Science.gov

Sample records for adolescent rats exhibit

  1. Ethanol conditioned place preference and alterations in ΔFosB following adolescent nicotine administration differ in rats exhibiting high or low behavioral reactivity to a novel environment.

    PubMed

    Philpot, Rex M; Engberg, Melanie E; Wecker, Lynn

    2014-04-01

    This study determined the effects of adolescent nicotine administration on adult alcohol preference in rats exhibiting high or low behavioral reactivity to a novel environment, and ascertained whether nicotine altered ΔFosB in the ventral striatum (vStr) and prefrontal cortex (PFC) immediately after drug administration or after rats matured to adulthood. Animals were characterized as exhibiting high (HLA) or low (LLA) locomotor activity in the novel open field on postnatal day (PND) 31 and received injections of saline (0.9%) or nicotine (0.56 mg free base/kg) from PND 35 to 42. Ethanol-induced conditioned place preference (CPP) was assessed on PND 68 following 8 days conditioning in a biased paradigm; ΔFosB was measured on PND 43 or PND 68. Following adolescent nicotine exposure, HLA animals demonstrated a CPP when conditioned with ethanol; LLA animals were unaffected. Further, adolescent nicotine exposure for 8 days increased levels of ΔFosB in limbic regions in both HLA and LLA rats, but this increase persisted into adulthood only in LLA animals. Results indicate that adolescent nicotine exposure facilitates the establishment of an ethanol CPP in HLA rats, and that sustained elevations in ΔFosB are not necessary or sufficient for the establishment of an ethanol CPP in adulthood. These studies underscore the importance of assessing behavioral phenotype when determining the behavioral and cellular effects of adolescent nicotine exposure.

  2. Adolescents exhibit behavioral differences from adults during instrumental learning and extinction.

    PubMed

    Sturman, David A; Mandell, Daniel R; Moghaddam, Bita

    2010-02-01

    Adolescence is associated with the development of brain regions linked to cognition and emotion. Such changes are thought to contribute to the behavioral and neuropsychiatric vulnerabilities of this period. We compared adolescent (Postnatal Days 28-42) and adult (Postnatal Day 60+) rats as they performed a simple instrumental task and extinction. Rats were trained to poke into a hole for a food-pellet reinforcer. After six days of training, rats underwent extinction sessions in which the previously rewarded behavior was no longer reinforced. During extinction, we examined the effects of continued presentation of a cue light and food restriction. Adults and adolescents exhibited similar performance during training, although adolescents made more task-irrelevant pokes, consistent with increased exploration. Adults made more premature pokes, which could indicate a more exclusive focus on the task. During extinction, adolescents made more perseverative (previously reinforced) pokes than adults. This behavior was strongly modulated by the combination of motivational factors present (food restriction and cue light), indicating that adolescents were differentially sensitive to them. Furthermore, food restriction induced greater open-field activity in adolescents but not in adults. Thus, as the neural circuitry of motivated behavior develops substantially during adolescence, so too does the behavioral sensitivity to motivational factors. Understanding how such factors differently affect adolescents may shed light on mechanisms that lead to the development of disorders that are manifested during this period.

  3. Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity.

    PubMed

    Weintraub, Ari; Singaravelu, Janani; Bhatnagar, Seema

    2010-07-09

    In adolescence, gender differences in rates of affective disorders emerge. For both adolescent boys and girls, peer relationships are the primary source of life stressors though adolescent girls are more sensitive to such stressors. Social stressors are also powerful stressors for non-human social species like rodents. In a rat model, we examined how social isolation during adolescence impacts stress reactivity and specific neural substrates in adult male and female rats. Rats were isolated during adolescence by single housing from day 30 to 50 of age and control rats were group housed. On day 50, isolated rats and control rats were re-housed in same-treatment same-sex groups. Adult female rats isolated as adolescents exhibited increased adrenal responses to acute and to repeated stress and exhibited increased hypothalamic vasopressin mRNA and BDNF mRNA in the CA3 hippocampal subfield. In contrast, adult male rats isolated as adolescents exhibited a lower corticosterone response to acute stress, exhibited a reduced state of anxiety as assessed in the elevated plus maze and reduced Orexin mRNA compared to adult males group-housed as adolescents. These data point to a markedly different impact of isolation experienced in adolescence on endocrine and behavioral endpoints in males compared to females and identify specific neural substrates that may mediate the long-lasting effects of stress in adolescence.

  4. Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats

    PubMed Central

    Toh, May Fern; Mendonca, Emma; Eddie, Sharon L.; Endsley, Michael P.; Lantvit, Daniel D.; Petukhov, Pavel A.; Burdette, Joanna E.

    2015-01-01

    Objective Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri. Methods Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro. Results Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors. Conclusion Taken together, these data

  5. Memory Retrieval before or after Extinction Reduces Recovery of Fear in Adolescent Rats

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2013-01-01

    Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a…

  6. Immunohistochemical analyses of long-term extinction of conditioned fear in adolescent rats.

    PubMed

    Kim, Jee Hyun; Li, Stella; Richardson, Rick

    2011-03-01

    Adolescence is a period of heightened emotional reactivity and vulnerability to poor outcomes (e.g., suicide, anxiety, and depression). Recent human and animal neuroimaging studies suggest that dramatic changes in prefrontal cortical areas during adolescence are involved in these effects. The present study explored the functional implications of prefrontal cortical changes during adolescence by examining conditioned fear extinction in adolescent rats. Experiment 1 showed that preadolescent (i.e., postnatal day [P] 24), adolescent (P35), and adult (P70) rats express identical extinction acquisition following 3 white-noise conditioned stimulus (CS) and shock pairings. When tested the next day, however, adolescent rats showed almost complete failure to maintain extinction of CS-elicited freezing compared with P24 and P70 rats. It was observed in experiment 2 that following extinction, P24 and P70 rats express significantly elevated levels of phosphorylated mitogen-activated protein kinase (pMAPK) in the infralimbic cortex (IL) compared with adolescent rats. Interestingly, adolescent rats successfully exhibited long-term extinction if the amount of extinction training was doubled (experiment 3). More extinction training also led to increased phosphorylation of MAPK in the IL in these rats. These findings suggest that adolescents are less efficient in utilizing prefrontal areas, which may lead to an impairment in the maintenance of extinguished behavior.

  7. From adolescent to elder rats: Motivation for palatable food and cannabinoids receptors.

    PubMed

    Octavio, Amancio-Belmont; Antonio, Romano-López; Alejandra Evelin, Ruiz-Contreras; Mónica, Méndez-Díaz; Oscar, Prospéro-García

    2016-12-09

    To analyze motivation, food self-administration and decision-making were evaluated in adolescent, adult, and aged rats. Subjects were trained to press a lever (fixed ratio, FR1 and FR5) in an operant chamber, to obtain chocolate flavor pellets. They assessed the progressive ratio (PR), extinction, and reinstatement of the behavior. To estimate decision-making for food, rats were trained in the conditioned place preference (CPP) paradigm: (a) associating one compartment with lab chow (LCh) one day and the other compartment with rice krisspies (RK), the next day. (b) Training similar to (a) but on the day RK was the reinforcer, it was delivered with a progressive delay. In addition, CB1 and CB2 receptor expression in the nucleus accumbens (NAcc) and prefrontal cortex (PFC) was estimated by means of Western blot. Adolescent rats consumed higher amounts of RK/body weight than adult and aged rats during FR1, FR5, and PR. Extinction was more prolonged for adolescent rats than for adult and aged rats. First CPP condition, all three groups of rats preferred the RK-associated compartment. Second CPP condition, adolescent rats developed equal preference to both compartments, while adult and aged rats preferred the RK-associated compartment. Rats per group ate a similar amount of either reinforcer. Adolescent rats exhibited low expression of CB1R in the NAcc and low expression of both CB1R and CB2R in the PFC compared with adult and aged rats. Adolescent rats display higher motivation for palatable food and an indiscriminate seeking behavior suggesting involvement of both homeostatic and hedonic systems in their decision-making processes. © 2016 Wiley Periodicals, Inc. Develop Neurobiol, 2017.

  8. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats.

    PubMed

    Fabio, María Carolina; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2014-04-01

    A question still to be answered is whether ethanol initiation has a greater effect on ethanol consumption if it occurs during adolescence than in adulthood. This study assessed the effect of ethanol initiation during adolescence or adulthood on voluntary ethanol consumption when animals were still within the same age range. Adolescent or adult rats were given 5, 2, or 0 ethanol exposures. The animals were tested for ethanol consumption through two-bottle choice tests, before undergoing a 1-week deprivation. A two-bottle assessment was conducted after the deprivation. Adolescents, but not adults, given two ethanol administrations during initiation exhibited significantly higher ethanol intake during the pre-deprivation period. These adolescents also exhibited a threefold increase in ethanol intake after 7 days of drug withdrawal, when compared with controls. These findings suggest that very brief experience with binge ethanol intoxication in adolescence, but not in adulthood, impacts later predisposition to drink.

  9. Age and sex differences in reward behavior in adolescent and adult rats.

    PubMed

    Hammerslag, Lindsey R; Gulley, Joshua M

    2014-05-01

    Compared to adults, adolescents are at heightened risk for drug abuse and dependence. One of the factors contributing to this vulnerability may be age-dependent differences in reward processing, with adolescents approaching reward through stimulus-directed, rather than goal-directed, processes. However, the empirical evidence for this in rodent models of adolescence, particularly those that investigate both sexes, is limited. To address this, male and female rats that were adolescents (P30) or adults (P98) at the start of the experiment were trained in a Pavlovian approach (PA) task and were subsequently tested for the effects of reward devaluation, extinction, and re-acquisition. We found significant interactions between age and sex: females had enhanced acquisition of PA and poorer extinction, relative to males, while adolescents and females were less sensitive to reward devaluation than male adults. These results suggest that females and adolescents exhibit reward behavior that is more stimulus-directed, rather than goal-directed.

  10. Prenatal Ethanol Exposure and Whisker Clipping Disrupt Ultrasonic Vocalizations and Play Behavior in Adolescent Rats

    PubMed Central

    Waddell, Jaylyn; Yang, Tianqi; Ho, Eric; Wellmann, Kristen A.; Mooney, Sandra M.

    2016-01-01

    Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play fighting compared with ethanol exposure alone. In this study, we explored whether expression of hedonic ultrasonic vocalizations (USVs) correlated with the number of playful attacks by ethanol-exposed rats, rats subjected to postnatal sensory deprivation by whisker clipping or both compared to control animals. In normally developing rats, hedonic USVs precede such interactions and correlate with the number of play interactions exhibited in dyads. Pregnant Long-Evans rats were fed an ethanol-containing liquid diet or a control diet. After birth, male and female pups from each litter were randomly assigned to the whisker-clipped or non-whisker-clipped condition. Animals underwent a social interaction test with a normally developing play partner during early or late-adolescence. USVs were recorded during play. Prenatal ethanol exposure reduced both play and hedonic USVs in early adolescence compared to control rats and persistently reduced social play. Interestingly, ethanol exposure, whisker clipping and the combination abolished the significant correlation between hedonic USVs and social play detected in control rats in early adolescence. This relationship remained disrupted in late adolescence only in rats subjected to both prenatal ethanol and whisker clipping. Thus, both insults more persistently disrupted the relationship between social communication and social play. PMID:27690116

  11. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  12. Olive oil exhibits osteoprotection in ovariectomized rats without estrogenic effects

    PubMed Central

    ZHENG, XIAOHUA; HUANG, HUIJUAN; ZHENG, XIAOBING; LI, BAOHENG

    2016-01-01

    The present study was designed to evaluate the effect of olive oil on bone and uterus in ovariectomized rats. A total of 34 surgically ovariectomized or sham-operated virgin Sprague-Dawley rats were divided into four groups: i) Sham-operated control rats (sham group); ii) Ovariectomized rats (OVX group); iii) Olive oil-supplemented ovariectomized rats (olive group); and iv) Diethylstilbestrol-supplemented ovariectomized rats (E2 group). At 12 weeks following left ventricular blood sacrificed to detect plasma estradiol (E2), interleukin-1β (IL-1β) and IL-6 levels. Bone mineral density (BMD) of the lumbar spine was evaluated using dual-energy X-ray absorptiometry, and the left femur proximal 1/3 slices were observed using transmission electron microscopy. Uterine wet weight and the uterus index (ratio of uterine wet weight and body weight) were compared, and the uterine endometrium was observed using a light microscope. In the OVX group, serum E2 was significantly lower and IL-1β and IL-6 levels were significantly higher compared with the sham group. By contrast, serum E2 levels increased and IL-1β levels decreased in the olive group, but showed no significant difference compared with the sham group. The lumbar spine BMD in the olive group was increased compared with OVX group. Electron microscopy revealed sparse collagen fibers in the OVX group, with decreased density and multi-cavity, showing pathological features of osteoporosis. By contrast, the situation was improved in the E2 and olive groups, in which organelles such as the rough endoplasmic reticulum, mitochondria and Golgi apparatus were visible and active. Compared with the sham group rats, the uterine wet weight and uterine index decreased in the OVX and olive groups; however, no statistically significant difference was observed in the E2 group. Furthermore, endometrial hyperplasia was not observed in the olive group, which were apparently different from E2 group. The present results suggest that olive

  13. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    PubMed

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  14. Ethanol induces second-order aversive conditioning in adolescent and adult rats

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2011-01-01

    Alcohol abuse and dependence is considered a developmental disorder with etiological onset during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, i.g.) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescent and adults, respectively) using SOC. These doses were derived from Experiment 1, which found similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults, for females and males, and after one, two, or three training trials. One finding, however, suggested that adolescents were less sensitive than adults to ethanol’s aversive effects at the intermediate level of training. In conjunction with previous results, the present study showed that in adolescent rats subjected to SOC, ethanol’s hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the post-ingestive effects of high-dose ethanol as similarly aversive when assessed by SOC. PMID:21187242

  15. Antipsychotic-induced suppression of locomotion in juvenile, adolescent and adult rats.

    PubMed

    Wiley, Jenny L

    2008-01-14

    Schizophrenia is a serious psychiatric disorder that is most frequently treated with the administration of antipsychotics. Although onset of schizophrenia typically occurs in late adolescence, the majority of preclinical research on the behavioral effects of antipsychotics and their mechanism(s) of action has been conducted on adult male animals. In this study, the acute effects of haloperidol (0.03-0.3 mg/kg, i.p.) and clozapine (1-10 mg/kg, i.p.) on locomotor activity were examined in juvenile [postnatal day 22 (PN22)], adolescent (PN40), and adult (>PN70) rats of both sexes. Subsequently, in order to determine whether tolerance to the activity suppressive effects of these drugs would occur in adolescents, PN40 rats were dosed and assessed for an additional nine days. While all groups exhibited some degree of suppression following acute administration of both drugs, juvenile rats were considerably more sensitive to this effect. With sub-chronic administration during late adolescent development (PN40-PN49), tolerance failed to develop. These results emphasize the importance of age in pharmacological characterization of antipsychotics and suggest that pre-adolescents may have enhanced sensitivity to the motor effects of these drugs. Further, they suggest that, similar to adults, older adolescents may not develop tolerance to the activity suppression induced by these two antipsychotics.

  16. Protective effects of chronic mild stress during adolescence in the low-novelty responder rat.

    PubMed

    Rana, Samir; Nam, Hyungwoo; Glover, Matthew E; Akil, Huda; Watson, Stanley J; Clinton, Sarah M; Kerman, Ilan A

    2016-01-01

    Stress-elicited behavioral and physiologic responses vary widely across individuals and depend on a combination of environmental and genetic factors. Adolescence is an important developmental period when neural circuits that guide emotional behavior and stress reactivity are still maturing. A critical question is whether stress exposure elicits contrasting effects when it occurs during adolescence versus adulthood. We previously found that Sprague-Dawley rats selectively bred for low-behavioral response to novelty (bred Low Responders; bLRs) are particularly sensitive to chronic unpredictable mild stress (CMS) exposure in adulthood, which exacerbates their typically high levels of spontaneous depressive- and anxiety-like behavior. Given developmental processes known to occur during adolescence, we sought to determine whether the impact of CMS on bLR rats is equivalent when they are exposed to it during adolescence as compared with adulthood. Young bLR rats were either exposed to CMS or control condition from postnatal days 35-60. As adults, we found that CMS-exposed bLRs maintained high levels of sucrose preference and exhibited increased social exploration along with decreased immobility on the forced swim test compared with bLR controls. These data indicate a protective effect of CMS exposure during adolescence in bLR rats.

  17. High-alcohol-drinking rats exhibit persistent freezing responses to discrete cues following Pavlovian fear conditioning.

    PubMed

    Rorick, Linda M; Finn, Peter R; Steinmetz, Joseph E

    2003-09-01

    We previously reported that high-alcohol-drinking (HAD) rats exhibited selective deficits in active avoidance learning and that those deficits were partially reversed by moderate doses of ethanol under certain training conditions [Pharmacol. Biochem. Behav. 75 (2003) 89]. In that study, we hypothesized that HAD deficits resulted from exaggerated fear in the conditioning context and that the anxiolytic properties of ethanol, along with prior exposure to the conditioning apparatus, were responsible for the facilitated avoidance learning that was observed in HAD rats following moderate doses of ethanol. The current study was designed to test whether HAD rats exhibit behaviors consistent with increased fear in aversive learning contexts. We used a standard Pavlovian fear conditioning paradigm to assess behavioral freezing in HAD (HAD-1 and HAD-2) and low-alcohol-drinking (LAD; LAD-1 and LAD-2) rats. No significant differences were observed between HAD-1 and HAD-2 or between LAD-1 and LAD-2 rats, indicating that the replicate lines performed similarly in this study. Both HAD and LAD rats exhibited robust fear conditioning during training. Although no differences were observed between HAD and LAD rats during fear training, HAD rats failed to extinguish freezing behavior in response to the discrete tone conditional stimulus during subsequent fear retention tests. Thus, HAD rats demonstrated prolonged cue-elicited fear that was resistant to extinction.

  18. Ethanol induces second-order aversive conditioning in adolescent and adult rats.

    PubMed

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E

    2011-02-01

    Alcohol abuse and dependence are considered public health problems, with an etiological onset often occurring during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, intragastrically [i.g.]) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescents and adults, respectively) using SOC. Experiment 1 revealed similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, the rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults; for females and males; and after one, two, or three training trials. In conjunction with previous results, the present study showed that, in adolescent rats subjected to SOC, ethanol's hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the postingestive effects of high-dose ethanol as similarly aversive when assessed by SOC.

  19. Social and non-social anxiety in adolescent and adult rats after repeated restraint.

    PubMed

    Doremus-Fitzwater, Tamara L; Varlinskaya, Elena I; Spear, Linda P

    2009-06-22

    Adolescence is associated with potentially stressful challenges, and adolescents may differ from adults in their stress responsivity. To investigate possible age-related differences in stress responsiveness, the consequences of repeated restraint stress (90 min/day for 5 days) on anxiety, as indexed using the elevated plus-maze (EPM) and modified social interaction (SI) tests, were assessed in adolescent and adult Sprague-Dawley male and female rats. Control groups at each age included non-stressed and socially deprived animals, with plasma corticosterone (CORT) levels also measured in another group of rats on days 1 and 5 of stress (sampled 0, 30, 60, 90, and 120 min following restraint onset). While repeatedly restrained animals exhibited similar anxiety levels compared to non-stressed controls in the EPM, restraint stress increased anxiety at both ages in the SI test (as indexed by reduced social investigation and social preference). Daily weight gain measurements, however, revealed more marked stress-related suppression of body weight in adolescents versus adults. Analysis of stress-induced increases in CORT likewise showed that adolescents demonstrated less habituation than adults, embedded within typical sex differences in CORT magnitude (females greater than males) and age differences in CORT recovery (adolescents slower than adults). Despite no observable age-related differences in the behavioral response to restraint, adolescents were more sensitive to the repeated stressor in terms of physiological indices of attenuated weight gain and habituation of stress-induced CORT.

  20. Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats.

    PubMed

    Amodeo, Leslie R; Kneiber, Diana; Wills, Derek N; Ehlers, Cindy L

    2017-03-01

    Binge drinking and the onset of alcohol-use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study, we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model, we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day [PD] 26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed-ratio (FR) 16 lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course, beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and faster completion of FR schedules in adulthood, whereas the low consumers were no different from controls. Rats exposed to ethanol in young adulthood also increased future intake, but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent and early

  1. Anxiety response and restraint-induced stress differentially affect ethanol intake in female adolescent rats.

    PubMed

    Acevedo, María Belén; Fabio, Maria Carolina; Fernández, Macarena Soledad; Pautassi, Ricardo Marcos

    2016-10-15

    Anxiety disorders are more likely to occur in women than in men, usually emerge during adolescence and exhibit high comorbidity with alcohol use disorders (AUD). Adolescents with high levels of anxiety or heightened reactivity to stress may be at-risk for developing AUD. An approach to analyze if high levels of inborn anxiety predict greater ethanol drinking is to assess the latter variable in subjects classified as high- or low-anxiety responders. The present study assessed ethanol drinking in adolescent, female Wistar, rats classified as high-, low- or average-anxiety responders and exposed or not to restraint stress (RS, Exp. 1). Classification was made through a multivariate index derived from testing anxiety responses in an elevated plus maze and a light-dark box tests. RS was applied after animals had been initiated to ethanol drinking. Intake of sweetened ethanol was unaffected by level of anxiety response. Adolescents with high levels of inborn anxiety exhibited significantly higher intake of unsweetened ethanol than counterparts with standard levels of anxiety, yet this effect was inhibited by RS exposure. Experiment 2 assessed FOS immunoreactivity after RS. Stress induced a significant increase in FOS immunoreactivity at the paraventricular nucleus, yet this effect was unaffected by level of anxiety response. Female adolescents with high levels of basal anxiety may be at-risk for exhibiting increased predisposition for ethanol intake and preference. The study also indicates that stress may exert differential effects on adolescent ethanol intake as a function of the level of anxiety response.

  2. Children and Adolescents with Autism Exhibit Reduced MEG Steady-State Gamma Responses

    PubMed Central

    Wilson, Tony W.; Rojas, Donald C.; Reite, Martin L.; Teale, Peter D.; Rogers, Sally J.

    2009-01-01

    Background Recent neuroimaging studies of autism have indicated reduced functional connectivity during both cognitive tasks and rest. These data suggest long-range connectivity may be compromised in this disorder, and current neurological theories of autism contend disrupted inter-regional interactions may be an underlying mechanism explaining behavioral symptomatology. However, it is unclear whether deficient neuronal communication is attributable to fewer long-range tracts or more of a local deficit in neural circuitry. This study examines the integrity of local circuitry by focusing on gamma band activity in auditory cortices of children and adolescents with autism. Methods Ten children and adolescents with autism and 10 matched controls participated. Both groups listened to 500 ms duration monaural click trains with a 25 ms inter-click interval, as magnetoencephalography was acquired from the contralateral hemisphere. To estimate 40 Hz spectral power density, we performed time-frequency decomposition of the single-trial magnetic steady-state response data using complex demodulation. Results Children and adolescents with autism exhibited significantly reduced left hemispheric 40 Hz power from 200–500 ms post-stimulus onset. In contrast, no significant between group differences were observed for right hemispheric cortices. Conclusions The production and/or maintenance of left hemispheric gamma oscillations appeared abnormal in participants with autism. We interpret these data as indicating that in autism, particular brain regions may be unable to generate the high-frequency activity likely necessary for binding and other forms of inter-regional interactions. These findings augment connectivity theories of autism with novel evidence that aberrations in local circuitry could underlie putative deficiencies in long-range neural communication. PMID:16950225

  3. Social exclusion intensifies anxiety-like behavior in adolescent rats.

    PubMed

    Lee, Hyunchan; Noh, Jihyun

    2015-05-01

    Social connection reduces the physiological reactivity to stressors, while social exclusion causes emotional distress. Stressful experiences in rats result in the facilitation of aversive memory and induction of anxiety. To determine the effect of social interaction, such as social connection, social exclusion and equality or inequality, on emotional change in adolescent distressed rats, the emotional alteration induced by restraint stress in individual rats following exposure to various social interaction circumstances was examined. Rats were assigned to one of the following groups: all freely moving rats, all rats restrained, rats restrained in the presence of freely moving rats and freely moving rats with a restrained rat. No significant difference in fear-memory and sucrose consumption between all groups was found. Change in body weight significantly increased in freely moving rats with a restrained rat, suggesting that those rats seems to share the stressful experience of the restrained rat. Interestingly, examination of the anxiety-like behavior revealed only rats restrained in the presence of freely moving rats to have a significant increase, suggesting that emotional distress intensifies in positions of social exclusion. These results demonstrate that unequally excluded social interaction circumstances could cause the amplification of distressed status and anxiety-related emotional alteration.

  4. Short photoperiod condition increases susceptibility to stress in adolescent male rats.

    PubMed

    Xu, Ling-Zhi; Liu, Li-Jing; Yuan, Ming; Li, Su-Xia; Yue, Xiao-Dong; Lai, Ju-Lian; Lu, Lin

    2016-03-01

    The seasonality of depressive symptoms is prevalent in children and adolescents. However, the mechanisms that underlie such susceptibility to seasonal influences on mood disorders are unclear. We examined the effects of a short photoperiod condition on the susceptibility to subchronic unpredictable mild stress (SCUS) and rhythmic alterations of plasma corticosterone (CORT), melatonin, and neuropeptide Y (NPY) in adolescent male rats. Compared with the 12h/12h light/dark photoperiod control (CON) rats, the 8h/16h photoperiod SCUS rats exhibited significant anhedonia, a core symptom of human depression, together with a blunted diurnal rhythm and elevation of 24h CORT, melatonin, and NPY levels. The 8h/16h photoperiod condition also blunted the rhythmicity of CORT, caused a phase inversion of melatonin, and caused a phase delay of NPY compared with 12h/12h CON rats. Such abnormalities of plasma CORT, NPY, and melatonin might cause adolescent individuals to present higher stress reactivity and greater vulnerability to stress over their lifetimes. The present study provides evidence of the susceptibility to the seasonality of stress-related disorders in adolescence.

  5. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    PubMed

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  6. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress

    PubMed Central

    Rowson, Sydney A.; Harrell, Constance S.; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J.; Kelly, Sean D.; Reddy, Renuka; Neigh, Gretchen N.

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  7. Anxiety- and depressive-like profiles during early- and mid-adolescence in the female Wistar Kyoto rat.

    PubMed

    D'Souza, Deepthi; Sadananda, Monika

    2017-02-01

    Approaches for the development of preclinical models of depression extensively use adult and male animals owing to the discrepancies arising out of the hormonal flux in adult females and adolescents during attainment of puberty. Thus the increased vulnerability of females towards clinical depression and anxiety-related disorders remains incompletely understood. Development of clinical models of depression in adolescent females is essential in order to evolve effective treatment strategies for adolescent depression. In the present study, we have examined the anxiety and depressive-like profiles in a putative animal model of childhood depression, the Wistar Kyoto (WKY) rat, during early adolescence (∼postnatal day 30) and mid-adolescence (∼postnatal day 40). Female adolescent WKY rats, tested on a series of behavioural tests modelling anxiety- and depressive-like behaviours with age-matched Wistars as controls, demonstrated marked differences during early adolescence in a strain- and age-specific manner. Anxiety indices were obtained from exposure to the elevated plus maze, where social communication vide 50-kHz ultrasonic vocalizations was also assessed, while immobility and other parameters in the forced swim test were screened for depressive-like profiles. Sucrose preference, used as a measure of anhedonia in animals, was lower in WKYs at both ages tested and decreased with age. Anxiety-related behaviours were prominent in WKY rats only during early adolescence. WKY female rats are anxious during early adolescence and exhibit anhedonia as a core symptom of depression during early- and mid-adolescence, thus indicating that inclusion of female animals in preclinical trials is essential and will contribute to gender-based approaches to diagnosis and treatment of adolescent depression in females.

  8. Sprague-Dawley rats obtained from different vendors exhibit distinct adrenocorticotropin responses to inflammatory stimuli.

    PubMed

    Turnbull, A V; Rivier, C L

    1999-09-01

    The purpose of this work was to compare the plasma adrenocorticotropin (ACTH), corticosterone and interleukin-6 (IL-6) responses that rats of the outbred Sprague-Dawley strain obtained from two different vendors: Charles River (CR) and Harlan (HSD). Basal plasma ACTH and IL-6 concentrations were similar in rats from either vendor (HSD or CR), while CR animals exhibited slightly elevated corticosterone levels in late afternoon. Inflammatory stimuli such as lipopolysaccharide (LPS) (1 microgram/kg, i.v.) or turpentine (50 microliter/100 g, i.m.) which induce the production of endogenous cytokines, produced a significantly larger ACTH response in CR, compared to HSD rats, while the overall corticosterone responses were comparable in both rat groups. This could probably not be accounted for by a greater ACTH responsiveness in CR rats per se because CR and HSD rats showed similar peak ACTH responses to electrofootshock. Furthermore, in contrast to when the stimulus was one that induced endogenous cytokine production, the administration of exogenous interleukin-1beta (IL-1beta, 200 ng/kg, i.v.) produced a 2-fold greater rise in plasma ACTH concentrations in HSD rats compared to CR rats. The plasma IL-6 responses to the inflammatory stimuli showed a similar pattern to ACTH, with LPS and turpentine tending to pruduce greater IL-6 responses in CR rats, though these differences were not statistically significant. In contrast HSD rats had a significantly greater IL-6 response to IL-1beta than did CR rats. Collectively, these results show that Sprague-Dawley rats obtained from different commercial sources can differ in immune-neuroendocrine responses to inflammatory stimuli.

  9. Nicotine Increases Alcohol Intake in Adolescent Male Rats

    PubMed Central

    Lárraga, Armando; Belluzzi, James D.; Leslie, Frances M.

    2017-01-01

    Background: Use of alcohol and tobacco, the two most concurrently abused drugs, typically first occurs during adolescence. Yet, there have been no systematic analyses of ethanol (EtOH) and nicotine (Nic) interactions during adolescence. Recent animal studies report that kappa-opioid (KOR) receptor activation mediates age differences in drug reinforcement. Our hypothesis is that concurrent self-administration of EtOH and Nic will be greater in adolescent rats because of age differences in KOR function. Furthermore, exposure to alcohol and nicotine during adolescence has been reported to increase EtOH intake in adulthood. We performed a longitudinal animal study and hypothesized adolescent rats allowed to self-administer nicotine would drink more alcohol as adults. Methods: Adolescent, postnatal day (P)32, and adult (P90) male and female Sprague-Dawley rats were allowed to self-administer EtOH, Nic, or a combination of both, EtOH+Nic, in an intravenous self-administration paradigm. The role of KOR was pharmacologically evaluated with the KOR antagonist, norbinaltorphamine (norBNI) and with the KOR agonist, U50,488H. Alcohol drinking was subsequently evaluated with male rats in a drinking in the dark (DID), 2-bottle choice test. Results: Concurrent Nic increased EtOH intake in adolescent males, but not in adults or females. Pharmacological blockade of KOR with norBNI robustly increased EtOH+Nic self-administration in adult male rats, but had no effect with female rats. Lastly, in our longitudinal study with male rats, we found prior self-administration of Nic or EtOH+Nic during adolescence increased subsequent oral EtOH intake, whereas prior self-administration of EtOH alone in adults increased subsequent EtOH drinking. Conclusions: There are major age- and sex-differences in the reinforcing effects of EtOH+Nic. Adolescent males are sensitive to the reinforcing interactions of the two drugs, whereas this effect is inhibited by KOR activation in male adults. Nicotine

  10. Limited physical contact through a mesh barrier is sufficient for social reward-conditioned place preference in adolescent male rats.

    PubMed

    Peartree, Natalie A; Hood, Lauren E; Thiel, Kenneth J; Sanabria, Federico; Pentkowski, Nathan S; Chandler, Kayla N; Neisewander, Janet L

    2012-02-01

    Adolescence is a period of enhanced sensitivity to social influences and vulnerability to drug abuse. Social reward in adolescent rats has been demonstrated with the conditioned place preference (CPP) model, but it is not clear whether limited contact with another rat without play is sufficient to produce reward. We investigated this issue using an apparatus containing two main compartment, each with a wire mesh barrier that allowed rats placed on either side of the barrier to have limited physical contact. Adolescent male rats were given two conditioning sessions/day for 2 or 8 days following baseline preference tests. Rats were placed into their preferred side alone for one daily 10-min session and into their initially non-preferred side (i.e., CS) for the other session during which they either had restricted or unrestricted physical access to another rat (Rat/Mesh or Rat/Phys, respectively) or to a tennis ball (Ball/Mesh or Ball/Phys, respectively) unconditioned stimulus (US). Only the Rat/Phys group exhibited CPP after 2 CS-US pairings; however, after 8 CS-US pairings, the Rat/Mesh and Ball/Phys groups also exhibited CPP. During conditioning, the rat US elicited more robust approach and contact behavior compared to the ball, regardless of physical or restricted access. The incidence of contact and/or approach increased as the number of exposures increased. The results suggest that the rank order of US reward efficacy was physical contact with a rat>limited contact with a rat>physical contact with a ball, and that rough-and-tumble play is not necessary to establish social reward-CPP. The findings have important implications for emerging drug self-administration models in which two rats self-administering drug intravenously have limited physical contact via a mesh barrier shared between their respective operant conditioning chambers.

  11. Chronic nicotine differentially alters cocaine-induced locomotor activity in adolescent vs. adult male and female rats.

    PubMed

    Collins, Stephanie L; Izenwasser, Sari

    2004-03-01

    Tobacco use is prevalent in the adolescent population. It is a major concern because tobacco is highly addictive and has also been linked to illicit drug use. There is not much research, however, on the interaction between nicotine and other stimulant drugs in animal models of early adolescence. This study examined the effects of chronic nicotine alone and on cocaine-stimulated activity in male and female periadolescent rats compared to male and female adult rats. During the seven-day nicotine pretreatment period, nicotine increased locomotor activity in all groups compared to vehicle controls. Male and female adult rats and female periadolescent rats developed sensitization to the locomotor-activating effects of nicotine over the 7-day treatment period, while male periadolescent rats did not. All groups treated with nicotine, however, exhibited sensitization to nicotine-induced repetitive motion over the 7-day nicotine treatment period. On day 8, male periadolescent rats pretreated with nicotine were more markedly sensitized to the locomotor-activating effects of cocaine than male adult rats, while female rats pretreated with nicotine were not sensitized to cocaine. In contrast, male and female periadolescent rats, but not adult rats, had increased amounts of repetitive beam breaks induced by cocaine after nicotine pretreatment. Overall, it appears that cross-sensitization to cocaine is greater in periadolescent than in adult rats, and that males are more sensitized than females. Thus, it may be that nicotine use during adolescence carries a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of cocaine abuse after nicotine use. This information should be taken into account so as to help us better understand the development of drug addiction in adolescents compared to adults.

  12. Predicting Early Sexual Activity with Behavior Problems Exhibited at School Entry and in Early Adolescence

    ERIC Educational Resources Information Center

    Schofield, Hannah-Lise T.; Bierman, Karen L.; Heinrichs, Brenda; Nix, Robert L.

    2008-01-01

    Youth who initiate sexual intercourse in early adolescence (age 11-14) experience multiple risks, including concurrent adjustment problems and unsafe sexual practices. The current study tested two models describing the links between childhood precursors, early adolescent risk factors, and adolescent sexual activity: a cumulative model and a…

  13. Naked mole rats exhibit metabolic but not ventilatory plasticity following chronic sustained hypoxia.

    PubMed

    Chung, Danielle; Dzal, Yvonne A; Seow, Allison; Milsom, William K; Pamenter, Matthew E

    2016-03-30

    Naked mole rats are among the most hypoxia-tolerant mammals identified and live in chronic hypoxia throughout their lives. The physiological mechanisms underlying this tolerance, however, are poorly understood. Most vertebrates hyperventilate in acute hypoxia and exhibit an enhanced hyperventilation following acclimatization to chronic sustained hypoxia (CSH). Conversely, naked mole rats do not hyperventilate in acute hypoxia and their response to CSH has not been examined. In this study, we explored mechanisms of plasticity in the control of the hypoxic ventilatory response (HVR) and hypoxic metabolic response (HMR) of freely behaving naked mole rats following 8-10 days of chronic sustained normoxia (CSN) or CSH. Specifically, we investigated the role of the major inhibitory neurotransmitter γ-amino butyric acid (GABA) in mediating these responses. Our study yielded three important findings. First, naked mole rats did not exhibit ventilatory plasticity following CSH, which is unique among adult animals studied to date. Second, GABA receptor (GABAR) antagonism altered breathing patterns in CSN and CSH animals and modulated the acute HVR in CSN animals. Third, naked mole rats exhibited GABAR-dependent metabolic plasticity following long-term hypoxia, such that the basal metabolic rate was approximately 25% higher in normoxic CSH animals than CSN animals, and GABAR antagonists modulated this increase.

  14. Impairment of exploratory behavior and spatial memory in adolescent rats in lithium-pilocarpine model of temporal lobe epilepsy.

    PubMed

    Kalemenev, S V; Zubareva, O E; Frolova, E V; Sizov, V V; Lavrentyeva, V V; Lukomskaya, N Ya; Kim, K Kh; Zaitsev, A V; Magazanik, L G

    2015-01-01

    Cognitive impairment in six-week -old rats has been studied in the lithium-pilocarpine model of adolescent temporal lobe epilepsy in humans. The pilocarpine-treated rats (n =21) exhibited (a) a decreased exploratory activity in comparison with control rats (n = 20) in the open field (OP) test and (b) a slower extinction of exploratory behavior in repeated OP tests. The Morris Water Maze (MWM) test showed that the effect of training was less pronounced in the pilocarpine-treated rats, which demonstrated disruption of predominantly short-term memory. Therefore, our study has shown that lithium-pilocarpine seizures induce substantial changes in exploratory behavior and spatial memory in adolescent rats. OP and MWM tests can be used in the search of drugs reducing cognitive impairments associated with temporal lobe epilepsy.

  15. Social isolation in adolescence alters behaviors in the forced swim and sucrose preference tests in female but not in male rats

    PubMed Central

    Hong, Suzie; Flashner, Bess; Chiu, Melissa; Hoeve, Elizabeth ver; Luz, Sandra; Bhatnagar, Seema

    2011-01-01

    Social interactions in rodents are rewarding and motivating and social isolation is aversive. Accumulating evidence suggests that disruption of the social environment in adolescence has long-term effects on social interactions, on anxiety-like behavior and on stress reactivity. In previous work we showed that adolescent isolation produced increased reactivity to acute and to repeated stress in female rats, whereas lower corticosterone responses to acute stress and decreased anxiety-related behavior were noted in isolated males. These results indicate a sex specific impact on the effects of social stress in adolescence. However, little is known about whether social isolation impacts behaviors related to affect and whether it does so differently in male and female rats. The present study investigated the impact of adolescent social isolation from day 30-50 of age in male and female Sprague Dawley rats on behavior in the forced swim test at the end of adolescence and in adulthood and on behavior in the sucrose preference test in adulthood. Adult female rats that were isolated in adolescence exhibited increased climbing on the first and second day of the forced swim test and showed an increased preference for sucrose compared to adult females that were group-housed in adolescence. There were no effects in male rats. The results indicate that social isolation in adolescence produces a stable and active behavioral phenotype in adult female rats. PMID:21907226

  16. Learning under stress in the adult rat is differentially affected by 'juvenile' or 'adolescent' stress.

    PubMed

    Tsoory, Michael; Richter-Levin, Gal

    2006-12-01

    Epidemiological studies suggest that childhood trauma is associated with a predisposition to develop both mood and anxiety disorders, while trauma during adolescence is associated mainly with anxiety disorders. We studied in the rat the long-term consequences of 'juvenile' stress, namely stress experienced in a period in which substantial remodelling occurs across species in stress-sensitive brain areas involved in emotional and learning processing. In adulthood, 'juvenile' stressed rats exhibited reduced exploration in a novel setting, and poor avoidance learning, with 41% learning mainly to escape while 28% exhibited learned helplessness-like behaviours. In adult rats that underwent 'adolescent' stress, learned helplessness-like behaviours were not evident, although decreased exploration and poor avoidance learning were observed. This suggests that in the prepubertal phase juvenility may constitute a stress-sensitive period. The results suggest that juvenile stress induces lasting impairments in stress-coping responses. The 'juvenile' stress model presented here may be of relevance to individuals' reported predisposition to anxiety and depression following childhood trauma, and their increased susceptibility only to anxiety disorders following adolescent stress.

  17. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure.

    PubMed

    Doremus-Fitzwater, Tamara L; Gano, Anny; Paniccia, Jacqueline E; Deak, Terrence

    2015-09-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31-33days of age) and adult (69-71days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250μg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3h later for measurement of blood ethanol concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. ethanol challenge, IL-6 and IκBα expression was significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS

  18. Age and Sex Differences in Reward Behavior in Adolescent and Adult Rats

    PubMed Central

    Hammerslag, Lindsey R.; Gulley, Joshua M.

    2016-01-01

    Compared to adults, adolescents are at heightened risk for drug abuse and dependence. One of the factors contributing to this vulnerability may be age-dependent differences in reward processing, with adolescents approaching reward through stimulus-directed, rather than goal-directed, processes. However, the empirical evidence for this in rodent models of adolescence, particularly those that investigate both sexes, is limited. To address this, male and female rats that were adolescents (P30) or adults (P98) at the start of the experiment were trained in a Pavlovian approach (PA) task and were subsequently tested for the effects of reward devaluation, extinction, and re-acquisition. We found significant interactions between age and sex: females had enhanced acquisition of PA and poorer extinction, relative to males, while adolescents and females were less sensitive to reward devaluation than male adults. These results suggest that females and adolescents exhibit reward behavior that is more stimulus-directed, rather than goal-directed. PMID:23754712

  19. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  20. Pharmacological evidence that a failure to recruit NMDA receptors contributes to impaired fear extinction retention in adolescent rats.

    PubMed

    Baker, Kathryn D; Richardson, Rick

    2016-11-01

    Adolescents, both humans and rodents, exhibit a marked impairment in extinction of fear relative to younger and older groups which could be caused by a failure to efficiently recruit NMDA receptors (NMDARs) in adolescence. It is well-established that systemic administration of NMDAR antagonists (e.g., MK801) before extinction training impairs the retention of extinction in adult and juvenile rodents, but it is unknown whether this is also the case for adolescents. Therefore, in the present study we investigated the effect of pharmacologically manipulating the NMDAR on extinction retention in adolescent rats. When extinction retention is typically impaired (i.e., after one session of extinction training) adolescent male rats given d-cycloserine (a partial NMDAR agonist) showed enhanced extinction retention relative to saline-treated animals while animals given MK801 (a non-competitive antagonist) did not exhibit any further impairment of extinction retention relative to the controls. In a further two experiments we demonstrated that when two sessions of extinction training separated by either 4 or 24h intervals were given to adolescent rats, saline-treated animals exhibited good extinction retention and the animals given MK801 before the second session exhibited impaired extinction retention. These findings suggest that extinction in adolescence does not initially involve NMDARs and this is a likely mechanism that contributes to the impaired fear inhibition observed at this age. However, NMDARs appear to be recruited with extended extinction training or after administration of a partial agonist, both of which lead to effective extinction retention.

  1. Ectopic hippocampal neurogenesis in adolescent male rats following alcohol dependence.

    PubMed

    McClain, Justin A; Morris, Stephanie A; Marshall, S Alexander; Nixon, Kimberly

    2014-07-01

    The adolescent hippocampus is highly vulnerable to alcohol-induced damage, which could contribute to their increased susceptibility to alcohol use disorder. Altered adult hippocampal neurogenesis represents one potential mechanism by which alcohol (ethanol) affects hippocampal function. Based on the vulnerability of the adolescent hippocampus to alcohol-induced damage, and prior reports of long-term alcohol-induced effects on adult neurogenesis, we predicted adverse effects on adult neurogenesis in the adolescent brain following abstinence from alcohol dependence. Thus, we examined neurogenesis in adolescent male rats during abstinence following a 4-day binge model of alcohol dependence. Bromodeoxyuridine and Ki67 immunohistochemistry revealed a 2.2-fold increase in subgranular zone cell proliferation after 7 days of abstinence. Increased proliferation was followed by a 75% increase in doublecortin expression and a 56% increase in surviving bromodeoxyuridine-labeled cells 14 and 35 days post-ethanol exposure, respectively. The majority of newborn cells in ethanol and control groups co-localized with NeuN, indicating a neuronal phenotype and therefore a 1.6-fold increase in hippocampal neurogenesis during abstinence. Although these results mirror the magnitude of reactive neurogenesis described in adult rat studies, ectopic bromodeoxyuridine and doublecortin positive cells were detected in the molecular layer and hilus of adolescent rats displaying severe withdrawal symptoms, an effect that has not been described in adults. The presence of ectopic neuroblasts suggests that a potential defect exists in the functional incorporation of new neurons into the existing hippocampal circuitry for a subset of rats. Age-related differences in functional incorporation could contribute to the increased vulnerability of the adolescent hippocampus to ethanol.

  2. Nicotine administration enhances negative occasion setting in adolescent rats.

    PubMed

    Meyer, Heidi C; Chodakewitz, Molly I; Bucci, David J

    2016-04-01

    Substantial research has established that exposure to nicotine during adolescence can lead to long-term changes in neural circuitry and behavior. However, relatively few studies have considered the effects of nicotine use on cognition during this critical stage of brain development. This is significant because the influence of nicotine on cognitive performance during adolescence may contribute to the development of regular nicotine use. For example, improvements in cognitive functioning may increase the perceived value of smoking and facilitate impulses to smoke. To address this, the present research tested the effects of nicotine on a form of inhibitory learning during adolescence. Specifically, adolescent rats were exposed to nicotine as they were trained in a negative occasion setting paradigm, in which successful performance depends on learning the conditions under which it is, or is not, appropriate to respond to a target stimulus. Here, we found that nicotine administration enhances negative occasion setting in adolescents. In addition, nicotine increased the amount of orienting behavior directed toward the inhibitory stimulus, suggesting that improvements in this form of behavioral inhibition may be attributed to nicotine-induced increases in attentional processing. These results may help elucidate the factors that contribute to the onset as well as continued use of products containing nicotine during adolescence and provide insight to increase the effectiveness of interventions targeted at reducing the prevalence of adolescent smoking.

  3. Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function.

    PubMed

    Vinish, Monika; Elnabawi, Ahmed; Milstein, Jean A; Burke, Jesse S; Kallevang, Jonathan K; Turek, Kevin C; Lansink, Carien S; Merchenthaler, Istvan; Bailey, Aileen M; Kolb, Bryan; Cheer, Joseph F; Frost, Douglas O

    2013-08-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.

  4. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity.

    PubMed

    Hodges, Travis E; McCormick, Cheryl M

    2015-03-01

    We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.

  5. Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats

    PubMed Central

    Carvalho, A. F.; Reyes, B. A. S.; Ramalhosa, F.; Sousa, N.

    2014-01-01

    Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37–40) and adult (P55–60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi–Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development

  6. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats

    PubMed Central

    Wulsin, Aynara C.; Wick-Carlson, Dayna; Packard, Benjamin A.; Morano, Rachel; Herman, James P.

    2016-01-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45–58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood. PMID:26751968

  7. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats.

    PubMed

    Wulsin, Aynara C; Wick-Carlson, Dayna; Packard, Benjamin A; Morano, Rachel; Herman, James P

    2016-03-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45-58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood.

  8. Naloxone blocks ethanol-mediated appetitive conditioning and locomotor activation in adolescent rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, María Belén; Spear, Norman E

    2011-01-01

    Age-related differences in ethanol sensitivity could put adolescents at risk for developing alcohol-related problems. Little information exists, however, about adolescent sensitivity to ethanol's appetitive effects and the neurobiological mechanisms underlying ethanol reinforcement during this developmental stage. The present study assessed the role of the opioid system in adolescent rats in an appetitive second-order schedule of ethanol reinforcement and ethanol-induced locomotor stimulation. On postnatal day 32 (PD32), animals were pretreated with the general opioid antagonist naloxone (0.0, 0.75, 1.50, or 2.5 mg/kg) and then given pairings of ethanol (0.0 or 2.0 g/kg, intragastrically) with intraoral pulses of water (conditioned stimulus 1 [CS₁], first-order conditioning phase). CS₁ delivery occurred 30-45 min after ethanol administration when the effect of ethanol was assumed to be appetitive. On PD33, adolescents were exposed to CS₁ (second-order conditioning phase) while in a chamber featuring distinctive exteroceptive cues (CS₂). Preference for CS₂ was then tested. Adolescents given CS₁-ethanol pairings exhibited greater preference for CS₂ than controls, indicating ethanol-mediated reinforcement, but only when not pretreated with naloxone. Blood alcohol levels during conditioning were not altered by naloxone. Experiment 2 revealed that ethanol-induced locomotor activation soon after administration, and naloxone dose-dependently suppressed this stimulating effect. The present study indicates that adolescent rats are sensitive to ethanol's reinforcing and locomotor-stimulating effects. Both effects of ethanol appear to be mediated by endogenous opioid system activation.

  9. NALOXONE BLOCKS ETHANOL-MEDIATED APPETITIVE CONDITIONING AND LOCOMOTOR ACTIVATION IN ADOLESCENT RATS

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Acevedo, María Belén; Spear, Norman E.

    2010-01-01

    Age-related differences in ethanol sensitivity could put adolescents at risk for developing alcohol-related problems. Little information exists, however, about adolescent sensitivity to ethanol's appetitive effects and the neurobiological mechanisms underlying ethanol reinforcement during this developmental stage. The present study assessed the role of the opioid system in adolescent rats in an appetitive second-order schedule of ethanol reinforcement and ethanol-induced locomotor stimulation. On postnatal day 32 (PD32), animals were pretreated with the general opioid antagonist naloxone (0.0, 0.75, 1.50, or 2.5 mg/kg) and then given pairings of ethanol (0.0 or 2.0 g/kg, intragastrically) with intraoral pulses of water (conditioned stimulus 1 [CS1], first-order conditioning phase). CS1 delivery occurred 30–45 min after ethanol administration when the effect of ethanol was assumed to be appetitive. On PD33, adolescents were exposed to CS1 (second-order conditioning phase) while in a chamber featuring distinctive exteroceptive cues (CS2). Preference for CS2 was then tested. Adolescents given CS1-ethanol pairings exhibited greater preference for CS2 than controls, indicating ethanol-mediated reinforcement, but only when not pretreated with naloxone. Blood alcohol levels during conditioning were not altered by naloxone. Experiment 2 revealed that ethanol induced locomotor activation soon after administration, and naloxone dose-dependently suppressed this stimulating effect. The present study indicates that adolescent rats are sensitive to ethanol's reinforcing and locomotor-stimulating effects. Both effects of ethanol appear to be mediated by endogenous opioid system activation. PMID:20708642

  10. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats

    PubMed Central

    Li, Jitao; Xie, Xiaomeng; Li, Youhong; Liu, Xiao; Liao, Xuemei; Su, Yun-Ai; Si, Tianmei

    2017-01-01

    Adolescence is a critical period with ongoing maturational processes in stress-sensitive systems. While adolescent individuals show heightened stress-induced hormonal responses compared to adults, it is unclear whether and how the behavioral and neurobiological consequences of chronic stress would differ between the two age groups. Here we address this issue by examining the effects of chronic exposure to the stress hormone, corticosterone (CORT), in both adolescent and adult animals. Male Sprague-Dawley (SD) rats were injected intraperitoneally with CORT (40 mg/kg) or vehicle for 21 days during adolescence (post-natal day (PND) 29–49) or adulthood (PND 71–91) and then subjected to behavioral testing or sacrifice for western blot analyses. Despite of similar physical and neuroendocrine effects in both age groups, chronic CORT treatment produced a series of behavioral and neurobiological effects with striking age differences. While CORT-treated adult animals exhibited decreased sucrose preference, increased anxiety levels and cognitive impairment, CORT-treated adolescent animals demonstrated increased sucrose preference, decreased anxiety levels, and increased sensorimotor gating functions. These differential behavioral alterations were accompanied by opposite changes in the two age groups in the expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylation of the obligatory subunit of the NMDA receptor, GluN1, and PSD-95 in rat hippocampus. These results suggest that prolonged glucocorticoid exposure during adolescence produces different behavioral and neurobiological effects from those in adulthood, which may be due to the complex interaction between glucocorticoids and the ongoing neurodevelopmental processes during this period. PMID:28210212

  11. Adolescent binge drinking leads to changes in alcohol drinking, anxiety, and amygdalar corticotropin releasing factor cells in adulthood in male rats.

    PubMed

    Gilpin, Nicholas W; Karanikas, Chrisanthi A; Richardson, Heather N

    2012-01-01

    Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with implications

  12. Adolescent Binge Drinking Leads to Changes in Alcohol Drinking, Anxiety, and Amygdalar Corticotropin Releasing Factor Cells in Adulthood in Male Rats

    PubMed Central

    Gilpin, Nicholas W.; Karanikas, Chrisanthi A.; Richardson, Heather N.

    2012-01-01

    Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (∼postnatal days 28–42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with

  13. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced conditioned place preference and conditioned taste aversion in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol’s aversive reinforcement, but they also exhibited conditioned place preference. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. PMID:22592597

  14. Predicting Early Sexual Activity with Behavior Problems Exhibited at School Entry and in Early Adolescence

    PubMed Central

    Schofield, Hannah-Lise T.; Heinrichs, Brenda; Nix, Robert L.

    2009-01-01

    Youth who initiate sexual intercourse in early adolescence (age 11–14) experience multiple risks, including concurrent adjustment problems and unsafe sexual practices, The current study tested two models describing the links between childhood precursors, early adolescent risk factors, and adolescent sexual activity: a cumulative model and a meditational model, A longitudinal sample of 694 boys and girls from four geographical locations was utilized, with data collected from kindergarten through high school. Structural equation models revealed that, irrespective of gender or race, high rates of aggressive disruptive behaviors and attention problems at school entry increased risk for a constellation of problem behaviors in middle school (school maladjustment, antisocial activity, and substance use) which, in turn, promoted the early initiation of sexual activity. Implications are discussed for developmental models of early sexual activity and for prevention programming. PMID:18607716

  15. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    PubMed Central

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2014-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−26%, p=0.0001) and DEF+FLX (−32%, p=0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF+FLX rats exhibited significantly greater climbing behavior compared with CON+FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF+FLX rats exhibited significant elevations in climbing behavior. DEF+FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON+FLX rats. DEF+FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. PMID:24360505

  16. Low-Income, African American Adolescent Mothers and Their Toddlers Exhibit Similar Dietary Variety Patterns

    ERIC Educational Resources Information Center

    Papas, Mia A.; Hurley, Kristen M.; Quigg, Anna M.; Oberlander, Sarah E.; Black, Maureen M.

    2009-01-01

    Objective: To examine the relationship between maternal and toddler dietary variety. Design: Longitudinal; maternal and toddler dietary data were collected at 13 months; anthropometry was collected at 13 and 24 months. Setting: Data were collected in homes. Participants: 109 primiparous, low-income, African American adolescent mothers and…

  17. Common Strategies When Working with Children and Adolescents Exhibiting Psycho-Social Problems.

    ERIC Educational Resources Information Center

    Safian-Rush, Donna

    This paper provides general guidelines for psychiatric mental health workers who work with children and adolescents in a residential treatment center. Twenty-four questions commonly asked by therapists in these situations are posed and answers are discussed for each question. Topics covered include why some patients appear perfectly normal, the…

  18. Olanzapine Treatment of Adolescent Rats Causes Enduring Specific Memory Impairments and Alters Cortical Development and Function

    PubMed Central

    Swanson, Thomas; Enos, Jennifer K.; Bailey, Aileen M.; Kolb, Bryan; Frost, Douglas O.

    2013-01-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28–49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABAA receptors with open Cl− channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to

  19. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal

    PubMed Central

    Natividad, Luis A.; Buczynski, Matthew W.; Parsons, Loren H.; Torres, Oscar; O'Dell, Laura E.

    2012-01-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, since adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal. PMID:22905672

  20. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal.

    PubMed

    Natividad, Luis A; Buczynski, Matthew W; Parsons, Loren H; Torres, Oscar V; O'Dell, Laura E

    2012-11-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, as adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.

  1. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence

    PubMed Central

    Ponce, Luciano Federico; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan Carlos

    2008-01-01

    Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug’s reinforcing effects (Spear & Molina, 2005). A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5–6 was also examined. In Experiment 1, pups (postnatal days 14–17 were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25–48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns. PMID:18571224

  2. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.

    PubMed

    Ardais, A P; Borges, M F; Rocha, A S; Sallaberry, C; Cunha, R A; Porciúncula, L O

    2014-06-13

    Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions.

  3. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats.

    PubMed

    Barha, Cindy K; Brummelte, Susanne; Lieblich, Stephanie E; Galea, Liisa A M

    2011-11-01

    Previous studies have shown a relationship between adversity in adolescence and health outcomes in adulthood in a sex-specific manner. Adolescence is characterized by major changes in stress-responsive regions of the brain, including the hippocampus, the site of ongoing neurogenesis throughout the lifespan. Prepubertal male and female rats exhibit different acute reactions to chronic stress compared to adults, but less is known about whether these stress-induced changes persist into adulthood. Therefore, in this study, we investigated the effects of chronic, intermittent stress during adolescence on basal corticosterone levels, dentate gyrus (DG) volume, and neurogenesis in the hippocampus of adult male and female Sprague-Dawley rats. Adolescent male and female rats were either restrained for 1 h every other day for 3 weeks from postnatal days (PDs) 30-52 at unpredictable times or left undisturbed. All rats received a single injection of bromodeoxyuridine (BrdU; 200 mg/kg) in adulthood on PD70 and were perfused 3 weeks later. Brains were processed for Ki67 (endogenous marker of cell proliferation) and BrdU (to estimate effects on cell survival). In addition, blood samples were taken during the restraint stress period and in adulthood. Results show that males and females exhibit different corticosterone responses to chronic stress during adolescence and that only adult female rats exposed to stress during adolescence show higher basal corticosterone levels compared to nonstressed controls. Furthermore, stressed females showed a reduced number of proliferating and surviving cells in the DG in adulthood compared to nonstressed same-sex controls. The majority of BrdU-labeled cells were co-labeled with NeuN, an endogenous marker of mature neurons, indicating that neurogenesis was decreased in the DG of adult female rats that had undergone chronic restraint stress in adolescence. Although male rats were more responsive to the chronic stress as adolescents showing higher

  4. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood.

    PubMed

    Chocyk, Agnieszka; Przyborowska, Aleksandra; Makuch, Wioletta; Majcher-Maślanka, Iwona; Dudys, Dorota; Wędzony, Krzysztof

    2014-05-01

    Adolescence is a developmental period characterized by extensive morphological and functional remodeling of the brain. The processes of brain maturation during this period may unmask malfunctions that originate earlier in life as a consequence of early-life stress (ELS). This is associated with the emergence of many psychopathologies during adolescence, particularly affective spectrum disorders. In the present study, we applied a maternal separation (MS) procedure (3h/day, on postnatal days 1-14) as a model of ELS to examine its effects on the acquisition, expression and extinction of fear memories in adolescent rats. Additionally, we studied the persistence of these memories into adulthood. We found that MS decreased the expression of both contextual (CFC) and auditory (AFC) fear conditioning in adolescent rats. Besides, MS had no impact on the acquisition of extinction learning. During the recall of extinction MS animals both, those previously subjected and not subjected to the extinction session, exhibited equally low levels of freezing. In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies.

  5. Evaluation and Treatment of Swimming Pool Avoidance Exhibited by an Adolescent Girl with Autism

    ERIC Educational Resources Information Center

    Rapp, John T.; Vollmer, Timothy R.; Hovanetz, Alyson N.

    2005-01-01

    We evaluated and treated swimming pool avoidance that was exhibited by a 14-year-old girl diagnosed with autism. In part, treatment involved blocking for flopping (dropping to the ground) and elopement (running away from the pool) and access to food for movements toward a swimming pool. Treatment also involved reinforcement for exposure to various…

  6. Nicotine produces long-term increases in cocaine reinforcement in adolescent but not adult rats.

    PubMed

    Reed, Stephanie Collins; Izenwasser, Sari

    2017-01-01

    Studies have shown that many smokers begin using nicotine during adolescence, yet the influence of early nicotine use on the response to other drugs of abuse in adulthood is not fully understood. In the current study, nicotine was administered to adolescent and adult rats for seven days. Thirty days later, cocaine-induced locomotor activity and cocaine self-administration were examined when the rats pretreated as adolescents were adults. Rats exposed to nicotine during early adolescence were sensitized thirty days later to the locomotor-activating effects of cocaine and self-administered a greater number of cocaine infusions than adolescent rats pretreated with vehicle. As a result of this increased intake, the cocaine self-administration dose-response curve was shifted upward indicating an increase in cocaine reinforcement. Rats pretreated with nicotine as adults, however, did not show a difference in locomotor activity or cocaine self-administration thirty days later compared to adult rats pretreated with vehicle. These findings suggest that early exposure to nicotine has long-term consequences on cocaine use. These data further suggest that nicotine use may carry a greater risk during adolescence than adulthood and adolescents who smoke may be particularly vulnerable to stimulant use. This article is part of a Special Issue entitled SI: Adolescent plasticity.

  7. Effects of voluntary alcohol intake on risk preference and behavioral flexibility during rat adolescence.

    PubMed

    McMurray, Matthew S; Amodeo, Leslie R; Roitman, Jamie D

    2014-01-01

    Alcohol use is common in adolescence, with a large portion of intake occurring during episodes of binging. This pattern of alcohol consumption coincides with a critical period for neurocognitive development and may impact decision-making and reward processing. Prior studies have demonstrated alterations in adult decision-making following adolescent usage, but it remains to be seen if these alterations exist in adolescence, or are latent until adulthood. Here, using a translational model of voluntary binge alcohol consumption in adolescents, we assess the impact of alcohol intake on risk preference and behavioral flexibility during adolescence. During adolescence (postnatal day 30-50), rats were given 1-hour access to either a 10% alcohol gelatin mixture (EtOH) or a calorie equivalent gelatin (Control) at the onset of the dark cycle. EtOH consuming rats were classified as either High or Low consumers based on intake levels. Adolescent rats underwent behavioral testing once a day, with one group performing a risk preference task, and a second group performing a reversal-learning task during the 20-day period of gelatin access. EtOH-High rats showed increases in risk preference compared to Control rats, but not EtOH-Low animals. However, adolescent rats did a poor job of matching their behavior to optimize outcomes, suggesting that adolescents may adopt a response bias. In addition, adolescent ethanol exposure did not affect the animals' ability to flexibly adapt behavior to changing reward contingencies during reversal learning. These data support the view that adolescent alcohol consumption can have short-term detrimental effects on risk-taking when examined during adolescence, which does not seem to be attributable to an inability to flexibly encode reward contingencies on behavioral responses.

  8. Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD.

    PubMed

    Somkuwar, S S; Kantak, K M; Bardo, M T; Dwoskin, L P

    2016-02-01

    Impulsivity and hyperactivity are two facets of attention deficit/hyperactivity disorder (ADHD). Impulsivity is expressed as reduced response inhibition capacity, an executive control mechanism that prevents premature execution of an intermittently reinforced behavior. During methylphenidate treatment, impulsivity and hyperactivity are decreased in adolescents with ADHD, but there is little information concerning levels of impulsivity and hyperactivity in adulthood after adolescent methylphenidate treatment is discontinued. The current study evaluated impulsivity, hyperactivity as well as cocaine sensitization during adulthood after adolescent methylphenidate treatment was discontinued in the Spontaneously Hypertensive Rat (SHR) model of ADHD. Treatments consisted of oral methylphenidate (1.5mg/kg) or water vehicle provided Monday-Friday from postnatal days 28-55. During adulthood, impulsivity was measured in SHR and control strains (Wistar Kyoto and Wistar rats) using differential reinforcement of low rate (DRL) schedules. Locomotor activity and cocaine sensitization were measured using the open-field assay. Adult SHR exhibited decreased efficiency of reinforcement under the DRL30 schedule and greater levels of locomotor activity and cocaine sensitization compared to control strains. Compared to vehicle, methylphenidate treatment during adolescence reduced hyperactivity in adult SHR, maintained the lower efficiency of reinforcement, and increased burst responding under DRL30. Cocaine sensitization was not altered following adolescent methylphenidate in adult SHR. In conclusion, adolescent treatment with methylphenidate followed by discontinuation in adulthood had a positive benefit by reducing hyperactivity in adult SHR rats; however, increased burst responding under DRL compared to SHR given vehicle, i.e., elevated impulsivity, constituted an adverse consequence associated with increased risk for cocaine abuse liability.

  9. Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD

    PubMed Central

    Somkuwar, S.S.; Kantak, K.M.; Bardo, M.T.; Dwoskin, L.P.

    2016-01-01

    Impulsivity and hyperactivity are two facets of attention deficit/hyperactivity disorder (ADHD). Impulsivity is expressed as reduced response inhibition capacity, an executive control mechanism that prevents premature execution of an intermittently reinforced behavior. During methylphenidate treatment, impulsivity and hyperactivity are decreased in adolescents with ADHD, but there is little information concerning levels of impulsivity and hyperactivity in adulthood after adolescent methylphenidate treatment is discontinued. The current study evaluated impulsivity, hyperactivity as well as cocaine sensitization during adulthood after adolescent methylphenidate treatment was discontinued in the Spontaneously Hypertensive Rat (SHR) model of ADHD. Treatments consisted of oral methylphenidate (1.5 mg/kg) or water vehicle provided Monday-Friday from postnatal day 28–55. During adulthood, impulsivity was measured in SHR and control strains (Wistar Kyoto and Wistar rats) using differential reinforcement of low rate (DRL) schedules. Locomotor activity and cocaine sensitization were measured using the open-field assay. Adult SHR exhibited decreased efficiency of reinforcement under the DRL30 schedule and greater levels of locomotor activity and cocaine sensitization compared to control strains. Compared to vehicle, methylphenidate treatment during adolescence reduced hyperactivity in adult SHR, maintained the lower efficiency of reinforcement, and increased burst responding under DRL30. Cocaine sensitization was not altered following adolescent methylphenidate in adult SHR. In conclusion, adolescent treatment with methylphenidate followed by discontinuation in adulthood had a positive benefit by reducing hyperactivity in adult SHR rats; however, increased burst responding under DRL compared to SHR given vehicle, i.e., elevated impulsivity, constituting an adverse consequence associated with increased risk for cocaine abuse liability. PMID:26657171

  10. Performance on an impulse control task is altered in adult rats exposed to amphetamine during adolescence

    PubMed Central

    Hankosky, Emily R.; Gulley, Joshua M.

    2012-01-01

    Repeated exposure to psychostimulant drugs is associated with long-lasting changes in cognition, particularly in behavioral tasks that are sensitive to prefrontal cortex function. Adolescents may be especially vulnerable to these drug-induced cognitive changes because of the widespread adaptations in brain anatomy and function that are characteristic of normal development during this period. Here, we used a differential reinforcement of low rates of responding task in rats to determine if amphetamine exposure during adolescence would alter behavioral inhibition in adulthood. Between postnatal day 27 and 45, rats received every other day injections of saline or amphetamine (3 mg/kg). At postnatal day 125, rats were trained progressively through a series of four reinforcement schedules (DRL 5, 10, 15 and 30 sec) that required them to withhold responding for the appropriate amount of time before a lever press was reinforced. Relative to controls, amphetamine-treated rats displayed transient deficits in behavioral inhibition (i.e., decreases in efficiency ratio) that were only evident at DRL 5. In addition, they had increased responding during non-reinforced periods, which suggested increased perseveration and propensity to attribute incentive salience to reward-paired cues. Following challenge injections with amphetamine (0.25–1 mg/kg, i.p.), which were given 10 min before the start of DRL 30 test sessions, both groups exhibited dose-dependent decreases in efficiency. These results suggest that amphetamine-induced alterations in incentive-motivation and perseveration are more robust and longer-lasting than its effects on impulse control. PMID:22778047

  11. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  12. Similar withdrawal severity in adolescents and adults in a rat model of alcohol dependence.

    PubMed

    Morris, S A; Kelso, M L; Liput, D J; Marshall, S A; Nixon, K

    2010-02-01

    Alcohol use during adolescence leads to increased risk of developing an alcohol use disorder (AUD) during adulthood. Converging evidence suggests that this period of enhanced vulnerability for developing an AUD may be due to the adolescent's unique sensitivity and response to alcohol. Adolescent rats have been shown to be less sensitive to alcohol intoxication and withdrawal susceptibility; however, age differences in ethanol pharmacokinetics may underlie these effects. Therefore, this study investigated alcohol intoxication behavior and withdrawal severity using a modified Majchrowicz model of alcohol dependence that has been shown to result in similar blood ethanol concentrations (BECs) despite age differences. Adolescent (postnatal day, PND, 35) and adult rats (PND 70+) received ethanol according to this 4-day binge paradigm and were observed for withdrawal behavior for 17h. As expected, adolescents showed decreased sensitivity to alcohol-induced CNS depression as evidenced by significantly lower intoxication scores. Thus, adolescents received significantly more ethanol each day (12.3+/-0.1g/kg/day) than adults (9.2+/-0.2g/kg/day). Despite greater ethanol dosing in adolescent rats, both adolescent and adult groups had comparable peak BECs (344.5+/-10.2 and 338.5+/-7.8mg/dL, respectively). Strikingly, withdrawal severity was similar quantitatively and qualitatively between adolescent and adult rats. Further, this is the first time that withdrawal behavior has been reported for adolescent rats using this model of alcohol dependence. A second experiment confirmed the similarity in BECs at various time points across the binge. These results demonstrate that after consideration of ethanol pharmacokinetics between adults and adolescents by using a model that produces similar BECs, withdrawal severity is nearly identical. This study, in combination with previous reports on ethanol withdrawal in adolescents and adults, suggests only a BEC-dependent effect of ethanol on

  13. Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin).

    PubMed

    Barron, Elyssa; Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2009-01-01

    Eight groups of male adolescent and adult spontaneous hyperactive rats (SHR) were used in a dose response (saline, 0.6, 2.5, and 10 mg/kg) experiment of methylphenidate (MPD). Four different locomotor indices were recorded for 2 hours postinjection using a computerized monitoring system. Acutely, the 0.6 mg/kg dose of MPD did not elicit an increase in locomotor activity in either the adolescent or in the adult male SHR. The 2.5 and the 10.0 mg/kg doses increased activity in the adolescent and the adult rats. Chronically, MPD treatment when comparing adolescent and adult gave the following results: the 0.6 mg/kg dose of MPD failed to cause sensitization in the adolescent group but caused sensitization in the adult group, while the 2.5 and 10 mg/kg both caused sensitization in the adolescent and adult groups.

  14. Prenatal ethanol exposure increases ethanol intake and reduces c-Fos expression in infralimbic cortex of adolescent rats.

    PubMed

    Fabio, Maria Carolina; March, Samanta M; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-02-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Experiment 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0g/kg) or vehicle, on gestational days 17-20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake.

  15. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    PubMed Central

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake. PMID:23266368

  16. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats.

    PubMed

    Pascual, Maria; Blanco, Ana M; Cauli, Omar; Miñarro, Jose; Guerri, Consuelo

    2007-01-01

    Adolescent brain development seems to be important for the maturation of brain structures and behaviour. Intermittent binge ethanol drinking is common among adolescents, and this type of drinking can induce brain damage. Because we have demonstrated that chronic ethanol treatment induces inflammatory processes in the brain, we investigate whether intermittent ethanol intoxication enhances cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in adolescent rats, and whether these mediators induce brain damage and cause permanent cognitive dysfunctions. Adolescent rats were exposed to ethanol (3.0 g/kg) for two consecutive days at 48-h intervals over 14 days. Levels of COX-2, iNOS and cell death were assessed in the neocortex, hippocampus and cerebellum 24 h after the final ethanol administration. The following day or 20 days after the final injection (adult stage), animals were tested for different behavioural tests (conditional discrimination learning, rotarod, object recognition, beam-walking performance) to assess cognitive and motor functions. Our results show that intermittent ethanol intoxication upregulates COX-2 and iNOS levels, and increases cell death in the neocortex, hippocampus and cerebellum. Furthermore, animals treated with ethanol during adolescence exhibited behavioural deficits that were evident at the end of ethanol treatments and at the adult stage. Administration of indomethacin, a COX-2 inhibitor, abolishes the induction of COX-2 and iNOS expression and cell death, preventing ethanol-induced behavioural deficits. These findings indicate that binge pattern exposure to ethanol during adolescence induces brain damage by inflammatory processes and causes long-lasting neurobehavioural consequences. Accordingly, administering indomethacin protects against ethanol-induced brain damage and prevents detrimental ethanol effects on cognitive and motor processes.

  17. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    PubMed

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.

  18. Acute and adaptive motor responses to caffeine in adolescent and adult rats.

    PubMed

    Rhoads, Dennis E; Huggler, April L; Rhoads, Lucas J

    2011-07-01

    Caffeine is a psychostimulant with intake through foods or beverages tending to increase from childhood through adolescence. The goals of the present study were to examine the effects of caffeine on young adolescent Long-Evans rats and to compare the motor-behavioral responses of adolescent and adult rats to acute and chronic caffeine. Adolescent rats had a biphasic dose-response to caffeine comparable to that reported for adult rats. The magnitude of the motor response to a challenge dose of caffeine (30mg/kg, ip) was similar between adolescent and adult rats. Administration of caffeine in the drinking water (1mg/ml) for a period of 2 weeks led to overall consumption of caffeine which was not significantly different between adolescents and adults when normalized to body mass. There were no impacts of caffeinated drinking water on volume of fluid consumed nor weight gain in either age group compared to age matched controls drinking non-caffeinated tap water. Following this period of caffeine consumption, return to regular drinking water (caffeine withdrawal) led to a significant decrease in baseline movement compared to caffeine-naïve rats. This effect inversion was observed for adolescents but not adults. In addition, the response of the adolescents to the challenge dose of caffeine (30mg/kg, ip) was reduced significantly after chronic caffeine consumption and withdrawal. This apparent tolerance to the caffeine challenge dose was not seen with the adults. Thus, the developing brain of these adolescents may show similar sensitivity to adults in acute caffeine exposure but greater responsiveness to adaptive changes associated with chronic caffeine consumption.

  19. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities.

    PubMed

    Hadley, Stephen H; Amin, Jahanshah

    2007-06-15

    The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state

  20. Differential effects of delta9-THC on learning in adolescent and adult rats.

    PubMed

    Cha, Young May; White, Aaron M; Kuhn, Cynthia M; Wilson, Wilkie A; Swartzwelder, H S

    2006-03-01

    Marijuana use remains strikingly high among young users in the U.S., and yet few studies have assessed the effects of delta9-tetrahydrocannabinol (THC) in adolescents compared to adults. This study measured the effects of THC on male adolescent and adult rats in the Morris water maze. In Experiment 1, adolescent (PD=30-32) and adult (PD=65-70) rats were treated acutely with 5.0 mg/kg THC or vehicle while trained on the spatial version of the water maze on five consecutive days. In Experiment 2, adolescent and adult rats were treated acutely with 2.5 or 10.0 mg/kg THC or vehicle while trained on either the spatial and non-spatial versions of the water maze. In Experiment 3, adolescent and adult rats were treated with 5.0 mg/kg THC or vehicle daily for 21 days, and were trained on the spatial and then the non-spatial versions of the water maze task four weeks later in the absence of THC. THC impaired both spatial and nonspatial learning more in adolescents than in adults at all doses tested. However, there were no long-lasting significant effects on either spatial or non-spatial learning in rats that had been previously exposed to THC for 21 days. This developmental sensitivity is analogous to the effects of ethanol, another commonly used recreational drug.

  1. Infralimbic EphB2 Modulates Fear Extinction in Adolescent Rats

    PubMed Central

    Cruz, Emmanuel; Soler-Cedeño, Omar; Negrón, Geovanny; Criado-Marrero, Marangelie; Chompré, Gladys

    2015-01-01

    Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase. PMID:26354908

  2. Infralimbic EphB2 Modulates Fear Extinction in Adolescent Rats.

    PubMed

    Cruz, Emmanuel; Soler-Cedeño, Omar; Negrón, Geovanny; Criado-Marrero, Marangelie; Chompré, Gladys; Porter, James T

    2015-09-09

    Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase.

  3. The ontogeny of exploratory behavior in male and female adolescent rats (Rattus norvegicus).

    PubMed

    Lynn, Debra A; Brown, Gillian R

    2009-09-01

    During adolescence, rats gain independence from their mothers and disperse from the natal burrow, with males typically dispersing further than females. We predicted that, if dispersal patterns are associated with responsiveness to novelty, exploratory behavior in novel environments would increase across adolescence, and males would explore more than females. Alternatively, females might explore more than males, if females are more motivated than males to learn about the immediate environment or if females have poorer spatial abilities than males. Twenty-five male and 21 female rats were exposed to two novel environments (open field and elevated plus-maze) during early, mid-, or late adolescence. Total locomotion and amount of exploration directed towards aversive areas increased across adolescence, even when body weight was included as a covariate. Female adolescents locomoted more and spent more time exploring aversive areas than males. Developmental changes in neural function potentially underlie age and sex differences in exploratory behavior.

  4. Prefrontal Dopaminergic Mechanisms of Extinction in Adolescence Compared to Adulthood in Rats

    PubMed Central

    Zbukvic, Isabel C.; Park, Chun Hui J.; Ganella, Despina E.; Lawrence, Andrew J.; Kim, Jee Hyun

    2017-01-01

    Adolescents with anxiety disorders attain poorer outcomes following extinction-based treatment compared to adults. Extinction deficit during adolescence has been identified to involve immaturity in the medial prefrontal cortex (mPFC). Findings from adult rodents suggest extinction involves dopamine signaling in the mPFC. This system changes dramatically during adolescence, but its role in adolescent extinction is unknown. Therefore, we investigated the role of prefrontal dopamine in extinction using Pavlovian fear conditioning in adolescent and adult rats. Using quantitative PCR (qPCR) analyses, we measured changes in dopamine receptor gene expression in the mPFC before and after extinction. We then enhanced dopamine 1 receptor (D1R) or dopamine 2 receptor (D2R) signaling in the infralimbic cortex (IL) of the mPFC using agonists at the time of extinction. Adolescent rats displayed a deficit in extinction retention compared to adults. Extinction induced a reduction in D1R compared to D2R gene expression in adolescent rats, whereas an increase of D1R compared to D2R gene expression was observed in adult rats. Acutely enhancing IL D1R signaling using SKF-81297 had no effect on extinction at either age. In contrast, acutely enhancing IL D2R signaling with quinpirole significantly enhanced long-term extinction in adolescents, and impaired within-session extinction in adults. Our results suggest a dissociated role for prefrontal dopamine in fear extinction during adolescence compared to adulthood. Findings highlight the dopamine system as a potential pharmacological target to improve extinction-based treatments for adolescents. PMID:28275342

  5. Prolonged stimulation of corticosterone secretion by corticotropin-releasing hormone in rats exhibiting high preference for dietary fat

    USGS Publications Warehouse

    Herminghuysen, D.; Plaisance, K.; Pace, R. M.; Prasad, C.

    1998-01-01

    Through the secretion of corticosterone, the hypothalamo-pituitary-adrenal (HPA) axis is thought to play an important role in the regulation of caloric intake and dietary fat preference. In an earlier study, we demonstrated a positive correlation between urinary corticosterone output and dietary fat preference. Furthermore, dietary fat preference was augmented following chronic but not acute hypercorticosteronemia produced by exogenous corticosterone administration. These observations led us to explore whether the HPA axis of rats exhibiting high preference for fat may have exaggerated sensitivity to corticotropin-releasing hormone (CRH). The results of these studies show a delayed and blunted but more prolonged corticosterone response to CRH in the fat-preferring rats compared with that of the carbohydrate-preferring rats.

  6. Intermittent access to beer promotes binge-like drinking in adolescent but not adult Wistar rats.

    PubMed

    Hargreaves, Garth A; Monds, Lauren; Gunasekaran, Nathan; Dawson, Bronwyn; McGregor, Iain S

    2009-06-01

    Teenagers are more likely than adults to engage in binge drinking and could be more vulnerable to long-term brain changes following alcohol abuse. We investigated the possibility of excessive adolescent drinking in a rodent model in which beer (4.44% ethanol vol/vol) is presented to adult and adolescent male Wistar rats. Experiment 1 tracked ad libitum beer and water consumption in group-housed rats from postnatal day (PND) 28-96. Rats consumed an average of 7.8 g/kg/day of ethanol during adolescence (PND 34-55) and this gradually declined to a lower level of intake in adulthood (PND 56-93) of 3.9 g/kg/day. In Experiment 2, beer was made available to both adolescent (PND 29+) and adult (PND 57+) rats for 2h each day in a custom-built "lickometer" apparatus over 75 days. Access to beer was provided either 1 day out of every 3 ("intermittent" groups) or every day ("daily" groups). Relative to body weight, adolescent rats consumed more beer than adult rats in these limited access sessions. Adolescents with intermittent access consumed more than adolescents with daily access, a "binge"-like effect that was not observed in adult groups and that disappeared in adulthood. After 3 months of daily or intermittent alcohol consumption, the preference for beer versus sucrose was assessed. Rats previously kept under an intermittent schedule displayed a higher preference for beer relative to 3% sucrose, but only when testing occurred after 2 days of abstinence. In Experiment 3, adolescent (PND 30-37) and adult (PND 58-65) rats were given 20-min access to beer and their blood alcohol concentrations (BACs) were assessed. Adolescent groups consumed more alcohol than adults and showed higher BACS that were typical of human "binge" drinking (>80 mg/dL). Despite this, the correlation between BAC and beer intake was similar in both age groups. Together these results show that the intermittent presentation of alcohol itself appears to have subtle long-lasting effects on the motivation

  7. Effects of ethanol exposure during adolescence or in adulthood on Pavlovian conditioned approach in Sprague-Dawley rats.

    PubMed

    McClory, Alexander James; Spear, Linda Patia

    2014-12-01

    Human studies have shown that adolescents who repeatedly use alcohol are more likely to be dependent on alcohol and are more likely to suffer from psychological problems later in life. There has been limited research examining how ethanol exposure in adolescence might contribute to later abuse or addiction in adulthood. The present experiment examined effects of intermittent ethanol exposure during adolescence on sign-tracking behavior in adulthood, indexed by a Pavlovian conditioned approach (PCA) task wherein an 8s lever presentation served as a cue predicting subsequent delivery of a flavored food pellet. Although no response was required for food delivery, after multiple pairings, 1 of 2 different responses often emerged during the lever presentation: goal tracking (head entries into the food trough) or sign tracking (engagement with the lever when presented). Sign tracking is thought to reflect the attribution of incentive salience to reward-paired cues and has been previously correlated with addiction-like behaviors. Following the last PCA session, blood samples were collected for analysis of post-session corticosterone levels. Sixty-two rats (n = 10-12/group) were pseudo-randomly assigned to 1 of 2 intragastric (i.g.) exposure groups (water or 4 g/kg ethanol) or a non-manipulated (NM) control group. Animals were intubated with ethanol or water every other session from postnatal session (PND) 28-48 or PND 70-90. Rats were then tested in adulthood (PND 71-79 or PND 113-122) on the PCA task. Animals exposed chronically to ethanol during adolescence exhibited significantly higher levels of sign-tracking behavior in adulthood than NM and water-treated animals, and showed higher corticosterone than NM control animals. These effects were not seen after comparable ethanol exposure in adulthood. These results suggest that adolescent alcohol exposure has long-term consequences on the expression of potential addiction-relevant behaviors in adulthood.

  8. Prenatal nicotine exposure changes natural and drug-induced reinforcement in adolescent male rats.

    PubMed

    Franke, Ryan M; Park, Minjung; Belluzzi, James D; Leslie, Frances M

    2008-06-01

    Clinical studies have demonstrated an increased incidence of substance misuse and obesity in adolescents whose mothers smoked during pregnancy. Although dopamine systems that mediate natural and drug-induced reinforcement have been shown in animal studies to be altered by gestational nicotine treatment, it is not clear whether there are concomitant changes in reinforcement sensitivity. To test whether prenatal nicotine exposure influences sensitivity to natural and drug rewards, timed pregnant rats were implanted with osmotic minipumps delivering saline or nicotine (3 mg/kg/day) from gestational day 4 to 18. Male offspring were tested as adolescents, on postnatal day 32, for operant responding maintained by sucrose pellets or i.v. cocaine (200 or 500 mug/kg per injection). Cocaine-induced stereotypy and c-fos mRNA expression in cortex and striatum were also examined. Complex changes in reward circuitry were observed in the offspring of nicotine-exposed dams. Nicotine-exposed adolescents did not self-administer the low dose of cocaine, but, at the higher dose, exhibited significantly greater cocaine intake and c-fos mRNA expression in nucleus accumbens than did controls. In contrast, control animals showed significantly greater drug-induced stereotypy at both cocaine doses. Operant responding maintained by sucrose was also influenced by gestational nicotine exposure. At a fixed ratio (FR) 1 schedule, although the number of pellets eaten by the two experimental groups was equivalent, more pellets were left uneaten by nicotine-exposed offspring. At FR2 and FR5 schedules, the responding maintained by sucrose pellets was lower in nicotine-exposed offspring. These findings suggest that nicotine exposure during gestation may induce changes in both natural and drug reward pathways.

  9. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    PubMed Central

    Girardi, Carlos Eduardo Neves; Zanta, Natália Cristina; Suchecki, Deborah

    2014-01-01

    Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia. PMID:25309370

  10. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    PubMed

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.

  11. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  12. Role of Dopamine 2 Receptor in Impaired Drug-Cue Extinction in Adolescent Rats.

    PubMed

    Zbukvic, Isabel C; Ganella, Despina E; Perry, Christina J; Madsen, Heather B; Bye, Christopher R; Lawrence, Andrew J; Kim, Jee Hyun

    2016-06-01

    Adolescent drug users display resistance to treatment such as cue exposure therapy (CET), as well as increased liability to relapse. The basis of CET is extinction learning, which involves dopamine signaling in the medial prefrontal cortex (mPFC). This system undergoes dramatic alterations during adolescence. Therefore, we investigated extinction of a cocaine-associated cue in adolescent and adult rats. While cocaine self-administration and lever-alone extinction were not different between the two ages, we observed that cue extinction reduced cue-induced reinstatement in adult but not adolescent rats. Infusion of the selective dopamine 2 receptor (D2R)-like agonist quinpirole into the infralimbic cortex (IL) of the mPFC prior to cue extinction significantly reduced cue-induced reinstatement in adolescents. This effect was replicated by acute systemic treatment with the atypical antipsychotic aripiprazole (Abilify), a partial D2R-like agonist. These data suggest that adolescents may be more susceptible to relapse due to a deficit in cue extinction learning, and highlight the significance of D2R signaling in the IL for cue extinction during adolescence. These findings inspire new tactics for improving adolescent CET, with aripiprazole representing an exciting potential pharmacological adjunct for behavioral therapy.

  13. Repeated intermittent MDMA binges reduce DAT density in mice and SERT density in rats in reward regions of the adolescent brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Schiöth, Helgi B; Svenningsson, Per

    2007-11-01

    The popular recreational drug, 3,4-methylenedioxymethamphetamine (MDMA) is often taken as intermittent binges by adolescents at dance clubs. The neurobiological mechanisms that underlie MDMA-induced psychiatric conditions are still poorly understood. In the present study, mimicking adolescent patterns of administration, repeated intermittent MDMA binges (3x5 mg/(kg day) given 3h apart, every 7th day for 4 weeks) were given to adolescent mice and rats. Behavioral responses in the open-field and autoradiographic ligand-binding to dopamine (DAT) and serotonin (SERT) transporters in reward regions of the brain were measured. In the open-field, total horizontal activity (HA) was significantly increased in both mice and rats following the first and third weekly administered MDMA binge. However, rats, but not mice, exhibited an enhanced activity in the centre of the open-field arena, indicating on reduced anxiety or enhanced impulsivity, which is known to be associated with altered serotonin activity. Specific binding of DAT, but not SERT, was significantly reduced in the mouse AcbSh and CPU using in vitro autoradiography. On the contrary, SERT, but not DAT density was significantly reduced in the AcbSh of rats. Taken together, our data provide evidence for differential regulation of DAT and SERT densities in reward-related brain regions of rats and mice after long-term intermittent administration of MDMA.

  14. Long-term ethanol self-administration induces ΔFosB in male and female adolescent, but not in adult, Wistar rats.

    PubMed

    Wille-Bille, Aranza; de Olmos, Soledad; Marengo, Leonardo; Chiner, Florencia; Pautassi, Ricardo Marcos

    2017-03-06

    Early-onset ethanol consumption predicts later development of alcohol use disorders. Age-related differences in reactivity to ethanol's effects may underlie this effect. Adolescent rats are more sensitive and less sensitive than adults to the appetitive and aversive behavioral effects of ethanol, respectively, and more sensitive to the neurotoxic effects of experimenter-administered binge doses of ethanol. However, less is known about age-related differences in the neural consequences of self-administered ethanol. ΔFosB is a transcription factor that accumulates after chronic drug exposure and serves as a molecular marker of neural plasticity associated with the transition to addiction. We analyzed the impact of chronic (18 two-bottle choice intake sessions spread across 42days, session length: 18h) ethanol [or only vehicle (control group)] self-administration during adolescence or adulthood on the induction of ΔFosB in several brain areas, anxiety-like behavior, and ethanol-induced locomotor activity and conditioned place preference (CPP) in Wistar rats. Adolescent rats exhibited a progressive escalation of ethanol intake and preference, whereas adult rats exhibited a stable pattern of ingestion. Few behavioral differences in the open field or light-dark test were observed after the intake test. Furthermore, ethanol self-administration did not promote the expression of ethanol-induced CPP. There were, however, large age-related differences in the neural consequences of ethanol drinking: a significantly greater number of ethanol-induced ΔFosB-positive cells was found in adolescents vs. adults in the prelimbic cortex, dorsolateral striatum, nucleus accumbens core and shell, and central amygdala nucleus capsular and basolateral amygdala, with sex-related differences found at central amygdala. This greater ethanol-induced ΔFosB induction may represent yet another age-related difference in the sensitivity to ethanol that may put adolescents at higher risk for

  15. Attention, impulsivity and cognitive flexibility in adult male rats exposed to ethanol binge during adolescence as measured in the 5-choice serial reaction time task: the effects of task and ethanol challenges

    PubMed Central

    Semenova, Svetlana

    2014-01-01

    Rationale Alcohol abuse is prevalent in adolescent humans, but the long-term behavioral consequences of binge alcohol drinking are unknown. Objectives This study investigated the long-term effects of adolescent intermittent ethanol (AIE) exposure on attention and impulsivity. Methods Adolescent male rats were exposed to 5 g/kg of 25% v/w ethanol every 8 h for 4 days. During adulthood rats were tested in the 5-choice serial reaction time task (5-CSRTT) assessing attention, impulsivity and cognitive flexibility. Results There was no metabolic tolerance to ethanol in adolescent rats during AIE exposure. In the 5-CSRTT under baseline conditions, there were no differences between AIE-exposed and control rats in accuracy, omissions or premature responses, although AIE-exposed rats tended to make more timeout responses than control rats. The short-duration stimulus challenge decreased accuracy and increased omissions and timeout responses in both AIE-exposed and control rats. The long intertrial interval challenge increased premature responses in all rats. An ethanol challenge decreased correct responses, and increased omissions in control, but not in AIE-exposed, rats. Control, but not AIE-exposed, rats exhibited decreased premature and timeout responses after ethanol administration. Response latencies were not affected in AIE-exposed or control rats indicating no sedative effects of ethanol challenge. Conclusions The results indicate that ethanol binge exposure during adolescence has long-lasting neurobehavioral consequences, which persist into adulthood and can be revealed after re-exposure to ethanol. AIE-induced diminished responses to disruptive effects of ethanol on attention, impulsivity and cognitive flexibility may lead to increased alcohol drinking and other maladaptive behaviors in adulthood. PMID:21881872

  16. Early life overnutrition induced by litter size manipulation decreases social play behavior in adolescent male rats.

    PubMed

    Carvalho, Ana Laura O; Ferri, Bárbara G; de Sousa, Francielly A Lopes; Vilela, Fabiana C; Giusti-Paiva, Alexandre

    2016-10-01

    Several studies have investigated the effects of artificial litter size adjustment on offspring development. Social play behavior is important for neurobehavioral development and is impaired in several developmental psychiatric disorders. This study therefore investigated the effect of litter size on play behavior in adolescent rats. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of 3 pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors scored daily during the first week of lactation (PND2-8) revealed that arched nursing and pup licking behaviors were increased in dams with SLs versus those with NLs. SL offspring exhibited accelerated weight gain and advanced development of physical landmarks and reflexes, possibly due to overnutrition. Social isolation lasting 3.5h prior to social play behavioral testing produced a higher frequency and duration of pouncing, pinning, sniffing, and grooming in both male and female offspring. However, male SL offspring exhibited a lower frequency of pouncing and pinning when compared with male NL offspring, while no litter size-dependent differences were observed in social behaviors unrelated to play (sniffing and grooming). These findings identify a possible sexually dimorphic influence of litter size in the development of social behavior. Given that social behaviors such as play behavior are vital for normal cognitive and social development, these findings have important implications for developmental and neuropsychiatric research.

  17. Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats.

    PubMed

    Chin, Vivien S; Van Skike, Candice E; Berry, Raymond B; Kirk, Roger E; Diaz-Granados, Jamie; Matthews, Douglas B

    2011-08-01

    The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.

  18. Subpopulations of rat B2(+) neuroblasts exhibit differential neurotrophin responsiveness during sympathetic development.

    PubMed

    Goldhawk, D E; Meakin, S O; Verdi, J M

    2000-02-15

    Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.

  19. Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils.

    PubMed

    McGinn, M D; Faddis, B T

    1997-02-01

    Kangaroo rats develop spongiform degeneration of the central auditory system similar to that seen in the gerbil. Light microscopic and transmission electron microscopic study of the cochlear nucleus and auditory nerve root (ANR) of Dipodomys deserti and D. merriami show that spongiform lesions develop in dendrites and oligodendrocytes of the cochlear nucleus and in oligodendrocytes of the ANR that are morphologically indistinguishable from those extensively described in the Mongolian gerbil, Meriones unguiculatus. As in Mongolian gerbils, the spongiform degeneration in Dipodomys were much more numerous in animals continually exposed to modest levels of low-frequency noise (< 75 dB SPL). The kangaroo rats with extensive spongiform degeneration also show slightly, but significantly, elevated auditory brainstem evoked response (ABR) thresholds to low-frequency stimuli, a result also found in Mongolian gerbils. These results suggest that the elevated ABR thresholds may be the result of spongiform degeneration. Because low-frequency noise-induced spongiform degeneration has now been shown in the cochlear nucleus of animals from separate families of Rodentia (Heteromyidae and Muridae), the possibility should be investigated that similar noise-induced degenerative changes occur in the central auditory system of other mammals with good low-frequency hearing.

  20. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    PubMed

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-08-31

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina.

  1. Gait Analysis and the Cumulative Gait Index (CGI): Translational Tools to Assess Impairments Exhibited by Rats with Olivocerebellar Ataxia

    PubMed Central

    Lambert, C.S.; Philpot, R.M.; Engberg, M.E.; Johns, B.E.; Kim, S.H.; Wecker, L.

    2014-01-01

    Deviations from ‘normal’ locomotion exhibited by humans and laboratory animals may be determined using automated systems that capture both temporal and spatial gait parameters. Although many measures generated by these systems are unrelated and independent, some may be related and dependent, representing redundant assessments of function. To investigate this possibility, a treadmill-based system was used to capture gait parameters from normal and ataxic rats, and a multivariate analysis was conducted to determine deviations from normal. Rats were trained on the treadmill at two speeds, and gait parameters were generated prior to and following lesions of the olivocerebellar pathway. Control (non-lesioned) animals exhibited stable hindlimb gait parameters across assessments at each speed. Lesioned animals exhibited alterations in multiple hindlimb gait parameters, characterized by significant increases in stride frequency, braking duration, stance width, step angle, and paw angle and decreases in stride, stance, swing and propulsion durations, stride length and paw area. A principal component analysis of initial hindlimb measures indicated 3 uncorrelated factors mediating performance, termed rhythmicity, thrust and contact. Deviation in the performance of each animal from the group mean was determined for each factor and values summed to yield the Cumulative Gait Index (CGI), a single value reflecting variation within the group. The CGI for lesioned animals increased 2.3-fold relative to unlesioned animals. This study characterizes gait alterations in laboratory rats rendered ataxic by destruction of the climbing fiber pathway innervating Purkinje cells and demonstrates that a single index can be used to describe overall gait impairments. PMID:25116252

  2. Deficits in male sexual behavior in adulthood after social instability stress in adolescence in rats.

    PubMed

    McCormick, Cheryl M; Green, Matthew R; Cameron, Nicole M; Nixon, Feather; Levy, Marisa J; Clark, Rachel A

    2013-01-01

    There is increasing evidence that exposure to stressors in adolescence has long-lasting effects on emotional and cognitive behavior, but little is known as to whether reproductive functions are affected. We investigated appetitive and consummatory aspects of sexual behavior in male rats that were exposed to chronic social instability stress (SS, n=24) for 16 days in mid-adolescence compared to control rats (CTL, n=24). Over five sexual behavior test sessions with a receptive female, SS rats made fewer ejaculations (p=0.02) and had longer latencies to ejaculation (p=0.03). When only data from rats that ejaculated in the fifth session were analyzed, SS rats (n=18) had reduced copulatory efficiency (more mounts and intromissions before ejaculation) compared to CTL rats (n=19) (p=0.004), and CTL rats were twice as likely as SS rats to make more than one ejaculation in the fifth session (p=0.05). Further, more CTL (14/24) than SS (5/25) rats ejaculated in four or more sessions (p=0.05). SS rats had lower plasma testosterone concentrations than CTL rats (p=0.05), but did not differ in androgen receptor, estrogen receptor alpha, or Fos immunoreactive cell counts in the medial preoptic area. The groups did not differ in a partner preference test administered between the fourth and fifth sexual behavior session. The results suggest that developmental history contributes to individual differences in reproductive behavior, and that stress exposures in adolescence may be a factor in sexual sluggishness.

  3. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats.

    PubMed

    Holtz, Nathan A; Carroll, Marilyn E

    2015-06-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability.

  4. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats

    PubMed Central

    Holtz, Nathan A.; Carroll, Marilyn E.

    2016-01-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability. PMID:25769092

  5. Cross-sensitization between testosterone and cocaine in adolescent and adult rats.

    PubMed

    Engi, Sheila A; Cruz, Fabio C; Crestani, Carlos C; Planeta, Cleopatra S

    2015-11-01

    Cocaine and anabolic-androgenic steroids are substances commonly co-abused. The use of anabolic steroids and cocaine has increased among adolescents. However, few studies investigated the consequences of the interaction between anabolic-androgenic steroids in animals' model of adolescence. We examined the effects of acute and repeated testosterone administration on cocaine-induced locomotor activity in adult and adolescent rats. Rats received ten once-daily subcutaneous (s.c.) injections of testosterone (10mg/kg) or vehicle. Three days after the last testosterone or vehicle injections rats received an intraperitoneal (i.p.) challenge injection of either saline or cocaine (10mg/kg). A different subset of rats was treated with a single injection of testosterone (10mg/kg) or vehicle and three days later was challenged with cocaine (10mg/kg, i.p.) or saline. Immediately after cocaine or saline injections the locomotor activity was recorded during forty minutes. Our results demonstrated that repeated testosterone induced locomotor sensitization to cocaine in adolescent but not adult rats.

  6. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    PubMed

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  7. Adolescent Rats Differ by Genetic Strain in Response to Nicotine Withdrawal

    DTIC Science & Technology

    2007-11-01

    expressed the feeling of need to smoke, driven by mental and physical cravings . They expressed feelings of emptiness, sensations, shakiness, and...reduces feeding (especially of high calorie sweet foods ) in adult rats (male and female) and in male adolescent rats (Abreu-Villaca et aL, 2003; Faraday...order to tailor the appropriate treatment to the appropriate patients. Withdrawal from tobacco use by humans includes irritability, cigarette craving

  8. Adolescent rats are more prone to binge eating behavior: a study of age and obesity as risk factors.

    PubMed

    Bekker, Liza; Barnea, Royi; Brauner, Akiva; Weller, Aron

    2014-08-15

    Binge eating (BE) is characterized by repeated, intermittent over-consumption of food in a brief period of time. This study aims to advance the understanding of potential risk factors for BE such as obesity, overeating and adolescence as an age group. We used the Otsuka Long Evans Tokushima Fatty (OLETF) rat, a genetic overeating-induced obesity model with increased preferences for sweet and fat. Adolescent and adult rats from both strains (OLETF and the lean control strain, Long Evans Tokushima Otsuka [LETO]) received limited access to a palatable liquid diet (Ensure vanilla) for three weeks. Water and chow were available throughout the study, but access to Ensure was limited to two hours, three times a week (3TW group) or every work day (5TW group). As expected, OLETF rats consumed more Ensure and were more BE-prone (BEP) than LETO rats at both ages. Adolescent rats showed a significantly larger binge size as demonstrated by a greater increase in Ensure intake, compared to adults. Furthermore, while the adults reduced their chow intake, compensating for increased Ensure intake, the adolescents increased their chow intake too. Finally, the adolescent rats showed binge like behavior earlier in the study and they tended to be BEP more than the adults. Our findings in rats suggest that adolescents and in particular obese adolescents are at risk for BE, and BE can lead to overweight, thus providing the basis for examination of biological mechanisms of this process in animal models.

  9. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study.

    PubMed

    Richards, D A; Lemos, T; Whitton, P S; Bowery, N G

    1995-10-01

    There is compelling evidence that excessive GABA-mediated inhibition may underlie the abnormal electrical activity, initiated in the thalamus, associated with epileptic absence seizures. In particular, the GABAB receptor subtype seems to play a critical role, because its antagonists are potent inhibitors of absence seizures, whereas its agonists exacerbate seizure activity. Using a validated rat model of absence epilepsy, we have previously found no evidence of abnormal GABAB receptor density or affinity in thalamic tissue. In the present study, we have used in vivo microdialysis to monitor changes in levels of extracellular GABA and other amino acids in this brain region. We have shown that basal extracellular levels of GABA and, to a lesser extent, taurine are increased when compared with values in nonepileptic controls. However, modifying GABAergic transmission with the GABAB agonist (-)-baclofen (2 mg/kg i.p.), the GABAB antagonist CGP-35348 (200 mg/kg i.p.), or the GABA uptake inhibitor tiagabine (100 microM) did not produce any further alteration in extracellular GABA levels, despite the ability of these compounds to increase (baclofen and tiagabine) or decrease (CGP-35348) seizure activity. These findings suggest that the increased basal GABA levels observed in this animal model are not simply a consequence of seizure activity but may contribute to the initiation of absence seizures.

  10. Rat embryo fibroblast cells expressing human papillomavirus 1a genes exhibit altered growth properties and tumorigenicity.

    PubMed Central

    Green, M; Brackmann, K H; Loewenstein, P M

    1986-01-01

    Human papillomavirus 1a (HPV1a) induces benign tumors (papillomas or warts) in humans under natural conditions of infection but has not been found to replicate significantly in cell culture or in experimental animals. To establish model systems to study the oncogenic properties and expression of HPV genes, we established cell lines by cotransfecting the 3Y1 rat fibroblast cell line with HPV1a DNA constructs containing an intact early gene region and the Tn5 neomycin resistance gene. Most cell lines selected for expression of the neomycin resistance gene by treatment with the antibiotic G-418 contained viral DNA in a high-molecular-weight form. The growth characteristics of several cell lines containing high copy numbers of HPV1a DNA were studied further. They were shown to differ from the parental cell line and from G-418-resistant cell lines that did not incorporate viral DNA in the following properties: morphological alteration, increased cell density at confluence, growth in 0.5% serum, efficient anchorage-independent growth in soft agar, and rapid formation of tumors in nude mice. Those cell lines that possessed altered growth properties and tumorigenicity were found to express abundant quantities of polyadenylated virus-specific RNA species in the cytoplasm. Images PMID:3023676

  11. TPGS-Stabilized Curcumin Nanoparticles Exhibit Superior Effect on Carrageenan-Induced Inflammation in Wistar Rat

    PubMed Central

    Rachmawati, Heni; Safitri, Dewi; Pradana, Aditya Trias; Adnyana, I Ketut

    2016-01-01

    Curcumin, a hydrophobic polyphenol compound derived from the rhizome of the Curcuma genus, has a wide spectrum of biological and pharmacological applications. Previously, curcumin nanoparticles with different stabilizers had been produced successfully in order to enhance solubility and per oral absorption. In the present study, we tested the anti-inflammatory effect of d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS)-stabilized curcumin nanoparticles in vivo. Lambda-carrageenan (λ-carrageenan) was used to induce inflammation in rats; it was given by an intraplantar route and intrapelurally through surgery in the pleurisy test. In the λ-carrageenan-induced edema model, TPGS-stabilized curcumin nanoparticles were given orally one hour before induction and at 0.5, 4.5, and 8.5 h after induction with two different doses (1.8 and 0.9 mg/kg body weight (BW)). Sodium diclofenac with a dose of 4.5 mg/kg BW was used as a standard drug. A physical mixture of curcumin-TPGS was also used as a comparison with a higher dose of 60 mg/kg BW. The anti-inflammatory effect was assessed on the edema in the carrageenan-induced paw edema model and by the volume of exudate as well as the number of leukocytes reduced in the pleurisy test. TPGS-stabilized curcumin nanoparticles with lower doses showed better anti-inflammatory effects, indicating the greater absorption capability through the gastrointestinal tract. PMID:27537907

  12. Increased depressive behaviour in females and heightened corticosterone release in males to swim stress after adolescent social stress in rats.

    PubMed

    Mathews, Iva Z; Wilton, Aleena; Styles, Amy; McCormick, Cheryl M

    2008-06-26

    We previously reported that males undergoing chronic social stress (SS) (daily 1h isolation and new cage partner on days 30-45 of age) in adolescence habituated (decreased corticosterone release) to the homotypic stressor, but females did not. Here, we report that adolescent males exposed to chronic social stress had potentiated corticosterone release to a heterotypic stressor (15 min of swim stress) compared to acutely stressed and control males. The three groups of males did not differ in depressive-like behaviour (time spent immobile) during the swim stress. Corticosterone release in socially stressed females was elevated 45 min after the swim stress compared to acutely stressed and control females, and socially stressed females exhibited more depressive behaviour (longer durations of immobility and shorter durations of climbing) than the other females during the swim stress. Separate groups of rats were tested as adults several weeks after the social stress, and there were no group differences in corticosterone release after the swim stress. The only group difference in behaviour among the adults was more time spent climbing in socially stressed males than in controls. Thus, there are sex-specific effects of social stress in adolescence on endocrine responses and depressive behaviour to a heterotypic stressor, but, unlike for anxiety, substantial recovery is evident in adulthood in the absence of intervening stress exposures.

  13. Differential motivational profiles following adolescent sucrose access in male and female rats.

    PubMed

    Reichelt, Amy C; Abbott, Kirsten N; Westbrook, R Fred; Morris, Margaret J

    2016-04-01

    Adolescents are the highest consumers of sugar sweetened drinks. Excessive consumption of such drinks is a likely contributor to the development of obesity and may be associated with enduring changes in the systems involved in reward and motivation. We examined the impact of daily sucrose consumption in young male and female rats (N=12 per group) across the adolescent period on the motivation to perform instrumental responses to gain food rewards as adults. Rats were or were not exposed to a sucrose solution for 2 h each day for 28 days across adolescence [postnatal days (P) 28-56]. They were then trained as adults (P70 onward) to lever press for a palatable 15% cherry flavored sucrose reward and tested on a progressive ratio (PR) schedule to assess motivation to respond for reinforcement. Female rats exposed to sucrose had higher breakpoints on the PR schedule than controls, whereas male rats exposed to sucrose had lower breakpoints than controls. These results show that consumption of sucrose during adolescence produced sex-specific behavioral changes in responding for sucrose as adults.

  14. Different adaptation of the motor activity rhythm to chronic phase shifts between adolescent and adult rats.

    PubMed

    Albert, Nerea; da Silva, Crhistiane; Díez-Noguera, Antoni; Cambras, Trinitat

    2013-09-01

    Chronic phase shifts is a common feature in modern societies, which may induce sleep alterations and other health problems. The effects of phase shift on the circadian rhythms have been described to be more pronounced in old than in young animals. However, few works address the effects of chronic phase shifts during adolescence. Here we tested the development of the motor activity circadian rhythm of young rats under chronic phase shifts, which consisted on 6-h advances (A), 6h delays (D) or 6h advances and delays alternated every 5 days (AD) during the first 60 days after weaning. Moreover, the rhythmic pattern was compared to that of adult rats under the same lighting conditions. Results indicate that adolescent rats, independently on the lighting environment, developed a clear circadian rhythm, whose amplitude increased the first 50 days after weaning and showed a more stable circadian rhythm than adults under the same lighting conditions. In the case of A and AD groups, circadian disruption was observed only in adult rats. In all groups, the offset of activity correlated with light pattern better than the onset, and this correlation was always higher in the case of the rhythm of the pubertal rats. When AD groups were transferred to constant darkness, the group submitted to this condition during adolescence showed shorter period than that submitted in their adulthood. In conclusion, differently from adult rats, adolescent rats submitted to chronic phase shifts did not show circadian disruption and developed a single circadian rhythm, suggesting permanent changes in the circadian system.

  15. Differential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents?

    PubMed

    Karanges, Emily; Li, Kong M; Motbey, Craig; Callaghan, Paul D; Katsifis, Andrew; McGregor, Iain S

    2011-05-01

    Selective serotonin reuptake inhibitor use is associated with increased risk of suicidal ideation in adolescent humans, yet the neuropharmacological basis of this phenomenon is unknown. Consequently, we examined the behavioural and neurochemical effects of chronic paroxetine (PRX) treatment in adult and adolescent rats. Rats received PRX in their drinking water (target dose 10 mg/kg) for 22 d, during which time they were assessed for depression- and anxiety-like behaviours. Subsequent ex-vivo analyses examined serum PRX concentrations, striatal neurotransmitter content, and regional serotonin and dopamine transporter (SERT, DAT) binding density. After 11-12 d treatment, PRX-treated adolescent rats showed a significant inhibition of social interaction while adults were unaffected. After 19-20 d treatment, adolescents failed to show an antidepressant-like effect of PRX treatment on the forced swim test (FST), while PRX-treated adults showed a typical decrease in immobility and increase in swimming. Two PRX-treated adolescents died unexpectedly after the FST suggesting a compromised response to physical stress. Despite their greater apparent adverse reaction to the drug, adolescents had significantly lower plasma PRX than adults at day 22 of treatment. Chronic PRX treatment had similar effects in adults and adolescents on striatal 5-HT (unchanged relative to controls) and 5-HIAA levels (decreased), while markers of dopaminergic function (DOPAC, HVA, DA turnover) were increased in adults only. SERT density was up-regulated in the amygdala in PRX-treated adolescents only while DAT density in the nucleus accumbens was down-regulated only in PRX-treated adults. These data suggest that the immature rat brain responds differently to PRX and that this might be of use in modelling the atypical response of human adolescents to antidepressants. The age-specific PRX-induced changes in dopaminergic markers and SERT and DAT binding provide clues as to the neural mechanisms

  16. Beer promotes high levels of alcohol intake in adolescent and adult alcohol-preferring rats.

    PubMed

    Hargreaves, Garth A; Wang, Emyo Y J; Lawrence, Andrew J; McGregor, Iain S

    2011-08-01

    Previous studies suggest that high levels of alcohol consumption can be obtained in laboratory rats by using beer as a test solution. The present study extended these observations to examine the intake of beer and equivalent dilute ethanol solutions with an inbred line of alcohol-preferring P rats. In Experiment 1, male adolescent P rats and age-matched Wistar rats had access to either beer or equivalent ethanol solutions for 1h daily in a custom-built lickometer apparatus. In subsequent experiments, adolescent (Experiment 2) and adult (Experiment 3) male P rats were given continuous 24-h home cage access to beer or dilute ethanol solutions, with concomitant access to lab chow and water. In each experiment, the alcohol content of the beer and dilute ethanol solutions was gradually increased from 0.4, 1.4, 2.4, 3.4, 4.4, 5 to 10% EtOH (vol/vol). All three experiments showed a major augmentation of alcohol intake when rats were given beer compared with equivalent ethanol solutions. In Experiment 1, the overall intake of beer was higher in P rats compared with Wistar rats, but no strain difference was found during the 1-h sessions with plain ethanol consumption. Experiment 1 also showed that an alcohol deprivation effect was more readily obtained in rats with a history of consuming beer rather than plain ethanol solutions. In Experiments 2 and 3, voluntary beer intake in P rats represented ethanol intake of 10-15 g/kg/day, among the highest reported in any study with rats. This excessive consumption was most apparent in adolescent rats. Beer consumption markedly exceeded plain ethanol intake in these experiments except at the highest alcohol concentration (10%) tested. The advantage of using beer rather than dilute ethanol solutions in both selected and nonselected rat strains is therefore confirmed. Our findings encourage the use of beer with alcohol-preferring rats in future research that seeks to obtain high levels of alcohol self-administration.

  17. Age and adolescent social stress effects on fear extinction in female rats.

    PubMed

    McCormick, C M; Mongillo, D L; Simone, J J

    2013-11-01

    We previously observed that social instability stress (SS: daily 1 h isolation and change of cage partners for 16 days) in adolescence, but not in adulthood, decreased context and cue memory after fear conditioning in male rats. Effects of stress are typically sex-specific, and so here we investigated adolescent and adult SS effects in females on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or four weeks later. For SS in adolescence, SS females spent more time freezing (fear measure) during extinction than did controls, whereas SS in adulthood had no effect on any measure of fear conditioning. The results also indicated an effect of age: females in late adolescence show more rapid extinction of cue and better memory of extinction of context compared to adult females, which may indicate resilience to acute footshock in adolescence. Thus fear circuitry continues to mature into late adolescence, which may underlie the heightened plasticity in response to chronic stressors of adolescents compared to adults.

  18. Label-free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacity.

    PubMed

    Bowden-Davies, Kelly; Connolly, Joanne; Burghardt, Paul; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2015-07-01

    Divergent selection has created rat phenotypes of high- and low-capacity runners (HCR and LCR, respectively) that have differences in aerobic capacity and correlated traits such as adiposity. We analyzed visceral adipose tissue of HCR and LCR using label-free high-definition MS (elevated energy) profiling. The running capacity of HCR was ninefold greater than LCR. Proteome profiling encompassed 448 proteins and detected 30 significant (p <0.05; false discovery rate <10%, calculated using q-values) differences. Approximately half of the proteins analyzed were of mitochondrial origin, but there were no significant differences in the abundance of proteins involved in aerobic metabolism. Instead, adipose tissue of LCR rats exhibited greater abundances of proteins associated with adipogenesis (e.g. cathepsin D), ER stress (e.g. 78 kDa glucose response protein), and inflammation (e.g. Ig gamma-2B chain C region). Whereas the abundance antioxidant enzymes such as superoxide dismutase [Cu-Zn] was greater in HCR tissue. Putative adipokines were also detected, in particular protein S100-B, was 431% more abundant in LCR adipose tissue. These findings reveal low running capacity is associated with a pathological profile in visceral adipose tissue proteome despite no detectable differences in mitochondrial protein abundance.

  19. The effect of chronic intermittent ethanol exposure on spatial memory in adolescent rats: the dissociation of metabolic and cognitive tolerances.

    PubMed

    Van Skike, Candice E; Novier, Adelle; Diaz-Granados, Jaime L; Matthews, Douglas B

    2012-05-09

    Using a rapid chronic intermittent ethanol (CIE) vapor exposure paradigm, we demonstrate the dissociability of metabolic tolerance from cognitive tolerance in adolescent rats. Adolescent rats were trained to spatially navigate in the Morris Water Maze and then exposed to CIE vapor or air 16 h a day for 4 days. After a final 28 h withdrawal, all rats received a saline or ethanol challenge, followed by a test of spatial memory 30 min after administration. Results indicate that CIE vapor exposure did not significantly impair adolescent spatial memory. Although CIE-exposed rats developed metabolic tolerance to a subsequent ethanol administration, CIE exposure did not alter dose-dependent ethanol-induced spatial memory impairments. These data indicate that metabolic ethanol tolerance can be distinguished from cognitive ethanol tolerance during adolescence and suggest that blood alcohol levels alone do not fully explain ethanol-induced spatial memory impairments.

  20. Amphetamine-induced incentive sensitization of sign-tracking behavior in adolescent and adult female rats.

    PubMed

    Doremus-Fitzwater, Tamara L; Spear, Linda P

    2011-08-01

    Age-specific behavioral and neural characteristics may predispose adolescents to initiate and escalate use of alcohol and drugs. Adolescents may avidly seek novel experiences, including drugs of abuse, because of enhanced incentive motivation for drugs and natural rewards, perhaps especially when that incentive motivation is sensitized by prior drug exposure. Using a Pavlovian conditioned approach (PCA) procedure, sign-tracking (ST) and goal-tracking (GT) behavior was examined in amphetamine-sensitized and control adolescent and adult female Sprague-Dawley rats, with expression of elevated ST behavior used to index enhanced incentive motivation for reward-associated cues. Rats were first exposed to a sensitizing regimen of amphetamine injections (3.0 mg/kg/ml d-amphetamine per day) or given saline (0.9% wt/vol) once daily for 4 days. Expression of ST and GT was then examined over 8 days of PCA training consisting of 25 pairings of an 8-s presentation of an illuminated lever immediately followed by response-independent delivery of a banana-flavored food pellet. Results showed that adults clearly displayed more ST behavior than adolescents, reflected via both more contacts with, and shorter latencies to approach, the lever. Prior amphetamine sensitization increased ST (but not GT) behaviors regardless of age. Thus, when indexed via ST, incentive motivation was found to be greater in adults than adolescents, with a prior history of amphetamine exposure generally sensitizing incentive motivation for cues predicting a food reward regardless of age.

  1. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults.

  2. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence.

  3. Daily patterns of ethanol drinking in adolescent and adult, male and female, high alcohol drinking (HAD) replicate lines of rats.

    PubMed

    Dhaher, Ronnie; McConnell, Kathleen K; Rodd, Zachary A; McBride, William J; Bell, Richard L

    2012-10-01

    The rationale for our study was to determine the pattern of ethanol drinking by the high alcohol-drinking (HAD) replicate lines of rats during adolescence and adulthood in both male and female rats. Rats were given 30 days of 24 h free-choice access to ethanol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a "lickometer" set-up. The results indicated that adolescent HAD-1 and HAD-2 males consumed the greatest levels of ethanol and had the most well defined ethanol licking binges among the age and sex groups with increasing levels of ethanol consumption throughout adolescence. In addition, following the first week of adolescence, male and female HAD-1 and HAD-2 rats differed in both ethanol consumption levels and ethanol licking behavior. Adult HAD-1 male and female rats did not differ from one another and their ethanol intake or licking behaviors did not change significantly over weeks. Adult HAD-2 male rats maintained a relatively constant level of ethanol consumption across weeks, whereas adult HAD-2 female rats increased ethanol consumption levels over weeks, peaking during the third week when they consumed more than their adult male counterparts. The results indicate that the HAD rat lines could be used as an effective animal model to examine the development of ethanol consumption and binge drinking in adolescent male and female rats providing information on the long-range consequences of adolescent alcohol drinking.

  4. Long-lasting sensitization induced by repeated risperidone treatment in adolescent Sprague-Dawley rats: A possible D2 receptor mediated phenomenon?

    PubMed Central

    Zhang, Qinglin; Hu, Gang; Li, Ming

    2014-01-01

    Rationale Risperidone use in children and adolescents for the treatment of various neuropsychiatric disorders (e.g. schizophrenia, autism, disruptive behavior, etc.) has increased substantially in recent decades. However, its long-term effect on the brain and behavioral functions is not well understood. Objective The present study investigated how a short-term risperidone treatment in adolescence impacts antipsychotic response in adulthood in the conditioned avoidance response and PCP-induced hyperlocomotion tests. Methods Male adolescent Sprague-Dawley rats (postnatal days [P] 40-44 or 43-48) were first treated with risperidone (0.3, 0.5 or 1.0 mg/kg, sc) and tested in the conditioned avoidance or PCP (3.2 mg/kg, sc)-induced hyperlocomotion model daily for 5 consecutive days. After they became adults (~P 76-80), they were challenged with risperidone (0.3 mg/kg, sc) to assess their sensitivity to risperidone re-exposure. A quinpirole (a D2/3 receptor agonist, 1.0 mg/kg, sc)-induced hyperlocomotion test was later conducted to assess the risperidone-induced functional changes in D2 receptor. Results In the risperidone challenge test in adulthood, adult rats previously treated with risperidone in adolescence made significantly fewer avoidance responses and exhibited significantly lower PCP-induced hyperlocomotion than those previously treated with vehicle. They also appeared to be more hyperactive than the vehicle-pretreated ones in the quinpirole-induced hyperlocomotion test. Prepulse inhibition of acoustic startle or fear-induced 22 kHz ultrasonic vocalizations in adulthood was not altered by adolescence risperidone treatment. Conclusions Adolescent risperidone exposure induces a long-term increase in behavioral sensitivity to risperidone that persists into adulthood. This long-lasting change might be due to functional upregulation of D2-mediated neurotransmission. PMID:24363078

  5. Consequences of repeated ethanol exposure during early or late adolescence on conditioned taste aversions in rats.

    PubMed

    Saalfield, Jessica; Spear, Linda

    2015-12-01

    Alcohol use is prevalent during adolescence, yet little is known about possible long-lasting consequences. Recent evidence suggests that adolescents are less sensitive than adults to ethanol's aversive effects, an insensitivity that may be retained into adulthood after repeated adolescent ethanol exposure. This study assessed whether intermittent ethanol exposure during early or late adolescence (early-AIE or late-AIE, respectively) would affect ethanol conditioned taste aversions 2 days (CTA1) and >3 weeks (CTA2) post-exposure using supersaccharin and saline as conditioning stimuli (CS), respectively. Pair-housed male Sprague-Dawley rats received 4g/kg i.g. ethanol (25%) or water every 48 h from postnatal day (P) 25-45 (early AIE) or P45-65 (late AIE), or were left non-manipulated (NM). During conditioning, 30 min home cage access to the CS was followed by 0, 1, 1.5, 2 or 2.5g/kg ethanol i.p., with testing 2 days later. Attenuated CTA relative to controls was seen among early and late AIE animals at both CTA1 and CTA2, an effect particularly pronounced at CTA1 after late AIE. Thus, adolescent exposure to ethanol was found to induce an insensitivity to ethanol CTA seen soon after exposure and lasting into adulthood, and evident with ethanol exposures not only early but also later in adolescence.

  6. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure

    PubMed Central

    Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.

    2014-01-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150

  7. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure.

    PubMed

    Gigante, Eduardo D; Santerre, Jessica L; Carter, Jenna M; Werner, David F

    2014-08-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults.

  8. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats.

    PubMed

    Bowen, Michael T; Carson, Dean S; Spiro, Adena; Arnold, Jonathon C; McGregor, Iain S

    2011-01-01

    Previous studies have suggested that administration of oxytocin (OT) can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48) during a key developmental epoch (early adolescence) altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33-42). OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards) in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood), consumption of beer but not water was significantly less in the OT pre-treated rats. A "booster" shot of OT (1 mg/kg) given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems.

  9. Glyoxal administration induces formation of high molecular weight aggregates of hemoglobin exhibiting amyloidal nature in experimental rats: An in vivo study.

    PubMed

    Banerjee, Sauradipta; Chakraborti, Abhay Sankar

    2016-12-01

    Glyoxal, a highly reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs). In the present study, we have investigated the effect of glyoxal on experimental rat hemoglobin in vivo after external administration of the α-dicarbonyl compound in animals. Gel electrophoretic profile of hemolysate collected from glyoxal-treated rats (32mg/kg body wt. dose) after one week exhibited the presence of some high molecular weight protein bands that were found to be absent for control, untreated rats. Mass spectrometric and absorption studies indicated that the bands represented hemoglobin. Further studies revealed that the fraction exhibited the presence of intermolecular cross β-sheet structure. Thus glyoxal administration induces formation of high molecular weight aggregates of hemoglobin with amyloid characteristics in rats. Aggregated hemoglobin fraction was found to exhibit higher stability compared to glyoxal-untreated hemoglobin. As evident from mass spectrometric studies, glyoxal was found to modify Arg-30β and Arg-31α of rat hemoglobin to hydroimidazolone adducts. The modifications thus appear to induce amyloid-like aggregation of hemoglobin in rats. Considering the increased level of glyoxal in diabetes mellitus as well as its high reactivity, the above findings may be physiologically significant.

  10. Adolescent traumatic stress experience results in less robust conditioned fear and post-extinction fear cue responses in adult rats.

    PubMed

    Moore, Nicole L T; Gauchan, Sangeeta; Genovese, Raymond F

    2014-05-01

    Early exposure to a traumatic event may produce lasting effects throughout the lifespan. Traumatic stress during adolescence may deliver a distinct developmental insult compared with more-often studied neonatal or juvenile traumatic stress paradigms. The present study describes the lasting effects of adolescent traumatic stress upon adulthood fear conditioning. Adolescent rats were exposed to a traumatic stressor (underwater trauma, UWT), then underwent fear conditioning during adulthood. Fear extinction was tested over five conditioned suppression extinction sessions three weeks later. The efficacies of two potential extinction-enhancing compounds, endocannabinoid reuptake inhibitor AM404 (10mg/kg) and M1 muscarinic positive allosteric modulator BQCA (10mg/kg), were also assessed. Finally, post-extinction fear responses were examined using a fear cue (light) as a prepulse stimulus. Rats traumatically stressed during adolescence showed blunted conditioned suppression on day 1 of extinction training, and AM404 reversed this effect. Post-extinction startle testing showed that fear conditioning eliminates prepulse inhibition to the light cue. Startle potentiation was observed only in rats without adolescent UWT exposure. AM404 and BQCA both ameliorated this startle potentiation, while BQCA increased startle in the UWT group. These results suggest that exposure to a traumatic stressor during adolescence alters developmental outcomes related to stress response and fear extinction compared to rats without adolescent traumatic stress exposure, blunting the adulthood fear response and reducing residual post-extinction fear expression. Efficacy of pharmacological interventions may also vary as a factor of developmental traumatic stress exposure.

  11. Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity.

    PubMed

    Povarnina, P Yu; Kolyasnikova, K N; Nikolaev, S V; Antipova, T A; Gudasheva, T A

    2016-03-01

    We studied cerebroprotective properties of neuropeptide cycloprolylglycine (1 mg/kg) administered intraperitoneally to rats with modeled incomplete global ischemia rats and neuroprotective properties for HT-22 cells under conditions of glutamate toxicity. It was shown that the neuropeptide administered during the postischemic period restored the neurological status of rats by preventing sensorimotor impairments in the limb-placing test and suppression of locomotor activity in the open field test. In in vitro experiments, cycloprolylglycine in concentrations of 10(-5)-10(-8) M exhibited pronounced dose-dependent neuroprotective activity. The results attest to high cerebro- and neuroprotective potential of endogenous peptide cycloprolylglycine.

  12. Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats.

    PubMed

    Cadoni, Cristina; Simola, Nicola; Espa, Elena; Fenu, Sandro; Di Chiara, Gaetano

    2015-01-01

    Adolescent Cannabis exposure has been hypothesized to act as a gateway to opiate abuse. In order to investigate the role of genetic background in cannabinoid-opiate interactions, we studied the effect of Δ(9) -tetrahydrocannabinol (THC) exposure of adolescent Lewis and Fischer 344 rats on the responsiveness of accumbens shell and core dopamine (DA), as monitored by microdialysis, to THC and heroin at adulthood. Heroin reward and reinstatement by heroin priming were studied by conditioned place preference (CPP) and cognitive and emotional functions by object recognition, Y maze and elevated plus maze paradigms. THC stimulated shell DA in Lewis but not in Fischer 344 rats. Adolescent THC exposure potentiated DA stimulant effects of heroin in the shell and core of Lewis and only in the core of Fischer 344 rats. Control Lewis rats developed stronger CPP to heroin and resistance to extinction compared with Fischer 344 strain. In Lewis rats, THC exposure did not affect heroin CPP but potentiated the effect of heroin priming. In Fischer 344 rats, THC exposure increased heroin CPP and made it resistant to extinction. Lewis rats showed seeking reactions during extinction and hedonic reactions in response to heroin priming. Moreover, adolescent THC exposure affected emotional function only in Lewis rats. These observations suggest that long-term effects of Cannabis exposure on heroin addictive liability and emotionality are dependent on individual genetic background.

  13. INFANT RATS EXHIBIT AVERSIVE LEARNING MEDIATED BY ETHANOL'S OROSENSORY EFFECTS BUT ARE POSITIVELY REINFORCED BY ETHANOL'S POSTINGESTIVE EFFECTS

    PubMed Central

    Pautassi, Ricardo Marcos; Molina, Juan Carlos; Spear, Norman

    2008-01-01

    Previous work suggests aversive and appetitive hedonic effects of intraorally delivered EtOH in preweanling rats. Pups are reluctant to perform an operant response when reinforced with intraoral EtOH infusions, a result suggesting aversive orosensory properties of EtOH. Yet, postabsorptive effects of ethanol seem capable of supporting appetitive conditioning. Two experiments were conducted to test this phenomenon. Both included a pre-exposure phase (postnatal day 13, PD13) comprising intraoral stimulation with water or EtOH. In Experiment 1, pups were given pairings between a tactile conditioned stimulus (CS) and intraoral infusions of EtOH or water. A subsequent tactile preference test revealed that pups spent significantly less on the EtOH-related CS relative to time spent on the alternative CS. In Experiment 2 pups were exposed to a texture CS (sandpaper) while intraorally infused with EtOH or during a later EtOH postinfusion interval. A tactile locational test conducted on PD16 indicated that EtOH-preexposed animals that experienced sandpaper paired with EtOH's postabsorptive effects exhibited a significant preference for the CS, even relative to a control group that experienced non-reinforced exposure to the tactile CS during conditioning. These results confirm that intraoral ethanol acts as an aversive tastant. A brief pre-exposure to EtOH allows later expression of appetitive learning mediated by the drug's postingestive effects. PMID:17936347

  14. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic

  15. SEX AND OVARIAN HORMONES INFLUENCE VULNERABILITY AND MOTIVATION FOR NICOTINE DURING ADOLESCENCE IN RATS

    PubMed Central

    Lynch, Wendy J.

    2009-01-01

    The purpose of this study was to examine sex differences in sensitivity to nicotine’s reinforcing effects during adolescence, a hormone transition phase characterized by rapid and marked changes in levels of gonadal hormones. Male and female rats were trained to self-administer nicotine (5 or 10 µg/kg/infusion) under a fixed-ratio 1 schedule beginning on postnatal day 30. Following acquisition, responding was assessed under a progressive-ratio schedule until postnatal day 45 with blood sampling occurring prior to the first 5 sessions in order to determine the relationship between gonadal hormones (i.e., estradiol and progesterone in females and testosterone in males) and responding for nicotine. Under low dose conditions, a greater percentage of females than males acquired nicotine self-administration. Under progressive-ratio testing conditions, although adolescent females and males initially responded at similar levels, by the end of the adolescent testing period, females responded at higher levels than males to obtain nicotine infusions. Levels of responding under the progressive-ratio schedule were negatively associated with progesterone and positively associated with the ratio of estradiol to progesterone. These findings demonstrate an enhanced sensitivity in adolescent females as compared to adolescent males to nicotine’s reinforcing effects with evidence implicating circulating hormone levels as modulating this sensitivity. PMID:19619575

  16. Early Adolescent Emergence of Reversal Learning Impairments in Isolation-Reared Rats

    PubMed Central

    Powell, Susan B.; Khan, Asma; Young, Jared W.; Scott, Christine N.; Buell, Mahalah R.; Caldwell, Sorana; Tsan, Elisa; de Jong, Loek A.W.; Acheson, Dean T.; Lucero, Jacinta; Geyer, Mark A.; Behrens, M. Margarita

    2015-01-01

    Cognitive impairments appear early in the progression of schizophrenia, often preceding the symptoms of psychosis. Thus, the systems subserving these functions may be more vulnerable to, and mechanistically linked with, the initial pathology. Understanding the trajectory of behavioral and anatomical abnormalities relevant to the schizophrenia prodrome and their sensitivity to interventions in relevant models will be critical to identifying early therapeutic strategies. Isolation rearing of rats is an environmental perturbation that deprives rodents of social contact from weaning through adulthood and produces behavioral and neuronal abnormalities that mirror some pathophysiology associated with schizophrenia, e.g. frontal cortex abnormalities and prepulse inhibition (PPI) of startle deficits. Previously, we showed that PPI deficits in isolation-reared rats emerge in mid-adolescence (4 weeks after weaning; approx. postnatal day 52) but are not present when tested at 2 weeks after weaning (approx. postnatal day 38). Because cognitive deficits are reported during early adolescence, are relevant to the prodrome, and are linked to functional outcome, we examined the putative time course of reversal learning deficits in isolation-reared rats. Separate groups of male Sprague Dawley rats were tested in a two-choice discrimination task at 2 and 8 weeks after weaning, on postnatal day 38 and 80, respectively. The isolation-reared rats displayed impaired reversal learning at both time points. Isolation rearing was also associated with deficits in PPI at 4 and 10 weeks after weaning. The reversal learning deficits in the isolated rats were accompanied by reductions in parvalbumin immunoreactivity, a marker for specific subpopulations of GABAergic neurons, in the hippocampus. Hence, isolation rearing of rats may offer a unique model to examine the ontogeny of behavioral and neurobiological alterations that may be relevant to preclinical models of prodromal psychosis. PMID

  17. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats.

    PubMed

    Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E; Cassataro, Daniela S; Barbarich-Marsteller, Nicole C; Aoki, Chiye

    2014-12-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this

  18. Rat models of prenatal and adolescent cannabis exposure.

    PubMed

    Dinieri, Jennifer A; Hurd, Yasmin L

    2012-01-01

    Marijuana (Cannabis sativa) is the illicit drug most commonly used by two vulnerable populations relevant to neurodevelopment-pregnant women and teenagers. Human longitudinal studies have linked prenatal and adolescent cannabis exposure with long-term behavioral abnormalities as well as increased vulnerability to neuropsychiatric disorders in adulthood. Animal models provide a means of studying the neurobiological mechanisms underlying these long-term effects. This chapter provides an overview of the animal models we have used to study the developmental impact of cannabis.

  19. Sex differences in Δ(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats.

    PubMed

    Wiley, Jenny L; Burston, James J

    2014-07-25

    Mechanisms that may underlie age and sex differences in the pharmacological effects of cannabinoids are relatively unexplored. The purpose of the present study was to determine whether sex differences in metabolism of Δ(9)-tetrahydrocannabinol (THC), similar to those observed previously in adult rats, also occurred in adolescent rats and might contribute to age and sex differences in its in vivo pharmacology. Male and female adolescent rats were exposed to THC acutely or repeatedly for 10 days. Subsequently, some of the rats were sacrificed and blood and brain levels of THC and one of its metabolites, 11-hydroxy-Δ(9)-THC (11-OH-THC), were measured. Other rats were evaluated in a battery of in vivo tests that are sensitive to cannabinoids. Concentrations of 11-OH-THC in the brains of female adult and adolescent rats exceeded those observed in male conspecifics, particularly after repeated THC administration. In contrast, brain levels of THC did not differ between the sexes. In vivo, acute THC produced dose-related hypothermia, catalepsy and suppression of locomotion in adolescent rats of both sexes, with tolerance developing after repeated administration. With a minor exception, sex differences in THC's effects in the in vivo assays were not apparent. Together with previous findings, the present results suggest that sex differences in pharmacokinetics cannot fully explain the patterns of sex differences (and lack of sex differences) in cannabinoid effects across behaviors. Hormonal and/or pharmacodynamic factors are also likely to play a role.

  20. Neuroplastic Correlates in the mPFC Underlying the Impairment of Stress-Coping Ability and Cognitive Flexibility in Adult Rats Exposed to Chronic Mild Stress during Adolescence

    PubMed Central

    Zhang, Yu; Shao, Feng; Wang, Qiong; Xie, Xi

    2017-01-01

    Using a valid chronic mild stress (CMS) model of depression, we found that adolescent (postnatal days [PND] 28–41) CMS induced transient alterations in anhedonia that did not persist into adulthood after a 3-week recovery period. Previously stressed adult rats exhibited more immobility/despair behaviors in the forced swimming test and a greater number of trials to reach criterion in the set-shifting task, suggesting the impaired ability to cope with stressors and the cognitive flexibility that allows adaptation to dynamic environments during adulthood. In addition, adult rat exposure to adolescent CMS had a relatively inhibited activation in ERK signaling and downstream protein expression of phosphorylated cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex. Further correlation analysis demonstrated that immobility and set-shifting performance were positively correlated with the inhibition of ERK signaling. These results indicated adolescent CMS can be used as an effective stressor to model an increased predisposition to adult depression. PMID:28182105

  1. Adolescent exposure to methylphenidate impairs serial pattern learning in the serial multiple choice (SMC) task in adult rats.

    PubMed

    Rowan, James D; McCarty, Madison K; Kundey, Shannon M A; Osburn, Crystal D; Renaud, Samantha M; Kelley, Brian M; Matoushek, Amanda Willey; Fountain, Stephen B

    2015-01-01

    The long-term effects of adolescent exposure to methylphenidate (MPD) on adult cognitive capacity are largely unknown. We utilized a serial multiple choice (SMC) task, which is a sequential learning paradigm for studying complex learning, to observe the effects of methylphenidate exposure during adolescence on later serial pattern acquisition during adulthood. Following 20.0mg/kg/day MPD or saline exposure for 5 days/week for 5 weeks during adolescence, male rats were trained to produce a highly structured serial response pattern in an octagonal operant chamber for water reinforcement as adults. During a transfer phase, a violation to the previously-learned pattern structure was introduced as the last element of the sequential pattern. Results indicated that while rats in both groups were able to learn the training and transfer patterns, adolescent exposure to MPD impaired learning for some aspects of pattern learning in the training phase which are learned using discrimination learning or serial position learning. In contrast adolescent exposure to MPD had no effect on other aspects of pattern learning which have been shown to tap into rule learning mechanisms. Additionally, adolescent MPD exposure impaired learning for the violation element in the transfer phase. This indicates a deficit in multi-item learning previously shown to be responsible for violation element learning. Thus, these results clearly show that adolescent MPD produced multiple cognitive impairments in male rats that persisted into adulthood long after MPD exposure ended.

  2. Behavioral and neurochemical effects of repeated MDMA administration during late adolescence in the rat

    PubMed Central

    Cox, Brittney M.; Shah, Mrudang M.; Cichon, Teri; Tancer, Manuel E.; Galloway, Matthew P.; Thomas, David M.; Perrine, Shane A.

    2015-01-01

    Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10 mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light–dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light–dark box test at the same dose. Additionally, 10 mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10 mg/kg), but not low (5 mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior. PMID:24121061

  3. Alcohol Binge Drinking during Adolescence or Dependence during Adulthood Reduces Prefrontal Myelin in Male Rats

    PubMed Central

    Vargas, Wanette M.; Bengston, Lynn; Gilpin, Nicholas W.; Whitcomb, Brian W.

    2014-01-01

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229

  4. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood.

    PubMed

    McCormick, Cheryl M; Thomas, Catherine M; Sheridan, Cheryl S; Nixon, Feather; Flynn, Jennifer A; Mathews, Iva Z

    2012-06-01

    The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and 46, experiment 1) and in adulthood (experiment 2) was examined in Long Evans male rats and compared to nonstressed controls (CTL). Additionally, in experiment 2, a separate group of SS and CTL rats was tested on either a spatial (hippocampal-dependent) or nonspatial (nonhippocampal dependent) version of an object memory test and also were used to investigate hippocampal expression of markers of synaptic plasticity. No memory impairment was evident until the SS rats were adults, and the impairment was only on the spatial test. SS rats initially (postnatal day 33) had increased cell proliferation based on counts of Ki67 immunoreactive (ir) cells and greater survival of immature neurons based on counts of doublecortin ir cells on day 46 and in adulthood, irrespective of behavioral testing. Counts of microglia in the DG did not differ by stress group, but behavioral testing was associated with reduced microglia counts compared to nontested rats. As adults, SS and CTL rats did not differ in hippocampal expression of synaptophysin, but compared to CTL rats, SS rats had higher expression of basal calcium/calmodulin-dependent kinase II (CamKII), and lower expression of the phosphorylated CamKII subunit threonine 286, signaling molecules related to synaptic plasticity. The results are contrasted with those from previous reports of chronic stress in adult rats, and we conclude that adolescent stress alters the ongoing development of the hippocampus leading to impaired spatial memory in adulthood, highlighting the heightened vulnerability to stressors in adolescence.

  5. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  6. Effect of prenatal methadone on reinstated behavioral sensitization induced by methamphetamine in adolescent rats.

    PubMed

    Wong, Chih-Shung; Lee, Yih-Jing; Chiang, Yao-Chang; Fan, Lir-Wan; Ho, Ing-Kang; Tien, Lu-Tai

    2014-01-01

    It has been known that methadone maintenance treatment is the standard treatment of choice for pregnant opiate addicts. However, there are few data on newborn outcomes especially in the cross talk with other addictive agents. The present study was to investigate the effect of prenatal exposure to methadone on methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction in later life. Pregnant rats received saline or methadone (7 mg/kg, s.c.) twice daily from E3 to E20. To induce behavioral sensitization, offspring (5 weeks old) were treated with METH (1mg/kg, i.p.) or saline once daily for 5 consecutive days. Ninety-six hours (day 9) after the 5th treatment with METH or saline, animals received a single dose of METH (1mg/kg, i.p.) or saline to induce the reinstated behavioral sensitization. Prenatal methadone treatment enhanced the level of development of locomotor behavioral sensitization to METH administration in adolescent rats. Prenatal methadone treatment also enhanced the reinstated locomotor behavioral sensitization in adolescent rats after the administration had ceased for 96 h. These results indicate that prenatal methadone exposure produces a persistent lesion in the dopaminergic system, as indicated by enhanced METH-induced locomotor behavioral sensitization (before drug abstinence) and reinstated locomotor behavioral sensitization (after short term drug abstinence) in adolescent rats. These findings show that prenatal methadone exposure may enhance susceptibility to the development of drug addiction in later life. This could provide a reference for drug usage such as methamphetamine in their offspring of pregnant woman who are treating with methadone.

  7. Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats

    PubMed Central

    O’Dell, Laura E.; Torres, Oscar V.; Natividad, Luis A.; Tejeda, Hugo A.

    2012-01-01

    Vulnerability to nicotine addiction is significantly increased in individuals who begin smoking during adolescence; however, the underlying mechanisms of this phenomenon remain unclear. This study examined the motivational effects of nicotine withdrawal in adolescent (PND 27–42) and adult (PND 60–75) rats using the conditioned place aversion paradigm. Male Wistar rats were tested for their initial preference for either of two distinct compartments of our conditioning apparatus. Rats were then implanted with subcutaneous (sc) pumps that produce equivalent blood plasma levels of nicotine for 14 days. Conditioning was conducted over the last 8 days of nicotine exposure. Rats received the nicotinic antagonist mecamylamine (1.5 or 3.0 mg/kg, sc) to precipitate withdrawal in their initially preferred compartment, and on alternate days they received saline in their non-preferred compartment. Following conditioning, rats were re-tested for their preference for each compartment. A subsequent study was conducted to examine potential developmental differences in learning place aversion produced by another aversive stimulus, lithium chloride (LiCl). Rats received LiCl (0, 10, 30, or 100 mg/kg, sc) in their initially preferred side using similar conditioning procedures. Adults displayed robust place aversion produced by nicotine withdrawal. This effect was lower in adolescent rats even in a group of young rats that received 7 additional days of nicotine exposure prior to conditioning. This developmental difference was specific to nicotine withdrawal since there were no differences between adolescents and adults in learning place aversion with LiCl. Our findings demonstrating reduced effects of nicotine withdrawal constitute a powerful basis for the increased vulnerability to nicotine dependence during adolescence. PMID:17184972

  8. A Rat Model of Alzheimer’s Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems

    PubMed Central

    Petrasek, Tomas; Skurlova, Martina; Maleninska, Kristyna; Vojtechova, Iveta; Kristofikova, Zdena; Matuskova, Hana; Sirova, Jana; Vales, Karel; Ripova, Daniela; Stuchlik, Ales

    2016-01-01

    Alzheimer’s disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats™ exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages. PMID:27148049

  9. A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents.

    PubMed

    Doherty, James M; Cooke, Bradley M; Frantz, Kyle J

    2013-02-01

    Adolescent drug abuse is hypothesized to increase the risk of drug addiction. Yet male rats that self-administer heroin as adolescents show attenuated drug-seeking after abstinence, compared with adults. Here we explore a role for neural activity in the medial prefrontal cortex (mPFC) in age-dependent heroin-seeking. Adolescent (35-day-old at start; adolescent-onset) and adult (86-day-old at start) male rats acquired lever-pressing maintained by heroin using a fixed ratio one reinforcement schedule (0.05 and 0.025 mg/kg per infusion). Following 12 days of forced abstinence, rats were tested for heroin-seeking over 1 h by measuring the number of lever presses on the active lever. Unbiased stereology was then used to estimate the number of Fos-ir(+) and Fos-ir(-) neurons in prelimbic and infralimbic mPFC. As before, adolescents and adults self-administered similar amounts of heroin, but subsequent heroin-seeking was attenuated in the younger rats. Similarly, the adolescent-onset group failed to show significant neural activation in the prelimbic or infralimbic mPFC during the heroin-seeking test, whereas the adult-onset heroin self-administration group showed two to six times more Fos-ir(+) neurons than their saline counterparts in both mPFC subregions. Finally, the overall number of neurons in the infralimbic cortex was greater in rats from the adolescent-onset groups than adults. The mPFC may thus have a key role in some age-dependent effects of heroin self-administration.

  10. Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats

    PubMed Central

    Robinson-Drummer, Patrese; Dokovna, Lisa B.; Heroux, Nicholas A.; Stanton, Mark E.

    2016-01-01

    The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning, context-shock association, and expression of context conditioning occur in three separate phases—preexposure, training, and testing. During the preexposure phase, the CPFE is disrupted by hippocampal NMDA receptor blockade in juvenile rats (Schiffino et al., 2011), and a similar deficit is seen with a subcutaneous injection of the muscarinic receptor antagonist, scopolamine, in adult mice (Brown et al. 2011). As a foundation for further developmental research, the present study examined the role of cholinergic function in the CPFE in adolescent rats during each phase of the CPFE protocol. In Experiment 1, an i.p injection of either 0.5 or 1.0 mg/kg dose of scopolamine administered prior to all three phases of the CPFE protocol impaired the CPFE. Experiment 2 further showed that a 0.5 mg/kg injection prior to just one of the three phases of the CPFE also disrupted contextual fear conditioning. We further showed that the CPFE is impaired by localized scopolamine infusions into dorsal hippocampus on the preexposure day (Experiment 3a), training day (Experiment 3b), and test day (Experiment 3c). These findings demonstrate a role of cholinergic signaling in hippocampus during each of the three phases of the CPFE in adolescent rats. Implications for the development and neural basis of the CPFE are discussed. PMID:26866360

  11. Sensitization and cross-sensitization after chronic treatment with methylphenidate in adolescent Wistar rats.

    PubMed

    Valvassori, Samira S; Frey, Benício N; Martins, Márcio R; Réus, Gislaine Z; Schimidtz, Filipe; Inácio, Cecília G; Kapczinski, Flávio; Quevedo, João

    2007-05-01

    An increasing debate exists about the potential of early exposure to methylphenidate to increase the risk for drug abuse. In addition, little is known about the neurobiological effects of early exposure to methylphenidate. This study was designed to investigate whether chronic treatment with methylphenidate induces behavioral sensitization to subsequent methylphenidate and D-amphetamine challenge in adolescent Wistar rats. Young Wistar rats (P25) were treated with either methylphenidate (1, 2, or 10 mg/kg, intraperitoneally) or saline for 28 days. After 14 days of washout, animals were challenged with methylphenidate 2.5 mg/kg intraperitoneally or D-amphetamine 2 mg/kg intraperitoneally (P67). Locomotor behavior was assessed using the open field test. Rats chronically treated with methylphenidate in the adolescent period showed augmented locomotor sensitization to D-amphetamine but not to methylphenidate in the adult phase. These findings suggest that early exposure do methylphenidate might increase the risk for subsequent D-amphetamine abuse. Further studies focusing on the neurobiological effects of early exposure to methylphenidate are warranted.

  12. Does repetitive Ritalin injection produce long-term effects on SD female adolescent rats?

    PubMed

    Lee, Min J; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Swann, Alan C; Dafny, Nachum

    2009-09-01

    Methylphenidate (MPD), or Ritalin, is a psychostimulant that is prescribed for an extended period of time to children and adolescents with attention deficit hyperactivity disorder. Adolescence is a time of critical brain maturation and development, and the drug exposure during this time could lead to lasting changes in the brain that endure into the adulthood. Circadian rhythms are 24 h rhythms of physiological processes that are synchronized by the master-clock, the suprachiasmatic nucleus, to keep the body stable in a changing environment. The aim of present study is to observe the effect of repeated MPD exposure on the locomotor diurnal rhythm activity patterns of female adolescent Sprague-Dawley (SD) rats using the open field assay. 31 female adolescent SD rats were divided into four groups: control, 0.6 mg/kg, 2.5 mg/kg, and 10 mg/kg MPD group. On experimental day 1, all groups were given an injection of saline. On experimental days 2-7, animals were injected once a day with either saline, 0.6 mg/kg, 2.5 mg/kg, or 10 mg/kg MPD, and experimental days 8-10 were the washout period. A re-challenge injection was given to each animal on experimental day 11 with the similar dose as the experimental days 2-7. The locomotor movements were counted by the computerized animal activity monitoring system. The data were analyzed statistically to find out whether the diurnal rhythm activity patterns were altered. The obtained data showed that repeated administrations of 2.5 mg/kg and 10 mg/kg MPD were able to change the locomotor diurnal rhythm patterns, which suggests that these MPD doses exerts long-term effects.

  13. Acute and chronic psychostimulant treatment modulates the diurnal rhythm activity pattern of WKY female adolescent rats.

    PubMed

    Jones, Cathleen G; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Dafny, Nachum

    2014-05-01

    The psychostimulants considered the gold standard in the treatment of attention deficit hyperactivity disorder, one of the most common childhood disorders, are also finding their way into the hands of healthy young adults as brain augmentation to improve cognitive performance. The possible long-term effects of psychostimulant exposure in adolescence are considered controversial, and thus, the objective of this study was to investigate whether the chronic exposure to the psychostimulant amphetamine affects the behavioral diurnal rhythm activity patterns of female adolescent Wistar-Kyoto (WKY) rat. The hypothesis of this study is that change in diurnal rhythm activity pattern is an indicator for the long-term effect of the treatment. Twenty-four rats were divided into two groups, control (N = 12) and experimental (N = 12), and kept in a 12:12-h light/dark cycle in an open-field cage. After 5-7 days of acclimation, 11 days of consecutive non-stop behavioral recordings began. On experimental day 1 (ED1), all groups were given an injection of saline. On ED2 to ED7, the experimental group was injected with 0.6 mg/kg amphetamine followed by 3 days of washout from ED8 to ED10, and amphetamine re-challenge on ED11 similar to ED2. The locomotor movements were counted by the computerized animal activity monitoring system, and the cosinor statistical test analysis was used to fit a 24-h curve of the control recording to the activity pattern after treatment. The horizontal activity, total distance, number of stereotypy, vertical activity, and stereotypical movements were analyzed to find out whether the diurnal rhythm activity patterns were altered. Data obtained using these locomotor indices of diurnal rhythm activity pattern suggest that amphetamine treatment significantly modulates the locomotor diurnal rhythm activity pattern of female WKY adolescent rats.

  14. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.

    PubMed

    Ellgren, Maria; Spano, Sabrina M; Hurd, Yasmin L

    2007-03-01

    Cannabis use is a hypothesized gateway to subsequent abuse of other drugs such as heroin. We currently assessed whether Delta-9-tetrahydrocannabinol (THC) exposure during adolescence modulates opiate reinforcement and opioid neural systems in adulthood. Long-Evan male rats received THC (1.5 mg/kg intraperitoneally (i.p.)) or vehicle every third day during postnatal days (PNDs) 28-49. Heroin self-administration behavior (fixed ratio-1; 3-h sessions) was studied from young adulthood (PND 57) into full adults (PND 102). THC-pretreated rats showed an upward shift throughout the heroin self-administration acquisition (30 microg/kg/infusion) phase, whereas control animals maintained the same pattern once stable intake was obtained. Heightened opiate sensitivity in THC animals was also evidenced by higher heroin consumption during the maintenance phase (30 and 60 microg/kg/infusion) and greater responding for moderate-low heroin doses (dose-response curve: 7.5, 15, 30, 60, and 100 microg/kg/injection). Specific disturbance of the endogenous opioid system was also apparent in the brain of adults with adolescent THC exposure. Striatal preproenkephalin mRNA expression was exclusively increased in the nucleus accumbens (NAc) shell; the relative elevation of preproenkephalin mRNA in the THC rats was maintained even after heroin self-administration. Moreover, mu opioid receptor (muOR) GTP-coupling was potentiated in mesolimbic and nigrostriatal brainstem regions in THC-pretreated animals. muOR function in the NAc shell was specifically correlated to heroin intake. The current findings support the gateway hypothesis demonstrating that adolescence cannabis exposure has an enduring impact on hedonic processing resulting in enhanced opiate intake, possibly as a consequence of alterations in limbic opioid neuronal populations.

  15. Mitigation of Radiation-Induced Lung Injury with EUK-207 and Genistein: Effects in Adolescent Rats

    PubMed Central

    Mahmood, J.; Jelveh, S.; Zaidi, A.; Doctrow, S. R.; Hill, R. P.

    2013-01-01

    Exposure of civilian populations to radiation due to accident, war or terrorist act is an increasing concern. The lung is one of the more radiosensitive organs that may be affected in people receiving partial-body irradiation and radiation injury in lung is thought to be associated with the development of a prolonged inflammatory response. Here we examined how effectively damage to the lung can be mitigated by administration of drugs initiated at different times after radiation exposure and examined response in adolescent animals for comparison with the young adult animals that we had studied previously. We studied the mitigation efficacy of the isoflavone genistein (50 mg/kg) and the salen-Mn superoxide dismutase-catalase mimetic EUK-207 (8 mg/kg), both of which have been reported to scavenge reactive oxygen species and reduce activity of the NFkB pathway. The drugs were given by subcutaneous injection to 6- to 7-week-old Fisher rats daily starting either immediately or 2 weeks after irradiation with 12 Gy to the whole thorax. The treatment was stopped at 28 weeks post irradiation and the animals were assessed for levels of inflammatory cytokines, activated macrophages, oxidative damage and fibrosis at 48 weeks post irradiation. We demonstrated that both genistein and EUK-207 delayed and suppressed the increased breathing rate associated with pneumonitis. These agents also reduced levels of oxidative damage (50–100%), levels of TGF-β1 expression (75–100%), activated macrophages (20–60%) and fibrosis (60–80%). The adolescent rats developed pneumonitis earlier following irradiation of the lung than did the adult rats leading to greater severe morbidity requiring euthanasia (~37% in adolescents vs. ~10% in young adults) but the extent of the mitigation of the damage was similar or slightly greater. PMID:23237541

  16. Repeated restraint stress alters sensitivity to the social consequences of ethanol differentially in early and late adolescent rats.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric M; Spear, Linda P

    2013-11-15

    In rats, considerable differences in the social consequences of acute ethanol are seen across ontogeny, with adolescents being more sensitive to low dose ethanol-induced social facilitation and less sensitive to the social inhibition evident at higher ethanol doses relative to adults. Stressor exposure induces social anxiety-like behavior, indexed via decreases in social preference, and alters responsiveness to the social consequences of acute ethanol by enhancing ethanol-associated social facilitation and anxiolysis regardless of age. Given that substantial ontogenetic differences in the social consequences of ethanol are evident even within the adolescent period, the present study was designed to investigate whether similar stress-associated alterations in social behavior and ethanol responsiveness are evident in early and late adolescents. Juvenile-early adolescent [postnatal days (P) 24-28] and mid-late adolescent (P38-42) male and female Sprague-Dawley rats were repeatedly restrained (90 min/day) for 5 days, followed by examination of ethanol-induced (0, 0.25, 0.5, or 1.0 g/kg) alterations in social behaviors on the last day. Responsiveness to restraint stress in terms of both stress-induced behavioral alterations and stress-associated changes in sensitivity to the social consequences of acute ethanol challenge differed drastically at the two ages. Repeated restraint increased anxiety-like behavior in a social context in older adolescents, whereas previously stressed young adolescent males showed substantial increases in play fighting - an effect of stress not evident in P28 females or P42 adolescents of either sex. Unexpectedly, repeated restraint eliminated sensitivity to ethanol-induced social facilitation in P28 adolescent males and made their female counterparts less sensitive to this effect. In contrast, previously stressed late adolescents became sensitive to the socially facilitating and anxiolytic effects of acute ethanol.

  17. Adolescent nicotine exposure fails to impact cocaine reward, aversion and self-administration in adult male rats.

    PubMed

    Pomfrey, Rebecca L; Bostwick, Tamaara A; Wetzell, B Bradley; Riley, Anthony L

    2015-10-01

    The present experiments examined the effects of adolescent nicotine pre-exposure on the rewarding and aversive effects of cocaine and on cocaine self-administration in adult male rats. In Experiment 1, adolescent Sprague-Dawley rats (postnatal days 28-43) were given once daily injections of nicotine (0.6mg/kg) or vehicle and then tested for the aversive and rewarding effects of cocaine in a combined conditioned taste avoidance (CTA)/conditioned place preference (CPP) procedure in adulthood. In Experiment 2, adolescent Sprague-Dawley rats were pre-exposed to nicotine then tested for cocaine self-administration (0.25 or 0.75mg/kg), progressive ratio (PR) responding, extinction and cue-induced reinstatement in adulthood. In Experiment 1, rats showed significant dose-dependent cocaine-induced taste avoidance with cocaine-injected subjects consuming less saccharin over trials, but no effect of nicotine pre-exposure. For place preferences, cocaine induced significant place preferences with cocaine injected subjects spending significantly more time on the cocaine-paired side, but again there was no effect of nicotine history. All rats in Experiment 2 showed clear, dose-dependent responding during cocaine acquisition, PR testing, extinction and reinstatement with no effect of nicotine pre-exposure. These studies demonstrate that adolescent nicotine pre-exposure does not have an impact on cocaine's affective properties or its self-administration at least with the specific parametric conditions under which these effects were tested.

  18. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.

    PubMed

    Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N

    2015-11-01

    The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical

  19. The effects of early-life stress on dopamine system function in adolescent female rats.

    PubMed

    Majcher-Maślanka, Iwona; Solarz, Anna; Wędzony, Krzysztof; Chocyk, Agnieszka

    2017-04-01

    During adolescence, many neural systems, including the dopamine system, undergo essential remodeling and maturation. It is well known that early-life stress (ELS) increases the risk for many psychopathologies during adolescence and adulthood. It is hypothesized that ELS interferes with the maturation of the dopamine system. There is a sex bias in the prevalence of stress-related mental disorders. Information regarding the effects of ELS on brain functioning in females is very limited. In the current study, maternal separation (MS) procedures were carried out to study the effects of ELS on dopamine system functioning in adolescent female rats. Our study showed that MS increased the density of tyrosine hydroxylase immunoreactive fibers in the prelimbic cortex (PLC) and nucleus accumbens (Acb). These changes were accompanied by a decrease in the level of D5 receptor mRNA and an increase in D2 receptor mRNA expression in the PLC of MS females. Conversely, D1 and D5 receptor mRNA levels were augmented in the caudate putamen (CPu), while the expression of the D3 dopamine receptor transcript was reduced in MS females. Additionally, in the Acb, MS elicited a decrease in D2 receptor mRNA expression. At the behavioral level, MS increased apomorphine-induced locomotion; however, it did not change locomotor responses to selective D1/D5 receptor agonist and attenuated D2/D3 receptor agonist-triggered locomotion. Moreover, MS decreased D1/D5 receptor agonist-induced grooming behavior. These results indicate that ELS disrupts dopamine receptor function in the PLC and basal ganglia during adolescence in females and may predispose them to psychopathologies during adolescence and adulthood.

  20. Adverse Social Experiences in Adolescent Rats Result in Enduring Effects on Social Competence, Pain Sensitivity and Endocannabinoid Signaling

    PubMed Central

    Schneider, Peggy; Bindila, Laura; Schmahl, Christian; Bohus, Martin; Meyer-Lindenberg, Andreas; Lutz, Beat; Spanagel, Rainer; Schneider, Miriam

    2016-01-01

    Social affiliation is essential for many species and gains significant importance during adolescence. Disturbances in social affiliation, in particular social rejection experiences during adolescence, affect an individual’s well-being and are involved in the emergence of psychiatric disorders. The underlying mechanisms are still unknown, partly because of a lack of valid animal models. By using a novel animal model for social peer-rejection, which compromises adolescent rats in their ability to appropriately engage in playful activities, here we report on persistent impairments in social behavior and dysregulations in the endocannabinoid (eCB) system. From postnatal day (pd) 21 to pd 50 adolescent female Wistar rats were either reared with same-strain partners (control) or within a group of Fischer 344 rats (inadequate social rearing, ISR), previously shown to serve as inadequate play partners for the Wistar strain. Adult ISR animals showed pronounced deficits in social interaction, social memory, processing of socially transmitted information, and decreased pain sensitivity. Molecular analysis revealed increased CB1 receptor (CB1R) protein levels and CP55, 940 stimulated [35S]GTPγS binding activity specifically in the amygdala and thalamus in previously peer-rejected rats. Along with these changes, increased levels of the eCB anandamide (AEA) and a corresponding decrease of its degrading enzyme fatty acid amide hydrolase (FAAH) were seen in the amygdala. Our data indicate lasting consequences in social behavior and pain sensitivity following peer-rejection in adolescent female rats. These behavioral impairments are accompanied by persistent alterations in CB1R signaling. Finally, we provide a novel translational approach to characterize neurobiological processes underlying social peer-rejection in adolescence. PMID:27812328

  1. Comparison of the behavioral effects of exercise and high fat diet on cognitive function in adolescent rats

    PubMed Central

    Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Kim, Yoon Ju; Kim, Youn-Jung

    2016-01-01

    Adolescence is a critical period for neurodevelopment, neuronal plasticity, and cognitive function. Experiences of adolescence can be exerted positive and negative effects on brain development. Physical exercise has a positive effect on brain function, which is characterized by improving memory function and increased neural plasticity. High fat diet (HFD)-induced obesity has a negative effect on brain function, which is characterized by insulin resistance and neuroinflammation and reduced microvessel constructure. Although the positive effect of exercise and negative effect of obesity on cognitive function have been documented, it has not been well whether comparison of the effects of exercise and obesity on cognitive function in adolescent rats. In the present study, we evaluated the behavioral changes related to cognitive function induced by exercise and obesity in adolescent rats. Male Wistar rats were randomly divided into three groups: the control group (CON), the exercise group (Ex), the high fat diet group (HFD). The HFD containing fat 60% was freely provided. The present results showed that spatial learning ability and short-term memory did not show significant effect exercise as compared to the control group. The present results showed that spatial learning ability and short-term memory was significantly decreased HFD-induced obesity group as compared to the control group. These results suggest that positive effect of physical exercise in adolescence rats may be exerted no significant effect on cognitive function. But, negative effect of HFD-induced obesity might induce cognitive impairment. HFD-induced obesity in adolescent rats may be used as an animal model of neurodevelopmental disorders. PMID:28119872

  2. Impulsivity and aggressive behavior in Roman high and low avoidance rats: baseline differences and adolescent social stress induced changes.

    PubMed

    Coppens, Caroline M; de Boer, Sietse F; Steimer, Thierry; Koolhaas, Jaap M

    2012-03-20

    Adverse and stressful experiences during adolescence are often of a social nature. The social defeat model in rats is used as an animal model for bullying in humans. Usually large individual differences in response to social defeat are found. The personality type that is mostly affected and the underlying mechanisms are unknown. We used male rats of the Roman selection lines to test whether social defeat (between postnatal days 45 and 57) followed by social isolation has a different impact in animals with divergent levels of emotional reactivity and coping style. The level of offensive aggression, impulsivity and performance during frustrating non-reward (extinction) were used as measures for the adult coping style of animals. Impulsivity was measured by performance on an unpredictable operant conditioning schedule (variable interval-15, VI-15) for food reinforcement. This study demonstrates that the adult, baseline level of impulsivity is higher in Roman high avoidance (RHA) rats. RHA rats showed a higher number of lever presses compared to Roman low avoidance (RLA) rats on a VI-15 schedule. The level of offensive aggression did not differ between the two lines. Surprisingly, a tendency towards more offensive aggression in RLA rats was found. Social stress during adolescence disturbed the normal development of adult personality, mostly in RHA rats. RHA rats that were defeated during adolescence reduced the number of lever presses on the VI-15 schedule of reinforcement and were more persistent during a session of frustrating non-reward. However, we did not find an effect of social defeat on performance during extinction. A tendency towards increased attack latencies after social defeat in adolescence was found. The time spent on offensive aggression was unaffected by social defeat.

  3. Proliferating cells in the adolescent rat amygdala: Characterization and response to stress.

    PubMed

    Saul, M L; Helmreich, D L; Rehman, S; Fudge, J L

    2015-12-17

    The amygdala is a heterogeneous group of nuclei that plays a role in emotional and social learning. As such, there has been increased interest in its development in adolescent animals, a period in which emotional/social learning increases dramatically. While many mechanisms of amygdala development have been studied, the role of cell proliferation during adolescence has received less attention. Using bromodeoxyuridine (BrdU) injections in adolescent and adult rats, we previously found an almost fivefold increase in BrdU-positive cells in the amygdala of adolescents compared to adults. Approximately one third of BrdU-labeled cells in the amygdala contained the putative neural marker doublecortin (DCX), suggesting a potential for neurogenesis. To further investigate this possibility in adolescents, we examined the proliferative dynamics of DCX/BrdU-labeled cells. Surprisingly, DCX/BrdU-positive cells were found to comprise a stable subpopulation of BrdU-containing cells across survivals up to 56 days, and there was no evidence of neural maturation by 28 days after BrdU injection. Additionally, we found that approximately 50% of BrdU+ cells within the adolescent amygdala contain neural-glial antigen (NG2) and are therefore presumptive oligodendrocyte precursors (OPCs). We next characterized the response to a short-lived stressor (3-day repeated variable stress, RVS). The total BrdU-labeled cell number decreased by ∼30% by 13 days following RVS (10 days post-BrdU injection) as assessed by stereologic counting methods, but the DCX/BrdU-labeled subpopulation was relatively resistant to RVS effects. In contrast, NG2/BrdU-labeled cells were strongly influenced by RVS. We conclude that typical neurogenesis is not a feature of the adolescent amygdala. These findings point to several possibilities, including the possibility that DCX/BrdU cells are late-developing neural precursors, or a unique subtype of NG2 cell that is relatively resistant to stress. In contrast, many

  4. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    PubMed

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-04

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning.

  5. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  6. Cerebral radiofrequency exposures during adolescence: Impact on astrocytes and brain functions in healthy and pathologic rat models.

    PubMed

    Petitdant, Nicolas; Lecomte, Anthony; Robidel, Franck; Gamez, Christelle; Blazy, Kelly; Villégier, Anne-Sophie

    2016-07-01

    The widespread use of mobile phones by adolescents raises concerns about possible health effects of radiofrequency electromagnetic fields (RF EMF 900 MHz) on the immature brain. Neuro-development is a period of particular sensitivity to repeated environmental challenges such as pro-inflammatory insults. Here, we used rats to assess whether astrocyte reactivity, perception, and emotionality were affected by RF EMF exposures during adolescence. We also investigated if adolescent brains were more sensitive to RF EMF exposures after neurodevelopmental inflammation. To do so, we either performed 80 μg/kg intra-peritoneal injections of lipopolysaccharides during gestation or 1.25 μg/h intra-cerebro-ventricular infusions during adolescence. From postnatal day (P)32 to 62, rats were subjected to 45 min RF EMF exposures to the brain (specific absorption rates: 0, 1.5, or 6 W/kg, 5 days/week). From P56, they were tested for perception of novelty, anxiety-like behaviors, and emotional memory. To assess astrocytic reactivity, Glial Fibrillary Acidic Protein was measured at P64. Our results did not show any neurobiological impairment in healthy and vulnerable RF EMF-exposed rats compared to their sham-exposed controls. These data did not support the hypothesis of a specific cerebral sensitivity to RF EMF of adolescents, even after a neurodevelopmental inflammation. Bioelectromagnetics. 37:338-350, 2016. © 2016 Wiley Periodicals, Inc.

  7. Interlobular arteries from two-kidney, one-clip Goldblatt hypertensive rats exhibit impaired vasodilator response to epoxyeicosatrienoic acids

    PubMed Central

    Sporková, Alexandra; Reddy, N. Rami; Falck, John R.; Imig, John D.; Kopkan, Libor; Sadowski, Janusz; Červenka, Luděk

    2016-01-01

    Background Small renal arteries have a significant role in regulation of renal hemodynamics and blood pressure (BP). To study potential changes in regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the two-kidney, one-clip (2K1C) Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) which are believed to be involved in regulation of renal vascular function and BP. Two newly synthesized EET analogs were also examined. Methods Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine (PE), pressurized, and the effects of a 14,15-EET analog, native 14,15-EET, and 11,12-ether-EET-8ZE, an analog of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. Results In the arteries from non-clipped kidneys isolated in the maintenance phase of Goldblatt hypertension the maximal vasodilatory response to 14,15-EET analog was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4± 6.4% versus 80.4±6%, and for native EETs they were 41.7 ± 6.6 % versus 62.8 ± 4.4 % (P ≤ 0.05 for each difference). Conclusions We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal ANG II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2K1C Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension. PMID:27140711

  8. Adolescent exposure to chronic delta-9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats.

    PubMed

    Morel, Lydie J; Giros, Bruno; Daugé, Valérie

    2009-10-01

    Maternal deprivation in rats specifically leads to a vulnerability to opiate dependence. However, the impact of cannabis exposure during adolescence on this opiate vulnerability has not been investigated. Chronic dronabinol (natural delta-9 tetrahydrocannabinol, THC) exposure during postnatal days 35-49 was made in maternal deprived (D) or non-deprived (animal facility rearing, AFR) rats. The effects of dronabinol exposure were studied after 2 weeks of washout on the rewarding effects of morphine measured in the place preference and oral self-administration tests. The preproenkephalin (PPE) mRNA levels and the relative density and functionality of CB1, and mu-opioid receptors were quantified in the striatum and the mesencephalon. Chronic dronabinol exposure in AFR rats induced an increase in sensitivity to morphine conditioning in the place preference paradigm together with a decrease of PPE mRNA levels in the nucleus accumbens and the caudate-putamen nucleus, without any modification for preference to oral morphine consumption. In contrast, dronabinol treatment on D-rats normalized PPE decrease in the striatum, morphine consumption, and suppressed sensitivity to morphine conditioning. CB1 and mu-opioid receptor density and functionality were not changed in the striatum and mesencephalon of all groups of rats. These results indicate THC potency to act as a homeostatic modifier that would worsen the reward effects of morphine on naive animals, but ameliorate the deficits in maternally D-rats. These findings point to the self-medication use of cannabis in subgroups of individuals subjected to adverse postnatal environment.

  9. Adolescent exposure to nicotine alters the aversive effects of cocaine in adult rats.

    PubMed

    Hutchison, Mary Anne; Riley, Anthony L

    2008-01-01

    Nicotine is one of the most commonly used drugs in adolescence and has been shown to alter the rewarding effects of cocaine when administered in adulthood. Although the abuse potential of a drug has been suggested to be a balance between its rewarding and aversive effects, the long-term effects of nicotine on the aversive properties of other drugs had not been studied. To that end, in the present study rats exposed to nicotine (0.4 mg/kg) during adolescence (postnatal days 35-44) were tested for the acquisition and extinction of a cocaine-induced conditioned taste aversion (10, 18 or 32 mg/kg) in adulthood. Conditioning consisted of four saccharin-drug pairings followed by six extinction trials. Although cocaine-induced aversions at all doses, no effect of nicotine preexposure was seen during acquisition. During extinction, the nicotine-preexposed groups conditioned with 10 and 18 mg/kg cocaine displayed a decreased rate of extinction compared to their respective controls. These results suggest that while adolescent nicotine exposure does not appear to directly alter the aversive properties of cocaine it may affect other processes related to the response to drugs given in adulthood.

  10. Effects of Eucommia ulmoides extract on longitudinal bone growth rate in adolescent female rats.

    PubMed

    Kim, Ji Young; Lee, Jeong-Il; Song, MiKyung; Lee, Donghun; Song, Jungbin; Kim, Soo Young; Park, Juyeon; Choi, Ho-Young; Kim, Hocheol

    2015-01-01

    Eucommia ulmoides is one of the popular tonic herbs for the treatment of low back pain and bone fracture and is used in Korean medicine to reinforce muscles and bones. This study was performed to investigate the effects of E. ulmoides extract on longitudinal bone growth rate, growth plate height, and the expressions of bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) in adolescent female rats. In two groups, we administered a twice-daily dosage of E. ulmoides extract (at 30 and 100 mg/kg, respectively) per os over 4 days, and in a control group, we administered vehicle only under the same conditions. Longitudinal bone growth rate in newly synthesized bone was observed using tetracycline labeling. Chondrocyte proliferation in the growth plate was observed using cresyl violet dye. In addition, we analyzed the expressions of BMP-2 and IGF-1 using immunohistochemistry. Eucommia ulmoides extract significantly increased longitudinal bone growth rate and growth plate height in adolescent female rats. In the immunohistochemical study, E. ulmoides markedly increased BMP-2 and IGF-1 expressions in the proliferative and hypertrophic zones. In conclusion, E. ulmoides increased longitudinal bone growth rate by promoting chondrogenesis in the growth plate and the levels of BMP-2 and IGF-1. Eucommia ulmoides could be helpful for increasing bone growth in children who have growth retardation.

  11. Repeated Binge Ethanol Administration During Adolescence Enhances Voluntary Sweetened Ethanol Intake in Young Adulthood in Male and Female Rats

    PubMed Central

    Maldonado-Devincci, Antoniette M.; Alipour, Kent K.; Michael, Laura A.; Kirstein, Cheryl L.

    2014-01-01

    Binge alcohol consumption is a rising concern in the United States, especially among adolescents. During this developmental period alcohol use is usually initiated and has been shown to cause detrimental effects on brain structure and function as well as cognitive/behavioral impairments in rats. Binge models, where animals are repeatedly administered high doses of ethanol typically over a period of three or four days cause these effects. There has been little work conducted aimed at investigating the long-term behavioral consequences of repeated binge administration during adolescence on later ethanol-induced behavior in young adulthood and adulthood. The repeated four-day binge model may serve as a good approximate for patterns of human adolescent alcohol consumption as this is similar to a “bender” in human alcoholics. The present set of experiments examined the dose-response and sex-related differences induced by repeated binge ethanol administration during adolescence on sweetened ethanol (Experiment 1) or saccharin (Experiment 2) intake in young adulthood. In both experiments, on postnatal days (PND) 28–31, PND 35–38 and PND 42–45, ethanol (1.5, 3.0 or 5.0 g/kg) or water was administered intragastrically to adolescent rats. Rats underwent abstinence from PND 46–59. Subsequently, in young adulthood, ethanol and saccharin intake were assessed. Exposure to any dose of ethanol during adolescence significantly enhanced ethanol intake in adulthood. However, while female rats had higher overall g/kg intake, males appear to be more vulnerable to the impact of adolescent ethanol exposure on subsequently increased ethanol intake in young adulthood. Exposure to ethanol during adolescence did not alter saccharin consumption in young adulthood in male or female rats. Considering that adolescence is the developmental period in which ethanol experimentation and consumption is usually initiated, the present set of experiments demonstrate the importance of

  12. Pharmacological characterization of the nociceptin/orphanin FQ receptor on ethanol-mediated motivational effects in infant and adolescent rats.

    PubMed

    Miranda-Morales, Roberto Sebastián; Pautassi, Ricardo M

    2016-02-01

    Activation of nociceptin/orphanin FQ (NOP) receptors attenuates ethanol drinking and prevents relapse in adult rodents. In younger rodents (i.e., infant rats), activation of NOP receptors blocks ethanol-induced locomotor activation but does not attenuate ethanol intake. The aim of the present study was to extend the analysis of NOP modulation of ethanol's effects during early ontogeny. Aversive and anxiolytic effects of ethanol were measured in infant and adolescent rats via conditioned taste aversion and the light-dark box test; whereas ethanol-induced locomotor activity and ethanol intake was measured in adolescents only. Before these tests, infant rats were treated with the natural ligand of NOP receptors, nociceptin (0.0, 0.5 or 1.0 μg) and adolescent rats were treated with the specific agonist Ro 64-6198 (0.0, 0.1 or 0.3 mg/kg). The activation of NOP receptors attenuated ethanol-induced anxiolysis in adolescents only, and had no effect on ethanol's aversive effects. Administration of Ro 64-6198 blocked ethanol-induced locomotor activation but did not modify ethanol intake patterns. The attenuation of ethanol stimulating and anxiolytic effect by activation of NOP receptors indicates a modulatory role of this receptor on ethanol effects, which is expressed early in ontogeny.

  13. Effects of maternal separation on nicotine-induced conditioned place preference and subsequent learning and memory in adolescent female rats.

    PubMed

    Dalaveri, Fatemeh; Nakhaee, Nouzar; Esmaeilpour, Khadijeh; Mahani, Saeed Esmaeili; Sheibani, Vahid

    2017-02-03

    Adverse early life experiences can potentially increase risk for drug abuse later in life. However, little research has been conducted studying the effects of maternal separation (MS), an experimental model for early life stress, on the rewarding effects of nicotine. Cognitive function may be affected by MS. So, we also investigated whether nicotine administration affect spatial learning and memory in MS adolescent female rats. Rat pups were subjected to daily MS for 15min (MS15) or 180min (MS180) during the first 2 weeks of life or reared under normal animal facility rearing (AFR) conditions. The place preference test was performed with nicotine (0.6mg/kg,s.c.) or vehicle over a period of 6 conditioning trials during adolescence. Spatial learning and memory performance was evaluated by using Morris water maze (MWM). In our study, adolescent female rats exposed to MS180 shown a significantly greater preference for a nicotine-paired compartment during the testing phase than the MS15 group. Nicotine altered the MS-induced spatial learning defects in the MS180 group. These findings suggest that MS may increase sensitivity to the rewarding effects of nicotine and also it is possible to suggest that nicotine administration may influence learning dysfunction induced by MS in adolescent female rats.

  14. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    PubMed

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood.

  15. Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-Dawley rats.

    PubMed

    Lan, Zhou; Hyung Kim, Tae; Shun Bi, Kai; Hui Chen, Xiao; Sik Kim, Hyung

    2015-01-01

    Triclosan (TCS) is considered a potent endocrine disruptor that causes reproductive toxicity in non-mammals, but it is still unclear exactly whether TCS has adverse effects on the sperm or reproductive organs in mammals. In this study, we aimed to evaluate the distribution status of TCS in male reproductive organs of rats, and seek the correlation with the TCS-induced sperm toxicity or reproductive organ damage. Male rats were intragastrically administered with TCS at a dose of 50 mg/kg, the kinetics of TCS in the plasma and reproductive organs were investigated. TCS in testes and prostates both showed a lower-level distribution compared to that in the plasma, which indicates it has no tendency to accumulate in those organs. However, TCS in the epididymides showed a longer elimination half-life (t1/2 z), a longer the mean retention time (MRT), and a lower clearance (CLZ /F) compared with those in the plasma. Besides, the ratios of mean area under the concentration-time curve (AUC)(0-96 h(epididymides/plasma)) and AUC(0-∞(epididymides/plasma)) were 1.13 and 1.51, respectively. These kinetic parameters suggest TCS has an accumulation tendency in the epididymides. Based on this, we investigated the TCS-induced sperm toxicity and histopathological changes of reproductive organs in rats. TCS was given intragastrically at doses of 10, 50, and 200 mg/kg for 8 weeks. Rats treated with the high dose (200 mg/kg) of TCS showed a significant decrease in daily sperm production (DSP), changes in sperm morphology and epididymal histopathology. Considering the histopathological change in the epididymides, TCS may induce the epididymal damage due to the epididymal accumulation of that.

  16. Female rats with severe left ventricle volume overload exhibit more cardiac hypertrophy but fewer myocardial transcriptional changes than males.

    PubMed

    Beaumont, Catherine; Walsh-Wilkinson, Élisabeth; Drolet, Marie-Claude; Roussel, Élise; Arsenault, Marie; Couet, Jacques

    2017-04-07

    Aortic valve regurgitation (AR) imposes a volume overload (VO) to the left ventricle (LV). Male rats with a pathological heart overload usually progress more quickly towards heart failure than females. We examined whether a sexual dimorphism exists in the myocardial transcriptional adaptations to AR. Adult Wistar male and female rats either underwent a sham operation or were induced with AR and then followed for 26 weeks. Female AR rats gained relatively more LV mass than males (75 vs. 42%). They had a similar increase in LV chamber dimensions compared to males but more wall thickening. On the other hand, fatty acid oxidation (FAO)-related LV enzyme activity was only decreased in AR males. The expression of genes encoding FAO-related enzymes was only reduced in AR males and not in females. A similar situation was observed for the expression of genes involved in mitochondrial biogenesis or function as well as for genes encoding for transcription factors implicated in the control of bioenergetics and mitochondrial function (Errα, Errγ or Pgc1α). Although females develop more LV hypertrophy from severe VO, their myocardial gene expression remains closer to normal. This could provide survival benefits for females with severe VO.

  17. Effects of rearing conditions on behaviour and endogenous opioids in rats with alcohol access during adolescence.

    PubMed

    Palm, Sara; Daoura, Loudin; Roman, Erika; Nylander, Ingrid

    2013-01-01

    Causal links between early-life stress, genes and later psychiatric diagnoses are not possible to fully address in human studies. Animal models therefore provide an important complement in which conditions can be well controlled and are here used to study and distinguish effects of early-life stress and alcohol exposure. The objective of this study was to investigate the impact of rearing conditions on behaviour in young rats and if these changes could be followed over time and to examine interaction effects between early-life environment and adolescent alcohol drinking on behaviour and immunoreactive levels of the opioid peptides dynorphin B, met-enkephalin-Arg(6)Phe(7) and beta-endorphin. We employed a rodent model, maternal separation, to study the impact of rearing conditions on behaviour, voluntary alcohol consumption and alcohol-induced effects. The consequences of short, 15 min (MS 15), and long, 360 min (MS 360), maternal separation in combination with adolescent voluntary alcohol consumption on behaviour and peptides were examined. A difference in the development of risk taking behaviour was found between the MS15 and MS360 while the development of general activity was found to differ between intake groups. Beta-endorphin levels in the pituitary and the periaqueductal gray area was found to be higher in the MS15 than the MS360. Adolescent drinking resulted in higher dynorphin B levels in the hippocampus and higher met-enkephalin-Arg(6)Phe(7) levels in the amygdala. Amygdala and hippocampus are involved in addiction processes and changes in these brain areas after adolescent alcohol drinking may have consequences for cognitive function and drug consumption behaviour in adulthood. The study shows that individual behavioural profiling over time in combination with neurobiological investigations provides means for studies of causality between early-life stress, behaviour and vulnerability to psychiatric disorders.

  18. Long-term cognitive, emotional and neurogenic alterations induced by alcohol and methamphetamine exposure in adolescent rats.

    PubMed

    Loxton, David; Canales, Juan J

    2017-03-06

    A high proportion of young methamphetamine (MA) users simultaneously consume alcohol. However, the potential neurological and behavioural alterations induced by such a drug combination have not been systematically examined. We studied in adolescent rats the long-term effects of alcohol, MA, and alcohol and MA combined on anxiety-like behaviour, memory, and neurogenesis in the adult hippocampus. Rats received saline, ethanol (ETOH, 1.5g/kg), MA (MA, 2mg/kg), or ethanol and MA combined (ETHOH-MA, 1.5g/kg ethanol plus 2mg/kg MA) via oral gavage, once daily for 5 consecutive days. Open field (OF), elevated plus maze (EPM) and radial arm maze (RAM) tests were conducted following a 15-day withdrawal period. The results showed alterations in exploratory behaviour in the OF in the MA and ETOH-MA groups, and anxiety-like effects in the EPM in all three drug treatment groups. All three drug groups exhibited reference memory deficits in the RAM, but only the combination treatment group displayed alterations in working memory. Both MA and ETOH-MA treatments increased the length of doublecortin (DCX)-void gaps in the dentate gyrus but only ETOH-MA treatment increased the number of such gaps. An increased number and length of DCX-void gaps correlated with decreased exploratory activity in the OF, and impaired working memory in the RAM was associated with an augmented number of gaps. These findings suggest that alterations in adult hippocampal neurogenesis are linked to the persistent cognitive and behavioural deficits produced by alcohol and MA exposure.

  19. Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex

    PubMed Central

    Counotte, Danielle S.; Goriounova, Natalia A.; Moretti, Milena; Smoluch, Marek T.; Irth, Hubertus; Clementi, Francesco; Schoffelmeer, Anton N. M.; Mansvelder, Huibert D.; Smit, August B.; Gotti, Cecilia; Spijker, Sabine

    2013-01-01

    Adolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine’s long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences. Using receptor binding studies followed by immunoprecipitation of nAChR subunits, we showed that adolescent nicotine exposure, as compared with saline, caused an increase in mPFC nAChRs containing α4 or β2 subunits (24 and 18%, respectively) 24 h after the last injection. Nicotine exposure in adulthood had no such effect. This increase was transient and was not observed 5 wk following either adolescent or adult nicotine exposure. In line with increased nAChRs expression 1 d after adolescent nicotine exposure, we observed a 34% increase in amplitude of nicotine-induced spontaneous inhibitory postsynaptic currents in layer II/III mPFC pyramidal neurons. These effects were transient and specific, and observed only acutely after adolescent nicotine exposure, but not after 5 wk, and no changes were observed in adult-exposed animals. The acute nicotine-induced increase in α4β2-containing receptors in adolescents interferes with the normal developmental decrease (37%) of these receptors from early adolescence (postnatal day 34) to adulthood (postnatal day 104) in the mPFC. Together, this suggests that these receptors play a role in mediating the acute rewarding effects of nicotine and may underlie the increased sensitivity of adolescents to nicotine. PMID:22308197

  20. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    PubMed

    Mantella, Nicole M; Youngentob, Steven L

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our

  1. Cytoplasmic Phospholipase A2 Modulation of Adolescent Rat Ethanol-Induced Protein Kinase C Translocation and Behavior

    PubMed Central

    Santerre, J. L.; Kolitz, E. B.; Pal, R.; Rogow, J. A.; Werner, D. F.

    2015-01-01

    Ethanol consumption typically begins during adolescence, a developmental period which exhibits many age-dependent differences in ethanol behavioral sensitivity. Protein kinase C (PKC) activity is largely implicated in ethanol-behaviors, and our previous work indicates that regulation of novel PKC isoforms likely contributes to decreased high-dose ethanol sensitivity during adolescence. The cytoplasmic Phospholipase A2 (cPLA2) signaling cascade selectivity modulates novel and atypical PKC isoform activity, as well as adolescent ethanol hypnotic sensitivity. Therefore, the current study was designed to ascertain adolescent cPLA2 activity both basally and in response to ethanol, as well as it's involvement in ethanol-induced PKC isoform translocation patterns. cPLA2 expression was elevated during adolescence, and activity was increased only in adolescents following high-dose ethanol administration. Novel, but not atypical PKC isoforms translocate to cytosolic regions following high-dose ethanol administration. Inhibiting cPLA2 with AACOCF3 blocked ethanol-induced PKC cytosolic translocation. Finally, inhibition of novel, but not atypical, PKC isoforms when cPLA2 activity was elevated, modulated adolescent high-dose ethanol-sensitivity. These data suggest that the cPLA2/PKC pathway contributes to the acute behavioral effects of ethanol during adolescence. PMID:25791059

  2. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats.

    PubMed

    Nidhi, Bhatiwada; Sharavana, Gurunathan; Ramaprasad, Talahalli R; Vallikannan, Baskaran

    2015-02-01

    In the present study, we appraise the anti-inflammatory efficacy of lutein oxidative degradation derivatives mediated through UV-irradiation over lutein in counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n = 5 per group). UV-irradiated lutein fragments were identified as anhydrolutein (B, C40H54O), 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-1en-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3, C21H30O) and zeaxanthin (M4, C40H56O) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein, all-trans zeaxanthin, and 9-Z lutein. Induction of inflammation by LPS significantly increased the production of nitrites (3.3 fold in the serum and 2.6 fold in the liver), prostaglandin E2 (26 fold in the serum), and pro-inflammatory cytokines like tumor necrosis factor-α (6.6 fold in the serum), and interleukin-6 (4.8 fold in the serum). Oxidative derivatives of lutein, especially M1, M2 and M3, ameliorated acute inflammation in rats by inhibiting the production of nitrites, malondialdehyde (MDA), PGE2, TNF-α, and IL-6 cytokines more efficiently than lutein in rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of inflammatory cytokines and the increase of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.

  3. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis

    PubMed Central

    Hansen, Sarah A.; Hart, Marcia L.; Busi, Susheel; Parker, Taybor; Goerndt, Angela

    2016-01-01

    ABSTRACT Somatic mutations in the Tp53 tumor suppressor gene are the most commonly seen genetic alterations in cancer, and germline mutations in Tp53 predispose individuals to a variety of early-onset cancers. Development of appropriate translational animal models that carry mutations in Tp53 and recapitulate human disease are important for drug discovery, biomarker development and disease modeling. Current Tp53 mouse and rat models have significant phenotypic and genetic limitations, and often do not recapitulate certain aspects of human disease. We used a marker-assisted speed congenic approach to transfer a well-characterized Tp53-mutant allele from an outbred rat to the genetically inbred Fischer-344 (F344) rat to create the F344-Tp53tm1(EGFP-Pac)Qly/Rrrc (F344-Tp53) strain. On the F344 genetic background, the tumor spectrum shifted, with the primary tumor types being osteosarcomas and meningeal sarcomas, compared to the hepatic hemangiosarcoma and lymphoma identified in the original outbred stock model. The Fischer model is more consistent with the early onset of bone and central nervous system sarcomas found in humans with germline Tp53 mutations. The frequency of osteosarcomas in F344-Tp53 homozygous and heterozygous animals was 57% and 36%, respectively. Tumors were highly representative of human disease radiographically and histologically, with tumors found primarily on long bones with frequent pulmonary metastases. Importantly, the rapid onset of osteosarcomas in this promising new model fills a current void in animal models that recapitulate human pediatric osteosarcomas and could facilitate studies to identify therapeutic targets. PMID:27528400

  4. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis.

    PubMed

    Hansen, Sarah A; Hart, Marcia L; Busi, Susheel; Parker, Taybor; Goerndt, Angela; Jones, Kevin; Amos-Landgraf, James M; Bryda, Elizabeth C

    2016-10-01

    Somatic mutations in the Tp53 tumor suppressor gene are the most commonly seen genetic alterations in cancer, and germline mutations in Tp53 predispose individuals to a variety of early-onset cancers. Development of appropriate translational animal models that carry mutations in Tp53 and recapitulate human disease are important for drug discovery, biomarker development and disease modeling. Current Tp53 mouse and rat models have significant phenotypic and genetic limitations, and often do not recapitulate certain aspects of human disease. We used a marker-assisted speed congenic approach to transfer a well-characterized Tp53-mutant allele from an outbred rat to the genetically inbred Fischer-344 (F344) rat to create the F344-Tp53(tm1(EGFP-Pac)Qly)/Rrrc (F344-Tp53) strain. On the F344 genetic background, the tumor spectrum shifted, with the primary tumor types being osteosarcomas and meningeal sarcomas, compared to the hepatic hemangiosarcoma and lymphoma identified in the original outbred stock model. The Fischer model is more consistent with the early onset of bone and central nervous system sarcomas found in humans with germline Tp53 mutations. The frequency of osteosarcomas in F344-Tp53 homozygous and heterozygous animals was 57% and 36%, respectively. Tumors were highly representative of human disease radiographically and histologically, with tumors found primarily on long bones with frequent pulmonary metastases. Importantly, the rapid onset of osteosarcomas in this promising new model fills a current void in animal models that recapitulate human pediatric osteosarcomas and could facilitate studies to identify therapeutic targets.

  5. Low distribution of synaptic vesicle protein 2A and synaptotagimin-1 in the cerebral cortex and hippocampus of spontaneously epileptic rats exhibiting both tonic convulsion and absence seizure.

    PubMed

    Hanaya, R; Hosoyama, H; Sugata, S; Tokudome, M; Hirano, H; Tokimura, H; Kurisu, K; Serikawa, T; Sasa, M; Arita, K

    2012-09-27

    The spontaneously epileptic rat (SER) is a double mutant (zi/zi, tm/tm) which begins to exhibit tonic convulsions and absence seizures after 6 weeks of age, and repetitive tonic seizures over time induce sclerosis-like changes in SER hippocampus with high brain-derived neurotrophic factor (BDNF) expression. Levetiracetam, which binds to synaptic vesicle protein 2A (SV2A), inhibited both tonic convulsions and absence seizures in SERs. We studied SER brains histologically and immunohistochemically after verification by electroencephalography (EEG), as SERs exhibit seizure-related alterations in the cerebral cortex and hippocampus. SERs did not show interictal abnormal spikes and slow waves typical of focal epilepsy or symptomatic generalized epilepsy. The difference in neuronal density of the cerebral cortex was insignificant between SER and Wistar rats, and apoptotic neurons did not appear in SERs. BDNF distributions portrayed higher values in the entorhinal and piriform cortices which would relate with hippocampal sclerosis-like changes. Similar synaptophysin expression in the cerebral cortex and hippocampus was found in both animals. Low and diffuse SV2A distribution portrayed in the cerebral cortex and hippocampus of SERs was significantly less than that of all cerebral lobes and inner molecular layer (IML) of the dentate gyrus (DG) of Wistar rats. The extent of low SV2A expression/distribution in SERs was particularly remarkable in the frontal (51% of control) and entorhinal cortices (47%). Lower synaptotagmin-1 expression (vs Wistar rats) was located in the frontal (31%), piriform (13%) and entorhinal (39%) cortices, and IML of the DG (38%) in SER. Focal low distribution of synaptotagmin-1 accompanying low SV2A expression may contribute to epileptogenesis and seizure propagation in SER.

  6. The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes

    PubMed Central

    Pereira-Figueiredo, Inês; Sancho, Consuelo; Carro, Juan; Castellano, Orlando; López, Dolores E.

    2014-01-01

    Sertraline (SERT) is a clinically effective Selective Serotonin Reuptake Inhibitor (SSRI) known to increase and stabilize serotonin levels. This neurotransmitter plays an important role in adolescent brain development in both rodents and humans, and its dysregulation has been correlated with deficits in behavior and emotional regulation. Since prenatal stress may disturb serotoninergic homeostasis, the aim of this study was to examine the long-lasting effects of exposure to SERT throughout adolescence on behavioral and physiological developmental parameters in prenatally stressed Wistar rats. SERT was administered (5 mg/kg/day p.o.) from the age of 1–3 months to half of the progeny, of both sexes, of gestating dams stressed by use of a restraint (PS) or not stressed. Our data reveal that long-term SERT treatment slightly reduced weight gain in both sexes, but reversed the developmental disturbed “catch-up” growth found in PS females. Neither prenatal stress nor SERT treatment induced remarkable alterations in behavior and had no effects on mean startle reflex values. However, a sex-dependent effects of PS was found: in males the PS paradigm slightly increased anxiety-like behavior in the open field, while in females, it impaired startle habituation. In both cases, SERT treatment reversed the phenomena. Additionally, the PS animals exhibited a disturbed leukocyte profile in both sexes, which was reversed by SERT. The present findings are evidence that continuous SERT administration from adolescence through adulthood is safe in rodents and lessens the impact of prenatal stress in rats. PMID:25147514

  7. Prenatal toluene exposure impairs performance in the Morris Water Maze in adolescent rats.

    PubMed

    Callan, S P; Hannigan, J H; Bowen, S E

    2017-02-07

    Volatile organic solvent abuse continues to be a worldwide health problem, including the neurobehavioral teratogenic sequelae of toluene abuse during pregnancy. Although abuse levels of prenatal toluene exposure can lead to a Fetal Solvent Syndrome, there is little research examining these effects on memory. Consumption of toluene can have detrimental effects on the developing hippocampus which could lead to specific spatial learning and memory deficits. This study used a rat model to determine how prenatal exposure to abuse levels of toluene would affect performance in a spatial learning and memory task, the Morris Water Maze (MWM). Pregnant Sprague-Dawley rats were exposed to 0, 8000 or 12,000ppm (ppm) of toluene for 15min twice daily from gestation day 8 (GD8) through GD20. Male and female offspring (N=104) were observed in the MWM for 5days beginning on postnatal day (PN) 28 and again on PN44. While prenatal toluene-exposed animals did not differ in initial acquisition in the MWM, rats prenatally exposed to 12,000ppm toluene displayed performance deficits during a probe trial and in reversal learning on PN44. Overall, this study indicates that prenatal exposure to repeated inhaled abuse patterns of high concentrations of toluene can impair spatial memory function that persists into adolescence.

  8. C-peptide exhibits a late induction effect on matrix metallopeptidase-9 in high glucose-stimulated rat mesangial cells

    PubMed Central

    Wang, Junxia; Li, Yanning; Xu, Mingzhi; Li, Dandan; Wang, Yu; Qi, Jinsheng; He, Kunyu

    2016-01-01

    Insufficient matrix metalloproteinase (MMP)-9 and MMP-2 is considered to be a contributor of extracellular matrix (ECM) accumulation in diabetic nephropathy (DN). C-peptide can reverse fibrosis, thus exerting a beneficial effect on DN. Whether C-peptide induces MMP-9 and MMP-2 to reverse ECM accumulation is not clear. In the present study, in order to determine ECM metabolism, rat mesangial cells were treated with high glucose (HG) and C-peptide intervention, then the early and late effects of C-peptide on HG-affected MMP-9 and MMP-2 were evaluated. Firstly, it was confirmed that HG mainly suppressed MMP-9 expression levels. Furthermore, C-peptide treatment induced MMP-9 expression at 6 h and suppressed it at 24 h, revealing the early dual effects of C-peptide on MMP-9 expression. Subsequently, significant increase in MMP-9 expression at 72, 96 and 120 h C-peptide treatment was observed. These changes in MMP-9 protein content confirmed its expression changes following late C-peptide treatment. Furthermore, at 96 and 120 h C-peptide treatment reversed the HG-inhibited MMP-9 secretion, further indicating the late induction effect of C-peptide on MMP-9. The present results demonstrated that C-peptide exerted a late induction effect on MMP-9 in HG-stimulated rat mesangial cells, which may be associated with the underlying mechanism of C-peptide's reversal effects on DN. PMID:28101192

  9. Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats.

    PubMed

    Acevedo, María Belén; Nizhnikov, Michael E; Molina, Juan C; Pautassi, Ricardo Marcos

    2014-05-15

    It is yet unclear if ethanol-induced motor stimulation in the open field (OF) merely reflects psychomotor stimulating effects of the drug or if this stimulation is driven or modulated by ethanol's antianxiety properties. In the present study, adolescent rats were administered with different ethanol doses or remained untreated. They were sequentially assessed in the OF, elevated plus maze (EPM), and light-dark box (LDB) and then assessed for ethanol intake. The aims were to assess the relationship between measures of ethanol-induced activity and anxiolysis, analyze ethanol intake as a function of prior ethanol exposure, and associate behavioral responsiveness in these apparatus with ethanol intake during adolescence. The results suggested that the enhanced exploration of the OF observed after 2.5 and 3.25 g/kg ethanol reflected a motor-stimulating effect that appeared to be relatively independent of anxiolysis. The 1.25 g/kg dose induced motor stimulation in the OF and anti-anxiety effects in the EPM, but these effects were relatively independent. The 0.5 g/kg ethanol dose exerted significant anxiolytic effects in the EPM in the absence of stimulating effects in the OF. A multivariate regression analysis indicated that adolescents with a higher frequency of rearing behavior in the OF, higher percentage of open arm entries in the EPM, and lower propensity to enter the central area of the OF exhibited greater ethanol intake. These results indicate that the OF is a valid procedure for the measurement of ethanol-induced stimulation, and provide information toward characterizing subpopulations of adolescents at risk for initiating alcohol drinking.

  10. Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2014-01-01

    It is yet unclear if ethanol-induced motor stimulation in the open field (OF) merely reflects psychomotor stimulating effects of the drug or if this stimulation is driven or modulated by ethanol’s antianxiety properties. In the present study, adolescent rats were administered with different ethanol doses or remained untreated. They were sequentially assessed in the OF, elevated plus maze (EPM), and light-dark box (LDB) and then assessed for ethanol intake. The aims were to assess the relationship between measures of ethanol-induced activity and anxiolysis, analyze ethanol intake as a function of prior ethanol exposure, and associate behavioral responsiveness in these apparatus with ethanol intake during adolescence. The results suggested that the enhanced exploration of the OF observed after 2.5 and 3.25 g/kg ethanol reflected a motor-stimulating effect that appeared to be relatively independent of anxiolysis. The 1.25 g/kg dose induced motor stimulation in the OF and anti-anxiety effects in the EPM, but these effects were relatively independent. The 0.5 g/kg ethanol dose exerted significant anxiolytic effects in the EPM in the absence of stimulating effects in the OF. A multivariate regression analysis indicated that adolescents with a higher frequency of rearing behavior in the OF, higher percentage of open arm entries in the EPM, and lower propensity to enter the central area of the OF exhibited greater ethanol intake. These results indicate that the OF is a valid procedure for the measurement of ethanol-induced stimulation, and provide information towards characterizing subpopulations of adolescents at risk for initiating alcohol drinking. PMID:24583190

  11. Adolescent Δ(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats.

    PubMed

    Scherma, Maria; Dessì, Christian; Muntoni, Anna Lisa; Lecca, Salvatore; Satta, Valentina; Luchicchi, Antonio; Pistis, Marco; Panlilio, Leigh V; Fattore, Liana; Goldberg, Steven R; Fratta, Walter; Fadda, Paola

    2016-04-01

    Cannabis is the most commonly used illicit drug worldwide, and use is typically initiated during adolescence. The endocannabinoid system has an important role in formation of the nervous system, from very early development through adolescence. Cannabis exposure during this vulnerable period might lead to neurobiological changes that affect adult brain functions and increase the risk of cannabis use disorder. The aim of this study was to investigate whether exposure to Δ(9)-tetrahydrocannabinol (THC) in adolescent rats might enhance reinforcing effects of cannabinoids in adulthood. Male adolescent rats were treated with increasing doses of THC (or its vehicle) twice/day for 11 consecutive days (PND 45-55). When the animals reached adulthood, they were tested by allowing them to intravenously self-administer the cannabinoid CB1-receptor agonist WIN55,212-2. In a separate set of animals given the same THC (or vehicle) treatment regimen, electrophysiological and neurochemical experiments were performed to assess possible modifications of the mesolimbic dopaminergic system, which is critically involved in cannabinoid-induced reward. Behavioral data showed that acquisition of WIN55,212-2 self-administration was enhanced in THC-exposed rats relative to vehicle-exposed controls. Neurophysiological data showed that THC-exposed rats displayed a reduced capacity for WIN55,212-2 to stimulate firing of dopamine neurons in the ventral tegmental area and to increase dopamine levels in the nucleus accumbens shell. These findings-that early, passive exposure to THC can produce lasting alterations of the reward system of the brain and subsequently increase cannabinoid self-administration in adulthood-suggest a mechanism by which adolescent cannabis exposure could increase the risk of subsequent cannabis dependence in humans.

  12. Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats

    PubMed Central

    Izquierdo, Alicia; Pozos, Hilda; De La Torre, Adrianna; DeShields, Simone; Cevallos, James; Rodriguez, Jonathan; Stolyarova, Alexandra

    2016-01-01

    Corticostriatal circuitry supports flexible reward learning and emotional behavior from the critical neurodevelopmental stage of adolescence through adulthood. It is still poorly understood how prescription drug exposure in adolescence may impact these outcomes in the long-term. We studied adolescent methylphenidate (MPH) and fluoxetine (FLX) exposure in rats and their impact on learning and emotion in adulthood. In Experiment 1, male and female rats were administered MPH, FLX, or saline (SAL), and compared with methamphetamine (mAMPH) treatment beginning in postnatal day (PND) 37. The rats were then tested on discrimination and reversal learning in adulthood. In Experiment 2, animals were administered MPH or SAL also beginning in PND 37 and later tested in adulthood for anxiety levels. In Experiment 3, we analyzed striatal dopamine D1 and D2 receptor expression in adulthood following either extensive learning (after Experiment 1) or more brief emotional measures (after Experiment 2). We found sex differences in discrimination learning and attenuated reversal learning after MPH and only sex differences in adulthood anxiety. In learners, there was enhanced striatal D1, but not D2, after either adolescent MPH or mAMPH. Lastly, also in learners, there was a sex x treatment group interaction for D2, but not D1, driven by the MPH-pretreated females, who expressed significantly higher D2 levels compared to SAL. These results show enduring effects of adolescent MPH on reversal learning in rats. Developmental psychostimulant exposure may interact with learning to enhance D1 expression in adulthood, and affect D2 expression in a sex-dependent manner. PMID:27091300

  13. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  14. Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion.

    PubMed

    Motbey, Craig P; Karanges, Emily; Li, Kong M; Wilkinson, Shane; Winstock, Adam R; Ramsay, John; Hicks, Callum; Kendig, Michael D; Wyatt, Naomi; Callaghan, Paul D; McGregor, Iain S

    2012-01-01

    Mephedrone (4-methylmethcathinone, MMC) is a popular recreational drug, yet its potential harms are yet to be fully established. The current study examined the impact of single or repeated MMC exposure on various neurochemical and behavioral measures in rats. In Experiment 1 male adolescent Wistar rats received single or repeated (once a day for 10 days) injections of MMC (30 mg/kg) or the comparator drug methamphetamine (METH, 2.5 mg/kg). Both MMC and METH caused robust hyperactivity in the 1 h following injection although this effect did not tend to sensitize with repeated treatment. Striatal dopamine (DA) levels were increased 1 h following either METH or MMC while striatal and hippocampal serotonin (5-HT) levels were decreased 1 h following MMC but not METH. MMC caused greater increases in 5-HT metabolism and greater reductions in DA metabolism in rats that had been previously exposed to MMC. Autoradiographic analysis showed no signs of neuroinflammation ([(125)I]CLINDE ligand used as a marker for translocator protein (TSPO) expression) with repeated exposure to either MMC or METH. In Experiment 2, rats received repeated MMC (7.5, 15 or 30 mg/kg once a day for 10 days) and were examined for residual behavioral effects following treatment. Repeated high (30 mg/kg) dose MMC produced impaired novel object recognition 5 weeks after drug treatment. However, no residual changes in 5-HT or DA tissue levels were observed at 7 weeks post-treatment. Overall these results show that MMC causes acute but not lasting changes in DA and 5-HT tissue concentrations. MMC can also cause long-term memory impairment. Future studies of cognitive function in MMC users are clearly warranted.

  15. Mephedrone in Adolescent Rats: Residual Memory Impairment and Acute but Not Lasting 5-HT Depletion

    PubMed Central

    Motbey, Craig P.; Karanges, Emily; Li, Kong M.; Wilkinson, Shane; Winstock, Adam R.; Ramsay, John; Hicks, Callum; Kendig, Michael D.; Wyatt, Naomi; Callaghan, Paul D.; McGregor, Iain S.

    2012-01-01

    Mephedrone (4-methylmethcathinone, MMC) is a popular recreational drug, yet its potential harms are yet to be fully established. The current study examined the impact of single or repeated MMC exposure on various neurochemical and behavioral measures in rats. In Experiment 1 male adolescent Wistar rats received single or repeated (once a day for 10 days) injections of MMC (30 mg/kg) or the comparator drug methamphetamine (METH, 2.5 mg/kg). Both MMC and METH caused robust hyperactivity in the 1 h following injection although this effect did not tend to sensitize with repeated treatment. Striatal dopamine (DA) levels were increased 1 h following either METH or MMC while striatal and hippocampal serotonin (5-HT) levels were decreased 1 h following MMC but not METH. MMC caused greater increases in 5-HT metabolism and greater reductions in DA metabolism in rats that had been previously exposed to MMC. Autoradiographic analysis showed no signs of neuroinflammation ([125I]CLINDE ligand used as a marker for translocator protein (TSPO) expression) with repeated exposure to either MMC or METH. In Experiment 2, rats received repeated MMC (7.5, 15 or 30 mg/kg once a day for 10 days) and were examined for residual behavioral effects following treatment. Repeated high (30 mg/kg) dose MMC produced impaired novel object recognition 5 weeks after drug treatment. However, no residual changes in 5-HT or DA tissue levels were observed at 7 weeks post-treatment. Overall these results show that MMC causes acute but not lasting changes in DA and 5-HT tissue concentrations. MMC can also cause long-term memory impairment. Future studies of cognitive function in MMC users are clearly warranted. PMID:23029034

  16. Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.

    PubMed

    Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto

    2014-08-01

    Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment.

  17. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    PubMed

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  18. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics.

    PubMed

    McClain, Justin A; Hayes, Dayna M; Morris, Stephanie A; Nixon, Kimberly

    2011-09-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.

  19. Persistent Genital Hyperinnervation Following Progesterone Administration to Adolescent Female Rats1

    PubMed Central

    Liao, Zhaohui; Smith, Peter G.

    2014-01-01

    ABSTRACT Provoked vestibulodynia, a female pelvic pain syndrome affecting substantial numbers of women, is characterized by genital hypersensitivity and sensory hyperinnervation. Previous studies have shown that the risk of developing provoked vestibulodynia is markedly elevated following adolescent use of oral contraceptives with high progesterone content. We hypothesized that progesterone, a steroid hormone with known neurotropic properties, may alter genital innervation through direct or indirect actions. Female Sprague Dawley rats received progesterone (20 mg/kg subcutaneously) from Days 20–27; tissue was removed for analysis in some rats on Day 28, while others were ovariectomized on Day 43 and infused for 7 days with vehicle or 17beta estradiol. Progesterone resulted in overall increases in vaginal innervation at both Day 28 and 50 due to proliferation of peptidergic sensory and sympathetic (but not parasympathetic) axons. Estradiol reduced innervation in progesterone-treated and untreated groups. To assess the mechanisms of sensory hyperinnervation, we cultured dissociated dorsal root ganglion neurons and found that progesterone increases neurite outgrowth by small unmyelinated (but not myelinated) sensory neurons, it was receptor mediated, and it was nonadditive with NGF. Pretreatment of ganglion with progesterone also increased neurite outgrowth in response to vaginal target explants. However, pretreatment of vaginal target with progesterone did not improve outgrowth. We conclude that adolescent progesterone exposure may contribute to provoked vestibulodynia by eliciting persistent genital hyperinnervation via a direct effect on unmyelinated sensory nociceptor neurons and that estradiol, a well-documented therapeutic, may alleviate symptoms in part by reducing progesterone-induced sensory hyperinnervation. PMID:25359899

  20. Traumatic brain injury in late adolescent rats: effects on adulthood memory and anxiety.

    PubMed

    Amorós-Aguilar, Laura; Portell-Cortés, Isabel; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida

    2015-04-01

    The consequences of traumatic brain injury (TBI) sustained during late adolescence (7 weeks old) on spontaneous object recognition memory and on anxiety-like behaviors in the elevated plus maze were tested in rats during adulthood. Testing took place at 2 different postinjury times, in separate groups: 3 and 6 weeks, when animals were 10 and 13 weeks old, respectively. The rats were either submitted to controlled cortical impact injury, an experimental model of focal TBI with contusion, or were sham-operated. TBI animals failed to remember the familiar object and had a significantly lower performance than sham-operated animals, indicating memory disruption, when the retention delay was 24 hr, but not when it was 3 hr. TBI did not have any significant effect on the main anxiety-related behaviors, but it reduced time in the central platform of the elevated plus maze. The effects of TBI on memory and on anxiety-like behaviors were similar at the 2 postinjury times. In both TBI and sham-operated groups, animals tested 6 weeks after surgery had lower anxiety-related indices than those tested at 3 weeks, an effect that might be indicative of reduced anxiety levels with increasing age. In summary, focal TBI with contusion sustained during late adolescence led to object recognition memory deficits in a 24-hr test during adulthood but did not have a major impact on anxiety-like behaviors. Memory deficits persisted for at least 6 weeks after injury, indicating that spontaneous modifications of these functional disturbances did not take place along this time span.

  1. Acute and residual effects in adolescent rats resulting from exposure to the novel synthetic cannabinoids AB-PINACA and AB-FUBINACA.

    PubMed

    Kevin, Richard C; Wood, Katie E; Stuart, Jordyn; Mitchell, Andrew J; Moir, Michael; Banister, Samuel D; Kassiou, Michael; McGregor, Iain S

    2017-01-01

    Synthetic cannabinoids (SCs) have rapidly proliferated as recreational drugs, and may present a substantial health risk to vulnerable populations. However, information on possible effects of long-term use is sparse. This study compared acute and residual effects of the popular indazole carboxamide SC compounds AB-PINACA and AB-FUBINACA in adolescent rats with ∆(9)-tetrahydrocannabinol (THC) and control treatments. Albino Wistar rats were injected (i.p.) with AB-PINACA or AB-FUBINACA every second day (beginning post-natal day (PND) 31), first at a low dose (0.2 mg/kg on 6 days) followed by a higher dose (1 mg/kg on a further 6 days). THC-treated rats received equivalent doses of 6 × 1 mg/kg and 6 × 5 mg/kg. During drug treatment, THC, AB-PINACA, and AB-FUBINACA decreased locomotor activity at high and low doses, increased anxiety-like behaviours and audible vocalisations, and reduced weight gain. Two weeks after dosing was completed, all cannabinoid pre-treated rats exhibited object recognition memory deficits. These were notably more severe in rats pre-treated with AB-FUBINACA. However, social interaction was reduced in the THC pre-treated group only. Six weeks post-dosing, plasma levels of cytokines interleukin (IL)-1α and IL-12 were reduced by AB-FUBINACA pre-treatment, while cerebellar endocannabinoids were reduced by THC and AB-PINACA pre-treatment. The acute effects of AB-PINACA and AB-FUBINACA were broadly similar to those of THC, suggesting that acute SC toxicity in humans may be modulated by dose factors, including inadvertent overdose and product contamination. However, some lasting residual effects of these different cannabinoid receptor agonists were subtly different, hinting at recruitment of different mechanisms of neuroadaptation.

  2. Cholinergic modulation of local pyramid-interneuron synapses exhibiting divergent short-term dynamics in rat sensory cortex.

    PubMed

    Levy, Robert B; Reyes, Alex D; Aoki, Chiye

    2008-06-18

    Acetylcholine (ACh) influences attention, short-term memory, and sleep/waking transitions, through its modulatory influence on cortical neurons. It has been proposed that behavioral state changes mediated by ACh result from its selective effects on the intrinsic membrane properties of diverse cortical inhibitory interneuron classes. ACh has been widely shown to reduce the strength of excitatory (glutamatergic) synapses. But past studies using extracellular stimulation have not been able to examine the effects of ACh on local cortical connections important for shaping sensory processing. Here, using dual intracellular recording in slices of rat somatosensory cortex, we show that reduction of local excitatory input to inhibitory neurons by ACh is coupled to differences in the underlying short-term synaptic plasticity (STP). In synapses with short-term depression, where successive evoked excitatory postsynaptic potentials (EPSPs; >5 Hz) usually diminish in strength (short-term depression), cholinergic agonist (5-10 microM carbachol (CCh)) reduced the amplitude of the first EPSP in an evoked train, but CCh's net effect on subsequent EPSPs rapidly diminished. In synapses where successive EPSPs increased in strength (facilitation), the effect of CCh on later EPSPs in an evoked train became progressively greater. The effect of CCh on both depressing and facilitating synapses was blocked by the muscarinic antagonist, 1-5 microM atropine. It is suggested that selective influence on STP contributes fundamentally to cholinergic "switching" between cortical rhythms that underlie different behavioral states.

  3. Crystal structures of DPP-IV (CD26) from rat kidney exhibit flexible accommodation of peptidase-selective inhibitors.

    PubMed

    Longenecker, Kenton L; Stewart, Kent D; Madar, David J; Jakob, Clarissa G; Fry, Elizabeth H; Wilk, Sherwin; Lin, Chun W; Ballaron, Stephen J; Stashko, Michael A; Lubben, Thomas H; Yong, Hong; Pireh, Daisy; Pei, Zhonghua; Basha, Fatima; Wiedeman, Paul E; von Geldern, Thomas W; Trevillyan, James M; Stoll, Vincent S

    2006-06-20

    Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.

  4. Chamomile and oregano extracts synergistically exhibit antihyperglycemic, antihyperlipidemic, and renal protective effects in alloxan-induced diabetic rats.

    PubMed

    Prasanna, Rajagopalan; Ashraf, Elbessoumy A; Essam, Mahmoud A

    2017-01-01

    The bio-activities of separate Matricaria chamomilla (chamomile) and Origanum vulgare (oregano) are well studied; however, the combined effects of both natural products in animal diabetic models are not well characterized. In this study, alloxan-induced male albino rats were treated with single dose aqueous suspension of chamomile or oregano at dose level of either 150 or 300 mg/kg body mass or as equal parts as combination by stomach tube for 6 weeks. After treatment, blood samples were assessed for diabetic, renal, and lipid profiles. Insulin, amylase activity, and diabetic renal apoptosis were further evaluated. Treatment with higher dose of the extracts (300 mg/kg) as individual or as mixture of low doses (150 mg/kg of both the extracts) had significant mass gain, hypoglycemic effect (p ≤ 0.05) with decreased amylase activity and increased serum insulin levels. Restoration of renal profile, lipid profile with increase in HDL-c (p ≤ 0.05) along with reversal of pro-apoptotic Bax and anti-apoptotic Bcl-2 were well observed with 300 mg/kg mixture, showing synergistic activity of the extracts compared with individual low dose of 150 mg/kg. Collectively, our results indicate that combination of chamomile and oregano extracts will form a new class of drugs to treat diabetic complications.

  5. Face-to-Face Sharing with Strangers and Altruistic Punishment of Acquaintances for Strangers: Young Adolescents Exhibit Greater Altruism than Adults

    PubMed Central

    Hao, Jian; Yang, Yue; Wang, Zhiwen

    2016-01-01

    Young adolescents are generally considered to be self-absorbed. Studies indicate that they lack relevant general cognitive abilities, such as impulse control, that mature in early adulthood. However, their idealism may cause them to be more intolerant of unfair treatment to others and thus result in their engaging in more altruistic behavior. The present study aimed to clarify whether young adolescents are more altruistic than adults and thus indicate whether altruistic competence is domain-specific. One hundred 22 young adolescents and adults participated in a face-to-face, two-round, third-party punishment experiment. In each interaction group, a participant served as an allocator who could share money units with a stranger; another participant who knew the allocator could punish the acquaintance for the stranger. Participants reported their emotions after the first round, and at the end of the experiment, the participants justified their behavior in each round. The results indicated that the young adolescents both shared more and punished more than did the adults. Sharing was associated with a reference to fairness in the justifications, but altruistic punishment was associated with subsequent positive emotion. In sum, greater altruism in young adolescents compared to adults with mature cognitive abilities provides evidence of domain-specificity of altruistic competence. Moreover, sharing and altruistic punishment are related to specific cognitive and emotional mechanisms, respectively. PMID:27752246

  6. Face-to-Face Sharing with Strangers and Altruistic Punishment of Acquaintances for Strangers: Young Adolescents Exhibit Greater Altruism than Adults.

    PubMed

    Hao, Jian; Yang, Yue; Wang, Zhiwen

    2016-01-01

    Young adolescents are generally considered to be self-absorbed. Studies indicate that they lack relevant general cognitive abilities, such as impulse control, that mature in early adulthood. However, their idealism may cause them to be more intolerant of unfair treatment to others and thus result in their engaging in more altruistic behavior. The present study aimed to clarify whether young adolescents are more altruistic than adults and thus indicate whether altruistic competence is domain-specific. One hundred 22 young adolescents and adults participated in a face-to-face, two-round, third-party punishment experiment. In each interaction group, a participant served as an allocator who could share money units with a stranger; another participant who knew the allocator could punish the acquaintance for the stranger. Participants reported their emotions after the first round, and at the end of the experiment, the participants justified their behavior in each round. The results indicated that the young adolescents both shared more and punished more than did the adults. Sharing was associated with a reference to fairness in the justifications, but altruistic punishment was associated with subsequent positive emotion. In sum, greater altruism in young adolescents compared to adults with mature cognitive abilities provides evidence of domain-specificity of altruistic competence. Moreover, sharing and altruistic punishment are related to specific cognitive and emotional mechanisms, respectively.

  7. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    NASA Astrophysics Data System (ADS)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  8. The Genetic Absence Epilepsy Rats from Strasbourg model of absence epilepsy exhibits alterations in fear conditioning and latent inhibition consistent with psychiatric comorbidities in humans.

    PubMed

    Marks, Wendie N; Cavanagh, Mary E; Greba, Quentin; Cain, Stuart M; Snutch, Terrance P; Howland, John G

    2016-01-01

    Behavioural, neurological, and genetic similarities exist in epilepsies, their psychiatric comorbidities, and various psychiatric illnesses, suggesting common aetiological factors. Rodent models of epilepsy are used to characterize the comorbid symptoms apparent in epilepsy and their neurobiological mechanisms. The present study was designed to assess Pavlovian fear conditioning and latent inhibition in a polygenetic rat model of absence epilepsy, i.e. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the non-epileptic control (NEC) strain. Electrophysiological recordings confirmed the presence of spike-wave discharges in young adult GAERS but not NEC rats. A series of behavioural tests designed to assess anxiety-like behaviour (elevated plus maze, open field, acoustic startle response) and cognition (Pavlovian conditioning and latent inhibition) was subsequently conducted on male and female offspring. Results showed that GAERS exhibited significantly higher anxiety-like behaviour, a characteristic reported previously. In addition, using two protocols that differed in shock intensity, we found that both sexes of GAERS displayed exaggerated cued and contextual Pavlovian fear conditioning and impaired fear extinction. Fear reinstatement to the conditioned stimuli following unsignalled footshocks did not differ between the strains. Male GAERS also showed impaired latent inhibition in a paradigm using Pavlovian fear conditioning, suggesting that they may have altered attention, particularly related to previously irrelevant stimuli in the environment. Neither the female GAERS nor NEC rats showed evidence of latent inhibition in our paradigm. Together, the results suggest that GAERS may be a particularly useful model for assessing therapeutics designed to improve the emotional and cognitive disturbances associated with absence epilepsy.

  9. Porcine skin gelatin hydrolysate promotes longitudinal bone growth in adolescent rats.

    PubMed

    Leem, Kang-Hyun; Lee, Sena; Jang, Aera; Kim, Hye Kyung

    2013-05-01

    Collagen hydrolysates (CHs) are mixtures of peptides obtained by partial hydrolysis of gelatin that are receiving scientific attention as potential oral supplements for the restoration of osteoarticular tissues. The aim of this study was to evaluate the effectiveness of CHs for promoting longitudinal bone growth in growing rats. An in vitro study was carried out in osteoblast-like MG63 cells and the most effective CH on bone formation was selected among 36 various CHs. An in vivo study confirmed the functional effects of a selected CH with molecular weight of <3 kDa on longitudinal bone growth. CHs dose-dependently promoted the longitudinal bone growth and height of the growth plate in adolescent male rats, whereas gelatin failed to affect longitudinal bone growth. Insulin-like growth factor-1 and bone morphogenetic protein-2 in the CH treated group were highly expressed in the growth plate. These results suggest that CHs isolated in this study may provide beneficial effects on bone metabolism of growing animals and humans.

  10. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    PubMed

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-04-07

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  11. Serotonergic impairment and memory deficits in adolescent rats after binge exposure of methylone.

    PubMed

    López-Arnau, Raúl; Martínez-Clemente, José; Pubill, David; Escubedo, Elena; Camarasa, Jorge

    2014-11-01

    Methylone is a cathinone derivative that has recently emerged as a designer drug of abuse in Europe and the USA. Studies on the acute and long-term neurotoxicity of cathinones are starting to be conducted. We investigated the neurochemical/enzymatic changes indicative of neurotoxicity after methylone administration (4 × 20 mg/kg, subcutaneously, per day with 3 h intervals) to adolescent rats, to model human recreational use. In addition, we studied the effect of methylone on spatial learning ad memory using the Morris water maze paradigm. Our experiments were carried out at a high ambient temperature to simulate the hot conditions found in dance clubs where the drug is consumed. We observed a hyperthermic response to methylone that reached a peak 30 min after each dose. We determined a serotonergic impairment in methylone-treated rats, especially in the frontal cortex, where it was accompanied by astrogliosis. Some serotonergic alterations were also present in the hippocampus and striatum. No significant neurotoxic effect on the dopaminergic system was identified. Methylone-treated animals only displayed impairments in the probe trial of the Morris water maze, which concerns reference memory, while the spatial learning process seemed to be preserved.

  12. Long-term effects of chronic oral Ritalin administration on cognitive and neural development in adolescent wistar kyoto rats.

    PubMed

    Pardey, Margery C; Kumar, Natasha N; Goodchild, Ann K; Clemens, Kelly J; Homewood, Judi; Cornish, Jennifer L

    2012-09-12

    The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®). With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed "normal" (Wistar Kyoto, WKY) rats and in Spontaneously Hypertensive Rats (SHR), a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day) or distilled water (dH2O). The effect of chronic treatment on delayed reinforcement tasks (DRT) and tyrosine hydroxylase immunoreactivity (TH-ir) in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in "normal" WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls.

  13. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    PubMed Central

    Pardey, Margery C.; Kumar, Natasha N.; Goodchild, Ann K.; Clemens, Kelly J.; Homewood, Judi; Cornish, Jennifer L.

    2012-01-01

    The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®). With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY) rats and in Spontaneously Hypertensive Rats (SHR), a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day) or distilled water (dH2O). The effect of chronic treatment on delayed reinforcement tasks (DRT) and tyrosine hydroxylase immunoreactivity (TH-ir) in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in “normal” WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls. PMID:24961199

  14. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats.

    PubMed

    Cha, Young May; Jones, Katherine H; Kuhn, Cynthia M; Wilson, Wilkie A; Swartzwelder, Harry Scott

    2007-09-01

    Like other recreational drugs, cannabinoids may produce different effects in men and women. In this study we measured the effects of delta9-tetrahydrocannabinol (THC) on spatial learning in two groups that are underrepresented in drug research--females and adolescents. In the first experiment, adolescent (postnatal day 30) and adult (postnatal day 70) rats of both sexes were treated subchronically with 5.0 mg/kg THC or vehicle for five consecutive days. Thirty minutes after each daily injection, they were tested on the spatial version of the Morris water maze task. In the second experiment, a separate group of adolescent and adult rats of both sexes was treated with 5.0 mg/kg THC or vehicle daily for 21 days and tested, 4 weeks later, on the spatial version of the water maze. Subchronic THC impaired spatial learning, and this effect was dependent upon both the age and sex of the animals tested. Prior exposure to chronic THC, however, did not cause any long-lasting spatial learning deficits. On the basis of our previous studies in male rats the third experiment assessed the dose-response relationship for the effects of THC on spatial learning and memory in female animals. We found that subchronic THC treatment (2.5, 5.0, or 10.0 mg/kg, intraperitoneally) disrupted learning in both adolescents and adults, but with greater effects at higher doses in adolescents compared with adults. The developmental sensitivity to subchronic THC confirms previous work carried out in our laboratory, and the sex-dependent effects highlight the importance of including females in drug abuse and addiction research.

  15. Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

    PubMed

    Alaux-Cantin, Stéphanie; Warnault, Vincent; Legastelois, Rémi; Botia, Béatrice; Pierrefiche, Olivier; Vilpoux, Catherine; Naassila, Mickaël

    2013-04-01

    Adolescent alcohol binge drinking constitutes a major vulnerability factor to develop alcoholism. However, mechanisms underlying this susceptibility remain unknown. We evaluated the effect of adolescent binge-like ethanol intoxication on vulnerability to alcohol abuse in Sprague-Dawley rats. To model binge-like ethanol intoxication, every 2 days, rats received an ethanol injection (3.0 g/kg) for 2 consecutive days across 14 days either from postnatal day 30 (PND30) to 43 (early adolescence) or from PND 45 to PND 58 (late adolescence). In young adult animals, we measured free ethanol consumption in the two-bottle choice paradigm, motivation for ethanol in the operant self-administration task and both ethanol's rewarding and aversive properties in the conditioned place preference (CPP) and taste aversion (CTA) paradigms. While intermittent ethanol intoxications (IEI) during late adolescence had no effect on free-choice 10% ethanol consumption, we found that IEI during early adolescence promoted free-choice 10% ethanol consumption, enhanced motivation for ethanol in the self-administration paradigm and induced a loss of both ethanol-induced CPP and CTA in young adults. No modification in either sucrose self-administration or amphetamine-induced CPP was observed. As the nucleus accumbens (Nac) is particularly involved in addictive behavior, we analyzed IEI-induced long-term neuroadaptations in the Nac using c-Fos immunohistochemistry and an array of neurotransmission-related genes. This vulnerability to ethanol abuse was associated with a lower c-Fos immunoreactivity in the Nac and enduring alterations of the expression of Penk and Slc6a4, 2 neurotransmission-related genes that have been shown to play critical roles in the behavioral effects of ethanol and alcoholism.

  16. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats.

    PubMed

    Zamberletti, Erica; Gabaglio, Marina; Prini, Pamela; Rubino, Tiziana; Parolaro, Daniela

    2015-12-01

    Over 180 million people consume cannabis globally. Cannabis use peaks during adolescence with a trend for continued consumption by adults. Notably, several studies have shown that long-term and heavy cannabis use during adolescence can impair brain maturation and predispose to neurodevelopmental disorders, although the neurobiological mechanisms underlying this association remain largely unknown. In this study, we evaluated whether, in female rats, chronic administration of increasing doses of the psychotropic plant-derived cannabis constituent, delta-9-tetrahydrocannabinol (THC), during adolescence (PND 35-45) could affect microglia function in the long-term. Furthermore, we explored a possible contribution of microglia to the development of THC-induced alterations in mood and cognition in adult female rats. Present data indicate that adolescent THC administration induces a persistent neuroinflammatory state specifically localized within the adult prefrontal cortex (PFC), characterized by increased expression of the pro-inflammatory markers, TNF-α, iNOS and COX-2, and reduction of the anti-inflammatory cytokine, IL-10. This neuroinflammatory phenotype is associated with down-regulation of CB1 receptor on neuronal cells and up-regulation of CB2 on microglia cells, conversely. Interestingly, blocking microglia activation with ibudilast during THC treatment significantly attenuates short-term memory impairments in adulthood, simultaneously preventing the increases in TNF-α, iNOS, COX-2 levels as well as the up-regulation of CB2 receptors on microglia cells. In contrast, THC-induced depressive-like behaviors were unaffected by ibudilast treatment. Our findings demonstrate that adolescent THC administration is associated with persistent neuroinflammation within the PFC and provide evidence for a causal association between microglial activation and the development long-term cognitive deficits induced by adolescent THC treatment.

  17. The sexual preference of female rats is influenced by males' adolescent social stress history and social status.

    PubMed

    McCormick, Cheryl M; Cameron, Nicole M; Thompson, Madison A; Cumming, Mark J; Hodges, Travis E; Langett, Marissa

    2017-03-01

    Ongoing development of brain systems for social behaviour renders these systems susceptible to the influence of stressors in adolescence. We previously found that adult male rats that underwent social instability stress (SS) in mid-adolescence had decreased sexual performance compared with control males (CTL). Here, we test the hypotheses that SS in adolescence decreases the "attractiveness" of male rats as sexual partners compared with CTL rats and that dominance status is a protective factor against the effects of SS. The main prediction was that females would spend more time with CTL males than SS males, and that this bias would be greater for submissive than for dominant rats. Among dominant pairs (n=16), females preferred SS males, spending more time with and visiting more often SS than CTL males (each pair tested 5×), and SS males had shorter latencies to ejaculation, shorter inter-ejaculation intervals, and made more ejaculations compared with CTL males. Among submissive pairs (n=16), females spent more time with, visited more often, and displayed more paracopulatory behaviour with CTL than with SS males, and differences in sexual performance between SS and CTL males were modest and in the opposite direction from that in dominant pairs. The heightened motivation of SS males relative to CTL males for natural rewards may have attenuated differences in sexual performance in a paced mating context. In sum, the experience of stress in adolescence leads to long-lasting changes in males that are perceptible to females, are moderated by social status, and influence sexual behaviour.

  18. Social interactions in adolescent and adult Sprague-Dawley rats: impact of social deprivation and test context familiarity.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2008-04-09

    Interactions with peers become particularly important during adolescence, and age differences in social interactions have been successfully modeled in rats. To determine the impact of social deprivation on social interactions under anxiogenic (unfamiliar) or non-anxiogenic (familiar) test circumstances during ontogeny, the present study used a modified social interaction test to assess the effects of 5 days of social isolation or group housing on different components of social behavior in early [postnatal day (P) 28], mid (P35), or late (P42) adolescent and adult (P70) male and female Sprague-Dawley rats. As expected, testing in an unfamiliar environment suppressed social interactions regardless of age, housing, and sex. Social deprivation drastically enhanced all forms of social behavior in P28 animals regardless of test situation, whereas depriving older animals of social interactions had more modest effects and was restricted predominantly to play fighting -- an adolescent-characteristic form of social interactions. Social investigation -- more adult-typical form of social behavior was relatively resistant to isolation-induced enhancement and was elevated in early adolescent isolates only. These findings confirm that different forms of social behavior are differentially sensitive to social deprivation across ontogeny.

  19. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  20. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat.

    PubMed

    Liu, W; Crews, F T

    2015-05-07

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on-2 days off; P25-P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood.

  1. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats.

    PubMed

    Zamberletti, Erica; Beggiato, Sarah; Steardo, Luca; Prini, Pamela; Antonelli, Tiziana; Ferraro, Luca; Rubino, Tiziana; Parolaro, Daniela

    2014-03-01

    Although several findings indicate an association between adolescent cannabis abuse and the risk to develop schizophrenia later in life, the evidence for a causal relationship is still inconclusive. In the present study, we investigated the emergence of psychotic-like behavior in adult female rats chronically exposed to delta-9-tetrahydrocannabinol (THC) during adolescence. To this aim, female Sprague-Dawley rats were treated with THC during adolescence (PND 35-45) and, in adulthood (PND 75), a series of behavioral tests and biochemical assays were performed in order to investigate the long-term effects of adolescent THC exposure. Adolescent THC pretreatment leads to long-term behavioral alterations, characterized by recognition memory deficits, social withdrawal, altered emotional reactivity and sensitization to the locomotor activating effects of acute PCP. Moreover, since cortical disinhibition seems to be a key feature of many different animal models of schizophrenia and GABAergic hypofunction in the prefrontal cortex (PFC) has been observed in postmortem brains from schizophrenic patients, we then investigated the long-lasting consequences of adolescent THC exposure on GABAergic transmission in the adult rat PFC. Biochemical analyses revealed that adolescent THC exposure results in reduced GAD67 and basal GABA levels within the adult PFC. GAD67 expression is reduced both in parvalbumin (PV)- and cholecystokinin (CCK)-containing interneurons; this alteration may be related to the altered emotional reactivity triggered by adolescent THC, as silencing PFC GAD67 expression through a siRNA-mediated approach is sufficient to impact rats' behavior in the forced swim test. Finally, the cellular underpinnings of the observed sensitized response to acute PCP in adult THC-treated rats could be ascribed to the increased cFos immunoreactivity and glutamate levels in the PFC and dorsal striatum. The present findings support the hypothesis that adolescent THC exposure may

  2. Exhibiting Lives

    ERIC Educational Resources Information Center

    Golden, Deborah; Elbaz-Luwisch, Freema

    2007-01-01

    This paper examines some of the dilemmas that accompany the emergence of the personal voice in scholarly work, by taking a close, grounded look at the way in which these unfolded in a specific academic course. As part of the course, entitled "A cultural approach to the life cycle", students were asked to participate in a group exhibition in which…

  3. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood.

    PubMed

    Chaby, Lauren E; Cavigelli, Sonia A; Hirrlinger, Amy M; Lim, James; Warg, Kendall M; Braithwaite, Victoria A

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.

  4. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    PubMed Central

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans. PMID:26696849

  5. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats.

    PubMed

    Cetinkaya, Caner; Sisman, Ali Riza; Kiray, Muge; Camsari, Ulas Mehmet; Gencoglu, Celal; Baykara, Basak; Aksu, Ilkay; Uysal, Nazan

    2013-08-09

    It is already known that regular aerobic exercise during adolescent period improves learning and memory in rats. In this study, we investigated the effects of regular aerobic exercise on learning, memory functioning and IGF-1 levels. IGF-1 is known to have positive effects on cognitive functions in adolescent rats. Exercise group was separated into two different groups. First half was run on a treadmill for 30 min per session at a speed of 8m/min and 0° slope, five times a week for 6 weeks. The second half was given free access to a running wheel (diameter 11.5 cm) which was connected to a digital counter and run on a treadmill for 6 weeks. Learning and memory functioning were found to be positively correlated with the exercise activity. Findings suggest increased neuron density in CA1 hippocampal region and dentate gyrus. Increased IGF-1 level was detected in hippocampus and blood serum, while IGF-1 level in liver tissue did not change with exercise activity. In conclusion, our findings indicate that learning and memory functioning were positively affected by voluntary and involuntary physical exercise which correlated increased hippocampal activity and elevated IGF-1 levels in adolescent rats.

  6. Chronic Δ9-Tetrahydrocannabinol during Adolescence Differentially Modulates Striatal CB1 Receptor Expression and the Acute and Chronic Effects on Learning in Adult Rats.

    PubMed

    Weed, Peter F; Filipeanu, Catalin M; Ketchum, Myles J; Winsauer, Peter J

    2016-01-01

    The purpose of this study was to determine whether chronic administration of Δ(9)-tetrahydrocannabinol (THC) during adolescence would (1) modify any sex-specific effects of THC on learning and (2) affect the development of tolerance to THC as an adult. Male and female rats received daily injections of saline or 5.6 mg/kg of THC from postnatal day 35-75, yielding four groups (female/saline, female/THC, male/saline, and male/THC). Rats were then trained on a procedure that assayed both learning and performance behavior and administered 0.32-18 mg/kg of THC acutely as adults (experiment 1). THC produced rate-decreasing and error-increasing effects in both sexes; however, female rats were more sensitive than male rats were to the rate-decreasing effects. Rats were then chronically administered 10 mg/kg of THC (experiment 2). Rats that received THC during adolescence developed tolerance to the rate-decreasing effects more slowly and less completely than did rats that received saline; in addition, females developed tolerance to the error-increasing effects of THC slower than males did. Western blot analysis of brain tissue indicated long-term changes in hippocampal and striatal cannabinoid type-1 receptor (CB1R) levels despite levels that were indistinguishable immediately after chronic treatment during adolescence. Striatal CB1R levels were increased in adult rats that received THC during adolescence; hippocampal CB1R levels varied by sex. In summary, female rats were more sensitive than male rats were to the acute and chronic effects of THC, and chronic administration of THC during adolescence produced long-term changes in CB1R levels that correlated with decreased tolerance development to the rate-decreasing effects of THC.

  7. 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence.

    PubMed

    Adriani, W; Canese, R; Podo, F; Laviola, G

    2007-01-01

    Administration of methylphenidate (MPH, Ritalin) to children affected by attention deficit hyperactivity disorder (ADHD) is an elective therapy, which however raises concerns for public health, due to possible persistent neuro-behavioral alterations. We investigated potential long-term consequences at adulthood of MPH exposure during adolescence, by means of behavioral and brain MRS assessment in drug-free state. Wistar adolescent rats (30- to 44-day-old) were treated with MPH (0 or 2 mg/kg once/day for 14 days) and then left undisturbed until adulthood. Levels of impulsive behavior were assessed in the intolerance-to-delay task: Food-restricted rats were tested in operant chambers with two nose-poking holes, delivering one food pellet immediately, or five pellets after a delay whose length was increased over days. MPH-exposed animals showed a less marked shifting profile from the large/late to the small/soon reward, suggesting reduced basal levels of impulsivity, compared to controls. In vivo MRI-guided 1H MRS examinations at 4.7 T in anaesthetised animals revealed long-term biochemical changes in the dorsal striatum (STR), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of MPH-exposed rats. Notably, total creatine and taurine, metabolites respectively involved in bioenergetics and synaptic efficiency, were up-regulated in the STR and conversely down-regulated in the NAcc of MPH-exposed rats. A strong correlation was evident between non-phosphorylated creatine in the STR and behavioral impulsivity. Moreover, unaltered total creatine and increased phospho-creatine/creatine ratio were detected in the PFC, suggesting improved cortical energetic performance. Because of this enduring rearrangement in the forebrain function, MPH-exposed animals may be more efficient when faced with delay of reinforcement. In summary, MPH exposure during adolescence produced enduring MRS-detectable biochemical modifications in brain reward-related circuits, which may account for

  8. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence.

    PubMed

    Oliveira, Gedeão Batista; Fontes, Enéas de Andrade; de Carvalho, Sabrina; da Silva, Josiane Batista; Fernandes, Luanna Melo Pereira; Oliveira, Maria Cristina Souza Pereira; Prediger, Rui Daniel; Gomes-Leal, Walace; Lima, Rafael Rodrigues; Maia, Cristiane Socorro Ferraz

    2014-05-02

    Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.

  9. Brief Social Isolation in the Adolescent Wistar-Kyoto Rat Model of Endogenous Depression Alters Corticosterone and Regional Monoamine Concentrations.

    PubMed

    Shetty, Reshma A; Sadananda, Monika

    2017-02-24

    The Wistar-Kyoto rat (WKY) model has been suggested as a model of adult and adolescent depression though face, predictive and construct validities of the model to depression remain equivocal. The suitability of the WKY as a diathesis model that tests the double-hit hypothesis, particularly during critical periods of brain and behavioural development remains to be established. Here, effects of post-weaning social isolation were assessed during early adolescence (~30pnd) on behavioural despair and learned helplessness in the forced swim test (FST), plasma corticosterone levels and tissue monoamine concentrations in brain areas critically involved in depression, such as prefrontal cortex, nucleus accumbens, striatum and hippocampus. Significantly increased immobility in the FST was observed in socially-isolated, adolescent WKY with a concomitant increase in corticosterone levels over and above the FST-induced stress. WKY also demonstrated a significantly increased release and utilization of dopamine, as manifested by levels of metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid in nucleus accumbens, indicating that the large dopamine storage pool evident during adolescence induces greater dopamine release when stimulated. The serotonin metabolite 5-hydroxy-indoleacetic acid was also significantly increased in nucleus accumbens, indicating increased utilization of serotonin, along with norepinephrine levels which were also signficantly elevated in socially-isolated adolescent WKY. Differences in neurochemistry suggest that social or environmental stimuli during critical periods of brain and behavioural development can determine the developmental trajectories of implicated pathways.

  10. Museum Exhibit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A TSP from NASA Tech Briefs provided the solution to an electrical problem at a Florida museum. When a model train would not start without a jerk, a Marshall Space Flight Center development called pulse width control was adapted. The new circuit enables the train to start smoothly and reduces construction and maintenance costs. The same technology is also used in another hands-on exhibit. Applications of other TSPs are anticipated.

  11. Adolescent Opiate Exposure in the Female Rat Induces Subtle Alterations in Maternal Care and Transgenerational Effects on Play Behavior

    PubMed Central

    Johnson, Nicole L.; Carini, Lindsay; Schenk, Marian E.; Stewart, Michelle; Byrnes, Elizabeth M.

    2011-01-01

    The non-medical use of prescription opiates, such as Vicodin® and MSContin®, has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females’ spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1) demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e., social grooming and social exploration). Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal–offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring. PMID:21713113

  12. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat.

    PubMed

    Silva, Lindsay; Harte-Hargrove, Lauren; Izenwasser, Sari; Frank, Ashley; Wade, Dean; Dow-Edwards, Diana

    2015-08-18

    Marijuana use by adolescents has been on the rise since the early 1990s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [(3)H] CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24h and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24h post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents.

  13. Sex-Specific Alterations in Hippocampal Cannabinoid 1 Receptor Expression Following Adolescent Delta-9-Tetrahydrocannabinol Treatment in the Rat

    PubMed Central

    Silva, Lindsay; Harte-Hargrove, Lauren; Izenwasser, Sari; Frank, Ashley; Wade, Dean; Dow-Edwards, Diana

    2015-01-01

    Marijuana use by adolescents has been on the rise since the early 1990’s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [3H]CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24 hours and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24 hours post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents. PMID:26118897

  14. Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function

    PubMed Central

    2011-01-01

    Background Administration of exogenous corticosterone is an effective preclinical model of depression, but its use has involved primarily adult rodents. Using two different procedures of administration drawn from the literature, we explored the possibility of exogenous corticosterone models in adolescence, a time of heightened risk for mood disorders in humans. Methods In experiment 1, rats were injected with 40 mg/kg corticosterone or vehicle from postnatal days 30 to 45 and compared with no injection controls on behavior in the elevated plus maze (EPM) and the forced swim test (FST). Experiment 2 consisted of three treatments administered to rats from postnatal days 30 to 45 or as adults (days 70 to 85): either corticosterone (400 μg/ml) administered in the drinking water along with 2.5% ethanol, 2.5% ethanol or water only. In addition to testing on EPM, blood samples after the FST were obtained to measure plasma corticosterone. Analysis of variance (ANOVA) and alpha level of P < 0.05 were used to determine statistical significance. Results In experiment 1, corticosterone treatment of adolescent rats increased anxiety in the EPM and decreased immobility in the FST compared to no injection control rats. However, vehicle injected rats were similar to corticosterone injected rats, suggesting that adolescent rats may be highly vulnerable to stress of injection. In experiment 2, the intake of treated water, and thus doses delivered, differed for adolescents and adults, but there were no effects of treatment on behavior in the EPM or FST. Rats that had ingested corticosterone had reduced corticosterone release after the FST. Ethanol vehicle also affected corticosterone release compared to those ingesting water only, but differently for adolescents than for adults. Conclusions The results indicate that several challenges must be overcome before the exogenous corticosterone model can be used effectively in adolescents. PMID:22738136

  15. Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms.

    PubMed

    Trezza, Viviana; Baarendse, Petra J J; Vanderschuren, Louk J M J

    2009-11-01

    The widespread use of tobacco and alcohol among adolescents might be related to the ability of nicotine and ethanol to facilitate social interactions. To investigate the neurobehavioral mechanisms underlying the prosocial effects of nicotine and ethanol, we focused on social play behavior, the most characteristic social activity in adolescent rats. Social play behavior is rewarding, and it is modulated through opioid, cannabinoid and dopaminergic neurotransmission, which are also involved in the reinforcing properties of nicotine and ethanol. We found that nicotine and ethanol increased social play, without affecting locomotion or social exploration. Their effects depended on the level of social activity of the partner, and were comparable in familiar and unfamiliar environments. At doses that increased social play, nicotine and ethanol had no anxiolytic effects in the elevated plus-maze. By contrast, the prototypical anxiolytic drug diazepam reduced social play at doses that reduced anxiety. The effects of nicotine on social play were blocked by the opioid receptor antagonist naloxone, the CB(1) cannabinoid receptor antagonist SR141716A, and the dopamine receptor antagonist alpha-flupenthixol. The effects of ethanol were blocked by SR141716A and alpha-flupenthixol, but not by naloxone. Combined administration of subeffective doses of nicotine and ethanol only modestly enhanced social play. These results show that the facilitatory effects of nicotine and ethanol on social play are behaviorally specific and mediated through neurotransmitter systems involved in positive emotions and motivation, through partially dissociable mechanisms. Furthermore, the stimulating effects of nicotine and ethanol on social play behavior are independent of their anxiolytic-like properties.

  16. Chronic intermittent ethanol exposure in adolescent and adult male rats: Effects on tolerance, social behavior and ethanol intake

    PubMed Central

    Broadwater, Margaret; Varlinskaya, Elena I.; Spear, Linda P.

    2010-01-01

    Background Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of the present study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Methods Adolescent and adult male Sprague-Dawley rats were assigned to one of five 10 day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), non-manipulated/acutely challenged with ethanol (4 g/kg on day 10) or non-manipulated. For assessment of tolerance development, loss of righting reflex was tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and non-manipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hrs after the last ethanol exposure, with ethanol-naïve chronic saline and non-manipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and non-manipulated animals using an 8 day 2 bottle choice, limited access ethanol intake procedure. Results Adolescents were less sensitive to the sedative effects of ethanol than adults. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults. Adolescents drank significantly more ethanol than adults on a g/kg basis, with intake uninfluenced by prior ethanol exposure at both ages. Conclusion Adolescents and adults may differ in

  17. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  18. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  19. Outdoor Exhibits

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Data Buoy Center (NDBC) at the John C. Stennis Space Center has exhibits located in front of the Visitors Center. These boat-shaped buoys are moored in areas of the ocean that experience hostile environmental conditions. The instruments installed gather information and relay it to the National Weather Service by satellite. Nomad buoys are 20 feet long and weigh 13,900 pounds. They provide information on wind speed and direction, humidity levels, air and sea surface temperature and air pressure. U.S. Coast Guard ships transport buoys to their mooring sites.

  20. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With Cross-Generational Effects of Adolescent THC Exposure

    PubMed Central

    Watson, Corey T; Szutorisz, Henrietta; Garg, Paras; Martin, Qammarah; Landry, Joseph A; Sharp, Andrew J; Hurd, Yasmin L

    2015-01-01

    Drug exposure during critical periods of development is known to have lasting effects, increasing one's risk for developing mental health disorders. Emerging evidence has also indicated the possibility for drug exposure to even impact subsequent generations. Our previous work demonstrated that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana (Cannabis sativa), in a Long-Evans rat model affects reward-related behavior and gene regulation in the subsequent (F1) generation unexposed to the drug. Questions, however, remained regarding potential epigenetic consequences. In the current study, using the same rat model, we employed Enhanced Reduced Representation Bisulfite Sequencing to interrogate the epigenome of the nucleus accumbens, a key brain area involved in reward processing. This analysis compared 16 animals with parental THC exposure and 16 without to characterize relevant systems-level changes in DNA methylation. We identified 1027 differentially methylated regions (DMRs) associated with parental THC exposure in F1 adults, each represented by multiple CpGs. These DMRs fell predominantly within introns, exons, and intergenic intervals, while showing a significant depletion in gene promoters. From these, we identified a network of DMR-associated genes involved in glutamatergic synaptic regulation, which also exhibited altered mRNA expression in the nucleus accumbens. These data provide novel insight into drug-related cross-generational epigenetic effects, and serve as a useful resource for investigators to explore novel neurobiological systems underlying drug abuse vulnerability. PMID:26044905

  1. Motivational Systems in Adolescence: Possible Implications for Age Differences in Substance Abuse and Other Risk-Taking Behaviors

    ERIC Educational Resources Information Center

    Doremus-Fitzwater, Tamara L.; Varlinskaya, Elena I.; Spear, Linda P.

    2010-01-01

    Adolescence is an evolutionarily conserved developmental phase characterized by hormonal, physiological, neural and behavioral alterations evident widely across mammalian species. For instance, adolescent rats, like their human counterparts, exhibit elevations in peer-directed social interactions, risk-taking/novelty seeking and drug and alcohol…

  2. Stress-Induced Locomotor Sensitization to Amphetamine in Adult, but not in Adolescent Rats, Is Associated with Increased Expression of ΔFosB in the Nucleus Accumbens

    PubMed Central

    Carneiro de Oliveira, Paulo E.; Leão, Rodrigo M.; Bianchi, Paula C.; Marin, Marcelo T.; Planeta, Cleopatra da Silva; Cruz, Fábio C.

    2016-01-01

    While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats. PMID:27672362

  3. Effects of Aqueous Extract of Phyllostachyos Caulis in Taeniam on Longitudinal Bone Growth in Adolescent Rats.

    PubMed

    Chung, Yoon Hee; Lee, Do Yeon; Lee, Ho Sung; Hong, Soon Auck; Park, Eon Sub; Nam, Yunsung; Kim, Hyoung Chun; Lee, Sang Joon; Sohn, Uy Dong; Kim, Hohyun; Jeong, Ji Hoon

    2016-03-01

    This study examined whether treatment with Phyllostachyos Caulis in Taeniam aqueous extract improves longitudinal bone growth in adolescent male rats. Three-week-old male Sprague-Dawley rats were divided into three groups: a control group, a Phyllostachyos Caulis in Taeniam group (200 mg/kg, p.o.), and a recombinant human growth hormone group (20 µg/kg, s.c.). The total tibial length and the height of each growth plate zone were evaluated by radiography and histomorphometry. The total number of proliferative cells and 5-bromo-2'-deoxyuridine-positive cells were counted after 5-bromo-2'-deoxyuridine staining. Serum total osteocalcin levels were assayed using an enzyme-linked immunosorbent assay. The average total tibial length of the Phyllostachyos Caulis in Taeniam group was significantly longer than that of the control group. The heights of the proliferative and hypertrophic zones in the Phyllostachyos Caulis in Taeniam group were increased, and the ratio of 5-bromo-2'-deoxyuridine-positive to total cells in the proliferative zone was also increased. The serum osteocalcin, growth hormone, and insulin-like growth factor-1 levels were significantly increased in the Phyllostachyos Caulis in Taeniam group compared to the control group. Insulin-like growth factor-1 and insulin-like growth factor-1 receptor were highly expressed in the proliferative and hypertrophic zones in the Phyllostachyos Caulis in Taeniam group. The Phyllostachyos Caulis in Taeniam extract increased bone length, promoted cell proliferation, and activated the growth plate zones, which suggested that the extract could play an important role in longitudinal bone growth. Therefore, the Phyllostachyos Caulis in Taeniam extract might be a good alternative medicine to growth hormone therapy.

  4. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  5. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone

    SciTech Connect

    López-Arnau, Raúl; Martínez-Clemente, José; Rodrigo, Teresa; Pubill, David; Camarasa, Jorge; Escubedo, Elena

    2015-07-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D{sub 2} dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function.

  6. Jodina rhombifolia leaves lyophilized aqueous extract decreases ethanol intake and preference in adolescent male Wistar rats.

    PubMed

    Roberto Teves, Mauricio; Wendel, Graciela Haydée; Pelzer, Lilian Eugenia

    2015-11-04

    The leaves of Jodina rhombifolia (Hook. & Arn.) Reissek (Santalaceae) are utilized as anti-alcoholic in Argentine folk medicine. This study was designed to investigate the anti-alcohol properties in adolescent male Wistar rats (postnatal day 29; 83-105 g of weight). We utilized the "self-administration model", which ethanol was offered in the standard home-cage through two-bottle free-choice regimen between an ethanolic solution (20% in tap water, v/v) and tap water with unlimited access for 24h per day for 10 consecutive days. The results obtained show that repeated administration of J. rhombifolia lyophilized extract, markedly reduced ethanol voluntary intake on dose dependent bases. The magnitude in reduction of daily ethanol intake was approximately 29%, 44% and 68%, for the rat groups treated with 62.5, 125 and 250 mg/kg of extract, respectively. Ethanol preference (proportion of ethanol intake versus total fluid intake) was significantly reduced: 21.37% ± 0.79 (0 mg/kg); 15.83% ± 0.93 (62.5 mg/kg); 15.22% ± 1.30 (125 mg/kg) and 9.38% ± 0.57 (250 mg/kg). Daily food intake was significantly higher (p<0.05) in the group treated with 250 mg/kg of JRLE in comparison with vehicle-dose group; the reduction in ethanol intake was associated with a compensatory increase in food intake, probably because in the control group animals a part of the total caloric intake was supplied by ethanol. Treatment was very well tolerated by all animals and without apparent side-effects. These results contribute to the scientific validation of the antialcoholic indication of this botanic species in Argentine folk medicine.

  7. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats.

    PubMed

    Ehlers, Cindy L; Desikan, Anita; Wills, Derek N

    2013-12-01

    Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years.

  8. Paradoxical effects of injection stress and nicotine exposure experienced during adolescence on learning in a serial multiple choice (SMC) task in adult female rats.

    PubMed

    Renaud, Samantha M; Pickens, Laura R G; Fountain, Stephen B

    2015-01-01

    Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/h nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine/No Stress, Nicotine/No Stress, No Nicotine/Stress, and Nicotine/Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, and Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the "violation element," that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent

  9. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  10. Morphine and oxycodone, but not fentanyl, exhibit antinociceptive effects mediated by G-protein inwardly rectifying potassium (GIRK) channels in an oxaliplatin-induced neuropathy rat model.

    PubMed

    Kanbara, Tomoe; Nakamura, Atsushi; Shibasaki, Masahiro; Mori, Tomohisa; Suzuki, Tsutomu; Sakaguchi, Gaku; Kanemasa, Toshiyuki

    2014-09-19

    It has begun to be understood that μ-opioid receptor (MOR) produces ligand-biased agonism, which contributes to differential physiological functions of MOR agonists. We previously demonstrated that in oxaliplatin-induced neuropathy in rats, morphine and oxycodone exhibited antinociceptive effects while antinociception of fentanyl was partial, and such different efficacies might result from the different level of Gi/o protein activation. Based on our background, to reveal further mechanism, we focused on the role of Gi/o protein-related downstream signaling, the G-protein inwardly rectifying K(+)1 (GIRK1) channel. The GIRK1 channel blocker tertiapin-Q (30pmol) was intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administered to rats with oxaliplatin-induced neuropathy. The antinociception of systemic morphine (3mg/kg, subcutaneously (s.c.)) was suppressed only by pretreatment of i.t. tertiapin-Q, while supraspinal tertiapin-Q suppressed only the antinociception of systemic oxycodone (0.56mg/kg, s.c.). Partial antinocicpetion of fentanyl (0.017mg/kg, s.c.) was neither affected by i.c.v nor i.t. tertiapin-Q. These results demonstrated that GIRK1 channels differentially contribute to antinociceptive effects of MOR agonists, and that action site of GIRK1 channels is also different between morphine and oxycodone in oxaliplatin model. This study suggests the possibility that GIRK1 channels have a crucial role for antinociception of MOR agonists in oxaliplatin-induced neuropathy.

  11. Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats.

    PubMed

    Van Waes, V; Darnaudéry, M; Marrocco, J; Gruber, S H; Talavera, E; Mairesse, J; Van Camp, G; Casolla, B; Nicoletti, F; Mathé, A A; Maccari, S; Morley-Fletcher, S

    2011-08-01

    We examined the interaction between early life stress and vulnerability to alcohol in female rats exposed to prenatal restraint stress (PRS rats). First we studied the impact of PRS on ethanol preference during adolescence. PRS slightly increased ethanol preference per se, but abolished the effect of social isolation on ethanol preference. We then studied the impact of PRS on short- and long-term responses to ethanol focusing on behavioral and neurochemical parameters related to depression/anxiety. PRS or unstressed adolescent female rats received 10% ethanol in the drinking water for 4 weeks from PND30 to PND60. At PND60, the immobility time in the forced-swim test did not differ between PRS and unstressed rats receiving water alone. Ethanol consumption had no effect in unstressed rats, but significantly reduced the immobility time in PRS rats. In contrast, a marked increase in the immobility time was seen after 5 weeks of ethanol withdrawal only in unstressed rats. Hippocampal levels of neuropeptide Y (NPY) and mGlu1a metabotropic glutamate receptors were increased at the end of ethanol treatment only in unstressed rats. Ethanol treatment had no effect on levels of corticotropin-releasing hormone (CRH) in the hippocampus, striatum, and prefrontal cortex of both groups of rats. After ethanol withdrawal, hippocampal levels of mGlu1 receptors were higher in unstressed rats, but lower in PRS rats, whereas NPY and CRH levels were similar in the two groups of rats. These data indicate that early life stress has a strong impact on the vulnerability and responsiveness to ethanol consumption during adolescence.

  12. AGE-DEPENDENT EFFECTS OF STRESS ON ETHANOL-INDUCED MOTOR ACTIVITY IN RATS

    PubMed Central

    Acevedo, María Belén; Pautassi, Ricardo Marcos; Spear, Norman E.; Spear, Linda P.

    2013-01-01

    Rationale It is important to study age-related differences that may put adolescents at risk for alcohol-related problems. Adolescents seem less sensitive to the aversive effects of ethanol than adults. Less is known of appetitive effects of ethanol and stress-modulation of these effects. Objectives To describe effects of acute social or restraint stress on ethanol-precipitated locomotor activity (LMA), in adolescent and adult rats. Effects of activation of the kappa system on ethanol-induced LMA were also evaluated. Methods Adolescent or adult rats were restrained for 90 min, exposed to social deprivation stress for 90 or 180 min or administered the kappa agonist U62,066E before being given ethanol and assessed for LMA. Results Adolescents were significantly more sensitive to the stimulating, and less sensitive to the sedative, effects of ethanol than adults. Basal locomotion was significantly increased by social deprivation stress in adult, but not in adolescent, rats. U62,066E significantly reduced basal and ethanol-induced locomotion in the adolescents. Corticosterone and progesterone levels were significantly higher in adolescents than in adults. Conclusions Adolescents exhibit greater sensitivity to ethanol-induced LMA and reduced sensitivity to ethanol-induced motor sedation than adult rats. Ethanol’s effects on motor activity were not affected by acute stress. Unlike adults, adolescents were insensitive to acute restraint and social deprivation stress, but exhibited motor depression after activation of the endogenous kappa opioid receptor system. PMID:23775530

  13. Low and moderate doses of acute ethanol do not impair spatial cognition but facilitate accelerating rotarod performance in adolescent and adult rats.

    PubMed

    Novier, Adelle; Van Skike, Candice E; Chin, Vivien S; Diaz-Granados, Jaime L; Matthews, Douglas B

    2012-03-14

    Adolescents and adult rodents have differing sensitivities to the acute effects of ethanol on a variety of behavioral and electrophysiological measures. Often, these differences are revealed using high ethanol doses and consequently little is known about these age-related effects using lower ethanol doses. We sought to determine if low-dose ethanol produces differential effects on cognition and motor behavior in adolescent and adult rats. Adolescent (postnatal day PD 30-32) and adult (PD 70-72) male Sprague Dawley rats were trained on the standard version of the Morris Water Maze (MWM) for 5 days or received 5 training trials on an accelerating rotarod (ARR). Adolescents learned the location of the submerged platform in the MWM significantly slower than adults during training and, acute ethanol administration (0.5 g/kg, 0.75 g/kg, or 1.0 g/kg) 30 min before testing did not impair spatial memory in either age group. On the ARR test, adolescent rats spent significantly more time on the rotarod compared to adults and, alcohol exposure (1.0 g/kg) significantly increased ARR performance 30 min following administration. Our findings address the utility of investigating low and moderate doses of ethanol during different developmental stages in rats.

  14. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  15. Prenatal ethanol exposure modifies locomotor activity and induces selective changes in Met-enk expression in adolescent rats.

    PubMed

    Abate, P; Reyes-Guzmán, A C; Hernández-Fonseca, K; Méndez, M

    2016-11-22

    Several studies suggest that prenatal ethanol exposure (PEE) facilitates ethanol intake. Opioid peptides play a main role in ethanol reinforcement during infancy and adulthood. However, PEE effects upon motor responsiveness elicited by an ethanol challenge and the participation of opioids in these actions remain to be understood. This work assessed the susceptibility of adolescent rats to prenatal and/or postnatal ethanol exposure in terms of behavioral responses, as well as alcohol effects on Met-enk expression in brain areas related to drug reinforcement. Motor parameters (horizontal locomotion, rearings and stereotyped behaviors) in pre- and postnatally ethanol-challenged adolescents were evaluated. Pregnant rats received ethanol (2g/kg) or water during gestational days 17-20. Adolescents at postnatal day 30 (PD30) were tested in a three-trial activity paradigm (habituation, vehicle and drug sessions). Met-enk content was quantitated by radioimmunoassay in several regions: ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. PEE significantly reduced rearing responses. Ethanol challenge at PD30 decreased horizontal locomotion and showed a tendency to reduce rearings and stereotyped behaviors. PEE increased Met-enk content in the PFC, CP, hypothalamus and hippocampus, but did not alter peptide levels in the amygdala, VTA and NAcc. These findings suggest that PEE selectively modifies behavioral parameters at PD30 and induces specific changes in Met-enk content in regions of the mesocortical and nigrostriatal pathways, the hypothalamus and hippocampus. Prenatal and postnatal ethanol actions on motor activity in adolescents could involve activation of specific neural enkephalinergic pathways.

  16. Chronic caffeine produces sexually dimorphic effects on amphetamine-induced behavior, anxiety and depressive-like behavior in adolescent rats.

    PubMed

    Turgeon, Sarah M; Townsend, Shannon E; Dixon, Rushell S; Hickman, Emma T; Lee, Sabrina M

    2016-04-01

    Caffeine consumption has been increasing rapidly in adolescents; however, most research on the behavioral effects of caffeine has been conducted in adults. Two experiments were conducted in which adolescent male and female rats were treated with a moderate dose of caffeine (0.25 g/l) in their drinking water beginning on P26-28. In the first experiment, animals were maintained on caffeinated drinking water or normal tap water for 14 days and were then tested for behavioral and striatal c-Fos response to amphetamine (1.5 mg/kg). In the second experiment, rats were maintained on caffeinated drinking water or normal tap water beginning on P28 and were tested for novel object recognition, anxiety in the light/dark test (L/D) and elevated plus maze (EPM), and depressive like behavior in the forced swim test (FST) beginning on the 14th day of caffeine exposure. Caffeine decreased amphetamine-induced rearing in males, but had no effect in females; however, this behavioral effect was not accompanied by changes in striatal c-Fos, which was increased by amphetamine but not altered by caffeine. No effects of caffeine were observed on novel object recognition or elevated plus maze behavior. However, in the L/D test, there was a sex by caffeine interaction on time spent in the light driven by a caffeine-induced increase in light time in the males but not the females. On the pretest day of the FST, sex by caffeine interactions were observed for swimming and struggling; caffeine decreased struggling behavior and increased swimming behavior in males and caffeine-treated females demonstrated significantly more struggling and significantly less swimming than caffeine-treated males. A similar pattern was observed on the test day in which caffeine decreased immobility overall and increased swimming. These data reveal sex dependent effects of caffeine on behavior in adolescent rats.

  17. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior

    PubMed Central

    Kasanetz, Fernando; Lynch, Diane L.; Friemel, Chris M.; Lassalle, Olivier; Hurst, Dow P.; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F. Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H.; Manzoni, Olivier J.; Spanagel, Rainer

    2015-01-01

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1F238L) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1F238L mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent

  18. The effects of strain and prenatal nicotine exposure on ethanol consumption by adolescent male and female rats.

    PubMed

    Berger, David F; Lombardo, John P; Peck, Joshua A; Faraone, Stephen V; Middleton, Frank A; Youngetob, Steven L

    2010-07-11

    Two studies of variables affecting voluntary ethanol consumption by adolescent male and female rats are reported. Sprague-Dawley (SD) and spontaneously hypertensive rats (SHRs) were compared in Experiment 1. Starting on postnatal day 30 all had 24-h access to 2%, then 4%, and then 6% ethanol, followed by 1-h access to the 6% until intake stabilized. During the 1-h access SHR females consumed more ethanol than all other groups. In Experiment 2, the same procedure was used to compare SD groups prenatally exposed to nicotine, with controls. Nicotine-exposed females consumed more ethanol during 1-h access than both nicotine-exposed and control males; but after using water intake as a covariate, the differences were not significant. These data show that deprivation conditions need to be considered when generalizing the results of voluntary consumption studies, and that estrogens may be a modulator of addictive behavior.

  19. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone.

    PubMed

    López-Arnau, Raúl; Martínez-Clemente, José; Rodrigo, Teresa; Pubill, David; Camarasa, Jorge; Escubedo, Elena

    2015-07-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3×25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26±2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D2 dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone.

  20. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats.

    PubMed

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Aloisi, Anna M; Barr, Gordon A

    2017-01-01

    Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1-2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period.

  1. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats.

    PubMed

    Natividad, Luis A; Tejeda, Hugo A; Torres, Oscar V; O'Dell, Laura E

    2010-02-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow-up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABA(A) receptors in the VTA produced a two-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal.

  2. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats

    PubMed Central

    Natividad, Luis A.; Tejeda, Hugo A.; Torres, Oscar V.; O’Dell, Laura E.

    2010-01-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABAA receptors in the VTA produced a 2-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal. PMID:19771590

  3. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats

    PubMed Central

    Butkevich, Irina P.; Mikhailenko, Viktor A.; Vershinina, Elena A.; Aloisi, Anna M.; Barr, Gordon A.

    2017-01-01

    Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1–2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period. PMID:28184190

  4. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    PubMed

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood.

  5. Effect of sub-chronic intermittent ethanol exposure on spatial learning and ethanol sensitivity in adolescent and adult rats.

    PubMed

    Swartzwelder, H S; Hogan, A; Risher, M-Louise; Swartzwelder, Rita A; Wilson, Wilkie A; Acheson, Shawn K

    2014-06-01

    It has become clear that adolescence is a period of distinct responsiveness to the acute effects of ethanol on learning and other cognitive functions. However, the effects of repeated intermittent ethanol exposure during adolescence on learning and cognition are less well studied, and other effects of repeated ethanol exposure such as withdrawal and chronic tolerance complicate such experiments. Moreover, few studies have compared the effects of repeated ethanol exposure during adolescence and adulthood, and they have yielded mixed outcomes that may be related to methodological differences and/or secondary effects of ethanol on behavioral performance. One emerging question is whether relatively brief intermittent ethanol exposure (i.e., sub-chronic exposure) during adolescence or adulthood might alter learning at a time after exposure when chronic tolerance would be expected, and whether tolerance to the cognitive effects of ethanol might influence the effect of ethanol on learning at that time. To address this, male adolescent and adult rats were pre-treated with sub-chronic daily ethanol (five doses [4.0 g/kg, i.p.] or saline at 24-h intervals, across 5 days). Two days after the last pre-exposure, spatial learning was assessed on 4 consecutive days using the Morris water maze. Half of the animals from each treatment cell received ethanol (2.0 g/kg, i.p.) 30 min prior to each testing session and half of the animals received saline. Ethanol pre-exposure altered water maze performance in adult animals but not in adolescents, and acute ethanol exposure impaired learning in animals of both ages independent of pre-exposure condition. There was no evidence of cognitive tolerance in animals of either age group. These results indicate that a relatively short period of intermittent ethanol exposure during adulthood, but not adolescence, promotes thigmotaxis in the water maze shortly after pre-exposure but does not induce cognitive tolerance to the effects of ethanol in

  6. Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor–dependent synaptic and intrinsic plasticity

    PubMed Central

    Tidball, Patrick; Burn, Hannah V.; Teh, Kai Lun; Volianskis, Arturas; Collingridge, Graham L.; Fitzjohn, Stephen M.

    2017-01-01

    Background The hippocampus is critically involved in learning and memory processes. Although once considered a relatively homogenous structure, it is now clear that the hippocampus can be divided along its longitudinal axis into functionally distinct domains, responsible for the encoding of different types of memory or behaviour. Although differences in extrinsic connectivity are likely to contribute to this functional differentiation, emerging evidence now suggests that cellular and molecular differences at the level of local hippocampal circuits may also play a role. Methods In this study, we have used extracellular field potential recordings to compare basal input/output function and group I metabotropic glutamate receptor-dependent forms of synaptic and intrinsic plasticity in area CA1 of slices taken from the dorsal and ventral sectors of the adult rat hippocampus. Results Using two extracellular electrodes to simultaneously record field EPSPs and population spikes, we show that dorsal and ventral hippocampal slices differ in their basal levels of excitatory synaptic transmission, paired-pulse facilitation, and EPSP-to-Spike coupling. Furthermore, we show that slices taken from the ventral hippocampus have a greater ability than their dorsal counterparts to exhibit long-term depression of synaptic transmission and EPSP-to-Spike potentiation induced by transient application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine. Conclusions Together, our results provide further evidence that the information processing properties of local hippocampal circuits differ in the dorsal and ventral hippocampal sectors, and that these differences may in turn contribute to the functional differentiation that exists along the hippocampal longitudinal axis.

  7. The quetiapine active metabolite N-desalkylquetiapine and the neurotensin NTS₁ receptor agonist PD149163 exhibit antidepressant-like effects on operant responding in male rats.

    PubMed

    Hillhouse, Todd M; Shankland, Zachary; Matazel, Katelin S; Keiser, Ashley A; Prus, Adam J

    2014-12-01

    Major depressive disorder is the most common mood disorder in the United States and European Union; however, the limitations of clinically available antidepressant drugs have led researchers to pursue novel pharmacological treatments. Clinical studies have reported that monotherapy with the atypical antipsychotic drug quetiapine produces a rapid reduction in depressive symptoms that is apparent after 1 week of treatment, and it is possible that the active metabolite N-desalkylquetiapine, which structurally resembles an antidepressant drug, produces antidepressant effects. Neuropharmacological evaluations of the neurotensin NTS1 receptor agonist PD149163 suggest antidepressant efficacy, but the effects of a NTS₁ receptor agonist in an antidepressant animal model have yet to be reported. The present study examined the antidepressant-like effects of N-desalkylquetiapine, PD14916, quetiapine, the tricyclic antidepressant drug imipramine, the atypical antipsychotic drug risperidone, and the typical antipsychotic drug raclopride on responding in male Sprague-Dawley rats trained on a differential-reinforcement-of-low-rate 72-s operant schedule, a procedure used for screening antidepressant drugs. Quetiapine, PD149163, risperidone, and imipramine exhibited antidepressant-like effects by increasing the number of reinforcers earned, decreasing the number of responses emitted, and shifting the interresponse time (IRT) distributions to the right. N-Desalkylquetiapine produced a partial antidepressant-like effect by decreasing the number of responses emitted and producing a rightward shift in the IRT distributions, but it did not significantly alter the number of reinforcers earned. Raclopride decreased reinforcers and responses. These data suggest that N-desalkylquetiapine likely contributes to quetiapine's antidepressant efficacy and identify NTS₁ receptor activation as a potential novel pharmacologic strategy for antidepressant drugs.

  8. Chronic Drinking During Adolescence Predisposes the Adult Rat for Continued Heavy Drinking: Neurotrophin and Behavioral Adaptation after Long-Term, Continuous Ethanol Exposure

    PubMed Central

    Fernandez, Gina M.; Stewart, William N.; Savage, Lisa M.

    2016-01-01

    Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in spatial working memory, non-spatial discrimination learning and behavioral flexibility were explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH exposure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed at different time-points: during CET, following acute abstinence (48-hrs), and after protracted abstinence (6–8 wks). Our results revealed that an adolescent onset of CET leads to increased EtOH consumption that persisted into adulthood. In both adult and adolescent onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alternation, was not significantly affected by CET as a function of age of drinking onset, but higher blood–EtOH levels were correlated with lower spontaneous alternation scores. Regardless of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that adolescent EtOH exposure changes long-term consumption patterns producing behavioral and neural dysfunctions that persist across the lifespan. PMID:26930631

  9. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats.

    PubMed

    Zhu, W; Mao, Z; Zhu, C; Li, M; Cao, C; Guan, Y; Yuan, J; Xie, G; Guan, X

    2016-01-28

    Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.

  10. Behavioral effects in adolescence and early adulthood in two length models of maternal separation in male rats.

    PubMed

    Banqueri, María; Méndez, Marta; Arias, Jorge L

    2017-02-07

    Maternal separation (MS) is an extensively used early life stress model. There is some variability in the MS lengths used. Maternal separation leads to emotional and behavioral alterations such as anxiety, despair, or memory problems. We performed MS in Wistar rats with two length models from postnatal day 1 until day 10 and from postnatal day 1 until day 21 during 4h per day in both groups. We performed a test battery of a wide range of behaviors to measure anxiety, despair, prepulse inhibition, recognition memory, and associative memory both in adolescent and adult subjects. We found that the longer model leads to anxious behavior and impairs recognition in adolescence and adulthood whereas the shorter one deteriorates associative/emotional learning only in adolescence and protects against anhedonic-like behaviors. In our opinion, these results can be explained by the fact that different lengths lead to different profiles: the longer one is an anxious profile, whereas the shorter one is more impulsive.

  11. Mifepristone Treatment during Early Adolescence Fails to Restore Maternal Deprivation-Induced Deficits in Behavioral Inhibition of Adult Male Rats

    PubMed Central

    Kentrop, Jiska; van der Tas, Liza; Loi, Manila; van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Joëls, Marian; van der Veen, Rixt

    2016-01-01

    Early life adversity has a profound impact on brain development and later life health. Animal models have provided insight how early life stress programs stress responsiveness and might contribute to the development of psychiatric disorders. In the present study, the long-term effects of maternal deprivation (MD) on behavioral inhibition and attention were examined in adult male Wistar rats. To this end animals were tested in the 5-choice serial reaction time task (5-choice SRTT). We also explored the potential of a 3-day treatment with the glucocorticoid receptor (GR) antagonist mifepristone during early adolescence to normalize putative behavioral effects of early life stress. Deprivation of the mother for 24 h on postnatal day (PND) 3 led to a modest but significant increase in premature responses in the 5-choice SRTT, but did not affect measures of attention. Body weight was lower in deprived animals from weaning until the start of testing. Early adolescent mifepristone treatment (PND 26–28) did not influence performance on the 5-choice SRTT and did not mitigate the deprivation-related impairment in behavioral inhibition. Our results indicate that MD leads to impaired behavioral inhibition, and that mifepristone treatment during early adolescence does not normalize the behavioral changes caused by early life stress. PMID:27378873

  12. Exposure to methylphenidate during peri-adolescence affects endocrine functioning and sexual behavior in female Long-Evans rats.

    PubMed

    Guarraci, Fay A; Holifield, Caroline; Morales-Valenzuela, Jessica; Greene, Kasera; Brown, Jeanette; Lopez, Rebecca; Crandall, Christina; Gibbs, Nicole; Vela, Rebekah; Delgado, Melissa Y; Frohardt, Russell J

    2016-03-01

    The present study was designed to test the effects of methylphenidate (MPH) exposure on the maturation of endocrine functioning and sexual behavior. Female rat pups received either MPH (2.0mg/kg, i.p.) or saline twice daily between postnatal days 20-35. This period of exposure represents the time just prior to puberty as well as puberty onset. Approximately five weeks after the last injection of MPH or saline, female subjects were hormone-primed and tested during their first sexual experience. Subjects were given the choice to interact with a sexually active male or a sexually receptive female rat (i.e., the partner-preference test). The partner-preference paradigm allows us to assess multiple aspects of female sexual behavior. MPH exposure during peri-adolescence delayed puberty and, when mated for the first time, affected sexual behavior (e.g., increased time spent with the male stimulus and decreased the likelihood of leaving after mounts) during the test of partner preference. When monitoring estrous cyclicity, female subjects treated with MPH during peri-adolescence frequently experienced irregular estrous cycles. The results of the present study suggest that chronic exposure to a therapeutic dose of MPH around the onset of puberty alters long-term endocrine functioning, but with hormone priming, increases sensitivity to sexual stimuli.

  13. Binge Drinking of Ethanol during Adolescence Induces Oxidative Damage and Morphological Changes in Salivary Glands of Female Rats

    PubMed Central

    Fagundes, Nathalia Carolina Fernandes; Fernandes, Luanna Melo Pereira; Paraense, Ricardo Sousa de Oliveira; Teixeira, Francisco Bruno; Alves-Junior, Sergio Melo; Pinheiro, João de Jesus Viana; Crespo-López, Maria Elena

    2016-01-01

    This study investigates morphological and biochemistry effects of binge ethanol consumption in parotid (PG) and submandibular (SG) salivary glands of rats from adolescence to adulthood. Female Wistar rats (n = 26) received ethanol at 3 g/kg/day (20% w/v) for 3 consecutive days/week from the 35th until the 62nd day of life. Animals were treated in two periods: 1 week (G1) and 4 weeks (G2), with a control (treated with distilled water) and an ethanol group to each period. In morphological analysis, morphometric and immunohistochemistry evaluation for smooth muscle actin (αSMA), cytokeratin-18 (CK-18), and vimentin (VIM) were made. Biochemical changes were analyzed by concentration of nitrites and levels of malondialdehyde (MDA). The difference between groups in each analysis was evaluated by Mann-Whitney U test or Student's t-test (p ≤ 0.05). PG showed, at one week of ethanol exposure, lower CK-18 and α-SMA expression, as well as MDA levels. After four weeks, lower CK-18 and higher MDA levels were observed in PG exposed to ethanol, in comparison to control group. SG showed lower α-SMA expression after 1 and 4 weeks of ethanol exposure as well as higher MDA levels after 1 week. Ethanol binge consumption during adolescence promotes tissue and biochemical changes with only one-week binge in acinar and myoepithelial PG cells. PMID:27579155

  14. Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology.

    PubMed

    Leo, D; Adriani, W; Cavaliere, C; Cirillo, G; Marco, E M; Romano, E; di Porzio, U; Papa, M; Perrone-Capano, C; Laviola, G

    2009-04-01

    Methylphenidate (MPH) administration to adolescent rodents produces persistent region-specific changes in brain reward circuits and alterations of reward-based behavior. We show that these modifications include a marked increment of serotonin (5-hydroxy-tryptamine) receptor type 7 (Htr7) expression and synaptic contacts, mainly in the nucleus accumbens, and a reduction of basal behavioral impulsivity. We show that neural and behavioral consequences are functionally related: administration of a selective Htr7 antagonist fully counteracts the MPH-reduced impulsive behavior and enhances impulsivity when administered alone in naive rats. Agonist-induced activation of endogenous Htr7 significantly increases neurite length in striatal neuron primary cultures, thus suggesting plastic remodeling of neuronal morphology. The mixed Htr (1a/7) agonist, 8-OH-DPAT, reduces impulsive behavior in adolescent rats and in naive adults, whose impulsivity is enhanced by the Htr7 antagonist. In summary, behavioral pharmacology experiments show that Htr7 mediates self-control behavior, and brain primary cultures experiments indicate that this receptor may be involved in the underlying neural plasticity, through changes in neuronal cytoarchitecture.

  15. Sex differences in the effects of social and physical environment on novelty-induced exploratory behavior and cocaine-stimulated locomotor activity in adolescent rats.

    PubMed

    Zakharova, Elena; Starosciak, Amy; Wade, Dean; Izenwasser, Sari

    2012-04-21

    Many factors influence the rewarding effects of drugs such as cocaine. The present study was done to determine whether social and environmental factors alter behavior in adolescent male and female rats. On postnatal day (PND) 23, rats were housed in one of several same-sex conditions. Both social (number of rats per cage) and environmental (availability of toys) factors were manipulated. Socially isolated rats were housed alone (1 rat/cage) in an environment that either was impoverished (with no toys; II) or enriched (with toys; IE). Standard housing for these studies was social and impoverished, which was 2 rats/cage with no toys (SI2). Other rats were housed 2/cage with toys (SE2), or 3/cage with (SE3) or without (SI3) toys. On PND 37, novelty-induced locomotor activity was measured for 30min. On PND 44-46, locomotor activity in response to an injection of 5mg/kg cocaine was measured for 60min each day. For male rats, only social conditions altered novelty-induced activity. Males housed in groups of three had the most activity, compared to pair-housed and isolated rats. For females, social and environmental enrichment interacted to alter novelty-induced activity. In contrast to males, isolated females had increased activity, compared to group-housed females. Further, isolated females in impoverished environments had more activity than isolated females in enriched environments and group-housed females in impoverished environments. The effect of environmental enrichment on cocaine-stimulated locomotor activity was altered depending upon the number of rats living in a cage for males. For females, only social conditions altered cocaine-stimulated behavior, with activity increasing with the number of rats in the cage, regardless of environmental enrichment. These data show that social and environmental enrichment differentially alter novelty-induced and cocaine-stimulated locomotor activity in adolescent male and female rats.

  16. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats.

    PubMed

    Fernandez, Gina M; Lew, Brandon J; Vedder, Lindsey C; Savage, Lisa M

    2017-04-21

    Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.

  17. Effects of ethanol during adolescence on the number of neurons and glia in the medial prefrontal cortex and basolateral amygdala of adult male and female rats

    PubMed Central

    Koss, W.A.; Sadowski, R.N.; Sherrill, L.K.; Gulley, J.M.; Juraska, J.M.

    2012-01-01

    Human adolescents often consume alcohol in a binge-like manner at a time when changes are occurring within specific brain structures, such as the medial prefrontal cortex (mPFC) and the basolateral nucleus of the amygdala (BLN). In particular, neuron and glia number are changing in both of these areas in the rat between adolescence and adulthood (Markham et al., 2007; Rubinow and Juraska, 2009). The current study investigated the effects of ethanol exposure during adolescence on the number of neurons and glia in the adult mPFC and BLN in Long-Evans male and female rats. Saline or 3 g/kg ethanol was administered between postnatal days (P) 35–45 in a binge-like pattern, with 2 days of injections followed by 1 day without an injection. Stereological analyses of the ventral mPFC (prelimbic and infralimbic areas) and the BLN were performed on brains from rats at 100 days of age. Neuron and glia densities were assessed with the optical disector and then multiplied by the volume to calculate the total number of neurons and glia. In the adult mPFC, ethanol administration during adolescence resulted in a decreased number of glia in males, but not females, and had no effect on the number of neurons. Adolescent ethanol exposure had no effects on glia or neuron number in the BLN. These results suggest that glia cells in the prefrontal cortex are particularly sensitive to binge-like exposure to ethanol during adolescence in male rats only, potentially due to a decrease in proliferation in males or protective mechanisms in females. PMID:22627163

  18. Hippocampal protein expression is differentially affected by chronic paroxetine treatment in adolescent and adult rats: a possible mechanism of “paradoxical” antidepressant responses in young persons

    PubMed Central

    Karanges, Emily A.; Kashem, Mohammed A.; Sarker, Ranjana; Ahmed, Eakhlas U.; Ahmed, Selina; Van Nieuwenhuijzen, Petra S.; Kemp, Andrew H.; McGregor, Iain S.

    2013-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are commonly recognized as the pharmacological treatment of choice for patients with depressive disorders, yet their use in adolescent populations has come under scrutiny following reports of minimal efficacy and an increased risk of suicidal ideation and behavior in this age group. The biological mechanisms underlying these effects are largely unknown. Accordingly, the current study examined changes in hippocampal protein expression following chronic administration of paroxetine in drinking water (target dose = 10 mg/kg for 22 days) to adult and adolescent rats. Results indicated age-specific changes in protein expression, with paroxetine significantly altering expression of 8 proteins in adolescents only and 10 proteins solely in adults. A further 12 proteins were significantly altered in both adolescents and adults. In adults, protein changes were generally suggestive of a neurotrophic and neuroprotective effect of paroxetine, with significant downregulation of apoptotic proteins Galectin 7 and Cathepsin B, and upregulation of the neurotrophic factor Neurogenin 1 and the antioxidant proteins Aldose reductase and Carbonyl reductase 3. Phosphodiesterase 10A, a signaling protein associated with major depressive disorder, was also downregulated (-6.5-fold) in adult rats. Adolescent rats failed to show the neurotrophic and neuroprotective effects observed in adults, instead displaying upregulation of the proapoptotic protein BH3-interacting domain death agonist (4.3-fold). Adolescent protein expression profiles also suggested impaired phosphoinositide signaling (Protein kinase C: -3.1-fold) and altered neurotransmitter transport and release (Syntaxin 7: 5.7-fold; Dynamin 1: -6.9-fold). The results of the present study provide clues as to possible mechanisms underlying the atypical response of human adolescents to paroxetine treatment. PMID:23847536

  19. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA.

  20. Anxiety status affects nicotine- and baclofen-induced locomotor activity, anxiety, and single-trial conditioned place preference in male adolescent rats.

    PubMed

    Falco, Adriana M; McDonald, Craig G; Smith, Robert F

    2014-09-01

    Adolescents have an increased vulnerability to nicotine and anxiety may play a role in the development of nicotine abuse. One possible treatment for anxiety disorders and substance abuse is the GABAB agonist, baclofen. The aim of the present study was to determine the effect of anxiety-like behavior on single-trial nicotine conditioned place preference in adolescent rats, and to assess the action of baclofen. Baclofen was shown to have effects on locomotor and anxiety-like behavior in rats divided into high-anxiety and low-anxiety groups. Baclofen decreased locomotor behavior in high-anxiety rats. Baclofen alone failed to produce differences in anxiety-like behavior, but nicotine and baclofen + nicotine administration were anxiolytic. High- and low-anxiety groups also showed differences in single-trial nicotine-induced place preference. Only high-anxiety rats formed place preference to nicotine, while rats in the low-anxiety group formed no conditioned place preference. These results suggest that among adolescents, high-anxiety individuals are more likely to show preference for nicotine than low-anxiety individuals.

  1. The effect of the degree of left renal vein constriction on the development of adolescent varicocele in Sprague-Dawley rats.

    PubMed

    Yao, Bing; Zhou, Wen-Liang; Han, Da-Yu; Ouyang, Bin; Chen, Xu; Chen, Sheng-Fu; Deng, Chun-Hua; Sun, Xiang-Zhou

    2016-01-01

    Experimental models have allowed inquiry into the pathophysiology of varicocele (VC) beyond that possible with human patients. A randomized controlled study in rats was designed to clarify the influence of the degree of left renal vein constriction on the development of adolescent VC. Fifty adolescent male Sprague-Dawley rats (Rattus norvegicus) were randomly assigned to five groups of 10: the experimental groups (I-IV) underwent partial ligation of left renal veins with 0.5-, 0.6-, 0.7-, and 0.8-mm diameter needles, respectively. The control group (V) underwent a sham operation. The diameter of the left spermatic vein (LSV) was measured at baseline and 30 days postoperatively. In addition, the lesion of the left kidney was examined with the naked eye and assessed by Masson's trichrome staining. VC was successfully induced in 2 (20%), 4 (40%), 7 (70%), and 10 (100%) rats in groups I-IV, respectively. The other rats failed to develop VCs primarily due to left renal atrophy. No VC was observed in group V. The postsurgical LSV diameters in VC rats in groups III and IV were 1.54 ± 0.16 and 1.49 ± 0.13 mm, respectively (P > 0.05), and their increments were 1.36 ± 0.10 and 1.31 ± 0.10 mm, respectively (P > 0.05). These results suggest that suitable constriction of the left renal vein is critical for adolescent VC development. In addition, the 0.8-mm diameter needle may be more suitable for inducing left renal vein constriction in adolescent rat models.

  2. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas.

    PubMed

    Nativio, Paola; Zoratto, Francesca; Romano, Emilia; Lacivita, Enza; Leopoldo, Marcello; Pascale, Esterina; Passarelli, Francesca; Laviola, Giovanni; Adriani, Walter

    2015-11-01

    Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex.

  3. Effects of ethanol administration on corticosterone levels in adolescent and adult rats.

    PubMed

    Willey, Amanda Rachel; Anderson, Rachel Ivy; Morales, Melissa; Ramirez, Ruby Liane; Spear, Linda Patia

    2012-02-01

    Adolescent humans and rodents have been shown to consume more alcohol than their adult counterparts. Given that corticosterone (CORT) has been shown to be related to the intake of several drugs of abuse, this study assessed the ontogenetic effects of low-moderate doses of ethanol on CORT increases and recovery. Despite no significant differences in baseline (home cage) CORT levels, CORT responses to ethanol were greater in females than in males and in adult females than in adolescent females; males, however, showed less marked age differences in CORT levels after ethanol consumption. Adolescent blood ethanol concentrations (BECs) were lower than those of adults, although these BEC differences appear insufficient to account for the ontogenetic differences in CORT levels. Collectively, these findings suggest that it is unlikely that age differences in CORT elevations provide a major contribution to the ontogenetic differences in alcohol intake seen between adolescents and adults.

  4. What Can Rats Tell Us about Adolescent Cannabis Exposure? Insights from Preclinical Research

    PubMed Central

    Rushlow, Walter J.; Laviolette, Steven R.

    2016-01-01

    Marijuana is the most widely used drug of abuse among adolescents. Adolescence is a vulnerable period for brain development, during which time various neurotransmitter systems such as the glutamatergic, GABAergic, dopaminergic, and endocannabinoid systems undergo extensive reorganization to support the maturation of the central nervous system (CNS). ▵-9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, acts as a partial agonist of CB1 cannabinoid receptors (CB1Rs). CB1Rs are abundant in the CNS and are central components of the neurodevelopmental changes that occur during adolescence. Thus, overactivation of CB1Rs by cannabinoid exposure during adolescence has the ability to dramatically alter brain maturation, leading to persistent and enduring changes in adult cerebral function. Increasing preclinical evidence lends support to clinical evidence suggesting that chronic adolescent marijuana exposure may be associated with a higher risk for neuropsychiatric diseases, including schizophrenia. In this review, we present a broad overview of current neurobiological evidence regarding the long-term consequences of adolescent cannabinoid exposure on adult neuropsychiatric-like disorders. PMID:27254841

  5. The effect of sumatriptan on nitric oxide synthase enzyme production after iatrogenic inflammation in the brain stem of adolescent rats: A randomized, controlled, experimental study

    PubMed Central

    Demirpence, Savas; Kurul, Semra Hiz; Kiray, Müge; Tugyan, Kazim; Yilmaz, Osman; Köse, Galip

    2009-01-01

    Background: Migraine is a common disabling disorder of childhood and adolescence. Despite advances in the understanding of migraine pathophysiology, treatment remains a challenge. Objectives: The aims of this study were to investigate the production of nitric oxide synthase (NOS) enzymes in the brain stem of adolescent rats, using an experimental model of migraine, and the effect of sumatriptan pretreatment on the production of the NOS enzymes. Methods: Male adolescent (aged ~2 months) Wistar rats were used in the study. The animals were anesthetized using pentobarbital. The trigeminovascular system was stimulated by injecting a proinflammatory molecule, carrageenan, into the cis-terna magna of the anesthetized rats. The animals were divided into 3 groups of equal size: (1) the study group, in which the rats were treated with sumatriptan succinate 2 hours before intracisternal carrageenan injection; (2) the sham group, in which the rats were not administered intracisternal carrageenan injection or sumatriptan pretreatment; and (3) the control group, in which the rats were administered intracisternal carrageenan injection but were not pretreated with sumatriptan. In the control and study groups, the rats were euthanized using ether anesthesia 1 hour after intracisternal carrageenan injection. Rats in the sham group were euthanized 1 hour after intracisternal catheterization. Brain tissue was removed and endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS) immunohistochemistry was performed. Results: Twenty-one rats were randomized into 3 groups of 7. The mean values of the immunolabeling intensities for eNOS, nNOS, and iNOS enzymes in the brain stem were significantly lower in the sham group compared with the control group (P = 0.001, P = 0.002, and P = 0.001, respectively). The mean values of the immunolabeling intensities of eNOS, nNOS, and iNOS in the brain stem were significantly lower in the study group compared with the control group (P = 0

  6. Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-methyl-D-aspartate receptor binding levels.

    PubMed

    Metaxas, A; Willems, R; Kooijman, E J M; Renjaän, V A; Klein, P J; Windhorst, A D; Donck, L Ver; Leysen, J E; Berckel, B N M van

    2014-11-01

    Although both the onset of schizophrenia and human phencyclidine (PCP) abuse typically present within the interval from adolescence to early adulthood, the majority of preclinical research employing the PCP model of schizophrenia has been conducted on neonatal or adult animals. The present study was designed to evaluate the behavioral and neurochemical sequelae of subchronic exposure to PCP in adolescence. Male 35-42-day-old Sprague Dawley rats were subcutaneously administered either saline (10 ml · kg(-1) ) or PCP hydrochloride (10 mg · kg(-1) ) once daily for a period of 14 days (n = 6/group). The animals were allowed to withdraw from treatment for 2 weeks, and their social and exploratory behaviors were subsequently assessed in adulthood by using the social interaction test. To examine the effects of adolescent PCP administration on the regulation of N-methyl-D-aspartate receptors (NMDARs), quantitative autoradiography was performed on brain sections of adult, control and PCP-withdrawn rats by using 20 nM (3) H-MK-801. Prior subchronic exposure to PCP in adolescence had no enduring effects on the reciprocal contact and noncontact social behavior of adult rats. Spontaneous rearing in response to the novel testing arena and time spent investigating its walls and floor were reduced in PCP-withdrawn animals compared with control. The long-term behavioral effects of PCP occurred in the absence of persistent deficits in spontaneous locomotion or self-grooming activity and were not mediated by altered NMDAR density. Our results document differential effects of adolescent PCP administration on the social and exploratory behaviors of adult rats, suggesting that distinct neurobiological mechanisms are involved in mediating these behaviors.

  7. Methylphenidate treatment beyond adolescence maintains increased cocaine self-administration in the spontaneously hypertensive rat model of attention deficit/hyperactivity disorder.

    PubMed

    Baskin, Britahny M; Dwoskin, Linda P; Kantak, Kathleen M

    2015-04-01

    Past research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder showed that adolescent methylphenidate treatment enhanced cocaine abuse risk in SHR during adulthood. The acquisition of cocaine self-administration was faster, and cocaine dose-response functions were shifted upward under fixed-ratio and progressive ratio schedules compared to adult SHR that received adolescent vehicle treatment or to control strains that received adolescent methylphenidate treatment. The current study determined if extending treatment beyond adolescence would ameliorate long-term consequences of adolescent methylphenidate treatment on cocaine abuse risk in adult SHR. Treatments (vehicle or 1.5mg/kg/day oral methylphenidate) began on postnatal day 28. Groups of male SHR were treated with vehicle during adolescence and adulthood, with methylphenidate during adolescence and vehicle during adulthood, or with methylphenidate during adolescence and adulthood. The group receiving adolescent-only methylphenidate was switched to vehicle on P56. Cocaine self-administration began on postnatal day 77, and groups receiving methylphenidate during adolescence and adulthood were treated either 1-h before or 1-h after daily sessions. At baseline under a fixed-ratio 1 schedule, cocaine self-administration (2h sessions; 0.3mg/kg unit dose) did not differ among the four treatment groups. Under a progressive ratio schedule (4.5h maximum session length; 0.01-1.0mg/kg unit doses), breakpoints for self-administered cocaine in SHR receiving the adult methylphenidate treatment 1-h pre-session were not different from the vehicle control group. However, compared to the vehicle control group, breakpoints for self-administered cocaine at the 0.3 and 1.0mg/kg unit doses were greater in adult SHR that received adolescent-only methylphenidate or received methylphenidate that was continued into adulthood and administered 1-h post-session. These findings suggest that

  8. Methylphenidate treatment beyond adolescence maintains increased cocaine self-administration in the Spontaneously Hypertensive Rat model of Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Baskin, Britahny M.; Dwoskin, Linda P.; Kantak, Kathleen M.

    2015-01-01

    Past research with the Spontaneously Hypertensive Rat (SHR) model of Attention Deficit/Hyperactivity Disorder showed that adolescent methylphenidate treatment enhanced cocaine abuse risk in SHR during adulthood. Acquisition of cocaine self-administration was faster, and cocaine dose-response functions were shifted upward under fixed-ratio and progressive ratio schedules compared to adult SHR that received adolescent vehicle treatment or to control strains that received adolescent methylphenidate treatment. The current study determined if extending treatment beyond adolescence would ameliorate long-term consequences of adolescent methylphenidate treatment on cocaine abuse risk in adult SHR. Treatments (vehicle or 1.5 mg/kg/day oral methylphenidate) began on postnatal day 28. Groups of male SHR were treated with vehicle during adolescence and adulthood, with methylphenidate during adolescence and vehicle during adulthood, or with methylphenidate during adolescence and adulthood. The group receiving adolescent-only methylphenidate was switched to vehicle on P56. Cocaine self-administration began on postnatal day 77, and groups receiving methylphenidate during adolescence and adulthood were treated either 1-hr before or 1-hr after daily sessions. At baseline under a fixed-ratio 1 schedule, cocaine self-administration (2 hr sessions; 0.3 mg/kg unit dose) did not differ among the four treatment groups. Under a progressive ratio schedule (4.5 hr maximum session length; 0.01 – 1.0 mg/kg unit doses), breakpoints for self-administered cocaine in SHR receiving the adult methylphenidate treatment 1-hr pre-session were not different from the vehicle control group. However, compared to the vehicle control group, breakpoints for self-administered cocaine at the 0.3 and 1.0 mg/kg unit doses were greater in adult SHR that received adolescent-only methylphenidate or received methylphenidate that was continued into adulthood and administered 1-hr post-session. These findings

  9. Tone conditioning potentiates rather than overshadows context fear in adult animals following adolescent ethanol exposure.

    PubMed

    Broadwater, Margaret A; Spear, Linda P

    2014-07-01

    We have shown that adults exposed to ethanol during adolescence exhibit a deficit in the retention of context fear, reminiscent of that normally seen in preweanling rats. However, preweanlings have been reported to exhibit a potentiation of context fear when they are conditioned in the presence of a tone. Therefore, this study examined context retention 24 hr after tone or context conditioning in male Sprague-Dawley rats exposed intragastrically to 4 g/kg ethanol or water every 48 hr (total of 11 exposures) during adolescence [Postnatal day (P) 28-48] or adulthood (P70-90). Approximately 3 weeks following exposure, retention of fear to the context in animals exposed to ethanol during adolescence was attenuated after context conditioning, but enhanced after tone conditioning. Comparable adult ethanol exposure groups showed typical overshadowing of context fear retention after tone conditioning. These data suggest that adolescent ethanol exposure may induce an immature pattern of cognitive processing.

  10. Adolescent social stress does not necessarily lead to a compromised adaptive capacity during adulthood: a study on the consequences of social stress in rats.

    PubMed

    Buwalda, B; Stubbendorff, C; Zickert, N; Koolhaas, J M

    2013-09-26

    Childhood bullying or social stress in adolescent humans is generally considered to increase the risk of developing behavioral disorders like depression in adulthood. Juveniles are hypothesized to be particularly sensitive to stressors in their environment due to the relatively late maturation of brain areas that are targeted by stress such as the prefrontal cortex and hippocampus. In our study male adolescent rats were subjected to repeated social defeat on postnatal day (PND) 28, 31 and 34 (experiment 1) or to daily social defeats between PND 35 and 42 (experiment 2). Adolescent rats in experiment 1 were socially housed in pairs with a male of similar age during and after the social defeat. In experiment 2 adolescents were housed either alone or with an age-mate for 7 days (PND 35-42) next to either a highly aggressive or a non-aggressive adult male neighbor with whom a repeated physical interaction was allowed. In experiment 1 the adolescent defeats affected subsequent play behavior with the cage mate. Socially stressed rats more frequently initiated play behavior but also adopted more frequently submissive postures during the play fights. As adults, they seemed to cope behaviorally and physiologically better with a similar exposure to a residential aggressive male rat than unstressed controls. In experiment 2 acute effects of adolescent social stress were studied on neuroplasticity markers like hippocampal cell proliferation and neurogenesis as well as hippocampal brain-derived neurotrophic factor (BDNF) levels. The 2nd experiment also studied long-term effects of the adolescent stress in the response to an adult social defeat. A few acute but minor changes in brain plasticity markers and behavior were observed but these were transient and no behavioral or physiological effects persisted into adulthood. The results from both experiments support the theory developed in the so-called "match-mismatch hypothesis" which claims that the final consequence of childhood

  11. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning.

    PubMed

    Hunt, Pamela S; Barnet, Robert C

    2016-02-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed.

  12. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  13. Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala

    PubMed Central

    Padival, Mallika A.; Blume, Shannon R.; Vantrease, Jaime E.; Rosenkranz, J. Amiel

    2015-01-01

    Repeated stress can elicit symptoms of depression and anxiety. The amygdala is a significant contributor to the expression of emotion and the basolateral amygdala (BLA) is a major target for the effects of stress on emotion. The adolescent time period may be particularly susceptible to the effects of stress on emotion. While repeated stress has been demonstrated to modify the morphology of BLA neurons in adult rats, little is known about its effects on BLA neurons during adolescence. This study tests the effects of repeated stress during adolescence on BLA neuronal morphology, and whether these are similar to the effects of stress during adulthood. The BLA includes the basal (BA) and lateral (LAT) nuclei, which are differentially responsive to stress in adults. Therefore, effects of stress during adolescence were compared between the BA and LAT nuclei. Morphological features of reconstructed BLA neurons were examined using Golgi-Cox stained tissue from control or repeated restraint stress exposed rats. We found subtle dendritic growth coupled with loss of spines after repeated stress during adolescence. The magnitude and dendritic location of these differences varied between the BA and LAT nuclei in strong contrast to the stress-induced increases in spine number seen in adults. These results demonstrate that repeated stress during adolescence has markedly different effects on BLA neuronal morphology, and the extent of these changes are BLA nucleus-dependent. Moreover, altered neuroanatomy was associated with age-dependent effects of repeated stress on generalization of fear, and may point to the necessity for different approaches to target stress-induced changes in adolescents. PMID:25701125

  14. Effects of amphetamine exposure in adolescence or young adulthood on inhibitory control in adult male and female rats

    PubMed Central

    Hammerslag, Lindsey R.; Waldman, Alex J.; Gulley, Joshua M.

    2014-01-01

    Heightened impulsivity is a feature of some psychiatric disorders, including addiction, that also have sex-specific patterns of expression. The relationship between addiction and impulsivity may be driven by drug-induced changes in behavior caused by long term adaptations in signaling within the medial prefrontal cortex (mPFC). Here, we used a response inhibition task that is sensitive to changes in mPFC function to examine the effects of sex and exposure to amphetamine (AMPH) on impulsive action and vigilance. We also examined drug-induced alterations in glutamatergic and dopaminergic signaling through challenge injections with the NMDA receptor antagonist MK-801 (dizocilpine) and AMPH. Male and female Sprague Dawley rats were injected (i.p.) with saline or 3 mg/kg AMPH every other day during adolescence (postnatal day (P) 27–45) or adulthood (P85–103). Starting on P125–135, rats were tested for their ability to lever press for a food reward during periods of signaled availability and withhold responding during a “premature response” phase. In experiment 1, rats received challenge injections (i.p.) of MK-801 and AMPH followed by tests of task performance and locomotor activity. In experiment 2, rats received intra-mPFC infusion of MK-801. We found that females had better inhibitory control and poorer vigilance than males and that AMPH exposure had both sex- and age-of-exposure dependent effects on impulsivity. Systemic drug challenges disrupted task performance, particularly in females, and increased impulsivity while intra-mPFC infusions had modest effects. AMPH exposure did not affect responses to drug challenges. Together, these results suggest that sex mediates both trait and drug-induced impulsivity. PMID:24462963

  15. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    PubMed

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  16. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  17. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats

    PubMed Central

    Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.

    2015-01-01

    Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436

  18. Delta-9-tetrahydrocannabinol disrupts hippocampal neuroplasticity and neurogenesis in trained, but not untrained adolescent Sprague-Dawley rats.

    PubMed

    Steel, Ryan W J; Miller, John H; Sim, Dalice A; Day, Darren J

    2014-02-22

    Cannabis is the most widely used illicit drug, and disruption of learning and memory are commonly reported consequences of cannabis use. We have previously demonstrated a spatial learning impairment by ∆(9)-tetrahydrocannabinol (THC) in adolescent Sprague-Dawley rats (Steel et al., 2011). The molecular mechanisms underlying behavioural impairment by cannabis remain poorly understood, although the importance of adaptive changes in neuroplasticity (synaptic number and strength) and neurogenesis during learning are accepted. Here we aimed to identify any effects of THC on the early induction of these adaptive processes supporting learning, so we conducted our analyses at the mid-training point of our previous study. Both untrained and trained (15 days of training) adolescent (P28-P42) Sprague-Dawley rats were treated daily with THC (6 mg/kg i.p.) or its vehicle, and changes in the levels of markers of hippocampal neuroplasticity (CB1R, PSD95, synapsin-I, synapsin-III) and neurogenesis (Ki67, DCX, PSA-NCAM, BrdU labelling) by training were measured. Training of control animals, but not THC-treated animals increased neuroplasticity marker levels. However training of THC-treated animals, but not control animals reduced immature neuronal marker levels. Levels of hippocampal proliferation, and survival of the BrdU-labelled progeny of these divisions were unaffected by THC in trained and untrained animals. These data show a smaller neuroplastic response, and a reduction of new-born neuronal levels not attributable to effects on proliferation or survival by THC-treatment during training. Importantly no effects of THC were seen in the absence of training, indicating that these effects represent specific impairments by THC on training-induced responses.

  19. NMDA receptor antagonism disrupts the acquisition and retention of the Context Preexposure Facilitation Effect in adolescent rats

    PubMed Central

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Rosen, Jeffrey B.; Stanton, Mark E.

    2016-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1 mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24 hours later. Experiment 3 showed that expression of contextual fear via a 24hr retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1 mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05 mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood. PMID:26711910

  20. Protection genes in nucleus accumbens shell affect vulnerability to nicotine self-administration across isogenic strains of adolescent rat.

    PubMed

    Chen, Hao; Luo, Rui; Gong, Suzhen; Matta, Shannon G; Sharp, Burt M

    2014-01-01

    Classical genetic studies show the heritability of cigarette smoking is 0.4-0.6, and that multiple genes confer susceptibility and resistance to smoking. Despite recent advances in identifying genes associated with smoking behaviors, the major source of this heritability and its impact on susceptibility and resistance are largely unknown. Operant self-administration (SA) of intravenous nicotine is an established model for smoking behavior. We recently confirmed that genetic factors exert strong control over nicotine intake in isogenic rat strains. Because the processing of afferent dopaminergic signals by nucleus accumbens shell (AcbS) is critical for acquisition and maintenance of motivated behaviors reinforced by nicotine, we hypothesized that differential basal gene expression in AcbS accounts for much of the strain-to-strain variation in nicotine SA. We therefore sequenced the transcriptome of AcbS samples obtained by laser capture microdissection from 10 isogenic adolescent rat strains and compared all RNA transcript levels with behavior. Weighted gene co-expression network analysis, a systems biology method, found 12 modules (i.e., unique sets of genes that covary across all samples) that correlated (p<0.05) with amount of self-administered nicotine; 9 of 12 correlated negatively, implying a protective role. PCR confirmed selected genes from these modules. Chilibot, a literature mining tool, identified 15 genes within 1 module that were nominally associated with cigarette smoking, thereby providing strong support for the analytical approach. This is the first report demonstrating that nicotine intake by adolescent rodents is associated with the expression of specific genes in AcbS of the mesolimbic system, which controls motivated behaviors. These findings provide new insights into genetic mechanisms that predispose or protect against tobacco addiction.

  1. Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats.

    PubMed

    Williams, Sarah K; Cox, Elizabeth T; McMurray, Matthew S; Fay, Emily E; Jarrett, Thomas M; Walker, Cheryl H; Overstreet, David H; Johns, Josephine M

    2009-01-01

    Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.

  2. Dynamic Alterations of miR-34c Expression in the Hypothalamus of Male Rats after Early Adolescent Traumatic Stress

    PubMed Central

    Li, Chuting; Liu, Yuan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2016-01-01

    Several types of microRNA (miRNA) overexpression in the brain are associated with stress. One of the targets of miR-34c is the stress-related corticotrophin releasing factor receptor 1 mRNA (CRFR1 mRNA). Here we will probe into the short-term effect and long-term effect of early adolescent traumatic stress on the expression of miR-34c and CRFR1 mRNA. Traumatic stress was established by electric foot shock for six consecutive days using 28-day rats. The anxiety-like behaviors, memory damage, CRFR1 protein, CRFR1 mRNA, and miR-34c expression were detected in our study. The results of our study proved that exposure to acute traumatic stress in early adolescent can cause permanent changes in neural network, resulting in dysregulation of CRFR1 expression and CRFR1 mRNA and miR-34c expression in hypothalamus, anxiety-like behavior, and memory impairment, suggesting that the miR-34c expression in hypothalamus may be an important factor involved in susceptibility to PTSD. PMID:26925271

  3. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    PubMed

    Ness, Daniel; Ren, Zhao; Gardai, Shyra; Sharpnack, Douglas; Johnson, Victor J; Brennan, Richard J; Brigham, Elizabeth F; Olaharski, Andrew J

    2013-01-01

    Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  4. Impact of Ketamine on Learning and Memory Function, Neuronal Apoptosis and Its Potential Association with miR-214 and PTEN in Adolescent Rats

    PubMed Central

    Wang, Xiaobin; Yang, Xiaoling; Wang, Maohua; Zhang, Chunxiang; Zhou, Shuzhi; Tang, Ni

    2014-01-01

    Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is used as a general pediatric anesthetic and anti-depressive drug. Recent studies suggest that ketamine enhances neuronal apoptosis in developing rats. The goal of this study is to explore whether ketamine could result in learning and memory impairment and neurodegeneration in adolescent rats, and if so, whether the effects of ketamine are associated with miR-214 and PTEN expression. Fifty-day-old SD rats were randomly divided into three groups receiving ketamine at 30, or 80 mg/kg, i.p. or saline for seven consecutive days. Twenty-four hours after the last treatment, learning and memory function were tested by the Morris water maze. The rats were then decapitated, and the brains were isolated for detection of neuronal apoptosis and protein PTEN expression by TUNEL and immunohistochemistry respectively. Expression levels of the miR-214 and PTEN in the hippocampus were measured by qRT-PCR and western blot analysis respectively. Ketamine administered to the adolescent rats at a dose of 80 mg/kg rather than the lower dose of 30 mg/kg caused learning and memory impairment, increased the number of apoptotic cells in the hippocampal CA1 region, cerebral cortex and subcortical region, decreased the miR-214 levels and increased PTEN protein expression in hippocampus. The results suggest that ketamine at a dose of 80 mg/kg in the adolescent rats is able to induce the learning and memory impairment and neurodegeneration, in which the down-regulation of miR-214 and high expression of PTEN protein may be involved. PMID:24914689

  5. Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation.

    PubMed

    Icenogle, Laura M; Christopher, N Channelle; Blackwelder, W Paul; Caldwell, D Patrick; Qiao, Dan; Seidler, Frederic J; Slotkin, Theodore A; Levin, Edward D

    2004-01-01

    The widely used organophosphate insecticide, chlorpyrifos (CPF), elicits neurobehavioral abnormalities after apparently subtoxic neonatal exposures. In the current study, we administered 1 or 5 mg/kg/day of CPF to pregnant rats on gestational days 9-12, the embryonic phase spanning formation and closure of the neural tube. Although there were no effects on growth or viability, offspring showed behavioral abnormalities when tested in adolescence and adulthood. In the CPF-exposed groups, locomotor hyperactivity was noted in early T-maze trials, and in the elevated plus-maze; alterations in the rate of habituation were also identified. Learning and memory were adversely affected, as assessed using the 16-arm radial maze. Although all CPF-exposed animals eventually learned the task, reference and working memory were impaired in the early training sessions. After training, rats in the CPF group did not show the characteristic amnestic effect of scopolamine, a muscarinic acetylcholine antagonist, suggesting that, unlike the situation in the control group, muscarinic pathways were not used to solve the maze. These results indicate that apparently subtoxic CPF exposure during neurulation adversely affects brain development, leading to behavioral anomalies that selectively include impairment of cholinergic circuits used in learning and memory. The resemblance of these findings to those of late gestational or neonatal CPF exposure indicates a prolonged window of vulnerability of brain development to CPF.

  6. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats

    PubMed Central

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2013-01-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kg i.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol

  7. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats.

    PubMed

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E; Cubero, Inmaculada

    2013-09-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in the limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kgi.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge

  8. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra

    PubMed Central

    2012-01-01

    Background Increased risk of schizophrenia in adolescent males indicates that a link between the development of dopamine-related psychopathology and testosterone-driven brain changes may exist. However, contradictions as to whether testosterone increases or decreases dopamine neurotransmission are found and most studies address this in adult animals. Testosterone-dependent actions in neurons are direct via activation of androgen receptors (AR) or indirect by conversion to 17β-estradiol and activation of estrogen receptors (ER). How midbrain dopamine neurons respond to sex steroids depends on the presence of sex steroid receptor(s) and the level of steroid conversion enzymes (aromatase and 5α-reductase). We investigated whether gonadectomy and sex steroid replacement could influence dopamine levels by changing tyrosine hydroxylase (TH) protein and mRNA and/or dopamine breakdown enzyme mRNA levels [catechol-O-methyl transferase (COMT) and monoamine oxygenase (MAO) A and B] in the adolescent male rat substantia nigra. We hypothesized that adolescent testosterone would regulate sex steroid signaling through regulation of ER and AR mRNAs and through modulation of aromatase and 5α-reductase mRNA levels. Results We find ERα and AR in midbrain dopamine neurons in adolescent male rats, indicating that dopamine neurons are poised to respond to circulating sex steroids. We report that androgens (T and DHT) increase TH protein and increase COMT, MAOA and MAOB mRNAs in the adolescent male rat substantia nigra. We report that all three sex steroids increase AR mRNA. Differential action on ER pathways, with ERα mRNA down-regulation and ERβ mRNA up-regulation by testosterone was found. 5α reductase-1 mRNA was increased by AR activation, and aromatase mRNA was decreased by gonadectomy. Conclusions We conclude that increased testosterone at adolescence can shift the balance of sex steroid signaling to favor androgenic responses through promoting conversion of T to DHT and

  9. Effects of adolescent onset voluntary drinking followed by ethanol vapor exposure on subsequent ethanol consumption during protracted withdrawal in adult Wistar rats.

    PubMed

    Criado, Jose R; Ehlers, Cindy L

    2013-01-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. The objective of the present study was to determine whether a model of early onset adolescent ethanol drinking exposure that is followed by an ethanol vapor regimen during late adolescence and young adulthood leads to an increase in drinking in adulthood. In this model, initiation of voluntary ethanol drinking in adolescence, using a sweetened solution, was followed by an 8-wk intermittent ethanol vapor regimen in Wistar rats. A limited-access two-bottle choice paradigm was then used to measure intake of a 10% (w/v) ethanol solution. No differences in water intake (g/kg), total fluid intake (ml/kg) and body weight (g) were observed between air-exposed and ethanol-vapor exposed groups during the pre-vapor and post-vapor phases. The 8 weeks of ethanol vapor exposure was found to produce only a modest, but statistically significant, elevation of ethanol intake during the protracted withdrawal period, compared to air-exposed rats. A significant increase in ethanol preference ratio was also observed in ethanol-vapor exposed rats during the sucrose-fading phase, but not during the protracted withdrawal period. The findings from the present study suggest that in addition to alcohol exposure, environmental variables that impact appetitive as well as consumptive behaviors may be important in developing robust drinking effects that model, in animals, the increased risk for alcohol dependence seen in some human adolescents who begin drinking at an early age.

  10. The Interaction of Ethanol Ingestion and Social Interaction with an Intoxicated Peer on the Odor-Mediated Response to the Drug in Adolescent Rats

    PubMed Central

    Eade, Amber M.; Youngentob, Lisa M.; Youngentob, Steven L.

    2016-01-01

    Background Using a social transmission of food preference paradigm in rats, we previously demonstrated that ethanol exposure during adolescence, as either an observer (interaction with an intoxicated conspecific) or demonstrator (intragastric infusion with ethanol), altered the reflexive odor-mediated responses to the drug. The two modes of exposure were equivalent in the magnitude of their effects. Human adolescents, however, are likely to experience the drug in a social setting as both an ethanol observer and demonstrator. That is, both interacting with an intoxicated peer and experiencing ethanol’s post-ingestive consequences in conjunction with hematogenic olfaction. Therefore, we tested whether combined adolescent exposure as both an observer and demonstrator differed from either form of individual experience. Methods Beginning on postnatal day (P) 29, naïve rats received ethanol or water exposures in a social interaction paradigm as either an observer, a demonstrator or combined experience (where each animal in the interaction was, itself, an observer and demonstrator). Exposures occurred four times, once every 48 hours. On P37, the reflexive behavioral response to ethanol odor was tested, using whole-body plethysmography. Results The odor-mediated responses of adolescent ethanol observers, demonstrators and combined exposure animals all significantly differed from controls. Compared to controls, however, the magnitude of the behavioral effect was greatest in the combined exposure animals. Moreover, combined exposure as both an ethanol observer and demonstrator significantly differed from either form of individual ethanol experience. Conclusions Ethanol’s component chemosensory qualities are known to be central contributors to its acceptance and increases in the acceptability of ethanol’s odor, resulting from a social transmission experience, are predictive of enhanced ethanol avidity in adolescence. Our findings demonstrate that combined exposure as

  11. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats.

    PubMed

    Bowman, Rachel E; Luine, Victoria; Diaz Weinstein, Samantha; Khandaker, Hameda; DeWolf, Sarah; Frankfurt, Maya

    2015-03-01

    We have previously demonstrated that adolescent exposure of rats to bisphenol-A (BPA), an environmental endocrine disrupter, increases anxiety, impairs spatial memory, and decreases dendritic spine density in the CA1 region of the hippocampus (CA1) and medial prefrontal cortex (mPFC) when measured in adolescents in both sexes. The present study examined whether the behavioral and morphological alterations following BPA exposure during adolescent development are maintained into adulthood. Male and female, adolescent rats received BPA, 40μg/kg/bodyweight, or control treatments for one week. In adulthood, subjects were tested for anxiety and locomotor activity, spatial memory, non-spatial visual memory, and sucrose preference. Additionally, stress-induced serum corticosterone levels and dendritic spine density in the mPFC and CA1 were measured. BPA-treated males, but not females, had decreased arm visits on the elevated plus maze, but there was no effect on anxiety. Non-spatial memory, object recognition, was also decreased in BPA treated males, but not in females. BPA exposure did not alter spatial memory, object placement, but decreased exploration during the tasks in both sexes. No significant group differences in sucrose preference or serum corticosterone levels in response to a stress challenge were found. However, BPA exposure, regardless of sex, significantly decreased spine density of both apical and basal dendrites on pyramidal cells in CA1 but had no effect in the mPFC. Current data are discussed in relation to BPA dependent changes, which were present during adolescence and did, or did not, endure into adulthood. Overall, adolescent BPA exposure, below the current reference safe daily limit set by the U.S.E.P.A., leads to alterations in some behaviors and neuronal morphology that endure into adulthood.

  12. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats

    PubMed Central

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A.; Glenn, Melissa

    2016-01-01

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4 weeks on their respective diets, a subset of rats began 3 weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6 weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogens supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega −3 fatty acids have similar biological functions—affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies

  13. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats.

    PubMed

    Pavón, Francisco Javier; Marco, Eva María; Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  14. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats

    PubMed Central

    Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    2016-01-01

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  15. 5-HT2 receptor blockade exhibits 5-HT vasodilator effects via nitric oxide, prostacyclin and ATP-sensitive potassium channels in rat renal vasculature.

    PubMed

    García-Pedraza, J A; García, M; Martín, M L; Rodríguez-Barbero, A; Morán, A

    2016-04-01

    The aim of this study was to determine whether orally sarpogrelate (selective 5-HT2 antagonist) treatment (30 mg/kg/day; 14 days) could modify 5-HT renal vasoconstrictor responses, characterizing 5-HT receptors and mediator mechanisms involved in serotonergic responses in the in situ autoperfused rat kidney. Intra-arterial (i.a.) injections of 5-HT (0.00000125 to 0.1 μg/kg) decreased renal perfusion pressure (RPP) but did not affect the mean blood pressure (MBP). i.a. agonists 5-CT (5-HT1/7), CGS-12066B (5-HT1B), L-694,247 (5-HT1D) or AS-19 (5-HT7) mimicked renal 5-HT vasodilator effect. However, neither 8-OH-DPAT (5-HT1A) nor 1-phenylbiguanide (5-HT3) modified RPP. Moreover: (i) GR-55562 (5-HT1B antagonist) and L-NAME (nitric oxide synthase [NOS] inhibitor) blocked CGS-12066B-induced vasodilator response, (ii) LY310762 (5-HT1D antagonist) and indomethacin (non-selective cyclooxygenase inhibitor) blocked L-694,247-induced vasodilator response; (iii) SB-258719 (5-HT7 antagonist) and glibenclamide (ATP-sensitive K+ channel blocker) blocked AS-19-induced vasodilator response; and (iv) 5-HT- or 5-CT-elicited renal vasodilation was significantly blocked by the mixture of GR-55562 + LY310762 + SB-258719. Furthermore, eNOS and iNOS proteins and prostacyclin levels are overexpressed in sarpogrelate-treated rats. Our data suggest that 5-HT exerts renal vasodilator effect in the in situ autoperfused sarpogrelate-treated rat kidney, mediated by 5-HT1D, 5-HT1B and 5-HT7 receptors, involving cyclooxygenase-derived prostacyclin, nitric oxide synthesis/release and ATP-sensitive K+ channels, respectively.

  16. (1)H NMR-based metabolomics reveals neurochemical alterations in the brain of adolescent rats following acute methylphenidate administration.

    PubMed

    Quansah, Emmanuel; Ruiz-Rodado, Victor; Grootveld, Martin; Probert, Fay; Zetterström, Tyra S C

    2017-03-06

    The psychostimulant methylphenidate (MPH) is increasingly used in the treatment of attention deficit hyperactivity disorder (ADHD). While there is little evidence for common brain pathology in ADHD, some studies suggest a right hemisphere dysfunction among people diagnosed with the condition. However, in spite of the high usage of MPH in children and adolescents, its mechanism of action is poorly understood. Given that MPH blocks the neuronal transporters for dopamine and noradrenaline, most research into the effects of MPH on the brain has largely focused on these two monoamine neurotransmitter systems. Interestingly, recent studies have demonstrated metabolic changes in the brain of ADHD patients, but the impact of MPH on endogenous brain metabolites remains unclear. In this study, a proton nuclear magnetic resonance ((1)H NMR)-based metabolomics approach was employed to investigate the effects of MPH on brain biomolecules. Adolescent male Sprague Dawley rats were injected intraperitoneally with MPH (5.0 mg/kg) or saline (1.0 ml/kg), and cerebral extracts from the left and right hemispheres were analysed. A total of 22 variables (representing 13 distinct metabolites) were significantly increased in the MPH-treated samples relative to the saline-treated controls. The upregulated metabolites included: amino acid neurotransmitters such as GABA, glutamate and aspartate; large neutral amino acids (LNAA), including the aromatic amino acids (AAA) tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline; and metabolites associated with energy and cell membrane dynamics, such as creatine and myo-inositol. No significant differences in metabolite concentrations were found between the left and right cerebral hemispheres. These findings provide new insights into the mechanisms of action of the anti-ADHD drug MPH.

  17. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  18. Two Binges of Ethanol a Day Keep the Memory Away in Adolescent Rats: Key Role for GLUN2B Subunit

    PubMed Central

    Silvestre de Ferron, Benoit; Bennouar, Khaled-Ezaheir; Kervern, Myriam; Alaux-Cantin, Stéphanie; Robert, Alexandre; Rabiant, Kevin; Antol, Johann; Naassila, Mickaël

    2016-01-01

    Background: Binge drinking is common in adolescents, but the impact of only a few binges on learning and memory appears underestimated. Many studies have tested the effects of long and intermittent ethanol exposure on long-term synaptic potentiation, and whether long-term synaptic depression is affected remains unknown. Methods: We studied the effects of one (3g/kg, i.p.; blood ethanol content of 197.5±19mg/dL) or 2 alcohol intoxications (given 9 hours apart) on adolescent rat’s memory and synaptic plasticity in hippocampus slice after different delay. Results: Animals treated with 2 ethanol intoxications 48 hours before training phase in the novel object recognition task failed during test phase. As learning is related to NMDA-dependent mechanisms, we tested ketamine and found the same effect as ethanol, whereas D-serine prevented learning deficit. In hippocampus slice, NMDA-dependent long-term synaptic depression was abolished 48 hours after ethanol or ketamine but prevented after D-serine or in a low-Mg2+ recording medium. Long-term synaptic depression abolition was not observed 8 days after treatment. An i.p. treatment with MK-801, tetrahydroisoxazolopyridine, or muscimol was ineffective, and long-term synaptic potentiation, intrinsic excitability, and glutamate release remained unaffected. The input/ouput curve for NMDA-fEPSPs was shifted to the left 48 hours after the binges with a stronger contribution of GluN2B subunit, leading to a leftward shift of the Bienenstock-Cooper-Munro relationship. Interestingly, there were no cellular effects after only one ethanol injection. Conclusion: Two ethanol “binges” in adolescent rats are sufficient to reversibly abolish long-term synaptic depression and to evoke cognitive deficits via a short-lasting, repeated blockade of NMDA receptors only, inducing a change in the receptor subunit composition. Furthermore, ethanol effects developed over a 48-hour period of abstinence, indicating an important role of

  19. Semax attenuates the influence of neonatal maternal deprivation on the behavior of adolescent white rats.

    PubMed

    Volodina, M A; Sebentsova, E A; Glazova, N Y; Levitskaya, N G; Andreeva, L A; Manchenko, D M; Kamensky, A A; Myasoedov, N F

    2012-03-01

    Maternal deprivation in the early postnatal period significantly affects the behavior and development of different animals. Here we studied delayed effects of daily maternal deprivation (5 h/day) on physical development and behavior of white rats during postnatal days 1 to 14. Here we studied the possibility of reducing the negative consequences of deprivation by daily intranasal treatment with Semax, an analog of ACTH(4-10), in a dose of 0.05 mg/kg from postnatal days 15 to 28. It was found that maternal deprivation decelerated the growth of young rats, boosted physical activity and emotional reactivity in novel environment, and increased anxiety in one-month-old animals. Semax weakened the impact of deprivation on animal body weight and normalized the levels of anxiety in rats.

  20. Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic-pituitary-adrenal axis in adult and adolescent rats.

    PubMed

    Allen, Camryn D; Lee, Soon; Koob, George F; Rivier, Catherine

    2011-06-01

    Alcohol stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Part of this influence is likely exerted directly at the level of the corticotropin-releasing factor (CRF) gene, but intermediates may also play a role. Here we review the effect of alcohol on this axis, provide new data on the effects of binge drinking during adolescence, and argue for a role of catecholaminergic circuits. Indeed, acute injection of this drug activates brain stem adrenergic and noradrenergic circuits, and their lesion, or blockade of α1 adrenergic receptors significantly blunts alcohol-induced ACTH release. As alcohol can influence the HPA axis even once discontinued, and alcohol consumption in young people is associated with increased adult drug abuse (a phenomenon possibly mediated by the HPA axis), we determined whether alcohol consumption during adolescence modified this axis. The number of CRF-immunoreactive (ir) cells/section was significantly decreased in the central nucleus of the amygdala of adolescent self-administering binge-drinking animals, compared to controls. When another group of adolescent binge-drinking rats was administered alcohol in adulthood, the number of colocalized c-fos-ir and PNMT-ir cells/brain stem section in the C3 area was significantly decreased, compared to controls. As the HPA axis response to alcohol is blunted in adult rats exposed to alcohol vapors during adolescence, a phenomenon which was not observed in our model of self-administration, it is possible that the blood alcohol levels achieved in various models play a role in the long-term consequences of exposure to alcohol early in life. Collectively, these results suggest an important role of brain catecholamines in modulating the short- and long-term consequences of alcohol administration.

  1. Differential Contributions of Alcohol and Nicotine-Derived Nitrosamine Ketone (NNK) to White Matter Pathology in the Adolescent Rat Brain

    PubMed Central

    Tong, Ming; Yu, Rosa; Silbermann, Elizabeth; Zabala, Valerie; Deochand, Chetram; de la Monte, Suzanne M.

    2015-01-01

    Aim Epidemiologic studies have demonstrated high rates of smoking among alcoholics, and neuroimaging studies have detected white matter atrophy and degeneration in both smokers and individuals with alcohol-related brain disease (ARBD). These findings suggest that tobacco smoke exposure may be a co-factor in ARBD. The present study examines the differential and additive effects of tobacco-specific nitrosamine (NNK) and ethanol exposures on the structural and functional integrity of white matter in an experimental model. Methods Adolescent Long Evans rats were fed liquid diets containing 0 or 26% ethanol for 8 weeks. In weeks 3–8, rats were treated with nicotine-derived nitrosamine ketone (NNK) (2 mg/kg, 3×/week) or saline by i.p. injection. In weeks 7–8, the ethanol group was binge-administered ethanol (2 g/kg; 3×/week). Results Ethanol, NNK and ethanol + NNK caused striking degenerative abnormalities in white matter myelin and axons, with accompanying reductions in myelin-associated glycoprotein expression. Quantitative RT-PCR targeted array and heatmap analyses demonstrated that ethanol modestly increased, whereas ethanol + NNK sharply increased expression of immature and mature oligodendroglial genes, and that NNK increased immature but inhibited mature oligodendroglial genes. In addition, NNK modulated expression of neuroglial genes in favor of growth cone collapse and synaptic disconnection. Ethanol- and NNK-associated increases in FOXO1, FOXO4 and NKX2-2 transcription factor gene expression could reflect compensatory responses to brain insulin resistance in this model. Conclusion Alcohol and tobacco exposures promote ARBD by impairing myelin synthesis, maturation and integrity via distinct but overlapping mechanisms. Public health measures to reduce ARBD should target both alcohol and tobacco abuses. PMID:26373813

  2. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    PubMed

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  3. D1 receptor-mediated inhibition of medial prefrontal cortex neurons is disrupted in adult rats exposed to amphetamine in adolescence.

    PubMed

    Kang, S; Paul, K; Hankosky, E R; Cox, C L; Gulley, J M

    2016-06-02

    Amphetamine (AMPH) exposure leads to changes in behavior and dopamine receptor function in the prefrontal cortex (PFC). Since dopamine plays an important role in regulating GABAergic transmission in the PFC, we investigated if AMPH exposure induces long-lasting changes in dopamine's ability to modulate inhibitory transmission in the PFC as well as whether the effects of AMPH differed depending on the age of exposure. Male Sprague-Dawley rats were given saline or 3 mg/kg AMPH (i.p.) repeatedly during adolescence or adulthood and following a withdrawal period of up to 5 weeks (Experiment 1) or up to 14 weeks (Experiment 2), they were sacrificed for in vitro whole-cell recordings in layer V/VI of the medial PFC. We found that in brain slices from either adolescent- or adult-exposed rats, there was an attenuation of dopamine-induced increases in inhibitory synaptic currents in pyramidal cells. These effects did not depend on age of exposure, were mediated at least partially by a reduced sensitivity of D1 receptors in AMPH-treated rats, and were associated with an enhanced behavioral response to the drug in a separate group of rats given an AMPH challenge following the longest withdrawal period. Together, these data reveal a prolonged effect of AMPH exposure on medial PFC function that persisted for up to 14 weeks in adolescent-exposed animals. These long-lasting neurophysiological changes may be a contributing mechanism to the behavioral consequences that have been observed in those with a history of amphetamine abuse.

  4. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet.

    PubMed

    You, Jeong Soon; Lee, Yun Ju; Kim, Kyoung Soo; Kim, Sung Hoon; Chang, Kyung Ja

    2014-03-01

    Lotus (Nelumbo Nucifera) root, a well-known medicinal plant in Asia, is reported to have various therapeutic benefits, including anti-diabetes, anti-hypertension, and anti-hyperlipidaemia. We hypothesized that the ethanol extract of lotus root (ELR) would exhibit an anti-adipogenic effect in human pre-adipocytes as well as anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Treatment with ELR in human pre-adipocytes resulted in inhibition of lipid accumulation and attenuated expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor gamma and adipocyte marker genes, such as glucose transporter 4 and leptin. Administration of ELR resulted in a significant decrease in relative weights of adipose tissues in rats fed a high-fat diet. Consumption of a high-fat diet resulted in an increase in serum total cholesterol (TC) and triglyceride (TG) levels; however, administration of ELR resulted in a decrease in the levels of TC and TG. Administration of ELR resulted in a decrease in the level of serum leptin and insulin. Administration of ELR in rats fed a high-fat diet resulted in a decrease in hepatic thiobarbituric acid reactive substance content, elevated by a high-fat diet and an increase in superoxide dismutase activity and hepatic glutathione content. These results suggest that lotus root exerts anti-oxidant and anti-obesity effects and could be used as a functional and nutraceutical ingredient in combatting obesity-related diseases.

  5. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics.

    PubMed

    N'diaye, Marie; Warnecke, Andreas; Flytzani, Sevasti; Abdelmagid, Nada; Ruhrmann, Sabrina; Olsson, Tomas; Jagodic, Maja; Harris, Robert A; Guerreiro-Cacais, Andre Ortlieb

    2016-03-01

    Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3

  6. Effects of ethanol on social approach and 50 kHz ultrasonic vocalization production in adolescent male Sprague-Dawley rats.

    PubMed

    Willey, Amanda R; Spear, Linda P

    2014-05-01

    Low doses of ethanol have been shown to facilitate social behavior in adolescent rats. The present study sought to investigate whether this ethanol effect is associated with increases in the incentive salience of social stimuli when assessed via approach behavior toward a peer (separated from the experimental animal by a mesh barrier) and 50 kHz ultrasonic vocalization (USV) production in that context. A 0.5 g/kg ethanol dose was found to increase social approach/investigation of adolescent male Sprague-Dawley rats during the first 5 min of the 10 min test whereas 50 kHz USV production was elevated by 0.25 g/kg during the last 5 min of testing. 50 kHz USV production and social approach were generally not correlated, indicating a clear dissociation between these measures. This is the first study to demonstrate that ethanol-induced social facilitation in adolescents is associated with an ethanol-induced increase in the incentive salience of social stimuli.

  7. The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats--animal models of alcoholism.

    PubMed

    McBride, William J; Rodd, Zachary A; Bell, Richard L; Lumeng, Lawrence; Li, Ting-Kai

    2014-05-01

    The objective of this article is to review the literature on the utility of using the selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats in studies examining high alcohol drinking in adults and adolescents, craving-like behavior, and the co-abuse of alcohol with other drugs. The P line of rats meets all of the originally proposed criteria for a suitable animal model of alcoholism. In addition, the P rat exhibits high alcohol-seeking behavior, demonstrates an alcohol deprivation effect (ADE) under relapse drinking conditions, consumes amounts of ethanol during adolescence equivalent to those consumed in adulthood, and co-abuses ethanol and nicotine. The P line also exhibits excessive binge-like alcohol drinking, attaining blood alcohol concentrations (BACs) of 200 mg% on a daily basis. The HAD replicate lines of rats have not been as extensively studied as the P rats. The HAD1,2 rats satisfy several of the criteria for an animal model of alcoholism, e.g., these rats will voluntarily consume ethanol in a free-choice situation to produce BACs between 50 and 200 mg%. The HAD1,2 rats also exhibit an ADE under repeated relapse conditions, and will demonstrate similar levels of ethanol intake during adolescence as seen in adults. Overall, the P and HAD1,2 rats have characteristics attributed to an early onset alcoholic, and can be used to study various aspects of alcohol use disorders.

  8. Gene therapy with HSV1-sr39TK/GCV exhibits a stronger therapeutic efficacy than HSV1-TK/GCV in rat C6 glioma cells.

    PubMed

    Li, Lei-qing; Shen, Fang; Xu, Xiao-yan; Zhang, Hong; Yang, Xiao-feng; Liu, Wei-guo

    2013-01-01

    Although the combination of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) with ganciclovir (GCV) has been shown as a promising suicide gene treatment strategy for glioma, the almost immunodepressive dose of GCV required for its adequate in vivo efficacy has hampered its further clinical application. Therefore, In order to reduce the GCV dose required, we aim to compare the therapeutic efficacy of HSV1-sr39TK, an HSV1-TK mutant with increased GCV prodrug catalytic activity, with wildtype TK in C6 glioma cells. Accordingly, rat C6 glioma cells were first transfected with pCDNA-TK and pCDNA-sr39TK, respectively, and the gene transfection efficacy was verified by immunocytochemistry and western blot analysis. Then the in vivo sensitivity of these transfected C6-TK and C6-sr39TK cells to GCV was determined by 3-(4,5)-dimethylthiahiazo-(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) colorimetric assay and Hoechst-propidium iodide (PI) staining. Finally, a subcutaneously C6 xenograft tumor model was established in the nude mice to test the in vitro efficacy of TK/GCV gene therapy. Our results showed that, as compared with wildtype TK, HSV1-sr39TK/GCV demonstrated a stronger therapeutic efficacy against C6 glioma both in vitro and in vivo, which, by reducing the required GCV dose, might warrant its future use in the treatment of glioma under clinical setting.

  9. Toluene exposure during brain growth spurt and adolescence produces differential effects on N-methyl-D-aspartate receptor-mediated currents in rat hippocampus.

    PubMed

    Chen, Hwei-Hsien; Lin, Yi-Ruu; Chan, Ming-Huan

    2011-09-10

    Toluene, an industrial organic solvent, is voluntarily inhaled as drug of abuse. Because inhibition of N-methyl-d-aspartate (NMDA) receptors is one of the possible mechanisms underlying developmental neurotoxicity of toluene, the purpose of the present study was to examine the effects of toluene exposure during two major neurodevelopmental stages, brain growth spurt and adolescence, on NMDA receptor-mediated current. Rats were administered with toluene (500 mg/kg, i.p.) or corn oil daily over postnatal days (PN) 4-9 (brain growth spurt) or PN 21-26 (early adolescence). Intracellular electrophysiological recordings employing in CA1 pyramidal neurons in the hippocampal slices were performed during PN 30-38. Toluene exposure during brain growth spurt enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) by electrical stimulation, but impaired the paired-pulse facilitation and NMDA response by exogenous application of NMDA. Toluene exposure during adolescence resulted in an increase in NMDA receptor-mediated EPSCs and a decrease in exogenous NMDA-induced currents, while lack of any effect on paired-pulse facilitation. These findings suggest that toluene exposure during brain growth spurt and adolescence might result in an increase in synaptic NMDA receptor responsiveness and a decrease in extrasynaptic NMDA receptor responsiveness, while only toluene exposure during brain growth spurt can produce presynaptic modulation in CA1 pyramidal neurons. The functional changes in NMDA receptor-mediated transmission underlying developmental toluene exposure may lead to the neurobehavioral disturbances.

  10. Pre-exposure to cocaine or morphine attenuates taste avoidance conditioning in adolescent rats: Drug specificity in the US pre-exposure effect.

    PubMed

    Clasen, Matthew M; Hempel, Briana J; Riley, Anthony L

    2017-03-28

    Although the attenuating effects of drug history on conditioned taste avoidance (CTA) learning have been widely investigated in adults, such effects in adolescents have not been well characterized. Recent research has suggested that the display of the drug pre-exposure effect during adolescence may be drug dependent given that pre-exposure to ethanol attenuates subsequent conditioning, whereas pre-exposure to the classic emetic lithium chloride (LiCl) fails to do so. The present study began investigating the possible drug-dependent nature of the effects of drug pre-exposure by pre-exposing and conditioning adolescent male Sprague-Dawley rats to drugs from two additional classes, specifically psychostimulants (cocaine; Experiment 1) and opioids (morphine; Experiment 2). Consistent with prior work with ethanol (but not LiCl), prior exposure to both cocaine and morphine attenuated taste avoidance induced by these compounds. Although this work supports the view of drug-dependent pre-exposure effects on taste avoidance learning during adolescence, research is needed to assess its mechanisms.

  11. Comparison of Cannabinoid CB1 Receptor Binding in Adolescent and Adult Rats: A Positron Emission Tomography Study Using [18F]MK-9470

    PubMed Central

    Verdurand, Mathieu; Nguyen, Vu; Stark, Daniela; Zahra, David; Gregoire, Marie-Claude; Greguric, Ivan; Zavitsanou, Katerina

    2011-01-01

    Despite the important role of cannabinoid CB1 receptors (CB1R) in brain development, little is known about their status during adolescence, a critical period for both the development of psychosis and for initiation to substance abuse. In the present study, we assessed the ontogeny of CB1R in adolescent and adult rats in vivo using positron emission tomography with [18F]MK-9470. Analysis of covariance (ANCOVA) to control for body weight that would potentially influence [18F]MK-9470 values between the two groups revealed a main effect of age (F(1,109)=5.0, P = 0.02) on [18F]MK-9470 absolute binding (calculated as percentage of injected dose) with adult estimated marginal means being higher compared to adolescents amongst 11 brain regions. This finding was confirmed using in vitro autoradiography with [3H]CP55,940 (F(10,99)=140.1, P < 0.0001). This ontogenetic pattern, suggesting increase of CB1R during the transition from adolescence to adulthood, is the opposite of most other neuroreceptor systems undergoing pruning during this period. PMID:22187642

  12. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis.

    PubMed

    Abboussi, Oualid; Tazi, Abdelouahhab; Paizanis, Eleni; El Ganouni, Soumaya

    2014-05-01

    Several epidemiological studies show an increase in cannabis use among adolescents, especially in Morocco for being one of the major producers in the world. The neurobiological consequences of chronic cannabis use are still poorly understood. In addition, brain plasticity linked to ontogeny portrays adolescence as a period of vulnerability to the deleterious effects of drugs. The aim of this study was to investigate the behavioral neurogenic effects of chronic exposure to the cannabinoid agonist WIN55,212-2 during adolescence, by evaluating the emotional and cognitive performances, and the consequences on neurogenesis along the dorso-ventral axis of the hippocampus in adult rats. WIN55,212 was administered intraperitoneally (i.p.) once daily for 20 days to adolescent (27-30 PND) and adult Wistar rats (54-57 PND) at the dose of 1mg/kg. Following a 20 day washout period, emotional and cognitive functions were assessed by the Morris water maze test and the two-way active avoidance test. Twelve hours after, brains were removed and hippocampal neurogenesis was assessed using the doublecortin (DCX) as a marker for cell proliferation. Our results showed that chronic WIN55,212-2 treatment significantly increased thigmotaxis early in the training process whatever the age of treatment, induced spatial learning and memory deficits in adolescent but not adult rats in the Morris water maze test, while it had no significant effect in the active avoidance test during multitrial training in the shuttle box. In addition, the cognitive deficits assessed in adolescent rats were positively correlated to a decrease in the number of newly generated neurons in dorsal hippocampus. These data suggest that long term exposure to cannabinoids may affect more potently spatial learning and memory in adolescent compared to adult rats via a negative action on hippocampal plasticity.

  13. The dipeptidyl peptidase-4 inhibitor linagliptin exhibits time- and dose-dependent localization in kidney, liver, and intestine after intravenous dosing: results from high resolution autoradiography in rats.

    PubMed

    Greischel, Andreas; Binder, Rudolf; Baierl, Juergen

    2010-09-01

    Linagliptin is an orally active dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes and shows dose-dependent pharmacokinetics in rats and humans. With microscopic autoradiography, the dose dependence of cellular distribution of [(3)H]linagliptin-related radioactivity was investigated in kidney at 3 h after intravenous injection of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin. Furthermore, distribution of radioactivity in kidney, liver, and small intestine was investigated in relation to time (2 min, 3 h, and 192 h) after intravenous injection of 7.4 microg/kg [(3)H]linagliptin. The localization of radioactivity in the kidney at 3 h after administration of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin changed with increasing dose from cortical glomeruli and parts of proximal tubule parts to parts of medullar proximal tubule. In addition, the compound distribution in the kidney shifted with time after administration of 7.4 microg/kg [(3)H]linagliptin from glomeruli (2 min) to the lower parts of proximal tubules (192 h). The radioactivity within proximal tubules was located primarily in the brush border. In the liver, the radioactivity persisted mainly around the portal triads and in the bile duct from 2 min to 192 h. In the small intestine, the radioactivity shifted from the lamina propria (2 min) to the surface of the villi and/or intestinal lumen (192 h). In conclusion, the cellular distribution pattern of [(3)H]linagliptin-related radioactivity reflected the known distribution of DPP-4. Together with the persistence of binding, this result supports the high relevance of DPP-4 binding of linagliptin for its pharmacokinetics and pharmacodynamics.

  14. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats.

    PubMed

    Kerimoğlu, Gökçen; Hancı, Hatice; Baş, Orhan; Aslan, Ali; Erol, Hüseyin Serkan; Turgut, Alpgiray; Kaya, Haydar; Çankaya, Soner; Sönmez, Osman Fikret; Odacı, Ersan

    2016-11-01

    The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our

  15. Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats.

    PubMed

    Hamilton, G F; Criss, K J; Klintsova, A Y

    2015-08-01

    Developmental alcohol exposure in humans can produce a wide range of deficits collectively referred to as fetal alcohol spectrum disorders (FASD). FASD-related impairments in executive functioning later in life suggest long-term damage to the prefrontal cortex (PFC). In rodent neonates, moderate to high levels of alcohol exposure decreased frontal lobe brain size and altered medial PFC pyramidal neuron dendritic morphology. Previous research in our lab demonstrated that neonatal alcohol exposure decreased basilar dendritic complexity but did not affect spine density in Layer II/III pyramidal neurons in 26- to 30-day-old rats. The current study adds to the literature by evaluating the effect of neonatal alcohol exposure on mPFC Layer II/III basilar dendritic morphology in adolescent male rats. Additionally, it examines the potential for voluntary exercise to mitigate alcohol-induced deficits on mPFC dendritic complexity. An animal model of binge drinking during the third trimester of pregnancy was used. Rats were intubated with alcohol (alcohol-exposed, AE; 5.25 g kg(-1) day(-1)) on postnatal days (PD) 4-9; two control groups were included (suckle control and sham-intubated). Rats were anesthetized and perfused with heparinized saline solution on PD 42, and brains were processed for Golgi-Cox staining. Developmental alcohol exposure decreased spine density and dendritic complexity of basilar dendrites of Layer II/III neurons in the medial PFC (mPFC) compared to dendrites of control animals. Voluntary exercise increased spine density and dendritic length in AE animals resulting in elimination of the differences between AE and SH rats. Thus, voluntary exercise during early adolescence selectively rescued alcohol-induced morphological deficits in the mPFC.

  16. Neuropeptide Y expression confers benzo[a]pyrene induced anxiolytic like behavioral response during early adolescence period of male Wistar rats.

    PubMed

    Das, Saroj Kumar; Patri, Manorama

    2017-02-01

    Environmental neurotoxicant like benzo[a]pyrene (B[a]P) is known to induce neurobehavioral changes. Our previous reports address the adverse effect of B[a]P on the neurobehavioral responses and neuromorphology of sensitive brain regions in adolescent rats. Present study was conducted on male Wistar rat neonates at postnatal day 5 (PND5) to ascertain B[a]P induced anxiolytic like behavioral response could be an outcome of neuropeptide Y (NPY) overexpression in brain. Single intracisternal administration of B[a]P was carried out at PND5 to elucidate the role of NPY on neurobehavioral responses at PND30. The behavioral studies showed anxiolytic like effect of B[a]P in both light and dark box and elevated plus maze tests. Antioxidant assay involving glutathione peroxidase activity was significantly decreased where as lipid peroxidation was significantly augmented in both hippocampus and hypothalamus of B[a]P treated group as compared to naive and control. The neurotransmitter estimation by HPLC-ECD showed significant increase in 5-HT level in both hippocampus and hypothalamus of B[a]P treated group. Significant elevation in NPY expression was observed in both hippocampus and hypothalamus of B[a]P group. Intracellular Ca(2+) estimation using Fura-2AM by fluorometry showed that B[a]P induced increase in Ca(2+) influx was associated with augmented NPY expression in brain. As NPY has orexigenic effect, our result revealed that there was a significant increase in body weight at PND30 following B[a]P administration to rat neonates at PND5. These findings suggested that NPY overexpression in brain regions might be associated with anxiolytic like behavioral response and orexigenic effect in rats following single intracisternal B[a]P administration. Future research directing towards understanding the signaling cascades of B[a]P induced biochemical and neuromorphological alteration might address the independent pathway which induce neurodegeneration despite NPY overexpression in

  17. Changes in gene expression within the extended amygdala following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats.

    PubMed

    McBride, William J; Kimpel, Mark W; McClintick, Jeanette N; Ding, Zheng-Ming; Edenberg, Howard J; Liang, Tiebing; Rodd, Zachary A; Bell, Richard L

    2014-02-01

    The objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by male adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30% ethanol for 3 one-h sessions/day for 5 consecutive days/week for 3 weeks. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5-3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR=0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in biological processes involved with cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce changes in neuronal function.

  18. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence.

    PubMed

    İkinci, Ayşe; Mercantepe, Tolga; Unal, Deniz; Erol, Hüseyin Serkan; Şahin, Arzu; Aslan, Ali; Baş, Orhan; Erdem, Havva; Sönmez, Osman Fikret; Kaya, Haydar; Odacı, Ersan

    2016-09-01

    The effects of devices emitting electromagnetic field (EMF) on human health have become the subject of intense research among scientists due to the rapid increase in their use. Children and adolescents are particularly attracted to the use of devices emitting EMF, such as mobile phones. The aim of this study was therefore to investigate changes in the spinal cords of male rat pups exposed to the effect of 900MHz EMF. The study began with 24 Sprague-Dawley male rats aged 3 weeks. Three groups containing equal numbers of rats were established-control group (CG), sham group (SG) and EMF group (EMFG). EMFG rats were placed inside an EMF cage every day between postnatal days (PD) 21 and 46 and exposed to the effect of 900MHz EMF for 1h. SG rats were kept in the EMF cage for 1h without being exposed to the effect of EMF. At the end of the study, the spinal cords in the upper thoracic region of all rats were removed. Tissues were collected for biochemistry, light microscopy (LM) and transmission electron microscopic (TEM) examination. Biochemistry results revealed significantly increased malondialdehyde and glutathione levels in EMFG compared to CG and SG, while SG and EMFG catalase and superoxide dismutase levels were significantly higher than those in CG. In EMFG, LM revealed atrophy in the spinal cord, vacuolization, myelin thickening and irregularities in the perikarya. TEM revealed marked loss of myelin sheath integrity and invagination into the axon and broad vacuoles in axoplasm. The study results show that biochemical alterations and pathological changes may occur in the spinal cords of male rats following exposure to 900MHz EMF for 1h a day on PD 21-46.

  19. Ethics on Exhibit

    ERIC Educational Resources Information Center

    Vick, Randy M.

    2011-01-01

    This article discusses ethical questions raised by an exhibition of work by an artist with a history of mental illness and the exhibition's relevance to art therapy and “outsider art” discourse on the subject. Considerations for how such an exhibit could be handled had the circumstances included an art therapist and art therapy client are…

  20. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  1. Longitudinal 1H MR spectroscopy of rat forebrain from infancy to adulthood reveals adolescence as a distinctive phase of neurometabolite development

    PubMed Central

    Morgan, Jonathan J.; Kleven, Gale A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Ronca, April E.

    2013-01-01

    The present study represents the first longitudinal, within-subject 1H MRS investigation of the developing rat brain spanning infancy, adolescence, and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for cortex, thalamus, and hypothalamus, on postnatal days 7, 35, and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine, and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment change across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine, and glycerophosphocholine + phosphocholine observed between postnatal days 35 and 60. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence, and adulthood. PMID:23322706

  2. Chronic restricted access to 10% sucrose solution in adolescent and young adult rats impairs spatial memory and alters sensitivity to outcome devaluation.

    PubMed

    Kendig, Michael D; Boakes, Robert A; Rooney, Kieron B; Corbit, Laura H

    2013-08-15

    Although increasing consumption of sugar drinks is recognized as a significant public health concern, little is known about (a) the cognitive effects resulting from sucrose consumption; and (b) whether the long-term effects of sucrose consumption are more pronounced for adolescents. This experiment directly compared performance on a task of spatial learning and memory (the Morris Water Maze) and sensitivity to outcome devaluation following 28 days of 2-h/day access to a 10% sucrose solution in adolescent and young-adult Wistar rats. Sucrose groups developed elevated fasting blood glucose levels after the diet intervention, despite drawing <15% of calories from sucrose and gaining no more weight than controls. In subsequent behavioral testing, sucrose groups were impaired on the Morris Water Maze, with some residual deficits in spatial memory observed more than 6 weeks after the end of sucrose exposure. Further, results from outcome devaluation testing indicated that in the older cohort of rats, those fed sucrose showed reduced sensitivity to devaluation of the outcome, suggestive of differences in instrumental learning following sucrose exposure. Data provide strong evidence that sucrose consumption can induce deficits in spatial cognition and reward-oriented behavior at levels that resemble patterns of sugar drink consumption in young people, and which can remain long after exposure.

  3. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder.

    PubMed

    Somkuwar, Sucharita S; Kantak, Kathleen M; Dwoskin, Linda P

    2015-08-30

    Attention deficit hyperactivity disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in spontaneously hypertensive rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax)× first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD.

  4. The effects of exercise on adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain growth spurt.

    PubMed

    Helfer, Jennifer L; Goodlett, Charles R; Greenough, William T; Klintsova, Anna Y

    2009-10-19

    Exposure to alcohol during the brain growth spurt results in impaired cognition and learning in adulthood. This impairment is accompanied by permanent structural changes in the hippocampal formation. Exercise improves performance on hippocampal-dependent learning and memory tasks and increases adult neurogenesis in the rat hippocampal dentate gyrus. The present study examined the effects of wheel running during adolescence on dentate gyrus cell proliferation and neurogenesis after postnatal binge-like alcohol exposure. On postnatal days (PD) 4-9, pups were either intubated with alcohol in a binge-like manner, sham intubated, or reared normally. On PD30-42, all animals were randomly assigned to two adolescent conditions: wheel running or inactive control. Animals were injected with BrdU every day between PD32 and PD42 and perfused on PD42 or PD72. In inactive control animals at both PD42 and PD72, cell proliferation and neurogenesis did not differ between postnatal treatment groups. Wheel running significantly increased the number of BrdU-labeled cells on PD42 in all three postnatal treatments. On PD72, only the normal controls showed significant increases in survival of newly generated cells resulting from the wheel running. These results indicate that adolescent wheel running can induce comparable increases in cell proliferation and neurogenesis in alcohol-exposed and control rats, but the long-term survival of those newly generated cells is impaired relative normal controls. Exercise may provide a means to stimulate neurogenesis, with implications for amelioration of hippocampal-dependent learning impairments associated with alcohol exposure. However, benefits requiring long-lasting survival of the newly generated cells will depend on identifying ways to promote survival.

  5. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of Attention Deficit Hyperactivity Disorder

    PubMed Central

    Somkuwar, Sucharita S.; Kantak, Kathleen M.; Dwoskin, Linda P.

    2015-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in Spontaneously Hypertensive Rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax) x first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD. PMID:25680322

  6. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  7. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.

  8. An Exhibit for Touching.

    ERIC Educational Resources Information Center

    Hunt, Susan

    1979-01-01

    An exhibit designed for visually handicapped persons presented by the Kalamazoo (Michigan) Institute of Art included bronze sculptures and oil paintings from the institute's permanent collection. (CL)

  9. Acetyl-L-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain.

    PubMed

    Alves, E; Binienda, Z; Carvalho, F; Alves, C J; Fernandes, E; de Lourdes Bastos, M; Tavares, M A; Summavielle, T

    2009-01-23

    3,4-Methylenedioximethamphetamine (MDMA, ecstasy) is a worldwide abused stimulant drug, with persistent neurotoxic effects and high prevalence among adolescents. The massive release of 5-HT from pre-synaptic storage vesicles induced by MDMA followed by monoamine oxidase B (MAO-B) metabolism, significantly increases oxidative stress at the mitochondrial level. l-Carnitine and its ester, acetyl-l-carnitine (ALC), facilitate the transport of long chain free fatty acids across the mitochondrial membrane enhancing neuronal anti-oxidative defense. Here, we show the potential of ALC against the neurotoxic effects of MDMA exposure. Adolescent male Wistar rats were assigned to four groups: control saline solution, isovolumetric to the MDMA solution, administered i.p.; MDMA (4x10 mg/kg MDMA, i.p.); ALC/MDMA (100 mg/kg 30 min of ALC prior to MDMA, i.p.) and ALC (100 mg/kg, i.p.). Rats were killed 2 weeks after exposure and brains were analyzed for lipid peroxidation, carbonyl formation, mitochondrial DNA (mtDNA) deletion and altered expression of the DNA-encoded subunits of the mitochondrial complexes I (NADH dehydrogenase, NDII) and IV (cytochrome c oxidase, COXI) from the respiratory chain. Levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) were also assessed. The present work is the first to successfully demonstrate that pretreatment with ALC exerts effective neuroprotection against the MDMA-induced neurotoxicity at the mitochondrial level, reducing carbonyl formation, decreasing mtDNA deletion, improving the expression of the respiratory chain components and preventing the decrease of 5-HT levels in several regions of the rat brain. These results indicate potential benefits of ALC application in the prevention and treatment of neurodegenerative disorders.

  10. Differential Contributions of Alcohol and the Nicotine-Derived Nitrosamine Ketone (NNK) to Insulin and Insulin-Like Growth Factor Resistance in the Adolescent Rat Brain

    PubMed Central

    Tong, Ming; Yu, Rosa; Deochand, Chetram; de la Monte, Suzanne M.

    2015-01-01

    Aims Since epidemiologic studies suggest that tobacco smoke toxins, e.g. the nicotine-derived nitrosamine ketone (NNK) tobacco-specific nitrosamine, can be a co-factor in alcohol-related brain disease (ARBD), we examined the independent and additive effects of alcohol and NNK exposures on spatial learning/memory, and brain insulin/IGF signaling, neuronal function and oxidative stress. Methods Adolescent Long Evans rats were fed liquid diets containing 0 or 26% caloric ethanol for 8 weeks. During weeks 3–8, rats were treated with i.p. NNK (2 mg/kg, 3×/week) or saline. In weeks 7–8, ethanol groups were binge-administered ethanol (2 g/kg; 3×/week). In week 8, at 12 weeks of age, rats were subjected to Morris Water Maze tests. Temporal lobes were used to assess molecular indices of insulin/IGF resistance, oxidative stress and neuronal function. Results Ethanol and NNK impaired spatial learning, and NNK ± ethanol impaired memory. Linear trend analysis demonstrated worsening performance from control to ethanol, to NNK, and then ethanol + NNK. Ethanol ± NNK, caused brain atrophy, inhibited insulin signaling through the insulin receptor and Akt, activated GSK-3β, increased protein carbonyl and 3-nitrotyrosine, and reduced acetylcholinesterase. NNK increased NTyr. Ethanol + NNK had synergistic stimulatory effects on 8-iso-PGF-2α, inhibitory effects on p-p70S6K, tau and p-tau and trend effects on insulin-like growth factor type 1 (IGF-1) receptor expression and phosphorylation. Conclusions Ethanol, NNK and combined ethanol + NNK exposures that begin in adolescence impair spatial learning and memory in young adults. The ethanol and/or NNK exposures differentially impair insulin/IGF signaling through neuronal growth, survival and plasticity pathways, increase cellular injury and oxidative stress and reduce expression of critical proteins needed for neuronal function. PMID:26373814

  11. A Teaching Aids Exhibition.

    ERIC Educational Resources Information Center

    Mahanja, Salah

    1985-01-01

    Describes an exhibition for the benefit of teachers of English in Arab Primary Schools, which was prepared by third-year students at the Teachers College for Arab Teachers. The exhibition included games, songs, audiovisual aids, crossword puzzles, vocabulary, spelling booklets, preposition aids, and worksheet and lesson planning aids. (SED)

  12. Adolescent d-Amphetamine Treatment in a Rodent Model of ADHD: Pro-Cognitive Effects in Adolescence without an Impact on Cocaine Cue Reactivity in Adulthood

    PubMed Central

    Jordan, Chloe J.; Taylor, Danielle M.; Dwoskin, Linda P.; Kantak, Kathleen M.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is comorbid with cocaine abuse. Whereas initiating ADHD medication in childhood does not alter later cocaine abuse risk, initiating medication during adolescence may increase risk. Preclinical work in the Spontaneously Hypertensive Rat (SHR) model of ADHD found that adolescent methylphenidate increased cocaine self-administration in adulthood, suggesting a need to identify alternatively efficacious medications for teens with ADHD. We examined effects of adolescent d-amphetamine treatment on strategy set shifting performance during adolescence and on cocaine self-administration and reinstatement of cocaine-seeking behavior (cue reactivity) during adulthood in male SHR, Wistar-Kyoto (inbred control), and Wistar (outbred control) rats. During the set shift phase, adolescent SHR needed more trials and had a longer latency to reach criterion, made more regressive errors and trial omissions, and exhibited slower and more variable lever press reaction times. d-Amphetamine improved performance only in SHR by increasing choice accuracy and decreasing errors and latency to criterion. In adulthood, SHR self-administered more cocaine, made more cocaine-seeking responses, and took longer to extinguish lever responding than control strains. Adolescent d-amphetamine did not alter cocaine self-administration in adult rats of any strain, but reduced cocaine seeking during the first of seven reinstatement test sessions in adult SHR. These findings highlight utility of SHR in modeling cognitive dysfunction and comorbid cocaine abuse in ADHD. Unlike methylphenidate, d-amphetamine improved several aspects of flexible learning in adolescent SHR and did not increase cocaine intake or cue reactivity in adult SHR. Thus, adolescent d-amphetamine was superior to methylphenidate in this ADHD model. PMID:26467602

  13. Adolescent D-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood.

    PubMed

    Jordan, Chloe J; Taylor, Danielle M; Dwoskin, Linda P; Kantak, Kathleen M

    2016-01-15

    Attention-deficit/hyperactivity disorder (ADHD) is comorbid with cocaine abuse. Whereas initiating ADHD medication in childhood does not alter later cocaine abuse risk, initiating medication during adolescence may increase risk. Preclinical work in the Spontaneously Hypertensive Rat (SHR) model of ADHD found that adolescent methylphenidate increased cocaine self-administration in adulthood, suggesting a need to identify alternatively efficacious medications for teens with ADHD. We examined effects of adolescent d-amphetamine treatment on strategy set shifting performance during adolescence and on cocaine self-administration and reinstatement of cocaine-seeking behavior (cue reactivity) during adulthood in male SHR, Wistar-Kyoto (inbred control), and Wistar (outbred control) rats. During the set shift phase, adolescent SHR needed more trials and had a longer latency to reach criterion, made more regressive errors and trial omissions, and exhibited slower and more variable lever press reaction times. d-Amphetamine improved performance only in SHR by increasing choice accuracy and decreasing errors and latency to criterion. In adulthood, SHR self-administered more cocaine, made more cocaine-seeking responses, and took longer to extinguish lever responding than control strains. Adolescent d-amphetamine did not alter cocaine self-administration in adult rats of any strain, but reduced cocaine seeking during the first of seven reinstatement test sessions in adult SHR. These findings highlight utility of SHR in modeling cognitive dysfunction and comorbid cocaine abuse in ADHD. Unlike methylphenidate, d-amphetamine improved several aspects of flexible learning in adolescent SHR and did not increase cocaine intake or cue reactivity in adult SHR. Thus, adolescent d-amphetamine was superior to methylphenidate in this ADHD model.

  14. Communicating Science through Exhibitions

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; Harold, J.; Morrow, C.

    It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. There are many ways for scientists to help develop science exhibitions. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). Two of its exhibitions, Space Weather Center and MarsQuest, are currently on tour. Another exhibition, Alien Earths, is in development. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. MarsQuest is a 5000 square-foot traveling exhibition. The exhibit's second 3-year tour began this January at the Detroit Science Center. It is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. The 3,000 square-foot traveling exhibition, called Alien Earths, will bring origins-related research and discoveries to students and the American public. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Besides the exhibits, SSI is also developing interactive web sites based on exhibit themes. New technologies are transforming the Web from a static medium to an interactive environment with tremendous

  15. Supplemental choline during the periweaning period protects against trace conditioning impairments attributable to post-training ethanol exposure in adolescent rats.

    PubMed

    Hunt, Pamela S

    2012-08-01

    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development.

  16. D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task.

    PubMed

    Bizot, Jean-Charles; Cogrel, Nicolas; Massé, Fabienne; Chauvin, Virgile; Brault, Léa; David, Sabrina; Trovero, Fabrice

    2015-09-01

    The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.

  17. Loneliness and Adolescent Alcoholism.

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1988-01-01

    Examines factors contributing to and determining adolescent drinking disorders, synthesizing ideas from Fromm-Reishmann, Fromm, and Erikson. Discusses ideas within the framework of Freud's speculative postulation of the "oceanic feeling." Addresses empirically oriented treatment of concrete features exhibited in adolescent alcoholism. (Author/BH)

  18. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  19. Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus.

    PubMed

    Kaptan, Zülal; Akgün-Dar, Kadriye; Kapucu, Ayşegül; Dedeakayoğulları, Huri; Batu, Şule; Üzüm, Gülay

    2015-08-27

    Calorie restriction (CR) is argued to positively affect general health, longevity and normally occurring age-related reduction of cognition. Obesity during adolescence may adversely affect cognition in adulthood but, to date effects of CR have not been investigated. We hypothesized that feeding with as low as 15% low-calorie diet (LCD) during adolescence would increase hippocampal and prefrontal BDNF (Brain-derived neurotrophic factor) levels, proliferative cells and neuron numbers in dentate gyrus (DG), thus positively affecting spatial memory in adulthood. Spatial learning-memory function was improved in adult female Sprague-Dawley rats fed with LCD during adolescence. PCNA (Proliferating cell nuclear antigen-cell proliferation marker) expressing cells and NeuN (Neuronal nuclear antigen-neuron marker) expressing cells in hippocampus DG which are critically involved in memory were increased. Hippocampus and prefrontal cortex BDNF levels were increased while serum glucose levels and level of lipid peroxidation indicator malondialdehyde in serum and hippocampus were reduced. Our unique results suggest that improved cognition in adult rats with LCD feeding during adolescence may result from the increase of neurogenesis and BDNF. These findings reveal the importance of nutrition in adolescence for cognitive function in adulthood. Our results may be useful for further studies aiming to treat age-related cognitive impairments.

  20. Test Control Center exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Have you ever wondered how the engineers at John C. Stennis Space Center in Hancock County, Miss., test fire a Space Shuttle Main Engine? The Test Control Center exhibit at StenniSphere can answer your questions by simulating the test firing of a Space Shuttle Main Engine. A recreation of one of NASA's test control centers, the exhibit explains and portrays the 'shake, rattle and roar' that happens during a real test firing.

  1. Communicating Science through Exhibitions

    NASA Astrophysics Data System (ADS)

    Dusenbery, Paul

    2005-04-01

    It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. Science exhibitions also provide a marvelous opportunity for scientists to become engaged in the exhibit development process. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). The focus of this presentation will be on two of its exhibit projects: MarsQuest (on tour for four years) and Alien Earths (its tour began early in 2005). MarsQuest is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. Alien Earths will bring origins-related research and discoveries to students and the American public. It has four interrelated exhibit areas: Our Place in Space, Star Birth, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. SSI is also developing interactive web sites based on exhibit themes. New technologies are transforming the Web from a static medium to an interactive environment with tremendous potential for informal education and inquiry-based investigations. This talk will focus on the role informal science projects play in effectively communicating science to a broad, public audience.

  2. Low dose nicotine treatment during early adolescence increases subsequent cocaine reward.

    PubMed

    McQuown, Susan C; Belluzzi, James D; Leslie, Frances M

    2007-01-01

    Adolescence is a critical period for the initiation of drug use, starting with tobacco and alcohol and progressing to marijuana and other illicit drugs. These findings have led to the suggestion that tobacco and alcohol are 'gateway' drugs that sensitize maturing reward pathways to the effects of illicit substances such as cocaine. To test this hypothesis, we have examined whether low-dose nicotine pretreatment alters acquisition of cocaine self-administration in adolescents more than in adults. Male and female Sprague-Dawley rats, aged postnatal day (P) 28 or P86, were given two daily intravenous injections of nicotine (0.03 mg/kg/0.1 ml) or saline for 4 days. At P32 and P90, rats were placed in self-administration chambers and tested for acquisition of cocaine (0.2 or 0.5 mg/kg/inj) for 5 days. Data were collapsed across cocaine dose and sex since there was no significant effect of these variables. Adolescent rats pretreated with nicotine exhibited significantly greater cocaine-reinforced responding as compared to saline controls or adults (p<0.01). This drug pretreatment effect did not generalize to all rewards, since nicotine did not increase responding for sucrose pellets in adolescents. These findings provide evidence that the adolescent brain is uniquely vulnerable to the effects of nicotine on subsequent drug reward.

  3. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats.

    PubMed

    Cruz Seara, Fernando de Azevedo; Barbosa, Raiana Andrade Quintanilha; Oliveira, Dahienne Ferreira de; Silva, Diorney Luiz Souza Gran da; Carvalho, Adriana Bastos; Ferreira, Andrea Claudia Freitas; Nascimento, José Hamilton Matheus; Olivares, Emerson Lopes

    2017-02-05

    Chronic administration of anabolic androgenic steroids (AAS) in adult rats results in cardiac hypertrophy and increased susceptibility to myocardial ischemia/reperfusion (IR) injury. Molecular analyses demonstrated that hyperactivation of type 1 angiotensin II (AT1) receptor mediates cardiac hypertrophy induced by AAS and also induces down-regulation of myocardial ATP-sensitive potassium channel (KATP), resulting in loss of exercise-induced cardioprotection. Exposure to AAS during adolescence promoted long-term cardiovascular dysfunctions, such as dysautonomia. We tested the hypothesis that chronic AAS exposure in the pre/pubertal phase increases the susceptibility to myocardial ischemia/reperfusion (IR) injury in adult rats. Male Wistar rats (26day old) were treated with vehicle (Control, n=12) or testosterone propionate (TP) (AAS, 5mgkg(-1) n=12) 5 times/week during 5 weeks. At the end of AAS exposure, rats underwent 23days of washout period and were submitted to euthanasia. Langendorff-perfused hearts were submitted to IR injury and evaluated for mechanical dysfunctions and infarct size. Molecular analysis was performed by mRNA levels of α-myosin heavy chain (MHC), βMHC and brain-derived natriuretic peptide (BNP), ryanodine receptor (RyR2) and sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) by quantitative RT-PCR (qRT-PCR). The expression of AT1 receptor and KATP channel subunits (Kir6.1 and SURa) was analyzed by qRT-PCR and Western Blot. NADPH oxidase (Nox)-related reactive oxygen species generation was assessed by spectrofluorimetry. The expression of antioxidant enzymes was measured by qRT-PCR in order to address a potential role of redox unbalance. AAS exposure promoted long-term cardiac hypertrophy characterized by increased expression of βMHC and βMHC/αMHC ratio. Baseline derivative of pressure (dP/dt) was impaired by AAS exposure. Postischemic recovery of mechanical properties was impaired (decreased left ventricle [LV] developed pressure and

  4. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats

    PubMed Central

    Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz

    2014-01-01

    Background and PurposeMany young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ9-tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Experimental ApproachMale and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. Key ResultsTHC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a ‘normalization’ to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Conclusions and ImplicationsAdolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24236988

  5. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.

    PubMed

    Yoo, Sang Bae; Kim, Bom-Taeck; Kim, Jin Young; Ryu, Vitaly; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2013-06-01

    This study was conducted to examine if fluoxetine, a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor, would reverse adverse behavioral effects of neonatal maternal separation in female rats. Sprague-Dawley pups were separated from dam daily for 3h during postnatal day (PND) 1-14 (maternal separation; MS) or left undisturbed (non-handled; NH). Female NH and MS pups received intraperitoneal injection of fluoxetine (10mg/kg) or vehicle daily from PND 35 until the end of the whole experimental period. Rats were either subjected to behavioral tests during PND 44-54, or sacrificed for neurochemical analyses during PND 43-45. Daily food intake and weight gain of both NH and MS pups were suppressed by fluoxetine, with greater effects in MS pups. MS experience increased immobility and decrease swimming in forced swim test. Swimming was increased, although immobility was not significantly decreased, in MS females by adolescence fluoxetine. However, adolescence fluoxetine increased immobility during forced swim test and decreased time spent in open arms during elevated plus maze test in NH females. Fluoxetine normalized MS-induced decrease of the raphe 5-HT levels and increased 5-HT metabolism in the hippocampus in MS females, and increased the hypothalamic 5-HT both in NH and MS. Fluoxetine decreased the raphe 5-HT and increased the plasma corticosterone in NH females. Results suggest that decreased 5-HTergic activity in the raphe nucleus is implicated in the pathophysiology of depression-like behaviors, and increased 5-HTergic activities in the raphe-hippocampus axis may be a part of anti-depressant efficacy of fluoxetine, in MS females. Also, an extra-hypothalamic 5-HTergic activity may contribute to the increased anorectic efficacy of fluoxetine in MS females. Additionally, decreased 5-HT in the raphe and elevated plasma corticosterone may be related with fluoxetine-induced depression- and/or anxiety-like behaviors in NH females.

  6. Swamp to Space exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The menacing-looking alligator is really harmless. It is one of the realistic props to help convince visitors that the feel of the swamp is real in StenniSphere's Swamp to Space exhibit at John C. Stennis Space Center in Hancock County, Miss. The historical section of the Swamp to Space exhibit tells the story of why and how Stennis Space Center came to be. It also pays tribute to the families who moved their homes to make way for the space age in Mississippi.

  7. Adolescent development

    MedlinePlus

    Development - adolescent; Growth and development - adolescent ... During adolescence, children develop the ability to: Understand abstract ideas. These include grasping higher math concepts, and developing moral ...

  8. Pictures at an Exhibition.

    ERIC Educational Resources Information Center

    Kunz, Walter S., Jr.

    1997-01-01

    Describes the Youth Art Month exhibit in Howard County (Maryland) where students submitted their art focusing on school buildings and their interiors. Their art reveals concerns and desires about overcrowding, space utilization, school building height, outside lighting, solitude needs, and visual stimulation. The artwork is discussed in terms of…

  9. Exhibitions in Sight.

    ERIC Educational Resources Information Center

    Wasserman, Burton

    1978-01-01

    Early in the eighteenth century, Pompeii was discovered, a city that had been hidden for sixteen centuries by volcanic lava. There is a traveling exhibition of the sculptures, friezes, mosaics, and paintings being shown around the United States. Described is the history and contents of "Pompeii--A.D. 79." (RK)

  10. 1989 Architectural Exhibition Winners.

    ERIC Educational Resources Information Center

    School Business Affairs, 1990

    1990-01-01

    Winners of the 1989 Architectural Exhibition sponsored annually by the ASBO International's School Facilities Research Committee include the Brevard Performing Arts Center (Melbourne, Florida), the Capital High School (Santa Fe, New Mexico), Gage Elementary School (Rochester, Minnesota), the Lakewood (Ohio) High School Natatorium, and three other…

  11. Exhibition in Sight

    ERIC Educational Resources Information Center

    Wasserman, Burton

    1978-01-01

    Ludwig Mies van der Rohe is known primarily as an architect. However, he also designed chairs and tables. Discusses an exhibit held in New York City a few months ago which showed how well the famous architect achieved his goals in the area of furniture design. (Author/RK)

  12. Effects of adolescent nicotine and SR 147778 (Surinabant) administration on food intake, somatic growth and metabolic parameters in rats.

    PubMed

    Lamota, Laura; Bermudez-Silva, Francisco Javier; Marco, Eva-María; Llorente, Ricardo; Gallego, Araceli; Rodríguez de Fonseca, Fernando; Viveros, María-Paz

    2008-01-01

    Tobacco smoking and obesity are worldwide important health problems with a growing impact in adolescent and young adults. One of the consequences of nicotine withdrawal is an increase in body weight that can act as a risk factor to relapse. Experimental therapies with a cannabinoid receptor antagonist have been recently proposed for both cigarette smoking and complicated overweight. In the present study, we aimed to investigate metabolic and hormonal effects of chronic nicotine treatment (during treatment and in abstinence) in an animal model of adolescence as well as to address the pharmacological effects of the novel selective CB1 cannabinoid receptor antagonist, SR 147778 (Surinabant). Adolescence (postnatal days 37-44) and/or post-adolescence (postnatal days 45-59) administration of Surinabant reduced body weight gain, as well as plasma glucose levels and triglycerides. The drug also reduced insulin and leptin secretion, and increased adiponectin and corticosterone levels. The effects showed sexual dimorphisms and, in general, were more pronounced in females. Chronic exposure to nicotine (0.8 mg/kg), from postnatal days 30-44 did not result in overt effects on food intake or body weight gain. However, it altered certain responses to the administration of Surinabant, both when the two drugs were given simultaneously and when Surinabant was administered during the post-adolescence period, along nicotine withdrawal. The present results indicate that the endogenous cannabinoid system is active as a metabolic modulator during adolescence and that nicotine exposure can induce long-lasting effects on metabolic regulation, altering cannabinoid modulation of energy expenditure and metabolism.

  13. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ⁹-THC) in adult female rats.

    PubMed

    Winsauer, Peter J; Filipeanu, Catalin M; Bailey, Evangeline M; Hulst, Jerielle L; Sutton, Jessie L

    2012-09-01

    Marijuana abuse during adolescence may alter its abuse liability during adulthood by modifying the interoceptive (discriminative) stimuli produced, especially in females due to an interaction with ovarian hormones. To examine this possibility, either gonadally intact or ovariectomized (OVX) female rats received 40 intraperitoneal injections of saline or 5.6 mg/kg of Δ⁹-THC daily during adolescence, yielding 4 experimental groups (intact/saline, intact/Δ⁹-THC, OVX/saline, and OVX/Δ⁹-THC). These groups were then trained to discriminate Δ⁹-THC (0.32-3.2 mg/kg) from saline under a fixed-ratio (FR) 20 schedule of food presentation. After a training dose was established for the subjects in each group, varying doses of Δ⁹-THC were substituted for the training dose to obtain dose-effect (generalization) curves for drug-lever responding and response rate. The results showed that: 1) the OVX/saline group had a substantially higher mean response rate under control conditions than the other three groups, 2) both OVX groups had higher percentages of THC-lever responding than the intact groups at doses of Δ⁹-THC lower than the training dose, and 3) the OVX/Δ⁹-THC group was significantly less sensitive to the rate-decreasing effects of Δ⁹-THC compared to other groups. Furthermore, at sacrifice, western blot analyses indicated that chronic Δ⁹-THC in OVX and intact females decreased cannabinoid type-1 receptor (CB1R) levels in the striatum, and decreased phosphorylation of cyclic adenosine monophosphate response element binding protein (p-CREB) in the hippocampus. In contrast to the hippocampus, chronic Δ⁹-THC selectively increased p-CREB in the OVX/saline group in the striatum. Extracellular signal-regulated kinase (ERK) was not significantly affected by either hormone status or chronic Δ⁹-THC. In summary, these data in female rats suggest that cannabinoid abuse by adolescent human females could alter their subsequent responsiveness to cannabinoids

  14. Pro-social 50-kHz ultrasonic communication in rats: post-weaning but not post-adolescent social isolation leads to social impairments—phenotypic rescue by re-socialization

    PubMed Central

    Seffer, Dominik; Rippberger, Henrike; Schwarting, Rainer K. W.; Wöhr, Markus

    2015-01-01

    Rats are highly social animals and social play during adolescence has an important role for social development, hence post-weaning social isolation is widely used to study the adverse effects of juvenile social deprivation and to induce behavioral phenotypes relevant to neuropsychiatric disorders, like schizophrenia. Communication is an important component of the rat's social behavior repertoire, with ultrasonic vocalizations (USV) serving as situation-dependent affective signals. High-frequency 50-kHz USV occur in appetitive situations and induce approach behavior, supporting the notion that they serve as social contact calls; however, post-weaning isolation effects on the behavioral changes displayed by the receiver in response to USV have yet to be studied. We therefore investigated the impact of post-weaning isolation on socio-affective information processing as assessed by means of our established 50-kHz USV radial maze playback paradigm. We showed that post-weaning social isolation specifically affected the behavioral response to playback of pro-social 50-kHz but not alarm 22-kHz USV. While group-housed rats showed the expected preference, i.e., approach, toward 50-kHz USV, the response was even stronger in short-term isolated rats (i.e., 1 day), possibly due to a higher level of social motivation. In contrast, no approach was observed in long-term isolated rats (i.e., 4 weeks). Importantly, deficits in approach were reversed by peer-mediated re-socialization and could not be observed after post-adolescent social isolation, indicating a critical period for social development during adolescence. Together, these results highlight the importance of social experience for affiliative behavior, suggesting a critical involvement of play behavior on socio-affective information processing in rats. PMID:25983681

  15. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows the Starship 2040 leaving the Marshall Space Flight Center (MSFC) for the exhibit site. Developed by the Space Transportation Directorate at MSFC, the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit, automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids and emergency and safety systems, are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  16. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows onlookers viewing displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  17. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows Justin Varnadore, son of a Marshall TV employee, at the controls of one of the many displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  18. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels.

    PubMed

    Hopkins, M E; Nitecki, R; Bucci, D J

    2011-10-27

    It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (brain-derived neurotrophic factor [BDNF] mRNA/protein, neurogenesis, long-term potentiation [LTP]). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. Likewise, few studies have compared the effects of exercising during adulthood versus adolescence. This is particularly important since exercise may capitalize on the peak of neural plasticity observed during adolescence, resulting in a different pattern of behavioral and neurobiological effects. The present study addressed these gaps in the literature by comparing the effects of 4 weeks of voluntary exercise (wheel running) during adulthood or adolescence on novel object recognition and BDNF levels in the perirhinal cortex (PER) and hippocampus (HP). Exercising during adulthood improved object recognition memory when rats were tested immediately after 4 weeks of exercise, an effect that was accompanied by increased BDNF levels in PER and HP. When rats were tested again 2 weeks after exercise ended, the effects of exercise on recognition memory and BDNF levels were no longer present. Exercising during adolescence had a very different pattern of effects. First, both exercising and non-exercising rats could discriminate between novel and familiar objects immediately after the exercise regimen ended; furthermore there was no group difference in BDNF levels. Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was

  19. Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany an associative learning deficit.

    PubMed

    Garske, Anna K; Lawyer, Chloe R; Peterson, Brittni M; Illig, Kurt R

    2013-01-01

    The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.

  20. Adolescent Changes in Dopamine D1 Receptor Expression in Orbitofrontal Cortex and Piriform Cortex Accompany an Associative Learning Deficit

    PubMed Central

    Garske, Anna K.; Lawyer, Chloe R.; Peterson, Brittni M.; Illig, Kurt R.

    2013-01-01

    The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning. PMID:23437091

  1. Online Exhibits & Concept Maps

    NASA Astrophysics Data System (ADS)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  2. Adolescent Images of Adolescence.

    ERIC Educational Resources Information Center

    Falchikov, Nancy

    1989-01-01

    Examined extent to which Scottish adolescents (N=40) were influenced by negative images of adolescence present in the culture, investigating self-images by means of Q sort. Eleven factors emerged from analysis, six of which met criterion that distinguishes common factors. Little evidence was found to suggest that adolescents were influenced by…

  3. Light alcohol intake during adolescence induces alcohol addiction in a neurodevelopmental model of schizophrenia.

    PubMed

    Jeanblanc, Jérôme; Balguerie, Kevin; Coune, Fabien; Legastelois, Rémi; Jeanblanc, Virginie; Naassila, Mickaël

    2015-05-01

    Schizophrenia is a mental disorder characterized by a series of positive, negative or cognitive symptoms but with also the particularity of exhibiting a high rate of co-morbid use of drugs of abuse. While more than 80% of schizophrenics are smokers, the second most consumed drug is alcohol, with dramatic consequences on frequency and intensity of psychotic episodes and on life expectancy. Here we investigated the impact of light alcohol intake during adolescence on the subsequent occurrence of alcohol addiction-like behavior in neonatal ventral hippocampal lesion (NVHL) rats, a neurodevelopmental model of schizophrenia. Our findings demonstrated an increased liability to addictive behaviors in adult NVHL rats after voluntary alcohol intake during adolescence. NVHL rats displayed several signs of alcohol use disorder such as a loss of control over alcohol intake and high motivation to consume alcohol, associated with a higher resistance to extinction. In addition, once NVHL rats relapsed, they maintained higher drinking levels than controls. We finally showed that the anti-addictive drug naltrexone is efficient in reducing excessive alcohol intake in NVHL rats. Our results are in accordance with epidemiological studies underlying the particular vulnerability to alcohol addiction after adolescent exposure to alcohol and highlight the fact that schizophrenic subjects may be particularly at risk even after light alcohol consumption. Based on these results, it seems particularly relevant to prevent early onset of alcohol use in at-risk subjects and thus to reduce the incidence of co-morbid alcohol abuse in psychotic patients.

  4. Space Shuttle Cockpit exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  5. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows the Starship 2040 on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  6. Behavioral effects of dopamine receptor inactivation during the adolescent period: age-dependent changes in dorsal striatal D2High receptors

    PubMed Central

    McDougall, Sanders A.; Valentine, Joseph M.; Gonzalez, Ashley E.; Humphrey, Danielle E.; Widarma, Crystal B.; Crawford, Cynthia A.

    2014-01-01

    Rationale Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats. Objective The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats, and whether alterations in D2High receptors are responsible for this effect. Methods In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100% dimethylsulphoxide, DMSO) were bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(−)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2 specific binding and D2High receptors using [3H]-domperidone. Results Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups, while increasing the proportion of D2High receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2High receptors than adolescent or adult rats. Conclusions DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2High receptors. PMID:24287603

  7. Adverse effects in lumbar spinal cord morphology and tissue biochemistry in Sprague Dawley male rats following exposure to a continuous 1-h a day 900-MHz electromagnetic field throughout adolescence.

    PubMed

    Kerimoğlu, Gökçen; Aslan, Ali; Baş, Orhan; Çolakoğlu, Serdar; Odacı, Ersan

    2016-12-01

    Cell phones, an indispensable element of daily life, are today used at almost addictive levels by adolescents. Adolescents are therefore becoming increasingly exposed to the effect of the electromagnetic field (EMF) emitted by cell phones. The purpose of this study was to investigate the effect of exposure to a 900-MHz EMF throughout adolescence on the lumbar spinal cord using histopathological, immunohistochemical and biochemical techniques. Twenty-four Sprague Dawley (28.3-43.9g) aged 21days were included in the study. These were divided equally into three groups - control (CG), sham (SG) and electromagnetic (ELMAG). No procedure was performed on the CG rats until the end of the study. SG and ELMAG rats were kept inside an EMF cage (EMFC) for 1h a day every day at the same time between postnatal days 22 and 60. During this time, ELMAG rats were exposed to the effect of a 900-MHz EMF, while the SG rats were kept in the EMFC without being exposed to EMF. At the end of the study, the lumbar regions of the spinal cords of all rats in all groups were extracted. Half of each extracted tissue was stored at -80°C for biochemical analysis, while the other half was used for histopathological and immunohistochemical analyses. In terms of histopathology, a lumbar spinal cord with normal morphology was observed in the other groups, while morphological irregularity in gray matter, increased vacuolization and infiltration of white matter into gray matter were pronounced in the ELMAG rats. The cytoplasm of some neurons in the gray matter was shrunken and stained dark, and vacuoles were observed in the cytoplasms. The apoptotic index of glia cells and neurons were significantly higher in ELMAG compared to the other groups. Biochemical analysis revealed a significantly increased MDA value in ELMAG compared to CG, while SOD and GSH levels decreased significantly. In conclusion, our study results suggest that continuous exposure to a 900-MHz EMF for 1h a day through all stages of

  8. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the “Two Hit” Hypothesis for the Development of Schizophrenia

    PubMed Central

    Dalton, Victoria S.; Verdurand, Mathieu; Walker, Adam; Hodgson, Deborah M.; Zavitsanou, Katerina

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days starting on postnatal day (PND) 35. Hippocampal and cortical 5HT1AR binding was quantified autoradiographically using [3H]8-OH-DPAT, in late adolescent (PND 55), young adult (PND 65) and adult (PND 90) rats. Descendants of poly I:C treated rats showed significant increases of 15–18% in 5HT1AR in the hippocampus (CA1) compared to controls at all developmental ages. Offspring of poly I:C treated rats exposed to HU210 during adolescence exhibited even greater elevations in 5HT1AR (with increases of 44, 29, and 39% at PNDs 55, 65, and 90). No effect of HU210 alone was observed. Our results suggest a synergistic effect of prenatal infection and adolescent cannabinoid exposure on the integrity of the serotoninergic system in the hippocampus that may provide the neurochemical substrate for abnormal hippocampal-related functions relevant to schizophrenia. PMID:23738203

  9. Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age.

    PubMed

    Slotkin, Theodore A; MacKillop, Emiko A; Rudder, Charles L; Ryde, Ian T; Tate, Charlotte A; Seidler, Frederic J

    2007-05-01

    Nicotine is a neuroteratogen that disrupts neurodevelopment and synaptic function, with vulnerability extending into adolescence. We assessed the permanence of effects in rats on indices of neural cell number and size, and on acetylcholine and serotonin (5HT) systems, conducting assessments at 6 months of age, after prenatal nicotine exposure, adolescent exposure, or sequential exposure in both periods. For prenatal nicotine, indices of cell number and size showed few abnormalities by 6 months, but there were persistent deficits in cerebrocortical choline acetyltransferase activity and hemicholinium-3 binding to the presynaptic choline transporter, a pattern consistent with cholinergic hypoactivity; these effects were more prominent in males than females. The expression of 5HT receptors also showed permanent effects in males, with suppression of the 5HT(1A) subtype and upregulation of 5HT(2) receptors. In addition, cell signaling through adenylyl cyclase showed heterologous uncoupling of neurotransmitter responses. Nicotine exposure in adolescence produced lasting effects that were similar to those of prenatal nicotine. However, when animals were exposed to prenatal nicotine and received nicotine subsequently in adolescence, the adverse effects then extended to females, whereas the net effect in males was similar to that of prenatal nicotine by itself. Our results indicate that prenatal or adolescent nicotine exposure evoke permanent changes in synaptic function that transcend the recovery of less-sensitive indices of structural damage; further, prenatal exposure sensitizes females to the subsequent adverse effects of adolescent nicotine, thus creating a population that may be especially vulnerable to the lasting behavioral consequences of nicotine intake in adolescence.

  10. Rat epididymal sperm exhibit on dithiothreitol treatment in vitro quantifiable differences in patterns of light scatter, uptake of 14C-iodoacetamide and binding of ethidium bromide to DNA.

    PubMed

    Aravindan, G R; Krishnamurthy, H; Moudgal, N R

    1995-12-01

    The extent to which chromatin of rat caput (CAP), corpus (COR), cauda (CAU) spermatozoa undergo condensation and compaction is known to be a function of progressive increase in the formation of inter- as well as intra-protamine disulphide bridges during their transit through the epididymis. Relative compaction undergone by the nuclear chromatin of these sperm populations was studied by monitoring their susceptibility to in vitro decondensation induced by varying concentrations (0, 0.01, 1, 5, 10, 50 mM) of disulphide reducing agent, dithiothreitol (DTT) after an initial exposure to 0.01% papain. Following this treatment and staining with the nucleic acid specific fluorochrome, ethidium bromide (EB), it was observed that irrespective of the epididymal region from which they were collected, spermatozoa exhibited DTT dose-dependent (a) increase in nuclear size as seen under fluorescence microscopic examination, (b) decrease in flow cytometrically quantifiable light scatter parameters--forward scatter (FSc, 'nuclear size') and side scatter (SSc, nuclear 'granularity'), (c) increase in individual cell EB binding when analyzed by DNA flow cytometry, and (d) increase in thiol specific 14C-iodoacetamide (14C-IA) uptake. The decrease in both FSc and SSc occurring in spite of actual increase in nuclear size has been attributed to increase in translucency of spermatozoan nuclei consequent to decondensation. The FSc, SSc and EB bindability were studied by monitoring both the channels of maximal cell concentration detected in the flow cytograms as well as by digitally quantitating the numbers of cells within specific channels (1-64, 65-128, 129-192 and 193-256) of the flow cytogram. The latter indicated a measure of the variability in the response of populations of sperm within each sample to DTT induced decondensation. At any given concentration of DTT, especially between 5-10 mM, the differences observed between sperms of different regions were consistent and significant (P

  11. Periadolescent rats (P41-50) exhibit increased susceptibility to D-methamphetamine-induced long-term spatial and sequential learning deficits compared to juvenile (P21-30 or P31-40) or adult rats (P51-60).

    PubMed

    Vorhees, Charles V; Reed, Tracy M; Morford, LaRonda L; Fukumura, Masao; Wood, Sandra L; Brown, Carrie A; Skelton, Matthew R; McCrea, Anne E; Rock, Stephanie L; Williams, Michael T

    2005-01-01

    We have previously shown that P11-20 treatment with d-methamphetamine (MA) induces impaired spatial navigation in the Morris water maze (MWM), whereas P1-10 treatment does not. Little is known about the long-term behavioral consequences of MA during juvenile, adolescent, and early adult brain development. In dose-response experiments, we tested successive 10-day intervals of exposure to MA in rats (P21-30, P31-40, P41-50, and P51-60; four doses per day). MA dosing prior to P21 produces little or no toxicity; however, we observed an increased toxicity with advancing age. Across-age comparisons revealed no MWM acquisition or Cincinnati water maze (CWM) effects after MA treatment on P21-30 (2.5-10 mg/kg/dose), P31-40 (1.25-7.5 mg/kg/dose), or P51-60 (1.25-5.0 mg/kg/dose); however, significantly impaired MWM acquisition was observed after P41-50 MA treatment at the highest dose (6.25 mg/kg/dose). Learning in the CWM was also impaired in this group. No effects were seen at 1.25, 2.5, or 5 mg/kg/dose following P41-50 MA treatment. MWM reversal learning trials after P41-50 treatment showed a trend towards longer latency in all MA dose groups, but no effect on double-reversal trials. Reversal and double-reversal also showed no effects at the other exposure ages. No differences in straight channel swimming or cued learning in the MWM were seen after MA treatment at any exposure age. P41-50 is the periadolescent stage of brain development in rodents. The effects observed at this age may suggest a previously unrecognized period of susceptibility for MA-induced cognitive deficits.

  12. Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia.

    PubMed

    Gama, Clarissa S; Canever, Lara; Panizzutti, Bruna; Gubert, Carolina; Stertz, Laura; Massuda, Raffael; Pedrini, Mariana; de Lucena, David F; Luca, Renata D; Fraga, Daiane B; Heylmann, Alexandra S; Deroza, Pedro F; Zugno, Alexandra I

    2012-11-01

    Omega-3 has shown efficacy to prevent schizophrenia conversion in ultra-high risk population. We evaluated the efficacy of omega-3 in preventing ketamine-induced effects in an animal model of schizophrenia and its effect on brain-derived neurotrophic factor (BDNF). Omega-3 or vehicle was administered in Wistar male rats, both groups at the 30th day of life for 15days. Each group was split in two to receive along the following 7days ketamine or saline. Locomotor and exploratory activities, memory test and social interaction between pairs were evaluated at the 52nd day of life. Prefrontal-cortex, hippocampus and striatum tissues were extracted right after behavioral tasks for mRNA BDNF expression analysis. Bloods for serum BDNF were withdrawn 24h after the end of behavioral tasks. Locomotive was increased in ketamine-treated group compared to control, omega-3 and ketamine plus omega-3 groups. Ketamine group had fewer contacts and interaction compared to other groups. Working memory and short and long-term memories were significantly impaired in ketamine group compared to others. Serum BDNF levels were significantly higher in ketamine plus omega-3 group. There was no difference between groups in prefrontal-cortex, hippocampus and striatum for mRNA BDNF expression. Administration of omega-3 in adolescent rats prevents positive, negative and cognitive symptoms in a ketamine animal model of schizophrenia. Whether these findings are consequence of BDNF increase it is unclear. However, this study gives compelling evidence for larger clinical trials to confirm the use of omega-3 to prevent schizophrenia and for studies to reinforce the beneficial role of omega-3 in brain protection.

  13. Impaired growth and force production in skeletal muscles of young partially pancreatectomized rats: a model of adolescent type 1 diabetic myopathy?

    PubMed

    Gordon, Carly S; Serino, Antonio S; Krause, Matthew P; Campbell, Jonathan E; Cafarelli, Enzo; Adegoke, Olasunkanmi A J; Hawke, Thomas J; Riddell, Michael C

    2010-11-17

    This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15-20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers.

  14. Adult anxiety-related behavior of rats following consumption during late adolescence of alcohol alone and in combination with caffeine.

    PubMed

    Hughes, Robert N

    2011-06-01

    During late adolescence (postnatal days, PNDs, 45-55), male and female hooded rats were exposed to alcohol (1.14-1.33 g/kg/day), caffeine (27.03-27.22 mg/kg/day) or alcohol and caffeine together (1.20-1.34 g/kg/day alcohol plus 23.85-26.48 mg/kg/day caffeine) via their drinking water. The rats' anxiety-related behavior was then assessed on reaching mid adulthood at PND120 in a light-dark box and an open field. For males only, alcohol alone led to increased entries of the light-dark box and (compared with water- or caffeine-exposed subjects) open-field rearing. Alcohol and caffeine combined also increased entries of the light-dark box light compartment and open-field ambulation for males only. The drug combination led to more male ambulation than for alcohol alone, and higher occupancy of the center squares of the apparatus than for males in any other group. Although alcohol alone had no subsequent effects on female behavior, alcohol and caffeine combined led to fewer entries of and less time spent in the light-dark box side then females in any other group. The drug combination also led to less female ambulation in the open field compared with either water- or caffeine-exposed females. The results were interpreted as sex-related potentiation by caffeine of alcohol's developmental effects that resulted in lower levels of adult anxiety in male, but higher levels in females. The possible significance of this outcome for humans, especially females, was discussed.

  15. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats.

    PubMed

    Arigesavan, Kaninathan; Sudhandiran, Ganapasam

    2015-05-29

    Chronic inflammation is one of the remarkable etiologic factors for various human ailments including cancer. The well known hypothesis is that persistent inflammation in colon can increase the risk of colorectal cancer (CRC). In this study, a pharmacological evaluation of carvacrol, a phenolic monoterpene constituent of essential oils produced from aromatic plant Oreganum vulgarea sp. on colitis associated colon cancer (CACC) induced by 1,2 Dimethylhydrazine (DMH) and dextran sodium sulfate (DSS) in male Fischer 344 rat model was studied. F344 rats were given three subcutaneous injections of DMH (40 mg/kg body wt) in the first week and were given free access to drinking water containing 1% DSS for the next one week followed by 7-14 days of water as three cycles. Carvacrol was administrated before and after tumor induction at a concentration of 50 mg/kg body weight (o.p). Carvacrol treated groups promotes the endogenous antioxidant system and suppress the inflammation in DMH/DSS induced animals. An increased antioxidant status and restoration of histological lesions in the inflamed colonic mucosa was observed in carvacrol treated rats. This effect was confirmed biochemically by reducing free-radical accumulation and suppressing expression of pro-inflammatory mediators. In this study, Carvacrol significantly increased the anti-oxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) glutathione (GSH) levels and reduced lipid peroxides (LPO), myeloperoxidase (MPO) and nitric oxide (NO) as compared to DMH/DSS induced rats. These dramatic changes facilitate the suppression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), and interleukin-1 beta (IL-1β) in CACC induced rats. Taken together, these findings suggest that Carvacrol may play a beneficial role in DMH/DSS induced experimental rat model and serve as an excellent dietary antioxidant as well as anti-inflammatory agent. It may represent novel therapeutic interventions

  16. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: interaction with a brief, daily maternal separation.

    PubMed

    Cannizzaro, Carla; Plescia, Fulvio; Martire, Maria; Gagliano, Mauro; Cannizzaro, Gaspare; Mantia, Giacoma; Cannizzaro, Emanuele

    2006-04-25

    Perinatal manipulations can lead to neurobehavioural changes in the progeny. In this study we investigated, in adolescent male rat offspring, the consequences of a single, intense prenatal stress induced by a 120 min-maternal immobilization at gestational day 16, and of a daily, brief maternal separation from postnatal day 2 until 21, on: unconditioned fear/anxiety-like behaviour in open field and in elevated plus-maze; learning performance in the "Can test", a non-aversive spatial and tactile/visual task; corticosterone plasma levels under basal and stress-induced conditions. Our results indicate that both prenatal stress and maternal separation procedures decrease emotionality and enhance learning performance. Maternal separation potentiates prenatal stress-induced effects in enhancing learning performance. Both basal and stress-induced corticosterone plasma levels are reduced following prenatal stress, maternal separation and the combination of two procedures. These findings suggest that a single, intense prenatal stress can enhance the adaptive stress-related responses in the progeny, probably due to the involvement of maternal factors. The synergistic effect of prenatal stress and maternal separation on learning performance may be due to a further damping of hypothalamic-pituitary-adrenal axis response in the progeny that better cope with the task administered.

  17. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    PubMed

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicat