADS)

    Byrne, Gregory A.

    Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are

  10. An impedance-based integrated biosensor for suspended DNA characterization

    PubMed Central

    Ma, Hanbin; Wallbank, Richard W. R.; Chaji, Reza; Li, Jiahao; Suzuki, Yuji; Jiggins, Chris; Nathan, Arokia

    2013-01-01

    Herein, we describe a novel integrated biosensor for performing dielectric spectroscopy to analyze biological samples. We analyzed biomolecule samples with different concentrations and demonstrated that the solution's impedance is highly correlated with the concentration, indicating that it may be possible to use this sensor as a concentration sensor. In contrast with standard spectrophotometers, this sensor offers a low-cost and purely electrical solution for the quantitative analysis of biomolecule solutions. In addition to determining concentrations, we found that the sample solution impedance is highly correlated with the length of the DNA fragments, indicating that the sizes of PCR products could be validated with an integrated chip-based, sample-friendly system within a few minutes. The system could be the basis of a rapid, low-cost platform for DNA characterization with broad applications in cancer and genetic disease research. PMID:24060937

  11. Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications.

    PubMed

    Baldi, Francesco; Ragnoli, Juri; Zinesi, Davide; Bignotti, Fabio; Briatico-Vangosa, Francesco; Casati, Federica; Loreti, Giulia; Melocchi, Alice; Zema, Lucia

    2017-04-01

    Rheological characterization of ethylcellulose (EC)-based melts intended for the production, via micro-injection moulding (μIM), of oral capsular devices for prolonged release was carried out. Neat EC, plasticized EC and plasticized EC containing solid particles of a release modifier (filler volume content in the melt around 30%) were examined by capillary and rotational rheometry tests. Two release modifiers, differing in both chemical nature and particle geometry, were investigated. When studied by capillary rheometry, neat EC appeared at process temperatures as a highly viscous melt with a shear-thinning characteristic that progressively diminished as the apparent shear rate increased. Thus, EC as such could not successfully be processed via μIM. Plasticization, which induces changes in the material microstructure, enhanced the shear-thinning characteristic of the melt and reduced considerably its elastic properties. Marked wall slip effects were noticed in the capillary flow of the plasticized EC-based melts, with or without release modifier particles. The presence of these particles brought about an increase in viscosity, clearly highlighted by the dynamic experiments at the rotational rheometer. However, it did not impair the material processability. The thermal and rheological study undertaken would turn out a valid guideline for the development of polymeric materials based on pharma-grade polymers with potential for new pharmaceutical applications of μIM.

  12. Split luciferase-based biosensors for characterizing EED binders.

    PubMed

    Li, Ling; Feng, Lijian; Shi, Minlong; Zeng, Jue; Chen, Zijun; Zhong, Li; Huang, Li; Guo, Weihui; Huang, Ying; Qi, Wei; Lu, Chris; Li, En; Zhao, Kehao; Gu, Justin

    2017-04-01

    The EED (embryonic ectoderm development) subunit of the Polycomb repressive complex 2 (PRC2) plays an important role in the feed forward regulation of the PRC2 enzymatic activity. We recently identified a new class of allosteric PRC2 inhibitors that bind to the H3K27me3 pocket of EED. Multiple assays were developed and used to identify and characterize this type of PRC2 inhibitors. One of them is a genetically encoded EED biosensor based on the EED[G255D] mutant and the split firefly luciferase. This EED biosensor can detect the compound binding in the transfected cells and in the in vitro biochemical assays. Compared to other commonly used cellular assays, the EED biosensor assay has the advantage of shorter compound incubation with cells. The in vitro EED biosensor is much more sensitive than other label-free biophysical assays (e.g. DSF, ITC). Based on the crystal structure, the DSF data as well as the biosensor assay data, it's most likely that compound-induced increase in the luciferase activity of the EED[G255D] biosensor results from the decreased non-productive interactions between the EED subdomain and other subdomains within the biosensor construct. This new insight of the mechanism might help to broaden the use of the split luciferase based biosensors.

  13. Application of Ground Based Microwave Radiometry for Characterizing Tropical Convection

    NASA Astrophysics Data System (ADS)

    Renju, R.; Raju, C. S.

    2016-12-01

    The characterization of the microphysical and thermodynamical properties of convective events over the tropical coastal station Thiruvananthapuram (TVM, 8.5o N 76.9oE) has been carried out by utilizing multiyear Microwave Radiometer Profiler (MRP) observations. The analyses have been extended to develop a methodology to identify convective events, based on the radiometric brightness temperature (Tb) differences, at 30 GHz and 22.5 GHz channels and are compared using reflectivity and rainfall intensity deduced from concurrent and collocated disdrometer measurements. In all 84 such convections were identified using the above methodology over the station for a period of years, 2010-2013; both during pre- and post- Indian summer monsoon months and further evaluated by computing their stability indices. The occurrence of convection over this coastal station peaks in the afternoon and early morning hours with genesis, respectively, over the land and the sea. The number of occurrence of convective events are less during monsoon deficit year whereas strong and more during heavy monsoon rainfall year. These findings are further evaluated with the percentage occurrence of fractional convective clouds derived from microwave payload SAPHIR observations on Megha-Tropique satellite. Based on the analyses the frequency of occurrence of convection can be related to the monsoonal rainfall obtaining over the region. The analyses also indicate that the microwave radiometric brightness temperature of humidity channels depicts the type of convection and respond two hours prior to the occurrence of rainfall. In addition to that the multi-angle observations of microwave radiometer profiler have been utilized to study the propagation of convective systems. This study and the methodology developed for identifying convection have significance in microwave (Ka- and W-band) satellite propagation characterization since convection and precipitation are the major hindrance to satellite

  14. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  15. Hydrothermal synthesis and characterization of zirconia based catalysts

    NASA Astrophysics Data System (ADS)

    Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F. J.; Bennici, S.; Auroux, A.

    2013-07-01

    In this work, three equimolar mixed oxides ZrO2/CeO2, ZrO2/TiO2, ZrO2/La2O3 and a reference ZrO2 have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH3 and SO2 probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid-base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO2/TiO2 material appears to be the best candidate for further application in acid-base catalysis.

  16. Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.

    PubMed

    Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S

    2011-11-24

    Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.

  17. Dielectric characterization and microwave interferometry of HMX-based explosives

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Kane, Ron; Lorenz, Thomas; Baluyot, Emer; Vandersall, Kevin

    2013-06-01

    Microwave interferometry is a useful technique for understanding the development and propagation of detonation waves. The velocity of the front can be determined directly with the instantaneous phase difference of the reflected microwave signal from the detonation front and the dielectric constant of the explosive. However, the dielectric constant of HMX-based explosives has been measured only over a small range of wavelengths. Here we employ an open-ended coaxial probe to determine the complex dielectric constant for LX-10 and other HMX-based explosives over the full 5-50 GHz range. The development and propagation of detonation waves in both heavily- and lightly-confined cylindrical charge geometries will also be highlighted. In some experiments the microwave reflective properties of the region behind the detonation front are characterized by using a remotely-positioned microwave waveguide probe. Ionization pins and Manganin gauges were used with microwaves simultaneously to verify the technique as the detonation front progresses. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Precise design-based defect characterization and root cause analysis

    NASA Astrophysics Data System (ADS)

    Xie, Qian; Venkatachalam, Panneerselvam; Lee, Julie; Chen, Zhijin; Zafar, Khurram

    2017-03-01

    As semiconductor manufacturing continues its march towards more advanced technology nodes, it becomes increasingly important to identify and characterize design weak points, which is typically done using a combination of inline inspection data and the physical layout (or design). However, the employed methodologies have been somewhat imprecise, relying greatly on statistical techniques to signal excursions. For example, defect location error that is inherent to inspection tools prevents them from reporting the true locations of defects. Therefore, common operations such as background-based binning that are designed to identify frequently failing patterns cannot reliably identify specific weak patterns. They can only identify an approximate set of possible weak patterns, but within these sets there are many perfectly good patterns. Additionally, characterizing the failure rate of a known weak pattern based on inline inspection data also has a lot of fuzziness due to coordinate uncertainty. SEM (Scanning Electron Microscope) Review attempts to come to the rescue by capturing high resolution images of the regions surrounding the reported defect locations, but SEM images are reviewed by human operators and the weak patterns revealed in those images must be manually identified and classified. Compounding the problem is the fact that a single Review SEM image may contain multiple defective patterns and several of those patterns might not appear defective to the human eye. In this paper we describe a significantly improved methodology that brings advanced computer image processing and design-overlay techniques to better address the challenges posed by today's leading technology nodes. Specifically, new software techniques allow the computer to analyze Review SEM images in detail, to overlay those images with reference design to detect every defect that might be present in all regions of interest within the overlaid reference design (including several classes of defects

  19. Synthesis and characterization of triglyceride based thermosetting polymers

    NASA Astrophysics Data System (ADS)

    Can, Erde

    2005-07-01

    Plant oils, which are found in abundance in all parts of the world and are easily replenished annually, have the potential to replace petroleum as a chemical feedstock for making polymers. Within the past few years, there has been growing interest to use triglycerides as the basic constituent of thermosetting polymers with the necessary rigidity, strength and glass transition temperatures required for engineering applications. Plant oils are not polymerizable in their natural form, however various functional groups that can polymerize can easily be attached to the triglyceride structure making them ideal cross-linking monomers for thermosetting liquid molding resins. Through this research project a number of thermosetting liquid molding resins based on soybean and castor oil, which is a specialty oil with hydroxyls on its fatty acids, have been developed. The triglyceride based monomers were prepared via the malination of the alcoholysis products of soybean and castor oil with various polyols, such as pentaerythritol, glycerol, and Bisphenol A propoxylate. The malinated glycerides were then cured in the presence of a reactive diluent, such as styrene, to form rigid glassy materials with a wide range of properties. In addition to maleate half-esters, methacrylates were also introduced to the glyceride structure via methacrylation of the soybean oil glycerolysis product with methacrylic anhydride. This product, which contains methacrylic acid as by-product, and its blends with styrene also gave rigid materials when cured. The triglyceride based monomers were characterized via conventional spectroscopic techniques. Time resolved FTIR analysis was used to determine the curing kinetics and the final conversions of polymerization of the malinated glyceride-styrene blends. Dynamic Mechanical Analysis (DMA) was used to determine the thermomechanical behavior of these polymers and other mechanical properties were determined via standard mechanical tests. The use of lignin

  20. Hydrothermal synthesis and characterization of zirconia based catalysts

    SciTech Connect

    Caillot, T. Salama, Z.; Chanut, N.; Cadete Santos Aires, F.J.; Bennici, S.; Auroux, A.

    2013-07-15

    In this work, three equimolar mixed oxides ZrO{sub 2}/CeO{sub 2}, ZrO{sub 2}/TiO{sub 2}, ZrO{sub 2}/La{sub 2}O{sub 3} and a reference ZrO{sub 2} have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH{sub 3} and SO{sub 2} probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO{sub 2}/TiO{sub 2} material appears to be the best candidate for further application in acid–base catalysis. - Graphical abstract: Mesoporous amorphous phase with a high surface area of titania zirconia mixed oxide obtained by hydrothermal preparation. - Highlights: • Three zirconia based catalysts and a reference were prepared by hydrothermal synthesis. • Mixed oxides present larger surface areas than the reference ZrO{sub 2}. • ZrO{sub 2}/TiO{sub 2} catalyst presents a mesoporous structure with high surface area. • ZrO{sub 2}/TiO{sub 2} catalyst presents simultaneously strong acidic and basic properties.

  1. Current density-voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/crystalline Si heterojunction diodes prepared with varying H2 gas flow rates

    NASA Astrophysics Data System (ADS)

    Tabata, Akimori; Imori, Yoshikazu

    2015-02-01

    N-doped hydrogenated nanocrystalline cubic SiC (nc-3C-SiC:H) thin films were deposited on p-type crystalline Si (c-Si) substrates by hot-wire chemical vapor deposition from a SiH4/CH4/H2/N2 gas mixture. The current density-voltage and the admittance characteristics of the nc-3C-SiC:H/c-Si heterojunction diodes were investigated. As the H2 gas flow rate (F(H2)) increased from 25 to 100 sccm, the ideality factor and saturation current density deceased from 1.87 to 1.47 and 1.6 × 10-7 to 9.9 × 10-9 A/cm2, respectively. However, they increased to 1.82 and 3.0 × 10-7 A/cm2, respectively, when F(H2) was further increased to 1000 sccm. The relaxation time, evaluated from the admittance characteristics, decreased from 2.9 × 10-5 to 2.4 × 10-6 s with an increase in F(H2). The apparent built-in voltage, evaluated from the capacitance-voltage characteristics, decreased from 1.05 to 0.60 eV. These findings were mainly caused by interfacial defects, generated by a high density of H radicals during the nc-3C-SiC:H deposition process. The interfacial defect density increased with an increase in F(H2), resulting in deterioration of the diode characteristics.

  2. Advanced materials characterization based on full field deformation measurements

    NASA Astrophysics Data System (ADS)

    Carpentier, A. Paige

    Accurate stress-strain constitutive properties are essential for understanding the complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. Among such materials, glass-fiber- and carbon-fiber-reinforced polymer--matrix composites play a critical role in advanced structural designs. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slows down the material characterization. Also, some of the material constitutive properties are never measured due to the prohibitive cost of the specimens needed. This work shows that simple short-beam shear (SBS) specimens are well-suited for measurement of multiple constitutive properties for composite materials and that can enable a major shift toward accurate material characterization. The material characterization is based on the digital image correlation (DIC) full-field deformation measurement. The full-field-deformation measurement enables additional flexibility for assessment of stress--strain relations, compared to the conventional strain gages. Complex strain distributions, including strong gradients, can be captured. Such flexibility enables simpler test-specimen design and reduces the number of different specimen types required for assessment of stress--strain constitutive behavior. Two key elements show advantage of using DIC in the SBS tests. First, tensile, compressive, and shear stress--strain relations are measured in a single experiment. Second, a counter-intuitive feasibility of closed-form stress and modulus models, normally applicable to long beams, is demonstrated for short-beam specimens. The modulus and stress--strain data are presented for glass/epoxy and carbon/epoxy material systems. The applicability of the developed method to static, fatigue, and impact load rates is also demonstrated. In a practical method to determine stress-strain constitutive relations, the stress

  3. Hyperspectral imaging based techniques in ornamental stone characterization

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia; Menesatti, Paolo

    2005-11-01

    Ornamental stones are usually utilized for many purposes, ranging from structural to aesthetic ones. In this wide range of utilization, many different industrial sectors are involved. For all of them it is very important, at a different level, that these materials satisfy not only specific physical-chemical-mechanical requirements, but also some attributes that are much more difficult to quantify, that is those attributes strictly related to the final pictorial aspect of the stone manufactured goods. Stone pictorial-aesthetic characteristics are strongly influenced by stone surface status, that is by the surfaces reflectance properties. Such a property depends from stone compositional-textural characteristics and from the working procedures applied. The first set of attributes are related to stone mineral composition and their micro/macro arrangement, the others are related to the tools utilized and the actions applied in terms of operation sequence and workers knowledge-expertise. Each stone and each macro-operation carried out lead to a stone product whose finishing has to follow a specific rule: "optimal" polishing procedures for a stone can lead to very poor results for others. The study was addressed to evaluate the possibility to introduce a new hyperspectral imaging based approach to quantify the level of polishing of stone products and, at the same time, trying to perform also a pictorial-aesthetic characterization trough the identification of natural and/or working defects.

  4. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    PubMed

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  5. Aroma characterization based on aromatic series analysis in table grapes.

    PubMed

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-08-04

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, 'Kyoho' grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes.

  6. Dental hard tissue characterization using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  7. Characterization of porcine eyes based on autofluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  8. Synthesis and characterizations of melamine-based epoxy resins.

    PubMed

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-09-05

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  9. Synthesis and Characterizations of Melamine-Based Epoxy Resins

    PubMed Central

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-01-01

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials. PMID:24013372

  10. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  11. Cavitating vortex characterization based on acoustic signal detection

    NASA Astrophysics Data System (ADS)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  12. Aroma characterization based on aromatic series analysis in table grapes

    PubMed Central

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-01-01

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, ‘Kyoho’ grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935

  13. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  14. Optical-Based Artificial Palpation Sensors for Lesion Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Ku, Jeonghun; Park, Hee-Jun

    2013-01-01

    Palpation techniques are widely used in medical procedures to detect the presence of lumps or tumors in the soft breast tissues. Since these procedures are very subjective and depend on the skills of the physician, it is imperative to perform detailed a scientific study in order to develop more efficient medical sensors to measure and generate palpation parameters. In this research, we propose an optical-based, artificial palpation sensor for lesion characterization. This has been developed using a multilayer polydimethylsiloxane optical waveguide. Light was generated at the critical angle to reflect totally within the flexible and transparent waveguide. When a waveguide was compressed by an external force, its contact area would deform and cause the light to scatter. The scattered light was captured by a high-resolution camera and saved as an image format. To test the performance of the proposed system, we used a realistic tissue phantom with embedded hard inclusions. The experimental results show that the proposed sensor can detect inclusions and provide the relative value of size, depth, and Young's modulus of an inclusion. PMID:23966198

  15. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  16. Processing, characterization and properties of oxide based nanocomposites

    NASA Astrophysics Data System (ADS)

    Bhaduri, Sutapa

    The synthesis, characterization and mechanical properties of oxide based nanocomposites are reported in this dissertation. Two binary systems are studied: Alsb2Osb3-MgO and Alsb2Osb3-ZrOsb2. Alsb2Osb3-MgO was chosen because of its relatively large field of solid solubilities at a moderate temperature. On the other hand, Alsb2Osb3-ZrOsb2 was chosen because it shows minimal solid solubility of the constituents. A novel "Auto Ignition" process using suitable fuels and oxidizers was utilized in the synthesis of nanocomposites and solid solutions. Thermodynamic calculations were carried out in predicting end point adiabatic temperatures (Tsbad) for each composition in both systems. Combustion temperatures were experimentally measured by means of a data acquisition system. Characterizations of the powders were carried out by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis (EDAX) and differential thermal analysis (DTA). Heat treatment experiments were carried out to study the grain growth behavior. A hot isostatic pressing (HIP) model was developed for the present nanoceramics. Input parameters were carefully chosen for such nanomaterials. The as-synthesized nanocrystalline powders were consolidated to near theoretical density by hot isostatic pressing (HIPing) while retaining fine grain size. The experimental results were compared with the predictions of the model. Mechanical properties, such as room temperature toughness, low temperatures well as high temperature hardness, were determined for both systems. Room temperature hardness values were (2.89-7.79) GPa and fracture toughness was between 2.7 and 5.82 MPa.msp{1/2} for various compositions in the Alsb2Osb3-MgO system. Room temperature hardness values were between 5.33 and 8.71 GPa and fracture toughness values ranged from (5.3-9.62) MPa.msp{1/2} for various compositions in the Alsb2Osb3-ZrOsb2 system. Nanoindentation experiments were carried out to further explore the room

  17. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  18. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  19. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire

  20. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers

    PubMed Central

    Padmanabhuni, Revathi V.; Luo, Jie; Cao, Zhengbing; Sun, Yuyu

    2012-01-01

    The purpose of this study was to demonstrate that the surface of CaCO3 fillers could be coated with an N-halamine based fatty acid to make the filler surface organophilic and accomplish antibacterial activity simultaneously, rendering the resulting polymer-filler composites antimicrobial. Thus, a new bi-functional compound, 4, 4 -Dimethyl hydantoin-undecanoic acid (DMH-UA), was synthesized by treating the potassium salt of dimethyl hydantoin (DMH) with 11-bromoundecanoic acid (BUA). Upon chlorination treatment with diluted bleach, DMH-UA was transformed into 3-chloro-4, 4-dimethyl hydantoin- undecanoic acid (Cl-DMH-UA). Alternatively, DMH-UA could be coated onto the surface of CaCO3 to obtain the corresponding calcium salt, 4, 4-dimethyl hydantoin-undecanoic acid-calcium carbonate (DMH-UA-CaCO3). In the presence of diluted chlorine bleach, the coated DMH-UA on the surface of CaCO3 was transformed into Cl-DMH-UA, leading to the formation of Cl-DMH-UA-CaCO3. The reactions were characterized with FT-IR, NMR, UV, DSC and SEM analyses. Both Cl-DMH-UA and Cl-DMH-UA-CaCO3 were used as antimicrobial additives for cellulose acetate (CA). The antimicrobial efficacy of the resulting samples was evaluated against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). It was found that with the same additive content, CA samples with Cl-DMH-UA-CaCO3 and Cl-DMH-UA had very similar antimicrobial and biofilm-controlling activity, but the former released less active chlorine into the surrounding environment than the latter. PMID:22942559

  1. Characterizing marijuana concentrate users: A web-based survey.

    PubMed

    Daniulaityte, Raminta; Lamy, Francois R; Barratt, Monica; Nahhas, Ramzi W; Martins, Silvia S; Boyer, Edward W; Sheth, Amit; Carlson, Robert G

    2017-09-01

    The study seeks to characterize marijuana concentrate users, describe reasons and patterns of use, perceived risk, and identify predictors of daily/near daily use. An anonymous web-based survey was conducted (April-June 2016) with 673 US-based cannabis users recruited via the Bluelight.org web-forum and included questions about marijuana concentrate use, other drugs, and socio-demographics. Multivariable logistic regression analyses were conducted to identify characteristics associated with greater odds of lifetime and daily use of marijuana concentrates. About 66% of respondents reported marijuana concentrate use. The sample was 76% male, and 87% white. Marijuana concentrate use was viewed as riskier than flower cannabis. Greater odds of marijuana concentrate use was associated with living in states with "recreational" (AOR=4.91; p=0.001) or "medical, less restrictive" marijuana policies (AOR=1.87; p=0.014), being male (AOR=2.21, p=0.002), younger (AOR=0.95, p<0.001), number of other drugs used (AOR=1.23, p<0.001), daily herbal cannabis use (AOR=4.28, p<0.001), and lower perceived risk of cannabis use (AOR=0.96, p=0.043). About 13% of marijuana concentrate users reported daily/near daily use. Greater odds of daily concentrate use was associated with being male (AOR=9.29, p=0.033), using concentrates for therapeutic purposes (AOR=7.61, p=0.001), using vape pens for marijuana concentrate administration (AOR=4.58, p=0.007), and lower perceived risk of marijuana concentrate use (AOR=0.92, p=0.017). Marijuana concentrate use was more common among male, younger and more experienced users, and those living in states with more liberal marijuana policies. Characteristics of daily users, in particular patterns of therapeutic use and utilization of different vaporization devices, warrant further research with community-recruited samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of Metakaolin-Based Geopolymer (Briefing chart)

    DTIC Science & Technology

    2014-08-31

    of cement . Defense applications require new blast, impact, and ballistic mitigation materials. This work focused on the characterization of the...change the strength, tensile, compressive, flexural properties, workability, rate of cure of cement . Defense applications require new blast, impact

  3. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Ayvazian, Talin

    and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl2 in methanol- a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mueff<) by an order of magnitude and increase of the Ion/Ioff ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 °C x 1h enhanced grain growth confirmed by structural characterization including X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman Spectroscopy. Correspondingly the light emission intensity and EQE improved due to this grain growth. Kelvin probe force microscopy

  4. Fabrication, Characterization, and Applications of Graphene-based Flexible Films

    NASA Astrophysics Data System (ADS)

    Naik, Gautam

    while maintaining its structural integrity is essential. A method for thermal reduction of flexible graphene oxide films under stress confinement is described. Reduction of graphene oxide flexible films is carried out in a MTS testing machine equipped with a controlled atmosphere furnace. The reduced films show higher carbon-to-oxygen ratio and an increase in conductivity by over five orders in magnitude. An electromechanical application of these reduced graphene oxide films for strain sensing is also demonstrated, with high and tunable gauge factors, which are three orders of magnitude higher than conventional metal foil strain gauges. A mechanism and model to explain the strain sensing is also described. Lastly, quantification of the degree of photoreduction and characterization of thermal properties of graphene-based flexible films is conducted. The temperature distribution on the surface of the graphene oxide flexible film is recorded using an infrared thermal camera. Effective reduction using a laser is achieved in a very short duration at low power and temperature. The thermal properties are calculated using the transient temperature response, and are found to be orders of magnitude lower than pristine graphene. The photoreduction method is a promising route for roll-to-roll production of reduced graphene oxide flexible films.

  5. Characterization and Modeling of Segmental Dynamics in Silicone Based Nanocomposites

    SciTech Connect

    Maxwell, R S; Baumann, T; Gee, R; Maiti, A; Patel, M; Lewicki, J

    2009-03-27

    The addition of nano-particles with novel chemical, optical, or barrier properties further opens the door to the development of so-called multifunctional materials (1). Key to developing robust, tailored composites is a detailed understanding of the structural contributions to the engineering properties of the composite and how they may change with time in harsh service conditions. The segmental dynamics and local order underlie much of the fundamental physics that influence the performance of elastomers and can serve as important diagnostics for reinforcement and other fundamental properties (e.g., network topology, cross-link density, the number and distance between chemical and physical (entanglements) cross-links, the type and volume fraction of filler) and thus provide a route to this fundamental understanding. {sup 1}H MQ-NMR spectroscopy has shown the ability to provide more reliable and quantitative information regarding the elastomer network structure and heterogeneities (2). {sup 1}H MQ-NMR methods allow for the measurement of absolute residual dipolar couplings (<{Omega}{sub d}>) and thus the segmental/cooperative dynamics Thus, the MQ-NMR method allows for the direct measure of network topology and in many cases, filler-particle interactions. The ability of MD methods to uncover structural motifs and dynamics at the atomistic scale is well known. In polymer systems, however, the relationship to bulk material properties can be somewhat tenuous due to often limited number of atoms and short time durations that can be studied. Extending these MD simulations to large assemblies of atoms and extending them to longer times using state of the art computational resources has allowed us to probe some useful relationships. MD provides static and dynamic properties for a collection of particles that allow atomic scale insights that are difficult to gain otherwise. We have been exploiting these methods to characterize the effects of network structure and filler

  6. Laser-based characterization of nuclear fuel plates

    SciTech Connect

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H.

    2014-02-18

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  7. Laser-Based Characterization of Nuclear Fuel Plates

    SciTech Connect

    James A. Smith; David L. Cottle; Barry H. Rabin

    2013-07-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  8. MEMS-based shear characterization of soft hydrated samples

    PubMed Central

    Gao, Yingning; Fried, Andrew; Park, Sung-Jin; Chung, Cindy; Pruitt, Beth L.

    2013-01-01

    We have designed, fabricated, calibrated and tested actuators for shear characterization to assess microscale shear properties of soft substrates. Here we demonstrate characterization of dry silicone and hydrated polyethelyne glycol. Microscale tools, including atomic force microscopes and nanoindenters, often have limited functionality in hydrated environments. While electrostatic comb-drive actuators are particularly susceptible to moisture damage, through chemical vapor deposition of hexamethyldisiloxane, we increase the hydrophobicity of our electrostatic devices to a water contact angle 90 ± 3°. With this technique we determine the effective shear stiffness of both dry and hydrated samples for a range of soft substrates. Using computational and analytical models, we compare our empirically determined effective shear stiffness with existing characterization methods, rheology and nanoindentation, for samples with shear moduli ranging from 5-320 kPa. This work introduces a new approach for microscale assessment of synthetic materials that can be used on biological materials for basic and applied biomaterials research. PMID:24187440

  9. Laser-based characterization of nuclear fuel plates

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H.

    2014-02-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  10. Colorimetric characterization of LCD based on constrained least squares

    NASA Astrophysics Data System (ADS)

    LI, Tong; Xie, Kai; Wang, Qiaojie; Yao, Luyang

    2017-01-01

    In order to improve the accuracy of colorimetric characterization of liquid crystal display, tone matrix model in color management modeling of display characterization is established by using constrained least squares for quadratic polynomial fitting, and find the relationship between the RGB color space to CIEXYZ color space; 51 sets of training samples were collected to solve the parameters, and the accuracy of color space mapping model was verified by 100 groups of random verification samples. The experimental results showed that, with the constrained least square method, the accuracy of color mapping was high, the maximum color difference of this model is 3.8895, the average color difference is 1.6689, which prove that the method has better optimization effect on the colorimetric characterization of liquid crystal display.

  11. Laser-based characterization and decontamination of contaminated facilities

    SciTech Connect

    Leong, K.H.; Hunter, B.V.; Grace, J.E.; Pellin, M.J.; Leidich, H.F.; Kugler, T.R.

    1996-12-31

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed.

  12. Mass spectrometry-based strategies for characterization of histones and their post-translational modifications

    PubMed Central

    Su, Xiaodan; Ren, Chen; Freitas, Michael A

    2008-01-01

    Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications. PMID:17425457

  13. MSC-based product characterization for clinical trials: an FDA perspective.

    PubMed

    Mendicino, Michael; Bailey, Alexander M; Wonnacott, Keith; Puri, Raj K; Bauer, Steven R

    2014-02-06

    Proposals submitted to the FDA for MSC-based products are undergoing a rapid expansion that is characterized by increased variability in donor and tissue sources, manufacturing processes, proposed functional mechanisms, and characterization methods. Here we discuss the diversity in MSC-based clinical trial product proposals and highlight potential challenges for clinical translation.

  14. Characterization of a Fabry - Perot - Based electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    An electrooptic modulator using a thin slice of LiNbO3 within the cavity of a Fabry-Perot interferometer is designed and fabricated. The modulator is operated with 633 nm light from a He-Ne laser. Results related to characterization of this modulator are presented.

  15. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  16. Synthesis and characterization of iron based nanoparticles for novel applications

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa

    The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO)5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene

  17. Bismuth Oxybromide-based Photocatalysts: Syntheses, Characterizations and Applications

    NASA Astrophysics Data System (ADS)

    Wu, Dan

    The increasing intractable crises of environmental pollution and fossil fuels shortage are among the biggest challenges in current society and becoming an overwhelming concern for the development of our future world. Semiconductor photocatalysis has received considerable interdisciplinary attention and research interest owing to their diverse potentials in energy and environmental applications. As an important V-VI-VII ternary semiconductor, BiOBr has been recently received considerable attention owing to its fascinating physicochemical prosperities originated from its unique layered structures. However, existing reports on the photocatalytic bacterial inactivation of BiOBr based photocatalysts are rather limited. In addition, the mechanisms in visible-light-driven (VLD) photocatalytic disinfection systems are far from fully understandable. Moreover, the exploitation of facile ways to make BiOBr photocatalysts harvesting a wide range of solar spectrum with high efficiency remains challenging, yet highly desirable. In this study, BiOBr based photocatalysts with various nanostructures were synthesized and characterized. Their photocatalytic activities were systematically investigated towards bacterial inactivation, dye degradation and CO2 reduction. The exploration on the photo-excited charge carriers and reactive species were conducted to gain some insight into the corresponding photocatalytic mechanisms. Firstly, BiOBr 2D nanosheets with a high percentage of exposed {001} and {010} facets were synthesized via a facile hydrothermal method. BiOBr with dominant {001} facet (B001) nanosheets exhibited remarkably higher photocatalytic activity in inactivating E. coli K-12 under visible light irradiation, in comparison with BiOBr with dominant {010} facet (B010) nanosheets. There were 7-log bacterial cells inactivated within 2 h for B001, while B010 needed 6 h irradiation to inactivate 6.5-log bacterial cells. This superior activity was assigned to the more favorable

  18. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety.

    PubMed

    Salama, Hend E; Saad, Gamal R; Sabaa, Magdy W

    2015-08-01

    The Schiff bases of chitosan were synthesized by the reaction of chitosan with 3-(4-substituted-phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde. The structure of the prepared chitosan derivatives was characterized by FT-IR spectroscopy, elemental analysis, and X-ray diffraction studies and thermogravimetric analysis (TG). The results show that the specific properties of Schiff bases of chitosan can be altered by modifying the molecular structures with proper substituent groups.TG results reveal that the thermal stability of the prepared chitosan Schiff bases was lower than chitosan. The activation energy of decomposition was calculated using Coats-Redfern model. The antimicrobial activity of chitosan and Schiff bases of chitosan were investigated against Streptococcus pneumonia, Bacillis subtilis, Escherichia coli (as examples of bacteria) and Aspergillus fumigatus, Geotricum candidum and Syncephalastrum recemosum (as examples of fungi). The results indicated that the antimicrobial activity of the Schiff bases was stronger than that of chitosan and was dependent on the substituent group. The activity of un-substituted arylpyrazole chitosan derivative toward the investigated bacteria and fungi species was better than the other derivatives.

  19. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    USGS Publications Warehouse

    Collins, Brian; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  20. Electrical characterization of MEH-PPV based Schottky diodes

    SciTech Connect

    Nimith, K. M. Satyanarayan, M. N. Umesh, G.

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  1. Synthesis and characterization of a new aluminium-based compound.

    PubMed

    Pascual-Cosp, José; Artiaga, Ramón; Corpas-Iglesias, Francisco; Benítez-Guerrero, Mónica

    2009-08-28

    A new aluminium polynuclear crystalline species, Al(13)(OH)(30)(H(2)O)(15)Cl(9) has been synthesized and characterized. It is a particular case of the Al(13)(OH)(30-y)(H(2)O)(18-x)Cl(9) x zH(2)O family. It has been obtained from aluminium waste cans treated with HCl solution in strong acid media, followed by an ageing period. The crystalline structure of the complex was determined by XRD spectroscopy. Twelve reflections were found and indexed with the DICVOL04 software. Morphologically, a flattened preferred orientation was observed by SEM and FESEM. The chemical structure was studied by several absorption spectroscopy techniques: FTIR, ATR-FTIR and Raman dispersion spectroscopy. The coordination of the aluminium nuclei was determined by Al-MAS-NMR. Only octahedral sites were observed. Thermal characterization of the compound was performed by evolved gas analysis (EGA) coupled to simultaneous TGA-DSC.

  2. Electrical characterization of MEH-PPV based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2016-05-01

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  3. New Microwave-Based Missions Applications for Rainfed Crops Characterization

    NASA Astrophysics Data System (ADS)

    Sánchez, N.; Lopez-Sanchez, J. M.; Arias-Pérez, B.; Valcarce-Diñeiro, R.; Martínez-Fernández, J.; Calvo-Heras, J. M.; Camps, A.; González-Zamora, A.; Vicente-Guijalba, F.

    2016-06-01

    A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.

  4. 3D finite element model of the chinchilla ear for characterizing middle ear functions

    PubMed Central

    Wang, Xuelin; Gan, Rong Z.

    2016-01-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa - a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845

  5. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.

  6. Automated Identification and Characterization of Secondary & Tertiary gamma’ Precipitates in Nickel-Based Superalloys (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    METHODOLOGY A nickel-based superalloy sample (Rene88DT) was cut from a forged disc developed under a Defense Advanced Research Projects Agency funded...AFRL-RX-WP-TP-2010-4064 AUTOMATED IDENTIFICATION AND CHARACTERIZATION OF SECONDARY & TERTIARY γ’ PRECIPITATES IN NICKEL-BASED SUPERALLOYS ...AUTOMATED IDENTIFICATION AND CHARACTERIZATION OF SECONDARY & TERTIARY γ’ PRECIPITATES IN NICKEL-BASED SUPERALLOYS (PREPRINT) 5a. CONTRACT NUMBER In

  7. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    NASA Astrophysics Data System (ADS)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  8. Characterization of active metamaterials based on negative impedance converters

    NASA Astrophysics Data System (ADS)

    Rajab, K. Z.; Fan, Y. F.; Hao, Y.

    2012-11-01

    Negative impedance converters (NICs) are used to create impedance loads that can effectively cancel the inductive properties of magnetic dipoles, resulting in active metamaterials with increased bandwidth and reduced loss for μ-near-zero (MNZ) and negative-Re(μ) (MNG) media. We demonstrate techniques for analyzing the stability and characterizing the magnetic properties of effective media loaded with NICs. Specifically, we apply the Nyquist criterion to validate the stability of sample active metamaterials. It is shown that the practical NIC-loaded metamaterial may maintain stability and reduce dispersion, albeit with reduced performance as compared to the ideal NIC load.

  9. Wastewater Characterization Survey, Laughlin Air Force Base, Texas

    DTIC Science & Technology

    1989-02-01

    USAFOEHL REPORT 89-009EQO0105BWA WASTEWATER CHARACTERIZATION SURVEY, LAUGHLIN AFB TX CHARLES W. ATTEBERY, 1Lt, USAF, BSC o ROBERT D. BINOVI, Lt Col...including foreign nations. This report has been reviewed and is approved for publication. CHARLES W. ATTEBERY, ILt, USAF, BSC -SI-1kLTN R. BI...AS RPT C DTIC USERS UnclassWi ed 22a NAME Of RESPONSIBLE INDIVIDUAL 22b TELEPHONEA~nude Agia Co) 2.OFICS’ML Charles W. Attebery, ILt, USAF, BSC (512

  10. Characterization of a small railgun-based plasma jet source

    NASA Astrophysics Data System (ADS)

    Schneider, Maximilian; Adams, Colin; Popescu, Marius; Korsness, Joshua; Sherburne, Michael

    2016-10-01

    Experimental characterization of a small plasma jet source has been undertaken at Virginia Tech's Center for Space Science and Engineering Research (Space@VT). The plasma-armature railgun features a square bore approximately 0.5 × 0.5 cm and a rail length of 10 cm. Fed by an 100 psi- gas manifold and powered by an LC pulse-forming network capable of delivering 100 kA current on timescales of several microseconds, jet velocities in the 10-20 km/s range are predicted. A modular design, the insulators and rails are readily swappable for investigation the interaction of the plasma armature with plasma-facing components fabricated with different materials and geometry. The plasma jet is characterized by a suite of diagnostics including a multichord Mach-Zehnder interferometer, spectrometer, photodiode array, and fast photography. Diagnostics planned for the near future include plasma laser-induced fluorescence and particle energy analyzers. The railgun source described is envisioned as a future platform for basic science experiments on topics ranging from plasma-material interaction to plasma shocks.

  11. Characterization and Prediction of Protein Flexibility Based on Structural Alphabets

    PubMed Central

    Liu, Bin

    2016-01-01

    Motivation. To assist efforts in determining and exploring the functional properties of proteins, it is desirable to characterize and predict protein flexibilities. Results. In this study, the conformational entropy is used as an indicator of the protein flexibility. We first explore whether the conformational change can capture the protein flexibility. The well-defined decoy structures are converted into one-dimensional series of letters from a structural alphabet. Four different structure alphabets, including the secondary structure in 3-class and 8-class, the PB structure alphabet (16-letter), and the DW structure alphabet (28-letter), are investigated. The conformational entropy is then calculated from the structure alphabet letters. Some of the proteins show high correlation between the conformation entropy and the protein flexibility. We then predict the protein flexibility from basic amino acid sequence. The local structures are predicted by the dual-layer model and the conformational entropy of the predicted class distribution is then calculated. The results show that the conformational entropy is a good indicator of the protein flexibility, but false positives remain a problem. The DW structure alphabet performs the best, which means that more subtle local structures can be captured by large number of structure alphabet letters. Overall this study provides a simple and efficient method for the characterization and prediction of the protein flexibility. PMID:27660756

  12. Synthesis and Characterization of Transition Metal complexes with pyrimidine based ligand derivative

    NASA Astrophysics Data System (ADS)

    Awate, Ruchita; Mishra, Ashutosh; Mansuri, A.

    2016-10-01

    The article deals with a study of Synthesis Transition Metal Complexes Like copper and iron with Pyrimidine based ligand derivatives. The synthesized complex were characterized by XRD, SEM, FTIR. Mossbauer Spectra of Iron complex has also taken out to find oxidation state of iron after complexation.The aim of this study is to preparation and characterization with Transition Metal complexes by different physical and chemical characterization techniques.

  13. Spectroscopic Characterization of Metal-Based Complexes and Metal-Based Complex Oxidation Processes.

    NASA Astrophysics Data System (ADS)

    McQuaid, Michael James

    The entrainment in carbon monoxide of metal (M) vaporized from an oven based source was used to create M(CO)_{rm x} complexes. The optical signatures associated with their oxidation to form chemiluminescing reaction products were analyzed to evaluate the nature of the M(CO)_{rm x } adducts and study MOcdotCO solvation complexes. The study was facilitated by comparing the optical signatures for the chemiluminescent oxidation of rare gas entrained metal atoms. Oxidation processes involving vanadium, chromium, and aluminum complexes were studied. In the case of vanadium, transitions associated with two previously unreported states of vanadium monoxide (VO) were observed and characterized. Transitions which may be associated with a VOcdotCO complex were also observed. For the case of chromium, three previously unreported states of chromium monofluoride (CrF) were characterized. Two band systems, which are tentatively ascribed to Cr_2F, were also observed. For the case of aluminum, the differences in the AlO B state population distribution formed in the Al+CO+O_3 and Al+Ar+O_3 systems provided a means of evaluating the binding energy of the Al(CO)_2 complex. Laser induced fluorescence (LIF) was used to probe the van der Waals complex AlAr formed in a free jet expansion. Based on rotationally resolved B^2Sigma ^{+} >=ts X^2 Pi_{1/2} electronic transitions, definitive interatomic potential parameters were developed for the AlAr B^2Sigma^{+ } state. AlAr X^2Pi_ {1/2} state interatomic potential parameter were developed assuming a Morse potential. Lambda doubling of the X^2Pi_ {1/2} state is evident, consistent with the presence of an unobserved repulsive AlAr A ^2Sigma^{+} state. Finally, the LIF excitation and emission spectra obtained for Fe/Ar and photolyzed Fe(CO)_5 /Ar matrices were compared. Previously unreported transitions associated with matrix-isolated Fe atoms were observed in the range from 500 to 1600 nm. Differences were observed in the spectra characterizing

  14. Facial skin color measurement based on camera colorimetric characterization

    NASA Astrophysics Data System (ADS)

    Yang, Boquan; Zhou, Changhe; Wang, Shaoqing; Fan, Xin; Li, Chao

    2016-10-01

    The objective measurement of facial skin color and its variance is of great significance as much information can be obtained from it. In this paper, we developed a new skin color measurement procedure which includes following parts: first, a new skin tone color checker made of pantone Skin Tone Color Checker was designed for camera colorimetric characterization; second, the chromaticity of light source was estimated via a new scene illumination estimation method considering several previous algorithms; third, chromatic adaption was used to convert the input facial image into output facial image which appears taken under canonical light; finally the validity and accuracy of our method was verified by comparing the results obtained by our procedure with these by spectrophotometer.

  15. Performance and characterization of a new tannin-based coagulant

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Gómez-Muñoz, C.

    2012-09-01

    Diethanolamine and formaldehyde were employed to cationize tannins from black wattle. This novel coagulant called CDF was functionally characterized in removing sodium dodecylbenzene sulfonate (anionic surfactant) and Palatine Fast Black WAN (azoic dye). Refined tannin-derived commercial coagulants exhibited similar efficiency, while CDF presented higher coagulant ability than alum, a usual coagulant agent. Low doses of CDF (ca. 100 mg L-1) were able to remove more than 70 % of surfactant and more than 85 % of dye (initial pollutant concentration of ca. 100 mg L-1) and it presented no temperature affection and worked at a relatively wide pH range. Surfactant and dye removal responded to the classical coagulant-and-adsorption models, such as Frumkin-Fowler-Guggenheim or Gu and Zhu in the case of surfactant, and Langmuir and Freundlich in the case of dye.

  16. Using ground-based GPS to characterize atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Davis, J. L.; Hill, E. M.

    2009-08-01

    A new method for measuring and studying atmospheric turbulence is presented. The method uses data from a local network of GPS receivers. The GPS data are processed in a way that assures that the estimated zenith total delays (ZTD) contain the effects of atmospheric turbulence present in the GPS observations. The turbulence is characterized using the spatial structure function for the atmospheric zenith total delay. The structure function is modeled by an expression with unknown parameters which contains information about the turbulence. The unknown parameters are solved by a fit to the observed ZTD variations. We apply the method to GPS data from the Yucca Mountain network, Nevada, USA. The results show that the magnitude of the turbulent variations in that region have a strong seasonal dependence, with much larger variations in summer compared to winter.

  17. Synthesis and characterization of nanowire-based anisotropic conductors.

    PubMed

    Sykes, E Charles H; Andreu, Aja; Deadwyler, Dan A; Daneshvar, Kasra; El-Kouedi, Mahnaz

    2006-04-01

    We investigated the potential of commercially available porous templates to be used for the fabrication of functional anisotropic conductors. A galvanostatic deposition technique was used to fabricate arrays consisting of 200 nm diameter nanowires inside the pores of polycarbonate membranes. A tape lift-off procedure allowed the complete removal of any residual metal from both sides of the polymer membrane to form an anisotropic conductive film. The 10 microm thick film has roughly 3 x 10(8) nanowires per cm2, and it showed near zero electrical resistance perpendicular to the surface while appearing completely open to circuits between any points on the surface. The preparation of the film, characterization using SEM, AFM, and resistance measurements are presented. The 1D conductivity of these membranes may have many potential applications for microelectronic interconnects for packaging technologies.

  18. Characterization of Fluid Flow in Paper-Based Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Walji, Noosheen; MacDonald, Brendan

    2014-11-01

    Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.

  19. Characterization and supply of coal-based fuels

    SciTech Connect

    Not Available

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  20. Antimicrobial salicylaldehyde Schiff bases: synthesis, characterization and evaluation.

    PubMed

    Adeel-Sharif, Hafiz Muhammad; Ahmed, Dildar; Mir, Hira

    2015-03-01

    As the pathogens soon develop resistance to the existing antibiotics, the demand for new and more effective anti-microbial agents is a continuous phenomenon. In this paper we are reporting synthesis and spectral data of eight Schiff bases of salicylaldehyde with different amines, and evaluation of their anti-microbial activities against different bacterial strains. The bases were synthesized by reflux method, and their structures were determined based FT-IR, (1)H-NMR, (13)C-NMR and Mass spectrometric data. The Schiff bases synthesized included 2-{[(Z)-(2-hydroxyphenyl) methylidene] amino}benzoicacid (SB1), 4-{[(Z)-(2-hydroxyphenyl) methylidene] amino} benzoic acid (SB2),2-[(naphthalene-2-ylimino)methyl] phenol(SB3),2-2'-[benzene-1,4-diylbis(nitrilomethylylidene)]diphenol (SB4), 2-2'-[benzene-1,2-diylbis (nitrile-(E)-methylylidene)]diphenol (SB5), 2-[(2-phenylhydrazineylidene)methyl]phenol (SB6), 2-2'-[ethene-1,2-diylbis(iminomethanediyl)]diphenol (SB7) and 2-[(Z)-(phenylimino)methyl]phenol (SB8). The anti-microbial activities of synthesized Schiff bases were determined in terms of zones of inhibition and minimum inhibitory concentrations (MICs). All the bases showed moderate to good activities against all the tested microorganisms. The MICs of most compounds were 100-200βg/mL against different microorganisms. However, it was 50βg/mL for SB1 against P. aeruginosa (1), SB3 against P. aurantiaca, P. aeruginosa (1), E. coli (2), S. typhi (2) and C. freundii, SB4against E. coli (2), S. typhi (1) and S. maltophilia, SB5 against K. pneumoniae and S. typhi (2), SB6 against P. aeruginosa (3) and C. freundii, SB7 against E. cloacae and A. lipoferum, and SB8 against E. coli (2). Considerably active bases may prove to be potential candidates for future antibiotic drugs.

  1. L-shaped benzimidazole fluorophores: synthesis, characterization and optical response to bases, acids and anions.

    PubMed

    Lirag, Rio Carlo; Le, Ha T M; Miljanić, Ognjen Š

    2013-05-14

    Nine L-shaped benzimidazole fluorophores have been synthesized, computationally evaluated and spectroscopically characterized. These "half-cruciform" fluorophores respond to bases, acids and anions through changes in fluorescence that vary from moderate to dramatic.

  2. Preparation and characterization of some graphene based nanocomposite materials.

    PubMed

    Sheshmani, Shabnam; Amini, Raheleh

    2013-06-05

    In this study, graphene based sheets such as graphene oxide (GO) and graphene (G) were produced via a facile preparation route involving graphite oxidation, ultrasonic exfoliation and chemical reduction. Also, this paper reports simple approaches for deposition of manganese dioxide, ferric hydroxide and cobalt nanoparticles onto the surface of the graphene based sheets. Chemical deposition method of metal salt with graphene based sheets was performed to prepare nanocomposites. The structural, surface and characteristics of the GO, G and their nanocomposites were investigated by Fourier transform infrared spectroscopy, Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The results demonstrated that interaction between GO as matrix and metal nanoparticles were via hydroxyl, carbonyl and/or carboxylate groups. The metal nanoparticles were homogeneously distributed on the matrix of composite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS

    SciTech Connect

    Duff, M

    2006-09-28

    Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

  4. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-06-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

  5. Characterization of Zinc Selenide-Based Ultraviolet Detectors

    DTIC Science & Technology

    2009-12-01

    0.67 Silicon carbide SiC 2.86 Aluminum nitride AlN 6.3 Diamond C 5.5 Gallium(III) arsenide GaAs 1.43 Gallium(III) nitride GaN 3.4 Indium(III...photosensitivity compared to silicon -based detectors due to its larger bandgap. Its capability of turning optical power into valuable electrical signals...such as Zinc Selenide (ZnSe) have become popular for ultraviolet (UV) photodetectors. ZnSe has a higher photosensitivity compared to silicon -based

  6. Characterization of the KID-Based Light Detectors of CALDER

    NASA Astrophysics Data System (ADS)

    Casali, N.; Bellini, F.; Cardani, L.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2016-07-01

    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5 × 5 cm2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0{-}30 keV.

  7. Development and characterization of carbon nanopaper-based nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Gou, Jihua; O'Braint, Scott; Gu, Haichang; Song, Gangbing

    2006-03-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) process was used to fabricate the nanocomposites through integrating carbon nanofiber paper into traditional glass fiber reinforced composites. The carbon nanofiber paper had a porous structure with highly entangled carbon nanofibers and short glass fibers. In this study, the carbon nanofiber paper was employed as an inter-layer and surface layer of composite laminates to enhance the damping properties. Experiments conducted using the nanocomposite beam indicated up to 200-700% increase of the damping ratios at higher frequencies. The scanning electron microscopy (SEM) characterization of the carbon nanofiber paper and the nanocomposites was also conducted to investigate the impregnation of carbon nanofiber paper by the resin during the VARTM process and the mechanics of damping augmentation. The study showed a complete penetration of the resin through the carbon nanofiber paper. The connectivities between carbon nanofibers and short glass fibers within the carbon nanofiber paper were responsible for the significant energy dissipation in the nanocomposites during the damping tests.

  8. Characterization of ultraviolet-photocured acrylamide based polymer

    NASA Astrophysics Data System (ADS)

    Rozi, Normazida; Hanifah, Sharina Abu; Heng, Lee Yook; Shyuan, Loh Kee

    2016-11-01

    Poly (acrylamide-co-ethyl methacrylate) (AAm-co-EMA) membrane was studied and compared with poly (acrylamide) (AAm). Poly (AAm-co-EMA) and poly (AAm) membranes were synthesized using photopolymerization technique. These membranes were characterized by Fourier Transform Infrared (FTIR), swelling test and scanning electron microscopy (SEM). The aim of this study was to investigate the suitability of these membranes to be used for enzyme immobilization. FTIR spectra exhibited peaks of -CO and -CH3 functional groups at 1166 cm-1 and 1377 cm-1 and confirmed that poly (AAm-co-EMA) was successfully formed. The equilibrium swelling percentage of poly (AAm) and poly (AAm-co-EMA) were 93.97 % and 96.24 %. It was found out that 10 % of EMA monomer was added to form the copolymer, the membrane produced a good hydrolytic stability copolymer in water and indicated its biocompatibility. This finding may be attributed by the morphology property as a semi porous surface of copolymer was formed. In conclusion, poly (AAM-co-EMA) was successfully synthesized and more suitable for enzyme immobilization.

  9. Performance characterization of computed radiography based mammography systems

    NASA Astrophysics Data System (ADS)

    Singh, Abhinav; Desai, Nikunj; Valentino, Daniel J.

    2010-04-01

    Computed Radiography (CR) is a cost-effective technology for digital mammography. In order to optimize the quality of images obtained using CR Mammography, we characterized the effect on image quality of the electrooptical components of the CR imaging chain. The metrics used to assess the image quality included the Contrast to Noise Ratio (CNR), Modulation Transfer Function (MTF), Noise Power Spectrum (NPS), Detective Quantum Efficiency (DQE) and Contrast Detail Response Phantom (CDMAM 3.4 Artinis Medical Systems). An 18×24 cm high-resolution granular phosphor imaging plate (AGFA MM3.0) was used to acquire the images. Contrast detail was measured using a GUI developed for the CDMAM phantom that was scored by independent observers. The range of theoretically acceptable values measured for the CR laser was (5-36) mW and voltage range for PMT's was (4-8) V. The light detection amplifier was investigated, and the optimal Laser Power and PMT gain used for scanning was measured. The tools that we used (CNR, MTF, NPS, DQE and Contrast-detail phantom) provided an effective means of selecting optimal values for the electro-optical components of the system. The procedure enabled us to obtain good quality CR mammograms that have less noise and improved contrast.

  10. Physics-Based Visual Characterization of Molecular Interaction Forces.

    PubMed

    Hermosilla, Pedro; Estrada, Jorge; Guallar, Victor; Ropinski, Timo; Vinacua, Alvar; Vazquez, Pere-Pau

    2017-01-01

    Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts. There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved. In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.

  11. Hexafluorozirconic Acid Based Surface Pretreatments: Characterization and Performance Assessment

    SciTech Connect

    Adhikari, Saikat; Unocic, Kinga A; Zhai, Yumei; Frankel, Gerald; Zimmerman, John; Fristad, W

    2010-01-01

    A new phosphate-free pretreatment from Henkel Corp. named TecTalis , was investigated. The treatment bath is composed of dilute hexafluorozirconic acid with small quantities of non-hazardous components containing Si and Cu. The performance of treated steel was compared to samples treated in a phosphate conversion coating bath, in simple hexafluorozirconic acid and in TecTalis without the addition of the Cu containing component. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to characterize the coating surface morphology, structure and composition. A Quartz Crystal Microbalance (QCM) was used for studying film growth kinetics on thin films of pure Fe, Al and Zn. Electrochemical Impedance Spectroscopy (EIS) was performed on treated and painted steel for studying long-term corrosion performance of the coatings. The phosphate-free coating provided long-term corrosion performance comparable to that of phosphate conversion coatings. The coatings uniformly cover the surface in the form of 10-20 nm sized nodules and clusters of these features up to 500 nm in size. The coatings are usually about 20-30 nm thick and are mostly composed of Zr and O with enrichment of copper at randomly distributed locations and clusters.

  12. Characterization of electroelastomers based on interpenetrating polymer networks

    NASA Astrophysics Data System (ADS)

    Ha, Soon Mok; Wissler, Michael; Pelrine, Ron; Stanford, Scott; Kovacs, Gabor; Pei, Qibing

    2007-04-01

    Interpenetrating polymer networks (IPN) in which one elastomer network is under high tension balanced by compression of the second network have been shown to exhibit electrically-induced strain up to 300% and promise a number of polymer actuators with substantially enhanced performance and stability. This paper describes the mechanical and thermal properties of the IPN electroelastomer films. The quasi-linear viscoelastic model and Yeoh strain energy potential are used to characterize the viscoelastic response and stress-strain behavior of the IPN films in comparison with 3M VHB films, primary component network in the IPN films. Material parameters were determined from uniaxial stress relaxation experiments. An analysis of the results confirms that the IPN composites have reduced viscoelasticity and fast stress-strain response due to preserved prestrain. Differential scanning calorimetry showed two glass transition temperatures that are slightly shifted from the two component networks, respectively. The two networks in the IPN are considered to be independent of each other. The thermal property is also studied with termogravimetric analysis (TG).

  13. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel.

    PubMed

    Wang, Qianqian; Chen, Dajun

    2016-01-20

    The aim of the current study was to enhance the mechanical property of chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogels. A novel nanocomposite injectable hydrogel was prepared by introducing attapulgite (ATP) nano particles into the CS/GP hydrogels. The mechanical properties of the composite hydrogels with two different water contents were characterized by tensile test, the results shown that the tensile strength and elongation at break of composite hydrogels both increased obviously with increasing of ATP content. And, in our testing range, the maximum values of tensile strength and elongation at break were both more than 5 times larger than that of neat CS/GP hydrogel. We discussed this enhancement effect in detail by Scanning electron microscope observations (SEM) and Fourier transform infrared spectroscopy testing (FT-IR). The SEM images of composite hydrogels shown quite different from the neat CS/GP hydrogel, where the pores were more tightly and with some uniform and smaller holes dispersed on the wall. FT-IR test results revealed that the introduction of ATP increased the cross-link density because of the hydrogen bonds formation between ATP nanoparticles and CS molecules. Also, we studied the impact of ATP introduction on gelation speed through tracking the dynamic process of the sol-gel transition by means of rheological measurement, and the results shown that the reaction rate increased significantly with the increase of ATP concentration.

  14. Characterization and Physics-Based Modeling of Electrochemical Memristors

    DTIC Science & Technology

    2015-11-16

    Total Ionizing Dose, Single Event Upset, reduction, oxidation, Programmable Metallization Cell, resistive random access memory , TCAD, energy dispersive...x- ray scattering, Conductive Bridge Random Access Memory 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...103  7.2.4  Single Event Effects in PMC-Based Memory

  15. MICROBIAL CHARACTERIZATION OF MANURE BASED PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    The implementation of permeable reactive barriers (PRB) provides a viable option for the remediation of contaminants of environmental significance such as dissolved metals (i.e., chromium), chlorinated solvents, and nitrate/ammonia. The designs of PRBs are usually based on the a...

  16. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  17. Older stands characterized and estimated from sample-based surveys

    Treesearch

    Margaret S. Devall; Victor A. Rudis

    1991-01-01

    Old growth criteria from the literature are applied to existing data from systematic sample-based surveys to obtain estimates of detailed attributes for private as well as public stands in the Interior Highlands of Arkansas and Oklahoma. Approximately ¼ of the regions forest is mature. With the most stringent old growth criteria applied, less than 2% of the forested...

  18. MICROBIAL CHARACTERIZATION OF MANURE BASED PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    The implementation of permeable reactive barriers (PRB) provides a viable option for the remediation of contaminants of environmental significance such as dissolved metals (i.e., chromium), chlorinated solvents, and nitrate/ammonia. The designs of PRBs are usually based on the a...

  19. Texture-based paper characterization using nonsupervised clustering

    NASA Astrophysics Data System (ADS)

    Turtinen, Markus; Pietikaeinen, Matti; Silven, Olli; Maenpaa, Topi; Niskanen, Matti

    2003-04-01

    A non-supervised clustering based method for classifying paper according to its quality is presented. The method is simple to train, requiring minimal human involvement. The approach is based on Self-Organizing Maps and texture features that discriminate the texture of effectively. Multidimensional texture feature vectors are first extracted from paper images. The dimensionality of the data is then reduced by a Self-Organizing Map (SOM). In dimensionality reduction, the feature data are projected to a two-dimensional space and clustered according to their similarity. The clusters represent different paper qualities and can be labeled according to the quality information of the training samples. After that, it is easy to find the quality class of the inspected paper by checking where a sample is placed in the low-dimensional space. Tests based on images taken in a laboratory environment from four different paper quality classes provided very promising results. Local Binary Pattern (LBP) texture features combined with a SOM-based approach classified the test data almost perfectly: the error percentage was only 0.2% with the multiresolution version of LBP and 1.6% with the regular LBP. The improvement to the previously used texture features in paper inspection is huge: the classification error is reduced over 40 times. In addition to the excellent classification accuracy, the method also offers a self-intuitive user interface and a synthetic view to the inspected data.

  20. Lake Superior Phytoplankton Characterization from the 2006 Probability Based Survey

    EPA Science Inventory

    We conducted a late summer probability based survey of Lake Superior in 2006 which consisted of 52 sites stratified across 3 depth zones. As part of this effort, we collected composite phytoplankton samples from the epilimnion and the fluorescence maxima (Fmax) at 29 of the site...

  1. Characterization of two ceramic-base-metal alloys.

    PubMed

    Huget, E F; Vlica, J M; Wall, R M

    1978-12-01

    Compositions, microstructures, properties, and heat treatment characteristics of two ceramic-base-metal alloys were studied. The materials displayed significant compositional and structural differences. Both alloys were strengthened by precipitation hardening. Strength and rigidity of the nickel-chromium alloys suggest their potential usefulness in fixed prosthodontic procedures.

  2. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Not Available

    1990-03-01

    This three-year research project at Combustion Engineering, Inc. (CE), will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering data base, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical data base will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical data base to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing.

  3. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares J.

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  4. Lake Superior Phytoplankton Characterization from the 2006 Probability Based Survey

    EPA Science Inventory

    We conducted a late summer probability based survey of Lake Superior in 2006 which consisted of 52 sites stratified across 3 depth zones. As part of this effort, we collected composite phytoplankton samples from the epilimnion and the fluorescence maxima (Fmax) at 29 of the site...

  5. Processing and characterization of bio-based composites

    NASA Astrophysics Data System (ADS)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  6. Characterization of a starch based desiccant wheel dehumidifier

    NASA Astrophysics Data System (ADS)

    Beery, Kyle Edward

    Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.

  7. Ecological risk characterization based on exposure to contaminants through the Rocky Mountain Arsenal aquatic food chains

    SciTech Connect

    Toll, J.E.; Cothern, K.A.; Pavlou, S.; Tate, D.J.; Armstrong, J.P.

    1994-12-31

    This paper describes ecological risk characterization methods and results for characterizing potential risk from exposure to bioaccumulative contaminants of concern (aldrin, dieldrin, endrin, DDT, DDE, and mercury) through the lake food chains at Rocky Mountain Arsenal (RMA). Aquatic risks were estimated for the bald eagle, great blue heron, shorebird, and water bird using a prey-tissue-concentration-based food web model. Methods for estimating missing tissue concentration data were developed on a case-by-case basis and will be described. A sediment-based food web model was also considered and the reasons for its rejection will be described. Generalizable insights from the aquatic ecological risk characterization will be discussed.

  8. Characterization and Applications of Affinity Based Surface Modification of Polypyrrole

    NASA Astrophysics Data System (ADS)

    Nickels, Jonathan D.

    I present the characterization and applications of a technique to modify the surface of the conducting polymer, polypyrrole, via a novel, 12-amino acid peptide, THRTSTLDYFVI (T59). This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole, allowing it to be used in tethering molecules to polypyrrole for uses such as a scaffold for the treatment of peripheral nerve injury or in surface coatings of neural recording electrodes. I have quantified the binding of this peptide as well as investigating the mechanism of the binding. The equilibrium constant of the binding interaction of PPyCl and the T59 peptide was found through a binding assay to be 92.6 nM, and the off rate was found to be approximately 2.49 s-1, via AFM force spectroscopy. The maximum observed surface density of the peptide was 1.27 +/- 0.42 femtomoles/cm2. Furthermore, my studies suggest that the eighth residue, aspartic acid, is the main contributor of the binding, by interacting with the partially positive charge on the backbone of polypyrrole. I have demonstrated practical applications of the technique in the successful modification of a PPyCl surface with the laminin fragment IKVAV, as well as the so-called stealth molecule poly(ethylene glycol) (PEG). A subcutaneous implant study was performed to confirm that the T59 peptide did not induce any significant reaction in vivo. Significantly, the conductivity of a PPyCl surface was unaffected by this surface modification technique.

  9. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  10. Preliminary characterization and modeling of SMA-based textile composites

    NASA Astrophysics Data System (ADS)

    Masuda, Arata; Ni, Qing-Qing; Sone, Akira; Zhang, Run-Xin; Yamamura, Takahiko

    2004-07-01

    In this paper, we conduct a feasibility study to investigate the future potential of textile composites with shape memory alloys. Two different types of SMA-based textile composites are presented. First, a composite plate with embedded woven SMA layer is fabricated, and the stiffness tuning capability is evaluated by impact vibration tests. The results are not favorable, but may be improved by increasing the volume fraction of SMA, and by controlling the prestrain more accurately during the lamination process. The modeling and analysis methodology for woven SMA-based composites are briefly discussed. Then, the possibility of textile composites with SMA stitching is discussed, that is expected to give the composites multi-functions such as tunable stiffness, shape control and sensing capability, selectively distributed on demand.

  11. Performance characterization of structured light-based fingerprint scanner

    NASA Astrophysics Data System (ADS)

    Hassebrook, Laurence G.; Wang, Minghao; Daley, Raymond C.

    2013-05-01

    Our group believes that the evolution of fingerprint capture technology is in transition to include 3-D non-contact fingerprint capture. More specifically we believe that systems based on structured light illumination provide the highest level of depth measurement accuracy. However, for these new technologies to be fully accepted by the biometric community, they must be compliant with federal standards of performance. At present these standards do not exist for this new biometric technology. We propose and define a set of test procedures to be used to verify compliance with the Federal Bureau of Investigation's image quality specification for Personal Identity Verification single fingerprint capture devices. The proposed test procedures include: geometric accuracy, lateral resolution based on intensity or depth, gray level uniformity and flattened fingerprint image quality. Several 2-D contact analogies, performance tradeoffs and optimization dilemmas are evaluated and proposed solutions are presented.

  12. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  13. Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.

    PubMed

    Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura

    2017-03-02

    Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.

  14. A biodynamic feedthrough model based on neuromuscular principles.

    PubMed

    Venrooij, Joost; Abbink, David A; Mulder, Mark; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H

    2014-07-01

    A biodynamic feedthrough (BDFT) model is proposed that describes how vehicle accelerations feed through the human body, causing involuntary limb motions and so involuntary control inputs. BDFT dynamics strongly depend on limb dynamics, which can vary between persons (between-subject variability), but also within one person over time, e.g., due to the control task performed (within-subject variability). The proposed BDFT model is based on physical neuromuscular principles and is derived from an established admittance model-describing limb dynamics-which was extended to include control device dynamics and account for acceleration effects. The resulting BDFT model serves primarily the purpose of increasing the understanding of the relationship between neuromuscular admittance and biodynamic feedthrough. An added advantage of the proposed model is that its parameters can be estimated using a two-stage approach, making the parameter estimation more robust, as the procedure is largely based on the well documented procedure required for the admittance model. To estimate the parameter values of the BDFT model, data are used from an experiment in which both neuromuscular admittance and biodynamic feedthrough are measured. The quality of the BDFT model is evaluated in the frequency and time domain. Results provide strong evidence that the BDFT model and the proposed method of parameter estimation put forward in this paper allows for accurate BDFT modeling across different subjects (accounting for between-subject variability) and across control tasks (accounting for within-subject variability).

  15. Mn-based nanostructured building blocks: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Beltran Huarac, Juan

    The quest for smaller functional elements of devices has stimulated increased interest in charge-transfer phenomena at the nanoscale. Mn-based nanostructured building blocks are particularly appealing given that the excited states of high-spin Mn2+ ions induce unusual d-d energy transfer processes, which is critical for better understanding the performance of electronic and spintronic devices. These nanostructures also exhibit unique properties superior to those of common Fe- and Co-based nanomaterials, including: excellent structural flexibility, enhanced electrochemical energy storage, effective ion-exchange dynamics, more comprehensive transport mechanisms, strong quantum yield, and they act as effective luminescent centers for more efficient visible light emitters. Moreover, Mn-based nanostructures (MBNs) are crucial for the design and assembly of inexpensive nanodevices in diluted magnetic semiconductors (DMS), optoelectronics, magneto-optics, and field-effect transistors, owing to the great abundance and low-cost of Mn. Nonetheless, the paucity of original methods and techniques to fabricate new multifunctional MBNs that fulfill industrial demands limits the sustainable development of innovative technology in materials sciences. In order to meet this critical need, in this thesis we develop and implement novel methods and techniques to fabricate zero- and one-dimensional highly-crystalline new-generation MBNs conducive to the generation of new technology, and provide alternative and feasible miniaturization strategies to control and devise at nanometric precision their size, shape, structure and composition. Herein, we also establish the experimental conditions to grow Mn-based nanowires (NWs), nanotubes (NTs), nanoribbons (NRs), nanosaws (NSs), nanoparticles (NPs) and nanocomposites (NCs) via chemical/physical deposition and co-precipitation chemical routes, and determine the pertinent arrangements to our experimental schemes in order to extend our bottom

  16. Microwave Characterization of Typical Australian Wood-Based Biomass Materials

    NASA Astrophysics Data System (ADS)

    Ramasamy, Shanmuganathan; Moghtaderi, Behdad

    2009-03-01

    Many applications of microwave energy to wood-based materials require a reliable estimation of permittivity, which is the physical parameter of crucial importance in the absorption of electromagnetic energy. Wood-based materials are of significant importance in a number of application areas particularly in: (i) power generation, (ii) fire safety, and (iii) manufacturing. In the present study, dielectric measurements were carried out for typical Australian wood species such as slash pine (Pinus elliottii, soft wood), and spotted gum (Eucalyptus maculata, hard wood), based on Von Hippel's transmission line method. The influence of extractive removal is also studied and compared with the virgin wood samples. Measurements were performed at 9.5 GHz for virgin wood samples and extractive-free wood samples. Experiments were carried out at room temperatures and atmospheric pressure. The dielectric properties of wood species were determined for three principle structural directions (i.e. longitudinal, tangential and radial) and different moisture contents. Moisture content varied from 0% to 15% for virgin wood samples and from 3-6.6% for extractive-free wood samples at atmospheric equilibrium condition. Results indicated that for both wood species the dielectric constant was affected by moisture content, structural direction and density. The dielectric properties of both wood species were found to be quantitatively similar. In general, for virgin wood samples the dielectric constant was found to increase with moisture content and density. The values of dielectric constant in the longitudinal direction were generally higher than those in the transverse direction for both types of wood species. An abnormal trend was obtained for extractive—free wood samples.

  17. Characterization of color texture: color texture based sorting of tiles

    NASA Astrophysics Data System (ADS)

    Bourada, Y.; Lafon, Dominique; Eterradossi, O.

    1998-09-01

    Many materials used by the building industry show a color texture which affects the product commercial value. This texture can be seen as the spatial arrangement of regions of acceptable color differences. This work describes an appearance based automated sorting via color texture analysis, using ceramic tiles as example. Textural analysis of the tiles digital images expressed in CIEL*a*b* color system is performed through the analysis of intrinsic features of each region and relationships between regions. Results obtained through the automated process are compared to a visual sorting which leads to calculation of application dependant color and texture tolerances.

  18. Elaboration, characterization of CrN- based coatings

    SciTech Connect

    Tlili, B.; Nouveau, C.; Guillemot, G.

    2011-01-17

    Cr, CrN and CrAlN monolayers were synthesized by RF dual magnetron sputtering on AISI4140 steel and silicon substrates at 200 deg. C. Multilayers coatings based on the three mono-layers such as CrN/CrAlN and Cr/CrN/CrAlN were also synthesized only on Si. The physico-chemical and mechanical properties of the layers were determined by AFM, SEM+WDS, stress, roughness and nanoindentation measurements. The influence of the thickness on the mechanical properties of the monolayers stresses has been studied and as a consequence we compared the mono and multilayers stress state.

  19. Potential Functions and the Characterization of Economics-Based Information

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel

    2015-10-01

    The formulation of quantum mechanics as a diffusion process by Nelson (Phys Rev 150:1079-1085, 1966) provides for an interesting approach on how we may transit from classical mechanics into quantum mechanics. Besides the presence of the real potential function, another type of potential function (often denoted as `quantum potential') forms an intrinsic part of this theory. In this paper we attempt to show how both types of potential functions can have a use in a resolutely macroscopic context like financial asset pricing. We are particularly interested in uncovering how the `quantum potential' can add to the economics-based relevant information which is already supplied by the real potential function.

  20. Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Jayaramudu, Tippabattini; Kim, Jaehwan

    2017-08-01

    This paper reports cellulose nanocrystal (CNC) based transparent and electroactive polyurethane (CPPU), suitable for actively tunable optical lens. CNC is used for high dielectric filler to improve electromechanical behavior of CPPU. For high transparency and homogeneous distribution of CNC in polyurethane, CNC-poly[di(ethylene glycol) adipate] is used to play a role of polyol and isocyanate salt. The fabricated CPPU exhibits high transparency (>90%) and 10% of electromechanical strain under 3 V μm-1 electric field. Mechanical, dielectric properties as well as physical and chemical characteristics are investigated to prove the electromechanical behavior of CPPU.

  1. Electron microscopy characterization of Li-based cathode materials for battery applications

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick; Klie, Robert

    2014-03-01

    The role of aberration-corrected scanning transmission electron microscopy (STEM) in materials characterization is examined with respect to Li-based cathode materials for battery applications. STEM-based methods are quickly becoming the most promising characterization tools for these materials, owed largely to the wide-range of techniques available on advanced STEM instruments, including the direct imaging of both heavy and light elements, and both energy-dispersive X-ray (EDX) and electron energy loss (EEL) spectroscopies. The current talk with focus on structural and chemical characterization of a Li-based cathode material, both in a pristine and irradiated state. Focus will remain on the nucleation of structural transitions, while also characterizing relevant parameters such as the manganese valence and oxygen presence. Various imaging modes, including high/low angle annular dark field (H/LAADF) and annular bright field (ABF), in conjunction with EELS, will be used extensively for this analysis.

  2. Synthesis and characterization of chitosan/curcumin blends based polyurethanes.

    PubMed

    Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Rehman, Saima; Tabasum, Shazia; Sultana, Salma

    2016-11-01

    In this work, new hexamethylene diisocyanate (HMDI) and hyroxylterminated polybutadiene (HTPB) based polyurethanes (PUs) were prepared following step growth polymerization by the introduction of varying mole ratio of chitosan (CH) and curcumin (CUR). Structural study of blends through infrared spectroscopy confirmed the incorporation of CH and CUR into the backbone of the PU. The scanning electron microscopic (SEM) study confirmed the well dispersion of incorporated chitosan/curcumin and homogeneity of surface of synthesized samples. Thermogravimetric analysis (TGA) of PU blends indicated a better thermal stability with 0.25M:0.75M of chitosan to curcumin. Mechanical properties such as modulus and tensile strength of PU blends were found to be better with higher contents of chitosan and curcumin. The same extender composition (1mol BDO, 075mol chitosan and 0.25mol curcumin) based PU showed higher substantial of antimicrobial activity as compared to the all other PUs. On the whole, this work is actually a step towards the generation of novel biocompatible materials preferably useful for biomedical applications.

  3. Suction based mechanical characterization of superficial facial soft tissues.

    PubMed

    Weickenmeier, J; Jabareen, M; Mazza, E

    2015-12-16

    The present study is aimed at a combined experimental and numerical investigation of the mechanical response of superficial facial tissues. Suction based experiments provide the location, time, and history dependent behavior of skin and SMAS (superficial musculoaponeurotic system) by means of Cutometer and Aspiration measurements. The suction method is particularly suitable for in vivo, multi-axial testing of soft biological tissue including a high repeatability in subsequent tests. The campaign comprises three measurement sites in the face, i.e. jaw, parotid, and forehead, using two different loading profiles (instantaneous loading and a linearly increasing and decreasing loading curve), multiple loading magnitudes, and cyclic loading cases to quantify history dependent behavior. In an inverse finite element analysis based on anatomically detailed models an optimized set of material parameters for the implementation of an elastic-viscoplastic material model was determined, yielding an initial shear modulus of 2.32kPa for skin and 0.05kPa for SMAS, respectively. Apex displacements at maximum instantaneous and linear loading showed significant location specificity with variations of up to 18% with respect to the facial average response while observing variations in repeated measurements in the same location of less than 12%. In summary, the proposed parameter sets for skin and SMAS are shown to provide remarkable agreement between the experimentally observed and numerically predicted tissue response under all loading conditions considered in the present study, including cyclic tests.

  4. Content-Based Image Retrieval for Semiconductor Process Characterization

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth W.; Karnowski, Thomas P.; Arrowood, Lloyd F.; Ferrell, Regina K.; Goddard, James S.; Lakhani, Fred

    2002-12-01

    Image data management in the semiconductor manufacturing environment is becoming more problematic as the size of silicon wafers continues to increase, while the dimension of critical features continues to shrink. Fabricators rely on a growing host of image-generating inspection tools to monitor complex device manufacturing processes. These inspection tools include optical and laser scattering microscopy, confocal microscopy, scanning electron microscopy, and atomic force microscopy. The number of images that are being generated are on the order of 20,000 to 30,000 each week in some fabrication facilities today. Manufacturers currently maintain on the order of 500,000 images in their data management systems for extended periods of time. Gleaning the historical value from these large image repositories for yield improvement is difficult to accomplish using the standard database methods currently associated with these data sets (e.g., performing queries based on time and date, lot numbers, wafer identification numbers, etc.). Researchers at the Oak Ridge National Laboratory have developed and tested a content-based image retrieval technology that is specific to manufacturing environments. In this paper, we describe the feature representation of semiconductor defect images along with methods of indexing and retrieval, and results from initial field-testing in the semiconductor manufacturing environment.

  5. Transuranic contaminated waste container characterization and data base. Revision I

    SciTech Connect

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  6. A Biosequence-based Approach to Software Characterization

    SciTech Connect

    Oehmen, Christopher S.; Peterson, Elena S.; Phillips, Aaron R.; Curtis, Darren S.

    2016-08-04

    For many applications, it is desirable to have some process for recognizing when software binaries are closely related without relying on them to be identical or have identical segments. Some examples include monitoring utilization of high performance computing centers or service clouds, detecting freeware in licensed code, and enforcing application whitelists. But doing so in a dynamic environment is a nontrivial task because most approaches to software similarity require extensive and time-consuming analysis of a binary, or they fail to recognize executables that are similar but nonidentical. Presented herein is a novel biosequence-based method for quantifying similarity of executable binaries. Using this method, it is shown in an example application on large-scale multi-author codes that 1) the biosequence-based method has a statistical performance in recognizing and distinguishing between a collection of real-world high performance computing applications better than 90% of ideal; and 2) an example of using family tree analysis to tune identification for a code subfamily can achieve better than 99% of ideal performance.

  7. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  8. Experimental characterization of droplet dispensing in electrowetting-based microfluidics

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad Khorsand; Shokoohi, Mehrdad; Passandideh-Fard, Mohammad

    2017-07-01

    In this study, the effect of various parameters on the dispensed droplet size in microchannels based on the electrowetting on dielectric technique is experimentally investigated. A printed circuit board (PCB)-based microfluidic chip is used as a platform for the experiments. A crescent configuration for the channel electrodes is fabricated, which leads to a higher electrowetting force which improves the motion of the droplet. In addition, two electrode designs are proposed, which provide a nearly constant overlapping length on the reservoir electrode. The focus of this paper is on the geometry of the reservoir and the channel electrode; therefore, the channel dimensions, surface conditions, and applied voltage are kept constant. The experiments are performed for various reservoir liquid volumes and different electrode shapes of the reservoir and the microchannel. The results show that decreasing the length of the small reservoir electrode reduces the size of the dispensed droplet. It is also observed that using a channel electrode curved in the opposite direction of the droplet motion leads to a smaller dispensed droplet.

  9. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  10. FABRICATION AND CHARACTERIZATION OF A CARBON NANOTUBE-BASED NANOKNIFE

    PubMed Central

    Singh, G.; Rice, P.; Mahajan, R. L.; McIntosh, J. R.

    2010-01-01

    We demonstrate construction and testing of a prototype microtome knife for cutting ~100 nm thick slices of frozen-hydrated biological samples based on a multiwalled carbon nanotube (MWCNT). A piezoelectric-based 3-D manipulator was used inside a scanning electron microscope (SEM) to select and position individual MWCNTs, which were subsequently welded in place using electron beam-induced deposition (EBID). The knife is built on a pair of tungsten needles with provision to adjust the distance between the needle tips, accommodating various lengths of MWCNTs. We performed experiments to test the mechanical strength of MWCNT in the completed device using an atomic force microscope (AFM) tip. An increasing force was applied at the midpoint of nanotube until failure, which was observed in situ in the SEM. The maximum breaking force was approximately (8 × 10−7) N which corresponds well with the typical microtome cutting forces reported in the literature. In situ cutting experiments were performed on a cell biological embedding plastic (epoxy) by pushing it against the nanotube. Initial experiments show indentation marks on the epoxy surface. Quantitative analysis is currently limited by the surface asperities which have the same dimensions as the nanotube. PMID:19417497

  11. Fabrication and characterization of a carbon nanotube-based nanoknife

    NASA Astrophysics Data System (ADS)

    Singh, G.; Rice, P.; Mahajan, R. L.; McIntosh, J. R.

    2009-03-01

    We demonstrate the fabrication and testing of a prototype microtome knife based on a multiwalled carbon nanotube (MWCNT) for cutting ~100 nm thick slices of frozen-hydrated biological samples. A piezoelectric-based 3D manipulator was used inside a scanning electron microscope (SEM) to select and position individual MWCNTs, which were subsequently welded in place using electron beam-induced deposition. The knife is built on a pair of tungsten needles with provision to adjust the distance between the needle tips, accommodating various lengths of MWCNTs. We performed experiments to test the mechanical strength of a MWCNT in the completed device using an atomic force microscope tip. An increasing force was applied at the mid-point of the nanotube until failure occurred, which was observed in situ in the SEM. The maximum breaking force was approximately (8 × 10-7) N which corresponds well with the typical microtome cutting forces reported in the literature. In situ cutting experiments were performed on a cell biological embedding plastic (epoxy) by pushing it against the nanotube. Initial experiments show indentation marks on the epoxy surface. Quantitative analysis is currently limited by the surface asperities, which have the same dimensions as the nanotube.

  12. Characterization of resilin-based materials for tissue engineering applications.

    PubMed

    Renner, Julie N; Cherry, Kevin M; Su, Renay S-C; Liu, Julie C

    2012-11-12

    Modular proteins have emerged as powerful tools in tissue engineering because both the mechanical and biochemical properties can be precisely controlled through amino acid sequence. Resilin is an attractive candidate for use in modular proteins because it is well-known for having low stiffness, high fatigue lifetime, and high resilience. However, no studies have been conducted to assess resilin's compressive properties, cytocompatibility with clinically relevant cells, or effect on cell spreading. We designed a modular protein containing repeating sequences of a motif derived from Anopheles gambiae and cell-binding domains derived from fibronectin. Rapid cross-linking with tris(hydroxymethyl)phosphine was observed. The hydrogels had a complex modulus of 22 ± 1 kPa and yield strain of 63%. The elastic modulus in compression, or unconfined compressive modulus, was 2.4 ± 0.2 MPa, which is on the same order as human cartilage. A LIVE/DEAD assay demonstrated that human mesenchymal stem cells cultured on the resilin-based protein had a viability of 95% after three days. A cell-spreading assay revealed that the cells interacted with the fibronectin-derived domain in a sequence-specific manner and resulted in a mean cell area ~1.4-fold larger than when cells were seeded on a sequence-scrambled negative control protein. These results demonstrate that our resilin-based biomaterial is a promising biomaterial for cartilage tissue engineering.

  13. Dielectric response based characterization and strength prediction of cementitious materials

    NASA Astrophysics Data System (ADS)

    Manchiryal, Ram Kishore

    Electrical property based methods are powerful tools to sense the properties of cement based materials. Among the several non-invasive investigative techniques, those based on monitoring the electrical properties during the initial setting and in the subsequent hardening period have immense potential in performance prediction of concrete. Electrical impedance spectroscopy (EIS) has emerged as one of the promising techniques to non-invasively probe the microstructure and property development in cement based materials. This thesis reports the results of a systematic investigation carried out to understand the influence of material parameters on the dielectric response of cement pastes and concretes, and also a methodology to property prediction in cementitious system using electrical properties. The influence of cement type, water-to-cementing materials ratio (w/cm), and the presence of fly ash as a cement replacement material on the conductivity of cement pastes is studied. The electrical conductivity---time relationships of cement pastes and concretes are expressed using a model that facilitates the extraction of initial and final conductivities, and a characteristic time parameter. These terms are used to derive information about the microstructural changes occurring with time in cement pastes. The experimental results are subjected to a range analysis to isolate the significant factors and factor interactions that influence the initial and final conductivities as well as the time parameter from the conductivity-time model for concrete mixtures. The material parameters that influence the measured conductivity are identified and their influence quantified. The changes in dielectric constant and conductivity spectra of cement paste and concretes are attributed to the polarization phenomena. There is an observed dielectric enhancement for fly ash modified pastes. The dielectric response of concrete is very similar to that of pastes, and the effect of dilution by the

  14. Characterization of subarctic vegetation using ground based remote sensing methods

    NASA Astrophysics Data System (ADS)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  15. Characterization of fatigue mechanisms in nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Yablinsky, Clarissa A.

    Ni-based superalloys are important for turbine engine airfoil applications. Historically, creep has been the main failure mode and thus creep mechanisms have been the subject of numerous studies. However, modern airfoil designs maintain cooler temperatures, and consequently creep is no longer the primary failure mode. Rather, in the cooled components, experience and experimental studies have shown that fatigue is the life-limiting factor. The changing cause of failure highlighted the need for a comprehensive study of fatigue deformation mechanisms. Information about crack propagation and the associated deformation mechanisms has allowed appropriate design changes based on fatigue as a life-limiting factor. The focus of the study will be on a monocrystalline Ni-based superalloy, Rene N5, which is currently used for airfoils. Compact tension specimens were tested under cyclic loading conditions to determine the influence of microstructure and material properties on crack propagation and fatigue failure. The crack growth rate as a function of temperature, environment, frequency, and crystallographic orientation was determined. High resolution scanning electron microscopy was used to examine the fracture surface on length scales from nano to macro. Deformation mechanisms in the plastic zone ahead of the crack tip and within the plastic wake of the crack were studied using TEM and FIB techniques. Environment and frequency seem to have a larger effect on fatigue crack growth rates and threshold stress intensity factor ranges, while temperature and orientation effects are present, but not as dramatic. In the normal blade orientation, (001)[100], mode I crack propagation was prevalent, with mode II crack propagation found at higher DeltaK values. Interdendritic particles appear to be slowing crack growth rates in the threshold region of specimens tested in air. Microstructural analysis showed no change in gamma' precipitate size or morphology with temperature or stress

  16. Fabrication and Characterization of a Nanocoax-Based Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Rizal, Binod; Archibald, Michelle M.; Naughton, Jeffrey R.; Connolly, Timothy; Shepard, Stephen C.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-03-01

    We used an imprint lithography process to fabricate three dimensional electrochemical sensors comprising arrays of vertically-oriented coaxial electrodes, with the coax cores and shields serving as working and counter electrodes, respectively, and with nanoscale separation gaps.[2] Arrays of devices with different electrode gaps (coax annuli) were prepared, yielding increasing sensitivity with decreasing annulus thickness. A coax-based sensor with a 100 nm annulus was found to have sensitivity 100 times greater than that of a conventional planar sensor control, which had millimeter-scale electrode gap spacing. We suggest that this enhancement is due to an increase in the diffusion of molecules between electrodes, which improves the current per unit surface area compared to the planar device. Supported by NIH (National Cancer Institute and the National Institute of Allergy and Infectious Diseases).

  17. Preparation and characterization of safe microparticles based on xylan.

    PubMed

    Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen

    2017-10-01

    This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.

  18. Au-Based Catalysts: Electrochemical Characterization for Structural Insights.

    PubMed

    Pifferi, Valentina; Chan-Thaw, Carine E; Campisi, Sebastiano; Testolin, Anna; Villa, Alberto; Falciola, Luigi; Prati, Laura

    2016-02-25

    Au-based catalysts are widely used in important processes because of their peculiar characteristics. The catalyst performance depends strongly on the nature and structure of the metal nanoparticles, especially in the case of bimetallic catalysts where synergistic effects between the two metals can be occasionally seen. In this paper, it is shown that electrochemical characterisation (cyclovoltammetry CV and electrochemical impedance spectroscopy EIS) of AuPd systems can be used to determine the presence of an electronic interaction between the two metals, thus providing a strong support in the determination of the nature of the synergy between Au and Pd in the liquid phase oxidation of alcohols. However, it seems likely that the strong difference in the catalytic behavior between the single metals and the bimetallic system is connected not only to the redox behaviour, but also to the energetic balance between the different elementary steps of the reaction.

  19. Characterization and Modeling of a Water-based Liquid Scintillator

    SciTech Connect

    L. J. Bignell; Beznosko, D.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; S. Kettell; Rosero, R.; Themann, H. W.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-12-15

    We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.

  20. Nanoscale synthesis and characterization of graphene-based objects

    PubMed Central

    Fujita, Daisuke

    2011-01-01

    Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM) has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated. PMID:27877419

  1. Chitosan based oligoamine polymers: synthesis, characterization, and gene delivery.

    PubMed

    Lu, Bo; Wang, Chang-Fang; Wu, De-Qun; Li, Cao; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-07-01

    A series of chitosan-based oligoamine polymers was synthesized from N-maleated chitosan (NMC) via Michael addition with diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and linear polyethylenimine (M(n) 423), respectively. The resulted polymers exhibited well binding ability to condense plasmid DNA to form complexes with size ranging from 200 to 600 nm when the polymer/DNA weight ratio was above 7. The polymer/DNA complexes observed by scanning electron microscopy (SEM) exhibited a compact and spherical morphology. The cytotoxicity assay showed that the synthesized polymers were less toxic than that of PEI(25 K). The gene transfection effect of resulted polymers was evaluated in 293T and HeLa cells, and the results showed that the gene transfection efficiency of these polymers was better than that of chitosan. Moreover, the transfection efficiency was dependent on the length of the oligoamine side chains and the molecular weight of the chitosan derivatives.

  2. Characterization of Brillouin dynamic grating based on chaotic laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Li, Zhuping; Zhang, Mingjiang; Liu, Yi; Li, Yang

    2017-08-01

    The Brillouin dynamic grating (BDG) based on chaotic laser has particular advantages over the conventional BDG, for example, the creation of single and permanent BDG. To gain insight into the chaotic BDG, we theoretically investigate the reflection and gain spectra characteristics of the chaotic BDG generated in the polarization maintaining fiber. We find that the reflection spectral width of the chaotic BDG is inversely proportional to the effective grating length and the variation in the gain spectral width is negligible with respect to the effective grating length. The widths of the reflection and gain spectra are not affected by the power of the chaotic pump wave. Besides, we analyze that the occurrence of the weak BDG in the generation process of the chaotic BDG leads to the side-lobe of the reflected pulse.

  3. Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Ismail, Hammad; Mirza, Bushra; McKee, Vickie; Bolte, Michael

    2016-07-01

    Four novel ON donor Schiff bases (E)-2-((4-phenoxyphenylimino)methyl)phenol (HL1), (E)-2-((4-(4-biphenyloxy)phenylimino)methyl)phenol(HL2), (E)-2-((4-(naphthalen-1-yloxy) phenylimino)methyl)phenol(HL3)and(E)-2-((4-(2-naphthoxy)phenylimino)methyl)phenol (HL4)have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. Single crystal X-ray diffraction analysis of Schiff base (HL3) revealed that phenol and anthracene rings are inclined at 30.25(9)° and 89.64(4)° to the central phenyl ring, respectively. Intra and inter molecular interactions are observed in single crystal analysis of HL3 Intramolecular interactions are hydrogen bonding but most of the intermolecular interactions are of the C-H … π type. There is a bit of π … π stacking between the anthracene groups. Only compounds (HL1) and (HL3) have been investigated for the biological activities due to slight solubility of (HL2) and (HL4) in DMSO. The results of brine shrimp cytotoxicity assay indicated LD50 values <1 μg/ml showing significant antitumor activity with IC50 values 14.20 and 4.54 μg/ml respectively. The compounds were highly active in protecting DNA against hydroxyl free radicals in concentration dependent manner. Voltammetric results indicated that one electron irreversible oxidation product is formed due to hydroxyl moiety and the process is diffusion controlled. On exposing to DNA environment the electrooxidised product developed electrostatic linkage and groove binding intercalation while consuming the DNA concentration substantially. The binding strength was quantitative in terms of drug-DNA binding of the order of 104 M-1.

  4. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  5. Growth and characterization of silicon-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Filios, Adam A.

    Photonics, a blending of optics and electronics, has emerged as one of the world's most rapidly developing fields. Along with microelectronics, they constitute the core technologies of the information industry, and their advances are complementing each other in the tasks of the acquisition, transmission, storage, and processing of increasing amounts of information. Microelectronic device integration has progressed to the point that complete "systems-on-the-chip" have been realized. Photonic materials need to be integrated with standard electronic circuits for the implementation of the next generation optoelectronic "super-chip" where both electrons and photons participate in the transmission and processing of information. Silicon is the cornerstone material in conventional VLSI systems. However, having a relatively small and indirect fundamental energy band-gap, silicon is an inefficient lightemitter. On the other hand, direct integration of III-V photonic materials on a silicon chip is still very problematic. Squeezing light out of silicon itself appears to be an attractive alternative. Light emission from silicon is an important fundamental issue with enormous technological implications. In this work we explore several strategies towards developing silicon based optoelectronic devices. Porous silicon, a material produced by electrochemically etching silicon in aqueous hydrofluoric acid solutions, generated great interest in the early 1990s when it was shown to exhibit relatively bright, room temperature, visible photoluminescence. However, having a poor surface morphology, the material is fragile and chemically unstable leading to degradation of light emission and preventing integration with silicon processing technology. With the development of the epitaxially grown crystalline-Si/O superlattice, we attempt to overcome the morphological problems of porous silicon, retaining its light emission characteristics. Our multilayer c-Si/O device consists of thin silicon

  6. Processing, characterization and mechanical properties of alumina-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Thomson, Katherine E.

    2007-12-01

    The present study focuses on improving the fracture toughness of nanocrystalline alumina by incorporating second phases---specifically niobium and carbon nanotubes. Ceramics have many properties that lend themselves well to load bearing and armor applications. Chemical inertness, high hardness and strength, low wear rates and low densities are examples of these properties that warrant potential substitution of metals and their alloys. In this study, nanocrystalline alumina was investigated based on its impressive elevated temperature properties and high hardness. Despite these promising structural properties, pure nanocrystalline alumina has low fracture toughness (˜2.5 MPa*m1/2) and is thus limited to non-structural applications. Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering (˜1200°C, 4 min). Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNTs) begin to break down at sintering temperatures above 1150°C. Nuclear magnetic resonance (NMR) showed that, although thermodynamically unlikely, no Al4C3 was formed in the CNT-alumina nanocomposites. Thus, the nanocomposite is purely a physical mixture and no chemical bond was formed between the nanotubes and matrix. In addition, in-situ 3-pt and standard 4-pt bend tests were conducted on niobium and/or carbon nanotube-reinforced alumina nanocomposites in order to assess their toughness. Although stable crack growth was not achieved in the 3-pt bend testing, average fracture toughness vales of 6.1 and 3.3 MPa·m 1/2 were measured for 10 vol%Nb and 10 vol%Nb-5 vol%SWCNT-alumina, respectively. The 4-pt bend testing measured average intrinsic fracture toughness of 2.95, 2.76, 3.33 and 3.95 MPa·m1/2 for alumina nanocomposites containing 5 vol%SWCNT, 10 vol%SWCNT, 5 vol%DWCNT and 10 vol% Nb, respectively. Although nanocrystalline alumina will never be able to compete with

  7. Sensory characterization of virgin olive oil-based cosmetic creams.

    PubMed

    Parente, Maria Emma; Gámbaro, Adriana; Boinbaser, Lucia; Roascio, Antonella

    2013-01-01

    The influence of olive oil concentration and sensory profile on the odor of virgin olive oil-based cosmetic creams was studied. Four olive oils were selected on the basis of different intensities of positive and defective odor attributes: two extra virgin olive oils, one virgin olive oil, and one ordinary virgin olive oil. Thirty cosmetic creams were prepared, by both cold and hot processing methods, using each of the above oils at concentrations of 3%, 5%, and 10%, in addition to mineral oil controls. A trained sensory panel evaluated the fruitiness and defectiveness intensities in the odor of creams, using unstructured 10-cm scales ranging from "none at all" to "much." The fruity and defective attributes perceived in the odor of creams were significantly influenced by the sensory profile of the starting olive oil, oil concentration, and preparation method. Overall, these findings suggest that virgin olive oils of only slightly fruity odor may be conveniently used for the preparation of cold-processed cosmetic creams, whereas ordinary virgin olive oils appear to be suitable for the preparation of cosmetic creams only by hot processing of the emulsion at a low oil concentration.

  8. Characterization of a boron carbide-based polymer neutron sensor

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; James, Robinson; Dong, Bin; Driver, M. Sky; Kelber, Jeffry A.; Downing, Greg; Cao, Lei R.

    2015-12-01

    Boron is used widely in thin-film solid-state devices for neutron detection. The film thickness and boron concentration are important parameters that relate to a device's detection efficiency and capacitance. Neutron depth profiling was used to determine the film thicknesses and boron-concentration profiles of boron carbide-based polymers grown by plasma enhanced chemical vapor deposition (PECVD) of ortho-carborane (1,2-B10C2H12), resulting in a pure boron carbide film, or of meta-carborane (1,7-B10C2H12) and pyridine (C5H5N), resulting in a pyridine composite film, or of pyrimidine (C4H4N2) resulting in a pure pyrimidine film. The pure boron carbide film had a uniform surface appearance and a constant thickness of 250 nm, whereas the thickness of the composite film was 250-350 nm, measured at three different locations. In the meta-carborane and pyridine composite film the boron concentration was found to increase with depth, which correlated with X-ray photoelectron spectroscopy (XPS)-derived atomic ratios. A proton peak from 14N (n,p)14C reaction was observed in the pure pyrimidine film, indicating an additional neutron sensitivity to nonthermal neutrons from the N atoms in the pyrimidine.

  9. Comparison and characterization of Android-based fall detection systems.

    PubMed

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-10-08

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.

  10. Wavelet based feature extraction and visualization in hyperspectral tissue characterization

    PubMed Central

    Denstedt, Martin; Bjorgan, Asgeir; Milanič, Matija; Randeberg, Lise Lyngsnes

    2014-01-01

    Hyperspectral images of tissue contain extensive and complex information relevant for clinical applications. In this work, wavelet decomposition is explored for feature extraction from such data. Wavelet methods are simple and computationally effective, and can be implemented in real-time. The aim of this study was to correlate results from wavelet decomposition in the spectral domain with physical parameters (tissue oxygenation, blood and melanin content). Wavelet decomposition was tested on Monte Carlo simulations, measurements of a tissue phantom and hyperspectral data from a human volunteer during an occlusion experiment. Reflectance spectra were decomposed, and the coefficients were correlated to tissue parameters. This approach was used to identify wavelet components that can be utilized to map levels of blood, melanin and oxygen saturation. The results show a significant correlation (p <0.02) between the chosen tissue parameters and the selected wavelet components. The tissue parameters could be mapped using a subset of the calculated components due to redundancy in spectral information. Vessel structures are well visualized. Wavelet analysis appears as a promising tool for extraction of spectral features in skin. Future studies will aim at developing quantitative mapping of optical properties based on wavelet decomposition. PMID:25574437

  11. CT-Based Local Distribution Metric Improves Characterization of COPD.

    PubMed

    Hoff, Benjamin A; Pompe, Esther; Galbán, Stefanie; Postma, Dirkje S; Lammers, Jan-Willem J; Ten Hacken, Nick H T; Koenderman, Leo; Johnson, Timothy D; Verleden, Stijn E; de Jong, Pim A; Mohamed Hoesein, Firdaus A A; van den Berge, Maarten; Ross, Brian D; Galbán, Craig J

    2017-06-07

    Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRM(fSAD) has been observed. We postulate that representing the 3D PRM(fSAD) data as a single scalar quantity (relative volume of PRM(fSAD)) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRM(fSAD) classification maps. We found that the surface area of fSAD (S(fSAD)) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique S(fSAD) patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.

  12. Comparison and Characterization of Android-Based Fall Detection Systems

    PubMed Central

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-01-01

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems. PMID:25299953

  13. Synthesis, characterization, and modeling of new molecule-based magnets

    NASA Astrophysics Data System (ADS)

    Olson, Christopher Samuel

    The chemical bond and its role as a mediator of magnetic exchange interaction remains an important aspect in the study of magnetic insulators and semiconductors. The M[TCNE] (M = transition metal, TCNE = tetracyanoethylene) class of organic-based magnets has attracted considerable interest since V II[TCNE]x (x ˜ 2) exhibits one of the highest critical temperatures for its class -- Tc ˜ 400 K -- in addition to highly spin-polarized conduction and valance bands (Eg ˜ 0.5 eV), thus foreseeing potential spintronic application. The magneto-structural factors underlying this exceptional behavior remain elusive, however, due to the amorphous nature of the material. To address this, a novel synthetic route was utilized to produce new polycrystalline M[TCNE] solids (whose crystal structures have been resolved) with varying transition metal centers (Ni, Mn, Fe) and lattice dimensionality (2D-3D), exhibiting a wide range of Tc (40-170 K). Spectroscopic and magnetometric studies were performed and demonstrate that in 2D [M II(TCNE)(NCMe)2]X structures (M = Ni, Mn, Fe; X = diamagnetic anion), strong ligand-to-metal transfer of electron density from the organic TCNE radical plays a significant role in the formation of magnetic exchange pathways, while single-ion anisotropy strongly influences the critical temperature and below-Tc spin disorder for magnets in this material class. Additionally, using quantum-computational modeling, magnetic spin-density transfer trends, spin-polarized electronic structures, and electronic exchange coupling constants have been identified and interpreted in terms of 3d-orbital filling and dimensionality of magnetic interaction. These findings offer new perspectives on the stabilization of magnetic order in M[TCNE] solids.

  14. Synthesis and Characterization of Biomimetic Citrate-Based Biodegradable Composites

    PubMed Central

    Tran, Richard T.; Wang, Liang; Zhang, Chang; Huang, Minjun; Tang, Wanjin; Zhang, Chi; Zhang, Zhongmin; Jin, Dadi; Banik, Brittany; Brown, Justin L.; Xie, Zhiwei; Bai, Xiaochun; Yang, Jian

    2013-01-01

    Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester (CUPE) and poly (octanediol citrate) (POC), which can be composited with up to 65 wt.-% hydroxyapatite (HA). CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100 – 230 MPa), and increased C2C12 osterix (OSX) gene and alkaline phosphatase (ALP) gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6-weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked. PMID:23996976

  15. Synthesis and characterization of biomimetic citrate-based biodegradable composites.

    PubMed

    Tran, Richard T; Wang, Liang; Zhang, Chang; Huang, Minjun; Tang, Wanjin; Zhang, Chi; Zhang, Zhongmin; Jin, Dadi; Banik, Brittany; Brown, Justin L; Xie, Zhiwei; Bai, Xiaochun; Yang, Jian

    2014-08-01

    Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked.

  16. Bio-inspired artificial iridophores based on capillary origami: Fabrication and device characterization

    NASA Astrophysics Data System (ADS)

    Manakasettharn, Supone; Ashley Taylor, J.; Krupenkin, Tom N.

    2011-10-01

    Cephalopods have evolved complex optical mechanisms of dynamic skin color control based on mechanical actuation of micro-scale optical structures such as iridophores and chromatophores. In this work, we describe the design, fabrication, and characterization of bio-inspired artificial iridophores, which resemble microflowers with flexible reflective petals, based on capillary origami microstructures. Two methods of petal actuation have been demonstrated—one based on the electrowetting process and the other by volume change of the liquid droplet. These results were in good agreement with a model derived to characterize the actuation dynamics.

  17. A 10kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R.; Hancock, D.

    1981-01-01

    Transistors are characterized for use as switches in resonant circuit applications. A base drive circuit to provide the optimal base drive to these transistors under resonant circuit conditions is developed and then used in the design, fabrication and testing of a breadboard, spaceborne type 10 kW series resonant converter.

  18. Green Synthesis, Characterization, and Application of Metal-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Lewis, Crystal Shenandoa

    Metal-based nanomaterials have attracted significant research interest due to their unique size-dependent optical, magnetic, electronic, thermal, mechanical, and chemical properties as compared with their bulk counterparts. These advantageous and tailorable properties render these materials as ideal candidates for catalysis, photovoltaics, and even biomedical applications. However, nanomaterials are typically synthesized via chemical or physical processes, which are continuing to rise in cost, complexity, and toxicity. As a result, 'milder' and more environmentally benign nanoscale synthetic methodologies, particularly U-tube double diffusion, molten salt, and hydrothermal techniques, have been utilized to mitigate for these drawbacks. Moreover, these efficient and facile techniques coupled with the unique attributes of nanomaterials will aid in a more practical translation from the lab scale to industry with potential applications spanning from electronics, energy, to medicine. In this thesis, we will discuss the sustainable synthesis of crystalline elemental copper (Cu), nickel (Ni), magnetic spinel ferrites (MFe2O 4 wherein M is Co, Ni, or Zn), rare earth ion doped-calcium titanate (RE-CaTiO3), and hematite (alpha-Fe2O3) as well as our ability to tailor the size and/or morphology and hence tune their properties for potential applications in solar cells and biomedicine. Specifically, for the Cu and Ni nanowires (NWs), the diameters have been dictated by the various template diameters used in the U-tube double diffusion technique. Subsequently, their photocatalytic properties were observed when coupled with TiO2 NPs. For MFe2O4, RE-CaTiO3, and alpha-Fe2O3 nanostructures, the hydrothermal method was employed wherein various parameters such as reaction temperature, concentration, and addition of surfactant were varied to influence their morphology and/or composition. For example, as the reaction temperature was increased, ultrasmall MFe2O4 particles transformed from

  19. Volcanism by melt-driven Rayleigh-Taylor instabilities and possible consequences of melting for admittance ratios on Venus

    NASA Technical Reports Server (NTRS)

    Tackley, P. J.; Stevenson, D. J.; Scott, D. R.

    1992-01-01

    A large number of volcanic features exist on Venus, ranging from tens of thousands of small domes to large shields and coronae. It is difficult to reconcile all these with an explanation involving deep mantle plumes, since a number of separate arguments lead to the conclusion that deep mantle plumes reaching the base of the lithosphere must exceed a certain size. In addition, the fraction of basal heating in Venus' mantle may be significantly lower than in Earth's mantle reducing the number of strong plumes from the core-mantle boundary. In three-dimensional convection simulations with mainly internal heating, weak, distributed upwellings are usually observed. We present an alternative mechanism for such volcanism, originally proposed for the Earth and for Venus, involving Rayleigh-Taylor instabilities driven by melt buoyancy, occurring spontaneously in partially or incipiently molten regions.

  20. A new method for anisotropic materials characterization based on phased-array ultrasonic transducers technology

    SciTech Connect

    Frenet, D.; Calmon, P.; Paradis, L.

    1999-12-02

    A method for materials characterization based on the utilization of a ultrasonic array transducer of conical shape has been developed at the CEA. The specific design of this transducer allows the generation and the detection of leaky surface acoustic waves (LSAW) in an efficient way. Additionally, anisotropic materials can be investigated in several azimuthal directions without any mechanical movement. The characterization process relies on the velocity measurement of the LSAW. Experimental results on both isotropic an anisotropic material are reported.

  1. An identification and characterization of biodiesel fatty acid based by using dielectric sensor

    NASA Astrophysics Data System (ADS)

    Rahmawati; Djatna, T.; Noor, E.; Irzaman

    2017-05-01

    The fatty acids composition is identified by a gas chromatography mass spectrometer (GC-MS), then it is characterized in saturated and unsaturated components. This paper investigates biodiesel fatty acid by using dielectric constant measurements and focuses on dielectric sensor based on biodiesel chemical properties characterization. The objectives of this paper are identification fatty acids and determination of correlation dielectric properties and biodiesel fatty acid characterization. The proposed method is dielectric constant by using capacitance sensor are applied to determine the response dielectric sensor from the fatty acid composition. Sixteen fatty acid methyl esters were identified and two characterizations the amount of saturated and unsaturated fatty ester fractions. The model parameter was determined by regression analysis for estimating the relationships among fatty acid content and dielectric properties. The results show that measurements of electrical properties, successfully used for the characterization of fatty acids. The dielectric constant of biodiesel was found increasing as the saturated decreases. This relationship becomes calibration for the assessment of the quality of biodiesel based on the dielectric sensor. The model reveals that the fatty acid composition affects the value of the biodiesel dielectric and show that dielectric sensor potentially to handle for characterization of biodiesel fatty acid content.

  2. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  3. Image-based pupil plane characterization via principal component analysis for EUVL tools

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Burbine, Andrew; Verduijn, Erik; Wood, Obert; Mangat, Pawitter; Goldberg, Kenneth A.; Benk, Markus P.; Wojdyla, Antoine; Smith, Bruce W.

    2016-03-01

    We present an approach to image-based pupil plane amplitude and phase characterization using models built with principal component analysis (PCA). PCA is a statistical technique to identify the directions of highest variation (principal components) in a high-dimensional dataset. A polynomial model is constructed between the principal components of through-focus intensity for the chosen binary mask targets and pupil amplitude or phase variation. This method separates model building and pupil characterization into two distinct steps, thus enabling rapid pupil characterization following data collection. The pupil plane variation of a zone-plate lens from the Semiconductor High-NA Actinic Reticle Review Project (SHARP) at Lawrence Berkeley National Laboratory will be examined using this method. Results will be compared to pupil plane characterization using a previously proposed methodology where inverse solutions are obtained through an iterative process involving least-squares regression.

  4. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: encapsulation and leakage.

    PubMed

    Franzen, Ulrik; Nguyen, Tam T T N; Vermehren, Charlotte; Gammelgaard, Bente; Ostergaard, Jesper

    2011-04-28

    A capillary electrophoresis-based method to characterize a PEGylated liposomal drug formulation of the anti-cancer agent oxaliplatin was developed. Pharmaceutical characterization in terms of determination of the free and total oxaliplatin concentrations in the liposomal formulation was successfully performed allowing calculation of the percentage of encapsulated drug and encapsulation efficiency. The trapping efficiency was likewise calculated. The capillary electrophoresis method allowed liposome characterization in the intended formulation media (sucrose solution with low electrolyte concentration), and the attained results were consistent with inductively coupled plasma mass spectrometry measurements. Accelerated drug leakage studies were initiated by the sonication of the PEGylated formulation, using an ultrasound probe, subsequently the drug leakage was determined by capillary electrophoresis. The results obtained with the PEGylated liposomes demonstrate that capillary electrophoresis may be a useful tool for the characterization of liposomal drug formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Breast tissue characterization based on fractional differencing model of ultrasonic RF echo

    NASA Astrophysics Data System (ADS)

    Alacam, Burak; Yazici, Birsen; Bilgutay, Nihat M.

    2003-05-01

    A number of researchers have previously shown that the ultrasound RF echo of tissue exhibits (1/f)-β characteristics and developed tissue characterization methods based on the fractal parameter β. In this paper we propose Fractional Differencing Autoregressive Moving Average (FARMA) process for modeling RF ultrasound echo and develop breast tissue characterization method based on the FARMA model parameters. This model has been used to capture statistical self-similarity and long-range correlations in image textures, in wide ranging engineering and science applications, including communication network traffic. Here, we present estimation techniques to extract the model parameters, namely features, for classification purposes and tissue characterization. We show the performance of our tissue characterization procedure on several in vivo ultrasound breast images including benign and malignant tumors. The area of the receiver operator characteristics (ROC) based on 60 in vivo images yields a value of 0.79, which indicates that proposed tissue characterization method is comparable in performance with other successful methods reported in the literature.

  6. General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

    PubMed Central

    Haghighi, Maryam; Rezaei, Karamatollah

    2012-01-01

    Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484

  7. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    USDA-ARS?s Scientific Manuscript database

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  8. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  9. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    USDA-ARS?s Scientific Manuscript database

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  10. Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Cornett, Jane; Chen, Baoxing; Haidar, Samer; Berney, Helen; McGuinness, Pat; Lane, Bill; Gao, Yuan; He, Yifan; Sun, Nian; Dunham, Marc; Asheghi, Mehdi; Goodson, Ken; Yuan, Yi; Najafi, Khalil

    2017-05-01

    Thermoelectric energy harvesters convert otherwise wasted heat into electrical energy. As a result, they have the potential to play a critical role in the autonomous wireless sensor network signal chain. In this paper, we present work carried out on the development of Bi2Te3-based thermoelectric chip-scale energy harvesting devices. Process flow, device demonstration and characterization are highlighted.

  11. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  12. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  13. Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Cornett, Jane; Chen, Baoxing; Haidar, Samer; Berney, Helen; McGuinness, Pat; Lane, Bill; Gao, Yuan; He, Yifan; Sun, Nian; Dunham, Marc; Asheghi, Mehdi; Goodson, Ken; Yuan, Yi; Najafi, Khalil

    2016-10-01

    Thermoelectric energy harvesters convert otherwise wasted heat into electrical energy. As a result, they have the potential to play a critical role in the autonomous wireless sensor network signal chain. In this paper, we present work carried out on the development of Bi2Te3-based thermoelectric chip-scale energy harvesting devices. Process flow, device demonstration and characterization are highlighted.

  14. UV Curable Epoxy-Based Second Order Nonlinear Optical Materials; Synthesis and Characterization

    DTIC Science & Technology

    1992-05-14

    01JUN91 to 31MAY92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS UV Curable Epoxy-Based Second Order Nonlinear Optical Materials ; C: N00014-90-J- 1148 Svnthesis... Nonlinear Optical Materials ; Synthesis and Characterization by R.J. Jeng, Y.M. Chen, B.K. Mandal, J. Kumar and S.K. Tripathy to be published in

  15. Qdr-Based Approach to Microwave Characterization of HIGH-TC Superconductors

    NASA Astrophysics Data System (ADS)

    Cherpak, N. T.; Izhyk, E. V.; Kirichenko, A. Ya.; Velichko, A. V.

    2000-09-01

    A technique for HTS microwave characterization based on using quasioptical dielectric resonator (QDR) is proposed. Experimental set-up with 8mm waveband QDR has been developed. The setup operates as an integral one performing several functions. It enables measuring not only the temperature dependences of the microwave surface resistance, radiofrequency response of HTS to microwave irradiation, but also the nonlinear surface resistance. Authors discuss the scope for progress of the QDR-based technique and its new abilities.

  16. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, Patrick C; Mahurin, Shannon Mark; Fulvio, Pasquale F; Yeary, Joshua S; Oyola, Yatsandra; Jiang, Deen; Dai, Sheng

    2012-01-01

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  17. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, PC; Mahurin, SM; Fulvio, PF; Yeary, JS; Oyola, Y; Jiang, DE; Dai, S

    2012-09-05

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analyzed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  18. Physico-chemical characterization and property correlations in base oils and fractions

    SciTech Connect

    Singh, H.; Swarup, S.; Chaudhary, G.S.

    1993-04-01

    Three high viscosity index base oils of Middle Eastern origin and their twelve hydrocarbon type fractions, separated using elution chromatography, have been characterized and their data used in physical property correlations. Relationships of chemical composition with the viscosity index and the neutralization number are reported. The neutralization number has been found to correlate with two derived parameters representing the degree of refining of base oils. 25 refs., 5 figs., 2 tabs.

  19. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    PubMed

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2017-09-05

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  1. Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy.

    PubMed

    Świętek, Elżbieta; Pilarczyk, Kacper; Derdzińska, Justyna; Szaciłowski, Konrad; Macyk, Wojciech

    2013-09-14

    Several techniques can be applied to characterize redox properties of wide bandgap semiconductors, however some of them are of limited use. In this paper we propose a new modification of the old spectroelectrochemical method developed two decades ago. A procedure based on measurements of the reflectance changes as a function of potential applied to the electrode coated with the studied material appears to be a very convenient tool for characterizing redox properties of semiconductors, forming either transparent or opaque films at a platinum electrode. A discussion on the measured redox parameters of semiconductor films concludes with a definition of a new term, the absorption onset potential of the material.

  2. Scalable preparation, characterization, and application of alkali-treated starch as a new organic base catalyst.

    PubMed

    Tamaddon, Fatemeh; KazemiVarnamkhasti, MohammadTaghi

    2017-01-02

    Preparation, characterization, and application of alkali starch (AS) given by dry co-grinding of starch and alkali is described in this work. Grinding using a mortar (agate) and pestle or, more conveniently, a ball mill has been found to be satisfactory for the preparation of the AS. The AS products were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) and x-ray fluorescence (XRF) analyses. The base capacities of ASs were 4.25-4.45 mmol/g, respectively. AS is a low cost and easy to handle base catalyst that showed promising catalytic performance in the synthesis of a dihydroquinazoline-based antibacterial drug that involves tandem hydration or decarboxylative amidation, imination, and Aza-Michael reactions.

  3. Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites.

    PubMed

    Chivrac, Frederic; Gueguen, Olivier; Pollet, Eric; Ahzi, Said; Makradi, Ahmed; Averous, Luc

    2008-11-01

    The aim of this work was to predict the effective elastic properties of starch-based nano-biocomposites. Experiments (materials elaboration, morphological characterization and determination of mechanical properties) were conducted on both the pristine matrix (plasticized starch) and the matrix filled with montmorillonite nanoclay. Aggregated/intercalated and exfoliated nano-biocomposites were produced and mechanically tested under uniaxial tension to understand the effect of montmorillonite morphology/dispersion on the stiffness properties of starch-based nano-biocomposites. Micromechanical models, based on the classical bounds and the Mori-Tanaka approaches, were developed taking into consideration the influence of the clay concentration, the exfoliation ratio, the relative humidity and the storage time (ageing). Predicted results are in a good agreement with our experiments and show that the micromechanical model can be used as an indirect characterization technique to quantify the exfoliation/aggregation degree in the plasticized starch/clay nano-biocomposites.

  4. A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection.

    PubMed

    Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang

    2016-08-12

    A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed.

  5. A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection

    PubMed Central

    Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang

    2016-01-01

    A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed. PMID:27515782

  6. Confectionery industry: a case study on treatability-based effluent characterization and treatment system performance.

    PubMed

    Ozgun, H; Karagul, N; Dereli, R K; Ersahin, M E; Coskuner, T; Ciftci, D I; Ozturk, I; Altinbas, M

    2012-01-01

    Source-based wastewater characterization and stream segregation provide effective management of industrial wastewaters. The characterization of wastewater sources from a confectionery factory was presented and performance of the wastewater treatment plant was evaluated in this study. All of the wastewater sources in the factory, except the vacuum water line, can be characterized by high concentrations of soluble pollutants and low pH. High organic content of the wastewater generated from the confectionery industry promoted the application of anaerobic technology as a pre-treatment before the conventional aerobic treatment. The average chemical oxygen demand (COD) removal and biogas production for expanded granular sludge bed reactor were 88% and 1,730 Nm(3)/day, respectively. The effluent from the investigated facility can be used for irrigation provided that conductivity values are within acceptable limits.

  7. Physicochemical characterization of three fiber-reinforced epoxide-based composites for dental applications.

    PubMed

    Bonon, Anderson J; Weck, Marcus; Bonfante, Estevam A; Coelho, Paulo G

    2016-12-01

    Fiber-reinforced composite (FRC) biomedical materials are in contact with living tissues arising biocompatibility questions regarding their chemical composition. The hazards of materials such as Bisphenol A (BPA), phthalate and other monomers and composites present in FRC have been rationalized due to its potential toxicity since its detection in food, blood, and saliva. This study characterized the physicochemical properties and degradation profiles of three different epoxide-based materials intended for restorative dental applications. Characterization was accomplished by several methods including FTIR, Raman, Brunauer-Emmett-Teller (BET) Analysis, X-ray fluorescence spectroscopy, and degradation experiments. Physicochemical characterization revealed that although materials presented similar chemical composition, variations between them were more largely accounted by the different phase distribution than chemical composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Reparation and characterization of water-borne polyurethane based on PCDL or (and) PCL prepolymer

    NASA Astrophysics Data System (ADS)

    Sun, Yenan; Zhao, Can; Xiao, Jijun

    2017-08-01

    A series of waterborne polyurethanes (WPUs) were synthesized by a pre-polymer process from isophorone diisocyanate and polycarbonatediol (PCDL), polycaprolactone (PCL). Fourier transform infrared spectroscopy, thermal gravimetric analysis, dynamic thermomechanical analysis and mechanical measurements were employed to characterize the thermal stability, physical and mechanical properties of the films derived from the emulsions. The results show that there is better mechanical properties of and thermal stability for PCL-based WPU. The thermal stability of PCDL-PCL based WPU, whichin the mass ratio of PCDL to PCL is 1 to 1 is the best. The PCDL-based WPU has the highest glass transition temperature.

  9. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  10. Image-based pupil plane characterization via a space-domain basis

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Burbine, Andrew; Verduijn, Erik; Wood, Obert; Goldberg, Kenneth A.; Benk, Markus P.; Wojdyla, Antoine; Smith, Bruce W.

    2017-04-01

    Aberration characterization plays a critical role in the development of any optical system. State-of-the-art lithography systems have the tightest aberration tolerances. We present an approach to image-based pupil plane amplitude and phase characterization using models built with a space-domain basis, in which aberration effects are separable. A polynomial model is constructed between the projections of the image intensity for chosen binary mask targets onto this basis and pupil amplitude or phase variation. This method separates model building and pupil characterization into two distinct steps, thus enabling rapid pupil characterization following data collection. The basis is related to both the transmission cross-coefficient function and the principal components of the image intensity. The pupil plane variation of a zone-plate lens from the Semiconductor High-NA Actinic Reticle Review Project (SHARP) at Lawrence Berkeley National Laboratory is examined using this method. Results are compared to pupil plane characterization using a previously proposed methodology where inverse solutions are obtained through an iterative process involving least-squares regression.

  11. Contemporary nucleic acid-based molecular techniques for detection, identification, and characterization of Bifidobacterium.

    PubMed

    Mianzhi, Yao; Shah, Nagendra P

    2017-03-24

    Bifidobacteria are one of the most important bacterial groups found in the gastrointestinal tract of humans. Medical and food industry researchers have focused on bifidobacteria because of their health-promoting properties. Researchers have historically relied on classic phenotypic approaches (culture and biochemical tests) for detection and identification of bifidobacteria. Those approaches still have values for the identification and detection of some bifidobacterial species, but they are often labor-intensive and time-consuming and can be problematic in differentiating closely related species. Rapid, accurate, and reliable methods for detection, identification, and characterization of bifidobacteria in a mixed bacterial population have become a major challenge. The advent of nucleic acid-based molecular techniques has significantly advanced isolation and detection of bifidobacteria. Diverse nucleic acid-based molecular techniques have been employed, including hybridization, target amplification, and fingerprinting. Certain techniques enable the detection, characterization, and identification at genus-, species-, and strains-levels, whereas others allow typing of species or strains of bifidobacteria. In this review, an overview of methodological principle, technique complexity, and application of various nucleic acid-based molecular techniques for detection, identification, and characterization of bifidobacteria is presented. Advantages and limitations of each technique are discussed, and significant findings based on particular techniques are also highlighted.

  12. Attenuation and backscattering based tissue characterization in intravascular optical coherence tomography pullback-runs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Eggermont, Jeroen; Sotomi, Yohei; Dijkstra, Jouke

    2017-02-01

    Intravascular optical coherence tomography (IVOCT) is a new intravascular imaging modality which enables arterial structures to be visualized at a microstructure level. The determination of these structures is currently performed manually based on relative light intensities which is difficult because there are many factors, including the position inside the artery and vendor of the catheter, which can influence these intensities. In this study we demonstrate how optical attenuation and backscattering values can be computed and used as better characterizing features for different types of atherosclerotic plaque such as fibro-atheroma, lipid-pools and calcified areas. To validate the method, different plaque components are segmented in multiple IVOCT pullback runs using matching histology-data. The optical attenuation, backscattering and light intensity features of the segmented regions are then automatically extracted and analyzed for their entropy with regards to tissue characterization. The results of the validation analysis show that the computed attenuation and backscattering measurements are in agreement with those published in literature and that especially attenuation is a more robust feature than light intensity when it comes to tissue characterization. As a practical application we show how attenuation and backscattering can be used to quickly determine the presence of lipid or calcified plaques which can be important factors to determine patient treatment. Based on these findings we intend to develop a fully automatic tissue characterization method for IVOCT.

  13. An automated image-based tool for pupil plane characterization of EUVL tools

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Smith, Jack S.; Fenger, Germain; Smith, Bruce W.

    2016-03-01

    Pupil plane characterization will play a critical role in image process optimization for EUV lithography (EUVL), as it has for several lithography generations. In EUVL systems there is additional importance placed on understanding the ways that thermally-induced system drift affect pupil variation during operation. In-situ full pupil characterization is therefore essential for these tools. To this end we have developed Quick Inverse Pupil (QUIP)—a software suite developed for rapid characterization of pupil plane behavior based on images formed by that system. The software consists of three main components: 1) an image viewer, 2) the model builder, and 3) the wavefront analyzer. The image viewer analyzes CDSEM micrographs or actinic mask micrographs to measure either CDs or through-focus intensity volumes. The software is capable of rotation correction and image registration with subpixel accuracy. The second component pre-builds a model for a particular imaging system to enable rapid pupil characterization. Finally, the third component analyzes the results from the image viewer and uses the optional pre-built model for inverse solutions of pupil plane behavior. Both pupil amplitude and phase variation can be extracted using this software. Inverse solutions are obtained through a model based algorithm which is built on top of commercial rigorous full-vector simulation software.

  14. Novel techniques for detection and characterization of nanomaterials based on aerosol science supporting environmental applications.

    PubMed

    Mugica, Iñaki; Fito, Carlos; Domat, Maidá; Dohányosová, Pavla; Gutierrez-Cañas, Cristina; López-Vidal, Silvia

    2017-12-31

    The number of people exposed to nanoparticles is growing accordingly to the production and development of new nanomaterials. Moreover, this increase is expected to continue in the future. However, there is a lack of standardized sampling and metric methods to measure the level of exposure to nanoparticles, and the information related to possible adverse health effects is scarce. Aerosol technology has been detecting and characterizing nanoparticles for decades and some of their developments can be of use in nanotechnology characterization. We present here two current developments based on used principles in aerosol science, which can widen its application to the characterization of nanomaterials. On the one hand, a sample preparation technique for nanoparticle analysis by electron microscopy based on electrospray atomization technology. Several samples prepared in this way have been analysed and compared to more traditional sample preparation strategies like the "drop on grid" method. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and the number of single particles increases substantially. On the other hand, it is presented an electrical mobility classification system, DMA, with enormous possibilities for the quick and economic size characterization of suspensions of nanoparticles, thanks to its injection system by electrospray and to its high resolution in the lower range of the nanoscale. The first assessment of the abovementioned devices highlights its potential applications in exposure assessment and nanotechnological contexts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  16. Characterization of tooth structure and the dentin-enamel zone based on the Stokes-Mueller calculation.

    PubMed

    Sun, Chia-Wei; Hsieh, Yao-Sheng; Ho, Yi-Ching; Jiang, Cho-Pei; Chuang, Ching-Cheng; Lee, Shyh-Yuan

    2012-11-01

    This is the first study of dentin-enamel zone (DEZ) identification with tooth structure characterization based on the optical Stokes-Mueller measurement. Stokes vectors of a cross-sectional tooth slice were measured using various polarization inputs. The direction of the DEZ is different in enamel and dentin structures; therefore, the Stokes profiles can specifically characterize the structures based on the DEZ. This optical method, using polarimetry, provides a useful tool for characterizing tooth.

  17. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    SciTech Connect

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  18. A review on flow characterization methods for cereal grain-based powders.

    PubMed

    Ambrose, R P Kingsly; Jan, Shumaila; Siliveru, Kaliramesh

    2016-01-30

    Flow difficulties during handling, storage, and processing are common in cereal grain-based powder industries. The many studies that focus on the flow properties of powders can be classified as flow indicators, shear properties, and dynamic flow properties. The non-uniformity of physical and chemical characteristics of the individual particles that make up the bulk solid of cereal grain-based powders adds complexity to the characterization of flow behavior. Even so, knowledge of flow behavior is critical to the design of productive and cost-effective equipment for handling and processing of these powders. Because many factors influence flow, a single property/index value may not satisfactorily quantify the flow or no-flow of powders. For powders of biological origin, chemical composition and environmental factors such as temperature and relative humidity complicate flow characterization. This review focuses on the specific flow characteristics that directly affect powder flow during handling, processing, and storage.

  19. Extraction of agar from Gelidium sesquipedale (Rhodopyta) and surface characterization of agar based films.

    PubMed

    Guerrero, P; Etxabide, A; Leceta, I; Peñalba, M; de la Caba, K

    2014-01-01

    The chemical structure of the agar obtained from Gelidium sesquipedale (Rhodophyta) has been determined by (13)C nuclear magnetic resonance ((13)C NMR) and Fourier transform infrared spectroscopy (FTIR). Agar (AG) films with different amounts of soy protein isolate (SPI) were prepared using a thermo-moulding method, and transparent and hydrophobic films were obtained and characterized. FTIR analysis provided a detailed description of the binding groups present in the films, such as carboxylic, hydroxyl and sulfonate groups, while the surface composition was examined using X-ray photoelectron spectroscopy (XPS). The changes observed by FTIR and XPS spectra suggested interactions between functional groups of agar and SPI. This is a novel approach to the characterization of agar-based films and provides knowledge about the compatibility of agar and soy protein for further investigation of the functional properties of biodegradable films based on these biopolymers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase.

    PubMed

    Parra, A; Casero, E; Vázquez, L; Jin, J; Pariente, F; Lorenzo, E

    2006-06-06

    A microscopic and voltammetric characterization of lactate oxidase- (LOx-) based bioanalytical platforms for biosensor applications is presented. In this context, emphasis is placed on amperometric biosensors based on LOx that have been immobilized by direct absorption on carbon surfaces, in particular, glassy carbon (GC) and highly ordered pyrolytic graphite (HOPG). The immobilized LOx layers have been characterized using atomic force microscopy (AFM) under liquid conditions and cyclic voltammetry. In addition, spatially resolved mapping of enzymatic activity has been carried out using scanning electrochemical microscopy (SECM). In the presence of lactate with hydroxymethylferrocene (HMF) as a redox mediator in solution, biosensors obtained by direct adsorption of LOx onto GC electrodes exhibited a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. The proposed biosensor also exhibits good operating performance in terms of linearity, detection limit, and lifetime.

  1. A CAD system based on complex networks theory to characterize mass in mammograms

    NASA Astrophysics Data System (ADS)

    Watanabe, Carolina Y. V.; Ramos, Jonathan S.; Traina, Agma J. M.; Traina, Caetano, Jr.

    2012-03-01

    This paper presents a Computer-Aided Diagnosis (CAD) system for mammograms, which is based on complex networks to shape boundary characterization of mass in mammograms, suggesting a "second opinion" to the health specialist. A region of interest (the mass) is automatically segmented using an improved algorithm based on EM/MPM and the shape is modeled into a scale-free complex network. Topological measurements of the resulting network are used to compose the shape descriptors. The experiments comparing the complex network approach with other traditional descriptors, in detecting breast cancer in mammograms, show that the proposed approach accomplish the best values of accuracy. Hence, the results indicate that complex networks are wellsuited to characterize mammograms.

  2. A surface intrinsic feature based method (SIFBM) for the characterization of optical microstructure

    NASA Astrophysics Data System (ADS)

    Cheung, C. F.; Kong, L. B.; Lee, W. B.; To, S.

    2008-12-01

    Optical microstructures are small scale topologies which are generally classified as grooves, pyramids, microlens arrays, lenticulations, echells, etc. They are widely used in advanced optics applications. Currently, there is lack of methods for the characterization of surface quality for optical microstructures with sub-micromenter form accuracy and surface finish in the nanometer range. This paper presents a Surface Intrinsic Feature Based Method (SIFBM) which makes use of surface intrinsic properties such as curvatures, normal vectors, torsion, intrinsic frames, etc. They are mapped as special images and image processing techniques are then employed to conduct image registration or correspondences searching by some algorithms such as correlation functions. The surface matching is optimized by corresponding vectors deviations. In the present study, a prototype surface characterization system has been built based on the SIFBM. Primary experimental work has been conducted to validate the proposed method. The results demonstrate that the SIFBM has potential advantages over existing methods.

  3. Toxicity Appraisal of Untreated Dyeing Industry Wastewater Based on Chemical Characterization and Short Term Bioassays.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Javeed, Aqeel; Anjum, Aftab Ahmad; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra; Khan, Abdul Muqeet; Altaf, Imran

    2016-04-01

    Characterizing wastewaters only on a chemical basis may be insufficient owing to their complex nature. The purpose of this study was to assess toxicity of textile dyeing wastewater based on analytical techniques and short term toxicity based bioassays. In this study, screening of the fractionated wastewater through GC-MS showed the presence of phenols, phthalic acid derivatives and chlorpyrifos. Metal analysis revealed that chromium, arsenic and mercury were present in amounts higher than the wastewater discharge limits. Textile dyeing wastewater was found to be highly mutagenic in the Ames test. DNA damage in sheep lymphocytes decreased linearly with an increase in the dilution of wastewater. MTT assay showed that 8.3 percent v/v wastewater decreased cell survival percentage to 50 %. It can be concluded from this study that short term toxicity tests such as Ames test, in vitro comet assay, and cytotoxicity assays may serve as useful indicators of wastewater pollution along with their organic and inorganic chemical characterizations.

  4. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    PubMed

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers.

  5. Design and Characterization of Mechanism-Based Inhibitors for the Tyrosine Aminomutase SgTAM

    SciTech Connect

    Montavon,T.; Christianson, C.; Festin, G.; Shen, B.; Bruner, S.

    2008-01-01

    The synthesis and evaluation of two classes of inhibitors for SgTAM, a 4-methylideneimidazole-5-one (MIO) containing tyrosine aminomutase, are described. A mechanism-based strategy was used to design analogs that mimic the substrate or product of the reaction and form covalent interactions with the enzyme through the MIO prosthetic group. The analogs were characterized by measuring inhibition constants and X-ray crystallographic structural analysis of the co-complexes bound to the aminomutase, SgTAM.

  6. Synthesis and Characterization of Conducting Elastomers Based on Interpenetrated C60-Derived Polymer Networks

    DTIC Science & Technology

    2007-11-02

    CHARACTERIZATION OF CONDUCTING ELASTOMERS BASED ON INTERPENETRATED C 60-DERIVED POLYMER NETWORKS" 6. AUTHOR( S ) PROFESSOR LONG Y. CHIANG PROFESSOR LEE Y. WANG 7...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) IHE FOUNDATION OF CONDENSED MATTER SCIENCES NATIONAL TAIWAN UNIVERSITY 1 ROOSEVELT ROAD TAIPEI...TAIWAN 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) ASIAN OFFICE OF AEROSPACE RESEARCH AND DEVELOPMENT (AOARD) UNIT 45002 f\\P0 AP 96337

  7. A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.

    1987-01-01

    This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.

  8. Characterization and optical properties of novel unsymmetrical stilbene-based 1,3,4-oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    He, Dao-Hang; Li, Xin-Wei; Yang, Chong; Yang, Jun

    2012-09-01

    A series of novel unsymmetrical stilbene-based 1,3,4-oxadiazole derivatives were efficiently synthesized by a four-pots reaction sequence. All of the title compounds were characterized by MS, 1H-NMR and elemental analysis. UV-Vis absorption and fluorescence emission spectra of the compounds were investigated in dilute chloroform solution; the compounds exhibit strong blue-green fluorescence ranged from 397 to 499 nm and show potential for application in organic optical materials.

  9. Longitudinal segmentation and characterization of river features based on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Piegay, H.; Bizzi, S.; Weissteiner, C.; Demarchi, L.

    2014-12-01

    Although our understanding of fluvial processes has made significant progress over the last decades, river classification and the derived knowledge about river systems has so far been based on discontinuous sampling along the river course through field works and/or (subjective) interpretation of aerial images. Pioneer continuous longitudinal characterization of river reach or network used aerial photographs and highlighted planimetric patterns (mainly channel style, width and sinuosity) but did not consider elevation which is a very important parameter of channel forms. LiDAR being now more frequently available at large scale, a new step is to introduce such information in the longitudinal river characterization. We propose a river characterization, applied to 60km of the river Orco, located in Piedmont region, Italy, based on remote sensing data available at regional scale: namely color infrared orthophotos at 40 cm and a LIDAR derived DTM at 5 m acquired simultaneously in 2009-2010. Thirteen geomorphic variables are extracted virtually continuously along the river describing three river components: channel planform features (e.g. number of water channels and sinuosity), floodplain features (e.g. valley bottom shape), channel settings (e.g. width, confinement and slope), in-channel topography (e.g. bed relief index). A multi-dimensional river segmentation is performed applying the Hubert test: river styles are distinguished based on the density of discontinuities in channel planform features. Discontinuities in floodplain and channel settings are related to river style transitions and analyzed quantitatively. Specific river geomorphic signatures based on the distributions of the geomorphic variables are defined for each river style. The proposed segmentation matches remarkably well stretches where distinct channel adjustment processes of river bed aggradation and incision occurred, as shown by 1974 and 2003 cross-section comparisons. The method is completely data

  10. Development of a phase Doppler based probe for icing cloud droplet characterization

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Smith, J. N.; Bachalo, W. D.

    1990-01-01

    The development and evaluation of a compact optical fiber probe (OFP) for airborne and wind tunnel icing cloud characterizations is described. This probe was based upon the proven phase Doppler technique for measuring the size and velocity of spherical drops. Direct comparisons of the size distributions from the standard PDPA with the OFP were used to confirm the reliability of the probe. After some improvements in the fiber coupling efficiency, the number density and liquid water content data agreed to within 15 percent.

  11. Preparation and characterization of a novel ionizing electromagnetic radiation shielding material: Hematite filled polyester based composites

    NASA Astrophysics Data System (ADS)

    Eren Belgin, E.; Aycik, G. A.; Kalemtas, A.; Pelit, A.; Dilek, D. A.; Kavak, M. T.

    2015-10-01

    Isophthalic polyester (PES) based and natural mineral (hematite) filled composites were prepared and characterized for ionizing electromagnetic radiation shielding applications. Density evaluation and microscopic studies of the composites were carried out. Shielding performances of the composites were investigated for three different IEMR energy regions as low, intermediate and high. The mass attenuation coefficient of the prepared composites reached 98% of the elemental lead. In addition, the studied composites were superior to lead by virtue of their non-toxic nature.

  12. Marinosomes, marine lipid-based liposomes: physical characterization and potential application in cosmetics.

    PubMed

    Moussaoui, N; Cansell, M; Denizot, A

    2002-08-21

    Marinosomes are liposomes based on a natural marine lipid extract containing a high polyunsaturated fatty acid (PUFA) ratio. They were prepared and characterized in conditions that mimic that of topical application in terms of pH, temperature and calcium. Marinosomes were stable in storage conditions for 1 month. At low pH (pH 4) or in presence of high calcium concentrations (9 mM), complex structural rearrangements, such as aggregation and size reduction, occurred which were kinetically dependant.

  13. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Anz-Meador, Phillip; Sorge, Marlon; Opiela, John; Fitz-Coy, Norman; Huynh, Tom; Krisko, Paula

    2017-01-01

    Existing DOD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  14. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Krisko, Paula; Opiela, John; Fitz-Coy, Norman; Sorge, Marlon; Huynh, Tom

    2017-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  15. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  16. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (∼40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films.

  17. Characterizations of MV-algebras based on the theory of falling shadows.

    PubMed

    Yang, Yongwei; Xin, Xiaolong; He, Pengfei

    2014-01-01

    Based on the falling shadow theory, the concept of falling fuzzy (implicative) ideals as a generalization of that of a T ∧-fuzzy (implicative) ideal is proposed in MV-algebras. The relationships between falling fuzzy (implicative) ideals and T-fuzzy (implicative) ideals are discussed, and conditions for a falling fuzzy (implicative) ideal to be a T ∧-fuzzy (implicative) ideal are provided. Some characterizations of falling fuzzy (implicative) ideals are presented by studying proprieties of them. The product ⊛ and the up product ⊚ operations on falling shadows and the upset of a falling shadow are established, by which T-fuzzy ideals are investigated based on probability spaces.

  18. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    SciTech Connect

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  19. Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.

    1992-01-01

    Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.

  20. Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Rauf, Abdur; Shah, Afzal; Munawar, Khurram Shahzad; Khan, Abdul Aziz; Abbasi, Rashda; Yameen, Muhammad Arfat; Khan, Asad Muhammad; Khan, Abdur Rahman; Qureshi, Irfan Zia; Kraatz, Heinz-Bernhard; Zia-ur-Rehman

    2017-10-01

    A Novel Schiff base, 3-(((4-chlorophenyl)imino)methyl)benzene-1,2-diol (HL1) was successfully synthesized along with a structurally similar Schiff base 3-(((4-bromophenyl)imino)methyl)benzene-1,2-diol (HL2). Both the Schiff bases were used to synthesize their zinc (II) and cobalt (II) complexes. These compounds were characterized by FTIR, 1H NMR, 13C NMR and elemental analysis. Metal complexes were confirmed by TGA. Crystals of Schiff bases were also characterized by X-ray analysis and experimental parameters were found in line with the theoretical parameters. Quantum mechanical approach was also used to fine useful structural parameters and to ensure the geometry of metal complexes. The photometric behaviors of all the synthesized compounds were investigated in a wide pH range using BR buffers. The appearance of isosbestic points indicated the existence of Schiff bases in more than one isomeric form. Moreover, these compounds were screened for enzyme inhibition; antibacterial, cytotoxic and in vivo antidiabetic activities and compounds were found active against one or other activity. Results indicate that ZnL22 is a good inhibitor of alkaline phosphatase enzyme and possess highest potential against diabetes, blood cholesterol level and cancer cells. This effort just provides preliminary data for some biological properties. Further investigations are required to precisely determine mechanistic pathways of their use towards drug development.

  1. Étude par spectroscopie d'admittance et MEB de la dégradation électrique des couches minces de CuAlS{2} non dopé déposées sous vide

    NASA Astrophysics Data System (ADS)

    Helali, N.; Bouricha, B.; Rezig, B.

    1998-07-01

    We have accelerated the ageing of CuAlS2 by the application of a static electrical field for different degradation times. We have investigated the admittance spectroscopy and the scanning electron microscopy to follow and understand the (mass-charge) coupled transport processes produced in the volume and on the surface of these films. The electrical constraint induces, after an incubation phase, an activated decrease of the resistance, followed by a susbstantial increase correlated to the formation of an open circuit. This degradation occurs more rapidly for the films having initially a lower resistance, due to the thermal dissipation which increases considerably the temperature to about 140 °C. Admittance spectra reveal, at low frequencies, a capacitive loop related to the formation of a charge space induced by copper diffusion. Such migration develop induces the formation of copper arborescences, spreading from the cathode towards the anode. The effect of these structures on the properties of the degraded films is discussed in relation to electromigration and associated processes (whiskers, fracture, healing, bridge-building, ...). Also, we have noticed their similarity with fractal phenomena such as electrodeposition and dielectric breakdown. Nous avons accéléré le vieillissement des couches minces de CuAlS2 par l'application d'un champ électrique statique pendant des durées variables. Nous avons fait appel à la spectroscopie d'admittance et la microscopie électronique à balayage, pour suivre et comprendre les processus de transport couplé (masse- charge) qui se produisent en volume et en surface de ces couches. L'effet de la contrainte électrique s'est traduit, après une phase d'incubation, par une décroissance activée de la résistance, suivie d'une phase d'emballement reliée à la formation d'un circuit ouvert. Cette fracturation se manifeste plus rapidement pour les couches ayant initialement une faible résistance, suite à l'effet de la

  2. Study on electrical properties of Al/Cu(In,Ga)Se2 Schottky junction and ZnO/CdS/Cu(In,Ga)Se2 heterojunction using admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Ishida, N.; Ishizuka, S.; Matsubara, K.; Sakurai, K.; Yamada, A.; Paul, G. K.; Akimoto, K.; Niki, S.

    2006-09-01

    The electrical properties of Al/Cu(In,Ga)Se2 (Al/CIGSe) Schottky junction and ZnO/CdS/CIGSe heterojunction were studied by admittance spectroscopy. Three distinct peaks (peaks , , and ) were detected from all the CIGSe samples. The activation energies for the traps corresponding to peaks and were estimated to be approximately 10 meV and 300 meV, respectively. The peak may be due to the shallow acceptor, and peaks and may be due to defects in the CIGSe layer. The characteristics of the peak have close correlation with the surface potential of the CIGSe layer. Therefore, the peak may be caused by traps such as grain boundary defects near the surface of the CIGSe layer.

  3. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  4. DebriSat- A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    NASA Astrophysics Data System (ADS)

    Liou, J.-C.; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-08-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960s U.S. Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg LEO satellite; performance of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD and NASA satellite breakup models to better describe the breakup outcome of a modern satellite.

  5. Raman-Based Steady-State Thermal Characterization of Multiwall Carbon Nanotube Bundle and Buckypaper.

    PubMed

    Li, Man; Yue, Yanan

    2015-04-01

    Electrical methods for thermal characterization, like 3ω method, micro-bridge method and TET method have been widely used in the thermal property measurement, while always been limited by the electrical conductance of samples or other temperature dependent thermal resistors. As an optical method, Raman thermometry has been developed and broadly applied in thermal characterization in recent years. In this work, we present a steady-state method based on Raman spectroscopy for the localized thermal characterization of micro/nanowires and thin film materials, respectively. The physical models are developed and two kinds of materials: a MWCNT bundle and a piece of buckypaper are measured to validate this method. The thermal conductivities are measured as 4.92 W/m K and 0.83 W/m K for CNT bundle and buckypaper respectively. Compared with other optical methods, this steady-state Raman method features easy and fast way for thermal characterization, being capable of measuring samples from millimeters down to nanometers.

  6. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  7. Missing Values: Proposition of a Typology and Characterization with an Association Rule-Based Model

    NASA Astrophysics Data System (ADS)

    Ben Othman, Leila; Rioult, François; Ben Yahia, Sadok; Crémilleux, Bruno

    Handling missing values when tackling real-world datasets is a great challenge arousing the interest of many scientific communities. Many works propose completion methods or implement new data mining techniques tolerating the presence of missing values. It turns out that these tasks are very hard. In this paper, we propose a new typology characterizing missing values according to relationships within the data. These relationships are automatically discovered by data mining techniques using generic bases of association rules. We define four types of missing values from these relationships. The characterization is made for each missing value. It differs from the well-known statistical methods which apply a same treatment for all missing values coming from a same attribute. We claim that such a local characterization enables us perceptive techniques to deal with missing values according to their origins: the way in which we deal with the missing values should depend on their origins (e.g., attribute meaningless w.r.t. other attributes, missing values depending on other data, missing values by accident). Experiments on a real-world medical dataset highlight the interests of such a characterization.

  8. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    SciTech Connect

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power data are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.

  9. Quantitative characterization of metastatic disease in the spine. Part II. Histogram-based analyses

    SciTech Connect

    Whyne, Cari; Hardisty, Michael; Wu, Florence; Skrinskas, Tomas; Clemons, Mark; Gordon, Lyle; Basran, Parminder S.

    2007-08-15

    Radiological imaging is essential to the appropriate management of patients with bone metastasis; however, there have been no widely accepted guidelines as to the optimal method for quantifying the potential impact of skeletal lesions or to evaluate response to treatment. The current inability to rapidly quantify the response of bone metastases excludes patients with cancer and bone disease from participating in clinical trials of many new treatments as these studies frequently require patients with so-called measurable disease. Computed tomography (CT) can provide excellent skeletal detail with a sensitivity for the diagnosis of bone metastases. The purpose of this study was to establish an objective method to quantitatively characterize disease in the bony spine using CT-based segmentations. It was hypothesized that histogram analysis of CT vertebral density distributions would enable standardized segmentation of tumor tissue and consequently allow quantification of disease in the metastatic spine. Thirty two healthy vertebral CT scans were first studied to establish a baseline characterization. The histograms of the trabecular centrums were found to be Gaussian distributions (average root-mean-square difference=30 voxel counts), as expected for a uniform material. Intrapatient vertebral level similarity was also observed as the means were not significantly different (p>0.8). Thus, a patient-specific healthy vertebral body histogram is able to characterize healthy trabecular bone throughout that individual's thoracolumbar spine. Eleven metastatically involved vertebrae were analyzed to determine the characteristics of the lytic and blastic bone voxels relative to the healthy bone. Lytic and blastic tumors were segmented as connected areas with voxel intensities between specified thresholds. The tested thresholds were {mu}-1.0{sigma}, {mu}-1.5{sigma}, and {mu}-2.0{sigma}, for lytic and {mu}+2.0{sigma}, {mu}+3.0{sigma}, and {mu}+3.5{sigma} for blastic tissue where

  10. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Churchfield, Matthew J.

    2016-08-04

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.

  11. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  12. Increased Throughput and Sensitivity of Synchrotron-Based Characterization for Photovoltaic Materials

    DOE PAGES

    Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...

    2017-04-03

    Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~1014 atoms/cm2), large-area (10 000s of μm 2), high-spatial resolution (<;200more » nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less

  13. Primary pressure standards based on dimensionally characterized piston/cylinder assemblies

    NASA Astrophysics Data System (ADS)

    Schmidt, J. W.; Jain, K.; Miiller, A. P.; Bowers, W. J.; Olson, D. A.

    2006-02-01

    NIST has characterized two large diameter (35.8 mm) piston/cylinder assemblies as primary pressure standards in the range 0.05 MPa to 1.0 MPa with uncertainties approaching the best mercury manometers. The realizations of the artefacts as primary standards are based on the dimensional characterization of the piston and cylinder, and models of the normal and shear forces on the base and flanks of the piston. We have studied two piston/cylinder assemblies, known at the National Institute of Standards and Technology (NIST) as PG 38 and PG 39, using these methods. The piston and cylinder of both assemblies were accurately dimensioned by Physikalisch Technische Bundesanstalt (PTB). All artefacts appeared to be round within ±30 nm and straight within ±100 nm over a substantial fraction of their heights. PG 39 was dimensioned a second time by PTB, three years after the initial measurement, and showed no significant change in dimensions or effective area. Comparisons of the effective area of PG 38 and PG 39 from dimensional measurements, against those obtained with calibration against the NIST ultrasonic interferometer manometer (UIM), are in agreement within the combined standard (k = 1) uncertainty of the dimensional measurements and the UIM. A cross-float comparison of PG 38 versus PG 39 also agreed with the dimensional characterization within their combined standard uncertainties and with the UIM calibrations. The expanded (k = 2) relative uncertainty of the effective area is about 6.0 × 10-6 for both assemblies.

  14. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    NASA Astrophysics Data System (ADS)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  15. Multi and hyperspectral digital-imaging-based techniques for agricultural soil characterization

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Menesatti, Paolo; Millozza, Mario

    2004-11-01

    Soil characterization and monitoring in agriculture represent the primary key-factors influencing its productivity and the quality of the produced products. A correct and continuous knowledge of agricultural soil characteristics can help to optimize its use and its degree of exploitation both in absolute terms and with reference to specific cultivations. Soil characterization is conventionally performed adopting integrated physical-chemical analyses based on soil portion (samples), properly sampled, classified and then delivered to specialized laboratories. Such an approach obviously requires a chain of actions and it is time consuming. In this work it is examined the possibility offered by multi and hyperspectral digital imaging based spectrophotometric techniques in order to perform fast, reliable and low cost "in situ" analyses to identify and quantify specific soil attributes, of primary importance in agriculture, as: water, basic nutrients and organic matter content. The proposed hardware and software (HW&SW) integrated architecture have been specifically developed, and their response investigated, with the specific aim to contribute to study a set of "flexible", and very simple, procedures to apply in order to be utilized to operate, not only in agricultural soil characterization, but also in other fields as the environmental monitoring and polluted soils reclamation.

  16. Characterization and modeling of grain coarsening in powder metallurgical nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Payton, Eric John

    2009-08-01

    Accurate prediction of grain size as a function of processing conditions is highly sought after in many advanced alloy systems because specific grain sizes must be obtained to meet mechanical property requirements. In powder metallurgical nickel-based superalloys for turbine disk applications, physics-based modeling of grain coarsening is needed to accelerate alloy and process development and to meet demands for higher jet engine operating temperatures. Materials characterization and simulation techniques were integrated and applied simultaneously to enable quantitative representation of the microstructure, to clarify experimental results, and to validate mean-field descriptions of microstructural evolution. The key parameters controlling grain coarsening behavior were identified. A statistical-analytical mean-field model of grain coarsening with an adaptive spatio-temporal mesh was developed to enable rapid physics-based simulation of microstructural evolution. Experimental results were used as initial conditions and the model was then evaluated in the context of experimental results. Deviations of model predictions from experimental observations were then used to recommend future work to resolve remaining issues related to the microstructral evolution of powder metallurgical nickel-based superalloys, the mean-field modeling of microstructural evolution, and the quantitative characterization of materials.

  17. Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation

    PubMed Central

    Bawolin, Nahshon K.; Chen, Xiongbaio

    2016-01-01

    The mass loss behavior of degradable tissue scaffolds is critical to their lifespan and other degradation-related properties including mechanical strength and mass transport characteristics. This paper presents a novel method based on synchrotron imaging to characterize the scaffold mass loss from erosion degradation in situ, or without the need of extracting scaffolds once implanted. Specifically, the surface-eroding degradation of scaffolds in a degrading medium was monitored in situ by synchrotron-based imaging; and the time-dependent geometry of scaffolds captured by images was then employed to estimate their mass loss with time, based on the mathematical model that was adopted from the literature of surface erosion with the experimentally-identified model parameters. Acceptable agreement between experimental results and model predictions was observed for scaffolds in a cylindrical shape, made from poly(lactic-co-glycolic) acid (PLGA) and polycaprolactone (PCL). This study illustrates that geometry evaluation by synchrotron-based imaging is an effective means to in situ characterize the scaffold mass loss as well as possibly other degradation-related properties. PMID:27399789

  18. A terrain-based site characterization map of California with implications for the contiguous United States

    USGS Publications Warehouse

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  19. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study.

    PubMed

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Rezáč, Jan; Fanfrlík, Jindřich; Otyepka, Michal; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-07

    Overactivation of NMDA receptors has been implicated in various neuropathological conditions, including brain ischaemia, neurodegenerative disorders and epilepsy. Production of d-serine, an NMDA receptor co-agonist, from l-serine is catalyzed in vivo by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine racemase. Specific inhibition of this enzyme has been proposed as a promising strategy for treatment of neurological conditions caused by NMDA receptor dysfunction. Here we present the synthesis and activity analysis of a series of malonate-based inhibitors of mouse serine racemase (mSR). The compounds possessed IC50 values ranging from 40 ± 11 mM for 2,2-bis(hydroxymethyl)malonate down to 57 ± 1 μM for 2,2-dichloromalonate, the most effective competitive mSR inhibitor known to date. The structure-activity relationship of the whole series in the human orthologue (hSR) was interpreted using Glide docking, WaterMap analysis of hydration and quantum mechanical calculations based on the X-ray structure of the hSR/malonate complex. Docking into the hSR active site with three thermodynamically favourable water molecules was able to discern qualitatively between good and weak inhibitors. Further improvement in ranking was obtained using advanced PM6-D3H4X/COSMO semiempirical quantum mechanics-based scoring which distinguished between the compounds with IC50 better/worse than 2 mM. We have thus not only found a new potent hSR inhibitor but also worked out a computer-assisted protocol to rationalize the binding affinity which will thus aid in search for more effective SR inhibitors. Novel, potent hSR inhibitors may represent interesting research tools as well as drug candidates for treatment of diseases associated with NMDA receptor overactivation.

  20. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    SciTech Connect

    Xiao, Binping; Eremeev, Grigory V.; Reece, Charles E.; Phillips, H. Lawrence; Kelley, Michael J.

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  1. Characterization of SiO2/SiNx gate insulators for graphene based nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Tóvári, E.; Csontos, M.; Kriváchy, T.; Fürjes, P.; Csonka, S.

    2014-09-01

    The structural and magnetotransport characterization of graphene nanodevices exfoliated onto Si/SiO2/SiNx heterostructures are presented. Improved visibility of the deposited flakes is achieved by optimal tuning of the dielectric film thicknesses. The conductance of single layer graphene Hall-bar nanostructures utilizing SiO2/SiNx gate dielectrics were characterized in the quantum Hall regime. Our results highlight that, while exhibiting better mechanical and chemical stability, the effect of non-stoichiometric SiNx on the charge carrier mobility of graphene is comparable to that of SiO2, demonstrating the merits of SiNx as an ideal material platform for graphene based nanoelectromechanical applications.

  2. Green Synthesis, Characterization and Electrochemical Behavior of New Thiazole Based Coumarinyl Scaffolds.

    PubMed

    Saeed, Aamer; Channar, Pervaiz Ali; Shabir, Ghulam; Larik, Fayaz Ali

    2016-05-01

    The present paper deals with the synthesis of thiazolo-coumarin derivatives, prepared starting from naphthaldehyde, ethyl acetoacetate and hydrazine in three steps and characterized by spectroscopic analysis. UV-Visible spectra of the compounds was carried out in different solvents DMF, ethanol, methanol, ethyl acetate and acetone and the absorption was observed in the range 338-390 nm. Electrochemical study of thiazoles was conducted in DMF and redox behavior was examined. Fluorescence carried out in ethanol showed sharp emission in the range 440-505 nm. Graphical Abstract Synthesis, characterization and electrochemical behavior of new thiazole based coumarinyl Scaffolds. Aamer Seed, Pervaiz Ali Channar, Ghulam Shabir, Fayaz Ahmed Larik.

  3. First X-ray structural characterization of isatin Schiff base derivative. NMR and theoretical conformational studies

    NASA Astrophysics Data System (ADS)

    Davidovich, Pavel; Novikova, Daria; Tribulovich, Vyacheslav; Smirnov, Sergey; Gurzhiy, Vlad; Melino, Gerry; Garabadzhiu, Alexander

    2014-10-01

    Isatin (1H-indole-2,3-dione) is an endogenous natural compound under intense development in medicinal chemistry. Here, we characterize isatin Schiff base derivative by X-ray crystallography. We describe a derivative that crystallizes E-isomer form in the triclinic space group P 1bar;a = 5.9580 (4) Å, b = 8.4184 (7) Å, c = 14.1801 (14) Å, α = 73.962 (8)°, β = 83.184 (7)°, γ = 81.143 (6)°. NMR data show that E-conformer interconverts to the Z-conformer when dissolved, this equilibrium weakly depends on the solvent type. The Z-isomer geometry and the energetics of ΔEE-Z interconversion barriers were determined by quantum chemical calculations. The isomers are further characterized by means of FT-IR and UV-Vis spectroscopy.

  4. A versatile instrumentation system for MEMS-based device optical characterization

    NASA Astrophysics Data System (ADS)

    Rafiei, Ramin; Basedow, Robert W.; Silva, K. K. M. B. Dilusha; Gurusamy, Jega T.; Silva Castillo, Jorge R.; Tripathi, Dhirendra K.; Dell, John M.; Faraone, Lorenzo

    2013-12-01

    Future improvements in spectral imaging systems can be attained through the integration of MEMS-based optical transmission devices matched with pixelated arrays. Such integrated module designs will require a detailed knowledge of the MEMS device optical properties at high spatial resolution and over a wide range of operating conditions. A substantially automated low-cost optical characterization system has been developed, which enables the optical transmission of the MEMS device be measured with high spatial and spectral precision. This Optical Metrology System (OMS) can focus light on the device under test (DUT) to a spot diameter of less than 30 μm, and characterize devices at near infrared for wavelengths within the spectral band from 1.4 μm to 2.6 μm. A future upgrade to the OMS will enable measurements to be carried out across a wide range of DUT temperatures and with a spectral range from visible to long wave infrared wavelengths.

  5. Design and Characterization of Multiple Coupled Microring Based Wavelength Demultiplexer in Silicon-On (soi)

    NASA Astrophysics Data System (ADS)

    Haroon, Hazura; Shaari, Sahbudin; Menon, P. S.; Mardiana, B.; Hanim, A. R.; Arsad, N.; Majlis, B. Y.; Mukhtar, W. M.; Abdullah, Huda

    We report in this paper, an optimized design and characterization of SOI based single mode, four channels wavelength demultiplexer using microrings. The usage of silicon-on-insulator (SOI) allows a wide free spectral range (FSR) for the device that is crucial in developing ultra-compact integrations of planar lightwave circuits (PLCs). The characterizations are done using Finite-Difference Time-Domain (FDTD) mode simulations from RSOFT. Serially cascaded microring arrays up to the third order are presented to study the design trade-off among the FSR, Q-factor and optical losses of the laterally coupled wavelength demultiplexer. The demultiplexer is expected to be working at C-band region of Wavelength Division Multilplexing (WDM) for a wavelength around 1550 nm. Our proposed demultiplexer has low insertion loss (< 0.5 dB) and a crosstalk around 12 ~ 19 dB.

  6. Electroluminescence-based quality characterization of quantum wells for solar cell applications

    NASA Astrophysics Data System (ADS)

    Toprasertpong, Kasidit; Inoue, Tomoyuki; Delamarre, Amaury; Watanabe, Kentaroh; Guillemoles, Jean-François; Sugiyama, Masakazu; Nakano, Yoshiaki

    2017-04-01

    Material quality is a critical factor which determines the performance, particularly the open-circuit voltage, of multiple quantum well (MQW) solar cells. In this study, we report an electroluminescence-based characterization technique for evaluating luminescence efficiency and Shockley-Read-Hall recombination lifetime in MQW structures as a measure of the material quality. As a demonstration, various structures of InGaAs/GaAsP MQWs inserted in GaAs solar cells are investigated. The complete compensation of strain and the insertion of GaAs interlayers between heterointerfaces result in significant improvement of electroluminescence homogeneity, external luminescence efficiency, and lifetime, agreeing well with the tendency of the open-circuit voltage. We show that this characterization technique can detect even subtle degradations, which are not easily detectable by other typical techniques, such as in-situ reflection, X-ray diffraction, and spectral and transient photoluminescence, but still have a significant impact on the performance of solar cells.

  7. Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    PubMed Central

    Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia

    2012-01-01

    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411

  8. DNA-Based Characterization and Identification of Arbuscular Mycorrhizal Fungi Species.

    PubMed

    Senés-Guerrero, Carolina; Schüßler, Arthur

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of most land plants. They have great ecological and economic importance as they can improve plant nutrition, plant water supply, soil structure, and plant resistance to pathogens. We describe two approaches for the DNA-based characterization and identification of AMF, which both can be used for single fungal spores, soil, or roots samples and resolve closely related AMF species: (a) Sanger sequencing of a 1.5 kb extended rDNA-barcode from clone libraries, e.g., to characterize AMF isolates, and (b) high throughput 454 GS-FLX+ pyrosequencing of a 0.8 kb rDNA fragment, e.g., for in-field monitoring.

  9. Characterization of the synchrotron-based 0.3-NA EUV microexposuretool at the ALS

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik; Dean,Kim; Denham, Paul; Cain, Jason P.; Hoef, Brian; Jackson, Keith

    2005-06-01

    Synchrotron-based EUV exposure tools continue to play a crucial roll in the development of EUV lithography. Utilizing a programmable-pupil-fill illuminator, the 0.3-NA microexposure tool at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility provides the highest resolution EUV projection printing capabilities available today. This makes it ideal for the characterization of advanced resist and mask processes. The Berkeley tool also serves as a good benchmarking platform for commercial implementations of 0.3-NA EUV microsteppers because its illuminator can be programmed to emulate the coherence conditions of the commercial tools. Here we present the latest resist and tool characterization results from the Berkeley EUV exposure station.

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  11. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  12. Synthesis and Characterization of Acrylic-Based Photopolymer as a Candidate for Denture Base Material

    NASA Astrophysics Data System (ADS)

    Wicaksono, S. T.; Rasyida; Ardhyananta, H.

    2017-05-01

    Denture base is a denture part that rests on the soft tissue covering the jawbone and becomes an anchor of a denture. The material that commonly used for this purpose is poly (methyl methacrylate). However, it lacks in mechanical properties due to high water absorption. The aim of this research was to improve the physical and mechanical properties of poly (methyl methacrylate) by making a copolymer with styrene via photopolymerization process. In this method was used the addition of styrene monomer at 10, 20, 30, 40, and 50 wt% into the acrylic resin to form copolymer materials via photopolymerization process. The amount of 1.5 wt% Irgacure 784’s photoinitiator was added as a photoinitiator. The results showed that the addition of 40% by weight of styrene copolymer is the best performance compare to the addition styrene of 10, 20, 30, and 50%. The samples with an addition styrene of 40 wt% showed excellent properties such as high water absorption value of 2.405 μg/mm3, the solubility of 0.434 μg/mm3, the flexural strength of 69.336 MPa, a flexural modulus of 1.236 GPa, and a hardness value of 82.583 HD. Poly (methyl methacrylate-co-styrene) copolymer with the addition of styrene 40 wt% has the closest value to the requirements for a denture base material.

  13. Characterizing Geothermal Surface Manifestation Based on Multivariate Geostatistics of Ground Measurements Data

    NASA Astrophysics Data System (ADS)

    Ishaq; Nur Heriawan, Mohamad; Saepuloh, Asep

    2016-09-01

    Mt. Wayang Windu is one of geothermal field located in West Java, Indonesia. The characterization of steam spots at surface manifestation zones based on the soil physical measurements of the area is presented in this study. The multivariate geostatistical methods incorporating the soil physical parameter data were used to characterize the zonation of geothermal surface manifestations. The purpose of this study is to evaluate the performance of spatial estimation method of multivariate geostatistics using Ordinary Cokriging (COK) to characterize the physical properties of geothermal surface manifestations at Mt. Wayang Windu. The COK method was selected because this method is favorable when the secondary variables has more number than the primary variables. There are four soil physical parameters used as the basis of COK method, i.e. Electrical Conductivity, Susceptibility, pH, and Temperature. The parameters were measured directly at and around geothermal surface manifestations including hot springs, fumaroles, and craters. Each location of surface manifestations was measured about 30 points with 30 x 30 m grids. The measurement results were analyzed by descriptive statistics to identify at the nature of data. The correlation among variables was analyzed using linear regression. When the correlation coefficient among variables is higher, the estimation results is expected to have better Linear Coregionalization Model (LCM). LCM was used to analyze the spatial correlation of each variable based on their variogram and cross-variogram model. In oder to evaluate the performance of multivariate geostatistical using COK method, a Root Mean Square Error (RMSE) was performed. Estimation result using COK method is well applicable for characterizing the surface physics parameters of radar images data.

  14. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  15. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  16. Automatic video shot detection and characterization for content-based video retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Cui, Songye; Xu, Xing; Luo, Ying

    2001-09-01

    In this paper, firstly, several video shot detection technologies have been discussed. An edited video consists of two kinds of shot boundaries have been known as straight cuts and optical cuts. Experimental result using a variety of videos are presented to demonstrate that moving window detection algorithm and 10-step difference histogram comparison algorithm are effective for detection of both kinds of shot cuts. After shot isolation, methods for shot characterization were investigated. We present a detailed discussion of key-frame extraction and review the visual features, particularly the color feature based on HSV model, of key-frames. Video retrieval methods based on key-frames have been presented at the end of this section. This paper also present an integrated system solution for computer- assisted video parsing and content-based video retrieval. The application software package was programmed on Visual C++ development platform.

  17. Regioselective reaction: synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone.

    PubMed

    Nithinchandra; Kalluraya, B; Aamir, S; Shabaraya, A R

    2012-08-01

    A novel series of 1-substituted aminomethyl-3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino-1,2,4-triazol-5-thiones (9), was prepared from the 3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino 5-mercapto-1,2,4-triazoles (8) by aminomethylation with formaldehyde and secondary amine. The structures of Schiff bases (8) and Mannich bases (9) were characterized on the basis of IR, NMR, mass spectra1 data and elemental analysis. The newly synthesized compounds were screened for their anti-inflammatory and analgesic activities. Mannich bases (9) carrying piperidine and morpholine residues showed promising anti-inflammatory and analgesic activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  19. Preparation and characterization of Ni-based perovskite catalyst for steam CO2 reforming of methane.

    PubMed

    Yang, Eun-Hyeok; Kim, Sang Woo; Ahn, Byong Song; Moon, Dong Ju

    2013-06-01

    Steam CO2 reforming of methane was investigated over Ni-based perovskite catalyst to produce desired H2/CO ratio by adjusting the feed ratio of CH4, CO2 and H2O for floating GTL process application. La modified perovskites were prepared by the Pechini method and calcined in air and the Ni-based catalysts were prepared by dispersing Ni on the La modified perovskite by an incipient wetness impregnation. The catalysts before and after the reaction were characterized by N2 physisoprtion, CO chemisoprtion, XRD, TPR and SEM techniques. To control desired H2/CO ratio, simulation for SCR was carried out by Aspen plus, and product distribution for SCR was investigated in a fixed bed reactor system using feed ratio estimated by simulation. The Ni-based perovskite catalysts were found to give CH4 and CO2 conversions of up to 82% and 60% respectively to yield a H2/CO product ratio close to 2.

  20. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    PubMed

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    SciTech Connect

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; Wharry, Janelle P.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

  2. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE PAGES

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; ...

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  3. Synthesis and characterization of cerium and yttrium alkoxide complexes supported by ferrocene-based chelating ligands.

    PubMed

    Broderick, Erin M; Thuy-Boun, Peter S; Guo, Neng; Vogel, Carola S; Sutter, Jörg; Miller, Jeffrey T; Meyer, Karsten; Diaconescu, Paula L

    2011-04-04

    Two series of Schiff base metal complexes were investigated, where each series was supported by an ancillary ligand incorporating a ferrocene backbone and different N=X functionalities. One ligand is based on an imine, while the other is based on an iminophosphorane group. Cerium(IV), cerium(III), and yttrium(III) alkoxide complexes supported by the two ligands were synthesized. All metal complexes were characterized by cyclic voltammetry. Additionally, NMR, Mössbauer, X-ray absorption near-edge structure (XANES), and absorption spectroscopies were used. The experimental data indicate that iron remains in the +2 oxidation state and that cerium(IV) does not engage in a redox behavior with the ancillary ligand.

  4. Novel preparation and characterization of human hair-based nanofibers using electrospinning process.

    PubMed

    Park, Mira; Shin, Hye Kyoung; Panthi, Gopal; Rabbani, Mohammad Mahbub; Alam, Al-Mahmnur; Choi, Jawun; Chung, Hea-Jong; Hong, Seong-Tshool; Kim, Hak-Yong

    2015-05-01

    Human hair-based biocomposite nanofibers (NFs) have been fabricated by an electrospinning technique. Aqueous keratin extracted from human hair was successfully blended with poly(vinyl alcohol) (PVA). The focus here is on transforming into keratin/PVA nanofibrous membranes and insoluble property of electrospun NFs. The resulting hair-based NFs were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA). Toward the potential use of these NFs after cross-linking with various weight fractions of glyoxal, its physicochemical properties, such as morphology, mechanical strength, crystallinity, and chemical structure were investigated. Keratin/PVA ratio of 2/1 NFs with 6 wt%-glyoxal showed good uniformity in fiber morphology and suitable mechanical properties, and excellent antibacterial activity providing a potential application of hair-based NFs in biomedical field. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    PubMed

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application. Copyright © 2015. Published by Elsevier Ltd.

  6. Optical characterization of nitride-based light-emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Masui, Hisashi

    This dissertation describes research dedicated to the solid-state lighting technology based on III-nitride light-emitting diodes (LEDs). Nitride semiconductors are rather an immature material system compared to conventional III-V semiconductors. As the solid-state lighting technology based on nitride optoelectronic devices becomes widely accepted in the market, solid-state technology is required to compete with the conventional vacuum lighting technology, especially in energy efficiency. In addition to such energy-efficiency requirements, solid-state optoelectronic devices have the potential to explore new applications based on their unique properties. The research was conducted as a way of optical characterization of LEDs with a strong emphasis on electroluminescence. Device-packaging techniques were introduced in the early stage of the research to evaluate performances of discrete LEDs including phosphor-combined white-light emitting devices. Light extraction and white-LED fabrication were of direct interest in terms of solid-state lighting, which occupies a large part of the present dissertation. The suspended-LED technique was introduced to improve light extraction and the sphere package was invented as a result of the technique. A phosphor-combined sphere LED achieved as high as 117 lm/W of luminous efficacy. Low-temperature characterization is important to evaluate light-emission efficiency of LEDs, especially the internal quantum efficiency. It was a generally known problem that electroluminescence efficiency deteriorates drastically at low temperature where photoluminescence efficiency remains high. High-quality LEDs prepared on GaN bulk substrates that became available during the present project contributed to the low-temperature study, largely to address the problem. Electroluminescence is related to carrier generation processes via low-temperature measurements on such high-quality LEDs. This study produced a model to explain electroluminescence

  7. Studies of oceanic tectonics based on GEOS-3 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.

    1979-01-01

    Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.

  8. A wide characterization of paraffin-based fuels mixed with styrene-based thermoplastic polymers for hybrid propulsion

    NASA Astrophysics Data System (ADS)

    Boiocchi, M.; Milova, P.; Galfetti, L.; Di Landro, L.; Golovko, A. K.

    2016-07-01

    In the framework of a long-term research activity focused on the development of high-performance solid fuels for hybrid rockets, paraffin-based fuels were investigated and characterized using two different pure paraffinic waxes and a styrene-based thermoplastic elastomer as strengthening material. The fuels were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis / differential thermal analysis (TGA-DTA). The viscosity of the melt layer, responsible for the entrainment effect, was investigated using a Couette viscosimeter. The storage modulus (G') was analyzed using a parallel-plate rheometer. The chemical composition of the pure paraffinic materials was studied using gas chromatography / mass spectrometry (GC-MS), while mechanical properties were investigated through uniaxial tensile tests.

  9. Characterization of mammographic masses based on level set segmentation with new image features and patient information

    SciTech Connect

    Shi Jiazheng; Sahiner, Berkman; Chan Heangping; Ge Jun; Hadjiiski, Lubomir; Helvie, Mark A.; Nees, Alexis; Wu Yita; Wei Jun; Zhou Chuan; Zhang Yiheng; Cui Jing

    2008-01-15

    Computer-aided diagnosis (CAD) for characterization of mammographic masses as malignant or benign has the potential to assist radiologists in reducing the biopsy rate without increasing false negatives. The purpose of this study was to develop an automated method for mammographic mass segmentation and explore new image based features in combination with patient information in order to improve the performance of mass characterization. The authors' previous CAD system, which used the active contour segmentation, and morphological, textural, and spiculation features, has achieved promising results in mass characterization. The new CAD system is based on the level set method and includes two new types of image features related to the presence of microcalcifications with the mass and abruptness of the mass margin, and patient age. A linear discriminant analysis (LDA) classifier with stepwise feature selection was used to merge the extracted features into a classification score. The classification accuracy was evaluated using the area under the receiver operating characteristic curve. The authors' primary data set consisted of 427 biopsy-proven masses (200 malignant and 227 benign) in 909 regions of interest (ROIs) (451 malignant and 458 benign) from multiple mammographic views. Leave-one-case-out resampling was used for training and testing. The new CAD system based on the level set segmentation and the new mammographic feature space achieved a view-based A{sub z} value of 0.83{+-}0.01. The improvement compared to the previous CAD system was statistically significant (p=0.02). When patient age was included in the new CAD system, view-based and case-based A{sub z} values were 0.85{+-}0.01 and 0.87{+-}0.02, respectively. The study also demonstrated the consistency of the newly developed CAD system by evaluating the statistics of the weights of the LDA classifiers in leave-one-case-out classification. Finally, an independent test on the publicly available digital database

  10. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 5, May 1990--June 1990

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-08-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  11. A review of the different techniques for solid surface acid-base characterization.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-09-18

    In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).

  12. Material characterization of microsphere-based scaffolds with encapsulated raw materials.

    PubMed

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J; Detamore, Michael S

    2016-06-01

    "Raw materials," or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D, L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to 'blank' groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering.

  13. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples.

  14. Optoelectronic characterization of the curing process of thermoset-based composites

    NASA Astrophysics Data System (ADS)

    Cusano, A.; Breglio, G.; Giordano, M.; Calabrò, A.; Cutolo, A.; Nicolais, L.

    2001-03-01

    In this paper, the optoelectronic characterization of the polymerization process of thermoset-based composites is described. As is well known, in the last decade, these kinds of material in the light of their low weight/mechanical strength ratio have been widely used in many industrial areas such as automotive, aeronautic and aerospace. Because of the dependence of their properties on the manufacturing stage, real-time monitoring of the curing process has been indicated as the key point for improving the quality and reducing manufacturing process costs. In fact, in situ identification of the status of the processed material would allow the implementation of an on-line control of the manufacturing stage, leading to the transformation of the classical process in a real scientific operation. Based on this line of argument, a less-contact optical technique has been used to monitor the refractive index variation of an epoxy-based resin due to the polymerization process. Starting from preliminary experimental results, a fibre optic sensor has been designed and developed in order to perform in situ cure monitoring by refractive index measurement. A theoretical model has been developed and validated by comparison with calorimetric characterization.

  15. Towards a global characterization of ecosystem functional heterogeneity based on essential biodiversity variables

    NASA Astrophysics Data System (ADS)

    Fernández, N.; Fernández, M.; Alcaraz-Segura, D.; Leitao, P. J.; Guerra, C. A.

    2016-12-01

    Describing the spatial distribution and diversity of ecosystems is key to address critical environmental problems such as assessing the impacts of global environmental change, planning for biodiversity conservation, and quantifying ecosystem services. While approaches to ecosystem classifications based on structural characteristics of their components have been extremely useful, they also suffer from a series of constraints that limit their applicability in ecosystem monitoring. Structural and compositional properties of ecosystems show relatively longer response times to environmental change as compared to ecosystem functional properties. Moreover, differences in schools, approaches and typologies used to define structural properties of ecosystems hamper their spatial harmonization at different scales, which restricts their capacity and applicability. The Group on Earth Observations Biodiversity Observation Network (GEO BON) is currently revisiting the list of "Essential Biodiversity Variables" (EBVs) to identify data products suitable to track changes in ecosystem functioning based on earth observations. This initiative will facilitate more comprehensive characterizations of the spatial heterogeneity of ecosystems including functions -not just structural characteristics-, as well as more systematic and frequent evaluations of ecosystem change. Here, we will discuss the conceptual and methodological foundations for a global characterization of ecosystem functional heterogeneity, based on the EBVs framework. We will specifically focus on: i) what unique information can provide a global characterization of ecosystem functional heterogeneity e.g. as compared to global ecological maps customarily available; ii) how can we leverage this initiative towards informing conservation assessments such as the IUCN Red List of Ecosystems; and iii) its relevance for providing critical information on species habitats and ecosystem services.

  16. A Statistics-Based Material Property Analysis to Support TPS Characterization

    NASA Technical Reports Server (NTRS)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  17. Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases.

    PubMed

    Findley, Seth D; Mormile, Melanie R; Sommer-Hurley, Andrea; Zhang, Xue-Cheng; Tipton, Peter; Arnett, Krista; Porter, James H; Kerley, Monty; Stacey, Gary

    2011-11-01

    The rumen, the foregut of herbivorous ruminant animals such as cattle, functions as a bioreactor to process complex plant material. Among the numerous and diverse microbes involved in ruminal digestion are the ruminal protozoans, which are single-celled, ciliated eukaryotic organisms. An activity-based screen was executed to identify genes encoding fibrolytic enzymes present in the metatranscriptome of a bovine ruminal protozoan-enriched cDNA expression library. Of the four novel genes identified, two were characterized in biochemical assays. Our results provide evidence for the effective use of functional metagenomics to retrieve novel enzymes from microbial populations that cannot be maintained in axenic cultures.

  18. Activity-Based Metagenomic Screening and Biochemical Characterization of Bovine Ruminal Protozoan Glycoside Hydrolases▿†

    PubMed Central

    Findley, Seth D.; Mormile, Melanie R.; Sommer-Hurley, Andrea; Zhang, Xue-Cheng; Tipton, Peter; Arnett, Krista; Porter, James H.; Kerley, Monty; Stacey, Gary

    2011-01-01

    The rumen, the foregut of herbivorous ruminant animals such as cattle, functions as a bioreactor to process complex plant material. Among the numerous and diverse microbes involved in ruminal digestion are the ruminal protozoans, which are single-celled, ciliated eukaryotic organisms. An activity-based screen was executed to identify genes encoding fibrolytic enzymes present in the metatranscriptome of a bovine ruminal protozoan-enriched cDNA expression library. Of the four novel genes identified, two were characterized in biochemical assays. Our results provide evidence for the effective use of functional metagenomics to retrieve novel enzymes from microbial populations that cannot be maintained in axenic cultures. PMID:21948825

  19. Characterization of mutagenic activity in grain-based coffee-substitute blends and instant coffees

    SciTech Connect

    Johansson, M.A.E.; Knize, M.G.; Felton, J.S.; Jagerstad, M.

    1994-06-01

    Several grain-based coffee-substitute blends and instant coffees showed a mutagenic response in the Ames/Salmonella test using TA98, YG1024 and YG1O29 with metabolic activation. The beverage powders contained 150 to 500 TA98 and 1150 to 4050 YG1024 revertant colonies/gram, respectively. The mutagenic activity in the beverage powders was shown to be stable to heat and the products varied in resistance to acid nitrite treatment. Characterization of the mutagenic activity, using HPLC-and the Ames test of the collected fractions, showed the coffee-substitutes and instant coffees contain several mutagenic compounds, which are most likely aromatic amines.

  20. Machine characterization based on an abstract high-level language machine

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene

    1989-01-01

    Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.

  1. A method of characterizing network topology based on the breadth-first search tree

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; He, Zhe; Wang, Nianxin; Wang, Bing-Hong

    2016-05-01

    A method based on the breadth-first search tree is proposed in this paper to characterize the hierarchical structure of network. In this method, a similarity coefficient is defined to quantitatively distinguish networks, and quantitatively measure the topology stability of the network generated by a model. The applications of the method are discussed in ER random network, WS small-world network and BA scale-free network. The method will be helpful for deeply describing network topology and provide a starting point for researching the topology similarity and isomorphism of networks.

  2. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    NASA Astrophysics Data System (ADS)

    Lekshmy, R. K.; Thara, G. S.

    2014-10-01

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  3. Photonic crystal sensor based on surface waves for thin-film characterization.

    PubMed

    Villa, F; Regalado, L E; Ramos-Mendieta, F; Gaspar-Armenta, J; Lopez-Ríos, T

    2002-04-15

    A new sensor based on optical surface waves in truncated one-dimensional photonic crystals is proposed for use in determining the optical properties of metallic or dielectric thin films and bulk media. Specifically, the method of optical characterization takes into account the changes that the surface waves of a layered structure undergo when either a thin film of arbitrary material is added at the surface or the optical properties of transmission medium change. For the surface-wave excitation the Kretschmann configuration used in attenuated total reflectance is employed.

  4. The development of a shock-tube based characterization technique for air-coupled ultrasonic probes.

    PubMed

    Revel, G M; Pandarese, G; Cavuto, A

    2014-08-01

    The present paper proposes a new characterization technique for air-coupled ultrasound probes. The technique is based on a shock tube to generate a controlled pressure wave to calibrate transducers within their operating frequency range. The aim is to generate a high frequency pressure wave (at least up to 200 kHz) with the low energy levels typical of commonly used air-coupled ultrasound probes. A dedicated shock-tube has been designed and tested to assess calibration performances. The sensor transfer function has been measured by using a pressure transducer as reference. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Synthesis, characterization and thermal sensitivity of chitosan-based graft copolymers.

    PubMed

    Kang, Hong-Mei; Cai, Yuan-Li; Liu, Peng-Sheng

    2006-12-11

    Novel chitosan-based graft copolymers (CECTS-g-PDMA) were synthesized through homogeneous graft copolymerization of (N,N-dimethylamino)ethyl methacrylate (DMA) onto N-carboxyethylchitosan (CECTS) in aqueous solution by using ammonium persulfate (APS) as the initiator. The effect of polymerization variables, including initiator concentration, monomer concentration, reaction time and temperature, on grafting percentage was studied. XRD, FTIR, DSC and TGA were used to characterize the graft copolymers. Surface-tension measurements, turbidity measurements and temperature-variable (1)H NMR analysis were combined to investigate the thermal sensitivity of CECTS-g-PDMAs in aqueous solution.

  6. Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis.

    PubMed

    Inoue, Masaaki; Koshikiya, Yusuke; Fan, Xinyu; Ito, Fumihiko

    2011-10-10

    A novel method for characterizing the amplitude of a coherence function with respect to a delay between two optical waves is proposed and demonstrated by using a distributional Rayleigh speckle analysis based on C-OFDR. This technique allows us to estimate both the coherence time of the laser and that of the spectral profiles from the measured amplitude of the coherence function, if the symmetry of the spectrum can be assumed. The spectral width obtained in the experiment agrees roughly with that obtained using a delayed self-heterodyne method.

  7. Synthesis, characterization and dynamic NMR studies of a novel chalcone based N-substituted morpholine derivative

    NASA Astrophysics Data System (ADS)

    Baskar, R.; Baby, C.; Moni, M. S.; Subramanian, K.

    2013-05-01

    The synthesis of a novel chalcone based N-substituted morpholine derivative namely, (E)-1-(biphenyl-4-yl)-3-(4-(5-morpholinopentyloxy) phenyl) prop-2-en-1-one (BMPP), using a two step protocol is reported. The compound is characterized by FTIR, GC-MS and FTNMR spectroscopy techniques. Advanced 2D NMR techniques such as gradient enhanced COSY, HSQC, HMBC and NOESY were employed to establish through-bond and through-space correlations. Dynamic NMR measurements were carried out to obtain the energy barrier to ring inversion of the morpholine moiety.

  8. Methods for Quantifying and Characterizing Errors in Pixel-Based 3D Rendering.

    PubMed

    Hagedorn, John G; Terrill, Judith E; Peskin, Adele P; Filliben, James J

    2008-01-01

    We present methods for measuring errors in the rendering of three-dimensional points, line segments, and polygons in pixel-based computer graphics systems. We present error metrics for each of these three cases. These methods are applied to rendering with OpenGL on two common hardware platforms under several rendering conditions. Results are presented and differences in measured errors are analyzed and characterized. We discuss possible extensions of this error analysis approach to other aspects of the process of generating visual representations of synthetic scenes.

  9. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    NASA Astrophysics Data System (ADS)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  10. Automated recognition and characterization of solar active regions based on the SOHO/MDI images

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Turmon, M.; Mukhtar, S.; Bogart, R.; Ulrich, R.; Froehlich, C.; Wehrli, C.

    1997-01-01

    The first results of a new method to identify and characterize the various surface structures on the sun, which may contribute to the changes in solar total and spectral irradiance, are shown. The full disk magnetograms (1024 x 1024 pixels) of the Michelson Doppler Imager (MDI) experiment onboard SOHO are analyzed. Use of a Bayesian inference scheme allows objective, uniform, automated processing of a long sequence of images. The main goal is to identify the solar magnetic features causing irradiance changes. The results presented are based on a pilot time interval of August 1996.

  11. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    SciTech Connect

    Lekshmy, R. K. E-mail: tharapradeepkumar@yahoo.com; Thara, G. S. E-mail: tharapradeepkumar@yahoo.com

    2014-10-15

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  12. CHARACTERIZATION OF A CERIUM-RICH PYROCHLORE-BASED CERAMIC NUCLEAR WASTE FORM

    SciTech Connect

    Giere, Reto; Segvich, Susan; Buck, Edgar C.

    2003-02-11

    Titanate ceramics have been proposed as candidate materials for immobilizing excess weapons plutonium. This study focuses on the characterization of a titanate-based ceramic through X-ray diffraction (XRD), electron probe microanalysis and electron energy-loss spectroscopy (EELS). Three distinct phases have been identified, and their volume fraction was determined from element distribution maps using Scionimage-NIH Analysis software. This analysis revealed that the pyrochlore-group phase betafite (A2Ti2O7) forms the matrix of the ceramic and occupies 90.4% of the volume. Uniformly distributed in this matrix are perovskite (A2Ti2O6) and Hf-enriched rutile (TiO2), which account for 6.4 vol% and 3.1 vol%, respectively. The studied ceramic exhibits an extremely low porosity (0.3 vol%), which is characterized by small (< 6 m), rounded and isolated pores. In the studied ceramic, A-site cations are represented by Ca, rare earth elements, and Hf. The powder XRD pattern of the ceramic allowed refining the unit cell parameters for the cubic betafite, which is characterized by a cell edge of 10.132±0.003Å. The EELS data indicate that Ce is present as both Ce3+ and Ce4+ in betafite, whereas in perovskite, all Ce is trivalent.

  13. Laser-based diagnostics for characterizing materials exposed to a plasma environment

    NASA Astrophysics Data System (ADS)

    Shaw, G. C.; Biewer, T. M.; Caughman, J. B. O.; Goulding, R.; Leonard, K.; Lore, J.; Martin, M.; Martin, R.; Rapp, J.; Wirth, B.

    2013-10-01

    To address the needs of fusion reactors, diagnostic techniques for plasma-material interactions (PMI) are being developed at ORNL. Laser-based diagnostic techniques (LBDT) will be used to both characterize the plasma environment and probe the material surface during plasma exposure. A Nd:YAG laser is needed for LBDT. Initial setup and diagnostic testing of the beam will be performed before installing it onto the ORNL device, PHISX (Prototype High Intensity Source Experiment). Installation of the Nd:YAG laser on PHISX, will enable Thomson Scattering (TS) measurements as well as Laser Induced Ablation/Breakdown/Desorption Spectroscopy (LIAS/LIBS/LIDS) to be performed in-situ on material targets. The material targets can be further characterized ex-situ by surface techniques available at ORNL; ex-situ results will be compared to the in-situ characterizations. This poster will show the initial setup and plans for LBDT on PHISX at ORNL. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  14. Characterizing a Wake-Free Safe Zone for the Simplified Aircraft-Based Paired Approach Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Neitzke, Kurt W.; Johnson, Sally C.; Stough, H. Paul, III; McKissick, Burnell T.; Syed, Hazari I.

    2010-01-01

    The Federal Aviation Administration (FAA) has proposed a concept of operations geared towards achieving increased arrival throughput at U.S. Airports, known as the Simplified Aircraft-based Paired Approach (SAPA) concept. In this study, a preliminary characterization of a wake-free safe zone (WFSZ) for the SAPA concept has been performed. The experiment employed Monte-Carlo simulations of varying approach profiles by aircraft pairs to closely-spaced parallel runways. Three different runway lateral spacings were investigated (750 ft, 1000 ft and 1400 ft), along with no stagger and 1500 ft stagger between runway thresholds. The paired aircraft were flown in a leader/trailer configuration with potential wake encounters detected using a wake detection surface translating with the trailing aircraft. The WFSZ is characterized in terms of the smallest observed initial in-trail distance leading to a wake encounter anywhere along the approach path of the aircraft. The results suggest that the WFSZ can be characterized in terms of two primary altitude regions, in ground-effect (IGE) and out of ground-effect (OGE), with the IGE region being the limiting case with a significantly smaller WFSZ. Runway stagger was observed to only modestly reduce the WFSZ size, predominantly in the OGE region.

  15. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.

    PubMed

    Bai, Guohua; Li, Ying; Chu, Henry K; Wang, Kaiqun; Tan, Qiulin; Xiong, Jijun; Sun, Dong

    2017-04-04

    Cytoskeleton is a highly dynamic network that helps to maintain the rigidity of a cell, and the mechanical properties of a cell are closely related to many cellular functions. This paper presents a new method to probe and characterize cell mechanical properties through dielectrophoresis (DEP)-based cell stretching manipulation and actin cytoskeleton modeling. Leukemia NB4 cells were used as cell line, and changes in their biological properties were examined after chemotherapy treatment with doxorubicin (DOX). DEP-integrated microfluidic chip was utilized as a low-cost and efficient tool to study the deformability of cells. DEP forces used in cell stretching were first evaluated through computer simulation, and the results were compared with modeling equations and with the results of optical stretching (OT) experiments. Structural parameters were then extracted by fitting the experimental data into the actin cytoskeleton model, and the underlying mechanical properties of the cells were subsequently characterized. The DEP forces generated under different voltage inputs were calculated and the results from different approaches demonstrate good approximations to the force estimation. Both DEP and OT stretching experiments confirmed that DOX-treated NB4 cells were stiffer than the untreated cells. The structural parameters extracted from the model and the confocal images indicated significant change in actin network after DOX treatment. The proposed DEP method combined with actin cytoskeleton modeling is a simple engineering tool to characterize the mechanical properties of cells.

  16. A new fluorescence-based method for characterizing in vitro aerosol exposure systems.

    PubMed

    Steiner, Sandro; Majeed, Shoaib; Kratzer, Gilles; Hoeng, Julia; Frentzel, Stefan

    2017-02-01

    Knowledge of how an in vitro aerosol exposure system delivers a test aerosols to the biological test system is among the most crucial prerequisites for the interpretation of exposure experiments and relies on detailed exposure system characterization. Although various methods for this purpose exist, many of them are time consuming, require extensive instrumentation, or offer only limited ability to assess the performance of the system under experimental settings. We present the development and evaluation of a new, highly robust and sensitive fluorometry-based method for assessing the particle size specific delivery of liquid aerosols. Glycerol aerosols of different mean particle sizes and narrow size distributions, carrying the fluorophore disodium fluorescein, were generated in a condensation monodisperse aerosol generator. Their detailed characterization confirmed their stability and the robustness and reproducibility of their generation. Test exposures under relevant experimental settings in the Vitrocell(®) 24/48 aerosol exposure system further confirmed their feasibility for simulating exposures and the high sensitivity of the method. Potential applications of the presented method range from the experimental confirmation of computationally simulated particle dynamics, over the characterization of in vitro aerosol exposure systems, to the detailed description of aerosol delivery in test systems of high complexity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope.

    PubMed

    Li, Yixian; Qi, Lehua; Song, Yongshan; Chao, Xujiang

    2017-06-01

    The components of carbon/carbon (C/C) composites have significant influence on the thermal and mechanical properties, so a quantitative characterization of component is necessary to study the microstructure of C/C composites, and further to improve the macroscopic properties of C/C composites. Considering the extinction crosses of the pyrocarbon matrix have significant moving features, the polarized light microscope (PLM) video is used to characterize C/C composites quantitatively because it contains sufficiently dynamic and structure information. Then the optical flow method is introduced to compute the optical flow field between the adjacent frames, and segment the components of C/C composites from PLM image by image processing. Meanwhile the matrix with different textures is re-segmented by the length difference of motion vectors, and then the component fraction of each component and extinction angle of pyrocarbon matrix are calculated directly. Finally, the C/C composites are successfully characterized from three aspects of carbon fiber, pyrocarbon, and pores by a series of image processing operators based on PLM video, and the errors of component fractions are less than 15%. © 2017 Wiley Periodicals, Inc.

  18. SITE CHARACTERIZATION OF AREA 6, DOVER AIR FORCE BASE, IN SUPPORT OF NATURAL ATTENUATION AND ENHANCED ANAEROBIC BIOREMEDIATION PROJECTS

    EPA Science Inventory

    A field program for site characterization of targeted study areas at the Dover Air Force Base was conducted between January 16, 1995, and March 9, 1995. The stated objectives of the investigation, "to characterize the stratigraphy, depth to groundwater, groundwater flow directio...

  19. SITE CHARACTERIZATION OF AREA 6, DOVER AIR FORCE BASE, IN SUPPORT OF NATURAL ATTENUATION AND ENHANCED ANAEROBIC BIOREMEDIATION PROJECTS

    EPA Science Inventory

    A field program for site characterization of targeted study areas at the Dover Air Force Base was conducted between January 16, 1995, and March 9, 1995. The stated objectives of the investigation, "to characterize the stratigraphy, depth to groundwater, groundwater flow directio...

  20. Experimental characterization and numerical simulation of the electrical properties of nitrogen, aluminum, and boron in 4H/6H-SiC

    SciTech Connect

    Kaindl, W.; Lades, M.; Wachutka, G.; Kaminski, N.; Niemann, E.

    1999-03-01

    Silicon carbide (SiC) receives strong attention for high-power, high-temperature, and high-frequency device applications due to its promising material properties. In order to measure the ionization time constants of dopants in 4H/6H-SiC within a wide range of temperature, nitrogen (N), aluminum (Al), and boron (B) have been characterized using thermal admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS). The temperature extrapolation of the results obtained by AS shows excellent agreement with those obtained by DLTS, yielding the base for an evaluation of incomplete ionization effects in SiC devices within usual operation ranges. The measured data has been analyzed using numerical drift-diffusion simulations based on the method of finite-elements. A numerical investigation of the different freeze-out characteristics of free carriers in p{sup +}n, n{sup +}p, and Schottky diodes shows that unlike in the case of B, the ionization time constant of Al can be exclusively measured in the highly doped region of a p{sup +}n diode.