Science.gov

Sample records for adoptive t-cell transfer

  1. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells.

    PubMed

    Theil, A; Wilhelm, C; Kuhn, M; Petzold, A; Tuve, S; Oelschlägel, U; Dahl, A; Bornhäuser, M; Bonifacio, E; Eugster, A

    2017-02-01

    Regulatory T cell (Treg ) therapy has been exploited in autoimmune disease, solid organ transplantation and in efforts to prevent or treat graft-versus-host disease (GVHD). However, our knowledge on the in-vivo persistence of transfused Treg is limited. Whether Treg transfusion leads to notable changes in the overall Treg repertoire or whether longevity of Treg in the periphery is restricted to certain clones is unknown. Here we use T cell receptor alpha chain sequencing (TCR-α-NGS) to monitor changes in the repertoire of Treg upon polyclonal expansion and after subsequent adoptive transfer. We applied TCR-α-NGS to samples from two patients with chronic GVHD who received comparable doses of stem cell donor derived expanded Treg . We found that in-vitro polyclonal expansion led to notable repertoire changes in vitro and that Treg cell therapy altered the peripheral Treg repertoire considerably towards that of the infused cell product, to different degrees, in each patient. Clonal changes in the peripheral blood were transient and correlated well with the clinical parameters. We suggest that T cell clonotype analyses using TCR sequencing should be considered as a means to monitor longevity and fate of adoptively transferred T cells.

  2. The use of endogenous T cells for adoptive transfer.

    PubMed

    Yee, Cassian

    2014-01-01

    Adoptive T-cell therapy involves the ex vivo enrichment and expansion of tumor-reactive T cells for infusion. As an immune-based approach, adoptive therapy has become an increasingly attractive modality for the treatment of patients with cancer due to its potential for high specificity, non-cross resistance with conventional therapies, and promise of long-term immunoprotection. In recent years, a resurgence in discoveries underlying T-cell recognition, tumor immune evasion, and T-cell memory and differentiation coupled with the development of several enabling technologies have facilitated a renewed focus in the field of adoptive therapy and its transition to the clinical arena as a treatment modality for patients with cancer. In this review, endogenous T cells derived from peripheral blood or tumor sites will be presented as a source of effector cells for adoptive therapy and strategies to isolate, manipulate, and enhance the function of antigen-specific T cells in vitro and to augment their in vivo efficacy and persistence by host immunomodulation are presented in the context of an ever-increasing inventory of preclinical and clinically available reagents. Optimizing the combination of adoptive cellular therapy and other immune-based and conventional approaches will herald a new generation of research and clinical opportunities for cancer immunotherapy.

  3. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates.

    PubMed

    Berger, Carolina; Jensen, Michael C; Lansdorp, Peter M; Gough, Mike; Elliott, Carole; Riddell, Stanley R

    2008-01-01

    The adoptive transfer of antigen-specific T cells that have been expanded ex vivo is being actively pursued to treat infections and malignancy in humans. The T cell populations that are available for adoptive immunotherapy include both effector memory and central memory cells, and these differ in phenotype, function, and homing. The efficacy of adoptive immunotherapy requires that transferred T cells persist in vivo, but identifying T cells that can reproducibly survive in vivo after they have been numerically expanded by in vitro culture has proven difficult. Here we show that in macaques, antigen-specific CD8(+) T cell clones derived from central memory T cells, but not effector memory T cells, persisted long-term in vivo, reacquired phenotypic and functional properties of memory T cells, and occupied memory T cell niches. These results demonstrate that clonally derived CD8+ T cells isolated from central memory T cells are distinct from those derived from effector memory T cells and retain an intrinsic capacity that enables them to survive after adoptive transfer and revert to the memory cell pool. These results could have significant implications for the selection of T cells to expand or to engineer for adoptive immunotherapy of human infections or malignancy.

  4. The adoptive transfer of cultured T cells for patients with metastatic melanoma.

    PubMed

    Yang, James C

    2013-01-01

    T cells have been shown to be capable of rejecting a patient's tumor. Weak responses to current vaccines and the toxicity of exogenously administered cytokines limit the intensity of the T-cell response that can be actively generated in vivo. Adoptive T-cell transfer enhances an intrinsically weak immune response to cancer by activating and expanding tumor reactive T cells in vitro and manipulating the environment of the host at the time of transfer. One can frequently find tumor-reactive T cells in metastatic lesions in patients with melanoma, and expand them in vitro for readministration. When successful, this adoptive cellular immunotherapy has resulted in sustainable curative outcomes. Subsequently, the applicability of adoptive T-cell transfer has been greatly expanded by the development of methods to genetically engineer open-repertoire human T-cells to confer tumor reactivity. This re-direction of T-cell specificity can be achieved by introducing a variety of receptors that ligate tumor-associated antigens and then trigger the normal activation mechanism of T cells. Future T-cell engineering will add a new dimension by reprogramming T-cell functions for optimal tumor rejection. The antigens recognized by T cells, the techniques to procure and grow tumor reactive T cells, the conditioning of the recipient to optimize efficacy, and the results of clinical protocols are reviewed herein.

  5. Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects

    PubMed Central

    Kujawski, Maciej; Zhang, Chunyan; Herrmann, Andreas; Reckamp, Karen; Scuto, Anna; Jensen, Michael; Deng, Jiehui; Forman, Stephen; Figlin, Robert; Yu, Hua

    2010-01-01

    Adoptive cell therapy with engineered T cells to improve natural immune response and antitumor functions has shown promise for treating cancer. However, the requirement for extensive ex vivo manipulation of T cells and the immunosuppressive effects of the tumor microenvironment limit this therapeutic modality. In the present study, we investigated the possibility to circumvent these limitations by engineering Stat3-deficient CD8+ T cells or by targeting Stat3 in the tumor microenvironment. We show that ablating Stat3 in CD8+ T cells prior to their transfer allows their efficient tumor infiltration and robust proliferation, resulting in increased tumor antigen-specific T cell activity and tumor growth inhibition. For potential clinical translation, we combined adoptive T cell therapy with an FDA-approved tyrosine kinase inhibitor, sunitinib, in renal cell carcinoma and melanoma tumor models. Sunitinib inhibited Stat3 in dendritic cells and T cells, reduced conversion of transferred Foxp3− T cells to tumor-associated T regulatory cells while increasing transferred CD8+ T cell infiltration and activation at the tumor site, leading to inhibition of primary tumor growth. These data demonstrate that adoptively transferred T cells can be expanded and activated in vivo either by engineering Stat3 silenced T cells or by targeting Stat3 systemically with small-molecule inhibitors. PMID:21118964

  6. Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination

    PubMed Central

    Redeker, Anke; Arens, Ramon

    2016-01-01

    Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. Clinical benefit after ACT has been obtained in treatment of infection, various hematological malignancies, and some solid tumors; however, due to poor functionality and persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid tumors is often marginal. Hence, much effort is undertaken to improve T cell function and persistence in ACT and significant progress is being made. Herein, we will review strategies to improve ACT success rates in the treatment of cancer and infection. We will deliberate on the most favorable phenotype for the tumor-specific T cells that are infused into patients and on how to obtain T cells bearing this phenotype by applying novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence after transfer into patients and how these factors can be manipulated by means of providing costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and vaccination. Incorporation of these T cell stimulation strategies and combinations of the different treatment modalities are likely to improve clinical response rates further. PMID:27656185

  7. Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination.

    PubMed

    Redeker, Anke; Arens, Ramon

    2016-01-01

    Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. Clinical benefit after ACT has been obtained in treatment of infection, various hematological malignancies, and some solid tumors; however, due to poor functionality and persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid tumors is often marginal. Hence, much effort is undertaken to improve T cell function and persistence in ACT and significant progress is being made. Herein, we will review strategies to improve ACT success rates in the treatment of cancer and infection. We will deliberate on the most favorable phenotype for the tumor-specific T cells that are infused into patients and on how to obtain T cells bearing this phenotype by applying novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence after transfer into patients and how these factors can be manipulated by means of providing costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and vaccination. Incorporation of these T cell stimulation strategies and combinations of the different treatment modalities are likely to improve clinical response rates further.

  8. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.

    PubMed

    Houot, Roch; Schultz, Liora Michal; Marabelle, Aurélien; Kohrt, Holbrook

    2015-10-01

    Tumor immunotherapy has had demonstrable efficacy in patients with cancer. The most promising results have been with T-cell-based therapies. These include adoptive cell transfer of tumor-infiltrating lymphocytes, genetically engineered T cells, and immune checkpoint inhibitor antibodies. In this review, we describe the different T-cell-based strategies currently in clinical trials and put their applications, present and future, into perspective.

  9. Multifunctional T-cell Analyses to Study Response and Progression in Adoptive Cell Transfer Immunotherapy

    PubMed Central

    Ma, Chao; Cheung, Ann F.; Chodon, Thinle; Koya, Richard C.; Wu, Zhongqi; Ng, Charles; Avramis, Earl; Cochran, Alistair J.; Witte, Owen N.; Baltimore, David; Chmielowski, Bartosz; Economou, James S.; Comin-Anduix, Begonya; Ribas, Antoni; Heath, James R.

    2013-01-01

    Adoptive cell transfer (ACT) of genetically engineered T cells expressing cancer-specific T-cell receptors (TCR) is a promising cancer treatment. Here, we investigate the in vivo functional activity and dynamics of the transferred cells by analyzing samples from 3 representative patients with melanoma enrolled in a clinical trial of ACT with TCR transgenic T cells targeted against the melanosomal antigen MART-1. The analyses included evaluating 19 secreted proteins from individual cells from phenotypically defined T-cell subpopulations, as well as the enumeration of T cells with TCR antigen specificity for 36 melanoma antigens. These analyses revealed the coordinated functional dynamics of the adoptively transferred, as well as endogenous, T cells, and the importance of highly functional T cells in dominating the antitumor immune response. This study highlights the need to develop approaches to maintaining antitumor T-cell functionality with the aim of increasing the long-term efficacy of TCR-engineered ACT immunotherapy. SIGNIFICANCE A longitudinal functional study of adoptively transferred TCR–engineered lymphocytes yielded revealing snapshots for understanding the changes of antitumor responses over time in ACT immunotherapy of patients with advanced melanoma. PMID:23519018

  10. Dissecting memory T cell responses to TB: concerns using adoptive transfer into immunodeficient mice.

    PubMed

    Ancelet, Lindsay; Rich, Fenella J; Delahunt, Brett; Kirman, Joanna R

    2012-09-01

    Several studies have used adoptive transfer of purified T cell subsets into immunodeficient mice to determine the subset of T cells responsible for mediating protection against Mycobacterium tuberculosis. These studies suggested that CD62L(hi) memory CD4(+) T cells from BCG-vaccinated mice are key for protection against tuberculosis. Importantly, we observed that transfer of naïve CD4(+) T cells into Rag1-/- recipients protected against a mycobacterial challenge as well as transfer of BCG-experienced CD4(+) T cells. We found that transfer of total CD4(+) T cells from naïve mice or enriched CD62L(hi)CD4(+) T cells from BCG-vaccinated mice into Rag1-/- recipients induced severe colitis by 3 weeks post cell transfer, whereas transfer of CD62L(lo)CD4(+) T cells from BCG-vaccinated mice did not. Naïve and CD62L(hi)CD4(+) T cells proliferated extensively upon transfer and developed an activated effector phenotype in the lung, even in the absence of infectious challenge. The induction of colitis and systemic cytokine response induced by the transfer and subsequent activation of CD4(+) T cells from naïve mice or CD62L(hi)CD4(+) T cells from BCG-vaccinated mice, into immunodeficient recipients, may heighten their ability to protect against mycobacterial challenge. This raises doubts about the validity of this model to study CD4(+) T cell-mediated protection against tuberculosis.

  11. Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells.

    PubMed

    Arina, Ainhoa; Bronte, Vincenzo

    2015-04-01

    Novel models of autochthonous tumorigenesis and adoptive T cell therapy (ATT) are providing new clues regarding the pro-tumorigenic and immunosuppressive effects of myeloid-derived suppressor cells (MDSC), and their interaction with T cells. New findings are shifting the perception of the main level at which MDSC act, from direct cell-to-cell suppression to others, such as limiting T cell infiltration. Adoptively transferred, high-avidity T cells recognizing peptides with high-affinity for MHC-I eliminated large tumors. However, low-avidity T cells or low-affinity peptides resulted in failure to eradicate tumors. Manipulation of intratumoral myeloid cells improved the outcome of otherwise unsuccessful ATT. Therefore, therapeutic intervention directed at the tumor stroma might be required when using suboptimal T cells for ATT.

  12. Accelerated type 1 diabetes induction in mice by adoptive transfer of diabetogenic CD4+ T cells.

    PubMed

    Berry, Gregory; Waldner, Hanspeter

    2013-05-06

    The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.

  13. Skewing the T-cell repertoire by combined DNA vaccination, host conditioning, and adoptive transfer.

    PubMed

    Jorritsma, Annelies; Bins, Adriaan D; Schumacher, Ton N M; Haanen, John B A G

    2008-04-01

    Approaches for T-cell-based immunotherapy that have shown substantial effects in clinical trials are generally based on the adoptive transfer of high numbers of antigen-specific cells, and the success of these approaches is thought to rely on the high magnitude of the tumor-specific T-cell responses that are induced. In this study, we aimed to develop strategies that also yield a T-cell repertoire that is highly skewed toward tumor recognition but do not rely on ex vivo generation of tumor-specific T cells. To this end, the tumor-specific T-cell repertoire was first expanded by DNA vaccination and then infused into irradiated recipients. Subsequent vaccination of the recipient mice with the same antigen resulted in peak CD8(+) T-cell responses of approximately 50%. These high T-cell responses required the presence of antigen-experienced tumor-specific T cells within the graft because only mice that received cells of previously vaccinated donor mice developed effective responses. Tumor-bearing mice treated with this combined therapy showed a significant delay in tumor outgrowth, compared with mice treated by irradiation or vaccination alone. Furthermore, this antitumor effect was accompanied by an increased accumulation of activated and antigen-specific T cells within the tumor. In summary, the combination of DNA vaccination with host conditioning and adoptive transfer generates a marked, but transient, skewing of the T-cell repertoire toward tumor recognition. This strategy does not require ex vivo expansion of cells to generate effective antitumor immunity and may therefore easily be translated to clinical application.

  14. Adoptive transfer of fibrocytes enhances splenic T-cell numbers and survival in septic peritonitis.

    PubMed

    Nemzek, Jean A; Fry, Christopher; Moore, Bethany B

    2013-08-01

    Fibrocytes are unique, fibroblast-like cells with diverse functions and the potential for immunomodulation, which prompted investigation of their previously unexplored role in sepsis. Specifically, the study goals were to determine if adoptive transfer of fibrocytes would affect outcome in sepsis and to define relevant immunopathologic changes associated with the outcomes. Initial in vitro studies demonstrated that naive T-cell proliferation was significantly increased in cocultures with tissue-derived fibrocytes as compared with culture either alone or with fibroblasts. In vivo, the adoptive transfer of fibrocytes at the time of cecal ligation and puncture significantly improved survival of mice compared with transfer of fibroblasts or saline. Septic mice had lower blood levels of interleukin 6 (IL-6) and markers of organ injury after fibrocyte transfer as well as a reduced bacterial burden. Locally, peritoneal lavage fluid yielded lower bacterial counts, lower IL-6, and reduced inflammatory cell counts when fibrocyte transfer was compared with saline. This was also accompanied by significant increases in splenic CD4(+) and CD8(+) T cells. In vitro stimulation of the splenic T cells demonstrated that, after cecal ligation and puncture and adoptive transfer, the percentages of both CD4(+) and CD8(+) T cells with intracellular interferon γ were increased, whereas those with IL-4 remained similar between the groups. Therefore, it appears the adoptive transfer of fibrocytes improves sepsis survival, lowers bacterial burden, and promotes the proliferation of splenic T cells with a T(H)1 phenotype. These results confirm the immunomodulatory effects of exogenous, tissue-derived fibrocytes in sepsis and suggest their potential in cell therapy.

  15. Technical Considerations for the Generation of Adoptively Transferred T Cells in Cancer Immunotherapy

    PubMed Central

    Visioni, Anthony; Skitzki, Joseph

    2016-01-01

    A significant function of the immune system is the surveillance and elimination of aberrant cells that give rise to cancer. Even when tumors are well established and metastatic, immune-mediated spontaneous regressions have been documented. While there are have been various forms of immunotherapy, one of the most widely studied for almost 40 years is adoptive cellular immunotherapy, but its success has yet to be fully realized. Adoptive cell transfer (ACT) is a therapeutic modality that has intrigued physicians and researchers for its many theoretical benefits. Preclinical investigations and human trials have utilized natural killer (NK) cells, dendritic cells (DC), macrophages, T-cells or B-cells for ACT with the most intense research focused on T-cell ACT. T-cells are exquisitely specific to the target of its T-cell receptor (TCR), thus potentially reducing the amount of collateral damage and off-target effects from treatment. T-cells also possess a memory subset that may reduce the risk of recurrence of a cancer after the successful treatment of the primary disease. There are several options for the source of T-cells used in the generation of cells for ACT. Perhaps the most widely known source is T-cells generated from tumor-infiltrating lymphocytes (TILs). However, studies have also employed peripheral blood mononuclear cells (PBMCs), lymph nodes, and even induced pluripotent stem cells (IPSCs) as a source of T-cells. Several important technical considerations exist regarding benefits and limitations of each source of T-cells. Unique aspects of T-cells factor into their ability to be efficacious in ACT including the total number of cells available for ACT, the anti-tumor efficacy on a per cell basis, the repertoire of TCRs specific to tumor cells, and their ability to traffic to various organs that harbor tumor. Current research is attempting to unlock the full potential of these cells to effectively and safely treat cancer. PMID:27657129

  16. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity

    PubMed Central

    Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.

    2013-01-01

    Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461

  17. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3(+) regulatory T cells.

    PubMed

    Tanaka, H; Zhang, W; Yang, G-X; Ando, Y; Tomiyama, T; Tsuneyama, K; Leung, P; Coppel, R L; Ansari, A A; Lian, Z X; Ridgway, W M; Joh, T; Gershwin, M E

    2014-11-01

    Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg ) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8(+) T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1(-/-) recipients. We then used this robust established adoptive transfer system and co-transferred CD8(+) T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3(+) ) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4(+) FoxP3(+) Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC.

  18. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    SciTech Connect

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  19. Adoptive transfer of hepatic stellate cells ameliorates liver ischemia reperfusion injury through enriching regulatory T cells.

    PubMed

    Feng, Min; Wang, Quanrongzi; Wang, Hao; Wang, Meng; Guan, Wenxian; Lu, Ling

    2014-04-01

    Our previous study indicated that adoptive transferred regulatory T cells (Tregs) attenuated liver ischemia reperfusion injury (IRI). Recent studies demonstrated that hepatic stellate cells (HSCs) were producers of induced Tregs (iTregs) via retinoic acid. This study aimed to investigate the role of adoptive transferred HSCs in liver IRI. Mice were treated with gradient doses of HSCs before surgery at 24h or 72h. The levels of serum aminotransferases and hepatic cytokines were evaluated after reperfusion. Meanwhile, hepatic Tregs and their subsets were analyzed by flow cytometry. We found that adoptive transferred HSCs attenuated liver IRI. Administration of HSCs expanded the number of hepatic iTregs and natural Tregs (nTregs) after reperfusion. In addition, we found that the increased Tregs were almost Helios-Tregs before surgery. These Helios-Tregs were considered as iTregs and protected liver from IRI partially. Furthermore, adoptive transferred HSCs stabilized nTregs and prevented nTregs from reducing after reperfusion. These nTregs also attenuated liver IRI partially. Depletion of Tregs abolished the protective effect of HSCs. Thus, we conclude that adoptive transferred HSCs ameliorate liver IRI in Tregs-dependent manner.

  20. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer.

    PubMed

    Bear, Adham S; Kennedy, Laura C; Young, Joseph K; Perna, Serena K; Mattos Almeida, Joao Paulo; Lin, Adam Y; Eckels, Phillip C; Drezek, Rebekah A; Foster, Aaron E

    2013-01-01

    Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b(+)Ly-6G/C(+) myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control.

  1. Adoptive transfer of tracer alloreactive CD4(+) TCR-transgenic T cells alters the endogenous immune response to an allograft.

    PubMed

    Miller, Michelle L; Chen, Jianjun; Daniels, Melvin D; McKeague, Matthew G; Wang, Ying; Yin, Dengping; Vu, Vinh; Chong, Anita S; Alegre, Maria-Luisa

    2016-04-11

    T cell receptor transgenic (TCR-Tg) T cells are often used as tracer populations of antigen-specific responses to extrapolate findings to endogenous T cells. The extent to which TCR-Tg T cells behave purely as tracer cells or modify the endogenous immune response is not clear. To test the impact of TCR-Tg T cell transfer on endogenous alloimmunity, recipient mice were seeded with CD4(+) or CD8(+) TCR-Tg or polyclonal T cells at the time of cardiac allograft transplantation. Only CD4(+) TCR-Tg T cells accelerated rejection, and unexpectedly led to a dose-dependent decrease in both transferred and endogenous T cells infiltrating the graft. In contrast, recipients of CD4(+) TCR-Tg cell exhibited enhanced endogenous donor-specific CD8(+) T-cell activation in the spleen and accelerated alloantibody production. Introduction of CD4(+) TCR-Tg T cells also perturbed the intra-graft accumulation of innate cell populations. Thus, transferred CD4(+) TCR-Tg T cells alter many aspects of endogenous alloimmunity, suggesting that caution should be used when interpreting experiments utilizing these adoptively-transferred cells, as the overall nature of allograft rejection may be altered. These results may also have implications for adoptive CD4(+) T cell immunotherapy in tumor and infectious clinical settings as cell infusion may have additional effects on natural immune responses. This article is protected by copyright. All rights reserved.

  2. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection.

    PubMed

    Jeitziner, Sanja Mandaric; Walton, Senta M; Torti, Nicole; Oxenius, Annette

    2013-11-01

    Cytomegalovirus (CMV) infects a majority of the human population and establishes a life-long persistence. CMV infection is usually asymptomatic but the virus carries pathogenic potential and causes severe disease in immunocompromised individuals. T-cell-mediated immunity plays an essential role in control of CMV infection and adoptive transfer of CMV-specific CD8(+) T cells restores viral immunity in immunosuppressed patients but a role for CD4(+) T cells remains elusive. Here, we analyzed in adoptive transfer studies the features and antiviral functions of virus-specific CD4(+) T cells during primary murine CMV (MCMV) infection. MCMV-specific CD4(+) T cells expanded upon MCMV infection and displayed an effector phenotype and function. Adoptive transfer of in vivo activated MCMV-specific CD4(+) T cells to immune-compromised mice was protective during pathogenic MCMV infection and IFN-γ was a crucial mediator of this protective capacity. Moreover, co-transfer of low doses of both MCMV-specific CD4(+) T cells and CD8(+) T cells synergized in control of lytic viral replication in immune-compromised mice. Our data reveal a pivotal antiviral role for virus-specific CD4(+) T cells in protection from pathogenic CMV infection and provide evidence for their antiviral therapeutic potential.

  3. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion.

    PubMed

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco; Thor Straten, Per; Svane, Inge Marie; Hadrup, Sine Reker

    2012-08-01

    Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabeads® ClinExVivo™CD3/CD28. We show here that the addition of an in vitro restimulation step with relevant peptides prior to bead expansion dramatically increased the proportion of tumor-specific T cells in PBMC-cultures. Importantly, peptide-pulsed dendritic cells (DCs) as well as allogeneic tumor lysate-pulsed DCs from the DC vaccine preparation could be used with comparable efficiency to peptides for in vitro restimulation, to increase the tumor-specific T-cell response. Furthermore, we tested the use of different ratios and different types of Dynabeads® CD3/CD28 and CD3/CD28/CD137 T-cell expander, for optimized expansion of tumor-specific T cells. A ratio of 1:3 of Dynabeads® CD3/CD28 T-cell expander to T cells resulted in the maximum number of tumor-specific T cells. The addition of CD137 did not improve functionality or fold expansion. Both T-cell expansion systems could generate tumor-specific T cells that were both cytotoxic and effective cytokine producers upon antigen recognition. Dynabeads®-expanded T-cell cultures shows phenotypical characteristics of memory T cells with potential to migrate and expand in vivo. In addition, they possess longer telomeres compared to TIL cultures. Taken together, we demonstrate that in vitro restimulation of tumor-specific T cells prior to bead expansion is necessary to achieve high numbers of tumor-specific T cells. This is effective and easily applicable in combination with DC vaccination, by use of vaccine-generated DCs, either pulsed with peptide or tumor-lysate.

  4. Experimental Myocardial Infarction Induces Altered Regulatory T Cell Hemostasis, and Adoptive Transfer Attenuates Subsequent Remodeling

    PubMed Central

    Sharir, Rinat; Semo, Jonathan; Shimoni, Sara; Ben-Mordechai, Tamar; Landa-Rouben, Natalie; Maysel-Auslender, Sofia; Shaish, Aviv; Entin–Meer, Michal; Keren, Gad; George, Jacob

    2014-01-01

    Background Ischemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling. Methods and Results The number and functional suppressive activity of Tregs were assayed in mice subjected to experimental myocardial infarction. The numbers of splenocyte-derived Tregs in the ischemic mice were significantly higher after the injury than in the controls, and their suppressive properties were significantly compromised. Compared with PBS, adoptive Treg transfer to mice with experimental infarction reduced infarct size and improved LV remodeling and functional performance by echocardiography. Treg deletion with blocking anti-CD25 antibodies did not influence infarct size or echocardiographic features of cardiac remodeling. Conclusion Treg numbers are increased whereas their function is compromised in mice with that underwent experimental infarction. Transfer of exogeneous Tregs results in attenuation of myocardial remodeling whereas their ablation has no effect. Thus, Tregs may serve as interesting potential interventional targets for attenuating left ventricular remodeling. PMID:25436994

  5. Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine.

    PubMed

    Lutz-Nicoladoni, Christina; Wallner, Stephanie; Stoitzner, Patrizia; Pircher, Magdalena; Gruber, Thomas; Wolf, Anna Maria; Gastl, Günther; Penninger, Josef M; Baier, Gottfried; Wolf, Dominik

    2012-01-01

    The success of cancer immunotherapy is limited by potent endogenous immune-evasion mechanisms, which are at least in part mediated by transforming growth factor-β (TGF-β). The E3 ubiquitin ligase Cbl-b is a key regulator of T cell activation and is established to regulate TGF-β sensitivity. cblb-deficient animals reject tumors via CD8(+) T cells, which make Cbl-b an ideal target for improvement of adoptive T-cell transfer (ATC) therapy. In this study, we show that cblb-deficient CD8(+) T cells are hyper-responsive to T-cell receptor (TCR)/CD28-stimulation and are in part protected against the negative cues induced by TGF-β in vitro. Notably, adoptive transfer of polyclonal, non-TCR transgenic cblb-deficient CD8(+) T cells is not sufficient to reject B16-ova or EG7 tumors in vivo. Thus, cblb-deficient ATC requires proper in vivo re-activation by a dendritic cell (DC) vaccine. In strict contrast to ATC monotherapy, this approach delayed tumor outgrowth and significantly increased survival rates, which is paralleled by increased CD8(+) T-cells infiltration to the tumor site and enrichment of ova-specific and interferon-γ (IFN-γ)-secreting CD8(+) T cell in the draining lymph node (LN). Moreover, CD8(+) T cells from cblb-deficient mice vaccinated with the DC vaccine show increased cytolytic activity in vivo. In summary, our data using cblb-deficient polyclonal, non-TCR-transgenic adoptively transferred CD8(+) T cells into immuno-competent non-lymphodepleted recipients suggest that targeting Cbl-b might serve as a novel 'adjuvant approach', suitable to augment the effectiveness of established anti-cancer immunotherapies.

  6. C-C chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer.

    PubMed

    Rapp, Moritz; Grassmann, Simon; Chaloupka, Michael; Layritz, Patrick; Kruger, Stephan; Ormanns, Steffen; Rataj, Felicitas; Janssen, Klaus-Peter; Endres, Stefan; Anz, David; Kobold, Sebastian

    2016-03-01

    T cell infiltration at the tumor site has been identified as a major predictor for the efficacy of adoptive T cell therapy. The chemokine C-C motif ligand 22 (CCL22) is highly expressed by immune cells in murine and human pancreatic cancer. Expression of its corresponding receptor, C-C chemokine receptor type 4 (CCR4), is restricted to regulatory T cells (Treg). We show that transduction of cytotoxic T cells (CTL) with CCR4 enhances their immigration into a pancreatic cancer model. Further, we show that binding of CCR4 with CCL22 strengthens the binding of T cell LFA-1 to dendritic cell (DC) ICAM-1 and increases CTL activation. In vivo, in a model of subcutaneous pancreatic cancer, treatment of tumor-bearing mice with CCR4-transduced CTL led to the eradication of established tumors in 40% of the mice. In conclusion, CCR4 overexpression in CTL is a promising therapeutic strategy to enhance the efficacy of adoptive T cell transfer (ACT).

  7. Deletion of Plasmodium berghei-Specific CD4+ T Cells Adoptively Transferred into Recipient Mice after Challenge with Homologous Parasite

    NASA Astrophysics Data System (ADS)

    Hirunpetcharat, Chakrit; Good, Michael F.

    1998-02-01

    The immune response to malaria parasites includes T cell responses that reduce parasites by effector T cell responses and by providing help for antibody responses. Some parasites are more sensitive to antibody and others are more sensitive to cell-mediated immunity. We demonstrate that cultured CD4+ T cells that produce interferon CD4+ and interleukin 2, but not interleukin 4, in response to stimulation with the rodent parasite Plasmodium berghei can reduce but not eliminate parasites in vivo after adoptive transfer. Although cells can persist in vivo for up to 9 months in uninfected mice, infection results in elimination of up to 99% of specific T cells in different tissues, as judged by tracking T cells labeled with the fluorescent dye 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester. T cells specific for ovalbumin are unaffected. In vivo activation and division of transferred T cells per se are not responsible for deletion because T cells positive for 5-(and -6)-carboxyfluorescein diacetate succinimidyl ester divide up to six times within 7 days in uninfected mice and are not deleted. Understanding the factors responsible for parasite-mediated specific deletion of T cells would enhance our knowledge of parasite immunity.

  8. Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice.

    PubMed

    Hsu, Fei-Ting; Chen, Tzu-Chun; Chuang, Hui-Yen; Chang, Ya-Fang; Hwang, Jeng-Jong

    2015-12-29

    Ex vivo expansion of CD8+ T-cells has been a hindrance for the success of adoptive T cell transfer in clinic. Currently, preconditioning with chemotherapy is used to modulate the patient immunity before ACT, however, the tumor microenvironment beneficial for transferring T cells may also be damaged. Here preconditioning with single low dose of doxorubicin or paclitaxel combined with fewer CD8+ T-cells was investigated to verify whether the same therapeutic efficacy of ACT could be achieved. An E.G7/OT1 animal model that involved adoptive transfer of OVA-specific CD8+ T-cells transduced with a granzyme B promoter-driven firefly luciferase and tomato fluorescent fusion reporter gene was used to evaluate this strategy. The result showed that CD8+ T-cells were activated and sustained longer in mice pretreated with one low-dose Dox or Tax. Enhanced therapeutic efficacy was found in Dox or Tax combined with 2x106 CD8+ T-cells and achieved the same level of tumor growth inhibition as that of 5x106 CD8+ T-cells group. Notably, reduced numbers of Tregs and myeloid derived suppressor cells were shown in combination groups. By contrast, the number of tumor-infiltrating cytotoxic T lymphocytes and IL-12 were increased. The NF-κB activity and immunosuppressive factors such as TGF-β, IDO, CCL2, VEGF, CCL22, COX-2 and IL-10 were suppressed. This study demonstrates that preconditioning with single low dose Dox or Tax and combined with two fifth of the original CD8+ T-cells could improve the tumor microenvironment via suppression of NF-κB and its related immunosuppressors, and activate more CD8+ T-cells which also stay longer.

  9. Generation of memory T cells for adoptive transfer using clinical-grade anti-CD62L magnetic beads.

    PubMed

    Verfuerth, S; Sousa, P S E; Beloki, L; Murray, M; Peters, M D; O'Neill, A T; Mackinnon, S; Lowdell, M W; Chakraverty, R; Samuel, E R

    2015-10-01

    Pre-clinical studies of allogeneic stem cell transplantation suggest that depletion of naive T cells from donor lymphocytes will reduce the risk of GvHD but preserve immunity to infectious pathogens. In this study, we have established a clinical-grade protocol under good manufacturing practice conditions for purging CD62L(+) naive T cells from steady-state leukapheresis products using the CliniMACS system. The efficacy of immunomagnetic CD62L depletion was assessed by analysis of cell composition and functional immune responses. A median 2.9 log CD62L depletion was achieved with no evidence of CD62L shedding during the procedure and a mean T-cell yield of 47%. CD62L(-) cells comprised an equal mix of CD4(+) and CD8(+) T cells, with elimination of B cells but maintenance of regulatory T cells and natural killer cell populations. CD62L-depleted T cells were predominantly CD45RA(-) and CD45RA(+) effector memory (>90%) and contained the bulk of pentamer-staining antivirus-specific T cells. Functional assessment of CD62L(-) cells revealed the maintenance of antiviral T-cell reactivity and a reduction in the alloreactive immune response compared with unmanipulated cells. Clinical-grade depletion of naive T cells using immunomagnetic CD62L beads from steady-state leukapheresis products is highly efficient and generates cells suitable for adoptive transfer in the context of clinical trials.

  10. Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0450 TITLE: Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta- Insensitive CD8+ T Cells for...CONTRACT NUMBER Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta- Insensitive CD8+ T Cells for Treatment of Prostate...that adoptive transfer of tumor-reactive TGF-beta- insensitive CD8+ T cells to hosts bearing mouse prostate tumors resulted in a complete rejection

  11. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    PubMed Central

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  12. Deficiency of stearoyl-CoA desaturase-1 aggravates colitogenic potential of adoptively transferred effector T cells.

    PubMed

    Yeoh, Beng San; Saha, Piu; Singh, Vishal; Xiao, Xia; Ying, Yun; Vanamala, Jairam K; Kennett, Mary J; Harvatine, Kevin J; Joe, Bina; Vijay-Kumar, Matam

    2016-10-01

    Stearoyl-CoA desaturase-1 (SCD1) is a lipogenic enzyme involved in the de novo biosynthesis of oleate (C18:1, n9), a major fatty acid in the phospholipids of lipid bilayers of cell membranes. Accordingly, Scd1KO mice display substantially reduced oleate in cell membranes. An altered SCD1 level was observed during intestinal inflammation; however, its role in modulating inflammatory bowel disease remains elusive. Herein, we investigated the colitogenic capacity of Scd1KO effector T cells by employing the adoptive T-cell transfer colitis model. Splenic effector T cells (CD4(+)CD25(-)) from age- and sex-matched wild-type (WT) and Scd1KO mice were isolated by FACS and intraperitoneally administered to Rag1KO mice, which were monitored for the development of colitis. At day 60 postcell transfer, Rag1KO mice that received Scd1KO CD4(+)CD25(-) T cells displayed accelerated and exacerbated colitis than mice receiving WT CD4(+)CD25(-) T cells. Intriguingly, Scd1KO CD4(+)CD25(-) T cells display augmented inflammatory cytokine profile and cellular membrane fluidity with a concomitant increase in proinflammatory saturated fatty acids, which we postulate to potentially underlie their augmented colitogenic potential.

  13. Enhanced neointima formation following arterial injury in immune deficient Rag-1-/- mice is attenuated by adoptive transfer of CD8 T cells.

    PubMed

    Dimayuga, Paul C; Chyu, Kuang-Yuh; Kirzner, Jonathan; Yano, Juliana; Zhao, Xiaoning; Zhou, Jianchang; Shah, Prediman K; Cercek, Bojan

    2011-01-01

    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4(+)CD44(hi) and CD8(+)CD44(hi) T cells in the lymph nodes and spleens. Splenic CD8(+)CD25(+) T cells and CD8(+)CD28(+) T cells, but not CD4(+)CD25(+) and CD4(+)CD28(+) T cells, were also significantly increased. Adoptive cell transfer of CD4(+) or CD8(+) T cells from donor CD8-/- or CD4-/- mice, respectively, to immune-deficient Rag-1-/- mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1-/- mice that received CD8(+) T cells had significantly reduced neointima formation compared with Rag-1-/- mice without cell transfer. CD4(+) T cell transfer did not reduce neointima formation. CD8(+) T cells from CD4-/- mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8(+) T cells and CD4(+) T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8(+) T cells as the specific and selective cell type involved in inhibiting neointima formation.

  14. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.

    PubMed

    Kalos, Michael; June, Carl H

    2013-07-25

    Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available.

  15. Human effector T cells derived from central memory cells rather than CD8(+)T cells modified by tumor-specific TCR gene transfer possess superior traits for adoptive immunotherapy.

    PubMed

    Wu, Fenglin; Zhang, Wenfeng; Shao, Hongwei; Bo, Huaben; Shen, Han; Li, Jiandong; Liu, Yichen; Wang, Teng; Ma, Wenli; Huang, Shulin

    2013-10-10

    Adoptive cell therapy provides an attractive treatment of cancer, and our expanding capacity to target tumor antigens is driven by genetically engineered human T lymphocytes that express genes encoding tumor-specific T cell receptors (TCRs). The intrinsic properties of cultured T cells used for therapy were reported to have tremendous influences on their persistence and antitumor efficacy in vivo. In this study, we isolated CD8(+) central memory T cells from peripheral blood lymphocytes of healthy donors, and then transferred with the gene encoding TCR specific for tumor antigen using recombinant adenovirus vector Ad5F35-TRAV-TRBV. We found effector T cells derived from central memory T cells improved cell viability, maintained certain level of CD62L expression, and reacquired the CD62L(+)CD44(high) phenotype of central memory T cells after effector T cells differentiation. We then compared the antitumor reactivity of central memory T cells and CD8(+)T cells after TCR gene transferred. The results indicated that tumor-specific TCR gene being transferred to central memory T cells effectively increased the specific killing of antigen positive tumor cells and the expression of cytolytic granule protein. Furthermore, TCR gene transferred central memory T cells were more effective than TCR gene transferred CD8(+)T cells in CTL activity and effector cytokine secretion. These results implicated that isolating central memory T cells rather than CD8(+)T cells for insertion of gene encoding tumor-specific TCR may provide a superior tumor-reactive T cell population for adoptive transfer.

  16. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy.

    PubMed

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S; Wunderlich, John R; Dudley, Mark E; Rosenberg, Steven A

    2013-09-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3(+) T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8(+) cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ~50 × 10(9) T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3(+)CD8(+) cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I-mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I-mediated up-regulation of CD137 (4-1BB) expression on CD8(+) cells suggested that 0-3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.

  17. Adoptive transfer of unresponsiveness to allogeneic skin grafts with hepatic gamma delta + T cells.

    PubMed Central

    Gorczynski, R M

    1994-01-01

    C3H/HEJ mice injected with irradiated multiple minor incompatible B10.BR lymphoid cells via the portal vein showed delayed rejection of subsequent B10.BR skin grafts. Similar delayed rejection was produced by lateral tail vein injection of B10.BR hepatic mononuclear cells or H-2k cells pulsed in vivo with B10 minor histocompatibility antigens. Inhibition of C3H anti-B10.BR immunity in vivo (assessed by delayed graft rejection) and in vitro (assessed by B10.BR-induced lymphokine production) can be transferred by radioresistant, plastic-adherent F4/80+33D1-CD4-CD8-alpha beta TcR-gamma delta TcR- mononuclear hepatic cells from (C3H/HEJ x C3H.SW)F1 mice injected 36 hr earlier with 100 x 10(6) irradiated spleen cells. By 10 days post-injection, cells transferring delayed rejection are radiosensitive, plastic non-adherent, F4/80-33D1-CD4-CD8- alpha beta Tc+- gamma delta TcR+ cells. Injection of interleukin-2 (IL-2) in vivo into mice receiving pretreatment with B10.BR cells via the portal vein, or adoptive transfer into such mice of immune anti-B10.BR lymphoid cells, abolished delayed rejection on subsequent skin grafting. Delayed rejection or modulation of lymphokine production was associated in all cases with suppression of IL-2 production and preferential retention of IL-4 production from cells stimulated in vitro. PMID:8132216

  18. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2016-07-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK(IL-12)) produced high amounts of IFNγ. The addition of a low number of A-NK(IL-12) cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK(IL-12) cells. OT-I-CTLs and A-NK(IL-12) cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK(IL-12) cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase

  19. An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2015-01-20

    Adoptive T-cell therapy has shown promises for cancer treatment. However, for treating solid tumors, there is a need for improving the ability of the adoptively transferred T cells to home to tumor sites. We explored the possibility of using an oncolytic virus derived from HSV-2, which can actively pull T effector cells to the site of infection, as a local attractant for migration of adoptively transferred T cells. Our data show that intratumoral administration of this virus can indeed attract active migration of the adoptively transferred T cells to the treated tumor. Moreover, once attracted to the tumor site by the virus, T cells persisted in there significantly longer than in mock-treated tumor. Chemokine profiling identified significant elevation of CXCL9 and CXCL10, as well as several other chemokines belonging to the inflammatory chemokine family in the virus-treated tumors. These chemokines initially guided the T-cell migration to and then maintained their persistence in the tumor site, leading to a significantly enhanced therapeutic effect. Our data suggests that this virotherapy may be combined with adoptive T-cell therapy to potentiate its therapeutic effect against solid tumors that are otherwise difficult to manage with the treatment alone.

  20. Adoptive transfer of allogeneic liver sinusoidal endothelial cells specifically inhibits T-cell responses to cognate stimuli.

    PubMed

    Banshodani, Masataka; Onoe, Takashi; Shishida, Masayuki; Tahara, Hiroyuki; Hashimoto, Shinji; Igarashi, Yuka; Tanaka, Yuka; Ohdan, Hideki

    2013-01-01

    Although it is well known that liver allografts are often accepted by recipients, leading to donor-specific tolerance of further organ transplants, the underlying mechanisms remain unclear. We had previously used an in vitro model and showed that mouse liver sinusoidal endothelial cells (LSECs) selectively suppress allospecific T-cells across major histocompatibility complex (MHC) barriers. In the present study, we established an in vivo model for evaluating the immunomodulatory effects of allogeneic LSECs on corresponding T-cells. Allogeneic BALB/cA LSECs were injected intraportally into recombination activating gene 2 γ-chain double-knockout (RAG2/gc-KO, H-2(b)) mice lacking T, B, and natural killer (NK) cells. In order to facilitate LSEC engraftment, the RAG2/gc-KO mice were injected intraperitoneally with monocrotaline 2 days before the adoptive transfer of LSECs; this impaired the host LSECs, conferring a proliferative advantage to the transplanted LSECs. After orthotopic allogeneic LSEC engraftment, the RAG2/gc-KO mice were immune reconstituted intravenously with C57BL/6 splenocytes. After immune reconstitution, mixed lymphocyte reaction (MLR) assay using splenocytes from the recipients revealed that specific inhibition of host CD4(+) and CD8(+) T-cell proliferation was greater in response to allostimulation with irradiated BALB/cA splenocytes rather than to stimulation with irradiated third party SJL/jorllco splenocytes. This inhibitory effect was attenuated by administering anti-programmed death ligand 1 (PD-L1) monoclonal antibody during immune reconstitution in the above-mentioned mice, but not in RAG2/gc-KO mice engrafted with Fas ligand (FasL)-deficient BALB/cA LSECs. Furthermore, engraftment of allogeneic BALB/cA LSECs significantly prolonged the survival of subsequently grafted cognate allogeneic BALB/cA hearts in RAG2/gc-KO mice immune reconstituted with bone marrow transplantation from C57BL/6 mice. In conclusion, murine LSECs have been proven

  1. Role of memory T cell subsets for adoptive immunotherapy.

    PubMed

    Busch, Dirk H; Fräßle, Simon P; Sommermeyer, Daniel; Buchholz, Veit R; Riddell, Stanley R

    2016-02-01

    Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.

  2. Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0450 TITLE: Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for...CONTRACT NUMBER Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate...technology to clinical trial. At present, I have submitted a R21/R33 application to NCI for a combination of pre-clinical and clinical trial for the use of

  3. Adoptive immunotherapy for cancer: harnessing the T cell response.

    PubMed

    Restifo, Nicholas P; Dudley, Mark E; Rosenberg, Steven A

    2012-03-22

    Immunotherapy based on the adoptive transfer of naturally occurring or gene-engineered T cells can mediate tumour regression in patients with metastatic cancer. Here, we discuss progress in the use of adoptively transferred T cells, focusing on how they can mediate tumour cell eradication. Recent advances include more accurate targeting of antigens expressed by tumours and the associated vasculature, and the successful use of gene engineering to re-target T cells before their transfer into the patient. We also describe how new research has helped to identify the particular T cell subsets that can most effectively promote tumour eradication.

  4. Adoptive Transfer of Tumor-Specific Tc17 Effector T Cells Controls the Growth of B16 Melanoma in Mice

    PubMed Central

    de la Luz Garcia-Hernandez, Maria; Hamada, Hiromasa; Reome, Joyce B.; Misra, Sara K.; Tighe, Michael P.; Dutton, Richard W.

    2010-01-01

    In vitro generated OVA-specific IL-17–producing CD8 T effector cells (Tc17) from OT-1 mice, adoptively transferred into B16-OVA tumor-bearing mice, controlled tumor growth in early and late stage melanoma. IL-17, TNF, and IFN-γ from the Tc17 effectors all played a role in an enhanced recruitment of T cells, neutrophils, and macrophages to the tumor. In addition, Tc17 cells and recently recruited, activated neutrophils produced further chemokines, including CCL3, CCL4, CCL5, CXCL9, and CXCL10, responsible for the attraction of type 1 lymphocytes (Th1 and Tc1) and additional neutrophils. Neutrophils were rapidly attracted to the tumor site by an IL-17 dependent mechanism, but at later stages the induction of the chemokine CXCL2 by Tc17-derived TNF and IFN-γ contributed to sustain neutrophil recruitment. Approximately 10–50 times as many Tc17 effectors were required compared with Tc1 effectors to exert the same level of control over tumor growth. The recruitment of neutrophils was more prominent when Tc17 rather than Tc1 were used to control tumor and depletion of neutrophils resulted in a diminished capacity to control tumor growth. PMID:20237297

  5. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation.

    PubMed

    Feuchtinger, Tobias; Opherk, Kathrin; Bethge, Wolfgang A; Topp, Max S; Schuster, Friedhelm R; Weissinger, Eva M; Mohty, Mohamad; Or, Reuven; Maschan, Michael; Schumm, Michael; Hamprecht, Klaus; Handgretinger, Rupert; Lang, Peter; Einsele, Hermann

    2010-11-18

    Cytomegalovirus (CMV) disease and infection refractory to antiviral treatment after allogeneic stem cell transplantation (allo-SCT) is associated with a high mortality. Adoptive transfer of CMV-specific T cells could reconstitute viral immunity after SCT and could protect from CMV-related complications. However, logistics of producing virus-specific T-cell grafts limited the clinical application. We treated 18 patients after allo-SCT from human leukocyte antigen-mismatched/haploidentical or human leukocyte antigen-matched unrelated donors with polyclonal CMV-specific T cells generated by ex vivo stimulation with pp65, followed by isolation of interferon-γ-producing cells. Patients with CMV disease or viremia refractory to antiviral chemotherapy or both were eligible for adoptive T-cell transfer and received a mean of 21 × 10³/kg pp65-specific T cells. In 83% of cases CMV infection was cleared or viral burden was significantly reduced, even in cases of CMV encephalitis (n = 2). Viral control was associated with in vivo expansion of CMV-specific T lymphocytes in 12 of 16 evaluable cases, resulting in reconstitution of antiviral T-cell responses, without graft-versus-host disease induction or acute side effects. Our findings indicate that the infusion of low numbers of CMV-specific T cells is safe, feasible, and effective as a treatment on demand for refractory CMV infection and CMV disease after allo-SCT.

  6. TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer.

    PubMed

    Nauerth, Magdalena; Weißbrich, Bianca; Knall, Robert; Franz, Tobias; Dössinger, Georg; Bet, Jeannette; Paszkiewicz, Paulina J; Pfeifer, Lukas; Bunse, Mario; Uckert, Wolfgang; Holtappels, Rafaela; Gillert-Marien, Dorothea; Neuenhahn, Michael; Krackhardt, Angela; Reddehase, Matthias J; Riddell, Stanley R; Busch, Dirk H

    2013-07-03

    Adoptive immunotherapy is a promising therapeutic approach for the treatment of chronic infections and cancer. T cells within a certain range of high avidity for their cognate ligand are believed to be most effective. T cell receptor (TCR) transfer experiments indicate that a major part of avidity is hardwired within the structure of the TCR. Unfortunately, rapid measurement of structural avidity of TCRs is difficult on living T cells. We developed a technology where dissociation (koff rate) of truly monomeric peptide-major histocompatibility complex (pMHC) molecules bound to surface-expressed TCRs can be monitored by real-time microscopy in a highly reliable manner. A first evaluation of this method on distinct human cytomegalovirus (CMV)-specific T cell populations revealed unexpected differences in the koff rates. CMV-specific T cells are currently being evaluated in clinical trials for efficacy in adoptive immunotherapy; therefore, determination of koff rates could guide selection of the most effective donor cells. Indeed, in two different murine infection models, we demonstrate that T cell populations with lower koff rates confer significantly better protection than populations with fast koff rates. These data indicate that koff rate measurements can improve the predictability of adoptive immunotherapy and provide diagnostic information on the in vivo quality of T cells.

  7. Adoptive T-cell Immunotherapy

    PubMed Central

    Gottschalk, Stephen; Rooney, Cliona

    2015-01-01

    Epstein-Barr virus (EBV) is associated with a range of malignancies involving B-cells, T-cells, natural killer (NK)-cells, epithelial cells and smooth muscle. All of these are associated with the latent life cycles of EBV, but the pattern of latency-associated viral antigens expressed in tumor cells depends on the type of tumor. EBV-specific T cells (EBVSTs) have been explored as prophylaxis and therapy for EBV-associated malignancies for more than two decades. EBVSTs have been most successful as prophylaxis and therapy for post-transplant lymphoproliferative disease (PTLD), which expresses the full array of latent EBV antigens (type 3 latency), in hematopoietic stem cell transplant recipients. While less effective, clinical studies have also demonstrated their therapeutic potential for PTLD post solid organ transplant, and for EBV-associated malignancies such as Hodgkin’s Lymphoma, Non-Hodgkin’s Lymphoma, and nasopharyngeal carcinoma that express a limited array of latent EBV antigens (type 2 latency),. Several approaches are actively being pursued to improve the antitumor activity of EBVSTs including activation and expansion of T cells specific for the EBV antigens expressed in type 2 latency, genetic approaches to render EBVSTs resistant to the immunosuppressive tumor environment and combination approaches with other immune-modulating modalities. Given the recent advances and renewed interest in cell therapy, we hope that EBVSTs will become an integral part of our treatment armamentarium against EBV-positive malignancies in the near future. PMID:26428384

  8. Adoptive transfer of Mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors.

    PubMed

    Lerret, Nadine M; Rogozinska, Magdalena; Jaramillo, Andrés; Marzo, Amanda L

    2012-01-01

    Adoptive T cell therapy has proven to be beneficial in a number of tumor systems by targeting the relevant tumor antigen. The tumor antigen targeted in our model is Mammaglobin-A, expressed by approximately 80% of human breast tumors. Here we evaluated the use of adoptively transferred Mammaglobin-A specific CD8 T cells in combination with low dose irradiation to induce breast tumor rejection and prevent relapse. We show Mammaglobin-A specific CD8 T cells generated by DNA vaccination with all epitopes (Mammaglobin-A2.1, A2.2, A2.4 and A2.6) and full-length DNA in vivo resulted in heterogeneous T cell populations consisting of both effector and central memory CD8 T cell subsets. Adoptive transfer of spleen cells from all Mammaglobin-A2 immunized mice into tumor-bearing SCID/beige mice induced tumor regression but this anti-tumor response was not sustained long-term. Additionally, we demonstrate that only the adoptive transfer of Mammaglobin-A2 specific CD8 T cells in combination with a single low dose of irradiation prevents tumors from recurring. More importantly we show that this single dose of irradiation results in the down regulation of the macrophage scavenger receptor 1 on dendritic cells within the tumor and reduces lipid uptake by tumor resident dendritic cells potentially enabling the dendritic cells to present tumor antigen more efficiently and aid in tumor clearance. These data reveal the potential for adoptive transfer combined with a single low dose of total body irradiation as a suitable therapy for the treatment of established breast tumors and the prevention of tumor recurrence.

  9. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios.

    PubMed

    Quinn, Michael; Turula, Holly; Tandon, Mayank; Deslouches, Berthony; Moghbeli, Toktam; Snyder, Christopher M

    2015-02-15

    Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success.

  10. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model

    PubMed Central

    Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.

    2013-01-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807

  11. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer.

    PubMed

    Ward-Kavanagh, Lindsay K; Zhu, Junjia; Cooper, Timothy K; Schell, Todd D

    2014-08-01

    Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly nonfunctional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8(+) T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB, Gzmb)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to affect significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progression observed. Regression was associated with long-term persistence of effector/memory phenotype CD8(+) donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells.

  12. Adoptive transfer of Aspergillus-specific T cells as a novel anti-fungal therapy for hematopoietic stem cell transplant recipients: Progress and challenges.

    PubMed

    Papadopoulou, Anastasia; Kaloyannidis, Panayotis; Yannaki, Evangelia; Cruz, Conrad Russell

    2016-02-01

    Although newer antifungal drugs have substantially altered the natural history of invasive aspergillosis, the disease still accounts for significant morbidity and mortality in hematopoietic stem cell transplant recipients. Both the evidence supporting a protective role of T cells against this fungal pathogen and the documented efficacy of adoptive transfer of antigen-specific T cells for prophylaxis and treatment of viral infections post-transplant have stimulated much interest towards development of Aspergillus-specific T cells (Asp-STs) for adoptive immunotherapy in the allogeneic transplant setting. In contrast to the remarkable progress with virus-specific T cells, clinical development of fungus-specific T cells is still in its infancy. Several groups have characterized Asp-STs in healthy individuals and patients with malignant hematological diseases, while others sought to develop GMP-compliant methods of expanding or bioengineering Asp-STs ex vivo as immunotherapy. This review highlights the recent advances in this field, and discusses critical issues involved in development and protocol design of Asp-ST immunotherapy.

  13. Arthritogenic T cells drive the recovery of autoantibody-producing B cell homeostasis and the adoptive transfer of arthritis in SCID mice.

    PubMed

    Kis-Toth, Katalin; Radacs, Marianna; Olasz, Katalin; van Eden, Willem; Mikecz, Katalin; Glant, Tibor T

    2012-08-01

    T cells orchestrate joint inflammation in rheumatoid arthritis (RA), but B cells/B cell-derived factors are also involved in disease pathogenesis. The goal of this study was to understand the role of antigen-specific T and B cells in the pathological events of arthritis, which is impossible to study in humans due to the small number of antigen-specific cells. To determine the significance of antigen-specific lymphocytes and antibodies in the development of an autoimmune mouse model of RA, we generated TCR transgenic (TCR-Tg) mice specific for the dominant arthritogenic epitope of cartilage proteoglycan (PG) and performed a series of combined transfers of T cells, B cells and autoantibodies into BALB/c.Scid mice. The adoptive transfer of highly purified T cells from naive TCR-Tg, arthritic TCR-Tg or arthritic wild-type mice induced arthritis in SCID recipients, but the onset and severity of the disease were dependent on the sequential events of the T cell-supported reconstitution of PG-specific B cells and autoantibodies. The presence of activated PG-specific T cells was critical for disease induction, establishing a unique milieu for the selective homeostasis of autoantibody-producing B cells. In this permissive environment, anti-PG autoantibodies bound to cartilage and induced activation of the complement cascade, leading to irreversible cartilage destruction in affected joints. These findings may lead to a better understanding of the complex molecular and cellular mechanisms of RA.

  14. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome.

    PubMed

    Wang, Linan; Ma, Ning; Okamoto, Sachiko; Amaishi, Yasunori; Sato, Eiichi; Seo, Naohiro; Mineno, Junichi; Takesako, Kazutoh; Kato, Takuma; Shiku, Hiroshi

    2016-01-01

    Carcinoembryonic antigen (CEA) is a cell surface antigen highly expressed in various cancer cell types and in healthy tissues. It has the potential to be a target for chimeric antigen receptor (CAR)-modified T-cell therapy; however, the safety of this approach in terms of on-target/off-tumor effects needs to be determined. To address this issue in a clinically relevant model, we used a mouse model in which the T cells expressing CEA-specific CAR were transferred into tumor-bearing CEA-transgenic (Tg) mice that physiologically expressed CEA as a self-antigen. The adoptive transfer in conjunction with lymphodepleting and myeloablative preconditioning mediated significant tumor regression but caused weight loss in CEA-Tg, but not in wild-type mice. The weight loss was not associated with overt inflammation in the CEA-expressing gastrointestinal tract but was associated with malnutrition, reflected in elevated systemic levels of cytokines linked to anorexia, which could be controlled by the administration of an anti-IL-6 receptor monoclonal antibody without compromising efficacy. The apparent relationship between lymphodepleting and myeloablative preconditioning, efficacy, and off-tumor toxicity of CAR-T cells would necessitate the development of CEA-specific CAR-T cells with improved signaling domains that require less stringent preconditioning for their efficacy. Taken together, these results suggest that CEA-specific CAR-based adoptive T-cell therapy may be effective for patients with CEA(+) solid tumors. Distinguishing the fine line between therapeutic efficacy and off-tumor toxicity would involve further modifications of CAR-T cells and preconditioning regimens.

  15. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome

    PubMed Central

    Wang, Linan; Ma, Ning; Okamoto, Sachiko; Amaishi, Yasunori; Sato, Eiichi; Seo, Naohiro; Mineno, Junichi; Takesako, Kazutoh; Kato, Takuma; Shiku, Hiroshi

    2016-01-01

    ABSTRACT Carcinoembryonic antigen (CEA) is a cell surface antigen highly expressed in various cancer cell types and in healthy tissues. It has the potential to be a target for chimeric antigen receptor (CAR)-modified T-cell therapy; however, the safety of this approach in terms of on-target/off-tumor effects needs to be determined. To address this issue in a clinically relevant model, we used a mouse model in which the T cells expressing CEA-specific CAR were transferred into tumor-bearing CEA-transgenic (Tg) mice that physiologically expressed CEA as a self-antigen. The adoptive transfer in conjunction with lymphodepleting and myeloablative preconditioning mediated significant tumor regression but caused weight loss in CEA-Tg, but not in wild-type mice. The weight loss was not associated with overt inflammation in the CEA-expressing gastrointestinal tract but was associated with malnutrition, reflected in elevated systemic levels of cytokines linked to anorexia, which could be controlled by the administration of an anti-IL-6 receptor monoclonal antibody without compromising efficacy. The apparent relationship between lymphodepleting and myeloablative preconditioning, efficacy, and off-tumor toxicity of CAR-T cells would necessitate the development of CEA-specific CAR-T cells with improved signaling domains that require less stringent preconditioning for their efficacy. Taken together, these results suggest that CEA-specific CAR-based adoptive T-cell therapy may be effective for patients with CEA+ solid tumors. Distinguishing the fine line between therapeutic efficacy and off-tumor toxicity would involve further modifications of CAR-T cells and preconditioning regimens. PMID:27757303

  16. The stoichiometric production of IL-2 and IFN-γ mRNA defines memory T cells that can self-renew after adoptive transfer in humans.

    PubMed

    Wang, Anran; Chandran, Smita; Shah, Syed A; Chiu, Yu; Paria, Biman C; Aghamolla, Tamara; Alvarez-Downing, Melissa M; Lee, Chyi-Chia Richard; Singh, Sanmeet; Li, Thomas; Dudley, Mark E; Restifo, Nicholas P; Rosenberg, Steven A; Kammula, Udai S

    2012-08-29

    Adoptive immunotherapy using ex vivo-expanded tumor-reactive lymphocytes can mediate durable cancer regression in selected melanoma patients. Analyses of these trials have associated the in vivo engraftment ability of the transferred cells with their antitumor efficacy. Thus, there is intensive clinical interest in the prospective isolation of tumor-specific T cells that can reliably persist after transfer. Animal studies have suggested that central memory CD8(+) T cells (T(CM)) have divergent capabilities including effector differentiation to target antigen and stem cell-like self-renewal that enable long-term survival after adoptive transfer. We sought to isolate human melanoma-specific T(CM) to define their in vivo fate and function after autologous therapeutic transfer to metastatic patients. To facilitate the high-throughput identification of these rare cells from patients, we report that T(CM) have a defined stoichiometric production of interleukin-2 (IL-2) and interferon-γ (IFN-γ) mRNA after antigen stimulation. Melanoma-specific T cells screened for high relative IL-2 production had a T(CM) phenotype and superior in vitro proliferative capacity compared to cells with low IL-2 production. To investigate in vivo effector function and self-renewal capability, we allowed melanoma-specific T(CM) to undergo in vitro expansion and differentiation into lytic effector clones and then adoptively transferred them back into their hosts. These clones targeted skin melanocytes in all five patients and persisted long term and reacquired parental T(CM) attributes in four patients after transfer. These findings demonstrate the favorable engraftment fitness for human T(CM)-derived clones, but further efforts to improve their antitumor efficacy are still necessary.

  17. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer.

    PubMed

    Kandalaft, Lana E; Powell, Daniel J; Chiang, Cheryl L; Tanyi, Janos; Kim, Sarah; Bosch, Marnix; Montone, Kathy; Mick, Rosemarie; Levine, Bruce L; Torigian, Drew A; June, Carl H; Coukos, George

    2013-01-01

    Novel strategies for the therapy of recurrent ovarian cancer are warranted. We report a study of a combinatorial approach encompassing dendritic cell (DC)-based autologous whole tumor vaccination and anti-angiogenesis therapy, followed by the adoptive transfer of autologous vaccine-primed CD3/CD28-co-stimulated lymphocytes. Recurrent ovarian cancer patients for whom tumor lysate was available from prior cytoreductive surgery underwent conditioning with intravenous bevacizumab and oral metronomic cyclophosphamide, sequentially followed by (1) bevacizumab plus vaccination with DCs pulsed with autologous tumor cell lysate supernatants, (2) lymphodepletion and (3) transfer of 5 × 10(9) autologous vaccine-primed T-cells in combination with the vaccine. Feasibility, safety as well as immunological and clinical efficacy were evaluated. Six subjects received this vaccination. Therapy was feasible, well tolerated, and elicited antitumor immune responses in four subjects, who also experienced clinical benefits. Of these, three patients with residual measurable disease received outpatient lymphodepletion and adoptive T-cell transfer, which was well tolerated and resulted in a durable reduction of circulating regulatory T cells and increased CD8(+) lymphocyte counts. The vaccine-induced restoration of antitumor immunity was achieved in two subjects, who also demonstrated clinical benefits, including one complete response. Our findings indicate that combinatorial cellular immunotherapy for the treatment of recurrent ovarian cancer is well tolerated and warrants further investigation. Several modifications of this approach can be envisioned to optimize immunological and clinical outcomes.

  18. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques.

    PubMed

    Ayala, Victor I; Trivett, Matthew T; Barsov, Eugene V; Jain, Sumiti; Piatak, Michael; Trubey, Charles M; Alvord, W Gregory; Chertova, Elena; Roser, James D; Smedley, Jeremy; Komin, Alexander; Keele, Brandon F; Ohlen, Claes; Ott, David E

    2016-11-01

    AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4(+) T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus.

  19. Enhanced anti-tumor activity induced by adoptive T cell transfer and the adjunctive use of the HDAC Inhibitor LAQ824

    PubMed Central

    Vo, Dan D.; Prins, Robert M.; Begley, Jonathan L.; Donahue, Timothy R.; Morris, Lilah F.; Bruhn, Kevin W.; de la Rocha, Pilar; Yang, Meng-Yin; Mok, Stephen; Garban, Hermes J.; Craft, Noah; Economou, James S.; Marincola, Francesco M.; Wang, Ena; Ribas, Antoni

    2009-01-01

    Tumors grow in the presence of antigen-specific T cells, suggesting the existence of intrinsic cancer cell escape mechanisms. We hypothesized that a histone deacetylase (HDAC) inhibitor could sensitize tumor cells to immunotherapy because this class of agents has been reported to increase tumor antigen expression and shift gene expression to a pro-apoptotic milieu in cancer cells. To test this question, we treated B16 murine melanoma with the combination of the HDAC inhibitor LAQ824 together with the adoptive transfer (AT) of gp100 melanoma antigen-specific pmel-1 T cells. The combined therapy significantly improved antitumor activity through several mechanisms: 1) increase in MHC and tumor-associated antigen (TAA) expression by tumor cells; 2) decrease in competing endogenous lymphocytes in recipient mice, resulting in a proliferative advantage for the adoptively transferred cells; and 3) improvement in the functional activity of the adoptively transferred lymphocytes. We confirmed the beneficial effects of this HDAC inhibitor as sensitizer to immunotherapy in a different model of prophylactic prime-boost vaccination with the melanoma antigen tyrosinase-related protein-2 (TRP2), which also demonstrated a significant improvement in antitumor activity against B16 melanoma. In conclusion, the HDAC inhibitor LAQ824 significantly enhances tumor immunotherapy through effects on target tumor cells as well as improving the antitumor activity of tumor antigen-specific lymphocytes. PMID:19861533

  20. Adoptive transfer of regulatory T cells promotes intestinal tumorigenesis and is associated with decreased NK cells and IL-22 binding protein.

    PubMed

    Janakiram, Naveena B; Mohammed, Altaf; Bryant, Taylor; Brewer, Misty; Biddick, Laura; Lightfoot, Stan; Lang, Mark L; Rao, Chinthalapally V

    2015-10-01

    High number of regulatory T cells (Tregs), both circulating and at the tumor site, often indicates a poor prognosis in CRC patient's possibly impairing natural killer (NK) cell function. To determine the role of Tregs in CRC development and their effects on NK cells, we created novel transgenic Rag-Apc mice that lack T cells and develop spontaneous intestinal tumors, and we adoptively transferred Tregs or transiently depleted NK cells during initial stages of tumorigenesis. In 6-weeks old Rag-Apc mice containing microscopic intestinal tumors adoptive transfer of Tregs or transient NK cell depletion dramatically associated with an increase in intestinal tumor multiplicity and tumor size, with significantly decreased survival rates. Importantly, Treg transfer increased small intestinal polyp formation up to 65% (P < 0.0005) and increased colon tumors multiplicities by 84% (P < 0.0001) with a significant decrease in NK cells as compared to control mice. Similarly, in NK depleted mice, colon tumor multiplicities increased up to 40% and small intestinal polyp formation up to 60% (P < 0.0001). Treg transfer or NK cell transient depletion markedly increased interleukin (IL)-22 systemically and the inflammatory signaling molecules P2X7R, and STAT3 in the tumors; and impaired production of the tumor suppressor interferon (IFN)-γ systemically. Notably, IL-22 binding protein (IL-22 BP) was associated with NKs and a significant decrease was seen at the tumor site in mice adoptively transferred with Tregs or depleted of NK cells. Our results suggest that adoptive transfer of Tregs aggressively promote intestinal tumorigenesis by decreasing NK cell number and activity by modulating IL-22 BP.

  1. Adoptive T-cell therapy for cancer: The era of engineered T cells.

    PubMed

    Bonini, Chiara; Mondino, Anna

    2015-09-01

    Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.

  2. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    PubMed

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  3. Design of T cell receptor libraries with diverse binding properties to examine adoptive T cell responses

    PubMed Central

    Chervin, A.S.; Stone, J.D.; Soto, C.M.; Engels, B.; Schreiber, H.; Roy, E.J.; Kranz, D.M.

    2017-01-01

    Adoptive T cell therapies have shown significant promise in the treatment of cancer and viral diseases. One approach, that introduces antigen-specific T cell receptors (TCRs) into ex vivo activated T cells, is designed to overcome central tolerance mechanisms that prevent responses by endogenous T cell repertoires. Studies have suggested that use of higher affinity TCRs against class I MHC antigens could drive the activity of both CD4+ and CD8+ T cells, but the rules that govern the TCR binding optimal for in vivo activity are unknown. Here we describe a high-throughput platform of “reverse biochemistry” whereby a library of TCRs with a wide range of binding properties to the same antigen is introduced into T cells and adoptively transferred into mice with antigen-positive tumors. Extraction of RNA from tumor-infiltrating lymphocytes or lymphoid organs allowed high-throughput sequencing to determine which TCRs were selected in vivo. The results showed that CD8+ T cells expressing the highest affinity TCR variants were deleted in both the tumor infiltrating lymphocyte population and in peripheral lymphoid tissues. In contrast, these same high-affinity TCR variants were preferentially expressed within CD4+ T cells in the tumor, suggesting they played a role in antigen-specific tumor control. The findings thus revealed that the affinity of the transduced TCRs controlled the survival and tumor infiltration of the transferred T cells. Accordingly, the TCR library strategy enables rapid assessment of TCR binding properties that promote peripheral T cell survival and tumor elimination. PMID:23052828

  4. Adoptive T cell immunotherapy for cancer.

    PubMed

    Perica, Karlo; Varela, Juan Carlos; Oelke, Mathias; Schneck, Jonathan

    2015-01-01

    Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT). Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available.

  5. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy

    PubMed Central

    Spielmann, Guillaume; Bollard, Catherine M.; Kunz, Hawley; Hanley, Patrick J.; Simpson, Richard J.

    2016-01-01

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy. PMID:27181409

  6. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naive recipients.

    PubMed

    Yusuf, Nabiha; Katiyar, Santosh K; Elmets, Craig A

    2008-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P < 0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.

  7. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells.

    PubMed

    Scalapino, Kenneth J; Tang, Qizhi; Bluestone, Jeffrey A; Bonyhadi, Mark L; Daikh, David I

    2006-08-01

    An increasing number of studies indicate that a subset of CD4(+) T cells with regulatory capacity (regulatory T cells; T(regs)) can function to control organ-specific autoimmune disease. To determine whether abnormalities of thymic-derived T(regs) play a role in systemic lupus erythematosus, we evaluated T(reg) prevalence and function in (New Zealand Black x New Zealand White)F(1) (B/W) lupus-prone mice. To explore the potential of T(regs) to suppress disease, we evaluated the effect of adoptive transfer of purified, ex vivo expanded thymic-derived T(regs) on the progression of renal disease. We found that although the prevalence of T(regs) is reduced in regional lymph nodes and spleen of prediseased B/W mice compared with age-matched non-autoimmune mice, these cells increase in number in older diseased mice. In addition, the ability of these cells to proliferate in vitro was comparable to those purified from non-autoimmune control animals. Purified CD4(+)CD25(+)CD62L(high) B/W T(regs) were expanded ex vivo 80-fold, resulting in cells with a stable suppressor phenotype. Adoptive transfer of these exogenously expanded cells reduced the rate at which mice developed renal disease; a second transfer after treated animals had developed proteinuria further slowed the progression of renal disease and significantly improved survival. These studies indicate that thymic-derived T(regs) may have a significant role in the control of autoimmunity in lupus-prone B/W mice, and augmentation of these cells may constitute a novel therapeutic approach for systemic lupus erythematosus.

  8. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells

    PubMed Central

    Leech, J M; Sharif-Paghaleh, E; Maher, J; Livieratos, L; Lechler, R I; Mullen, G E; Lombardi, G; Smyth, L A

    2013-01-01

    Cell-based therapies using natural or genetically modified regulatory T cells (Tregs) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred Tregs is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and Tregs in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate Treg subset required for cellular therapy. PMID:23574314

  9. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation

    PubMed Central

    Berger, Carolina; Flowers, Mary E.; Warren, Edus H.; Riddell, Stanley R.

    2006-01-01

    The introduction of an inducible suicide gene such as the herpes simplex virus thymidine kinase (HSV-TK) might allow exploitation of the antitumor activity of donor T cells after allogeneic hematopoietic cell transplantation (HCT) without graft versus host disease. However, HSV-TK is foreign, and immune responses to gene-modified T cells could lead to their premature elimination. We show that after the infusion of HSV-TK–modified donor T cells to HCT recipients, CD8+ and CD4+ T-cell responses to HSV-TK are rapidly induced and coincide with the disappearance of transferred cells. Cytokine flow cytometry using an overlapping panel of HSV-TK peptides allowed rapid detection and quantitation of HSV-TK–specific T cells in the blood and identified multiple immunogenic epitopes. Repeated infusion of modified T cells boosted the induced HSV-TK–specific T cells, which persisted as memory cells. These studies demonstrate the need for nonimmunogenic suicide genes and identify a strategy for detection of CD4+ and CD8+ T-cell responses to transgene products that should be generally applicable to monitoring patients on gene therapy trials. The potency of gene-modified T cells to elicit robust and durable immune responses imply this approach might be used for vaccination to elicit T-cell responses to viral or tumor antigens. PMID:16282341

  10. Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines.

    PubMed

    Lees, Jason R; Iwakura, Yoichiro; Russell, John H

    2008-06-15

    Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.

  11. The Presence and Preferential Activation of Regulatory T Cells Diminish Adoptive Transfer of Autoimmune Diabetes by Polyclonal Nonobese Diabetic (NOD) T Cell Effectors into NSG versus NOD-scid Mice.

    PubMed

    Presa, Maximiliano; Chen, Yi-Guang; Grier, Alexandra E; Leiter, Edward H; Brehm, Michael A; Greiner, Dale L; Shultz, Leonard D; Serreze, David V

    2015-10-01

    NOD-scid.Il2rg(null) (NSG) mice are currently being used as recipients to screen for pathogenic autoreactive T cells in type 1 diabetes (T1D) patients. We questioned whether the restriction of IL-2R γ-chain (Il-2rγ)-dependent cytokine signaling only to donor cells in NSG recipients differently influenced the activities of transferred diabetogenic T cells when they were introduced as a monoclonal/oligoclonal population versus being part of a polyclonal repertoire. Unexpectedly, a significantly decreased T1D transfer by splenocytes from prediabetic NOD donors was observed in Il-2rγ(null)-NSG versus Il-2rγ-intact standard NOD-scid recipients. In contrast, NOD-derived monoclonal/oligoclonal TCR transgenic β cell-autoreactive T cells in either the CD8 (AI4, NY8.3) or CD4 (BDC2.5) compartments transferred disease significantly more rapidly to NSG than to NOD-scid recipients. The reduced diabetes transfer efficiency by polyclonal T cells in NSG recipients was associated with enhanced activation of regulatory T cells (Tregs) mediated by NSG myeloid APC. This enhanced suppressor activity was associated with higher levels of Treg GITR expression in the presence of NSG than NOD-scid APC. These collective results indicate NSG recipients might be efficiently employed to test the activity of T1D patient-derived β cell-autoreactive T cell clones and lines, but, when screening for pathogenic effectors within polyclonal populations, Tregs should be removed from the transfer inoculum to avoid false-negative results.

  12. Long-term Survival and Clinical Benefit from Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four-Parameter Tumor Immune Signature.

    PubMed

    Melief, Sara M; Visconti, Valeria V; Visser, Marten; van Diepen, Merel; Kapiteijn, Ellen H W; van den Berg, Joost H; Haanen, John B A G; Smit, Vincent T H B M; Oosting, Jan; van der Burg, Sjoerd H; Verdegaal, Els M E

    2017-02-01

    The presence of tumor-infiltrating immune cells is associated with longer survival and a better response to immunotherapy in early-stage melanoma, but a comprehensive study of the in situ immune microenvironment in stage IV melanoma has not been performed. We investigated the combined influence of a series of immune factors on survival and response to adoptive cell transfer (ACT) in stage IV melanoma patients. Metastases of 73 stage IV melanoma patients, 17 of which were treated with ACT, were studied with respect to the number and functional phenotype of lymphocytes and myeloid cells as well as for expression of galectins-1, -3, and -9. Single factors associated with better survival were identified using Kaplan-Meier curves and multivariate Cox regression analyses, and those factors were used for interaction analyses. The results were validated using The Cancer Genome Atlas database. We identified four parameters that were associated with a better survival: CD8(+) T cells, galectin-9(+) dendritic cells (DC)/DC-like macrophages, a high M1/M2 macrophage ratio, and the expression of galectin-3 by tumor cells. The presence of at least three of these parameters formed an independent positive prognostic factor for long-term survival. Patients displaying this four-parameter signature were found exclusively among patients responding to ACT and were the ones with sustained clinical benefit. Cancer Immunol Res; 5(2); 170-9. ©2017 AACR.

  13. Adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells in combination with zoledronic acid inhibits cancer growth and limits osteolysis in a murine model of osteolytic breast cancer.

    PubMed

    Zysk, Aneta; DeNichilo, Mark O; Panagopoulos, Vasilios; Zinonos, Irene; Liapis, Vasilios; Hay, Shelley; Ingman, Wendy; Ponomarev, Vladimir; Atkins, Gerald; Findlay, David; Zannettino, Andrew; Evdokiou, Andreas

    2017-02-01

    Bone metastases occur in over 75% of patients with advanced breast cancer and are responsible for high levels of morbidity and mortality. In this study, ex vivo expanded cytotoxic Vγ9Vδ2 T cells isolated from human peripheral blood were tested for their anti-cancer efficacy in combination with zoledronic acid (ZOL), using a mouse model of osteolytic breast cancer. In vitro, expanded Vγ9Vδ2 T cells were cytotoxic against a panel of human breast cancer cell lines, and ZOL pre-treatment further sensitised breast cancer cells to killing by Vγ9Vδ2 T cells. Vγ9Vδ2 T cells adoptively transferred into NOD/SCID mice localised to osteolytic breast cancer lesions in the bone, and multiple infusions of Vγ9Vδ2 T cells reduced tumour growth in the bone. ZOL pre-treatment potentiated the anti-cancer efficacy of Vγ9Vδ2 T cells, with mice showing further reductions in tumour burden. Mice treated with the combination also had reduced tumour burden of secondary pulmonary metastases, and decreased bone degradation. Our data suggests that adoptive transfer of Vγ9Vδ2 T cell in combination with ZOL may prove an effective immunotherapeutic approach for the treatment of breast cancer bone metastases.

  14. T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.

    PubMed

    Raber, Patrick L; Sierra, Rosa A; Thevenot, Paul T; Shuzhong, Zhang; Wyczechowska, Dorota D; Kumai, Takumi; Celis, Esteban; Rodriguez, Paulo C

    2016-04-05

    The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ T cells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer.

  15. Exploiting cytokines in adoptive T-cell therapy of cancer.

    PubMed

    Petrozziello, Elisabetta; Sturmheit, Tabea; Mondino, Anna

    2015-01-01

    Adoptive immunotherapy with tumor-reactive autologous T cells, either expanded from tumor specimens or genetically engineered to express tumor-reactive T-cell receptors and chimeric antigen receptors, is holding promising results in clinical trials. Several critical issues have been identified and results underline the possibility to exploit cytokines to further ameliorate the efficacy of current treatment protocols, also encompassing adoptive T-cell therapy. Here we review latest developments on the use of cytokines to better direct the nature of the T-cell infusion product, T-cell function and persistence in vivo, as well as to modulate the tumor microenvironment.

  16. Transient stimulation expands superior antitumor T cells for adoptive therapy

    PubMed Central

    Kagoya, Yuki; Nakatsugawa, Munehide; Ochi, Toshiki; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O.

    2017-01-01

    Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti–CD3/CD28 mAb–coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8+ T cells. Transiently stimulated CD8+ T cells maintained a stem cell–like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor–engineered antitumor CD8+ T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer. PMID:28138559

  17. Post-transplant adoptive T-cell immunotherapy

    PubMed Central

    Aqui, Nicole A.; June, Carl H.

    2008-01-01

    Immune reconstitution following haematopoietic stem cell transplantation (SCT) is an often slow and incomplete process that leads to increased risk of infection and malignant disease. Immunization in SCT is frequently unsuccessful due to the prolonged lymphopenia, especially of CD4 T cells, seen following transplant. The transfusion of T cells, also called ‘adoptive T-cell therapy’, has the potential to enhance anti-tumour and overall immunity, and augment vaccine efficacy in the post-transplant setting. Recent advances in tissue culture, cellular immunology and tumour biology are guiding new approaches to adoptive T-cell therapy. This chapter will discuss the challenges that face the field before adoptive T-cell therapy can be translated into routine clinical practice. PMID:18790452

  18. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma.

    PubMed

    Kobayashi, Hirohito; Tanaka, Yoshimasa; Yagi, Junji; Minato, Nagahiro; Tanabe, Kazunari

    2011-08-01

    Human Vγ2 Vδ2-bearing T cells have recently received much attention in cancer immunotherapy. In this study, we conducted a phase I/II clinical trial of the adoptive transfer of γδ T cells to patients with advanced renal cell carcinoma. Eleven patients who had undergone nephrectomy and had lung metastasis were enrolled. Peripheral blood γδ T cells obtained from the patients were stimulated ex vivo with 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP), a synthetic pyrophosphomonoester antigen, and transferred in combination with zoledronic acid (Zol) and teceleukin (recombinant human interleukin-2). Expanded γδ T cells exhibited potent cytotoxic activity against tumor cells in vitro, and the proportion of peripheral blood γδ T cells among CD3(+) cells typically peaked three to 5 days after transfer. Tumor doubling time was prolonged in all 11 patients, and the best overall responses were 1 CR, 5 SD, and 5 PD, as defined based on Response Evaluation Criteria in Solid Tumors (RECIST). Although ten patients developed adverse reactions of grade ≥3, they were likely to have been the result of the concomitant infusion of Zol and IL-2, and most symptoms swiftly reverted to normal during the course of treatment. In conclusion, this clinical trial demonstrated that our regimen for the adoptive transfer of γδ T cells in combination with Zol and IL-2 was well tolerated and that objective clinical responses could be achieved in some patients with advanced renal cell carcinoma.

  19. Adoptive transfer of bone marrow-derived dendritic cells decreases inhibitory and regulatory T-cell differentiation and improves survival in murine polymicrobial sepsis.

    PubMed

    Wang, Hong-Wei; Yang, Wen; Gao, Lei; Kang, Jia-Rui; Qin, Jia-Jian; Liu, Yue-Ping; Lu, Jiang-Yang

    2015-05-01

    A decrease in the number of dendritic cells (DCs) is a major cause of post-sepsis immunosuppression and opportunistic infection and is closely associated with poor prognosis. Increasing the number of DCs to replenish their numbers post sepsis can improve the condition. This therapeutic approach could improve recovery after sepsis. Eighty C57BL/6 mice were subjected to sham or caecal ligation and puncture (CLP) surgery. Mice were divided into four groups: (i) Sham + vehicle, (ii) Sham + DC, (iii) CLP + vehicle, and (iv) CLP + DC. Bone-marrow-derived DCs (BMDCs) were administered at 6, 12 and 24 hr after surgery. After 3 days, we assessed serum indices of organ function (alanine aminotransferase, aspartate aminotransferase, creatinine, amylase and lipase), organ tissue histopathology (haematoxylin and eosin staining), cytokine [interferon-γ (IFN-γ), tumour necrosis factor-α, interleukin-12p70 (IL-12p70), IL-6 and IL-10] levels in the serum, programmed death-1 (PD-1) expression on T cells, regulatory T-cell differentiation in the spleen, and the survival rate (monitored for 7 days). BMDC transfer resulted in the following changes: a significant reduction in damage to the liver, kidney and pancreas in the CLP-septic mice as well as in the pathological changes seen in the liver, lung, small intestine and pancreas; significantly elevated levels of the T helper type 1 (Th1) cytokines IFN-γ and IL-12p70 in the serum; decreased levels of the Th2 cytokines IL-6 and IL-10 in the serum; reduced expression of PD-1 molecules on CD4(+) T cells; reduced the proliferation and differentiation of splenic suppressor T cells and CD4(+)  CD25(+)  Foxp3(+) regulatory T cells, and a significant increase in the survival rate of the septic animals. These results show that administration of BMDCs may have modulated the differentiation and immune function of T cells and contributed to alleviate immunosuppression, hence reducing organ damage and mortality post sepsis. Hence

  20. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response.

    PubMed

    Olguín, Jonadab E; Fernández, Jacquelina; Salinas, Nohemí; Juárez, Imelda; Rodriguez-Sosa, Miriam; Campuzano, Jaime; Castellanos, Carlos; Saavedra, Rafael

    2015-08-01

    Infection of C57BL/6J mice with the parasite Toxoplasma gondii triggers a powerful Th1 immune response that is detrimental to the host. During acute infection, a reduction in CD4(+)Foxp3(+) regulatory T cells (Treg) has been reported. We studied the role of Treg during T. gondii infection by adoptive transfer of cells purified from transgenic Foxp3(EGFP) mice to infected wild type animals. We found a less severe weight loss, a significant delayed mortality in infected Treg-transferred mice, and reduced pathology of the small intestine that were associated with lower IFN-γ and TNF-α levels. Nevertheless, higher cyst number and parasite load in brain were observed in these mice. Treg-transferred infected mice showed reduced levels of both IFN-γ and TNF-α in sera. A reduced number of CD4(+) T cells producing IFN-γ was detected in these mice, while IL-2 producing CD4(+) T cells were restored to levels nearly similar to uninfected mice. CD25 and CD69 expression of CD4(+) T cells were also down modulated. Our data show that the low Treg cell number are insufficient to modulate the activation of CD4(+) T cells and the production of high levels of IFN-γ. Thus, a delicate balance between an optimal immune response and its modulation by Treg cells must exist.

  1. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models

    PubMed Central

    Kagoya, Yuki; Nakatsugawa, Munehide; Yamashita, Yuki; Ochi, Toshiki; Guo, Tingxi; Anczurowski, Mark; Saso, Kayoko; Butler, Marcus O.; Arrowsmith, Cheryl H.

    2016-01-01

    Adoptive immunotherapy is a potentially curative therapeutic approach for patients with advanced cancer. However, the in vitro expansion of antitumor T cells prior to infusion inevitably incurs differentiation towards effector T cells and impairs persistence following adoptive transfer. Epigenetic profiles regulate gene expression of key transcription factors over the course of immune cell differentiation, proliferation, and function. Using comprehensive screening of chemical probes with defined epigenetic targets, we found that JQ1, an inhibitor of bromodomain and extra-terminal motif (BET) proteins, maintained CD8+ T cells with functional properties of stem cell–like and central memory T cells. Mechanistically, the BET protein BRD4 directly regulated expression of the transcription factor BATF in CD8+ T cells, which was associated with differentiation of T cells into an effector memory phenotype. JQ1-treated T cells showed enhanced persistence and antitumor effects in murine T cell receptor and chimeric antigen receptor gene therapy models. Furthermore, we found that histone acetyltransferase p300 supported the recruitment of BRD4 to the BATF promoter region, and p300 inhibition similarly augmented antitumor effects of the adoptively transferred T cells. These results demonstrate that targeting the BRD4-p300 signaling cascade supports the generation of superior antitumor T cell grafts for adoptive immunotherapy. PMID:27548527

  2. Clinical application of adoptive T cell therapy in solid tumors

    PubMed Central

    Zang, Yi-Wen; Gu, Xiao-Dong; Xiang, Jian-Bin; Chen, Zong-You

    2014-01-01

    As an emerging therapeutic approach, adoptive T cell therapy shown promise in advanced solid malignancies. The results obtained in patients with metastatic melanoma and kidney cancer are encouraging because of the visible clinical benefits and limited adverse effects. Recently, the genetically-modified T cells expressing specific T cell receptors or chimeric antigen receptors are just now entering the clinical arena and show great potential for high avidity to tumor-associated antigens and long-lasting anti-tumor responses. However, continued investigations are necessary to improve the cell product quality so as to decrease adverse effects and clinical costs, and make adoptive T cell therapy a tool of choice for solid malignancies. PMID:24912947

  3. Tumor-Specific Effector CD8+ T Cells That Can Establish Immunological Memory in Humans after Adoptive Transfer Are Marked by Expression of IL7 Receptor and c-myc.

    PubMed

    Chandran, Smita S; Paria, Biman C; Srivastava, Abhishek K; Rothermel, Luke D; Stephens, Daniel J; Kammula, Udai S

    2015-08-15

    The optimal T-cell attributes for adoptive cancer immunotherapy are unclear. Recent clinical trials of ex vivo-expanded tumor-infiltrating lymphocytes indicated that differentiated T effector cells can elicit durable antitumor responses in some patients with cancer, with their antitumor activity tightly correlated with their persistence in the host. Thus, there is great interest in the definition of intrinsic biomarkers that can predict the conversion of short-lived tumor antigen-specific T effector cells into long-lived T memory cells. Long-term persistence of ex vivo-expanded tumor-specific CD8+ T effector clones has been reported in refractory metastatic melanoma patients after adoptive T-cell transfer. By using highly homogeneous clone populations from these preparations, we performed a comparative transcriptional profiling to define preinfusion molecular attributes that can be ascribed to an effector-to-memory transition. Through this route, we discovered that preinfusion T-cell clones that expressed the IL7 receptor (IL7R) and c-myc were more likely to persist longer after adoptive transfer to patients. The predictive value of these two biomarkers was strengthened by using IL7R protein, IL7-induced pSTAT5, and c-myc mRNA expression to prospectively identify human tumor-specific T effector clones capable of engraftment into immunodeficient mice. Overall, our findings reveal IL7R and c-myc expression as intrinsic biomarkers that can predict the fate of CD8+ T effector cells after adoptive transfer.

  4. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy.

    PubMed

    Vavrova, Katerina; Vrabcova, Petra; Filipp, Dominik; Bartunkova, Jirina; Horvath, Rudolf

    2016-12-01

    Adoptive T cell transfer has been shown to be an effective method used to boost tumor-specific immune responses in several types of malignancies. In this study, we set out to optimize the ACT protocol for the experimental treatment of prostate cancer. The protocol includes a pre-stimulation step whereby T cells were primed with autologous dendritic cells loaded with the high hydrostatic pressure-treated prostate cancer cell line, LNCaP. Primed T cells were further expanded in vitro with anti-CD3/CD28 Dynabeads in the WAVE bioreactor 2/10 system and tested for cytotoxicity. Our data indicates that the combination of pre-stimulation and expansion steps resulted in the induction and enrichment of tumor-responsive CD4(+) and CD8(+) T cells at clinically relevant numbers. The majority of both CD4(+) and CD8(+) IFN-γ producing cells were CD62L, CCR7 and CD57 negative but CD28 and CD27 positive, indicating an early antigen experienced phenotype in non-terminal differentiation phase. Expanded T cells showed significantly greater cytotoxicity against LNCaP cells compared to the control SKOV-3, an ovarian cancer line. In summary, our results suggest that the ACT approach together with LNCaP-loaded dendritic cells provides a viable way to generate prostate cancer reactive T cell effectors that are capable of mounting efficient and targeted antitumor responses and can be thus considered for further testing in a clinical setting.

  5. Generation of tumor-specific cytotoxic T-lymphocytes from the peripheral blood of colorectal cancer patients for adoptive T-cell transfer.

    PubMed

    Carluccio, Silvia; Delbue, Serena; Signorini, Lucia; Setola, Elisabetta; Bagliani, Anna; Della Valle, Alberto; Galli, Andrea; Ferrante, Pasquale; Bregni, Marco

    2015-07-01

    This study designs a strategy for an adoptive cellular therapy (ACT) protocol based on the ex-vivo selection of autologous peripheral blood-derived CD8-enriched T-cells, stimulated with dendritic cells (DCs) that had been pulsed with apoptotic tumor cells to generate cytotoxic T lymphocytes (CTLs) with anti-tumor activity. Seventy-eight colorectal cancer (CRC) patients were enrolled in this study. Tumor tissues and peripheral blood (PB) were obtained at surgery. Tissues were mechanically dissociated and cultured to obtain a primary tumor cell line from each patient. DCs were derived from peripheral blood mononuclear cells (PBMCs) using magnetic positive selection of CD14+ monocytes. Anti-tumor CTLs were elicited in co-/micro-cultures using DCs as antigen-presenting cells, autologous apoptotic tumor cells as a source of antigens, and CD8+ T lymphocytes as effectors. Interferon-γ (IFN-γ) secretion was assessed by ELISpot assays to evaluate the activation of the CTLs against the autologous tumor cells. Primary tumor cell lines were obtained from 20 of 78 patients (25.6%). DCs were generated from 26 patients, and of them, corresponding tumor cell lines were derived from six patients. ELISpot results showed that significant IFN-γ secretion was detected after different numbers of stimulations for two patients, whereas weak secretion was observed for three patients. Despite difficulties due to contamination of several primary tumor cell lines with gut intestinal flora, the results suggest that the generation of tumor-specific CTLs is feasible from patients with CRC, and could be useful for supporting an ACT approach in CRC.

  6. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer.

    PubMed

    Jin, Chuan; Fotaki, Grammatiki; Ramachandran, Mohanraj; Nilsson, Berith; Essand, Magnus; Yu, Di

    2016-07-01

    Chimeric antigen receptor (CAR) T-cell therapy is a new successful treatment for refractory B-cell leukemia. Successful therapeutic outcome depends on long-term expression of CAR transgene in T cells, which is achieved by delivering transgene using integrating gamma retrovirus (RV) or lentivirus (LV). However, uncontrolled RV/LV integration in host cell genomes has the potential risk of causing insertional mutagenesis. Herein, we describe a novel episomal long-term cell engineering method using non-integrating lentiviral (NILV) vector containing a scaffold/matrix attachment region (S/MAR) element, for either expression of transgenes or silencing of target genes. The insertional events of this vector into the genome of host cells are below detection level. CD19 CAR T cells engineered with a NILV-S/MAR vector have similar levels of CAR expression as T cells engineered with an integrating LV vector, even after numerous rounds of cell division. NILV-S/MAR-engineered CD19 CAR T cells exhibited similar cytotoxic capacity upon CD19(+) target cell recognition as LV-engineered T cells and are as effective in controlling tumor growth in vivo We propose that NILV-S/MAR vectors are superior to current options as they enable long-term transgene expression without the risk of insertional mutagenesis and genotoxicity.

  7. Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet.

    PubMed

    Cravens, Petra D; Hussain, Rehana Z; Zacharias, Tresa E; Ben, Li-Hong; Herndon, Emily; Vinnakota, Ramya; Lambracht-Washington, Doris; Nessler, Stefan; Zamvil, Scott S; Eagar, Todd N; Stüve, Olaf

    2011-06-24

    Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized

  8. Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants

    PubMed Central

    Kaluza, Karen M.; Thompson, Jill M.; Kottke, Timothy J.; Flynn Gilmer, Heather C.; Knutson, Darlene L.; Vile, Richard G.

    2014-01-01

    Adoptive T cell therapy has proven effective against melanoma in mice and humans. However, because most responses are incomplete or transient, cures remain rare. To maximize the efficacy of this therapy, it will be essential to gain a better understanding of the processes which result in tumor relapse. We studied these processes using B16ova murine melanoma and adoptive transfer of OT-I T cells. Transfer of T cells as a single therapy provided a significant survival benefit for mice with established subcutaneous tumors. However, tumors which initially regressed often recurred. By analyzing tumors which emerged in the presence of a potent OT-I response, we identified a novel tumor escape mechanism in which tumor cells evaded T cell pressure by undergoing major genomic changes involving loss of the gene encoding the target tumor antigen. Furthermore, we show that these in vivo processes can be recapitulated in vitro using T cell/tumor cell co-cultures. A single round of in vitro co-culture led to significant loss of the ova gene and a tumor cell population with rapidly induced and diverse karyotypic changes. Although these current studies focus on the model OVA antigen, the finding that T cells can directly promote genomic instability has important implications for the development of adoptive T cell therapies. PMID:21935923

  9. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer

    PubMed Central

    2012-01-01

    Purpose In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Rationale Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR)-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα) is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. Design Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB) costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. Innovation This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL) is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity. PMID:22863016

  10. Biopolymer implants enhance the efficacy of adoptive T cell therapy

    PubMed Central

    Stephan, Sirkka B.; Taber, Alexandria M.; Jileaeva, Ilona; Pegues, Ericka P.; Sentman, Charles L.; Stephan, Matthias T.

    2014-01-01

    Although adoptive T cell therapy holds promise for the treatment of many cancers, its clinical utility has been limited by problems in delivering targeted lymphocytes to tumor sites, and their inefficient expansion in the immunosuppressive tumor microenvironment. Here we describe a bioactive polymer implant capable of delivering, expanding and dispersing tumor-reactive T cells. The approach can be used to treat inoperable or incompletely-removed tumors by situating implants near them, or at resection sites. Using a mouse breast cancer resection model, we show that the implants effectively support tumor-targeting T cells throughout resection beds and associated lymph nodes, and reduce tumor relapse compared to conventional delivery modalities. In a multifocal ovarian cancer model, we demonstrate that polymer-delivered T cells trigger regression whereas injected tumor-reactive lymphocytes have little curative effect. Scaffold-based T cell delivery may provide a viable treatment option for inoperable tumors, and reduce the rate of metastatic relapse after surgery. PMID:25503382

  11. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies.

    PubMed

    Smith, Corinne J; Quinn, Michael; Snyder, Christopher M

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8(+) T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8(+) T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8(+) T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8(+) T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  12. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    PubMed Central

    Smith, Corinne J.; Quinn, Michael; Snyder, Christopher M.

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease. PMID:27695453

  13. Generation of CAR T cells for adoptive therapy in the context of glioblastoma standard of care.

    PubMed

    Riccione, Katherine; Suryadevara, Carter M; Snyder, David; Cui, Xiuyu; Sampson, John H; Sanchez-Perez, Luis

    2015-02-16

    Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.

  14. Management of patients with non-Hodgkin’s lymphoma: focus on adoptive T-cell therapy

    PubMed Central

    Perna, Serena Kimi; Huye, Leslie E; Savoldo, Barbara

    2015-01-01

    Non-Hodgkin’s lymphoma (NHL) represents a heterogeneous group of malignancies with high diversity in terms of biology, clinical responses, and prognosis. Standard therapy regimens produce a 5-year relative survival rate of only 69%, with the critical need to increase the treatment-success rate of this patient population presenting at diagnosis with a median age of 66 years and many comorbidities. The evidence that an impaired immune system favors the development of NHL has opened the stage for new therapeutics, and specifically for the adoptive transfer of ex vivo-expanded antigen-specific T-cells. In this review, we discuss how T-cells specific for viral-associated antigens, nonviral-associated antigens expressed by the tumor, T-cells redirected through the expression of chimeric antigen receptors, and transgenic T-cell receptors against tumor cells have been developed and used in clinical trials for the treatment of patients with NHLs. PMID:27471712

  15. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naïve recipients

    PubMed Central

    Yusuf, Nabiha; Katiyar, Santosh K; Elmets, Craig A

    2013-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T-cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, non-tumor bearing CD4 knockout (CD4−/−) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg/kg Pc4, 110 J/cm2 light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4−/− mice as compared to WT mice. We next examined the role of CD8+ T-cells in Pc4-PDT induced immunosuppression using CD8−/− mice following the same treatment regimen used for CD4−/− mice. Similar to CD4−/− mice, CD8−/− mice exhibited less immunosuppression than WT mice. Pc4-PDT induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (p<0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT induced immunosuppression but do not affect PDT induced regression of tumors may prove superior to PDT alone in promoting long term anti-tumor responses. PMID:18208456

  16. A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer

    PubMed Central

    Kershaw, Michael H.; Westwood, Jennifer A.; Parker, Linda L.; Wang, Gang; Eshhar, Zelig; Mavroukakis, Sharon A.; White, Donald E.; Wunderlich, John R.; Canevari, Silvana; Rogers-Freezer, Linda; Chen, Clara C.; Yang, James C.; Rosenberg, Steven A.; Hwu, Patrick

    2007-01-01

    Purpose A phase I study was conducted to assess the safety of adoptive immunotherapy using gene-modified autologous T cells for the treatment of metastatic ovarian cancer. Experimental Design T cells with reactivity against the ovarian cancer – associated antigen α-folate receptor (FR) were generated by genetic modification of autologous T cells with a chimeric gene incorporating an anti-FR single-chain antibody linked to the signaling domain of the Fc receptor γ chain. Patients were assigned to one of two cohorts in the study. Eight patients in cohort 1received a dose escalation of T cells in combination with high-dose interleukin-2, and six patients in cohort 2 received dual-specific T cells (reactive with both FR and allogeneic cells) followed by immunization with allogeneic peripheral blood mononuclear cells. Results Five patients in cohort 1 experienced some grade 3 to 4 treatment-related toxicity that was probably due to interleukin-2 administration, which could be managed using standard measures. Patients in cohort 2 experienced relatively mild side effects with grade 1to 2 symptoms. No reduction in tumor burden was seen in any patient. Tracking 111In-labeled adoptively transferred T cells in cohort 1revealed a lack of specific localization of T cells to tumor except in one patient where some signal was detected in a peritoneal deposit. PCR analysis showed that gene-modified T cells were present in the circulation in large numbers for the first 2 days after transfer, but these quickly declined to be barely detectable 1month later in most patients. An inhibitory factor developed in the serum of three of six patients tested over the period of treatment, which significantly reduced the ability of gene-modified T cells to respond against FR+ tumor cells. Conclusions Large numbers of gene-modified tumor-reactive T cells can be safely given to patients, but these cells do not persist in large numbers long term. Future studies need to employ strategies to

  17. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice

    PubMed Central

    Breart, Béatrice; Lemaître, Fabrice; Celli, Susanna; Bousso, Philippe

    2008-01-01

    CTLs have the potential to attack tumors, and adoptive transfer of CTLs can lead to tumor regression in mouse models and human clinical settings. However, the dynamics of tumor cell elimination during efficient T cell therapy is unknown, and it is unclear whether CTLs act directly by destroying tumor cells or indirectly by initiating the recruitment of innate immune cells that mediate tumor damage. To address these questions, we report real-time imaging of tumor cell apoptosis in vivo using intravital 2-photon microscopy and a Förster resonance energy transfer–based (FRET-based) reporter of caspase 3 activity. In a mouse model of solid tumor, we found that tumor regression after transfer of in vitro–activated CTLs occurred primarily through the direct action of CTLs on each individual tumor cell, with a minimal bystander effect. Surprisingly, the killing of 1 target cell by an individual CTL took an extended period of time, 6 hours on average, which suggested that the slow rate of killing intrinsically limits the efficiency of antitumor T cell responses. The ability to visualize when, where, and how tumor cells are killed in vivo offers new perspectives for understanding how immune effectors survey cancer cells and how local tumor microenvironments may subvert immune responses. PMID:18357341

  18. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients

    SciTech Connect

    Orme, I.M.; Collins, F.M.

    1983-07-01

    The results of this study demonstrate that spleen cells taken from mice at the height of the primary immune response to intravenous infection with Mycobacterium tuberculosis possess the capacity to transfer adoptive protection to M. tuberculosis-infected recipients, but only if these recipients are first rendered T cell-deficient, either by thymectomy and gamma irradiation, or by sublethal irradiation. A similar requirement was necessary to demonstrate the adoptive protection of the lungs after exposure to an acute aerosol-delivered M. tuberculosis infection. In both infectious models successful adoptive immunotherapy was shown to be mediated by T lymphocytes, which were acquired in the donor animals in response to the immunizing infection. It is proposed that the results of this study may serve as a basic model for the subsequent analysis of the nature of the T cell-mediated immune response to both systemic and aerogenic infections with M. tuberculosis.

  19. Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells

    PubMed Central

    Cruz, Conrad Russell Y.; Bollard, Catherine M.

    2016-01-01

    The development of novel T cell therapies to target leukemia has facilitated the translation of this approach for hematologic malignancies. Different methods of manufacturing leukemia-specific T cells have evolved, along with additional measures to increase the safety of this therapy. This is an overview of expanded T cell therapeutics with a focus on how the manufacturing strategies have been refined, and where the research is heading. PMID:26648070

  20. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-02-01

    The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

  1. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model.

    PubMed

    Zenclussen, Ana Claudia; Gerlof, Katrin; Zenclussen, Maria Laura; Sollwedel, André; Bertoja, Annarosa Zambon; Ritter, Thomas; Kotsch, Katja; Leber, Joachim; Volk, Hans-Dieter

    2005-03-01

    Mammalian pregnancy is thought to be a state of immunological tolerance. The mechanisms underlying this phenomenon are still poorly understood. Here, we determined whether an inappropriate function of T regulatory (Treg) cells is involved in the pathogenesis of spontaneous abortion. We evaluated spleen and decidual lymphocytes from CBA/J mice undergoing immunological abortion (DBA/2J-mated) or having normal pregnancy (BALB/c-mated) on day 14 of gestation for ex vivo cytokine production after PMA or paternal antigen (alloantigen) stimulation. Treg activity was characterized by quantifying CD4(+)CD25(+) cells, foxp3 expression, and interleukin-10 secretion. Decidual lymphocytes from abortion CBA/J mice contained a significantly higher frequency of interferon-gamma-producing T cells specific for paternal antigens compared to those from normal pregnancy (7.8% versus 2.7%, P < 0.05). Compared to virgin CBA/J females, normal pregnant mice showed strongly elevated numbers of CD4(+)CD25(+) and interleukin-10(+) Treg cells in the thymus whereas significantly lower frequencies of Treg cells were observed in abortion mice. Very interestingly, CD4(+)CD25(+) Treg cells from normal pregnant and nonpregnant CBA/J mice could inhibit both proliferation and interferon-gamma secretion of lymphocytes from abortion mice in vitro whereas in vivo prevention of fetal rejection could only be achieved after adoptive transfer of Treg cells from normal pregnant mice. Our data suggest that pregnancy-induced Treg cells play a vital role in maternal tolerance to the allogeneic fetus.

  2. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells

    PubMed Central

    Kuczma, Michal; Ding, Zhi-Chun; Zhou, Gang

    2017-01-01

    The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fast-growing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan’s activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan. PMID:27910767

  3. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells.

    PubMed

    O'Reilly, R J; Koehne, G; Hasan, A N; Doubrovina, E; Prockop, S

    2015-06-01

    Allogeneic hematopoietic cell transplants adequately depleted of T-cells can reduce or prevent acute and chronic GVHD in both HLA-matched and haplotype-disparate hosts, without post-transplant prophylaxis with immunosuppressive drugs. Recent trials indicate that high doses of CD34+ progenitors from G-CSF mobilized peripheral blood leukocytes isolated and T-cell depleted by immunoadsorption to paramagnetic beads, when administered after myeloablative conditioning with TBI and chemotherapy or chemotherapy alone can secure consistent engraftment and abrogate GVHD in patients with acute leukemia without incurring an increased risk of a recurrent leukemia. Early clinical trials also indicate that high doses of in vitro generated leukemia-reactive donor T-cells can be adoptively transferred and can induce remissions of leukemia relapse without GVHD. Similarly, virus-specific T-cells generated from the transplant donor or an HLA partially matched third party, have induced remissions of Rituxan-refractory EBV lymphomas and can clear CMV disease or viremia persisting despite antiviral therapy in a high proportion of cases. Analyses of treatment responses and failures illustrate both the advantages and limitations of donor or banked, third party-derived T-cells, but underscore the potential of adoptive T-cell therapy in the absence of ongoing immunosuppression.

  4. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice.

    PubMed

    Montinaro, Antonella; Forte, Giovanni; Sorrentino, Rosalinda; Luciano, Antonio; Palma, Giuseppe; Arra, Claudio; Adcock, Ian M; Pinto, Aldo; Morello, Silvana

    2012-01-01

    Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse) inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs) into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner.

  5. Exploiting cytokine secretion to rapidly produce multivirus-specific T cells for adoptive immunotherapy

    PubMed Central

    Fujita, Yuriko; Leen, Ann M; Sun, Jiali; Nakazawa, Yozo; Yvon, Eric; Heslop, Helen E; Brenner, Malcolm K; Rooney, M Cliona

    2009-01-01

    Viral infections remain a major cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT), and conventional small-molecule therapeutics often have modest benefit, high cost and adverse effects. Adoptive transfer of donor-derived virus-specific T cells has been shown to be feasible and safe after HSCT, and to reconstitute immunity against cytomegalovirus, Epstein-Barr virus and adenovirus. Current protocols to generate these cytotoxic T cell (CTL) lines are lengthy, taking up to 12 weeks. Since viral infections often occur <30 days after HSCT, speedy production of virus-specific cytotoxic T cells lacking alloreactivity is highly desirable. We now describe a modified rapid selection method for production and characterization of CD4+ and CD8+ T cells specific for cytomegalovirus, Epstein-Barr virus and adenovirus in a single infusate. We use Ad5f35-pp65/LMP2 vectors in a single procedure over a 48hr time period and manufacture a product suited for clinical use. By simultaneously expanding a portion of the selected product we can characterize phenotype and function of the infused product and link them with subsequent in vivo outcome. PMID:18600178

  6. Cellular Immunotherapy for Neuroblastoma: A Review of Current Vaccine and Adoptive T Cell Therapeutics

    PubMed Central

    Louis, C.U.; Brenner, M.K.

    2014-01-01

    Immunotherapy is an attractive option for patients with high risk neuroblastoma due to their poor long-term survival rates after conventional treatment. Neuroblastoma cells are derived from the embryonic neural crest and therefore express tumor antigens not widely seen in normal cells, making them potential targets for immunologic attack. There is already considerable experience with monoclonal antibodies that target these tumor associated antigens, and in this review we focus on more exploratory approaches, using tumor vaccines and adoptive transfer of tumor-directed T cells. PMID:19199969

  7. Abrogating Cbl-b in effector CD8(+) T cells improves the efficacy of adoptive therapy of leukemia in mice.

    PubMed

    Stromnes, Ingunn M; Blattman, Joseph N; Tan, Xiaoxia; Jeevanjee, Sara; Gu, Hua; Greenberg, Philip D

    2010-10-01

    The clinical use of adoptive immunotherapy with tumor-reactive T cells to treat established cancers is limited in part by the poor in vivo survival and function of the transferred T cells. Although administration of exogenous cytokines such as IL-2 can promote T cell survival, such strategies have many nonspecific activities and are often associated with toxicity. We show here that abrogating expression of Casitas B-lineage lymphoma b (Cbl-b), a negative regulator of lymphocyte activation, in tumor-reactive CD8(+) T cells expanded ex vivo increased the efficacy of adoptive immunotherapy of disseminated leukemia in mice. Mechanistically, Cbl-b abrogation bypassed the requirement for exogenous IL-2 administration for tumor eradication in vivo. In addition, CD8(+) T cells lacking Cbl-b demonstrated a lower threshold for activation, better survival following target recognition and stimulation, and enhanced proliferative responses as a result of both IL-2-dependent and -independent pathways. Importantly, siRNA knockdown of Cbl-b in human CD8(+)CD28- effector T cell clones similarly restored IL-2 production and proliferation following target recognition independent of exogenous IL-2, enhanced IFN-γ production, and increased target avidity. Thus, abrogating Cbl-b expression in effector T cells may improve the efficacy of adoptive therapy of some human malignancies.

  8. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  9. Isolation of Immune Cells for Adoptive Transfer.

    PubMed

    Barhoumi, Tlili; Paradis, Pierre; Mann, Koren K; Schiffrin, Ernesto L

    2017-01-01

    Adoptive transfer of T lymphocytes is a useful technique to characterize the role of the immune system in hypertension and vascular disease. Here we describe as an example the isolation of splenic T regulatory cells from donor mice processed to obtain a single cell suspension, followed by negative and positive selection to obtain CD4(+) T cells and CD4(+)CD25(+) Treg cells, respectively. Treg cells can be subsequently transferred to recipient animals.

  10. Cytotoxic T lymphocyte-associated antigen 4 inhibition increases the antitumor activity of adoptive T-cell therapy when carried out with naïve rather than differentiated T cells.

    PubMed

    Ishikawa, Takeshi; Adachi, Satoko; Okayama, Tetsuya; Kokura, Satoshi; Mizushima, Katsura; Doi, Toshifumi; Matsuyama, Tatsuzo; Sakamoto, Naoyuki; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu

    2015-05-01

    Although treatment with an antibody against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) combined with multiple therapeutic interventions has been explored, the effect of combination therapy with CTLA-4 inhibition and adoptive T-cell therapy has not been determined. In the present study, our aim was to determine whether CTLA-4 inhibition, combined with adoptive transfer of T cells at different stages of differentiation, exhibits synergistic antitumor effects in a murine colon cancer model. Mice bearing subcutaneous tumors were administered adoptive T-cell transfer of CD62Lhigh or CD62Llow cells combined with an anti-CTLA-4 antibody (α-CTLA-4) or control immunoglobulin G. Subcutaneous tumors were harvested, and the antitumor effects and helper T-cell polarization were analyzed. CTLA-4 inhibition combined with CD62Lhigh cell administration showed the strongest antitumor effect. Combination therapy increased the number of CD3+ cells within the tumor. Moreover, CTLA-4 inhibition induced polarization of T cells infiltrating the tumor toward the T helper 1 lineage, and suppressed the frequency of regulatory T cells within the tumor, particularly in combination with CD62Lhigh T-cell transfer. This is the first report demonstrating that the efficacy of α-CTLA-4 and adoptive T-cell transfer combination therapy depends on the state of differentiation of the transferred T cells. Our data support the notion that a combination of α-CTLA-4 and adoptive T-cell transfer containing an abundance of naïve phenotype cells could potentially exert antitumor effects in a clinical setting.

  11. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    PubMed Central

    Ye, Baixin; Gao, Qingping; Wang, Qiongyu; Zeng, Zhi

    2017-01-01

    A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs) play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR) T-cell therapy and engineered T-cell receptor (TCR) T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1) provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2) provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3) evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies. PMID:28116322

  12. Emerging role of regulatory T cells in gene transfer.

    PubMed

    Cao, Ou; Furlan-Freguia, Christian; Arruda, Valder R; Herzog, Roland W

    2007-10-01

    Induction and maintenance of immune tolerance to therapeutic transgene products are key requirements for successful gene replacement therapies. Gene transfer may also be used to specifically induce immune tolerance and thereby augment other types of therapies. Similarly, gene therapies for treatment of autoimmune diseases are being developed in order to restore tolerance to self-antigens. Regulatory T cells have emerged as key players in many aspects of immune tolerance, and a rapidly increasing body of work documents induction and/or activation of regulatory T cells by gene transfer. Regulatory T cells may suppress antibody formation and cytotoxic T cell responses and may be critical for immune tolerance to therapeutic proteins. In this regard, CD4(+)CD25(+) regulatory T cells have been identified as important components of tolerance in several gene transfer protocols, including hepatic in vivo gene transfer. Augmentation of regulatory T cell responses should be a promising new tool to achieve tolerance and avoid immune-mediated rejection of gene therapy. During the past decade, it has become obvious that immune regulation is an important and integral component of tolerance to self-antigens and of many forms of induced tolerance. Gene therapy can only be successful if the immune system does not reject the therapeutic transgene product. Recent studies provide a rapidly growing body of evidence that regulatory T cells (T(reg)) are involved and often play a crucial role in tolerance to proteins expressed by means of gene transfer. This review seeks to provide an overview of these data and their implications for gene therapy.

  13. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells

    PubMed Central

    1982-01-01

    On the basis of preceding studies showing that tumor-induced, T cell- mediated immunosuppression serves as an obstacle to adoptive immunotherapy of the Meth A fibrosarcoma, it was predicted that cyclophosphamide treatment of tumor bearers would remove this obstacle and allow passively transferred immune T cells to cause tumor regression. It was found that infusion of immune spleen cells alone had no effect on tumor growth, and cyclophosphamide alone caused a temporary halt in tumor progression. In contrast, combination therapy consisting of intravenous injection of 100 mg/kg of cyclophosphamide followed 1 h later by intravenous infusion of tumor-immune spleen cells caused small, as well as large tumors, to completely and permanently regress. Tumor regression caused by combination therapy was completely inhibited by intravenous infusion of splenic T cells from donors with established tumors, but not by spleen cells from normal donors. These suppressor T cells were eliminated from the spleen by treating the tumor-bearing donors with 100 mg/kg of cyclophosphamide. Immune T cells, in contrast, were resistant to this dose of cyclophosphamide. These results show that failure of intravenously-infused, tumor- sensitized T cells to cause regression of the Meth A fibrosarcoma growing in its syngeneic or semi-syngeneic host is caused by the presence of a tumor-induced population of cyclophosphamide-sensitive suppressor T cells. PMID:6460831

  14. Regulation and Maintenance of an Adoptive T-Cell Dependent Memory B Cell Pool

    PubMed Central

    Anson, Marie; Amado, Inês; Mailhé, Marie-Pierre; Donnadieu, Emmanuel; Garcia, Sylvie; Huetz, François; Freitas, Antonio A.

    2016-01-01

    We investigated the ability of monoclonal B cells to restore primary and secondary T-cell dependent antibody responses in adoptive immune-deficient hosts. Priming induced B cell activation and expansion, AID expression, antibody production and the generation of IgM+IgG- and IgM-IgG+ antigen-experienced B-cell subsets that persisted in the lymphopenic environment by cell division. Upon secondary transfer and recall the IgM-IgG+ cells responded by the production of antigen-specific IgG while the IgM+ memory cells secreted mainly IgM and little IgG, but generated new B cells expressing germinal center markers. The recall responses were more efficient if the antigenic boost was delayed suggesting that a period of adaptation is necessary before the transferred cells are able to respond. Overall these findings indicate that reconstitution of a functional and complete memory pool requires transfer of all different antigen-experienced B cell subsets. We also found that the size of the memory B cell pool did not rely on the number of the responding naïve B cells, suggesting autonomous homeostatic controls for naïve and memory B cells. By reconstituting a stable memory B cell pool in immune-deficient hosts using a monoclonal high-affinity B cell population we demonstrate the potential value of B cell adoptive immunotherapy. PMID:27880797

  15. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors.

    PubMed

    Abken, Hinrich

    2015-01-01

    Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.

  16. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells

    PubMed Central

    Lu, Xiaoyun; Ding, Zhi-Chun; Cao, Yang; Liu, Chufeng; Habtetsion, Tsadik; Yu, Miao; Lemos, Henrique; Salman, Huda; Xu, Hongyan; Mellor, Andrew L.; Zhou, Gang

    2014-01-01

    In recent years the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the current study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4+ T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelo-leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum resident calreticulin (CRT), and extracellular release of high-mobility group box 1 (HMGB1). In addition, there was enhanced tumor antigen uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8+ T cells, and more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4+ T cells. Notably, the combination of melphalan and CD4+ T-cell adoptive cell therapy (ACT) was more efficacious than either treatment alone in prolonging the survival of mice with advanced B-cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan’s immunostimulatory effects, and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4+ T cells. PMID:25560408

  17. Adoptive T-cell therapy improves treatment of canine non–Hodgkin lymphoma post chemotherapy

    PubMed Central

    O'Connor, Colleen M.; Sheppard, Sabina; Hartline, Cassie A.; Huls, Helen; Johnson, Mark; Palla, Shana L.; Maiti, Sourindra; Ma, Wencai; Davis, R. Eric; Craig, Suzanne; Lee, Dean A.; Champlin, Richard; Wilson, Heather; Cooper, Laurence J. N.

    2012-01-01

    Clinical observations reveal that an augmented pace of T-cell recovery after chemotherapy correlates with improved tumor-free survival, suggesting the add-back of T cells after chemotherapy may improve outcomes. To evaluate adoptive immunotherapy treatment for B-lineage non-Hodgkin lymphoma (NHL), we expanded T cells from client-owned canines diagnosed with NHL on artificial antigen presenting cells (aAPC) in the presence of human interleukin (IL)-2 and IL-21. Graded doses of autologous T cells were infused after CHOP chemotherapy and persisted for 49 days, homed to tumor, and significantly improved survival. Serum thymidine kinase changes predicted T-cell engraftment, while anti-tumor effects correlated with neutrophil-to-lymphocyte ratios and granzyme B expression in manufactured T cells. Therefore, chemotherapy can be used to modulate infused T-cell responses to enhance anti-tumor effects. The companion canine model has translational implications for human immunotherapy which can be readily exploited since clinical-grade canine and human T cells are propagated using identical approaches. PMID:22355761

  18. Rapid generation of NY-ESO-1-specific CD4(+) THELPER1 cells for adoptive T-cell therapy.

    PubMed

    Kayser, Simone; Boβ, Cristina; Feucht, Judith; Witte, Kai-Erik; Scheu, Alexander; Bülow, Hans-Jörg; Joachim, Stefanie; Stevanović, Stefan; Schumm, Michael; Rittig, Susanne M; Lang, Peter; Röcken, Martin; Handgretinger, Rupert; Feuchtinger, Tobias

    2015-05-01

    Tumor-associated antigens such as NY-ESO-1 are expressed in a variety of solid tumors but absent in mature healthy tissues with the exception of germline cells. The immune system anti-cancer attack is mediated by cell lysis or induction of growth arrest through paralysis of tumor cells, the latter of which can be achieved by tumor-specific CD4(+), IFNγ-producing THelper type 1 (TH1) cells. Translation of these immune-mediated mechanisms into clinical application has been limited by availability of immune effectors, as well as the need for complex in vitro protocols and regulatory hurdles. Here, we report a procedure to generate cancer-testis antigen NY-ESO-1-targeting CD4(+) TH1 cells in vitro for cancer immunotherapy in the clinic. After in vitro sensitization by stimulating T cells with protein-spanning, overlapping peptide pools of NY-ESO-1 in combination with IL-7 and low dose IL-2, antigen-specific T cells were isolated using IFNγ capture technique and subsequently expanded with IL-2, IL-7 and IL-15. Large numbers of NY-ESO-1-specific CD4(+) T cells with a TH1 cytokine profile and lower numbers of cytokine-secreting CD8(+) T cells could be generated from healthy donors with a high specificity and expansion potential. Manufactured CD4(+) T cells showed strong specific TH1-responses with IFNγ(+), TNFα(+), IL-2(+) and induced cell cycle arrest and apoptosis in tumor cells. The protocol is GMP-grade and approved by the regulatory authorities. The tumor-antigen specific CD4(+) TH1 lymphocytes can be adoptively transferred as a T-cell therapy to boost anticancer immunity and this novel cancer treatment approach is applicable to both T cells from healthy allogeneic donors as well as to autologous T cells derived from cancer patients.

  19. Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    PubMed Central

    Koehler, Philipp; Schmidt, Patrick; Hombach, Andreas A.; Hallek, Michael; Abken, Hinrich

    2012-01-01

    B-cell chronic lymphocytic leukaemia (B-CLL) remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR) which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells. PMID:21837241

  20. Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells

    PubMed Central

    Rapoport, Aaron P.; Aqui, Nicole A.; Stadtmauer, Edward A; Vogl, Dan T.; Xu, Yin Yan; Kalos, Michael; Cai, Ling; Fang, Hong-Bin; Weiss, Brendan M.; Badros, Ashraf; Yanovich, Saul; Akpek, Gorgun; Tsao, Patricia; Cross, Alan; Mann, Dean; Philip, Sunita; Kerr, Naseem; Brennan, Andrea; Zheng, Zhaohui; Ruehle, Kathleen; Milliron, Todd; Strome, Scott E.; Salazar, Andres M.; Levine, Bruce L.; June, Carl H.

    2015-01-01

    Purpose Myeloma-directed cellular immune responses after autologous stem cell transplantation (ASCT) may reduce relapse rates. We studied whether coinjecting the TLR-3 agonist and vaccine adjuvant Poly-ICLC with a MAGE-A3 peptide vaccine was safe and would elicit a high frequency of vaccine-directed immune responses when combined with vaccine-primed and costimulated autologous T cells. Experimental Design In a phase II clinical trial (NCT01245673), we evaluated the safety and activity of ex vivo expanded autologous T cells primed in vivo using a MAGE-A3 multipeptide vaccine (compound GL-0817) combined with Poly-ICLC (Hiltonol), granulocyte macrophage colony-stimulating factor (GM-CSF) ± montanide. Twenty-seven patients with active and/or high-risk myeloma received autografts followed by anti-CD3/anti-CD28–costimulated autologous T cells, accompanied by MAGE-A3 peptide immunizations before T-cell collection and five times after ASCT. Immune responses to the vaccine were evaluated by cytokine production (all patients), dextramer binding to CD8+ T cells, and ELISA performed serially after transplant. Results T-cell infusions were well tolerated, whereas vaccine injection site reactions occurred in >90% of patients. Two of nine patients who received montanide developed sterile abscesses; however, this did not occur in the 18 patients who did not receive montanide. Dextramer staining demonstrated MAGE-A3–specific CD8 T cells in 7 of 8 evaluable HLA-A2+ patients (88%), whereas vaccine-specific cytokine-producing T cells were generated in 19 of 25 patients (76%). Antibody responses developed in 7 of 9 patients (78%) who received montanide and only weakly in 2 of 18 patients (11%) who did not. The 2-year overall survival was 74% [95% confidence interval (CI), 54%–100%] and 2-year event-free survival was 56% (95% CI, 37%–85%). Conclusions A high frequency of vaccine-specific T-cell responses were generated after transplant by combining costimulated autologous T

  1. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies.

    PubMed

    Sandri, Sara; Bobisse, Sara; Moxley, Kelly; Lamolinara, Alessia; De Sanctis, Francesco; Boschi, Federico; Sbarbati, Andrea; Fracasso, Giulio; Ferrarini, Giovanna; Hendriks, Rudi W; Cavallini, Chiara; Scupoli, Maria Teresa; Sartoris, Silvia; Iezzi, Manuela; Nishimura, Michael I; Bronte, Vincenzo; Ugel, Stefano

    2016-05-01

    Telomerase (TERT) is overexpressed in 80% to 90% of primary tumors and contributes to sustaining the transformed phenotype. The identification of several TERT epitopes in tumor cells has elevated the status of TERT as a potential universal target for selective and broad adoptive immunotherapy. TERT-specific cytotoxic T lymphocytes (CTL) have been detected in the peripheral blood of B-cell chronic lymphocytic leukemia (B-CLL) patients, but display low functional avidity, which limits their clinical utility in adoptive cell transfer approaches. To overcome this key obstacle hindering effective immunotherapy, we isolated an HLA-A2-restricted T-cell receptor (TCR) with high avidity for human TERT from vaccinated HLA-A*0201 transgenic mice. Using several relevant humanized mouse models, we demonstrate that TCR-transduced T cells were able to control human B-CLL progression in vivo and limited tumor growth in several human, solid transplantable cancers. TERT-based adoptive immunotherapy selectively eliminated tumor cells, failed to trigger a self-MHC-restricted fratricide of T cells, and was associated with toxicity against mature granulocytes, but not toward human hematopoietic progenitors in humanized immune reconstituted mice. These data support the feasibility of TERT-based adoptive immunotherapy in clinical oncology, highlighting, for the first time, the possibility of utilizing a high-avidity TCR specific for human TERT. Cancer Res; 76(9); 2540-51. ©2016 AACR.

  2. Serial Low Doses of Sorafenib Enhance Therapeutic Efficacy of Adoptive T Cell Therapy in a Murine Model by Improving Tumor Microenvironment

    PubMed Central

    Liu, Ren-Shyan; Hwang, Jeng-Jong

    2014-01-01

    Requirements of large numbers of transferred T cells and various immunosuppressive factors and cells in the tumor microenvironment limit the applications of adoptive T cells therapy (ACT) in clinic. Accumulating evidences show that chemotherapeutic drugs could act as immune supportive instead of immunosuppressive agents when proper dosage is used, and combined with immunotherapy often results in better treatment outcomes than monotherapy. Controversial immunomodulation effects of sorafenib, a multi-kinases inhibitor, at high and low doses have been reported in several types of cancer. However, what is the range of the low-dose sorafenib will influence the host immunity and responses of ACT is still ambiguous. Here we used a well-established E.G7/OT-1 murine model to understand the effects of serial low doses of sorafenib on both tumor microenvironment and transferred CD8+ T cells and the underlying mechanisms. Sorafenib lowered the expressions of immunosuppressive factors, and enhanced functions and migrations of transferred CD8+ T cells through inhibition of STAT3 and other immunosuppressive factors. CD8+ T cells were transduced with granzyme B promoter for driving imaging reporters to visualize the activation and distribution of transferred CD8+ T cells prior to adoptive transfer. Better activations of CD8+ T cells and tumor inhibitions were found in the combinational group compared with CD8+ T cells or sorafenib alone groups. Not only immunosuppressive factors but myeloid derived suppressive cells (MDSCs) and regulatory T cells (Tregs) were decreased in sorafenib-treated group, indicating that augmentation of tumor inhibition and function of CD8+ T cells by serial low doses of sorafenib were via reversing the immunosuppressive microenvironment. These results revealed that the tumor inhibitions of sorafenib not only through eradicating tumor cells but modifying tumor microenvironment, which helps outcomes of ACT significantly. PMID:25333973

  3. Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer.

    PubMed

    Perro, M; Tsang, J; Xue, S-A; Escors, D; Cesco-Gaspere, M; Pospori, C; Gao, L; Hart, D; Collins, M; Stauss, H; Morris, E C

    2010-06-01

    T-cell receptor (TCR) gene transfer is an attractive strategy to generate antigen-specific T-cells for adoptive immunotherapy of cancer and chronic viral infection. However, current TCR gene transfer protocols trigger T-cell differentiation into terminally differentiated effector cells, which likely have reduced ability to mediate disease protection in vivo. We have developed a lentiviral gene transfer strategy to generate TCR-transduced human T-cells without promoting T-cell differentiation. We found that a combination of interleukin-15 (IL15) and IL21 facilitated lentiviral TCR gene transfer into non-proliferating T-cells. The transduced T-cells showed redirection of antigen specificity and produced IL2, IFNgamma and TNFalpha in a peptide-dependent manner. A significantly higher proportion of the IL15/IL21-stimulated T-cells were multi-functional and able to simultaneously produce all three cytokines (P<0.01), compared with TCR-transduced T-cells generated by conventional anti-CD3 plus IL2 stimulation, which primarily secreted only one cytokine. Similarly, IL15/IL21 maintained high levels of CD62L and CD28 expression in transduced T-cells, whereas anti-CD3 plus IL2 accelerated the loss of CD62L/CD28 expression. The data demonstrate that the combination of lentiviral TCR gene transfer together with IL15/IL21 stimulation can efficiently redirect the antigen specificity of resting primary human T-cells and generate multi-functional T-cells.

  4. Systemic injection of TLR1/2 agonist improves adoptive antigen-specific T cell therapy in glioma-bearing mice.

    PubMed

    Zhang, Yufei; Luo, Feifei; Li, Anning; Qian, Jiawen; Yao, Zhenwei; Feng, Xiaoyuan; Chu, Yiwei

    2014-09-01

    Adoptive immunotherapy is an attractive strategy for glioma treatment. However, some obstacles still need be overcome. In this study, GL261-bearing mice treated with adoptively transferred antigen-specific T cells and systemic injection of bacterial lipoprotein (BLP), a TLR1/2 agonist, got a long-term survival and even immune protection. By analyzing adoptive T cells, it was found that BLP maintained T cell survival, proliferation and anti-tumor efficacy in the brains of tumor-bearing hosts. Moreover, tumor microenvironment was modified by up-regulating IFN-γ-secreting CD8+ T cells and down-regulating MDSC, which might be related with high CXCL10 and low CCL2 expression. In addition, TLR2 deficiency abrogated therapeutic effect with increased MDSC accumulation and decreased IFN-γ-secreting CD8+ T cells in the brains. Thus, the systemic injection of BLP could improve the adoptive T cell therapy by maintaining T cell persistence, modifying the tumor microenvironment and even inducing systemic anti-tumor immunity, which might offer a clinically promising immunotherapeutic strategy for glioma.

  5. Impaired and imbalanced cellular immunological status assessed in advanced cancer patients and restoration of the T cell immune status by adoptive T-cell immunotherapy.

    PubMed

    Noguchi, Atsutaka; Kaneko, Toru; Naitoh, Keiko; Saito, Masashi; Iwai, Kazuro; Maekawa, Ryuji; Kamigaki, Takashi; Goto, Shigenori

    2014-01-01

    Recent progress has been made in understanding the mechanisms of antitumor immune responses, which may further clarify the immune status of cancer patients. In this study, we performed a detailed evaluation of the immunological status of 47 patients with advanced solid cancer, who had received no immunosuppressive treatment, and compared the results with 32 healthy subjects. Flow-cytometry data for peripheral blood were obtained using 19 monoclonal antibodies against various cell surface and intracellular molecules. Absolute numbers of T cells, several T cell subsets, B cells, and NK cells were significantly decreased in patients compared with healthy subjects. The percentage of CD27(+)CD45RA(+) T cells was lower and that of CD27(-)CD45RA(-) T cells was higher in patients compared with controls. Regulatory and type 2 helper T cells were elevated in patients relative to healthy subjects. The percentage of perforin(+) NK cells was significantly lower in patients than in controls. These results suggest a dysfunctional anti-tumor immune response in cancer patients. Furthermore, peripheral blood from 26 of 47 cancer patients was analyzed after adoptive T cell immunotherapy (ATI). ATI increased the number of T cell subsets, but not B and NK cells. The number and percentage of regulatory T cells decreased significantly. These results suggest that ATI can restore impaired and imbalanced T cell immune status.

  6. Generation of V α13/β21+T cell specific target CML cells by TCR gene transfer.

    PubMed

    Zha, Xianfeng; Xu, Ling; Chen, Shaohua; Yang, Lijian; Zhang, Yikai; Lu, Yuhong; Yu, Zhi; Li, Bo; Wu, Xiuli; Zheng, Wenjie; Li, Yangqiu

    2016-12-20

    Adoptive immunotherapy with antigen-specific T cells can be effective for treating melanoma and chronic myeloid leukemia (CML). However, to obtain sufficient antigen-specific T cells for treatment, the T cells have to be cultured for several weeks in vitro, but in vitro T cell expansion is difficult to control. Alternatively, the transfer of T cell receptors (TCRs) with defined antigen specificity into recipient T cells may be a simple solution for generating antigen-specific T cells. The objective of this study was to identify CML-associated, antigen-specific TCR genes and generate CML-associated, antigen-specific T cells with T cell receptor (TCR) gene transfer. Our previous study has screened an oligoclonal Vβ21 with a different oligoclonal Vα partner in peripheral blood mononuclear cells (PBMCs) derived from patients with CML. In this study, oligoclonally expanded TCR α genes, which pair with TCR Vβ21, were cloned into the pIRES eukaryotic expression vector (TCR Vα-IRES-Vβ21). Next, two recombinant plasmids, TCR Vα13-IRES-Vβ21 and TCR Vα18-IRES-Vβ21, were successfully transferred into T cells, and the TCR gene-modified T cells acquired CML-specific cytotoxicity with the best cytotoxic effects for HLA-A11+ K562 cells observed for the TCR Vα13/Vβ21 gene redirected T cells. In summary, our data confirmed TCRVα13/Vβ21 as a CML-associated, antigen-specific TCR. This study provided new evidence that genetically engineered antigen-specific TCR may become a druggable approach for gene therapy of CML.

  7. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood.

    PubMed

    Hanley, Patrick J; Bollard, Catherine M; Brunstein, Claudio G

    2015-06-01

    Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem cell transplant donors. Cord blood units have also proven to be a valuable donor source for the development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord blood-derived products that have shown promise in early-phase clinical trials to prevent and/or treat viral infections and graft-versus-host disease, respectively. We describe how current strategies that use cord blood-derived regulatory T cells and virus-specific T cells have been developed to improve outcomes for cord blood transplant recipients.

  8. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy.

    PubMed

    Mirzaei, Hamid Reza; Mirzaei, Hamed; Lee, Sang Yun; Hadjati, Jamshid; Till, Brian G

    2016-10-01

    Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors.

  9. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors.

    PubMed

    Xin, Gang; Schauder, David M; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S; Johnson, Bryon; Cui, Weiguo

    2017-01-24

    Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors.

  10. Large-scale Isolation of Highly Pure "Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy.

    PubMed

    Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf

    2015-01-01

    Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was <10%. All other cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.

  11. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor.

    PubMed

    Urbanska, Katarzyna; Lanitis, Evripidis; Poussin, Mathilde; Lynn, Rachel C; Gavin, Brian P; Kelderman, Sander; Yu, Jason; Scholler, Nathalie; Powell, Daniel J

    2012-04-01

    Adoptive immunotherapies composed of T cells engineered to express a chimeric antigen receptor (CAR) offer an attractive strategy for treatment of human cancer. However, CARs have a fixed antigen specificity such that only one tumor-associated antigen (TAA) can be targeted, limiting the efficacy that can be achieved because of heterogeneous TAA expression. For this reason, a more generalized and effective application of CAR therapy would benefit from the capability to produce large panels of CARs against many known TAAs. In this study, we show a novel strategy to extend the recognition specificity potential of a bioengineered lymphocyte population, allowing flexible approaches to redirect T cells against various TAAs. Our strategy employs a biotin-binding immune receptor (BBIR) composed of an extracellular-modified avidin linked to an intracellular T-cell signaling domain. BBIR T cells recognized and bound exclusively to cancer cells pretargeted with specific biotinylated molecules. The versatility afforded by BBIRs permitted sequential or simultaneous targeting of a combination of distinct antigens. Together, our findings show that a platform of universal T-cell specificity can significantly extend conventional CAR approaches, permitting the tailored generation of T cells of unlimited antigen specificity for improving the effectiveness of adoptive T-cell immunotherapies for cancer.

  12. Transfer of protective immunity in murine histoplasmosis by a CD4+ T-cell clone.

    PubMed

    Allendoerfer, R; Magee, D M; Deepe, G S; Graybill, J R

    1993-02-01

    We have reported that a murine Histoplasma capsulatum-reactive CD4+ T-cell line and clones thereof did not adoptively transfer protection against H. capsulatum infection in normal or cyclophosphamide-treated C57BL/6 mice. One explanation for the results was that the T cells failed to traffic to lymphoid organs in these animals. In this study, we have sought to determine whether one of these clones, 2.3H3, could mediate protection in nude (C57BL/10) or irradiated (5 Gy) heterozygous nude (nu/+) C57BL/6 mice. Mice were inoculated intravenously with 10(7) resting 2.3H3 cells or with an equal number of cells of the ovalbumin-reactive clone 1S6; 2 h later, the mice were challenged intranasally with 5 x 10(6) yeast cells. By day 5 of infection, lungs, livers, and spleens of nude and irradiated nu/+ mice given 2.3H3 contained significantly fewer (P < 0.05) CFU than the same organs from mice inoculated with 1S6. This effect was specific for H. capsulatum, since 2.3H3 did not reduce the number of Coccidioides immitis CFU in lungs, livers, and spleens of irradiated nu/+ mice. By day 10, the amounts of H. capsulatum CFU in lungs, livers, or spleens of nude and irradiated nu/+ mice inoculated with 2.3H3 were smaller than those in 1S6-inoculated mice, but these differences did not reach statistical significance (P > 0.05). The mortality rate of mice inoculated with 2.3H3 and that of mice inoculated with 1S6 were similar. Histopathological examination of tissues from 2.3H3- and 1S6-inoculated mice demonstrated the presence of granulomatous inflammation in organs from both groups. Tissues from 2.3H3-treated mice contained fewer yeasts per high-power field than tissues from 1S6-treated mice. Thus, irradiated or nude mice are permissive for the expression of protective immunity by a CD4+ T-cell clone. Although the protective capacity of T cells in these animals is transient, these animals will be useful for differentiating protective from nonprotective T-cell clones.

  13. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  14. Expansion of T Cells with Interleukin-21 for Adoptive Immunotherapy of Murine Mammary Carcinoma

    PubMed Central

    Zoon, Christine K.; Wan, Wen; Graham, Laura; Bear, Harry D.

    2017-01-01

    We previously demonstrated that culturing antigen-sensitized draining lymph node (DLN) lymphocytes from BALB/c mice in interleukin (IL)-7/15 after activation with bryostatin/ionomycin (B/I) is superior to culture in IL-2 for expansion, differentiation to cluster of differentiation (CD)8+ cells and anti-tumor activity. We sought to determine whether the substitution or addition of IL-21 to culture had a similar effect. DLN lymphocytes were antigen-sensitized with 4T1 mammary carcinoma 10 days prior to harvest, activated with B/I, and expanded in culture for 7 days with either IL-2, IL-21, IL-2/21, IL-7/15, or IL-7/15/21. Cellular expansion, phenotype, interferon (IFN)-γ responses, and in vivo anti-tumor activity were compared. We found that T cells grown in IL7/15/21 demonstrated significantly greater lymphocyte expansion than IL-2, IL-21, IL-2/21, and IL-7/15 (38.4-fold vs. 5.5, 6.6, 9.5, and 23.9-fold, respectively). Of these expanded cells, IL-7/15/21 significantly expanded the greatest percentage of CD8+ cells (67.1% vs. 22.2%, 47.2%, 47.4%, and 55.3%, respectively), and the greatest number of T central memory cells (TCM) compared to IL-2, IL-21 and IL-2/21 (45.8% vs. 11.1%, 7.7%, and 12.1%, respectively). IL-21 and IL-2/21-expanded T cells preferentially differentiated into T naïve cells (TN) vs. those expanded in IL-2, IL-7/15 and IL-7/15/21 (27.6% and 23.2% vs. 1.7%, 4.5%, and 10.4%, respectively), and demonstrated the highest IFN-γ levels in vitro. In vivo adoptive immunotherapy (AIT) experiments demonstrated anti-tumor efficacy was equally effective using IL-2, IL-21, IL-2/21, IL-7/15 and IL-7/15/21-cultured lymphocytes vs. control or cyclophosphamide alone, even at lower doses or with greater initial size of tumor prior to treatment. PMID:28146052

  15. Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model

    PubMed Central

    Hurez, Vincent; Dzialo-Hatton, Robin; Oliver, James; Matthews, R James; Weaver, Casey T

    2002-01-01

    Background Gene transfer studies in primary T cells have suffered from the limitations of conventional viral transduction or transfection techniques. Replication-defective adenoviral vectors are an attractive alternative for gene delivery. However, naive lymphocytes are not readily susceptible to infection with adenoviruses due to insufficient expression of the coxsackie/adenovirus receptor. Results To render T cells susceptible to adenoviral gene transfer, we have developed three new murine transgenic lines in which expression of the human coxsackie/adenovirus receptor (hCAR) with a truncated cytoplasmic domain (hCARΔcyt) is limited to thymocytes and lymphocytes under direction of a human CD2 mini-gene. hCARΔcyt.CD2 transgenic mice were crossed with DO11.10 T cell receptor transgenic mice (DO11.hCARΔcyt) to allow developmental studies in a defined, clonal T cell population. Expression of hCARΔcyt enabled adenoviral transduction of resting primary CD4+ T cells, differentiated effector T cells and thymocytes from DO11.hCARΔcyt with high efficiency. Expression of hCARΔcyt transgene did not perturb T cell development in these mice and adenoviral transduction of DO11.hCARΔcyt T cells did not alter their activation status, functional responses or differentiative potential. Adoptive transfer of the transduced T cells into normal recipients did not modify their physiologic localization. Conclusion The DO11.hCARΔcyt transgenic model thus allows efficient gene transfer in primary T cell populations and will be valuable for novel studies of T cell activation and differentiation. PMID:12019030

  16. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming.

    PubMed

    Srivastava, Smita; Ernst, Joel D

    2014-06-11

    During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection.

  17. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    PubMed

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability.

  18. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT.

    PubMed

    Neuenhahn, M; Albrecht, J; Odendahl, M; Schlott, F; Dössinger, G; Schiemann, M; Lakshmipathi, S; Martin, K; Bunjes, D; Harsdorf, S; Weissinger, E M; Menzel, H; Verbeek, M; Uharek, L; Kröger, N; Wagner, E; Kobbe, G; Schroeder, T; Schmitt, M; Held, G; Herr, W; Germeroth, L; Bonig, H; Tonn, T; Einsele, H; Busch, D H; Grigoleit, G U

    2017-02-17

    Cytomegalovirus (CMV) infection is a common, potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We assessed prospectively the safety and efficacy of stem cell-donor- or third-party-donor-derived CMV-specific T cells for the treatment of persistent CMV infections after allo-HSCT in a phase I/IIa trial. Allo-HSCT patients with drug-refractory CMV infection and lacking virus-specific T cells were treated with a single dose of ex vivo major histocompatibility complex-Streptamer-isolated CMV epitope-specific donor T cells. Forty-four allo-HSCT patients receiving a T-cell-replete (D(+) repl; n=28) or T-cell-depleted (D(+) depl; n=16) graft from a CMV-seropositive donor were screened for CMV-specific T-cell immunity. Eight D(+) depl recipients received adoptive T-cell therapy from their stem cell donor. CMV epitope-specific T cells were well supported and became detectable in all treated patients. Complete and partial virological response rates were 62.5% and 25%, respectively. Owing to longsome third-party donor (TPD) identification, only 8 of the 57 CMV patients transplanted from CMV-seronegative donors (D(-)) received antigen-specific T cells from partially human leukocyte antigen (HLA)-matched TPDs. In all but one, TPD-derived CMV-specific T cells remained undetectable. In summary, adoptive transfer correlated with functional virus-specific T-cell reconstitution in D(+) depl patients. Suboptimal HLA match may counteract expansion of TPD-derived virus-specific T cells in D(-) patients.Leukemia advance online publication, 17 February 2017; doi:10.1038/leu.2017.16.

  19. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors.

    PubMed

    Manzo, Teresa; Sturmheit, Tabea; Basso, Veronica; Petrozziello, Elisabetta; Hess Michelini, Rodrigo; Riba, Michela; Freschi, Massimo; Elia, Angela R; Grioni, Matteo; Curnis, Flavio; Protti, Maria Pia; Schumacher, Ton N; Debets, Reno; Swartz, Melody A; Corti, Angelo; Bellone, Matteo; Mondino, Anna

    2017-02-01

    Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.

  20. T cell receptor (TCR) gene transfer with lentiviral vectors allows efficient redirection of tumor specificity in naive and memory T cells without prior stimulation of endogenous TCR.

    PubMed

    Circosta, Paola; Granziero, Luisa; Follenzi, Antonia; Vigna, Elisa; Stella, Stefania; Vallario, Antonella; Elia, Angela Rita; Gammaitoni, Loretta; Vitaggio, Katiuscia; Orso, Francesca; Geuna, Massimo; Sangiolo, Dario; Todorovic, Maja; Giachino, Claudia; Cignetti, Alessandro

    2009-12-01

    We investigated the possibility of introducing exogenous T cell receptor (TCR) genes into T cells by lentiviral transduction, without prior stimulation of endogenous TCR with anti-CD3. TCR transfer is used to impose tumor antigen specificity on recipient T cells, but sustained activation required for retroviral transduction may affect the clinical efficacy of engineered T cells. Cytokine stimulation makes T cells susceptible to lentiviral transduction in the absence of TCR triggering, but this advantage has never been exploited for TCR transfer. Autoimmune diseases are a source of high-affinity TCRs specific for self/tumor antigens. We selected, from a patient with vitiligo, a Mart1-specific TCR based on intrinsic interchain pairing properties and functional avidity. After lentiviral transduction of human peripheral blood mononuclear cells, preferential pairing of exogenous alpha and beta chains was observed, together with effective recognition of Mart1(+) melanoma cells. We tested transduction efficiency on various T cell subsets prestimulated with interleukin (IL)-2, IL-7, IL-15, and IL-21 (alone or in combination). Both naive and unfractionated CD8(+) T cells could be transduced without requiring endogenous TCR triggering. IL-7 plus IL-15 was the most powerful combination, allowing high levels of transgene expression without inducing T cell differentiation (34 +/- 5% Mart1-TCR(+) cells in naive CD8(+) and 16 +/- 6% in unfractionated CD8(+)). Cytokine-prestimulated, Mart1-redirected naive and unfractionated CD8(+) cells expanded better than CD3-CD28-prestimulated counterparts in response to both peptide-pulsed antigen-presenting cells and Mart1(+) melanoma cells. This strategy allows the generation of tumor-specific T cells encompassing truly naive T cells, endowed with an intact proliferative potential and a preserved differentiation stage.

  1. Strong and sustained effector function of memory- versus naïve-derived T cells upon T-cell receptor RNA transfer: implications for cellular therapy.

    PubMed

    Thomas, Simone; Klobuch, Sebastian; Besold, Katrin; Plachter, Bodo; Dörrie, Jan; Schaft, Niels; Theobald, Matthias; Herr, Wolfgang

    2012-12-01

    Current protocols used to select CMV-specific T cells for adoptive immunotherapy focus on virus-specific memory T cells from seropositive donors. However, this strategy is not feasible in patients undergoing allogeneic haematopoietic stem-cell transplantation (HSCT) from CMV-seronegative donors. Here, we redirected T cells of CMV-seronegative donors with a human genetically engineered TCR recognizing an HLA-A*0201-binding peptide epitope of CMVpp65. To facilitate clinical translation of this approach, we used a non-viral expression system based on in vitro transcribed RNA and electroporation. Although memory and naïve-derived T-cell subsets were both efficiently transfected by TCR-RNA, memory-derived T cells showed much stronger levels of HLA-A*0201-restricted cytolytic activity to CMV-infected fibroblasts and maintained acquired function for 5-10 days. In addition to redirection of CD8(+) cytotoxic T cells, TCR-RNA transfection was capable of redirecting CD4(+) T cells into potent Ag-specific Th cells that efficiently triggered maturation of DCs. Our data suggest that memory rather than naïve-derived T cells are the preferred subset for transient TCR expression by RNA electroporation, providing more efficient and sustained virus-specific CD4(+) and CD8(+) T-cell function. CMV TCR-RNA may represent a suitable therapeutic 'off-the-shelf' reagent to be used in severe CMV infections of HSCT patients when endogenous CMV-specific T-cell immunity is insufficient.

  2. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies.

    PubMed

    Davila, Marco L; Bouhassira, Diana C G; Park, Jae H; Curran, Kevin J; Smith, Eric L; Pegram, Hollie J; Brentjens, Renier

    2014-04-01

    The genetic modification of autologous T cells with chimeric antigen receptors (CARs) represents a breakthrough for gene engineering as a cancer therapy for hematologic malignancies. By targeting the CD19 antigen, we have demonstrated robust and rapid anti-leukemia activity in patients with heavily pre-treated and chemotherapy-refractory B cell acute lymphoblastic leukemia (B-ALL). We demonstrated rapid induction of deep molecular remissions in adults, which has been recently confirmed in a case report involving a child with B-ALL. In contrast to the results when treating B-ALL, outcomes have been more modest in patients with chronic lymphocytic leukemia (CLL) or other non-hodgkin's lymphoma (NHL). We review the clinical trial experience targeting B-ALL and CLL and speculate on the possible reasons for the different outcomes and propose potential optimization to CAR T cell therapy when targeting CLL or other indolent NHL. Lastly, we discuss the pre-clinical development and potential for clinical translation for using CAR T cells against multiple myeloma and acute myeloid leukemia. We highlight the potential risks and benefits by targeting these poor outcome hematologic malignancies.

  3. Genetic modification of T cells improves the effectiveness of adoptive tumor immunotherapy.

    PubMed

    Jakóbisiak, Marek; Gołab, Jakub

    2010-10-01

    Appropriate combinations of immunotherapy and gene therapy promise to be more effective in the treatment of cancer patients than either of these therapeutic approaches alone. One such treatment is based on the application of patients' cytotoxic T cells, which can be activated, expanded, and genetically engineered to recognize particular tumor-associated antigens (TAAs). Because T cells recognizing TAAs might become unresponsive in the process of tumor development as a result of tumor evasion strategies, immunogenic viral antigens or alloantigens could be used for the expansion of cytotoxic T cells and then redirected through genetic engineering. This therapeutic approach has already demonstrated promising results in melanoma patients and could be used in the treatment of many other tumors. The graft-versus-leukemia, or more generally graft-versus-tumor, reaction based on the application of a donor lymphocyte infusion can also be ameliorated through the incorporation of suicide genes into donor lymphocytes. Such lymphocytes could be safely and more extensively used in tumor patients because they could be eliminated should a severe graft-versus-host reaction develop.

  4. Early Detection of T cell Transfer-induced Autoimmune Colitis by In Vivo Imaging System

    PubMed Central

    Chen, Yu-Ling; Chen, Yi-Ting; Lo, Cheng-Feng; Hsieh, Ching-I; Chiu, Shang-Yi; Wu, Chang-Yen; Yeh, Yu-Shan; Hung, Shu-Hsuan; Cheng, Po-Hao; Su, Yu-Hsuan; Jiang, Si-Tse; Chin, Hsian-Jean; Su, Yu-Chia

    2016-01-01

    Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn’s disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25−CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7–10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals. PMID:27762297

  5. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

    PubMed Central

    Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Scholl, Jeannette; Dionyssiou, Dimitris; Demiri, Efterpi; Halin, Cornelia; Dieterich, Lothar C.

    2016-01-01

    Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema. PMID:27734032

  6. A novel method using blinatumomab for efficient, clinical-grade expansion of polyclonal T cells for adoptive immunotherapy.

    PubMed

    Golay, Josée; D'Amico, Anna; Borleri, Gianmaria; Bonzi, Michela; Valgardsdottir, Rut; Alzani, Rachele; Cribioli, Sabrina; Albanese, Clara; Pesenti, Enrico; Finazzi, Maria Chiara; Quaresmini, Giulia; Nagorsen, Dirk; Introna, Martino; Rambaldi, Alessandro

    2014-11-01

    Current treatment of chronic lymphocytic leukemia (CLL) patients often results in life-threatening immunosuppression. Furthermore, CLL is still an incurable disease due to the persistence of residual leukemic cells. These patients may therefore benefit from immunotherapy approaches aimed at immunoreconstitution and/or the elimination of residual disease following chemotherapy. For these purposes, we designed a simple GMP-compliant protocol for ex vivo expansion of normal T cells from CLL patients' peripheral blood for adoptive therapy, using bispecific Ab blinatumomab (CD3 × CD19), acting both as T cell stimulator and CLL depletion agent, and human rIL-2. Starting from only 10 ml CLL peripheral blood, a mean 515 × 10(6) CD3(+) T cells were expanded in 3 wk. The resulting blinatumomab-expanded T cells (BET) were polyclonal CD4(+) and CD8(+) and mostly effector and central memory cells. The Th1 subset was slightly prevalent over Th2, whereas Th17 and T regulatory cells were <1%. CMV-specific clones were detected in equivalent proportion before and after expansion. Interestingly, BET cells had normalized expression of the synapse inhibitors CD272 and CD279 compared with starting T cells and were cytotoxic against CD19(+) targets in presence of blinatumomab in vitro. In support of their functional capacity, we observed that BET, in combination with blinatumomab, had significant therapeutic activity in a systemic human diffuse large B lymphoma model in NOD-SCID mice. We propose BET as a therapeutic tool for immunoreconstitution of heavily immunosuppressed CLL patients and, in combination with bispecific Ab, as antitumor immunotherapy.

  7. Adoptive immunity mediated by HLA-A*0201 restricted Asp f16 peptides-specific CD8+ T cells against Aspergillus fumigatus infection.

    PubMed

    Sun, Z; Zhu, P; Li, L; Wan, Z; Zhao, Z; Li, R

    2012-11-01

    Aspergillus fumigatus (A. fumigatus) is the most common pathogen of invasive aspergillosis (IA), a life-threatening infection in immunocompromised patients. Recent findings revealed that CD8+ T cells can mediate cytotoxic activity against A. fumigatus. Here, we bioinformatically identified three HLA-A*0201-restricted peptides from Asp f16, an A. fumigatus antigen which was previously shown to be involved in T cell immunity. Our immunological results demonstrated that these peptides can potently induce cytotoxic T lymphocyte (CTL) response in CD8+ T cells, thus, damaging the conidia and hyphae of A. fumigatus. Moreover, the Asp f16 peptides can also raise Th1 cell-like response, as measured by interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT). Furthermore, we established an invasive pulmonary aspergillosis model in HLA-A*0201 transgenic mice. Adoptive transfer of Asp f16 peptides-specific CTL significantly extended the overall survival time in the A. fumigatus-infected immunocompromised mice. In conclusion, our results demonstrate that the Asp f16 peptides might provide immunity against invasive A. fumigatus infection.

  8. Adoptive cell transfer in autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2015-06-01

    Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.

  9. T Cell Receptor-Engineered T Cells to Treat Solid Tumors: T Cell Processing Toward Optimal T Cell Fitness

    PubMed Central

    van Steenbergen-Langeveld, Sabine; van Brakel, Mandy; Groot-van Ruijven, Corrien M.; van Elzakker, Pascal M.M.L.; van Krimpen, Brigitte; Sleijfer, Stefan; Debets, Reno

    2014-01-01

    Abstract Therapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T cells specific for carbonic anhydrase IX (CAIX), we observed toxicities that (most likely) indicated in vivo function of CAR T cells as well as low T cell persistence and clinical response rates. The latter observations were confirmed by later clinical trials in other solid tumor types and other gene-modified T cells. To improve the efficacy of T cell therapy, we have redefined in vitro conditions to generate T cells with young phenotype, a key correlate with clinical outcome. For their impact on gene-modified T cell phenotype and function, we have tested various anti-CD3/CD28 mAb-based T cell activation and expansion conditions as well as several cytokines prior to and/or after gene transfer using two different receptors: CAIX CAR and MAGE-C2(ALK)/HLA-A2 TCR. In a total set of 16 healthy donors, we observed that T cell activation with soluble anti-CD3/CD28 mAbs in the presence of both IL15 and IL21 prior to TCR gene transfer resulted in enhanced proportions of gene-modified T cells with a preferred in vitro phenotype and better function. T cells generated according to these processing methods demonstrated enhanced binding of pMHC, and an enhanced proportion of CD8+, CD27+, CD62L+, CD45RA+T cells. These new conditions will be translated into a GMP protocol in preparation of a clinical adoptive therapy trial to treat patients with MAGE-C2-positive tumors. PMID:25423330

  10. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

    PubMed Central

    Mittelbrunn, María; Gutiérrez-Vázquez, Cristina; Villarroya-Beltri, Carolina; González, Susana; Sánchez-Cabo, Fátima; González, Manuel Ángel; Bernad, Antonio; Sánchez-Madrid, Francisco

    2011-01-01

    The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis. PMID:21505438

  11. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice

    PubMed Central

    1989-01-01

    The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice. PMID:2523954

  12. Adoptive cell transfer therapy for malignant gliomas.

    PubMed

    Ishikawa, Eiichi; Takano, Shingo; Ohno, Tadao; Tsuboi, Koji

    2012-01-01

    To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

  13. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  14. Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: Phenotype and effector function of T cells impact on clinical response

    PubMed Central

    Smith, Corey; Lee, Victor; Schuessler, Andrea; Beagley, Leone; Rehan, Sweera; Tsang, Janice; Li, Vivian; Tiu, Randal; Smith, David; A. Neller, Michelle; Matthews, Katherine K.; Gostick, Emma; Price, David A.; Burrows, Jacqueline; Boyle, Glen M.; Chua, Daniel; Panizza, Benedict; Porceddu, Sandro V.; Nicholls, John; Kwong, Dora; Khanna, Rajiv

    2017-01-01

    ABSTRACT Adoptive T cell therapy has emerged as a powerful strategy to treat human cancers especially haematological malignancies. Extension of these therapies to solid cancers remains a significant challenge especially in the context of defining immunological correlates of clinical responses. Here we describe results from a clinical study investigating autologous Epstein-Barr virus (EBV)-specific T cells generated using a novel AdE1-LMPpoly vector to treat patients with nasopharyngeal carcinoma (NPC) either pre-emptively in at-risk patients with no or minimal residual disease (N/MRD) or therapeutically in patients with active recurrent/metastatic disease (ARMD). Tolerability, safety and efficacy, including progression-free survival (PFS) and overall survival (OS), were evaluated following adoptive T-cell immunotherapy. Twenty-nine patients, including 20 with ARMD and nine with N/MRD, successfully completed T-cell therapy. After a median follow-up of 18.5 months, the median PFS was 5.5 months (95% CI 2.1 to 9.0 months) and the median OS was 38.1 months (95% CI 17.2 months to not reached). Post-immunotherapy analyses revealed that disease stabilization in ARMD patients was significantly associated with the functional and phenotypic composition of in vitro-expanded T cell immunotherapy. These included a higher proportion of effector CD8+ T-cells and an increased number of EBV-specific T-cells with broader antigen specificity. These observations indicate that adoptive immunotherapy with AdE1-LMPpoly-expanded T cells stabilizes relapsed, refractory NPC without significant toxicity. Promising clinical outcomes in N/MRD patients further suggest a potential role for this approach as a consolidation treatment following first-line chemotherapy.

  15. T-Cell Receptor-Transduced T Cells: Clinical Experience.

    PubMed

    Robbins, Paul F

    2015-01-01

    The large number of T-cell epitopes that have been found to be processed and presented on human tumors, now numbering in the hundreds, provides a rich source of targets for therapeutic interventions aimed at inducing durable tumor regression. Vaccination strategies aimed at inducing responses to these antigens have been largely ineffective, and it has been challenging to generate large numbers of T cells with the functional capacity to mediate durable tumor regressions in adoptive immunotherapy strategies in patients who have common epithelial malignancies. The ability to generate T-cell receptors that recognize shared as well as unique antigens expressed in a wide variety of common tumor types that include lung, breast, ovarian, gastrointestinal, urothelial, and genitourinary cancers provides an opportunity to develop widely applicable therapies based on the adoptive transfer of autologous T cells transduced with those receptors.

  16. Both immunity and hyperresponsiveness to Pneumocystis carinii result from transfer of CD4+ but not CD8+ T cells into severe combined immunodeficiency mice.

    PubMed

    Roths, J B; Sidman, C L

    1992-08-01

    The opportunistic pathogen Pneumocystis carinii (Pc) is considered to be the leading cause of morbidity in patients with AIDS. It is important, therefore, to determine the immunological mechanisms of resistance to Pc. We have taken advantage of the lack of both T and B lymphocytes in severe combined immunodeficiency (scid) mice to determine the critical factors in resistance to spontaneously acquired Pc pneumonia. Using adoptive transfer of unfractionated or fractionated lymphocyte subsets or hyperimmune serum from congenic normal donors, we have demonstrated that effective immunity to Pc results from the action of CD4+ but not CD8+ T cells (in the absence of antibody) or from humoral immunity (in the absence of T cells). However, responses of CD4+ T cells (but not antibody) to already well-established burdens of Pc are often accompanied by a fatal hyperinflammatory reaction. The activity of CD4+ T cells against Pc thus illustrates a broadly applicable principle that T cell immunity represents a critical balance between consequences beneficial and harmful to the host.

  17. T Cell Receptor Engagement Triggers Its CD3ε and CD3ζ Subunits to Adopt a Compact, Locked Conformation

    PubMed Central

    Risueño, Ruth M.; Schamel, Wolfgang W. A.; Alarcón, Balbino

    2008-01-01

    How the T cell antigen receptor (TCR) discriminates between molecularly related peptide/Major Histocompatibility Complex (pMHC) ligands and converts this information into different possible signaling outcomes is still not understood. One current model proposes that strong pMHC ligands, but not weak ones, induce a conformational change in the TCR. Evidence supporting this comes from a pull-down assay that detects ligand-induced binding of the TCR to the N-terminal SH3 domain of the adapter protein Nck, and also from studies with a neoepitope-specific antibody. Both methods rely on the exposure of a polyproline sequence in the CD3ε subunit of the TCR, and neither indicates whether the conformational change is transmitted to other CD3 subunits. Using a protease-sensitivity assay, we now show that the cytoplasmic tails of CD3ε and CD3ζ subunits become fully protected from degradation upon TCR triggering. These results suggest that the TCR conformational change is transmitted to the tails of CD3ε and CD3ζ, and perhaps all CD3 subunits. Furthermore, the resistance to protease digestion suggests that CD3 cytoplasmic tails adopt a compact structure in the triggered TCR. These results are consistent with a model in which transduction of the conformational change induced upon TCR triggering promotes condensation and shielding of the CD3 cytoplasmic tails. PMID:18320063

  18. Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy.

    PubMed

    Riewaldt, Julia; Düber, Sandra; Boernert, Marie; Krey, Martina; Dembinski, Marcin; Weiss, Siegfried; Garbe, Annette I; Kretschmer, Karsten

    2012-01-01

    The role of Foxp3-expressing regulatory T (T(reg)) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of T(reg) cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of T(reg) cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive T(reg) cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3(+) T(reg) cells.

  19. Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy

    PubMed Central

    Riewaldt, Julia; Düber, Sandra; Boernert, Marie; Krey, Martina; Dembinski, Marcin; Weiss, Siegfried; Garbe, Annette I.; Kretschmer, Karsten

    2012-01-01

    The role of Foxp3-expressing regulatory T (Treg) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of Treg cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of Treg cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive Treg cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3+ Treg cells. PMID:22679447

  20. Generation of EBV-specific T cells for adoptive immunotherapy: a novel protocol using formalin-fixed stimulator cells to increase biosafety.

    PubMed

    Hammer, Markus H; Brestrich, Gordon; Mittenzweig, Alexa; Roemhild, Andy; Zwinger, Sandra; Subklewe, Marion; Beier, Carola; Kurtz, Andreas; Babel, Nina; Volk, Hans-Dieter; Reinke, Petra

    2007-01-01

    Adoptive immunotherapy with in vitro generated Epstein-Barr virus (EBV)-specific T cells is a safe and effective treatment in patients with EBV-related complications after transplantation. More frequent use of EBV-specific T cells is held back by their cost and time-intensive generation under good manufacturing practice (GMP) conditions. Currently, EBV-specific T cells are produced by repetitive stimulation of peripheral blood mononuclear cells with EBV-infected lymphoblastoid cell lines (LCLs), a protocol that requires several open GMP-handling steps. The aim of the present study was to improve T-cell generation under GMP conditions. We introduce a novel generation protocol that replaces repetitive with short-term LCL stimulation of PMBCs. Vital and formalin-fixed LCLs were used to further increase biosafety. Stimulated T cells were selected by the clinically approved cytokine secretion assay followed by nonspecific expansion. Sufficient numbers of EBV-specific T-cell lines were generated with all protocols. Specific recognition and killing of EBV-infected targets was found and was independent of the generation protocol applied. The novel protocol based on formalin-fixed cells, selection, and expansion reduced open GMP-handling steps and increased biosafety. Furthermore, fixation will allow the use of transgenic LCLs (eg, with cytomegalovirus or tumor antigens) and thereby facilitate the generation of antigen-specific T cells directed against pathogens other than EBV.

  1. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    PubMed Central

    Perrin, George Q; Zolotukhin, Irene; Sherman, Alexandra; Biswas, Moanaro; de Jong, Ype P; Terhorst, Cox; Davidoff, Andrew M; Herzog, Roland W

    2016-01-01

    The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products. PMID:27933310

  2. mTOR Signaling Regulates Protective Activity of Transferred CD4+Foxp3+ T Cells in Repair of Acute Kidney Injury.

    PubMed

    Chen, Guochun; Dong, Zheng; Liu, Hong; Liu, Yu; Duan, Shaobin; Liu, Yinghong; Liu, Fuyou; Chen, Huihui

    2016-11-15

    CD4(+)Foxp3(+) regulatory T cells (Tregs) are required for normal immune homeostasis. Recent studies suggested that Treg transfer facilitates recovery from acute kidney injury (AKI), but the molecular events that maintain Treg function after adoptive transfer remain unclear. This study aimed to investigate the regulation of mammalian target of rapamycin (mTOR) signaling in the Treg-mediated therapeutic effect on ischemic AKI. We noted significant Treg expansion in C57BL/6 mouse kidney, with enhanced immunosuppressive capacity after renal ischemia/reperfusion. mTOR inhibition significantly increased the frequency of Tregs in cultured CD4(+) T cells, with enhanced production of anti-inflammatory cytokines, which, conversely, was reduced by mTOR activation. Rapamycin, an inhibitor of mTOR, was transiently administered to C57BL/6 mice before ischemia/reperfusion surgery. No beneficial effect of rapamycin treatment was seen in the early recovery of AKI as a result of its inhibitory effect on tubular regeneration. However, rapamycin markedly enhanced the expansion of kidney Tregs, with increased mRNA expression of anti-inflammatory cytokines. Adoptive transfer of rapamycin-treated Tregs markedly suppressed conventional T cells, responder myeloid cells, and reactive myofibroblasts; however, it promoted host Tregs and alternative macrophages, leading to better renal function and less kidney fibrosis. Taken together, Treg transfer with mTOR inhibition markedly improves outcomes of ischemic AKI. These findings reveal an important role for mTOR signaling in maintaining Treg activity after adoptive transfer and highlight the therapeutic potential of targeting Tregs in acute and chronic kidney disease.

  3. Successful adoptive immunotherapy with vaccine-sensitized T cells, despite no effect with vaccination alone in a weakly immunogenic tumor model.

    PubMed

    Parviz, Maryam; Chin, Cynthia S; Graham, Laura J; Miller, Catriona; Lee, Catherine; George, Kimberly; Bear, Harry D

    2003-12-01

    Tumor cell vaccines have been successful at inducing immunity in naïve mice, but only in a few reports has vaccination alone induced regression of established tumors and, generally, only when they are very small. Clinically, vaccinations alone may not be able to cause regression of established human cancers, which tend to be weakly immunogenic. We hypothesized that pharmacologic ex vivo amplification of a vaccination-induced immune response with subsequent adoptive immunotherapy (AIT) to tumor-bearing animals would be more effective in treatment of these animals than vaccination alone. The 4T1 and 4T07 mammary carcinomas are derived from the same parental cell line, but 4T1 is much less immunogenic and more aggressive than 4T07. Vaccination with either 4T1, 4T1-IL-2, or 4T07-IL-2 was not effective as treatment for established 4T1 tumors. However, 4T1 or 4T07-IL-2-vaccine-sensitized draining lymph node (DLN) cells, activated ex vivo with bryostatin 1 and ionomycin and expanded in culture, induced complete tumor regressions when adoptively transferred to 4T1 tumor-bearing animals. This was effective against small tumors as well as more advanced tumors, 10 days after tumor cell inoculation. Furthermore, as would be required for this approach to be used clinically, vaccine-DLN cells obtained from mice with established progressive 4T1 tumors (inoculated 10 days before vaccination) also induced regression of 4T1 tumors in an adoptive host. In none of these experiments was exogenous IL-2 required to induce tumor regression. The response to tumor cell vaccine can be amplified by ex vivo pharmacologic activation of sensitized T cells, which can then cure an established, weakly immunogenic and highly aggressive tumor that was resistant to vaccination alone.

  4. Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver

    PubMed Central

    Neumann, Katrin; Erben, Ulrike; Kruse, Nils; Wechsung, Katja; Schumann, Michael; Klugewitz, Katja

    2015-01-01

    Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby

  5. Role of T cells in sex differences in syngeneic bone marrow transfers

    SciTech Connect

    Raveche, E.S.; Santoro, T.; Brecher, G.; Tjio, J.H.

    1985-11-01

    Transferred marrow cells will proliferate in normal mice not exposed to irradiation or any other type of stem cell depletion when five consecutive transfers of 40 million cells are given. Approximately 25% of the mitotic cells are of male donor origin observed cytogenetically in all of the female recipient spleens and marrow analyzed from two weeks to one and one-half years after transfusions. Male donor stem cells are accepted and form a stable component of the self-renewing stem cell pool. In contrast, only 5% female cells are found in male recipients. This sex difference in engraftment is not hormonal since castration of recipients does not alter the percentage of donor cells. Rigorous T depletion of female donor bone marrow, however, increases the percentage of donor engraftment to the level observed when male marrow, either whole or T depleted, is transferred to female recipients. The success of T-depleted female stem cells to seed male recipients is observed in both C57BL/6 and CBA/J. In addition, recipient nude BALB/c males, which lack a thymus, fail to accept whole bone marrow from BALB/c females. However, male bone marrow cells seed BALB/c nude females. These studies demonstrate that the poor engraftment of female cells in transfused male recipients is abrogated by the removal of T cells from the donor female marrow.

  6. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T Cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    DTIC Science & Technology

    2011-07-01

    will be delivered to separate T-cell populations using the SFG retroviral vector and retronectin - coated tissue culture dishes: (i) HOX – targets MUC1 and...cancer. Patient derived T-cells were activated with CSD3+CD28- coated beads and transduced with retroviral expression vectors. A representative example for...cells from ascites and tumor tissue stained from a patient with ovarian cancer. Tumor cells were separated using magnetic beads coated with antibodies

  7. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  8. Adoptive Transfer of Renal Allograft Tolerance in a Large Animal Model.

    PubMed

    Villani, V; Yamada, K; Scalea, J R; Gillon, B C; Arn, J S; Sekijima, M; Tasaki, M; Cormack, T A; Moran, S G; Torabi, R; Shimizu, A; Sachs, D H

    2016-01-01

    Our recent studies in an inbred swine model demonstrated that both peripheral and intra-graft regulatory cells were required for the adoptive transfer of tolerance to a second, naïve donor-matched kidney. Here, we have asked whether both peripheral and intra-graft regulatory elements are required for adoptive transfer of tolerance when only a long-term tolerant (LTT) kidney is transplanted. Nine highly-inbred swine underwent a tolerance-inducing regimen to prepare LTT kidney grafts which were then transplanted to histocompatible recipients, with or without the peripheral cell populations required for adoptive transfer of tolerance to a naïve kidney. In contrast to our previous studies, tolerance of the LTT kidney transplants alone was achieved without transfer of additional peripheral cells and without strategies to increase the number/potency of regulatory T cells in the donor. This tolerance was systemic, since most subsequent, donor-matched challenge kidney grafts were accepted. These results confirm the presence of a potent tolerance-inducing and/or tolerance-maintaining cell population within LTT renal allografts. They suggest further that additional peripheral tolerance mechanisms, required for adoptive transfer of tolerance to a naïve donor-matched kidney, depend on peripheral cells that, if not transferred with the LTT kidney, require time to develop in the adoptive host.

  9. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T-cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    DTIC Science & Technology

    2013-12-01

    Figure   10   that   demonstrate   ring   enhancement   around   the   viable   circumference   of   the   tumor.   When...in head and neck cancer. Taken together, it is logical to build on this experience by developing the use of TiN-4+ T-cell immunotherapy for the

  10. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells

    PubMed Central

    1987-01-01

    We have developed a model of syngeneic adoptive transfer for type I diabetes mellitus of NOD mice. This model consists in injecting spleen cells from diabetic adult mice into newborn NOD recipients. 50% of recipients inoculated with 20 X 10(6) cells develop diabetes within the first 10 wk of life, at a time when none of the control littermates have yet become diabetic. The earliest successful transfers are observed at 3 wk of age, at a time when controls do not even exhibit histological changes in their pancreas. In addition we have shown that: (a) both males and females can be adoptively transferred, despite the fact that males rarely develop spontaneous diabetes in our colony; (b) diabetes transfer is a dose-dependent phenomenon that provides an in vivo assay for comparing the autoimmune potential of spleen cells from mice at various stages of their natural history; (c) the susceptibility of the recipients to the transfer is limited in time and declines after 3 wk; and (d) both L3T4+ and Lyt-2+ T cell subsets are necessary for the successful transfer. The neonatal syngeneic transfer provides an effective model for studies of the cellular events involved at regulatory and effector stages of autoimmune type I diabetes. PMID:3309126

  11. Recent advances in T-cell immunotherapy for haematological malignancies.

    PubMed

    Rouce, Rayne H; Sharma, Sandhya; Huynh, Mai; Heslop, Helen E

    2017-03-01

    In vitro discoveries have paved the way for bench-to-bedside translation in adoptive T cell immunotherapy, resulting in remarkable clinical responses in a variety of haematological malignancies. Adoptively transferred T cells genetically modified to express CD19 CARs have shown great promise, although many unanswered questions regarding how to optimize T-cell therapies for both safety and efficacy remain. Similarly, T cells that recognize viral or tumour antigens though their native receptors have produced encouraging clinical responses. Honing manufacturing processes will increase the availability of T-cell products, while combining T-cell therapies has the ability to increase complete response rates. Lastly, innovative mechanisms to control these therapies may improve safety profiles while genome editing offers the prospect of modulating T-cell function. This review will focus on recent advances in T-cell immunotherapy, highlighting both clinical and pre-clinical advances, as well as exploring what the future holds.

  12. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice.

    PubMed

    Kaminitz, Ayelet; Mizrahi, Keren; Ash, Shifra; Ben-Nun, Avi; Askenasy, Nadir

    2014-07-01

    The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4(+)  CD25(+) T cells do not cause islet inflammation, whereas splenocytes and CD4(+)  CD25(-) T cells induce pancreatic inflammation and hyperglycaemia in 80-100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4(+) subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.

  13. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice

    PubMed Central

    Kaminitz, Ayelet; Mizrahi, Keren; Ash, Shifra; Ben-Nun, Avi; Askenasy, Nadir

    2014-01-01

    The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4+ CD25+ T cells do not cause islet inflammation, whereas splenocytes and CD4+ CD25− T cells induce pancreatic inflammation and hyperglycaemia in 80–100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4+ subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments. PMID:24601987

  14. Adoptive transfer of gut intraepithelial lymphocytes protects against murine infection with Toxoplasma gondii.

    PubMed

    Buzoni-Gatel, D; Lepage, A C; Dimier-Poisson, I H; Bout, D T; Kasper, L H

    1997-06-15

    Intraepithelial lymphocytes (IEL) of the gut represent a primary immune barrier against infection by orally acquired pathogens. Naturally acquired infection with Toxoplasma gondii induces the proliferation of CD8+ T cells in both the gut and spleen. Gut-derived CD8alpha/beta+ IEL exhibit MHC-restricted cytotoxicity against parasite-infected enterocytes and macrophages. In a murine model, we demonstrate that the adoptive transfer of IEL obtained from inbred mice at day 11 postinfection is able to protect against a virulent challenge in syngenic recipients. In CBA mice, the parasite cyst load within the brain of the recipients receiving primed IEL was reduced by 90%. In BALB/c and C57BL/6 mice, a 50% decrease in mortality was observed following adoptive transfer of primed IEL. To determine the T cell subset responsible for protective immunity, a purified CD8alpha/beta+ IEL population was isolated from infected mice at day 11 postinfection. These cells were able to protect naive mice by adoptive transfer against a lethal parasite challenge. RNA analysis by reverse-transcriptase PCR revealed that primed CD8alpha/beta+ IEL produce significant message for IFN-gamma, an essential cytokine for host protection against toxoplasmosis. Administration of anti-IFN-gamma at the time of adoptive transfer of primed IEL abrogated protection. The adoptive transfer of these protective IEL was not restricted to the Ld class I locus. These data demonstrate that IFN-gamma-producing IEL may be an important primary barrier against acute and perhaps recurrent infection with T. gondii.

  15. Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1

    PubMed Central

    McNerney, Gregory P.; Hübner, Wolfgang; Chen, Benjamin K.; Huser, Thomas

    2011-01-01

    Cell-cell interactions through direct contact are very important for cellular communication and coordination – especially for immune cells. The human immunodeficiency virus type I (HIV-1) induces immune cell interactions between CD4+ cells to shuttle between T cells via a virological synapse. A goal to understand the process of cell-cell transmission through virological synapses is to determine the cellular states that allow a chance encounter between cells to become a stable cell-cell adhesion. Here we demonstrate the use of optical tweezers to manipulate uninfected primary CD4+ T cells near HIV Gag-iGFP transfected Jurkat T cells to probe the determinants that induce stable adhesion. When combined with fast 4D confocal fluorescence microscopy, optical tweezers can be utilized to not only facilitate cell-cell contact, but to also allow one to simultaneously track the formation of a virological synapse, and ultimately to enable us to precisely determine all events preceding virus transfer. HIV-1 infected T cell (green) decorated with uninfected primary T cells (red) by manipulating the primary cells with an optical tweezers system PMID:20301121

  16. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2011-07-01

    transfer of Epstein - Barr - virus (EBV)-specific cytotoxic T lymphocytes (EBV- CTLs) genetically modified to express a chimeric antigen receptor (CAR-GD2...4 Introduction. In our recent Phase I study we found that the adoptive transfer of Epstein - Barr - virus (EBV...specific aims. 8 Reference List 1. Pule MA, Savoldo B, Myers GD et al. Virus -specific T cells

  17. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T Cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    DTIC Science & Technology

    2012-11-01

    CD28 expander beads. It was originally planned to deliver four CARs to separate T-cell populations using the SFG retroviral vector and retronectin ... coated tissue culture dishes: (i) HOX – targets MUC1 and contains a fused CD28+OX40+CD3ζ endodomain (2, 3) (ii) CSF28z – targets CSF-1R and contains a...renilla-­‐containing   retroviral   vectors.   (A)  Human  T-­‐cells  were  activated  with  CD3  +   CD28-­‐ coated   paramagnetic

  18. Identification of a Novel Immunodominant HLA-B*07: 02-restricted Adenoviral Peptide Epitope and Its Potential in Adoptive Transfer Immunotherapy.

    PubMed

    Günther, Patrick S; Peper, Janet K; Faist, Benjamin; Kayser, Simone; Hartl, Lena; Feuchtinger, Tobias; Jahn, Gerhard; Neuenhahn, Michael; Busch, Dirk H; Stevanović, Stefan; Dennehy, Kevin M

    2015-09-01

    Adenovirus infections of immunocompromised patients, particularly following allogeneic hematopoietic stem cell transplantation, are associated with morbidity and mortality. Immunotherapy by adoptive transfer of hexon-specific and penton-specific T cells has been successfully applied, but many approaches are impeded by the low number of HLA class I-restricted adenoviral peptide epitopes described to date. We use a novel method to identify naturally presented adenoviral peptide epitopes from infected human cells, ectopically expressing defined HLA, using peptide elution and liquid chromatography-mass spectrometry analysis. We show that the previously described HLA-A*01:01-restricted peptide epitope LTDLGQNLLY from hexon protein is naturally presented, and demonstrate the functionality of LTDLGQNLLY-specific T cells. We further identify a novel immunodominant HLA-B*07:02-restricted peptide epitope VPATGRTLVL from protein 13.6 K, and demonstrate the high proliferative, cytotoxic, and IFN-γ-producing capacity of peptide-specific T cells. Lastly, LTDLGQNLLY-specific T cells can be detected ex vivo following adoptive transfer therapy, and LTDLGQNLLY-specific and VPATGRTLVL-specific T cells have memory phenotypes ex vivo. Given their proliferative and cytotoxic capacity, such epitope-specific T cells are promising candidates for adoptive T-cell transfer therapy of adenovirus infection.

  19. Adoptive T-cell therapy for cancer in the United kingdom: a review of activity for the British Society of Gene and Cell Therapy annual meeting 2015.

    PubMed

    Gilham, David Edward; Anderson, John; Bridgeman, John Stephen; Hawkins, Robert Edward; Exley, Mark Adrian; Stauss, Hans; Maher, John; Pule, Martin; Sewell, Andrew Kelvin; Bendle, Gavin; Lee, Steven; Qasim, Waseem; Thrasher, Adrian; Morris, Emma

    2015-05-01

    Adoptive T-cell therapy is delivering objective clinical responses across a number of cancer indications in the early phase clinical setting. Much of this clinical activity is taking place at major clinical academic centers across the United States. This review focuses upon cancer-focused cell therapy activity within the United Kingdom as a contribution to the 2015 British Society of Gene and Cell Therapy annual general meeting. This overview reflects the diversity and expansion of clinical and preclinical studies within the United Kingdom while considering the background context of this work against new infrastructural developments and the requirements of nationalized healthcare delivery within the UK National Health Service.

  20. Adoptive T-Cell Therapy for Cancer in the United Kingdom: A Review of Activity for the British Society of Gene and Cell Therapy Annual Meeting 2015

    PubMed Central

    Anderson, John; Bridgeman, John Stephen; Hawkins, Robert Edward; Exley, Mark Adrian; Stauss, Hans; Maher, John; Pule, Martin; Sewell, Andrew Kelvin; Bendle, Gavin; Lee, Steven; Qasim, Waseem; Thrasher, Adrian; Morris, Emma

    2015-01-01

    Abstract Adoptive T-cell therapy is delivering objective clinical responses across a number of cancer indications in the early phase clinical setting. Much of this clinical activity is taking place at major clinical academic centers across the United States. This review focuses upon cancer-focused cell therapy activity within the United Kingdom as a contribution to the 2015 British Society of Gene and Cell Therapy annual general meeting. This overview reflects the diversity and expansion of clinical and preclinical studies within the United Kingdom while considering the background context of this work against new infrastructural developments and the requirements of nationalized healthcare delivery within the UK National Health Service. PMID:25860661

  1. Monoclonal T-cell receptors: new reagents for cancer therapy.

    PubMed

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells.

  2. Development of a T cell receptor targeting an HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer.

    PubMed

    Abate-Daga, Daniel; Speiser, Daniel E; Chinnasamy, Nachimuthu; Zheng, Zhili; Xu, Hui; Feldman, Steven A; Rosenberg, Steven A; Morgan, Richard A

    2014-01-01

    The clinical success of adoptive immunotherapy of cancer relies on the selection of target antigens that are highly expressed in tumor cells but absent in essential normal tissues. A group of genes that encode the cancer/testis or cancer germline antigens have been proposed as ideal targets for immunotherapy due to their high expression in multiple cancer types and their restricted expression in immunoprivileged normal tissues. In the present work we report the isolation and characterization of human T cell receptors (TCRs) with specificity for synovial sarcoma X breakpoint 2 (SSX2), a cancer/testis antigen expressed in melanoma, prostate cancer, lymphoma, multiple myeloma and pancreatic cancer, among other tumors. We isolated seven HLA-A2 restricted T cell receptors from natural T cell clones derived from tumor-infiltrated lymph nodes of two SSX2-seropositive melanoma patients, and selected four TCRs for cloning into retroviral vectors. Peripheral blood lymphocytes (PBL) transduced with three of four SSX2 TCRs showed SSX241-49 (KASEKIFYV) peptide specific reactivity, tumor cell recognition and tetramer binding. One of these, TCR-5, exhibited tetramer binding in both CD4 and CD8 cells and was selected for further studies. Antigen-specific and HLA-A*0201-restricted interferon-γ release, cell lysis and lymphocyte proliferation was observed following culture of TCR engineered human PBL with relevant tumor cell lines. Codon optimization was found to increase TCR-5 expression in transduced T cells, and this construct has been selected for development of clinical grade viral vector producing cells. The tumor-specific pattern of expression of SSX2, along with the potent and selective activity of TCR-5, makes this TCR an attractive candidate for potential TCR gene therapy to treat multiple cancer histologies.

  3. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps.

    PubMed

    Dasgupta, Subhajit; Zhou, You; Jana, Malabendu; Banik, Naren L; Pahan, Kalipada

    2003-04-01

    Experimental allergic encephalomyelitis (EAE) is the animal model for multiple sclerosis. The present study underlines the importance of sodium phenylacetate (NaPA), a drug approved for urea cycle disorders, in inhibiting the disease process of adoptively transferred EAE in female SJL/J mice at multiple steps. Myelin basic protein (MBP)-primed T cells alone induced the expression of NO synthase (iNOS) and the activation of NF-kappaB in mouse microglial cells through cell-cell contact. However, pretreatment of MBP-primed T cells with NaPA markedly inhibited its ability to induce microglial expression of iNOS and activation of NF-kappaB. Consistently, adoptive transfer of MBP-primed T cells, but not that of NaPA-pretreated MBP-primed T cells, induced the clinical symptoms of EAE in female SJL/J mice. Furthermore, MBP-primed T cells isolated from NaPA-treated donor mice were also less efficient than MBP-primed T cells isolated from normal donor mice in inducing iNOS in microglial cells and transferring EAE to recipient mice. Interestingly, clinical symptoms of EAE were much less in mice receiving NaPA through drinking water than those without NaPA. Similar to NaPA, sodium phenylbutyrate, a chemically synthesized precursor of NaPA, also inhibited the disease process of EAE. Histological and immunocytochemical analysis showed that NaPA inhibited EAE-induced spinal cord mononuclear cell invasion and normalized iNOS, nitrotyrosine, and p65 (the RelA subunit of NF-kappaB) expression within the spinal cord. Taken together, our results raise the possibility that NaPA or sodium phenylbutyrate taken through drinking water or milk may reduce the observed neuroinflammation and disease process in multiple sclerosis patients.

  4. Effect of adoptive transfer of cloned Actinobacillus actinomycetemcomitans-specific T helper cells on periodontal disease.

    PubMed Central

    Yamashita, K; Eastcott, J W; Taubman, M A; Smith, D J; Cox, D S

    1991-01-01

    Previously we isolated several Actinobacillus actinomycetemcomitans-specific T-cell clones from the spleens and lymph nodes of immunized Rowett rats. These clones were characterized as W3/13+, W3/25+, OX8-, and OX22-, suggesting a T helper (Th) phenotype. In the current experiments, 10(6) cells from a single A. actinomycetemcomitans-specific clone (A3) were adoptively transferred to a group (AaTh; n = 13) of normal heterozygous rats (rnu/+) at 28 days of age. A second group received no T cells (AaNT; n = 15), and a third group also received no T cells (NAaNT, n = 11). Beginning 1 day after transfer, the first and second groups were infected orally with A. actinomycetemcomitans for 5 consecutive days. The presence of infection was confirmed immediately after challenge and after 5 months, when the experiments were ended. Significantly higher numbers of lymphocytes were recovered from the gingival tissues of the first group than from those of either of the other groups. Also, this group showed significantly elevated (P less than 0.01) serum immunoglobulin G and immunoglobulin M antibody to A. actinomycetemcomitans in an enzyme-linked immunosorbent assay when compared with both other groups. Bone loss was significantly lower (P less than 0.01) in recipients of A. actinomycetemcomitans-specific cloned cells when compared with the other infected group and was approximately equal to the bone loss of the uninfected group. These results are consistent with the hypothesis that T-cell regulation can affect periodontal disease. In this regulation, T helper cells appear to interfere with periodontal bone loss. PMID:1825991

  5. Human Leukocyte Antigen (HLA) A*1101-Restricted Epstein-Barr Virus-Specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma.

    PubMed

    Zheng, Yong; Parsonage, Greg; Zhuang, Xiaodong; Machado, Lee R; James, Christine H; Salman, Asmaa; Searle, Peter F; Hui, Edwin P; Chan, Anthony T C; Lee, Steven P

    2015-10-01

    Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated posttransplant lymphomas, and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favor outgrowth of T cells targeting viral antigens expressed within EBV(+) lymphomas, but not in NPC. Here, we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a human leukocyte antigen (HLA) A*1101-restricted TCR, which would be widely applicable because 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms, we have optimized expression of the TCR and demonstrated high-avidity antigen-specific function (proliferation, cytotoxicity, and cytokine release) in both CD8(+) and CD4(+) T cells. The engineered T cells also inhibited LMP2(+) epithelial tumor growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high-avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens.

  6. Human Leukocyte Antigen (HLA) A*1101-restricted Epstein-Barr Virus-specific T-cell Receptor Gene Transfer to Target Nasopharyngeal Carcinoma

    PubMed Central

    Zheng, Yong; Parsonage, Greg; Zhuang, Xiaodong; Machado, Lee R; James, Christine H.; Salman, Asmaa; Searle, Peter F.; Hui, Edwin P.; Chan, Anthony T.C.; Lee, Steven P.

    2015-01-01

    Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated post-transplant lymphomas and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favour outgrowth of T cells targeting viral antigens expressed within EBV+ lymphomas but not in NPC. Here we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a HLA A*1101-restricted TCR, which would be widely applicable since 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms we have optimised expression of the TCR and demonstrated high avidity antigen-specific function (proliferation, cytotoxicity, cytokine release) in both CD8+ and CD4+ T cells. The engineered T cells also inhibited LMP2+ epithelial tumour growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens. PMID:25711537

  7. Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria

    PubMed Central

    Chen, Jinyun; Wang, Qian; Zhang, Zhuoya; Xu, Ting

    2016-01-01

    Aberrant autophagy played an important role in the pathogenesis of autoimmune diseases, especially in systemic lupus erythematosus (SLE). In this study, we showed that T cells from SLE patients had higher autophagic activity than that from healthy controls. A correlation between autophagic activity and apoptotic rate was observed in activated T cells. Moreover, activation of autophagy with rapamycin increased T cell apoptosis, whereas inhibition of autophagy with 3-MA decreased T cell apoptosis. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) could inhibit respiratory mitochondrial biogenesis in activated T cells to downregulate autophagy and consequently decrease T cell apoptosis through mitochondrial transfer and thus may play an important role in SLE treatment. PMID:28053607

  8. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans.

  9. Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer.

    PubMed

    Carpentier, Maxime; Lorain, Stéphanie; Chappert, Pascal; Lalfer, Mélanie; Hardet, Romain; Urbain, Dominique; Peccate, Cécile; Adriouch, Sahil; Garcia, Luis; Davoust, Jean; Gross, David-Alexandre

    2015-04-01

    Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.

  10. Intrinsic Transgene Immunogenicity Gears CD8(+) T-cell Priming After rAAV-Mediated Muscle Gene Transfer.

    PubMed

    Carpentier, Maxime; Lorain, Stéphanie; Chappert, Pascal; Lalfer, Mélanie; Hardet, Romain; Urbain, Dominique; Peccate, Cécile; Adriouch, Sahil; Garcia, Luis; Davoust, Jean; Gross, David-Alexandre

    2015-04-01

    Antitransgene CD8(+) T-cell responses are an important hurdle after recombinant adeno-associated virus (rAAV) vector-mediated gene transfer. Indeed, depending on the mutational genotype of the host, transgene amino-acid sequences of foreign origin can elicit deleterious cellular and humoral responses. We compared here two different major histocompatibility complex (MHC) class I epitopes of an engineered ovalbumin transgene delivered in muscle tissue by rAAV1 vector and found very different strength of CD8 responses, muscle destruction being correlated with the course of the immunodominant response. We further demonstrate that robust CD8(+) T-cell priming can occur through the cross-presentation pathway but requires the presence of either a strong MHC class II epitope or antibodies to the transgene product. Finally, manipulating transgene subcellular localization, we found that provided we avoid transgene expression in antigen presenting cells, the poorly accessible cytosolic form of ovalbumin transgene lacking strong MHC II epitope, evades CD8(+) T-cell priming and remains permanently expressed in muscle with no immune cell infiltration. Our results demonstrate that the intrinsic immunogenicity of transgenes delivered with rAAV vector in muscle can be manipulated in a rational manner to avoid adverse immune responses.

  11. Efficacy of systemic adoptive transfer immunotherapy targeting NY-ESO-1 for glioblastoma

    PubMed Central

    Everson, Richard G.; Antonios, Joseph P.; Lisiero, Dominique N.; Soto, Horacio; Scharnweber, Rudi; Garrett, Matthew C.; Yong, William H.; Li, Ning; Li, Gang; Kruse, Carol A.; Liau, Linda M.; Prins, Robert M.

    2016-01-01

    Background Immunotherapy is an ideal treatment modality to specifically target the diffusely infiltrative tumor cells of malignant gliomas while sparing the normal brain parenchyma. However, progress in the development of these therapies for glioblastoma has been slow due to the lack of immunogenic antigen targets that are expressed uniformly and selectively by gliomas. Methods We utilized human glioblastoma cell cultures to induce expression of New York–esophageal squamous cell carcinoma (NY-ESO-1) following in vitro treatment with the demethylating agent decitabine. We then investigated the phenotype of lymphocytes specific for NY-ESO-1 using flow cytometry analysis and cytotoxicity against cells treated with decitabine using the xCelligence real-time cytotoxicity assay. Finally, we examined the in vivo application of this immune therapy using an intracranially implanted xenograft model for in situ T cell trafficking, survival, and tissue studies. Results Our studies showed that treatment of intracranial glioma–bearing mice with decitabine reliably and consistently induced the expression of an immunogenic tumor-rejection antigen, NY-ESO-1, specifically in glioma cells and not in normal brain tissue. The upregulation of NY-ESO-1 by intracranial gliomas was associated with the migration of adoptively transferred NY-ESO-1–specific lymphocytes along white matter tracts to these tumors in the brain. Similarly, NY-ESO-1–specific adoptive T cell therapy demonstrated antitumor activity after decitabine treatment and conferred a highly significant survival benefit to mice bearing established intracranial human glioma xenografts. Transfer of NY-ESO-1–specific T cells systemically was superior to intracranial administration and resulted in significantly extended and long-term survival of animals. Conclusion These results reveal an innovative, clinically feasible strategy for the treatment of glioblastoma. PMID:26330563

  12. Adoptive transfer of dendritic cells isolated from helminth-infected mice enhanced T regulatory cell responses in airway allergic inflammation.

    PubMed

    Liu, J-Y; Li, L-Y; Yang, X-Z; Li, J; Zhong, G; Wang, J; Li, L-J; Ji, B; Wu, Z-Q; Liu, H; Yang, X; Liu, P-M

    2011-10-01

    Our and others' previous studies have shown that Schistosoma japonicum (SJ) infection can inhibit allergic reactions. Moreover, we found that adoptive transfer of dendritic cells (DCs) from inhibited mice showed a similar inhibitory effect on allergy, suggesting a critical role of DCs in SJ-infected mediated inhibition of allergy. In this study, we further examined the mechanism by which DCs contribute to inhibition of allergy. Our results showed that DCs from SJ-infected mice (SJDCs) produced significantly higher levels of IL-10 compared to those from naive control mice (NDCs). Adoptive transfer of SJDCs, unlike NDCs, significantly increased CD4+CD25+Foxp3+ T cells and CD4+CD25+IL-10+ T cells regulatory T-cell responses in vivo. This was correlated with significantly reduced production of IL-4 and IL-5 by CD4+ T cells, eotaxin in lung tissues and reduced airway allergic inflammation in the SJDC recipients following allergen sensitization and challenge. These data suggest that helminth infection may induce tolerogenic DCs that can inhibit the development of airway allergic inflammation through enhancing T regulatory cell responses.

  13. Studying Neutrophil Migration In Vivo Using Adoptive Cell Transfer.

    PubMed

    Miyabe, Yoshishige; Kim, Nancy D; Miyabe, Chie; Luster, Andrew D

    2016-01-01

    Adoptive cell transfer experiments can be used to study the roles of cell trafficking molecules on the migratory behavior of specific immune cell populations in vivo. Chemoattractants and their G protein-coupled seven-transmembrane-spanning receptors regulate migration of cells in vivo, and dysregulated expression of chemoattractants and their receptors is implicated in autoimmune and inflammatory diseases. Inflammatory arthritides, such as rheumatoid arthritis (RA), are characterized by the recruitment of inflammatory cells into joints. The K/BxN serum transfer mouse model of inflammatory arthritis shares many similar features with RA. In this autoantibody-induced model of arthritis, neutrophils are the critical immune cells necessary for the development of joint inflammation and damage. We have used adoptive neutrophil transfer to define the contributions of chemoattractant receptors, cytokines, and activation receptors expressed on neutrophils that critically regulate their entry into the inflamed joint. In this review, we describe the procedure of neutrophil adoptive transfer to study the influence of neutrophil-specific receptors or mediators upon the their recruitment into the joint using the K/BxN model of inflammatory arthritis as a model of how adoptive cell transfer studies can be used to study immune cell migration in vivo.

  14. HIV-1 Nef Is Transferred from Expressing T Cells to Hepatocytic Cells through Conduits and Enhances HCV Replication

    PubMed Central

    Park, In-Woo; Fan, Yan; Luo, Xiaoyu; Ryou, Myoung-Gwi; Liu, Jinfeng; Green, Linden; He, Johnny J.

    2014-01-01

    HIV-1 infection enhances HCV replication and as a consequence accelerates HCV-mediated hepatocellular carcinoma (HCC). However, the precise molecular mechanism by which this takes place is currently unknown. Our data showed that infectious HIV-1 failed to replicate in human hepatocytic cell lines. No discernible virus replication was observed, even when the cell lines transfected with HIV-1 proviral DNA were co-cultured with Jurkat T cells, indicating that the problem of liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was transferred from nef-expressing T cells to hepatocytic cells through conduits, wherein up to 16% (average 10%) of the cells harbored the transferred Nef, when the hepatocytic cells were co-cultured with nef-expressing Jurkat cells for 24 h. Further, Nef altered the size and numbers of lipid droplets (LD), and consistently up-regulated HCV replication by 1.5∼2.5 fold in the target subgenomic replicon cells, which is remarkable in relation to the initially indolent viral replication. Nef also dramatically augmented reactive oxygen species (ROS) production and enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate HCC. Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating progression of liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay. PMID:24911518

  15. Enhancement of zidovudine transfer to molt-4 cells, a human t-cell model, by dehydroepiandrosterone sulfate.

    PubMed

    Nishimura, Tomohiro; Tanaka, Jun; Tomi, Masatoshi; Seki, Yoshiaki; Kose, Noriko; Sai, Yoshimichi; Nakashima, Emi

    2011-09-01

    A possible approach to improve antiretroviral therapy with nucleoside reverse transcriptase inhibitors is to enhance inhibitor delivery to CD4-positive T cells. We previously showed that dehydroepiandrosterone sulfate (DHEAS) enhances zidovudine (AZT) transfer into syncytiotrophoblast. Here, we investigated whether DHEAS also enhances AZT transfer into a cellular model of human T lymphocytes, and whether AZT is taken up by a specific transport system. The effects of DHEAS and related compounds on the uptake of [(3) H]AZT and other nucleosides by Molt-4 cells (a model of human CD4-positive T cells) were measured. [(3) H]AZT uptake by Molt-4 cells was nitrobenzylthioinosine insensitive and pH dependent, and the uptake was significantly inhibited by 1 mM ethylisopropylamiloride. [(3) H]AZT uptake by Molt-4 cells was increased in the presence of DHEAS, whereas uptake of other nucleosides was reduced. Kinetic study revealed that the maximum uptake velocity (up to 30 min) was increased in the presence of DHEAS. The structural requirements for AZT uptake-enhancing activity were studied using structural analogues of DHEAS. Estrone-3-sulfate and 16α-hydroxy DHEAS also enhanced AZT uptake into Molt-4 cells. The use of uptake enhancers may be a good strategy to improve the efficacy of antiretroviral therapy.

  16. Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates.

    PubMed

    Asano, K; Okamoto, K

    1992-01-15

    Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.

  17. Information Transfer and the Adoption of Agricultural Innovations.

    ERIC Educational Resources Information Center

    Longo, Rose Mary Juliano

    1990-01-01

    Data collected in the Federal District of Brazil were analyzed in terms of information transfer through mass media and interpersonal communication and how they influence farmers in the Federal District of Brazil in their decisions to adopt agricultural innovations. (42 references) (EAM)

  18. Requirements for effective antitumor responses of TCR transduced T cells.

    PubMed

    de Witte, Moniek A; Jorritsma, Annelies; Kaiser, Andrew; van den Boom, Marly D; Dokter, Maarten; Bendle, Gavin M; Haanen, John B A G; Schumacher, Ton N M

    2008-10-01

    Adoptive transfer of TCR gene-modified T cells has been proposed as an attractive approach to target tumors for which it is difficult or impossible to induce strong tumor-specific T cell responses by vaccination. Whereas the feasibility of generating tumor Ag-specific T cells by gene transfer has been demonstrated, the factors that determine the in vivo effectiveness of TCR-modified T cells are largely unknown. We have analyzed the value of a number of clinically feasible strategies to enhance the antitumor potential of TCR modified T cells. These experiments reveal three factors that contribute greatly to the in vivo potency of TCR-modified T cells. First, irradiation-induced host conditioning is superior to vaccine-induced activation of genetically modified T cells. Second, increasing TCR expression through genetic optimization of TCR sequences has a profound effect on in vivo antitumor activity. Third, a high precursor frequency of TCR modified T cells within the graft is essential. Tumors that ultimately progress in animals treated with this optimized regimen for TCR-based adoptive cell transfer invariably display a reduced expression of the target Ag. This suggests TCR gene therapy can achieve a sufficiently strong selective pressure to warrant the simultaneous targeting of multiple Ags. The strategies outlined in this study should be of value to enhance the antitumor activity of TCR-modified T cells in clinical trials.

  19. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  20. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy.

    PubMed

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-02-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions.

  1. Characterization of interleukin 2 (IL-2)-dependent cytotoxic T-cell clones. V. Transfer of resistance to allografts and tumor grafts requires exogenous IL-2.

    PubMed

    Palladino, M A; Welte, K; Carroll, A M; Oettgen, H F

    1984-07-01

    The adoptive transfer of resistance to tumor grafts with cloned interleukin 2 (IL-2)-dependent cytotoxic T-cell lines was examined. Two clones were used: clone CTLL-A2 which recognizes H-2Dd determinants and clone CTLL-R5 which recognizes a unique cell surface antigen of BALB/c leukemia RL male 1. Systemic transfer of resistance with these clones was accomplished only when exogenous (rat or human) IL-2 was administered at the same time. Intraperitoneal injection of CTLL-A2 cells accelerated rejection of sarcoma Meth A (H-2Dd), but not ascites sarcoma BP8 (H-2k) or leukemia EL4 (H-2b) inoculated subcutaneously into C57BL/6 mice. CTLL-R5 cells were examined in local (Winn tests) as well as systemic transfer experiments. When mixed with leukemia cells before subcutaneous injection, they suppressed the growth of leukemia RL male 1 without exogenous IL-2. When injected intraperitoneally, CTLL-R5 cells inhibited the growth of subcutaneous grafts of leukemia RL male 1 only when exogenous IL-2 was administered at the same time. CTLL-R5 did not inhibit the growth of other radiation-induced BALB/c leukemias.

  2. HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts

    PubMed Central

    Symeonides, Menelaos; Murooka, Thomas T.; Bellfy, Lauren N.; Roy, Nathan H.; Mempel, Thorsten R.; Thali, Markus

    2015-01-01

    HIV-1 Env mediates fusion of viral and target cell membranes, but it can also mediate fusion of infected (producer) and target cells, thus triggering the formation of multinucleated cells, so-called syncytia. Large, round, immobile syncytia are readily observable in cultures of HIV-1-infected T cells, but these fast growing “fusion sinks” are largely regarded as cell culture artifacts. In contrast, small HIV-1-induced syncytia were seen in the paracortex of peripheral lymph nodes and other secondary lymphoid tissue of HIV-1-positive individuals. Further, recent intravital imaging of lymph nodes in humanized mice early after their infection with HIV-1 demonstrated that a significant fraction of infected cells were highly mobile, small syncytia, suggesting that these entities contribute to virus dissemination. Here, we report that the formation of small, migratory syncytia, for which we provide further quantification in humanized mice, can be recapitulated in vitro if HIV-1-infected T cells are placed into 3D extracellular matrix (ECM) hydrogels rather than being kept in traditional suspension culture systems. Intriguingly, live-cell imaging in hydrogels revealed that these syncytia, similar to individual infected cells, can transiently interact with uninfected cells, leading to rapid virus transfer without cell-cell fusion. Infected cells were also observed to deposit large amounts of viral particles into the extracellular space. Altogether, these observations suggest the need to further evaluate the biological significance of small, T cell-based syncytia and to consider the possibility that these entities do indeed contribute to virus spread and pathogenesis. PMID:26703714

  3. HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts.

    PubMed

    Symeonides, Menelaos; Murooka, Thomas T; Bellfy, Lauren N; Roy, Nathan H; Mempel, Thorsten R; Thali, Markus

    2015-12-12

    HIV-1 Env mediates fusion of viral and target cell membranes, but it can also mediate fusion of infected (producer) and target cells, thus triggering the formation of multinucleated cells, so-called syncytia. Large, round, immobile syncytia are readily observable in cultures of HIV-1-infected T cells, but these fast growing "fusion sinks" are largely regarded as cell culture artifacts. In contrast, small HIV-1-induced syncytia were seen in the paracortex of peripheral lymph nodes and other secondary lymphoid tissue of HIV-1-positive individuals. Further, recent intravital imaging of lymph nodes in humanized mice early after their infection with HIV-1 demonstrated that a significant fraction of infected cells were highly mobile, small syncytia, suggesting that these entities contribute to virus dissemination. Here, we report that the formation of small, migratory syncytia, for which we provide further quantification in humanized mice, can be recapitulated in vitro if HIV-1-infected T cells are placed into 3D extracellular matrix (ECM) hydrogels rather than being kept in traditional suspension culture systems. Intriguingly, live-cell imaging in hydrogels revealed that these syncytia, similar to individual infected cells, can transiently interact with uninfected cells, leading to rapid virus transfer without cell-cell fusion. Infected cells were also observed to deposit large amounts of viral particles into the extracellular space. Altogether, these observations suggest the need to further evaluate the biological significance of small, T cell-based syncytia and to consider the possibility that these entities do indeed contribute to virus spread and pathogenesis.

  4. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    PubMed Central

    2012-01-01

    Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ), which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN), were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer. PMID:22713761

  5. Producer T cells: Using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors

    PubMed Central

    Tsai, Alexander K.; Davila, Eduardo

    2016-01-01

    ABSTRACT Adoptive cell transfer (ACT) is an emerging anticancer therapy that has shown promise in various malignancies. Redirecting antigen specificity by genetically engineering T cells to stably express receptors has become an effective variant of ACT. A novel extension of this approach is to utilize engineered T cells to produce and deliver anticancer therapeutics that enhance cytotoxic T cell function and simultaneously inhibit immunosuppressive processes. Here, we review the potential of using T cells as therapeutic-secreting vehicles for immunotherapies and present theoretical and established arguments in support of further development of this unique cell-based immunotherapy. PMID:27467930

  6. Normal immunoglobulin G protects against experimental allergic encephalomyelitis by inducing transferable T cell unresponsiveness to myelin basic protein.

    PubMed

    Pashov, A; Dubey, C; Kaveri, S V; Lectard, B; Huang, Y M; Kazatchkine, M D; Bellon, B

    1998-06-01

    Normal human IgG for intravenous use (IVIg), administered intraperitoneally, protected Lewis rats against experimental allergic encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP). We demonstrate that protection was associated with an acquired unresponsiveness of lymphocytes to MBP and a decreased ability of the cells to produce IL-2, IFN-gamma and TNF-alpha and, to a lesser degree, IL-4 and IL-10, in the presence of the antigen. Lymph node (LN) cells of protected rats failed to passively transfer EAE to naive syngeneic animals. Our observations indicate that, rather than inducing selective immune deviation, IVIg induces preferential MBP unresponsiveness of Th1 cells. Whereas LN and splenic cells of IVIg-treated rats did not proliferate nor secrete IL-2 in the presence of the antigen, proliferation was restored by adding exogeneous recombinant IL-2. In contrast, LN cells of IVIg-treated rats proliferated normally and produced IL-2 in the presence of concanavalin A, indicating the selectivity for MBP of the anergy induced by IVIg when given at the time of immunization with the antigen. Treatment with IVIg also allowed a resistance to the secondary induction of EAE, indicating that IVIg protects from EAE but does not interfere with the processes that eventually lead to resistance to re-challenge. These data document the immunomodulatory effects of IVIg in T cell-dependent experimental autoimmune disease and further suggest a role for normal Ig in the selection of functional T cell repertoires.

  7. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer.

    PubMed

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian; Gannagé, Monique

    2016-01-01

    NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.

  8. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer

    PubMed Central

    1982-01-01

    Neonatal thymectomy during the critical period, 2-4 d after birth, can induce various organ-specific autoimmune diseases including oophoritis in A/J mice. The oophoritis thus induced was passively transferred into neonatal mice by injection of spleen cells obtained from syngeneic donors with the disease. Recipient ovaries were rapidly damaged with remarkable mononuclear cell infiltration and destruction of follicular structures. The phenotype of effector cells responsible for successful adoptive transfer was found to be Thy-1+, Lyt-1+,23-, Ia-, Qa-1-, and was sensitive to antithymocyte serum treatment but resistant to cyclophosphamide treatment or in vitro X-ray irradiation. The compatibility between donor and recipient at the major histocompatibility complex was not required for the effector phase of transfer. The oophoritis induced in BALB/c (nu/+ or +/+) was also shown to be transferred into athymic BALB/c nude mice with resulting ovarian lesion and circulating autoantibodies against oocytes. In this transfer system, the effector cells were also demonstrated to be T cells with the Lyt-1+,23- phenotype. Adoptive transfer experiments in both systems revealed that the destruction of ovaries in postthymectomy autoimmune oophoritis was mediated by Lyt-1 T cells. Whether these T cells can be distinguished from other Lyt-1 cells, such as T helper cells and effector T cells in delayed-type hypersensitivity (DTH), is not clear at present, but the results suggest that the effector mechanisms may be closely related to a DTH reaction. PMID:6983557

  9. Direct Measurement of T Cell Receptor Affinity and Sequence from Naïve Anti-Viral T Cells

    PubMed Central

    Zhang, Shuqi; Parker, Patricia; Ma, Keyue; He, Chenfeng; Shi, Qian; Cui, Zhonghao; Williams, Chad; Wendel, Ben S.; Meriwether, Amanda; Salazar, Mary A.; Jiang, Ning

    2016-01-01

    T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCR). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. Here, we introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8+ T cells in human blood. We demonstrate that the repertoire of primary antigen-specific T cells from pathogen inexperienced individuals has a surprisingly broad affinity range of 1000-fold composed of diverse TCR sequences. Within this range, samples from older individuals contained a reduced frequency of high affinity T cells compared to young individuals, demonstrating an age-related effect of T cell attrition that could cause holes in the repertoire. iTAST should enable the rapid selection of high affinity TCRs ex vivo for adoptive immunotherapy and measurement of T cell response for immune monitoring applications. PMID:27252176

  10. Adoptive immunotherapy for cancer: building on success.

    PubMed

    Gattinoni, Luca; Powell, Daniel J; Rosenberg, Steven A; Restifo, Nicholas P

    2006-05-01

    Adoptive cell transfer after host preconditioning by lymphodepletion represents an important advance in cancer immunotherapy. Here, we describe how a lymphopaenic environment enables tumour-reactive T cells to destroy large burdens of metastatic tumour and how the state of differentiation of the adoptively transferred T cells can affect the outcome of treatment. We also discuss how the translation of these new findings might further improve the efficacy of adoptive cell transfer through the use of vaccines, haematopoietic-stem-cell transplantation, modified preconditioning regimens, and alternative methods for the generation and selection of the T cells to be transferred.

  11. Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10(+) IFN-γ(+)-producing CD4(+) T cells.

    PubMed

    Zhou, Fang; Ciric, Bogoljub; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2013-05-01

    Dendritic cells (DCs) regulate immunity and immune tolerance in vivo. However, the mechanisms of DC-mediated tolerance have not been fully elucidated. Here, we demonstrate that intravenous (i.v.) transfer of bone marrow-derived DCs pulsed with myelin oligodendrocyte glycoprotein (MOG) peptide blocks the development of experimental autoimmune encephalomyelitis in C57BL/6J mice. i.v. transfer of MOG-pulsed DCs leads to the down-regulation of the production of IL-17A and IFN-γ and up-regulation of IL-10 secretion. The development of regulatory T cells (Tregs) is facilitated via up-regulation of FoxP3 expression and production of IL-10. The number of suppressive CD4(+)IL-10(+)IFN-γ(+) T cells is also improved. The expression of OX40, CD154, and CD28 is down-regulated, but the expression of CD152, CD80, PD-1, ICOS, and BTLA is up-regulated on CD4(+) T cells after i.v. transfer of immature DCs. The expression of CCR4, CCR5, and CCR7 on CD4(+) T cells is also improved. Our results suggest that immature DCs may induce tolerance via facilitating the development of CD4(+)FoxP3(+) Tregs and suppressive CD4(+)IL-10(+)IFN-γ(+) T cells in vivo.

  12. T Cells

    MedlinePlus

    ... Definition of MS Myelin Immune-Mediated Disease T Cells d What Causes MS? Disproved Theories Viruses Clusters d Who Gets MS? Pediatric MS ... the progression of MS, without harming any immune cells that are not involved in the process of myelin destruction. Share Smaller ... More Immune-Mediated Disease Learn More Myelin ...

  13. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  14. Antigen-Experienced T cells Limit the Priming of Naïve T cells During Infection with Leishmania major1

    PubMed Central

    Gray, Peter M.; Reiner, Steven L.; Smith, Deborah F.; Kaye, Paul M.; Scott, Phillip

    2009-01-01

    One mechanism to control immune responses following infection is to rapidly down regulate antigen presentation, which has been observed in acute viral and bacterial infections. Here we describe experiments designed to address whether antigen presentation is decreased after an initial response to Leishmania major. Naïve α-β-Leishmania-specific (ABLE) T cell receptor transgenic T cells were adoptively transferred into mice at various times after L. major infection to determine the duration of presentation of parasite-derived antigens. ABLE T cells responded vigorously at the initiation of infection, but the ability to prime these cells quickly diminished, independent of IL-10, regulatory T cells or antigen load. However, antigen-experienced clonal and polyclonal T cell populations could respond, indicating that the diminution in naïve ABLE cell responses was not due to lack of antigen presentation. Since naïve T cell priming could be restored by removal of the endogenous T cell population, or adoptive transfer of antigen pulsed dendritic cells, it appears that T cells that have previously encountered antigen during infection compete with naïve antigen-specific T cells. These results suggest that during L. major infection antigen-experienced T cells, rather than naïve T cells, may be primarily responsible for sustaining the immune response. PMID:16818747

  15. Prevention of Allogeneic Cardiac Graft Rejection by Transfer of Ex Vivo Expanded Antigen-Specific Regulatory T-Cells

    PubMed Central

    Takasato, Fumika; Morita, Rimpei; Schichita, Takashi; Sekiya, Takashi; Morikawa, Yasuhide; Kuroda, Tatsuo; Niimi, Masanori; Yoshimura, Akihiko

    2014-01-01

    The rate of graft survival has dramatically increased using calcineurin inhibitors, however chronic graft rejection and risk of infection are difficult to manage. Induction of allograft-specific regulatory T-cells (Tregs) is considered an ideal way to achieve long-term tolerance for allografts. However, efficient in vitro methods for developing allograft-specific Tregs which is applicable to MHC full-mismatched cardiac transplant models have not been established. We compared antigen-nonspecific polyclonal-induced Tregs (iTregs) as well as antigen-specific iTregs and thymus-derived Tregs (nTregs) that were expanded via direct and indirect pathways. We found that iTregs induced via the indirect pathway had the greatest ability to prolong graft survival and suppress angiitis. Antigen-specific iTregs generated ex vivo via both direct and indirect pathways using dendritic cells from F1 mice also induced long-term engraftment without using MHC peptides. In antigen-specific Treg transferred models, activation of dendritic cells and allograft-specific CTL generation were suppressed. The present study demonstrated the potential of ex vivo antigen-specific Treg expansion for clinical cell-based therapeutic approaches to induce lifelong immunological tolerance for allogeneic cardiac transplants. PMID:24498362

  16. CD31 is required on CD4+ T cells to promote T cell survival during Salmonella infection.

    PubMed

    Ross, Ewan A; Coughlan, Ruth E; Flores-Langarica, Adriana; Bobat, Saeeda; Marshall, Jennifer L; Hussain, Khiyam; Charlesworth, James; Abhyankar, Nikita; Hitchcock, Jessica; Gil, Cristina; López-Macías, Constantino; Henderson, Ian R; Khan, Mahmood; Watson, Steve P; MacLennan, Ian C M; Buckley, Christopher D; Cunningham, Adam F

    2011-08-15

    Hematopoietic cells constitutively express CD31/PECAM1, a signaling adhesion receptor associated with controlling responses to inflammatory stimuli. Although expressed on CD4(+) T cells, its function on these cells is unclear. To address this, we have used a model of systemic Salmonella infection that induces high levels of T cell activation and depends on CD4(+) T cells for resolution. Infection of CD31-deficient (CD31KO) mice demonstrates that these mice fail to control infection effectively. During infection, CD31KO mice have diminished numbers of total CD4(+) T cells and IFN-γ-secreting Th1 cells. This is despite a higher proportion of CD31KO CD4(+) T cells exhibiting an activated phenotype and an undiminished capacity to prime normally and polarize to Th1. Reduced numbers of T cells reflected the increased propensity of naive and activated CD31KO T cells to undergo apoptosis postinfection compared with wild-type T cells. Using adoptive transfer experiments, we show that loss of CD31 on CD4(+) T cells alone is sufficient to account for the defective CD31KO T cell accumulation. These data are consistent with CD31 helping to control T cell activation, because in its absence, T cells have a greater propensity to become activated, resulting in increased susceptibility to become apoptotic. The impact of CD31 loss on T cell homeostasis becomes most pronounced during severe, inflammatory, and immunological stresses such as those caused by systemic Salmonella infection. This identifies a novel role for CD31 in regulating CD4 T cell homeostasis.

  17. Prospects and limitations of T cell receptor gene therapy.

    PubMed

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A; Schumacher, Ton N M

    2011-08-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cancer.

  18. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.

  19. Adoption

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Adoption KidsHealth > For Teens > Adoption Print A A A ... of Adoption en español La adopción What Is Adoption? Caz knew she'd been adopted as a ...

  20. [Adoption].

    ERIC Educational Resources Information Center

    Pawl, Jeree, Ed.; And Others

    1990-01-01

    This newsletter theme issue addresses adoption and the young child's life. Contributors suggest ways in which practitioners in many professions and settings can better understand and support adoptive families. The first article, "Adoption, 1990" by Barbara F. Nordhaus and Albert J. Solnit, reviews the history of adoption and notes obstacles to…

  1. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    PubMed

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  2. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts.

    PubMed

    Cartellieri, M; Feldmann, A; Koristka, S; Arndt, C; Loff, S; Ehninger, A; von Bonin, M; Bejestani, E P; Ehninger, G; Bachmann, M P

    2016-08-12

    The adoptive transfer of CD19-specific chimeric antigen receptor engineered T cells (CAR T cells) resulted in encouraging clinical trials in indolent B-cell malignancies. However, they also show the limitations of this fascinating technology: CAR T cells can lead to even life-threatening off-tumor, on-target side effects if CAR T cells crossreact with healthy tissues. Here, we describe a novel modular universal CAR platform technology termed UniCAR that reduces the risk of on-target side effects by a rapid and reversible control of CAR T-cell reactivity. The UniCAR system consists of two components: (1) a CAR for an inert manipulation of T cells and (2) specific targeting modules (TMs) for redirecting UniCAR T cells in an individualized time- and target-dependent manner. UniCAR T cells can be armed against different tumor targets simply by replacement of the respective TM for (1) targeting more than one antigen simultaneously or subsequently to enhance efficacy and (2) reducing the risk for development of antigen-loss tumor variants under treatment. Here we provide 'proof of concept' for retargeting of UniCAR T cells to CD33- and/or CD123-positive acute myeloid leukemia blasts in vitro and in vivo.

  3. Adoptive Transfer of Dendritic Cells Expressing Fas Ligand Modulates Intestinal Inflammation in a Model of Inflammatory Bowel Disease

    PubMed Central

    de Jesus, Edelmarie Rivera; Isidro, Raymond A; Cruz, Myrella L; Marty, Harry; Appleyard, Caroline B

    2016-01-01

    Background Inflammatory bowel diseases (IBD) are chronic relapsing inflammatory conditions of unknown cause and likely result from the loss of immunological tolerance, which leads to over-activation of the gut immune system. Gut macrophages and dendritic cells (DCs) are essential for maintaining tolerance, but can also contribute to the inflammatory response in conditions such as IBD. Current therapies for IBD are limited by high costs and unwanted toxicities and side effects. The possibility of reducing intestinal inflammation with DCs genetically engineered to over-express the apoptosis-inducing FasL (FasL-DCs) has not yet been explored. Objective Investigate the immunomodulatory effect of administering FasL-DCs in the rat trinitrobenzene sulfonic acid (TNBS) model of acute colitis. Methods Expression of FasL on DCs isolated from the mesenteric lymph nodes (MLNs) of normal and TNBS-colitis rats was determined by flow cytometry. Primary rat bone marrow DCs were transfected with rat FasL plasmid (FasL-DCs) or empty vector (EV-DCs). The effect of these DCs on T cell IFNγ secretion and apoptosis was determined by ELISPOT and flow cytometry for Annexin V, respectively. Rats received FasL-DCs or EV-DCs intraperitoneally 96 and 48 hours prior to colitis induction with TNBS. Colonic T cell and neutrophil infiltration was determined by immunohistochemistry for CD3 and myeloperoxidase activity assay, respectively. Macrophage number and phenotype was measured by double immunofluorescence for CD68 and inducible Nitric Oxide Synthase. Results MLN dendritic cells from normal rats expressed more FasL than those from colitic rats. Compared to EV-DCs, FasL-DCs reduced T cell IFNγ secretion and increased T cell apoptosis in vitro. Adoptive transfer of FasL-DCs decreased macroscopic and microscopic damage scores and reduced colonic T cells, neutrophils, and proinflammatory macrophages when compared to EV-DC adoptive transfer. Conclusion FasL-DCs are effective at treating colonic

  4. Inducible T-cell receptor expression in precursor T-cells for leukemia control

    PubMed Central

    Hoseini, Shahabuddin S; Hapke, Martin; Herbst, Jessica; Wedekind, Dirk; Baumann, Rolf; Heinz, Niels; Schiedlmeier, Bernhard; Vignali, Dario AA; van den Brink, Marcel R.M.; Schambach, Axel; Blazar, Bruce R.; Sauer, Martin G.

    2015-01-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. Since expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8+ T cell development, was required to obtain a mature T cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  5. The impact of AAV capsid-specific T cell responses on design and outcome of clinical gene transfer trials with recombinant AAV vectors - an evolving controversy.

    PubMed

    Ertl, Hildegund Cj; High, Katherine A

    2017-01-02

    Recombinant adenovirus-associated (rAAV) vectors due to their ease of construction, wide tissue tropism and lack of pathogenicity remain at the forefront for long-term gene replacement therapy. In spite of very encouraging pre-clinical results, clinical trials were initially unsuccessful; expression of the rAAV vector-delivered therapeutic protein was transient. Loss of expression was linked to an expansion of AAV capsid-specific T cell responses, leading to the hypothesis that rAAV vectors recall pre-existing memory T cells that had been induced by natural infections with AAV together with a helper virus. Although this was hotly debated at first, AAV capsid-specific T cell responses were observed in several gene transfer trials that used high doses of rAAV vectors. Subsequent trials designed to circumvent these T cell responses through the use of immunosuppressive drugs, rAAV vectors based on rare serotypes or modified to allow for therapeutic levels of the transgene product at low, non-immunogenic vector doses are now successful in correcting debilitating diseases.

  6. Cancer Therapeutic Based on T Cell Receptors Designed to Regiospecifically Release Interleukin-12 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Surgery Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a potential cancer therapeutic based on T cells genetically engineered to express the human interleukin 12 (IL-12) cytokine only in the tumor environment.

  7. Dynamic imaging for CAR-T-cell therapy.

    PubMed

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans.

  8. Double-Negative αβ T Cells Are Early Responders to AKI and Are Found in Human Kidney.

    PubMed

    Martina, Maria N; Noel, Sanjeev; Saxena, Ankit; Bandapalle, Samatha; Majithia, Richa; Jie, Chunfa; Arend, Lois J; Allaf, Mohamad E; Rabb, Hamid; Hamad, Abdel Rahim A

    2016-04-01

    Ischemia-reperfusion injury (IRI) is a major cause of AKI, and previous studies established important roles for conventional CD4(+) T cells, natural killer T cells, and CD4(+)CD25(+)FoxP3(+) Tregs in AKI pathogenesis. We recently identified CD4(-)CD8(-) (double-negative; DN) T cells as an important subset of αβ T cell receptor-positive cells residing in mouse kidney. However, little is known about the pathophysiologic functions of kidney DN T cells. In this study, we phenotypically and functionally characterized murine kidney DN T cells in the steady state and in response to IRI. Unlike CD4(+) and CD8(+) T cells, DN T cells in the steady state expressed high levels of CD69, CD28, and CD40L; differentially expressed IL-27 and IL-10 anti-inflammatory cytokines; spontaneously proliferated at a very high rate; and suppressed in vitro proliferation of activated CD4(+) T cells. Within the first 3-24 hours after IRI, kidney DN T cells expanded significantly and upregulated expression of IL-10. In adoptive transfer experiments, DN T cells significantly protected recipients from AKI by an IL-10-dependent mechanism. DN T cells also made up a large fraction of the T cell compartment in human kidneys. Our results indicate that DN T cells are an important subset of the resident αβ(+) T cell population in the mammalian kidney and are early responders to AKI that have anti-inflammatory properties.

  9. Comparison of naïve and central memory derived CD8(+) effector cell engraftment fitness and function following adoptive transfer.

    PubMed

    Wang, Xiuli; Wong, ChingLam W; Urak, Ryan; Taus, Ellie; Aguilar, Brenda; Chang, Wen-Chung; Mardiros, Armen; Budde, Lihua E; Brown, Christine E; Berger, Carolina; Forman, Stephen J; Jensen, Michael C

    Human CD8(+) effector T cells derived from CD45RO(+)CD62L(+) precursors enriched for central memory (TCM) precursors retain the capacity to engraft and reconstitute functional memory upon adoptive transfer, whereas effectors derived from CD45RO(+)CD62L(-) precursors enriched for effector memory precursors do not. Here we sought to compare the engraftment fitness and function of CD8(+) effector T cells derived from CD45RA(+)CD62L(+) precursors enriched for naïve and stem cell memory precursors (TN/SCM) with that of TCM. We found that cytotoxic T cells (CTLs) derived from TCM transcribed higher levels of CD28, FOS, INFγ, Eomesodermin (Eomes), and lower levels of BCL2L11, maintained higher levels of phosphorylated AKT, and displayed enhanced sensitivity to the proliferative and anti-apoptotic effects of γ-chain cytokines compared to CTLs derived from TN/SCM. Higher frequencies of CTLs derived from TCM retained CD28 expression and upon activation secreted higher levels of IL-2. In NOD/Scid IL-2RγC(null) mice, CD8(+) TCM derived CTLs engrafted to higher frequencies in response to human IL-15 and mounted robust proliferative responses to an immunostimulatory vaccine. Similarly, CD8(+) TCM derived CD19CAR(+) CTLs exhibited superior antitumor potency following adoptive transfer compared to their CD8(+) TN/SCM derived counterparts. These studies support the use of TCM enriched cell products for adoptive therapy of cancer.

  10. A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer.

    PubMed

    Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2016-11-01

    CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.

  11. Improved Personalized Cancer Immunotherapy: Rapid Selection of Tumor-Reactive T Cells based on Expression of Specific Cell Surface Markers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

  12. Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection.

    PubMed

    Drujont, Lucile; Carretero-Iglesia, Laura; Bouchet-Delbos, Laurence; Beriou, Gaelle; Merieau, Emmanuel; Hill, Marcelo; Delneste, Yves; Cuturi, Maria Cristina; Louvet, Cedric

    2014-01-01

    Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer.

  13. Adoption

    MedlinePlus

    ... biological families) and where they came from. This curiosity often becomes more intense as part of the ... adoptive family or feel close to them. This curiosity, which can feel quite intense, is a normal ...

  14. Human leucocyte antigen class I‐redirected anti‐tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells

    PubMed Central

    Tan, M. P.; Dolton, G. M.; Gerry, A. B.; Brewer, J. E.; Bennett, A. D.; Pumphrey, N. J.; Jakobsen, B. K.

    2016-01-01

    Summary CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour‐specific CD4+ T cells occur in low frequency, express relatively low‐affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T cells with tumour‐specific HLA class I‐restricted TCRs prior to adoptive transfer. The lack of help from the co‐receptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T cells expressing wild‐type and a range of affinity‐enhanced TCRs specific for the HLA A*0201‐restricted NY‐ESO‐1‐ and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4+ T cells than CD8+ T cells. These results indicate that the CD4+ T cell component of current adoptive therapies using TCRs optimized for CD8+ T cells is below par and that there is room for substantial improvement. PMID:27324616

  15. Targetless T cells in cancer immunotherapy.

    PubMed

    Thor Straten, Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells. It is therefore mandatory to explore if these important molecules for T cell cytotoxicity are expressed by cancer target cells. We have indications that different types of immunotherapy can modify the tumor microenvironment and up-regulate reduced HLA class I expression in cancer cells but only if the associated molecular mechanisms is reversible (soft). However, in case of structural (hard) aberrations causing HLA class I loss, tumor cells will not be able to recover HLA class I expression and as a consequence will escape T-cell lysis and continue to growth. Characterization of the molecular mechanism underlying the lack or downregulation of HLA class I expression, seems to be a crucial step predicting clinical responses to T cell mediated immunotherapy, and possibly aid the

  16. Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-A review.

    PubMed

    Nayar, Sandeep; Dasgupta, Prokar; Galustian, Christine

    2015-04-01

    Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8(+) T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits.

  17. TCRγ4δ1-Engineered αβT Cells Exhibit Effective Antitumor Activity

    PubMed Central

    He, Kangxia; You, Hongqin; Li, Yuxia; Cui, Lianxian; Zhang, Jianmin; He, Wei

    2016-01-01

    T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum antitumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and potential role in autoimmunity. Results show that TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited effective in vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More important, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer. PMID:27463149

  18. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    SciTech Connect

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  19. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles

    PubMed Central

    Stephan, Matthias T.; Stephan, Sirkka B.; Bak, S. Peter; Chen, Jianzhu; Irvine, Darrell J.

    2012-01-01

    Regulating molecular interactions in the T-cell synapse to prevent autoimmunity or, conversely, to boost anti-tumor immunity has long been a goal in immunotherapy. However, delivering therapeutically meaningful doses of immune-modulating compounds into the synapse represents a major challenge. Here, we report that covalent coupling of maleimide-functionlized nanoparticles (NPs) to free thiol groups on T-cell membrane proteins enables efficient delivery of compounds into the T cell synapse. We demonstrate that surface-linked NPs are rapidly polarized toward the nascent immunological synapse (IS) at the T cell/APC contact zone during antigen recognition. To translate these findings into a therapeutic application we tested the NP delivery of NSC-87877, a dual inhibitor of Shp1 and Shp2, key phosphatases that downregulate T-cell receptor activation in the synapse, in the context of adoptive T cell therapy of cancer. Conjugating NSC-87877-loaded NPs to the surface of tumor-specific T cells just prior to adoptive transfer into mice with advanced prostate cancer promoted a much greater T-cell expansion at the tumor site, relative to co-infusing the same drug dose systemically, leading to enhanced survival of treated animals. In summary, our studies support the application of T-cell-linked synthetic NPs as efficient drug delivery vehicles into the IS, as well as the broad applicability of this new paradigm for therapeutically modulating signaling events at the T-cell/APC interface. PMID:22594972

  20. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities

    PubMed Central

    Wang, Zhan; Li, Binghao; Ren, Yingqing; Ye, Zhaoming

    2016-01-01

    Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies. PMID:27683579

  1. Alpha tumor necrosis factor contributes to CD8{sup +} T cell survival in the transition phase

    SciTech Connect

    Shi, Meiqing; Ye, Zhenmin; Umeshappa, Keshav Sokke; Moyana, Terence; Xiang, Jim . E-mail: jxiang@scf.sk.ca

    2007-08-31

    Cytokine and costimulation signals determine CD8{sup +} T cell responses in proliferation phase. In this study, we assessed the potential effect of cytokines and costimulations to CD8{sup +} T cell survival in transition phase by transferring in vitro ovalbumin (OVA)-pulsed dendritic cell-activated CD8{sup +} T cells derived from OVA-specific T cell receptor transgenic OT I mice into wild-type C57BL/6 mice or mice with designated gene knockout. We found that deficiency of IL-10, IL-12, IFN-{gamma}, CD28, CD40, CD80, CD40L, and 41BBL in recipients did not affect CD8{sup +} T cell survival after adoptive transfer. In contrast, TNF-{alpha} deficiency in both recipients and donor CD8{sup +} effector T cells significantly reduced CD8{sup +} T cell survival. Therefore, our data demonstrate that the host- and T cell-derived TNF-{alpha} signaling contributes to CD8{sup +} effector T cell survival and their transition to memory T cells in the transition phase, and may be useful information when designing vaccination.

  2. Selective culling of high avidity antigen-specific CD4+ T cells after virulent Salmonella infection.

    PubMed

    Ertelt, James M; Johanns, Tanner M; Mysz, Margaret A; Nanton, Minelva R; Rowe, Jared H; Aguilera, Marijo N; Way, Sing Sing

    2011-12-01

    Typhoid fever is a persistent infection caused by host-adapted Salmonella strains adept at circumventing immune-mediated host defences. Given the importance of T cells in protection, the culling of activated CD4+ T cells after primary infection has been proposed as a potential immune evasion strategy used by this pathogen. We demonstrate that the purging of activated antigen-specific CD4+ T cells after virulent Salmonella infection requires SPI-2 encoded virulence determinants, and is not restricted only to cells with specificity to Salmonella-expressed antigens, but extends to CD4+ T cells primed to expand by co-infection with recombinant Listeria monocytogenes. Unexpectedly, however, the loss of activated CD4+ T cells during Salmonella infection demonstrated using a monoclonal population of adoptively transferred CD4+ T cells was not reproduced among the endogenous repertoire of antigen-specific CD4+ T cells identified with MHC class II tetramer. Analysis of T-cell receptor variable segment usage revealed the selective loss and reciprocal enrichment of defined CD4+ T-cell subsets after Salmonella co-infection that is associated with the purging of antigen-specific cells with the highest intensity of tetramer staining. Hence, virulent Salmonella triggers the selective culling of high avidity activated CD4+ T-cell subsets, which re-shapes the repertoire of antigen-specific T cells that persist later after infection.

  3. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion

    PubMed Central

    Giordano, Marilyn; Henin, Coralie; Maurizio, Julien; Imbratta, Claire; Bourdely, Pierre; Buferne, Michel; Baitsch, Lukas; Vanhille, Laurent; Sieweke, Michael H; Speiser, Daniel E; Auphan-Anezin, Nathalie; Schmitt-Verhulst, Anne-Marie; Verdeil, Grégory

    2015-01-01

    T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed “exhausted” T cells. We compared the transcriptome of “exhausted” CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf. PMID:26139534

  4. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation

    PubMed Central

    Nguyen, Vu H.; Shashidhar, Sumana; Chang, Daisy S.; Ho, Lena; Kambham, Neeraja; Bachmann, Michael; Brown, Janice M.

    2008-01-01

    Regulatory T cells (Tregs) prevent graft-versus-host disease (GvHD) by inhibiting the proliferation and function of conventional T cells (Tcons). However, the impact of Tregs on T-cell development and immunity following hematopoietic cell transplantation (HCT) is unknown. Using a murine GvHD model induced by Tcons, we demonstrate that adoptive transfer of Tregs leads to (1) abrogration of GvHD, (2) preservation of thymic and peripheral lymph node architecture, and (3) an accelerated donor lymphoid reconstitution of a diverse TCR-Vβ repertoire. The resultant enhanced lymphoid reconstitution in Treg recipients protects them from lethal cytomegalovirus (MCMV) infection. By contrast, mice that receive Tcons alone have disrupted lymphoid organs from GvHD and remain lymphopenic with a restricted TCR-Vβ repertoire and rapid death on MCMV challenge. Lymphocytes from previously infected Treg recipients generate secondary response specific to MCMV, indicating long-term protective immunity with transferred Tregs. Thymectomy significantly reduces survival after MCMV challenge in Treg recipients compared with euthymic controls. Our results indicate that Tregs enhance immune reconstitution by preventing GvHD-induced damage of the thymic and secondary lymphoid microenvironment. These findings provide new insights into the role of Tregs in affording protection to lymphoid stromal elements important for T-cell immunity. PMID:17916743

  5. A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy

    PubMed Central

    Valton, Julien; Guyot, Valérie; Marechal, Alan; Filhol, Jean-Marie; Juillerat, Alexandre; Duclert, Aymeric; Duchateau, Philippe; Poirot, Laurent

    2015-01-01

    The adoptive transfer of chimeric antigen receptor (CAR) T cell represents a highly promising strategy to fight against multiple cancers. The clinical outcome of such therapies is intimately linked to the ability of effector cells to engraft, proliferate, and specifically kill tumor cells within patients. When allogeneic CAR T-cell infusion is considered, host versus graft and graft versus host reactions must be avoided to prevent rejection of adoptively transferred cells, host tissue damages and to elicit significant antitumoral outcome. This work proposes to address these three requirements through the development of multidrug-resistant T cell receptor αβ-deficient CAR T cells. We demonstrate that these engineered T cells displayed efficient antitumor activity and proliferated in the presence of purine and pyrimidine nucleoside analogues, currently used in clinic as preconditioning lymphodepleting regimens. The absence of TCRαβ at their cell surface along with their purine nucleotide analogues-resistance properties could prevent their alloreactivity and enable them to resist to lymphodepleting regimens that may be required to avoid their ablation via HvG reaction. By providing a basic framework to develop a universal T cell compatible with allogeneic adoptive transfer, this work is laying the foundation stone of the large-scale utilization of CAR T-cell immunotherapies. PMID:26061646

  6. Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide.

    PubMed

    Maurice, Marielle; Verhoeyen, Els; Salmon, Patrick; Trono, Didier; Russell, Stephen J; Cosset, François-Loïc

    2002-04-01

    In contrast to oncoretroviruses, lentiviruses such as human immunodeficiency virus 1 (HIV-1) are able to integrate their genetic material into the genome of nonproliferating cells that are metabolically active. Likewise, vectors derived from HIV-1 can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T cells. Completion of reverse transcription, nuclear import, and subsequent integration of the lentivirus genome do not occur in these cells unless they are activated via the T-cell receptor (TCR) or by cytokines or both. However, to preserve the functional properties of these important gene therapy target cells, only minimal activation with cytokines or TCR-specific antibodies should be performed during gene transfer. Here we report the characterization of HIV-1-derived lentiviral vectors whose virion surface was genetically engineered to display a T cell-activating single-chain antibody polypeptide derived from the anti-CD3 OKT3 monoclonal antibody. Interaction of OKT3 IgGs with the TCR can activate resting peripheral blood lymphocytes (PBLs) by promoting the transition from G(0) to G(1) phases of the cell cycle. Compared to unmodified HIV-1-based vectors, OKT3-displaying lentiviral vectors strongly increased gene delivery in freshly isolated PBLs by up to 100-fold. Up to 48% transduction could be obtained without addition of PBL activation stimuli during infection. Taken together, these results show that surface-engineered lentiviral vectors significantly improve transduction of primary lymphocytes by activating the target cells. Moreover these results provide a proof of concept for an approach that may have utility in various gene transfer applications, including in vivo gene delivery.

  7. The growing world of CAR T cell trials: a systematic review.

    PubMed

    Holzinger, Astrid; Barden, Markus; Abken, Hinrich

    2016-12-01

    In recent years, cancer treatment involving adoptive cell therapy with chimeric antigen receptor (CAR)-modified patient's immune cells has attracted growing interest. Using gene transfer techniques, the patient's T cells are modified ex vivo with a CAR which redirects the T cells toward the cancer cells through an antibody-derived binding domain. The T cells are activated by the CAR primary signaling and costimulatory domains. Such "second generation" CAR T cells induced complete remission of B cell malignancies in the long-term. In this fast-moving field with a growing number of engineered T cell products, we list about 100 currently ongoing trials here that involve CAR T cells targeting hematopoietic malignancies and solid cancer. Major challenges in the further development of the therapy are briefly discussed.

  8. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges.

    PubMed

    Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G

    2012-07-01

    The adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a relatively new but promising approach in the field of cancer immunotherapy. This therapeutic strategy is based on the genetic reprogramming of T cells with an artificial immune receptor that redirects them against targets on malignant cells and enables their destruction by exerting T cell effector functions. There has been an explosion of interest in the use of CAR T cells as an immunotherapy for cancer. In the pre-clinical setting, there has been a considerable focus upon optimizing the structural and signaling potency of the CAR while advances in bio-processing technology now mean that the clinical testing of these gene-modified T cells has become a reality. This review will summarize the concept of CAR-based immunotherapy and recent clinical trial activity and will further discuss some of the likely future challenges facing CAR-modified T cell therapies.

  9. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    PubMed Central

    Cartellieri, Marc; Bachmann, Michael; Feldmann, Anja; Bippes, Claudia; Stamova, Slava; Wehner, Rebekka; Temme, Achim; Schmitz, Marc

    2010-01-01

    CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs). First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells. PMID:20467460

  10. Changing T cell specificity by retroviral T cell receptor display

    PubMed Central

    Kessels, Helmut W. H. G.; van den Boom, Marly D.; Spits, Hergen; Hooijberg, Erik; Schumacher, Ton N. M.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T cell variants is generated in vitro and introduced into a TCR-negative murine T cell line by retroviral transfer. We document the value of TCR display by the creation of a library of an influenza A-specific TCR and the subsequent in vitro selection of TCRs that either recognize the parental influenza epitope or that have acquired a specificity for a different influenza A strain. The resulting in vitro selected TCRs induce efficient T cell activation after ligand recognition and are of equal or higher potency than the in vivo generated parent receptor. TCR display should prove a useful strategy for the generation of high-affinity tumor-specific TCRs for gene transfer purposes. PMID:11121060

  11. Cross-reactive memory CD4+ T cells alter the CD8+ T-cell response to heterologous secondary dengue virus infections in mice in a sequence-specific manner.

    PubMed

    Beaumier, Coreen M; Rothman, Alan L

    2009-06-01

    Secondary dengue virus (DENV) infection is a major factor contributing to the risk for severe disease, an effect that depends upon the sequence of infection with different DENV serotypes. We previously reported sequence-dependent effects of secondary DENV infection on CD8+ T-cell responses in mice. To further evaluate the effect of infection sequence, we analyzed DENV-specific CD4+ T-cell responses and their relationship to the CD8+ T-cell response. Serotype cross-reactivity of CD4+ T-cell responses also depended upon the sequence of serotypes in this model. Furthermore, adoptive transfer of memory CD4+ T cells altered the response of memory CD8+ T cells to secondary infection. These data demonstrate the interaction of different components of the T-cell response in determining the immunological outcome of secondary DENV infection.

  12. Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer.

    PubMed

    Sierra, Rosa A; Thevenot, Paul; Raber, Patrick L; Cui, Yan; Parsons, Chris; Ochoa, Augusto C; Trillo-Tinoco, Jimena; Del Valle, Luis; Rodriguez, Paulo C

    2014-08-01

    An impaired antitumor immunity is found in patients with cancer and represents a major obstacle in the successful development of different forms of immunotherapy. Signaling through Notch receptors regulates the differentiation and function of many cell types, including immune cells. However, the effect of Notch in CD8(+) T-cell responses in tumors remains unclear. Thus, we aimed to determine the role of Notch signaling in CD8(+) T cells in the induction of tumor-induced suppression. Our results using conditional knockout mice show that Notch-1 and Notch-2 were critical for the proliferation and IFNγ production of activated CD8(+) T cells and were significantly decreased in tumor-infiltrating T cells. Conditional transgenic expression of Notch-1 intracellular domain (N1IC) in antigen-specific CD8(+) T cells did not affect activation or proliferation of CD8(+) T cells, but induced a central memory phenotype and increased cytotoxicity effects and granzyme B levels. Consequently, a higher antitumor response and resistance to tumor-induced tolerance were found after adoptive transfer of N1IC-transgenic CD8(+) T cells into tumor-bearing mice. Additional results showed that myeloid-derived suppressor cells (MDSC) blocked the expression of Notch-1 and Notch-2 in T cells through nitric oxide-dependent mechanisms. Interestingly, N1IC overexpression rendered CD8(+) T cells resistant to the tolerogenic effect induced by MDSC in vivo. Together, the results suggest the key role of Notch in the suppression of CD8(+) T-cell responses in tumors and the therapeutic potential of N1IC in antigen-specific CD8(+) T cells to reverse T-cell suppression and increase the efficacy of T cell-based immunotherapies in cancer.

  13. Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells.

    PubMed

    Mata, Melinda; Vera, Juan F; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L; Wilson-Robles, Heather M; Gottschalk, Stephen

    2014-10-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising antitumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells, we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells, we targeted HER2(+) OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2(+) canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR, we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy before conducting studies in humans.

  14. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice.

    PubMed

    Matisz, Chelsea E; Leung, Gabriella; Reyes, Jose Luis; Wang, Arthur; Sharkey, Keith A; McKay, Derek M

    2015-11-01

    Infection with helminth parasites and treatment with worm extracts can suppress inflammatory disease, including colitis. Postulating that dendritic cells (DCs) participated in the suppression of inflammation and seeking to move beyond the use of helminths per se, we tested the ability of Hymenolepis diminuta antigen-pulsed DCs to suppress colitis as a novel cell-based immunotherapy. Bone marrow derived DCs pulsed with H. diminuta antigen (HD-DCs), or PBS-, BSA-, or LPS-DCs as controls, were transferred into wild-type (WT), interleukin-10 (IL-10) knock-out (KO), and RAG-1 KO mice, and the impact on dinitrobenzene sulphonic acid (DNBS)-induced colitis and splenic cytokine production assessed 72 h later. Mice receiving HD-DCs were significantly protected from DNBS-induced colitis and of the experimental groups only these mice displayed increased Th2 cytokines and IL-10 production. Adoptive transfer of HD-DCs protected neither RAG-1 nor IL-10 KO mice from DNBS-colitis. Furthermore, the transfer of CD4(+) splenocytes from recipients of HD-DCs protected naïve mice against DNBS-colitis, in an IL-10 dependent manner. Thus, HD-DCs are a novel anti-colitic immunotherapy that can educate anti-colitic CD4(+) T cells: mechanistically, the anti-colitic effect of HD-DCs requires that the host has an adaptive immune response and the ability to mobilize IL-10.

  15. Genetically engineered T cells to target EGFRvIII expressing glioblastoma

    PubMed Central

    Bullain, Szofia S.; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C.

    2009-01-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-ζ). After in vitro selection and expansion, MR1-ζ genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-γ secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-ζ) or signaling (MR1-delζ). MR1-ζ expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications. PMID:19387557

  16. 77 FR 1555 - Administrative Simplification: Adoption of Standards for Health Care Electronic Funds Transfers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... and 162 Administrative Simplification: Adoption of Standards for Health Care Electronic Funds... Health Care Electronic Funds Transfers (EFTs) and Remittance Advice AGENCY: Office of the Secretary, HHS... facilitate health care EFT transmissions. DATES: Effective Date: These regulations are effective on...

  17. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors

    PubMed Central

    Vedvyas, Yogindra; Shevlin, Enda; Zaman, Marjan; Min, Irene M.; Park, Spencer; Park, Susan; Kwon, Keon-Woo; Smith, Turner; Luo, Yonghua; Kim, Dohyun; Kim, Young; Law, Benedict; Ting, Richard; Jin, Moonsoo M.

    2016-01-01

    Clinical monitoring of adoptive T cell transfer (ACT) utilizes serial blood analyses to discern T cell activity. While useful, these data are 1-dimensional and lack spatiotemporal information related to treatment efficacy or toxicity. We utilized a human genetic reporter, somatostatin receptor 2 (SSTR2), and PET, to quantitatively and longitudinally visualize whole-body T cell distribution and antitumor dynamics using a clinically approved radiotracer. Initial evaluations determined that SSTR2-expressing T cells were detectable at low densities with high sensitivity and specificity. SSTR2-based PET was applied to ACT of chimeric antigen receptor (CAR) T cells targeting intercellular adhesion molecule-1, which is overexpressed in anaplastic thyroid tumors. Timely CAR T cell infusions resulted in survival of tumor-bearing mice, while later infusions led to uniform death. Real-time PET imaging revealed biphasic T cell expansion and contraction at tumor sites among survivors, with peak tumor burden preceding peak T cell burden by several days. In contrast, nonsurvivors displayed unrelenting increases in tumor and T cell burden, indicating that tumor growth was outpacing T cell killing. Thus, longitudinal PET imaging of SSTR2-positive ACT dynamics enables prognostic, spatiotemporal monitoring with unprecedented clarity and detail to facilitate comprehensive therapy evaluation with potential for clinical translation. PMID:27882353

  18. γδ T Cells Confer Protection against Murine Cytomegalovirus (MCMV)

    PubMed Central

    Villacreces, Arnaud; Juzan, Marina; Rousseau, Benoît; Dulanto, Sara; Giese, Alban; Costet, Pierre; Praloran, Vincent; Moreau, Jean-François; Dubus, Pierre; Vermijlen, David

    2015-01-01

    Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε−/− mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27− γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag−/−γc−/− mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients. PMID:25747674

  19. PD-1 expression conditions T cell avidity within an antigen-specific repertoire

    PubMed Central

    Simon, Sylvain; Vignard, Virginie; Florenceau, Laetitia; Dreno, B.; Khammari, A.; Lang, F.; Labarriere, N.

    2016-01-01

    ABSTRACT Despite its negative regulatory role on tumor-specific T cells, Programmed cell death 1 (PD-1) is also a marker of activated tumor-infiltrating T cells. In cancer, PD-1 blockade partially reverses T cell dysfunction allowing the amplification of tumor reactive T cells. Here, we investigated the role of PD-1 signaling on effector/memory human T cells specific for shared melanoma antigens, derived from blood. We documented for the first time the existence of melanoma-specific T cell clones unable to express PD-1. This stable feature was due to the persistent methylation of the PDCD1 promoter. These PD-1neg clones were of lower avidity than their PD-1pos counterparts, suggesting that high-affinity-specific T cell clones unable to express PD-1 are not or rarely present in peripheral blood, as they are probably eliminated by negative selection, due to their high reactivity. We also documented the existence of such PD-1neg T cell clones in melanoma tumor-infiltrating lymphocytes (TIL), which also exhibited a lower functional avidity than PD-1pos TIL clones. This clearly shows that PD-1 expression identifies antigen-specific T cell clonotypes of high functional avidity. Finally, we demonstrated that PD-1 blockade during the in vitro selection process of Melan-A-specific T cells favored the amplification of higher avidity T cell clonotypes. This preferential amplification of high-avidity memory T cells upon PD-1 blockade resonates with the expansion of reactive T cells, including neo-antigen-specific T cells observed in anti-PD-1-treated patients. This feature should also be a useful biomarker of clinical efficiency, while providing new insights for adoptive transfer treatments. PMID:26942093

  20. Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice.

    PubMed

    Moebius, Jacqueline; van den Broek, Maries; Groettrup, Marcus; Basler, Michael

    2010-12-01

    Immunoproteasomes containing the IFN-inducible subunits β1i (LMP2), β2i (MECL-1) and β5i (LMP7) alter proteasomal cleavage preference and optimize the generation of peptide ligands of MHC class I molecules. Here, we report on an unexpected new function of immunoproteasome subunits for the survival and expansion of CD4(+) and CD8(+) T cells during viral infection of mice. The effect of immunoproteasome subunit deficiency on T-cell survival upon adoptive transfer was most prominent for the lack of LMP7 followed by MECL-1 and LMP2. The survival of T cells in uninfected mice or the homeostatic expansion after transfer into RAG-2(-/-) mice was not affected by the lack of the immunosubunits. Lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells lacking LMP7 or MECL-1 started to divide after transfer into LCMV-infected mice but experienced a considerable cell loss within 2 days after transfer. We provide strong evidence that the loss of immunoproteasome-deficient T cells after transfer is not a consequence of graft rejection by the host, but instead is based on the requirement for immunoproteasomes for the survival of T cells in LCMV-infected mice. Therefore, the immunoproteasome may qualify as a potential new target for the suppression of undesired proinflammatory T-cell responses.

  1. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes.

    PubMed

    Lehuen, A; Lantz, O; Beaudoin, L; Laloux, V; Carnaud, C; Bendelac, A; Bach, J F; Monteiro, R C

    1998-11-16

    Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of alpha/beta double-negative thymocytes. Here, we evaluated the role of NK T cells in diabetes by using transgenic NOD mice expressing the T cell antigen receptor (TCR) alpha chain Valpha14-Jalpha281 characteristic of NK T cells. Precise identification of NK1.1(+) T cells was based on out-cross with congenic NK1.1 NOD mice. All six transgenic lines showed, to various degrees, elevated numbers of NK1.1(+) T cells, enhanced production of interleukin (IL)-4, and increased levels of serum immunoglobulin E. Only the transgenic lines with the largest numbers of NK T cells and the most vigorous burst of IL-4 production were protected from diabetes. Transfer and cotransfer experiments with transgenic splenocytes demonstrated that Valpha14-Jalpha281 transgenic NOD mice, although protected from overt diabetes, developed a diabetogenic T cell repertoire, and that NK T cells actively inhibited the pathogenic action of T cells. These results indicate that the number of NK T cells strongly influences the development of diabetes.

  2. T cell development critically depends on prethymic stromal patched expression.

    PubMed

    Uhmann, Anja; van den Brandt, Jens; Dittmann, Kai; Hess, Ina; Dressel, Ralf; Binder, Claudia; Lühder, Fred; Christiansen, Hans; Fassnacht, Martin; Bhandoola, Avinash; Wienands, Jürgen; Reichardt, Holger M; Hahn, Heidi

    2011-03-15

    We recently described that T cell specification in mice deficient in the Hedgehog (Hh) receptor Patched (Ptch) is blocked at the level of the common lymphoid progenitor in the bone marrow (BM). Adoptive transfer of wild-type BM in Ptch-deficient mice provides evidence that T cell development strictly depends on Ptch expression in the nonhematopoietic compartment. Transplantation experiments using BM deficient in the glucocorticoid receptor exclude any involvement of the stress hormone corticosterone in our model. Using cell-type-specific knockout mice, we show that T cell development is independent of T cell-intrinsic Ptch expression. Furthermore, Ptch expression by the thymus stroma is dispensable, as revealed by fetal thymus organ culture and thymus transplantation. In contrast, analysis of the earliest thymic progenitors in Ptch-deficient mice indicated that Ptch is required for the development or supply of thymic homing progenitors that give rise to earliest thymic progenitors. Collectively, our findings identified Ptch as an exclusive T cell-extrinsic factor necessary for proper development of T cells at their prethymic stage. This observation may be important for current considerations using Hh inhibitors upstream of Ptch in diseases accompanied by aberrant Hh signaling.

  3. Type I interferons regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis1

    PubMed Central

    Kole, Abhisake; He, JianPing; Rivollier, Aymeric; Silveira, Danielle D.; Kitamura, Kazuya; Maloy, Kevin J.; Kelsall, Brian L.

    2013-01-01

    We explored the function of endogenous type I interferons (IFN-1) in the colon using the T cell adoptive transfer model of colitis. Colon mononuclear phagocytes (MP) constitutively produced IFN-1 in a TRIF-dependent manner. Transfer of CD4+CD45RBhi T cells from wild type (WT) or interferon α/β receptor subunit 1 knockout (IFNAR1−/−) mice into RAG−/− hosts resulted in similar onset and severity of colitis. In contrast, RAG−/− x IFNAR1−/− double knockout (DKO) mice developed accelerated severe colitis compared to RAG−/− hosts when transferred WT CD4+CD45RBhi T cells. IFNAR signaling on host hematopoietic cells was required to delay colitis development. MPs isolated from the colon lamina propria of IFNAR1−/− mice produced less IL-10, IL-1 receptor antagonist (IL-1RA) and IL-27 compared to WT MPs. Accelerated colitis development in DKO mice was characterized by early T cell proliferation and accumulation of CD11b+CD103− dendritic cells in the mesenteric lymph nodes, both of which could be reversed by systemic administration of IL-1RA (anakinra). Co-transfer of CD4+CD25+ regulatory T cells (Tregs) from WT or IFNAR1−/− mice prevented disease caused by CD4+CD45RBhi T cells. However, WT CD4+CD25+Foxp3GFP+ Tregs co-transferred with CD4+CD45RBhi T cells into DKO hosts failed to expand or maintain Foxp3 expression and gained effector functions in the colon. These data are the first to demonstrate an essential role for IFN-1 in the production of anti-inflammatory cytokines by gut MPs and the indirect maintenance of intestinal T cell homeostasis by both limiting effector T cell expansion and promoting Treg stability. PMID:23913971

  4. A novel differentiation pathway from CD4+ T cells to CD4− T cells for maintaining immune system homeostasis

    PubMed Central

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  5. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    PubMed Central

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  6. Functional attributes of responding T cells in HCV infection: the recent advances in engineering functional antiviral T cells.

    PubMed

    Pasetto, Anna; Aleman, Soo; Chen, Margaret

    2014-02-01

    Hepatitis C virus (HCV) is one of the major causes of hepatocellular carcinoma (HCC) around the world. HCV promotes characteristics of cancer stem cells and the infected cells are insensitive to apoptotic signals, which lead to persistent antigen stimulation and T cell exhaustion in the host. In spite of new effective antiviral drugs, new challenges are around the corner as drug-resistant viral strains and drug-drug interactions have already been reported. Considering that there are few effective treatments available for HCC, novel immunotherapies to prevent HCC and late stage HCV-related liver diseases should be considered. Given that adoptive immunotherapy with antigen-specific T lymphocytes has emerged as an effective therapeutic strategy for combating cancer, there is, therefore, reason to examine the possibility of using highly functional HCV-reactive T cells in immunotherapy. This review aims to provide the current understanding of natural HCV responding T cells in HCV infection and to give an update on the novel approaches that have the capacity to ex vivo generate functional T cells for potential adoptive cell therapy. Approaches based on the pMHC tetramer-associated magnetic enrichment, exogenous HCV T cell receptor transfer, and induced pluripotent stem cell technologies are described herein. Their potentials as immunotherapeutic against HCV-related diseases are discussed.

  7. NK Cells Help Induce Anti-Hepatitis B Virus CD8+ T Cell Immunity in Mice.

    PubMed

    Zheng, Meijuan; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2016-05-15

    Although recent clinical studies demonstrate that NK cell function is impaired in hepatitis B virus (HBV)-persistent patients, whether or how NK cells play a role in anti-HBV adaptive immunity remains to be explored. Using a mouse model mimicking acute HBV infection by hydrodynamic injection of an HBV plasmid, we observed that although serum hepatitis B surface Ag and hepatitis B envelope Ag were eliminated within 3 to 4 wk, HBV might persist for >8 wk in CD8(-/-) mice and that adoptive transfer of anti-HBV CD8(+) T cells restored the ability to clear HBV in HBV-carrier Rag1(-/-) mice. These results indicate that CD8(+) T cells are critical in HBV elimination. Furthermore, NK cells increased IFN-γ production after HBV plasmid injection, and NK cell depletion led to significantly increased HBV persistence along with reduced frequency of hepatitis B core Ag-specific CD8(+) T cells. Adoptive transfer of IFN-γ-sufficient NK cells restored donor CD8(+) T cell function, indicating that NK cells positively regulated CD8(+) T cells via secreting IFN-γ. We also observed that NK cell depletion correlated with decreased effector memory CD8(+) T cell frequencies. Importantly, adoptive transfer experiments showed that NK cells were involved in anti-HBV CD8(+) T cell recall responses. Moreover, DX5(+)CD49a(-) conventional, but not DX5(-)CD49a(+) liver-resident, NK cells were involved in improving CD8(+) T cell responses against HBV. Overall, the current study reveals that NK cells, especially DX5(+)CD49a(-) conventional NK cells, promote the antiviral activity of CD8(+) T cell responses via secreting IFN-γ in a mouse model mimicking acute HBV infection.

  8. Adoptive transfer of experimental autoimmune hepatitis in mice: cellular interaction between donor and recipient mice

    PubMed Central

    Ogawa, M.; Mori, Y.; Mori, T.; Ueda, S.; Yoshida, H.; Kato, I.; Iesato, K.; Wakashin, Y.; Azemoto, R.; Wakashin, M.; Okuda, K.; Ohto, M.

    1988-01-01

    This report extends our previous study on experimental autoimmune hepatitis in C57BL/6 (B6) mice. Cellular immunity involved in the induction of liver injury in this model was studied by transfer of primed spleen cells from hepatitis donor mice to syngeneic normal recipient mice. The most prominent liver damage in recipient B6 mice was induced by transfer of nylon wool adherent spleen cells from hepatitis donor mice, and T cells in this fraction were the essential requirement for the liver damage in the recipient mice. Nylon wool adherent spleen cells from hepatitis donor mice after depletion of the suppressor T-cell function by low-dose (300 rad) irradiation induced more severe liver injury compared to the same cells without irradiation. When the recipient mice were depleted of lymphocytes by low or high dose (700 rad) whole body irradiation, transfer of primed spleen cells from hepatitis donor mice did not induce liver lesion in the lymphocyte-depleted mice. This low susceptibility of lymphocyte-depleted recipient mice to primed spleen cells of hepatitis mice was no longer demonstrated after reconstitution with normal spleen cells. In a cell-migration study using 51Cr-labelled spleen cells, it was shown that a considerable number of infiltrating cells in the liver of recipient mice were derived from recipient mice themselves. These results seem to indicate that cell-to-cell interaction between radiosensitive precursor cells of recipient mice and liver-antigen-primed T cells from hepatitis donor mice play an essential role in the induction of liver injury in the recipient mice. ImagesFig. 1 PMID:3052945

  9. Passive adoptive transfer of antitumor immunity induced by laser-dye-immunoadjuvant treatment in a rat metastatic breast cancer model

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Liu, Hong; Singhal, Anil K.; Nordquist, Robert E.

    2000-06-01

    The ideal cancer treatment modalities should not only cause tumor regression and eradication but also induce a systemic anti-tumor immunity. This is essential for control of metastatic tumors and for long-term tumor resistance. Laser immunotherapy using a laser, a laser-absorbing dye and an immunoadjuvant has induced such a long-term immunity in treatment of a mammary metastatic tumor. The successfully treated rats established total resistance to multiple subsequent tumor challenges. For further mechanistic studies of the antitumor immunity induced by this novel treatment modality, passive adoptive transfer was performed using splenocytes as immune cells. The spleen cells harvested from successfully treated tumor-bearing rats provided 100% immunity in the naive recipients. The passively protected first cohort rats were immune to tumor challenge with an increased tumor dose; their splenocytes also prevented the establishment of tumor in the second cohort of naive recipient rats. This immunity transfer was accomplished without the usually required T-cell suppression in recipients.

  10. CARMA1 is necessary for optimal T cell responses in a murine model of allergic asthma.

    PubMed

    Ramadas, Ravisankar A; Roche, Marly I; Moon, James J; Ludwig, Thomas; Xavier, Ramnik J; Medoff, Benjamin D

    2011-12-15

    CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma.

  11. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus.

    PubMed

    Yun, Nadezhda E; Peng, Bi-Hung; Bertke, Andrea S; Borisevich, Viktoriya; Smith, Jennifer K; Smith, Jeanon N; Poussard, Allison L; Salazar, Milagros; Judy, Barbara M; Zacks, Michele A; Estes, D Mark; Paessler, Slobodan

    2009-06-19

    Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alphabeta T cells. Nevertheless, antibody treatment did not prevent the development of lethal encephalitis. On the contrary, the adoptive transfer of primed CD4(+) T cells was necessary to prevent lethal encephalitis in mice lacking alphabeta T cell receptor.

  12. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors

    PubMed Central

    Guerrero, Alan D; Moyes, Judy S; Cooper, Laurence JN

    2014-01-01

    The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma. PMID:25189715

  13. TLR2 engagement on CD4(+) T cells enhances effector functions and protective responses to Mycobacterium tuberculosis.

    PubMed

    Reba, Scott M; Li, Qing; Onwuzulike, Sophia; Ding, Xuedong; Karim, Ahmad F; Hernandez, Yeritza; Fulton, Scott A; Harding, Clifford V; Lancioni, Christina L; Nagy, Nancy; Rodriguez, Myriam E; Wearsch, Pamela A; Rojas, Roxana E

    2014-05-01

    We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.

  14. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome.

    PubMed

    Wang, Wen-Juan; Liu, Fu-Jun; Zhang, Xia; Liu, Xue-Mei; Qu, Qing-Lan; Li, Feng-Hua; Zhuang, Li-Li; Li, Xiao-Xiao; Hao, Cui-Fang

    2017-02-01

    Treg cells have been shown to be important in maintaining maternofetal tolerance, but the expression of Tregs in assisted reproductive technology (ART) in women on the day of embryo transfer (D0), 5days (D5) and 14days after ET (D14); the related factors influencing the expression levels of Tregs; the proliferation ability and the relevant cytokine epression by Tregs on D14 have not been investigated. In this study, 124 women undergoing in vitro fertilization-intracytoplasmic sperm injection (IVF/ICSI) were enrolled. Early morning fasting blood samples were obtained for the measurement of Tregs and other relevant indicators on the D0, D5and D14days after ET. we showed that the Tregs were increased on D0 and D14 in pregnant women, while there was no obvious fluctuation in non-pregnant women. IL-10 and TGF-β levels and the expansion of Tregs were significantly higher in successfully pregnant women than in non-pregnant women on D14. The levels of E2, P did not significantly differ between the groups. We suggest that periodic elevation of Tregs on the day of ET was associated with higher embryo implantation rate after ART.

  15. Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms.

    PubMed

    Yu, Yu; Cho, Hyun-Ii; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-02-15

    Adoptive cell transfer (ACT) of ex vivo-activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that IL-17-producing CD8(+) (Tc17) cells may exhibit potent antitumor activity, but the specific mechanisms have not been completely defined. In this study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized type I CD8(+) cytotoxic T (Tc1) or Tc17 cells combined with autologous bone marrow transplantation after total body irradiation. Bone marrow transplantation combined with ACT of antitumor (gp100-specific) Tc17 cells significantly suppressed the growth of established melanoma, whereas Tc1 cells induced long-term tumor regression. After ACT, Tc1 cells maintained their phenotype to produce IFN-γ, but not IL-17. However, although Tc17 cells largely preserved their ability to produce IL-17, a subset secreted IFN-γ or both IFN-γ and IL-17, indicating the plasticity of Tc17 cells in vivo. Furthermore, after ACT, the Tc17 cells had a long-lived effector T cell phenotype (CD127(hi)/KLRG-1(low)) as compared with Tc1 cells. Mechanistically, Tc1 cells mediated antitumor immunity primarily through the direct effect of IFN-γ on tumor cells. In contrast, despite the fact that some Tc17 cells also secreted IFN-γ, Tc17-mediated antitumor immunity was independent of the direct effects of IFN-γ on the tumor. Nevertheless, IFN-γ played a critical role by creating a microenvironment that promoted Tc17-mediated antitumor activity. Taken together, these studies demonstrate that both Tc1 and Tc17 cells can mediate effective antitumor immunity through distinct effector mechanisms, but Tc1 cells are superior to Tc17 cells in mediating tumor regression.

  16. Adoptive transfer of DNT cells induces long-term cardiac allograft survival and augments recipient CD4(+)Foxp3(+) Treg cell accumulation.

    PubMed

    Zhang, Zhu-Xu; Lian, Dameng; Huang, Xuyan; Wang, Shuang; Sun, Hongtao; Liu, Weihua; Garcia, Bertha; Min, Wei-Ping; Jevnikar, Anthony M

    2011-01-15

    Regulatory T (Treg) cells play an important role in the regulation of immune responses but whether Treg will induce tolerance in transplant recipients in the clinic remains unknown. Our previous studies have shown that TCRαβ(+)CD3(+)CD4⁻CD8⁻NK1.1⁻ (double negative, DN) T cells suppress T cell responses and prolong allograft survival in a single locus MHC-mismatched mouse model. In this study, we investigated the role of DNT cells in a more robust, fully MHC-mismatched BALB/c to C57BL/6 transplantation model, which may be more clinically relevant. Adoptive transfer of DNT cells in combination with short-term rapamycin treatment (days 1-9) induced long-term heart allograft survival (101±31 vs. 39±13 days rapamycin alone, p<0.01). Furthermore adoptive transfer DNT cells augmented CD4+Foxp3+ Treg cells accumulation in transplant recipients while depletion of CD4(+) Treg cells by anti-CD25 inhibited the effect of DNT cells on long-term graft survival (48±12 days vs. 101±31 days, p<0.001). In conclusion, DNT cells combined with short-term immunosuppression can prolong allograft survival, which may be through the accumulation of CD4(+)Foxp3(+) Treg cells in the recipient. Our result suggests that allograft tolerance may require the co-existence of different type Treg cell phenotypes which are affected by current immunosuppression.

  17. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  18. Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street.

    PubMed

    Barrett, David M; Grupp, Stephan A; June, Carl H

    2015-08-01

    The field of adoptive cell transfer (ACT) is currently comprised of chimeric Ag receptor (CAR)- and TCR-engineered T cells and has emerged from principles of basic immunology to paradigm-shifting clinical immunotherapy. ACT of T cells engineered to express artificial receptors that target cells of choice is an exciting new approach for cancer, and it holds equal promise for chronic infection and autoimmunity. Using principles of synthetic biology, advances in immunology, and genetic engineering have made it possible to generate human T cells that display desired specificities and enhanced functionalities. Clinical trials in patients with advanced B cell leukemias and lymphomas treated with CD19-specific CAR T cells have induced durable remissions in adults and children. The prospects for the widespread availability of engineered T cells have changed dramatically given the recent entry of the pharmaceutical industry to this arena. In this overview, we discuss some of the challenges and opportunities that face the field of ACT.

  19. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  20. Arthritis protective regulatory potential of self–heat shock protein cross-reactive T cells

    PubMed Central

    van Eden, Willem; Wendling, Uwe; Paul, Liesbeth; Prakken, Berent; van Kooten, Peter; van der Zee, Ruurd

    2000-01-01

    Immunization with heat shock proteins has protective effects in models of induced arthritis. Analysis has shown a reduced synovial inflammation in such protected animals. Adoptive transfer and immunization with selected T cell epitopes (synthetic peptides) have indicated the protection to be mediated by T cells directed to conserved hsp epitopes. This was shown first for mycobacterial hsp60 and later for mycobacterial hsp70. Fine specificity analysis showed that such T cells were cross-reactive with the homologous self hsp. Therefore protection by microbial hsp reactive T cells can be by cross-recognition of self hsp overexpressed in the inflamed tissue. Preimmunization with hsp leads to a relative expansion of such self hsp cross-responsive T cells. The regulatory nature of such T cells may originate from mucosal tolerance maintained by commensal flora derived hsp or from partial activation through recognition of self hsp as a partial agonist (Altered Peptide Ligand) or in the absence of proper costimulation. Recently, we reported the selective upregulation of B7.2 on microbial hsp60 specific T cells in response to self hsp60. Through a preferred interaction with CTLA-4 on proinflammatory T cells this may constitute an effector mechanism of regulation. Also, regulatory T cells produced IL10. PMID:11189451

  1. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  2. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

    PubMed Central

    Jacobsen, Elizabeth A.; Ochkur, Sergei I.; Pero, Ralph S.; Taranova, Anna G.; Protheroe, Cheryl A.; Colbert, Dana C.; Lee, Nancy A.; Lee, James J.

    2008-01-01

    The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells. PMID:18316417

  3. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  4. Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδ T-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor

    PubMed Central

    Deniger, Drew C; Switzer, Kirsten; Mi, Tiejuan; Maiti, Sourindra; Hurton, Lenka; Singh, Harjeet; Huls, Helen; Olivares, Simon; Lee, Dean A; Champlin, Richard E; Cooper, Laurence JN

    2013-01-01

    Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR+γδ T cells were expanded on CD19+ artificial antigen-presenting cells (aAPC), which resulted in >109 CAR+γδ T cells from <106 total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR+γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19+ tumor cell lines compared with CARnegγδ T cells. CD19+ leukemia xenografts in mice were reduced with CAR+γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells. PMID:23295945

  5. Innate Memory T cells

    PubMed Central

    Jameson, Stephen C.; Lee, You Jeong; Hogquist, Kristin A.

    2015-01-01

    Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation. PMID:25727290

  6. NKG2D+ IFN-γ+ CD8+ T Cells Are Responsible for Palladium Allergy

    PubMed Central

    Kawano, Mitsuko; Nakayama, Masafumi; Aoshima, Yusuke; Nakamura, Kyohei; Ono, Mizuho; Nishiya, Tadashi; Nakamura, Syou; Takeda, Yuri; Dobashi, Akira; Takahashi, Akiko; Endo, Misato; Ito, Akiyo; Ueda, Kyosuke; Sato, Naoki; Higuchi, Shigehito; Kondo, Takeru; Hashimoto, Suguru; Watanabe, Masamichi; Watanabe, Makoto; Takahashi, Tetsu; Sasaki, Keiichi; Nakamura, Masanori; Sasazuki, Takehiko; Narushima, Takayuki; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-01-01

    Nickel, cobalt, and chromium are well known to be causal agents of allergic contact dermatitis. Palladium (Pd) can also cause allergic disease and exposure results from wide use of this metal in dental restorations and jewelry. Metal allergy is categorized as a delayed-type hypersensitivity, and metal-responsive T cell clones have been isolated from allergic patients. However, compared to nickel, little is known about the pathology of allergic disease mediated by Pd, and pathogenic T cells are poorly understood. To identify the pathogenic T cells that are responsible for onset of Pd allergy, we enriched metal-responsive lymphocytes by sequential adoptive transfer of involved lymph node cells. Here we show that sequential adoptive transfer gradually increased the incidence and the intensity of Pd allergy, and CD8+ T cells are responsible for the disease as CD8+ T cell-depleted mice and β2-microglobulin-deficient mice did not develop Pd allergy. In addition, we found that draining lymph node cells skewed toward CD8+ T cells in response to Pd challenge in 8th adoptive transferred recipient mice. The CD8+ T cells expressed NKG2D, a costimulatory molecule involved in the production of IFN-γ. NKG2D ligand was also induced in Pd-injected tissues. Furthermore, both NKG2D ligand-transgenic mice, where NKG2D is downmodulated, and IFN-γ-deficient mice showed impaired Pd allergy. Taken together, these results indicate that IFN-γ-producing NKG2D+ CD8+ T cells are responsible for Pd allergy and suggest that NKG2D is a potential therapeutic target for treatment of metal allergy. PMID:24533050

  7. TCR Signaling in T Cell Memory.

    PubMed

    Daniels, Mark A; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR-peptide-MHC interactions impact the multiple fates a T cell can adopt in the memory pool.

  8. TCR Signaling in T Cell Memory

    PubMed Central

    Daniels, Mark A.; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool. PMID:26697013

  9. Adoptive transfer of T regulatory cells inhibits lipopolysaccharide-induced inflammation in fetal brain tissue in a late-pregnancy preterm birth mouse model.

    PubMed

    Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li

    2017-02-01

    To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation.

  10. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  11. Metabolic phenotyping of an adoptive transfer mouse model of experimental colitis and impact of dietary fish oil intake.

    PubMed

    Martin, Francois-Pierre J; Lichti, Pia; Bosco, Nabil; Brahmbhatt, Viral; Oliveira, Manuel; Haller, Dirk; Benyacoub, Jalil

    2015-04-03

    Inflammatory bowel diseases are acute and chronic disabling inflammatory disorders with multiple complex etiologies that are not well-defined. Chronic intestinal inflammation has been linked to an energy-deficient state of gut epithelium with alterations in oxidative metabolism. Plasma-, urine-, stool-, and liver-specific metabonomic analyses are reported in a naïve T cell adoptive transfer (AT) experimental model of colitis, which evaluated the impact of long-chain n-3 polyunsaturated fatty acid (PUFA)-enriched diet. Metabolic profiles of AT animals and their controls under chow diet or fish oil supplementation were compared to describe the (i) consequences of inflammatory processes and (ii) the differential impact of n-3 fatty acids. Inflammation was associated with higher glycoprotein levels (related to acute-phase response) and remodeling of PUFAs. Low triglyceride levels and enhanced PUFA levels in the liver suggest activation of lipolytic pathways that could lead to the observed increase of phospholipids in the liver (including plasmalogens and sphingomyelins). In parallel, the increase in stool excretion of most amino acids may indicate a protein-losing enteropathy. Fecal content of glutamine was lower in AT mice, a feature exacerbated under fish oil intervention that may reflect a functional relationship between intestinal inflammatory status and glutamine metabolism. The decrease in Krebs cycle intermediates in urine (succinate, α-ketoglutarate) also suggests a reduction in the glutaminolytic pathway at a systemic level. Our data indicate that inflammatory status is related to this overall loss of energy homeostasis.

  12. Considerations on clinical use of T cell immunotherapy for cancer.

    PubMed

    Plautz, Gregory E; Cohen, Peter A; Shu, Suyu

    2003-01-01

    The recognition by effector T lymphocytes of novel antigenic targets on tumor cells is the premise of specific, targeted immunotherapy of cancer. With the molecular characterization of peptide epitopes from melanoma antigens and, more recently, broadly expressed tumor antigens, there has been considerable enthusiasm for clinical evaluation of peptide tumor vaccines. Immunologic monitoring of vaccinated patients has demonstrated an expansion of CD8+ T cells that react with the relevant peptide and, more importantly, with native tumor. In most instances, however, vaccine-induced CD8+ T cell responses alone have not been sufficiently robust or sustained to translate into a high percentage of durable clinical responses. Vaccine strategies have also utilized dendritic cells (DCs) that have been modified to present tumor antigens. The superior antigen-processing capacity and co-stimulatory function of DCs convey a powerful stimulatory signal to both CD4+ and CD8+ T cells. Several strategies are attempting to broaden the immune response beyond single antigens by introducing the entire complement of tumor antigens into DCs. Adoptive immunotherapy is a promising strategy to recover tumor-reactive precursor T cells from patients, stimulate them to induce numerical expansion, and then re-infuse them. Ex vivo manipulation of the tumor-reactive T cells also permits cytotoxic therapy to be administered to the patient without damaging the effector cells. Recently, host lymphodepletion prior to adoptive transfer of effector T cells has resulted in an extremely high and sustained frequency of effectors that has achieved therapeutic efficacy against bulky metastatic disease in a substantial fraction of treated patients.

  13. Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells.

    PubMed Central

    Boitard, C; Bendelac, A; Richard, M F; Carnaud, C; Bach, J F

    1988-01-01

    The nonobese diabetic (NOD) mouse has been developed as a model for insulin-dependent diabetes. One gene required for the development of diabetes is associated with the major histocompatibility complex. This gene possibly could be linked to class II genes, which show a unique pattern in NOD mice. To evaluate the role of the I-A class II antigen expressed in NOD mice, we studied the effect of anti-I-A monoclonal antibodies on disease onset in vivo. Long-term treatment with anti-class II IgG2a antibodies specific for NOD I-A antigen prevented the spontaneous development of diabetes, as opposed to control antibodies shown not to react with NOD I-A antigen. Anti-class II antibodies apparently elicited active immune suppression, requiring a fully immunocompetent host, rather than passive blockade of class II antigen. Treatment with anti-class II antibody effectively prevented the adoptive transfer of diabetes produced by splenocytes from diabetic NOD mice into newborn mice but failed to prevent adoptive transfer into irradiated adult NOD recipients. Direct evidence for the induction of suppressor cells was obtained from the passive transfer of spleen cells from anti-class II antibody-treated NOD donors. The injection of anti-class II antibody-treated spleen cells collected from NOD donors prevented the development of diabetes, which normally follows transfer of diabetogenic spleen cells into irradiated 8-week-old male NOD recipients. Depletion experiments indicate that CD4+ cells are responsible for anti-class II-induced protection transferred by spleen cells. PMID:3264405

  14. CD8 T Cells Enter the Splenic T Cell Zones Independently of CCR7, but the Subsequent Expansion and Trafficking Patterns of Effector T Cells after Infection Are Dysregulated in the Absence of CCR7 Migratory Cues.

    PubMed

    Sharma, Naveen; Benechet, Alexandre P; Lefrançois, Leo; Khanna, Kamal M

    2015-12-01

    CCR7 is an important chemokine receptor that regulates T cell trafficking and compartmentalization within secondary lymphoid organs. However, the T cell-intrinsic role of CCR7 during infection in the spleen is not well understood. This study was designed to understand how CCR7-dependent localization and migration of CD8(+) T cells in different compartments of the spleen affected the primary and recall responses after infection. To this end, we used adoptive transfer of naive Ag-specific CD8 T cells (OT-I) that either lacked CCR7 or constitutively expressed CCR7 (CD2-CCR7) in mice that were subsequently infected i.v. with Listeria monocytogenes. We show that naive CCR7(-/-)CD8(+) T cells failed to enter the T cell zone, whereas CD2-CCR7 OT-I cells were exclusively confined to the T cell zones of the spleen. Surprisingly, however, CCR7(-/-) OT-I cells entered the T cell zones after infection, but the entry and egress migratory pattern of these cells was dysregulated and very distinct compared with wild-type OT-I cells. Moreover, CCR7-deficient OT-I cells failed to expand robustly when compared with wild-type OT-I cells and were preferentially skewed toward a short-lived effector cell differentiation pattern. Interestingly, CCR7(-/-), CD2-CCR7, and wild-type OT-I memory cells responded equally well to rechallenge infection. These results highlight a novel role of CCR7 in regulating effector CD8 T cell migration in the spleen and demonstrate differential requirement of CCR7 for primary and secondary CD8 T cell responses to infection.

  15. Genetically Modified T Cells to Target Glioblastoma

    PubMed Central

    Krebs, Simone; Rodríguez-Cruz, Tania G.; DeRenzo, Christopher; Gottschalk, Stephen

    2013-01-01

    Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future. PMID:24427741

  16. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  17. Effector CD8+ T cell engraftment and anti-tumor immunity in lymphodepleted hosts is IL-7Rα dependent

    PubMed Central

    Johnson, C. Bryce; Riesenberg, Brian P.; May, Bennett R.; Gilreath, Stuart C.; Li, Guangfu; Staveley-O’Carroll, Kevin F.; Garrett-Mayer, Elizabeth; Mehrotra, Shikhar; Cole, David J.; Rubinstein, Mark P.

    2016-01-01

    Adoptive cellular therapy, in which activated tumor-reactive T cells are transferred into murine lymphodepleted hosts, is a promising cancer treatment option. Activation of T cells decreases IL-7 responsiveness; therefore, IL-15 is generally considered the main driver of effector T cell responses in this setting. However, we found in lymphodepleted hosts that CD8+ T cells activated with IL-12 showed enhanced engraftment that was initially dependent on host IL-7, but not IL-15. Mechanistically, enhanced IL-7 responsiveness was conferred by elevated IL-7Rα expression, which was critical for anti-tumor immunity. Elevated IL-7Rα expression was achievable without IL-12, as polyclonal CD8+ T cells activated with high TCR stimulation depended on T cell IL-7Rα expression and host IL-7 for maximal engraftment. Finally, IL-12 conditioning during the activation of human CD8+ T cells, including TCR-modified T cells generated using a clinically relevant protocol, led to enhanced IL-7Rα expression. Our results demonstrate the importance of the donor IL-7Rα/host IL-7 axis for effector CD8+ T cell engraftment and suggest novel strategies to improve adoptive cellular therapy as a cancer treatment. PMID:26297711

  18. Adoptive immunotherapy for cancer.

    PubMed

    Ruella, Marco; Kalos, Michael

    2014-01-01

    Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.

  19. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    PubMed

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  20. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    PubMed Central

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  1. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy.

    PubMed

    Soto-Pantoja, David R; Terabe, Masaki; Ghosh, Arunima; Ridnour, Lisa A; DeGraff, William G; Wink, David A; Berzofsky, Jay A; Roberts, David D

    2014-12-01

    Although significant advances in radiotherapy have increased its effectiveness in many cancer settings, general strategies to widen the therapeutic window between normal tissue toxicity and malignant tumor destruction would still offer great value. CD47 blockade has been found to confer radioprotection to normal tissues while enhancing tumor radiosensitivity. Here, we report that CD47 blockade directly enhances tumor immunosurveillance by CD8(+) T cells. Combining CD47 blockade with irradiation did not affect fibrosarcoma growth in T cell-deficient mice, whereas adoptive transfer of tumor-specific CD8(+) T cells restored combinatorial efficacy. Furthermore, ablation of CD8(+) T cells abolished radiotherapeutic response in immunocompetent syngeneic hosts. CD47 blockade in either target cells or effector cells was sufficient to enhance antigen-dependent CD8(+) CTL-mediated tumor cell killing in vitro. In CD47-deficient syngeneic hosts, engrafted B16 melanomas were 50% more sensitive to irradiation, establishing that CD47 expression in the microenvironment was sufficient to limit tumor radiosensitivity. Mechanistic investigations revealed increased tumor infiltration by cytotoxic CD8(+) T cells in a CD47-deficient microenvironment, with an associated increase in T cell-dependent intratumoral expression of granzyme B. Correspondingly, an inverse correlation between CD8(+) T-cell infiltration and CD47 expression was observed in human melanomas. Our findings establish that blocking CD47 in the context of radiotherapy enhances antitumor immunity by directly stimulating CD8(+) cytotoxic T cells, with the potential to increase curative responses.

  2. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    NASA Astrophysics Data System (ADS)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  3. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity.

    PubMed

    Komatsu, Noriko; Mariotti-Ferrandiz, Maria Encarnita; Wang, Ying; Malissen, Bernard; Waldmann, Herman; Hori, Shohei

    2009-02-10

    Natural regulatory T cells (T(reg)) represent a distinct lineage of T lymphocytes committed to suppressive functions, and expression of the transcription factor Foxp3 is thought to identify this lineage specifically. Here we report that, whereas the majority of natural CD4(+)Foxp3(+) T cells maintain stable Foxp3 expression after adoptive transfer to lymphopenic or lymphoreplete recipients, a minor fraction enriched within the CD25(-) subset actually lose it. Some of those Foxp3(-) T cells adopt effector helper T cell (T(h)) functions, whereas some retain "memory" of previous Foxp3 expression, reacquiring Foxp3 upon activation. This minority "unstable" population exhibits flexible responses to cytokine signals, relying on transforming growth factor-beta to maintain Foxp3 expression and responding to other cytokines by differentiating into effector T(h) in vitro. In contrast, CD4(+)Foxp3(+)CD25(high) T cells are resistant to such conversion to effector T(h) even after many rounds of cell division. These results demonstrate that natural Foxp3(+) T cells are a heterogeneous population consisting of a committed T(reg) lineage and an uncommitted subpopulation with developmental plasticity.

  4. Development of an Autologous Macrophage-based Adoptive Gene Transfer Strategy to Treat Posttraumatic Osteoarthritis (PTOA) and Osteoarithritis (OA)

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-13-1-0228 TITLE: Development of an Autologous Macrophage-based Adoptive Gene Transfer Strategy to Treat Posttraumatic...Final 3. DATES COVERED 1 Sep 2013 - 28 Feb 2016 4. TITLE AND SUBTITLE Development of an Autologous Macrophage-based Adoptive Gene Transfer Strategy to...autologous macrophage-based adoptive gene transfer strategy can effectively deliver and confine expression of an anti-catabolic gene (IL-1ra or IL-1β

  5. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection.

    PubMed

    Torti, Nicole; Walton, Senta M; Brocker, Thomas; Rülicke, Thomas; Oxenius, Annette

    2011-10-01

    During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events.

  6. CD19-Targeted CAR T Cells: A New Tool in the Fight against B Cell Malignancies.

    PubMed

    Miller, Brian C; Maus, Marcela V

    2015-01-01

    Adoptive cell immunotherapy is a novel tool in the fight against cancer. Serving both effector and memory functions for the immune system, T cells make an obvious candidate for adoptive cell immunotherapy. By modifying native T cells with a chimeric antigen receptor (CAR), these cells can theoretically be targeted against any extracellular antigen. To date, the best-studied and clinically validated CAR T cells recognize CD19, a cell surface molecule on B cells and B cell malignancies. These CD19-directed T cells have shown clinical utility in chronic lymphocytic leukemia, acute lymphoblastic leukemia (ALL), and non-Hodgkin's lymphomas, with some patients achieving long-term disease remissions after treatment. This review will briefly summarize the current data supporting the use of adoptively transferred CAR T cells for the treatment of CD19-positive malignancies. Given these exciting results, the Food and Drug Administration has granted a 'breakthrough' designation for several variations of CD19-directed CAR T cells for treatment of adult and pediatric relapsed/refractory ALL.

  7. Genetically engineered donor T cells to optimize graft-versus-tumor effects across MHC barriers

    PubMed Central

    Ghosh, Arnab; Holland, Amanda M.; van den Brink, Marcel R.M.

    2013-01-01

    Summary Hematopoietic stem cell transplantation has been used for more than 50 years to combat hematologic malignancies. In addition to being the first stem cell therapy, transplantation has provided evidence for the potent anti-tumor effects of T cells. Facilitating T-cell-based immunity against malignancies requires a careful balancing act between generating a robust response and avoiding off-target killing of healthy tissues, which is difficult to accomplish using bulk donor T cells. To address these issues, several approaches have been developed, drawing on basic T-cell biology, to potentiate graft-versus-tumor activity while avoiding graft-versus-host disease. Current strategies for anti-tumor cell therapies include (i) selecting optimal T cells for transfer, (ii) engineering T cells to possess enhanced effector functions, and (iii) generating T-cell precursors that complete development after adoptive transfer. In this review, we assess the current state of the art in T-lineage cell therapy to treat malignancies in the context of allogeneic hematopoietic stem cell transplantation. PMID:24329800

  8. T Cells in Fish

    PubMed Central

    Nakanishi, Teruyuki; Shibasaki, Yasuhiro; Matsuura, Yuta

    2015-01-01

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells. PMID:26426066

  9. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization.

    PubMed

    Newick, Kheng; O'Brien, Shaun; Sun, Jing; Kapoor, Veena; Maceyko, Steven; Lo, Albert; Puré, Ellen; Moon, Edmund; Albelda, Steven M

    2016-06-01

    Antitumor treatments based on the infusion of T cells expressing chimeric antigen receptors (CAR T cells) are still relatively ineffective for solid tumors, due to the presence of immunosuppressive mediators [such as prostaglandin E2 (PGE2) and adenosine] and poor T-cell trafficking. PGE2 and adenosine activate protein kinase A (PKA), which then inhibits T-cell receptor (TCR) activation. This inhibition process requires PKA to localize to the immune synapse via binding to the membrane protein ezrin. We generated CAR T cells that expressed a small peptide called the "regulatory subunit I anchoring disruptor" (RIAD) that inhibits the association of PKA with ezrin, thus blunting the negative effects of PKA on TCR activation. After exposure to PGE2 or adenosine in vitro, CAR-RIAD T cells showed increased TCR signaling, released more cytokines, and showed enhanced killing of tumor cells compared with CAR T cells. When injected into tumor-bearing mice, the antitumor efficacy of murine and human CAR-RIAD T cells was enhanced compared with that of CAR T cells, due to resistance to tumor-induced hypofunction and increased T-cell infiltration of established tumors. Subsequent in vitro assays showed that both mouse and human CAR-RIAD cells migrated more efficiently than CAR cells did in response to the chemokine CXCL10 and also had better adhesion to various matrices. Thus, the intracellular addition of the RIAD peptide to adoptively transferred CAR T cells augments their efficacy by increasing their effector function and by improving trafficking into tumor sites. This treatment strategy, therefore, shows potential clinical application for treating solid tumors. Cancer Immunol Res; 4(6); 541-51. ©2016 AACR.

  10. Regulatory T cell memory

    PubMed Central

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  11. West Nile virus-specific CD4 T cells exhibit direct anti-viral cytokine secretion and cytotoxicity and are sufficient for antiviral protection

    PubMed Central

    Brien, James D.; Uhrlaub, Jennifer L.; Nikolich-Zugich, Janko

    2012-01-01

    CD4 T cells have been shown to be necessary for the prevention of encephalitis during West Nile virus infection. However, the mechanisms used by antigen-specific CD4 T cells to protect mice from West Nile virus encephalitis remain incompletely understood. Contrary to the belief that CD4 T cells are protective because they merely maintain the CD8 T cell response and improve antibody production, we here provide evidence for the direct anti-viral activity of CD4 T cells which functions to protect the host from WNV encephalitis. In adoptive transfers, naïve CD4 T cells protected a significant number of lethally infected RAG−/− mice, demonstrating the protective effect of CD4 T cells independent of B cells and CD8 T cells. To shed light on the mechanism of this protection, we defined the peptide specificities of the CD4 T cells responding to West Nile virus infection in C57BL/6 (H-2b) mice, and used these peptides to characterize the in vivo function of antiviral CD4 T cells. WNV-specific CD4 T cells produced IFN-γ and IL-2, but also showed potential for in vivo and ex vivo cytotoxicity. Furthermore, peptide vaccination using CD4 epitopes conferred protection against lethal West Nile virus infection in immunocompetent mice. These results demonstrate the role of direct effector function of antigen-specific CD4 T cell in preventing severe West Nile virus disease. PMID:19050276

  12. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    PubMed Central

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  13. Alloreactive T cell clones.

    PubMed

    Fitch, F W

    1984-01-01

    T cell clones are useful models for studying lymphocyte function both at the level of the individual cell and in interacting systems. Murine cytolytic and non- cytolyic T cell clones have been obtained with relative ease, and the particular procedure used to derive and maintain T cell clones may influence profoundly the characteristics of the resulting cells. The method of choice depends on the specific question to be asked. Although some clones have characteristics that would have been expected on the basis of results observed with bulk cell populations, other clones have rather unexpected properties. Although most T cell clones appear to be either cytolytic or non-cytolytic, this distinction is not always absolute. A high proportion of both cytolytic and non-cytolytic T cell clones have dual reactivity. This is true for cells which by other criteria appear to be true clones. The frequency of such cells is high enough to suggest that most if not all T cells may have reactivity for more than one antigenic determinant or that antigenic determinants recognized by T cells are shared widely and unexpectedly. It is not clear whether one or two different antigen receptors account for such dual reactivity. The nature of the T cell receptor for antigen remains obscure. T cell clones, because of their homogeneous nature, should make it easier to answer these important immunological questions. Although it remains to be determined how many distinct molecules account for the numerous biological activities found in the culture supernatants from antigen-stimulated T cell clones, it is clear that these factors influence several different types of cells that are involved directly and indirectly in immune responses. IL-2 stimulates both cytolytic and non-cytolytic T cells to proliferate. BCSF causes polyclonal activation of B cells, and there may be other factors which influence B cell responses to antigenic stimulation. IL-3 apparently stimulates maturation of immature T cells

  14. Lysosome-associated membrane glycoprotein 1 predicts fratricide amongst T cell receptor transgenic CD8+ T cells directed against tumor-associated antigens

    PubMed Central

    Kirschner, Andreas; Thiede, Melanie; Blaeschke, Franziska; Richter, Günther H.S.; Gerke, Julia S.; Baldauf, Michaela C.; Grünewald, Thomas G.P.; Busch, Dirk H.; Burdach, Stefan; Thiel, Uwe

    2016-01-01

    Aim Autologous as well as allogeneic CD8+ T cells transduced with tumor antigen specific T cell receptors (TCR) may cause significant tumor lysis upon adoptive transfer. Besides unpredictable life-threatening off-target effects, these TCRs may unexpectedly commit fratricide. We hypothesized lysosome-associated membrane glycoprotein 1 (LAMP1, CD107a) to be a marker for fratricide in TCR transgenic CD8+ T cells. Methods We identified HLA-A*02:01/peptide-restricted T cells directed against ADRB3295. After TCR identification, we generated HLA-A*02:01/peptide restricted TCR transgenic T cells by retroviral transduction and tested T cell expansion rates as well as A*02:01/peptide recognition and ES killing in ELISpot and xCELLigence assays. Expansion arrest was analyzed via Annexin and CD107a staining. Results were compared to CHM1319-TCR transgenic T cells. Results Beta-3-adrenergic receptor (ADRB3) as well as chondromodulin-1 (CHM1) are over-expressed in Ewing Sarcoma (ES) but not on T cells. TCR transgenic T cells demonstrated HLA-A*02:01/ADRB3295 mediated ES recognition and killing in ELISpot and xCELLigence assays. 24h after TCR transduction, CD107a expression correlated with low expansion rates due to apoptosis of ADRB3 specific T cells in contrast to CHM1 specific transgenic T cells. Amino-acid exchange scans clearly indicated the cross-reactive potential of HLA-A*02:01/ADRB3295- and HLA-A*02:01/CHM1319-TCR transgenic T cells. Comparison of peptide motive binding affinities revealed extended fratricide among ADRB3295 specific TCR transgenic T cells in contrast to CHM1319. Conclusion Amino-acid exchange scans alone predict TCR cross-reactivity with little specificity and thus require additional assessment of potentially cross-reactive HLA-A*02:01 binding candidates. CD107a positivity is a marker for fratricide of CD8+ TCR transgenic T cells. PMID:27447745

  15. Mechanism of T-cell mediated protection in newborn mice against a Chlamydia infection.

    PubMed

    Pal, Sukumar; de la Maza, Luis M

    2013-01-01

    To determine the immune components needed for protection of newborn mice against Chlamydia muridarum, animals born to Chlamydia-immunized and to sham-immunized dams were infected intranasally with C. muridarum at 2 post-natal days. T-cells isolated from immunized or sham-immunized adult mice were adoptively transferred to newborn mice at the time of infection. Also, to establish what cytokines are involved in protection, IFN-γ, TNF-α, IL-10, and IL-12 were passively transferred to newborn mice. To assess the Chlamydia burden in the lungs mice were euthanized at 12 post-natal days. When T-cells from immunized adult mice were transferred, mice born to and fed by immunized dams were significantly protected as evidenced by the reduced number of Chlamydia isolated from the lungs compared to mice born to and fed by sham-immunized dams. Transfer of IFN-γ and TNF-α also significantly reduced the number of Chlamydia in the lungs of mice born to immunized dams. Transfer of IL-10 or IL-12 did not result in a significant reduction of Chlamydia. In vitro T-cell proliferation data suggest that neonatal antigen presenting cells can present Chlamydia antigens to adult T-cells. In conclusion, maternal antibodies and Chlamydia specific T-cells or Th1 cytokines are required for protection of neonates against this pathogen.

  16. T cells in pregnancy.

    PubMed

    Piccinni, Marie-Pierre

    2005-01-01

    Maternal tolerance of the fetal allograft could be the result of the integration of numerous mechanisms promoted by different cells present in the decidua. Decidual macrophages and dendritic cells, which are found in close association with T lymphocytes are the most potent activators of T lymphocyte responses and could play a sentinel function for the immune system, initiating antigen-specific T cell responses to fetal antigens. T cell cytokines produced in response to fetal molecules could have a role in the maintenance or in the failure of pregnancy. The levels of LIF, IL-4, IL-10 and M-CSF produced by decidual T cells of women suffering from unexplained spontaneous abortion are lower than those of normal pregnant women indicating that these cytokines may contribute to the maintenance of pregnancy. T cells from the cumulus oophorus surrounding the preimplantation embryo produce LIF and IL-4. These findings suggest that cytokines produced by maternal T cells create a suitable microenvironment for preimplantation embryo development and maintenance of pregnancy. T cell cytokine profile could be modulated by the hormones present in the microenvironment of T cells: high doses of progesterone present at fetomaternal interface and in the cumulus induce the production of IL-4 and LIF, whereas relaxin induces IFN-gamma production.

  17. Natural Killer Cell Adoptive Transfer Therapy: Exploiting the First Line of Defense Against Cancer.

    PubMed

    Davis, Zachary B; Felices, Martin; Verneris, Michael R; Miller, Jeffrey S

    2015-01-01

    Natural killer (NK) cells constitute an important component of the initial immunological response against transformed cells. However, chronic exposure to the tumor microenvironment can fundamentally alter the ability of NK cells to sufficiently control tumor progression. Thus, the adoptive transfer of healthy, functional NK cells as an interventional therapy has been an area of great interest for improving patient outcomes. Recent developments in the field have provided a better understanding of what makes the NK compartment effective against malignant cells. Moreover, there are now multiple potential sources of NK cell products for infusion as well as techniques to manipulate these cells to enhance their antitumor functions. This review explores the advantages and disadvantages of various sources of NK cells as well as prospective therapeutic enhancements to adoptively transferred NK cells.

  18. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  19. Unmasking targets of T cell-mediated antitumor immunity through high-throughput antigen profiling

    PubMed Central

    Battaglia, Sebastiano; Muhitch, Jason B

    2017-01-01

    More than three decades of evidence has established that antitumor immune responses, initially shown with IL-2 treatment, can result in complete, durable eradication of malignant disease in metastatic patients. Recent studies have demonstrated that immune checkpoint blockade as well as cellular therapies, including dendritic cell activation of T cells and adoptive T cell transfer, can induce long-lasting responses. To elicit cytolysis of tumor cells, effector T cells rely on tumor expression of target antigens. However, the antigens targeted during antitumor responses are largely unknown. Technological advancements and availability of sequencing data have paved the way for more efficient screening and validation of tumor-associated antigens and neoantigens derived from non-synonymous mutations targeted by T cells under baseline conditions and in the context of immunotherapy. PMID:27010105

  20. Reducing FLI1 Levels in the MRL/lpr Lupus Mouse Model Impacts T Cell Function by Modulating Glycosphingolipid Metabolism

    PubMed Central

    Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.

    2013-01-01

    Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1+/+ or Fli1+/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1+/- lupus T cells compared to animals receiving Fli1+/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1+/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1+/+ T cells. Moreover, the Fli1+/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1+/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398

  1. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy

    PubMed Central

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification. PMID:28386262

  2. Distinct CD4 T-cell effects on primary versus recall CD8 T-cell responses during viral encephalomyelitis

    PubMed Central

    Hwang, Mihyun; Phares, Timothy W; Hinton, David R; Stohlman, Stephen A; Bergmann, Cornelia C; Min, Booki

    2015-01-01

    CD4 T-cell help is not a universal requirement for effective primary CD8 T cells but is essential to generate memory CD8 T cells capable of recall responses. This study examined how CD4 T cells affect primary and secondary anti-viral CD8 T-cell responses within the central nervous system (CNS) during encephalomyelitis induced by sublethal gliatropic coronavirus. CD4 T-cell depletion before infection did not impair peripheral expansion, interferon-γ production, CNS recruitment or initial CNS effector capacity of virus-specific CD8 T cells ex vivo. Nevertheless, impaired virus control in the absence of CD4 T cells was associated with gradually diminished CNS CD8 T-cell interferon-γ production. Furthermore, within the CD8 T-cell population short-lived effector cells were increased and memory precursor effector cells were significantly decreased, consistent with higher T-cell turnover. Transfer of memory CD8 T cells to reduce viral load in CD4-depleted mice reverted the recipient CNS CD8 T-cell phenotype to that in wild-type control mice. However, memory CD8 T cells primed without CD4 T cells and transferred into infected CD4-sufficient recipients expanded less efficiently and were not sustained in the CNS, contrasting with their helped counterparts. These data suggest that CD4 T cells are dispensable for initial expansion, CNS recruitment and differentiation of primary resident memory CD8 T cells as long as the duration of antigen exposure is limited. By contrast, CD4 T cells are essential to prolong primary CD8 T-cell function in the CNS and imprint memory CD8 T cells for recall responses. PMID:25187405

  3. T-Cell Lymphoma

    MedlinePlus

    ... are extremely rare. T-cell lymphomas can be aggressive (fast-growing) or indolent (slow-growing). Lymphomas are ... also be involved. This group of PTCLs is aggressive and requires combination chemotherapy upon diagnosis. For more ...

  4. Oligoclonal CD8+ T cells play a critical role in the development of hypertension.

    PubMed

    Trott, Daniel W; Thabet, Salim R; Kirabo, Annet; Saleh, Mohamed A; Itani, Hana; Norlander, Allison E; Wu, Jing; Goldstein, Anna; Arendshorst, William J; Madhur, Meena S; Chen, Wei; Li, Chung-I; Shyr, Yu; Harrison, David G

    2014-11-01

    Recent studies have emphasized a role of adaptive immunity, and particularly T cells, in the genesis of hypertension. We sought to determine the T-cell subtypes that contribute to hypertension and renal inflammation in angiotensin II-induced hypertension. Using T-cell receptor spectratyping to examine T-cell receptor usage, we demonstrated that CD8(+) cells, but not CD4(+) cells, in the kidney exhibited altered T-cell receptor transcript lengths in Vβ3, 8.1, and 17 families in response to angiotensin II-induced hypertension. Clonality was not observed in other organs. The hypertension caused by angiotensin II in CD4(-/-) and MHCII(-/-) mice was similar to that observed in wild-type mice, whereas CD8(-/-) mice and OT1xRAG-1(-/-) mice, which have only 1 T-cell receptor, exhibited a blunted hypertensive response to angiotensin II. Adoptive transfer of pan T cells and CD8(+) T cells but not CD4(+)/CD25(-) cells conferred hypertension to RAG-1(-/-) mice. In contrast, transfer of CD4(+)/CD25(+) cells to wild-type mice receiving angiotensin II decreased blood pressure. Mice treated with angiotensin II exhibited increased numbers of kidney CD4(+) and CD8(+) T cells. In response to a sodium/volume challenge, wild-type and CD4(-/-) mice infused with angiotensin II retained water and sodium, whereas CD8(-/-) mice did not. CD8(-/-) mice were also protected against angiotensin-induced endothelial dysfunction and vascular remodeling in the kidney. These data suggest that in the development of hypertension, an oligoclonal population of CD8(+) cells accumulates in the kidney and likely contributes to hypertension by contributing to sodium and volume retention and vascular rarefaction.

  5. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  6. Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection

    PubMed Central

    Gorman, Jacob V.; Starbeck-Miller, Gabriel; Pham, Nhat-Long L.; Traver, Geri L.; Rothman, Paul B.; Harty, John T.; Colgan, John D.

    2014-01-01

    Tim-3 is a surface molecule expressed throughout the immune system that can mediate both stimulatory and inhibitory effects. Previous studies have provided evidence that Tim-3 functions to enforce CD8 T cell exhaustion, a dysfunctional state associated with chronic stimulation. In contrast, the role of Tim-3 in the regulation of CD8 T cell responses to acute and transient stimulation remains undefined. To address this knowledge gap, we examined how Tim-3 affects CD8 T cell responses to acute Listeria monocytogenes (LM) infection. Analysis of wild-type (WT) mice infected with LM revealed that Tim-3 was transiently expressed by activated CD8 T cells and was associated primarily with acquisition of an effector phenotype. Comparison of responses to LM by WT and Tim-3 KO mice showed that the absence of Tim-3 significantly reduced the magnitudes of both primary and secondary CD8 T cell responses, which correlated with decreased IFN-γ production and degranulation by Tim-3 KO cells stimulated with peptide antigen ex vivo. To address the T cell-intrinsic role of Tim-3, we analyzed responses to LM infection by WT and Tim-3 KO TCR-transgenic CD8 T cells following adoptive transfer into a shared WT host. In this setting, the accumulation of CD8 T cells and the generation of cytokine-producing cells were significantly reduced by the lack of Tim-3, demonstrating that this molecule has a direct effect on CD8 T cell function. Combined, our results suggest that Tim-3 can mediate a stimulatory effect on CD8 T cell responses to an acute infection. PMID:24567532

  7. Glyceryl Tribenzoate: A Flavoring Ingredient, Inhibits the Adoptive Transfer of Experimental Allergic Encephalomyelitis via TGF-β: Implications for Multiple Sclerosis Therapy

    PubMed Central

    Mondal, Susanta; Dasarathi, Sridevi; Pahan, Kalipada

    2017-01-01

    Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central nervous system (CNS). Here, we have explored a novel use of glyceryl tribenzoate (GTB), a flavoring ingredient, in ameliorating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS, via TGF-β. Oral feeding of GTB suppressed clinical symptoms of adoptively-transferred relapsing-remitting (RR) EAE in recipient mice and suppressed the generation of encephalitogenic T cells in donor mice. GTB also attenuated clinical symptoms of RR-EAE in PLP-TCR transgenic mice and chronic EAE in male C57/BL6 mice. Accordingly, GTB also suppressed perivascular cuffing, preserved the integrity of blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, and stopped demyelination in the CNS of EAE mice. Interestingly, GTB treatment upregulated TGF-β and enriched regulatory T cells (Tregs) in splenocytes as well as in vivo in EAE mice. Blocking TGF-β by neutralizing antibodies abrogated GTB-mediated enrichment of Tregs and protection of EAE. These results suggest that oral GTB may be considered as a possible therapy for MS patients. PMID:28367355

  8. CAR T cells: driving the road from the laboratory to the clinic.

    PubMed

    Cheadle, Eleanor J; Gornall, Hannah; Baldan, Vania; Hanson, Vivien; Hawkins, Robert E; Gilham, David E

    2014-01-01

    Blockbuster antibody therapies have catapulted immune-based approaches to treat cancer into the consciousness of mainstay clinical research. On the back of this, other emerging immune-based therapies are providing great promise. T-cell therapy is one such area where recent trials using T cells genetically modified to express an antibody-based chimeric antigen receptor (CAR) targeted against the CD19 antigen have demonstrated impressive responses when adoptively transferred to patients with advanced chronic lymphocytic leukemia. The general concept of the CAR T cell was devised some 20 years ago. In this relatively short period of time, the technology to redirect T-cell function has moved at pace facilitating clinical translation; however, many questions remain with respect to developing the approach to improve CAR T-cell therapeutic activity and also to broaden the range of tumors that can be effectively targeted by this approach. This review highlights some of the underlying principles and compromises of CAR T-cell technology using the CD19-targeted CAR as a paradigm and discusses some of the issues that relate to targeting solid tumors with CAR T cells.

  9. Lymphocyte imprinting with melanoma antigens acquired by trogocytosis facilitates identification of tumor-reactive T cells

    PubMed Central

    Eisenberg, Galit; Uzana, Ronny; Pato, Aviad; Frankenburg, Shoshana; Merims, Sharon; Yefenof, Eitan; Ferrone, Soldano; Peretz, Tamar; Machlenkin, Arthur; Lotem, Michal

    2013-01-01

    Trogocytosis is a contact-dependent inter-cellular transfer of membrane fragments and associated molecules from antigen presenting cells to effector lymphocytes. We previously demonstrated that trogocytosis also occurs between tumor target and cognate melanoma antigen-specific cytotoxic T cells (CTL). Here we show that, following trogocytosis, immune effector cells acquire molecular components of the tumor, including surface antigens, which are detectable by specific monoclonal antibodies. We demonstrate that CD8+ and CD4+ T cells from melanoma patients’ PBMC and tumor infiltrating lymphocytes (TIL) capture melanoma antigens, enabling identification of trogocytosing lymphocytes by staining with antigen-specific antibodies. This finding circumvents the necessity of tumor pre-labeling, which in the past was mandatory to detect membrane-capturing T cells. Through the detection of melanoma antigens on TIL, we sorted trogocytosing T cells and verified their preferential reactivity and cytotoxicity. Furthermore, tumor-antigen imprinted T cells were detected at low frequency in fresh TIL cultures shortly after extraction from the tumor. Thus, T cell imprinting by tumor antigens may allow the enrichment of melanoma antigen-specific T cells for research and potentially even for the adoptive immunotherapy of patients with cancer. PMID:23626012

  10. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    PubMed Central

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  11. Private specificities of CD8 T cell responses control patterns of heterologous immunity

    PubMed Central

    Kim, Sung-Kwon; Cornberg, Markus; Wang, Xiaoting Z.; Chen, Hong D.; Selin, Liisa K.; Welsh, Raymond M.

    2005-01-01

    CD8 T cell cross-reactivity between viruses can play roles in protective heterologous immunity and damaging immunopathology. This cross-reactivity is sometimes predictable, such as between lymphocytic choriomeningitis virus (LCMV) and Pichinde virus, where cross-reactive epitopes share six out of eight amino acids. Here, however, we demonstrate more subtle and less predictable cross-reactivity between LCMV and the unrelated vaccinia virus (VV). Epitope-specific T cell receptor usage differed between individual LCMV-infected C57BL/6 mice, even though the mice had similar epitope-specific T cell hierarchies. LCMV-immune mice challenged with VV showed variations, albeit in a distinct hierarchy, in proliferative expansions of and down-regulation of IL-7Rα by T cells specific to different LCMV epitopes. T cell responses to a VV-encoded epitope that is cross-reactive with LCMV fluctuated greatly in VV-infected LCMV-immune mice. Adoptive transfers of splenocytes from individual LCMV-immune donors resulted in nearly identical VV-induced responses in each of several recipients, but responses differed depending on the donor. This indicates that the specificities of T cell responses that are not shared between individuals may influence cross-reactivity with other antigens and play roles in heterologous immunity upon encounter with another pathogen. This variability in cross-reactive T cell expansion that is unique to the individual may underlie variation in the pathogenesis of infectious diseases. PMID:15710651

  12. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells

    PubMed Central

    Guyton, Mary K.; Das, Arabinda; Inoue, Jun; Azuma, Mitsuyoshi; Ray, Swapan K.; Brahmachari, Saurav; Banik, Naren L.

    2009-01-01

    Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain:calpastatin ratio, production of tBid, and Bax:Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS. PMID:19627443

  13. T cell activation.

    PubMed

    Smith-Garvin, Jennifer E; Koretzky, Gary A; Jordan, Martha S

    2009-01-01

    This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor

  14. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome.

    PubMed

    Wu, Te-Lang; Li, Hua; Faust, Susan M; Chi, Emily; Zhou, Shangzhen; Wright, Fraser; High, Katherine A; Ertl, Hildegund C J

    2014-01-01

    Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8+ T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8+ T cells. Our results clearly show that depending on the vectors' genome, CD8+ T cells can detect such epitopes on AAV8's capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.

  15. A minimum number of autoimmune T cells to induce autoimmunity?

    PubMed

    Bosch, Angela J T; Bolinger, Beatrice; Keck, Simone; Stepanek, Ondrej; Ozga, Aleksandra J; Galati-Fournier, Virginie; Stein, Jens V; Palmer, Ed

    2017-03-12

    While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity.

  16. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells.

    PubMed

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-11-13

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF-κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy.

  17. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  18. A novel differentiation pathway from CD4⁺ T cells to CD4⁻ T cells for maintaining immune system homeostasis.

    PubMed

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-04-14

    CD4(+) T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4(+) T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4(-)CD8(-)NK1.1(-) double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4(+) rather than CD8(+) T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4(+) T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases.

  19. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia

    PubMed Central

    Brea, David; Agulla, Jesús; Rodríguez-Yáñez, Manuel; Barral, David; Ramos-Cabrer, Pedro; Campos, Francisco; Almeida, Angeles; Dávalos, Antoni; Castillo, José

    2014-01-01

    Brain ischaemia (stroke) triggers an intense inflammatory response predominately mediated by the accumulation of inflammatory cells and mediators in the ischaemic brain. In this context, regulatory T (Treg) cells, a subpopulation of CD4+ T cells with immunosuppressive and anti-inflammatory properties, are activated in the late stages of the disease. To date, the potential therapeutic usefulness of Treg cells has not been tested. In this study, we aimed to investigate whether Treg cells exert protection/repair following stroke. Both the adoptive transfer of Treg cells into ischaemic rats and the stimulation of endogenous T-cell proliferation using a CD28 superagonist reduced the infarct size at 3–28 days following the ischaemic insult. Moreover, T cell-treated animals had higher levels of FoxP3 and lower levels of IL-1β, CD11b+ and CD68+ cells in the infarcted hemisphere when compared with control animals. However, T-cell treatment did not alter the rate of proliferation of NeuN-, NCAM- or CD31-positive cells, thereby ruling out neurogenesis and angiogenesis in protection. These results suggest that adoptive transfer of T cells is a promising therapeutic strategy against the neurological consequences of stroke. PMID:24889329

  20. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    PubMed Central

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  1. Role of B Cells in Mucosal Vaccine-Induced Protective CD8+ T Cell Immunity against Pulmonary Tuberculosis.

    PubMed

    Khera, Amandeep K; Afkhami, Sam; Lai, Rocky; Jeyanathan, Mangalakumari; Zganiacz, Anna; Mandur, Talveer; Hammill, Joni; Damjanovic, Daniela; Xing, Zhou

    2015-09-15

    Emerging evidence suggests a role of B cells in host defense against primary pulmonary tuberculosis (TB). However, the role of B cells in TB vaccine-induced protective T cell immunity still remains unknown. Using a viral-vectored model TB vaccine and a number of experimental approaches, we have investigated the role of B cells in respiratory mucosal vaccine-induced T cell responses and protection against pulmonary TB. We found that respiratory mucosal vaccination activated Ag-specific B cell responses. Whereas respiratory mucosal vaccination elicited Ag-specific T cell responses in the airway and lung interstitium of genetic B cell-deficient (Jh(-/-) knockout [KO]) mice, the levels of airway T cell responses were lower than in wild-type hosts, which were associated with suboptimal protection against pulmonary Mycobacterium tuberculosis challenge. However, mucosal vaccination induced T cell responses in the airway and lung interstitium and protection in B cell-depleted wild-type mice to a similar extent as in B cell-competent hosts. Furthermore, by using an adoptive cell transfer approach, reconstitution of B cells in vaccinated Jh(-/-) KO mice did not enhance anti-TB protection. Moreover, respiratory mucosal vaccine-activated T cells alone were able to enhance anti-TB protection in SCID mice, and the transfer of vaccine-primed B cells alongside T cells did not further enhance such protection. Alternatively, adoptively transferring vaccine-primed T cells from Jh(-/-) KO mice into SCID mice only provided suboptimal protection. These data together suggest that B cells play a minimal role, and highlight a central role by T cells, in respiratory mucosal vaccine-induced protective immunity against M. tuberculosis.

  2. Haematopoietic cell lines capable of colonizing the thymus following in vivo transfer expressed T-cell receptor gamma-gene immature mRNA.

    PubMed Central

    Shimamura, M; Oku, M; Ohta, S; Yamagata, T

    1992-01-01

    To clarify the mechanism by which progenitor T (pro-T) cells recognize and enter the thymus, an attempt was made to produce haematopoietic cell lines by the fusion of BALB/c nude mouse bone marrow or foetal liver cells (gestation 14 and 15 days) with AKR thymoma BW5147, thereby immortalizing cells with potency to colonize the thymus, a characteristic of pro-T cells rarely found in adult bone marrow or foetal liver. The hybridomas thus produced were classified according to the phenotype of surface markers, T-cell receptor (TcR) gene configuration and expression. All hybridomas were negative in the surface expression of T-cell markers such as TcR alpha beta, TcR gamma delta, CD3, CD4 and CD8. They had TcR beta-, gamma- and delta-genes, each with a different status with respect to configuration and transcription. Some possessed partially rearranged TcR genes and others expressed immature TcR mRNA. The cell lines were examined for their capacity to colonize the thymus following intravenous injection into recipient mice. It was found that the cells with capacity of colonizing the thymus expressed immature TcR delta mRNA, while the cell lines lacking TcR delta-genes did not home to the thymus. These findings imply that the potency for migrating to thymus is closely associated with the particular stage of prethymic cell differentiation which could be estimated by the analysis of TcR genes, and that some cell lines with the expression of TcR delta-gene mRNA and the ability to colonize the thymus are derived from pro-T cells. Images Figure 2 Figure 3 PMID:1478683

  3. Type 1 diabetes immunotherapy using polyclonal regulatory T cells

    PubMed Central

    Bluestone, Jeffrey A.; Buckner, Jane H.; Fitch, Mark; Gitelman, Stephen E.; Gupta, Shipra; Hellerstein, Marc K.; Herold, Kevan C.; Lares, Angela; Lee, Michael R.; Li, Kevin; Liu, Weihong; Long, S. Alice; Masiello, Lisa M.; Nguyen, Vinh; Putnam, Amy L.; Rieck, Mary; Sayre, Peter; Tang, Qizhi

    2016-01-01

    Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy. PMID:26606968

  4. Adoptive transfer of CD34(+) cells during murine sepsis rebalances macrophage lipopolysaccharide responses.

    PubMed

    Brudecki, Laura; Ferguson, Donald A; McCall, Charles E; El Gazzar, Mohamed

    2012-11-01

    Effective treatment of the acute systemic inflammatory response associated with sepsis is lacking, but likely will require new ways to rebalance dysregulated immune responses. One challenge is that human sepsis often is diagnosed too late to reduce the hyperinflammation of early sepsis. Another is that the sequential response to sepsis inflammation rapidly generates an adaptive and immunosuppressive state, which by epigenetic imprint may last for months or years. Emerging data support that the immunosuppressive phase of sepsis can both directly reprogram gene expression of circulating and tissue cells, and disrupt development and differentiation of myeloid precursor cells into competent immunocytes. We recently reported that adoptive transfer of bone marrow CD34(+) cells into mice after sepsis induction by cecal ligation and puncture significantly improves late-sepsis survival by enhancing bacterial clearance through improved neutrophil and macrophage phagocytosis. That study, however, did not examine whether CD34(+) transfer can modify noninfectious acute systemic inflammatory responses. Here, we report that CD34(+) cell transfer mice that have survived late sepsis also resist lethal lipopolysaccharide (LPS)-induced inflammatory shock (88% lived vs 0% of naive mice). The CD34(+) cell-recipient survivor mice administered LPS had globally reduced levels of circulating inflammatory mediators compared with naive mice, but their peritoneal and bone marrow-derived macrophages (BMDMs), unlike those from naïve mice, remained LPS responsive ex vivo. We further found that CD34(+) cell transfer into LPS-challenged naïve mice had diminished immunosuppression, as assessed by ex vivo responses of peritoneal and BMDMs to LPS challenge. We conclude that CD34(+) cell adoptive transfer rebalances dysregulated immune responses associated with sepsis and endotoxin shock.

  5. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms.

    PubMed

    Ise, Wataru; Kohyama, Masako; Nutsch, Katherine M; Lee, Hyang Mi; Suri, Anish; Unanue, Emil R; Murphy, Theresa L; Murphy, Kenneth M

    2010-02-01

    The inhibitory immunoregulatory receptor CTLA-4 is critical in maintaining self-tolerance, but the mechanisms of its actions have remained controversial. Here we examined the antigen specificity of tissue-infiltrating CD4(+) T cells in Ctla4(-/-) mice. After adoptive transfer, T cells isolated from tissues of Ctla4(-/-) mice showed T cell antigen receptor (TCR)-dependent accumulation in the tissues from which they were derived, which suggested reactivity to tissue-specific antigens. We identified the pancreas-specific enzyme PDIA2 as an autoantigen in Ctla4(-/-) mice. CTLA-4 expressed either on PDIA2-specific effector cells or on regulatory T cells was sufficient to control tissue destruction mediated by PDIA2-specific T cells. Our results demonstrate that both cell-intrinsic and non-cell-autonomous actions of CTLA-4 operate to maintain T cell tolerance to a self antigen.

  6. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells.

    PubMed

    Hall, Bruce M

    2015-11-06

    Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be

  7. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity.

    PubMed

    Ghosh, Arnab; Smith, Melody; James, Scott E; Davila, Marco L; Velardi, Enrico; Argyropoulos, Kimon V; Gunset, Gertrude; Perna, Fabiana; Kreines, Fabiana M; Levy, Emily R; Lieberman, Sophie; Jay, Hillary V; Tuckett, Andrea Z; Zakrzewski, Johannes L; Tan, Lisa; Young, Lauren F; Takvorian, Kate; Dudakov, Jarrod A; Jenq, Robert R; Hanash, Alan M; Motta, Ana Carolina F; Murphy, George F; Liu, Chen; Schietinger, Andrea; Sadelain, Michel; van den Brink, Marcel R M

    2017-02-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.

  8. Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication

    PubMed Central

    Barsov, Eugene V.; Trivett, Matthew T.; Minang, Jacob T.; Sun, Haosi; Ohlen, Claes; Ott, David E.

    2011-01-01

    Background The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8+ T-cell control of SIV replication in CD4+ T cells, we asked whether TCRs isolated from rhesus macaque CD8+ T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8+ T cells obtained from an uninfected/unvaccinated animal. Principal Findings We transferred SIV-specific TCR genes isolated from rhesus macaque CD8+ T-cell clones with varying abilities to suppress SIV replication in vitro into CD8+ T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8+ T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones. Conclusions Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases. PMID:21886812

  9. Nonatopic asthma: in vivo airway hyperreactivity adoptively transferred to naive mice by THY-1(+) and B220(+) antigen-specific cells that lack surface expression of CD3.

    PubMed Central

    Geba, G P; Wegner, C D; Wolyniec, W W; Li, Y; Askenase, P W

    1997-01-01

    To investigate the cellular immune events contributing to airway hyperreactivity (AHR), we studied an in vivo mouse model induced by the hapten picryl (trinitrophenyl) chloride (PCl). Mice were immunized by cutaneous contact sensitization with PCl and airway challenged subsequently with picryl sulfonic acid (PSA) antigen (Ag). Increased airway resistance was produced late (24 h) after Ag challenge, disappeared by 48 h, and was associated with no decrease in diffusion capacity. AHR could be produced in PCl immune/ PSA challenged mice on day 7 or even, with challenge, as early as 1 d after contact sensitization, after adoptive transfer of immune cells lacking CD3(+) contact sensitivity effector T cells, or after transfer of Ag-specific lymphoid cells depleted of conventional T lymphocytes with surface determinants for CD3, CD4, CD8, TCR-beta, or TCR-delta molecules. Further experiments showed that development of AHR depended upon transfer of immune cells expressing surface membrane Thy-1 and B220 (CD45RA) determinants. We concluded that a novel population of Ag-specific lymphoid cells with a defined surface phenotype (Thy-1(+), CD3(-), CD4(-), CD8(-), TCR-alphabeta-, TCR-gammadelta-, and CD45RA+) is required in a mouse model for the development of AHR. PMID:9241124

  10. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2012-10-01

    TERMS ROR1, γδ T cells, adoptive T cell therapy, ovarian cancer, chimeric antigen receptor (CAR) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...to recognize EBV and ovarian CA cells • Generate EBV -specific T cells LCL (Mos. 1-2) • Refine c-Met-specific CAR and propagate c-Met-specific T...cells on K562-derived artificial antigen presenting cells (Mos. 1-2) • Generate EBV and c-Met-bi-specific T cells (Mos. 2-6) • Functional analysis

  11. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia.

    PubMed

    Pegram, H J; Purdon, T J; van Leeuwen, D G; Curran, K J; Giralt, S A; Barker, J N; Brentjens, R J

    2015-02-01

    Disease relapse or progression is a major cause of death following umbilical cord blood (UCB) transplantation (UCBT) in patients with high-risk, relapsed or refractory acute lymphoblastic leukemia (ALL). Adoptive transfer of donor-derived T cells modified to express a tumor-targeted chimeric antigen receptor (CAR) may eradicate persistent disease after transplantation. Such therapy has not been available to UCBT recipients, however, due to the low numbers of available UCB T cells and the limited capacity for ex vivo expansion of cytolytic cells. We have developed a novel strategy to expand UCB T cells to clinically relevant numbers in the context of exogenous cytokines. UCB-derived T cells cultured with interleukin (IL)-12 and IL-15 generated >150-fold expansion with a unique central memory/effector phenotype. Moreover, UCB T cells were modified to both express the CD19-specific CAR, 1928z, and secrete IL-12. 1928z/IL-12 UCB T cells retained a central memory-effector phenotype and had increased antitumor efficacy in vitro. Furthermore, adoptive transfer of 1928z/IL-12 UCB T cells resulted in significantly enhanced survival of CD19(+) tumor-bearing SCID-Beige mice. Clinical translation of CAR-modified UCB T cells could augment the graft-versus-leukemia effect after UCBT and thus further improve disease-free survival of transplant patients with B-cell ALL.

  12. IFN-γ and IL-17 production in Experimental Autoimmune Encephalomyelitis depends on local APC•T cell complement production*

    PubMed Central

    Liu, Jinbo; Lin, Feng; Strainic, Michael G.; An, Fengqi; Miller, Robert H.; Altuntas, Cengiz Z.; Heeger, Peter S.; Tuohy, Vincent K.; Medof, M. Edward

    2013-01-01

    Summary IFN-γ and IL-17 producing T cells autoreactive across myelin components are central to the pathogenesis of multiple sclerosis (MS). Using direct in vivo, adoptive transfer, and in vitro systems, here we show that the generation of these effectors in MOG35–55 induced EAE depends on interactions of locally produced C3a/C5a with APC and T cell C3aR/C5aR. In the absence of the cell surface C3/C5 convertase inhibitor decay accelerating factor (DAF) but not the combined absence of DAF and C5aR and/or C3aR on APC and T cells, a heightened local autoimmune response occurs in which myelin destruction is markedly augmented in concert with markedly more IFN-γ+ and IL-17+ T cell generation. The augmented T cell response is due to increased IL-12 and IL-23 elaboration by APCs together with increased T cell expression of the receptors for each cytokine. The results apply to initial generation of the IL-17 phenotype since naïve CD62Lhi Daf1−/− T cells produce 3-fold more IL-17 in response to TGF-β and IL-6 while CD62Lhi Daf1−/−C5aR−/−C3aR−/− T cells produce 4-fold less. PMID:18424707

  13. CD47 in the tumor microenvironment limits cooperation between anti-tumor T cell immunity and radiation therapy

    PubMed Central

    Soto-Pantoja, David R.; Terabe, Masaki; Ghosh, Arunima; Ridnour, Lisa A.; DeGraff, William G.; Wink, David A.; Berzofsky, Jay A.; Roberts, David D.

    2014-01-01

    While significant advances in radiotherapy have increased its effectiveness in many cancer settings, general strategies to widen the therapeutic window between normal tissue toxicity and malignant tumor destruction would still offer great value. CD47 blockade has been found to confer radioprotection to normal tissues while enhancing tumor radiosensitivity. Here we report that CD47 blockade directly enhances tumor immunosurveillance by CD8+ T cells. Combining CD47 blockade with irradiation did not affect fibrosarcoma growth in T cell-deficient mice, whereas adoptive transfer of tumor-specific CD8+ T cells restored combinatorial efficacy. Further, ablation of CD8+ T cells abolished radiotherapeutic response in immunocompetent syngeneic hosts. CD47 blockade in either target cells or effector cells was sufficient to enhance antigen-dependent CD8+ CTL-mediated tumor cell killing in vitro. In CD47-deficient syngeneic hosts, engrafted B16 melanomas were 50% more sensitive to irradiation, establishing that CD47 expression in the microenvironment was sufficient to limit tumor radiosensitivity. Mechanistic investigations revealed increased tumor infiltration by cytotoxic CD8+ T cells in a CD47-deficient microenvironment, with an associated increase in T cell-dependent intratumoral expression of granzyme B. Correspondingly, an inverse correlation between CD8+ T cell infiltration and CD47 expression was observed in human melanomas. Our findings establish that blocking CD47 in the context of radiotherapy enhances antitumor immunity by directly stimulating CD8+ cytotoxic T cells, with the potential to increase curative responses. PMID:25297630

  14. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy.

    PubMed

    Stern, Christian; Kasnitz, Nadine; Kocijancic, Dino; Trittel, Stephanie; Riese, Peggy; Guzman, Carlos A; Leschner, Sara; Weiss, Siegfried

    2015-10-15

    Facultative anaerobic bacteria like E. coli can colonize solid tumors often resulting in tumor growth retardation or even clearance. Little mechanistic knowledge is available for this phenomenon which is however crucial for optimization and further implementation in the clinic. Here, we show that intravenous injections with E. coli TOP10 can induce clearance of CT26 tumors in BALB/c mice. Importantly, re-challenging mice which had cleared tumors showed that clearance was due to a specific immune reaction. Accordingly, lymphopenic mice never showed tumor clearance after infection. Depletion experiments revealed that during induction phase, CD8(+) T cells are the sole effectors responsible for tumor clearance while in the memory phase CD8(+) and CD4(+) T cells were involved. This was confirmed by adoptive transfer. CD4(+) and CD8(+) T cells could reject newly set tumors while CD8(+) T cells could even reject established tumors. Detailed analysis of adoptively transferred CD4(+) T cells during tumor challenge revealed expression of granzyme B, FasL, TNF-α and IFN-γ in such T cells that might be involved in the anti-tumor activity. Our findings should pave the way for further optimization steps of this promising therapy.

  15. Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8(+) T cell activation.

    PubMed

    Ma, Hong-Di; Ma, Wen-Tao; Liu, Qing-Zhi; Zhao, Zhi-Bin; Liu, Mu-Zi-Ying; Tsuneyama, Koichi; Gao, Jin-Ming; Ridgway, William M; Ansari, Aftab A; Gershwin, M Eric; Fei, Yun-Yun; Lian, Zhe-Xiong

    2017-03-01

    CXC Chemokine Receptor 3 (CXCR3) is functionally pleiotropic and not only plays an important role in chemotaxis, but also participates in T cell differentiation and may play a critical role in inducing and maintaining immune tolerance. These observations are particularly critical for autoimmune cholangitis in which CXCR3 positive T cells are found around the portal areas of both humans and mouse models of primary biliary cholangitis (PBC). Herein, we investigated the role of CXCR3 in the pathogenesis of autoimmune cholangitis. We have taken advantage of a unique CXCR3 knockout dnTGFβRII mouse to focus on the role of CXCR3, both by direct observation of its influence on the natural course of disease, as well as through adoptive transfer studies into Rag-/- mice. We report herein that not only do CXCR3 deficient mice develop an exacerbation of autoimmune cholangitis associated with an expanded effector memory T cell number, but also selective adoptive transfer of CXCR3 deficient CD8(+) T cells induces autoimmune cholangitis. In addition, gene microarray analysis of CXCR3 deficient CD8(+) T cells reveal an intense pro-inflammatory profile. Our data suggests that the altered gene profiles induced by CXCR3 deficiency promotes autoimmune cholangitis through pathogenic CD8(+) T cells. These data have significance for human PBC and other autoimmune liver diseases in which therapeutic intervention might be directed to chemokines and/or their receptors.

  16. A balanced review of the status T cell-based therapy against cancer

    PubMed Central

    Marincola, Francesco M

    2005-01-01

    A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles. PMID:15831096

  17. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells

    SciTech Connect

    Ettinghausen, S.E.; Lipford, E.H. 3d.; Mule, J.J.; Rosenberg, S.A.

    1985-11-01

    The authors previously reported that the adoptive transfer of lymphokine-activated killer (LAK) cells plus repetitive injections of recombinant interleukin 2 (IL 2) produced a marked reduction in established pulmonary metastases from a variety of murine sarcomas. The requirement for the exogenous administration of IL 2 prompted a subsequent examination of the role of IL 2 in the in vivo function of transferred LAK cells. The in vivo proliferation and migration patterns of lymphoid cells in C57BL/6 mice were examined after i.v. transfer of LAK cells alone, i.p. injection of IL 2 alone, or the combination of LAK cells and IL 2. A model for in vivo labeling of the DNA of dividing cells was used in which mice were injected with 5-( SVI)-iodo-2'-deoxyuridine ( SVIUdR) and, 20 hr later, their tissues were removed and were counted in a gamma analyzer. A proliferation index (PI) was calculated by dividing the mean cpm of organs of experimentally treated mice by the mean cpm of organs of control mice. In animals given LAK cells alone, the lungs and liver demonstrated little if any uptake of SVIUdR above saline-treated controls, whereas the same organs of mice receiving 6000 U of IL 2 alone displayed higher radiolabel incorporation. When mice were given LAK cells plus 6000 U of IL 2, their tissues showed an additional increase in SVIUdR uptake.

  18. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice.

    PubMed

    Shirakura, Yoshitaka; Mizuno, Yukari; Wang, Linan; Imai, Naoko; Amaike, Chisaki; Sato, Eiichi; Ito, Mamoru; Nukaya, Ikuei; Mineno, Junichi; Takesako, Kazutoh; Ikeda, Hiroaki; Shiku, Hiroshi

    2012-01-01

    Adoptive cell therapy with lymphocytes that have been genetically engineered to express tumor-reactive T-cell receptors (TCR) is a promising approach for cancer immunotherapy. We have been exploring the development of TCR gene therapy targeting cancer/testis antigens, including melanoma-associated antigen (MAGE) family antigens, that are ideal targets for adoptive T-cell therapy. The efficacy of TCR gene therapy targeting MAGE family antigens, however, has not yet been evaluated in vivo. Here, we demonstrate the in vivo antitumor activity in immunodeficient non-obese diabetic/SCID/γc(null) (NOG) mice of human lymphocytes genetically engineered to express TCR specific for the MAGE-A4 antigen. Polyclonal T cells derived from human peripheral blood mononuclear cells were transduced with the αβ TCR genes specific for MAGE-A4, then adoptively transferred into NOG mice inoculated with MAGE-A4 expressing human tumor cell lines. The transferred T cells maintained their effector function in vivo, infiltrated into tumors, and inhibited tumor growth in an antigen-specific manner. The combination of adoptive cell therapy with antigen peptide vaccination enhanced antitumor activity, with improved multifunctionality of the transferred cells. These data suggest that TCR gene therapy with MAGE-A4-specific TCR is a promising strategy to treat patients with MAGE-A4-expressing tumors; in addition, the acquisition of multifunctionality in vivo is an important factor to predict the quality of the T-cell response during adoptive therapy with human lymphocytes.

  19. Development of CD8+ T cells expressing two distinct receptors specific for MTB and HIV-1 peptides

    PubMed Central

    Hao, Pei-Pei; Zhang, Xiao-Bing; Luo, Wei; Zhou, Chao-Ying; Wen, Qian; Yang, Zhi; Liu, Su-Dong; Jiang, Zhen-Min; Zhou, Ming-Qian; Jin, Qi; Ma, Li

    2013-01-01

    The immune response in individuals co-infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co-infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co-infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene-modified T cells for the treatment of MTB/HIV co-infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide-specific TCRs (MTB/TCR) and HIV-1 Env120–128 peptide-specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide-specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co-infected patients.

  20. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells.

    PubMed

    Fang, Liang; Zhao, Fang; Shen, Xuefeng; Ouyang, Weiming; Liu, Xinqin; Xu, Yan; Yu, Tao; Jin, Boquan; Chen, Jingyuan; Luo, Wenjing

    2012-12-01

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague-Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p<0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4(+)CD8(-) and peripheral CD4(+) T cells was significantly reduced, whereas, CD8(+) population was not affected. In contrast to conventional CD4(+) T cells, Foxp3(+) regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4(+) T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression.

  1. CAR-modified T-cell therapy for cancer: an updated review.

    PubMed

    Haji-Fatahaliha, Mostafa; Hosseini, Maryam; Akbarian, Asiye; Sadreddini, Sanam; Jadidi-Niaragh, Farhad; Yousefi, Mehdi

    2016-09-01

    The use of chimeric antigen receptor (CAR)-modified T cells is a promising approach for cancer immunotherapy. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in T-cell activation subsequent to antigen binding. Optimal tumor removal through CAR-modified T cells requires suitable target antigen selection, co-stimulatory signaling domain, and the ability of CAR T cells to traffic, persist, and retain antitumor function after adoptive transfer. There are several elements which can improve antitumor function of CAR T cells, including signaling, conditioning chemotherapy and irradiation, tumor burden of the disease, T-cell phenotype, and supplementary cytokine usage. This review outlines four generations of CAR. The pre-clinical and clinical studies showed that this technique has a great potential for treatment of solid and hematological malignancies. The main purpose of the current review is to focus on the pre-clinical and clinical developments of CAR-based immunotherapy.

  2. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection.

    PubMed

    He, Ran; Hou, Shiyue; Liu, Cheng; Zhang, Anli; Bai, Qiang; Han, Miao; Yang, Yu; Wei, Gang; Shen, Ting; Yang, Xinxin; Xu, Lifan; Chen, Xiangyu; Hao, Yaxing; Wang, Pengcheng; Zhu, Chuhong; Ou, Juanjuan; Liang, Houjie; Ni, Ting; Zhang, Xiaoyan; Zhou, Xinyuan; Deng, Kai; Chen, Yaokai; Luo, Yadong; Xu, Jianqing; Qi, Hai; Wu, Yuzhang; Ye, Lilin

    2016-08-02

    During chronic viral infection, virus-specific CD8(+) T cells become exhausted, exhibit poor effector function and lose memory potential. However, exhausted CD8(+) T cells can still contain viral replication in chronic infections, although the mechanism of this containment is largely unknown. Here we show that a subset of exhausted CD8(+) T cells expressing the chemokine receptor CXCR5 has a critical role in the control of viral replication in mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). These CXCR5(+) CD8(+) T cells were able to migrate into B-cell follicles, expressed lower levels of inhibitory receptors and exhibited more potent cytotoxicity than the CXCR5(-) [corrected] subset. Furthermore, we identified the Id2-E2A signalling axis as an important regulator of the generation of this subset. In patients with HIV, we also identified a virus-specific CXCR5(+) CD8(+) T-cell subset, and its number was inversely correlated with viral load. The CXCR5(+) subset showed greater therapeutic potential than the CXCR5(-) [corrected] subset when adoptively transferred to chronically infected mice, and exhibited synergistic reduction of viral load when combined with anti-PD-L1 treatment. This study defines a unique subset of exhausted CD8(+) T cells that has a pivotal role in the control of viral replication during chronic viral infection.

  3. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  4. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li

    2017-05-01

    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  5. Automated Cell Enrichment of Cytomegalovirus-specific T cells for Clinical Applications using the Cytokine-capture System.

    PubMed

    Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N

    2015-10-05

    The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced

  6. Antibody responses to allergen Lol pIV are suppressed following adoptive transfer of B lymphocytes from the internal image anti-idiotypic antibody-treated mice.

    PubMed

    Zhou, E M; Kisil, F T

    1995-10-01

    An internal image anti-idiotypic antibody, designated B1/1, was generated against an idiotope (Id91) of the monoclonal antibody (mAb91) specific for Lol pIV. The administration of B1/1 in PBS, at doses ranging from 100 ng to 100 micrograms/mouse, to syngeneic Balb/c mice resulted in the suppression of the formation of anti-Lol pIV antibodies that possessed the Id91. Spleen cells obtained from the mice 2 weeks after the treatment with B1/1 (25 micrograms/mouse) were adoptively transferred intravenously into the syngeneic recipients which were challenged intraperitoneally with Lol pIV in alum 2 hr after the transfer. The recipients were boosted with Lol pIV 14 days later. It was demonstrated that the transfer of splenic B cells (but not of T cells) from B1/1-treated donors induced a significant suppression of not only the level of IgE and IgG antibodies to Lol pIV, but also the level of antibodies possessing the Id91. Treatment of the B cells with mAb91 plus complement abrogated their ability to transfer the suppression. This study indicates that the treatment with the anti-Id B1/1 generated B cells that were characterized, serologically, as possessing the anti-Id-like antibodies on their surface and were responsible for transferring the suppression of the formation of antibodies to allergen Lol pIV and the expression of Id91.

  7. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens

    PubMed Central

    Fujii, Nobuharu; Akatsuka, Yoshiki; Chaney, Colette N.; Mito, Jeffrey K.; Loeb, Keith R.; Gooley, Ted A.; Brown, Michele L.; Koo, Kevin K. W.; Rosinski, Kellie V.; Ogawa, Seishi; Matsubara, Aiko; Appelbaum, Frederick R.; Riddell, Stanley R.

    2010-01-01

    The adoptive transfer of donor T cells that recognize recipient minor histocompatibility antigens (mHAgs) is a potential strategy for preventing or treating leukemic relapse after allogeneic hematopoietic cell transplantation (HCT). A total of 7 patients with recurrent leukemia after major histocompatibility complex (MHC)–matched allogeneic HCT were treated with infusions of donor-derived, ex vivo–expanded CD8+ cytotoxic T lymphocyte (CTL) clones specific for tissue-restricted recipient mHAgs. The safety of T-cell therapy, in vivo persistence of transferred CTLs, and disease response were assessed. Molecular characterization of the mHAgs recognized by CTL clones administered to 3 patients was performed to provide insight into the antileukemic activity and safety of T-cell therapy. Pulmonary toxicity of CTL infusion was seen in 3 patients, was severe in 1 patient, and correlated with the level of expression of the mHAg-encoding genes in lung tissue. Adoptively transferred CTLs persisted in the blood up to 21 days after infusion, and 5 patients achieved complete but transient remissions after therapy. The results of these studies illustrate the potential to selectively enhance graft-versus-leukemia activity by the adoptive transfer of mHAg-specific T-cell clones and the challenges for the broad application of this approach in allogeneic HCT. This study has been registered at http://clinicaltrials.gov as NCT00107354. PMID:20071660

  8. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    SciTech Connect

    Rouse, B.T.; Hartley, D.; Doherty, P.C. )

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  9. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells.

    PubMed

    González-Martín, Alicia; Gómez, Lucio; Lustgarten, Joseph; Mira, Emilia; Mañes, Santos

    2011-08-15

    Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.

  10. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  11. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  12. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    PubMed

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients.

  13. In vivo behavior of peptide-specific T cells during mucosal tolerance induction: antigen introduced through the mucosa of the conjunctiva elicits prolonged antigen-specific T cell priming followed by anergy.

    PubMed

    Egan, R M; Yorkey, C; Black, R; Loh, W K; Stevens, J L; Storozynsky, E; Lord, E M; Frelinger, J G; Woodward, J G

    2000-05-01

    The mucosa of the conjunctiva is an important site of entry for environmental Ags as well as Ags emanating from the eye itself. However, very little is known about T cell recognition of Ag introduced through this important mucosal site. We have characterized the in vivo process of CD4 T cell recognition of Ag delivered via the conjunctival mucosa. Application of soluble OVA to the conjunctiva of BALB/c mice induced potent T cell tolerance. APC-presenting OVA peptide in vivo was only found in the submandibular lymph node and not in other lymph nodes, spleen, or nasal-associated lymphoid tissue. Similarly, in TCR transgenic DO11. 10 adoptive transfer mice, OVA-specific CD4+ T cell clonal expansion was only observed in the submandibular lymph node following conjunctival application of peptide. These experiments thus define a highly specific lymphatic drainage pathway from the conjunctiva. OVA-specific T cell clonal expansion peaked at day 3 following initiation of daily OVA administration and gradually declined during the 10-day treatment period, but remained elevated compared with nontreated adoptive transfer mice. During this period, the T cells expressed activation markers, and proliferated and secreted IL-2 in vitro in response to OVA stimulation. In contrast, these cells were unable to clonally expand in vivo, or proliferate in vitro following a subsequent OVA/CFA immunization. These results suggest that Ag applied to a mucosal site can be efficiently presented in a local draining lymph node, resulting in initial T cell priming and clonal expansion, followed by T cell anergy.

  14. Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus.

    PubMed

    Fortin, Carl; Yang, Yiping; Huang, Xiaopei

    2017-04-06

    Vaccinia virus (VV) can potently activate NK- and T-cell responses, leading to efficient viral control and generation of long-lasting protective immunity. However, immune responses against viral infections are often tightly controlled to avoid collateral damage and systemic inflammation. We have previously shown that granulocytic myeloid derived suppressor cells (g-MDSCs) can suppress the NK-cell response to VV infection. It remains unknown what regulates T-cell responses to VV infection in vivo. In this study, we first showed that monocytic MDSCs (m-MDSCs), but not g-MDSCs, from VV-infected mice could directly suppress CD4(+) and CD8(+) T-cell activation in vitro. We then demonstrated that defective recruitment of m-MDSCs to the site of VV infection in CCR2(-/-) mice enhanced VV-specific CD8(+) T-cell response and that adoptive transfer of m-MDSCs into VV-infected mice suppressed VV-specific CD8(+) T-cell activation, leading to a delay in viral clearance. Mechanistically, we further showed that T-cell suppression by m-MDSCs is mediated by indication of iNOS and production of NO upon VV infection, and that IFN-γ is required for activation of m-MDSCs. Collectively, our results highlight a critical role for m-MDSCs in regulating T-cell responses against VV infection and may suggest potential strategies using m-MDSCs to modulate T-cell responses during viral infections. This article is protected by copyright. All rights reserved.

  15. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model.

    PubMed

    He, Ran; Yang, Xinxin; Liu, Cheng; Chen, Xiangyu; Wang, Lin; Xiao, Minglu; Ye, Jianqiang; Wu, Yuzhang; Ye, Lilin

    2017-03-13

    CD4(+) T cells are essential for sustaining CD8(+) T cell responses during a chronic infection. The adoptive transfer of virus-specific CD4(+) T cells has been shown to efficiently rescue exhausted CD8(+) T cells. However, the question of whether endogenous virus-specific CD4(+) T cell responses can be enhanced by certain vaccination strategies and subsequently reinvigorate exhausted CD8(+) T cells remains unexplored. In this study, we developed a CD4(+) T cell epitope-based heterologous prime-boost immunization strategy and examined the efficacy of this strategy using a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We primed chronically LCMV-infected mice with a Listeria monocytogenes vector that expressed the LCMV glycoprotein-specific I-A(b)-restricted CD4(+) T cell epitope GP61-80 (LM-GP61) and subsequently boosted the primed mice with an influenza virus A (PR8 strain) vector that expressed the same CD4(+) T cell epitope (IAV-GP61). This heterologous prime-boost vaccination strategy elicited strong anti-viral CD4(+) T cell responses, which further improved both the quantity and quality of the virus-specific CD8(+) T cells and led to better control of the viral loads. The combination of this strategy and the blockade of the programmed cell death-1 (PD-1) inhibitory pathway further enhanced the anti-viral CD8(+) T cell responses and viral clearance. Thus, a heterologous prime-boost immunization that selectively induces virus-specific CD4(+) T cell responses in conjunction with blockade of the inhibitory pathway may represent a promising therapeutic approach to treating patients with chronic viral infections.Cellular & Molecular Immunology advance online publication, 13 March 2017; doi:10.1038/cmi.2017.3.

  16. HLA-A2–Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/γcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells

    PubMed Central

    Whitfield-Larry, Fatima; Young, Ellen F.; Talmage, Garrick; Fudge, Elizabeth; Azam, Anita; Patel, Shipra; Largay, Joseph; Byrd, Warren; Buse, John; Calikoglu, Ali S.; Shultz, Leonard D.; Frelinger, Jeffrey A.

    2011-01-01

    OBJECTIVE Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing β-cells. NOD mice provide a useful tool for understanding disease pathogenesis and progression. Although much has been learned from studies with NOD mice, increased understanding of human type 1 diabetes can be gained by evaluating the pathogenic potential of human diabetogenic effector cells in vivo. Therefore, our objective in this study was to develop a small-animal model using human effector cells to study type 1 diabetes. RESEARCH DESIGN AND METHODS We adoptively transferred HLA-A2–matched peripheral blood mononuclear cells (PBMCs) from type 1 diabetic patients and nondiabetic control subjects into transgenic NOD-scid/γcnull/HLA-A*0201 (NOD-scid/γcnull/A2) mice. At various times after adoptive transfer, we determined the ability of these mice to support the survival and proliferation of the human lymphoid cells. Human lymphocytes were isolated and assessed from the blood, spleen, pancreatic lymph node and islets of NOD-scid/γcnull/A2 mice after transfer. RESULTS Human T and B cells proliferate and survive for at least 6 weeks and were recovered from the blood, spleen, draining pancreatic lymph node, and most importantly, islets of NOD-scid/γcnull/A2 mice. Lymphocytes from type 1 diabetic patients preferentially infiltrate the islets of NOD-scid/γcnull/A2 mice. In contrast, PBMCs from nondiabetic HLA-A2–matched donors showed significantly less islet infiltration. Moreover, in mice that received PBMCs from type 1 diabetic patients, we identified epitope-specific CD8+ T cells among the islet infiltrates. CONCLUSIONS We show that insulitis is transferred to NOD-scid/γcnull/A2 mice that received HLA-A2–matched PBMCs from type 1 diabetic patients. In addition, many of the infiltrating CD8+ T cells are epitope-specific and produce interferon-γ after in vitro peptide stimulation. This indicates that NOD-scid/γcnull/A2 mice transferred with HLA-A2

  17. Membrane-attached Cytokines Expressed by mRNA Electroporation Act as Potent T-Cell Adjuvants.

    PubMed

    Weinstein-Marom, Hadas; Pato, Aviad; Levin, Noam; Susid, Keren; Itzhaki, Orit; Besser, Michal J; Peretz, Tamar; Margalit, Alon; Lotem, Michal; Gross, Gideon

    2016-01-01

    Proinflammatory cytokines are widely explored in different adoptive cell therapy protocols for enhancing survival and function of the transferred T cells, but their systemic administration is often associated with severe toxicity which limits their clinical use. To confine cytokine availability to the therapeutic T cells, we expressed 3 key cytokines, IL-2, IL-12, and IL-15, as integral T-cell membrane proteins. To prevent permanent activation of growth signaling pathways, we delivered these genes to T cells through mRNA electroporation. The engineered cytokines could be detected on the surface of mRNA-transfected cells and binding to their cell-surface receptors mainly occurred in cis. The 3 human cytokines supported the ex vivo growth of activated human CD8 and CD4 T cells for at least 6 days posttransfection, comparably to high-dose soluble IL-2. Similarly, membrane IL-2, membrane IL-12, and, to a lesser extent, membrane IL-15, were comparable with their soluble counterparts in supporting proliferation of splenic mouse CD8 T cells. Following electroporation of human CD8 T cells and antimelanoma tumor-infiltrating lymphocytes, membrane cytokines synergized with constitutively active toll-like receptor 4 in inducing interferon-γ secretion. Efficient cooperation with TLR4 was also evident in the upregulation of the activation molecules CD25, CD69, CD137 (4-1BB), and CD134 (OX40). Taken together, membrane cytokines expressed through mRNA transfection emerge as effective tools for enhancing T-cell proliferation and function and may have potential use in adoptive T-cell therapy.

  18. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals.

    PubMed

    Jolink, Hetty; Meijssen, Isabelle C; Hagedoorn, Renate S; Arentshorst, Mark; Drijfhout, Jan W; Mulder, Arend; Claas, Frans H J; van Dissel, Jaap T; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2013-09-01

    Invasive aspergillosis is a serious infectious complication after allogeneic stem cell transplantation. One of the strategies to improve the management of aspergillosis is the adoptive transfer of antigen-specific T cells, the success of which depends on the development of a broad repertoire of antigen-specific T cells. In this study, we identified CD4+ T cells specific for the Aspergillus proteins Crf1 and catalase 1 in 18 of 24 healthy donors by intracellular staining for interferon γ and CD154. Crf1- and catalase 1-specific T cells were selected on the basis of CD137 expression and underwent single-cell expansion. Aspergillus-specific T-cell clones mainly exhibited a T-helper cell 1 phenotype and recognized a broad variety of T-cell epitopes. Five novel Crf1 epitopes, 2 previously described Crf1 epitopes, and 30 novel catalase 1 epitopes were identified. Ultimately, by using overlapping peptides of Aspergillus fumigatus proteins, Aspergillus-specific T-cell lines that have a broad specificity and favorable cytokine profile and are suitable for adoptive T-cell therapy can be generated in vitro.

  19. T-Cells Specific for a Self-Peptide of ApoB-100 Exacerbate Aortic Atheroma in Murine Atherosclerosis

    PubMed Central

    Shaw, Michael K.; Tse, Kevin Y.; Zhao, Xiaoqing; Welch, Kathryn; Eitzman, Daniel T.; Thipparthi, Raghavendar R.; Montgomery, Paul C.; Thummel, Ryan; Tse, Harley Y.

    2017-01-01

    On the basis of mouse I-Ab-binding motifs, two sequences of the murine apolipoprotein B-100 (mApoB-100), mApoB-1003501–3515 (designated P3) and mApoB-100978–992 (designated P6), were found to be immunogenic. In this report, we show that P6 is also atherogenic. Immunization of Apoe−/− mice fed a high-fat diet (HFD) with P6 resulted in enhanced development of aortic atheroma as compared to control mice immunized with an irrelevant peptide MOG35–55 or with complete Freund’s adjuvant alone. Adoptive transfer of lymph node cells from P6-immunized donor mice to recipients fed an HFD caused exacerbated aortic atheromas, correlating P6-primed cells with disease development. Finally, P6-specific T cell clones were generated and adoptive transfer of T cell clones into recipients fed an HFD led to significant increase in aortic plaque coverage when compared to control animals receiving a MOG35–55-specific T cell line. Recipient mice not fed an HFD, however, did not exhibit such enhancement, indicating that an inflammatory environment facilitated the atherogenic activity of P6-specific T cells. That P6 is identical to or cross-reacts with a naturally processed peptide of ApoB-100 is evidenced by the ability of P6 to stimulate the proliferation of T cells in the lymph node of mice primed by full-length human ApoB-100. By identifying an atherogenic T cell epitope of ApoB-100 and establishing specific T cell clones, our studies open up new and hitherto unavailable avenues to study the nature of atherogenic T cells and their functions in the atherosclerotic disease process. PMID:28280493

  20. T-Cells Specific for a Self-Peptide of ApoB-100 Exacerbate Aortic Atheroma in Murine Atherosclerosis.

    PubMed

    Shaw, Michael K; Tse, Kevin Y; Zhao, Xiaoqing; Welch, Kathryn; Eitzman, Daniel T; Thipparthi, Raghavendar R; Montgomery, Paul C; Thummel, Ryan; Tse, Harley Y

    2017-01-01

    On the basis of mouse I-A(b)-binding motifs, two sequences of the murine apolipoprotein B-100 (mApoB-100), mApoB-1003501-3515 (designated P3) and mApoB-100978-992 (designated P6), were found to be immunogenic. In this report, we show that P6 is also atherogenic. Immunization of Apoe(-/-) mice fed a high-fat diet (HFD) with P6 resulted in enhanced development of aortic atheroma as compared to control mice immunized with an irrelevant peptide MOG35-55 or with complete Freund's adjuvant alone. Adoptive transfer of lymph node cells from P6-immunized donor mice to recipients fed an HFD caused exacerbated aortic atheromas, correlating P6-primed cells with disease development. Finally, P6-specific T cell clones were generated and adoptive transfer of T cell clones into recipients fed an HFD led to significant increase in aortic plaque coverage when compared to control animals receiving a MOG35-55-specific T cell line. Recipient mice not fed an HFD, however, did not exhibit such enhancement, indicating that an inflammatory environment facilitated the atherogenic activity of P6-specific T cells. That P6 is identical to or cross-reacts with a naturally processed peptide of ApoB-100 is evidenced by the ability of P6 to stimulate the proliferation of T cells in the lymph node of mice primed by full-length human ApoB-100. By identifying an atherogenic T cell epitope of ApoB-100 and establishing specific T cell clones, our studies open up new and hitherto unavailable avenues to study the nature of atherogenic T cells and their functions in the atherosclerotic disease process.

  1. T Cell Responses: Naive to Memory and Everything in Between

    ERIC Educational Resources Information Center

    Pennock, Nathan D.; White, Jason T.; Cross, Eric W.; Cheney, Elizabeth E.; Tamburini, Beth A.; Kedl, Ross M.

    2013-01-01

    The authors describe the actions that take place in T cells because of their amazing capacity to proliferate and adopt functional roles aimed at clearing a host of an infectious agent. There is a drastic decline in the T cell population once the primary response is over and the infection is terminated. What remains afterward is a population of T…

  2. Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease.

    PubMed

    Ali, Riyasat; Babad, Jeffrey; Follenzi, Antonia; Gebe, John A; Brehm, Michael A; Nepom, Gerald T; Shultz, Leonard D; Greiner, Dale L; DiLorenzo, Teresa P

    2016-08-01

    Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.

  3. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner.

    PubMed

    Beaumier, Coreen M; Mathew, Anuja; Bashyam, Hema S; Rothman, Alan L

    2008-02-15

    Dengue virus is the causative agent of dengue fever and the more-severe dengue hemorrhagic fever (DHF). Human studies suggest that the increased risk of DHF during secondary infection is due to immunopathology partially mediated by cross-reactive memory T cells from the primary infection. To model T cell responses to sequential infections, we immunized mice with different sequences of dengue virus serotypes and measured the frequency of peptide-specific T cells after infection. The acute response after heterologous secondary infections was enhanced compared with the acute or memory response after primary infection. Also, the hierarchy of epitope-specific responses was influenced by the specific sequence of infection. Adoptive-transfer experiments showed that memory T cells responded preferentially to the secondary infection. These findings demonstrate that cross-reactive T cells from a primary infection alter the immune response during a heterologous secondary infection.

  4. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    PubMed

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells.

  5. Generation of functional, antigen-specific CD8+ human T cells from cord blood stem cells using exogenous Notch and tetramer-TCR signaling.

    PubMed

    Fernandez, Irina; Ooi, Tracy P; Roy, Krishnendu

    2014-01-01

    In vitro differentiation of mouse and human stem cells into early T cells has been successfully demonstrated using artificial Notch signaling systems. However, generation of mature, antigen-specific, functional T cells, directly from human stem cells has remained elusive, except when using stromal coculture of stem cells retrovirally transfected with antigen-specific T cell receptors (TCRs). Here we show that human umbilical cord blood (UCB)-derived CD34+CD38-/low hematopoietic stem cells can be successfully differentiated into functional, antigen-specific cytotoxic CD8+ T cells without direct stromal coculture or retroviral TCR transfection. Surface-immobilized Notch ligands (DLL1) and stromal cell conditioned medium successfully induced the development of CD1a+CD7+ and CD4+CD8+ early T cells. These cells, upon continued culture with cytomegalovirus (CMV) or influenza-A virus M1 (GIL) epitope-loaded human leukocyte antigen (HLA)-A*0201 tetramers, resulted in the generation of a polyclonal population of CMV-specific or GIL-specific CD8+ T cells, respectively. Upon further activation with antigen-loaded target cells, these antigen-specific, stem cell-derived T cells exhibited cytolytic functionality, specifically CD107a surface mobilization, interferon gamma (IFNg) production, and Granzyme B secretion. Such scalable, in vitro generation of functional, antigen-specific T cells from human stem cells could eventually provide a readily available cell source for adoptive transfer immunotherapies and also allow better understanding of human T cell development.

  6. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major.

    PubMed

    Mou, Zhirong; Liu, Dong; Okwor, Ifeoma; Jia, Ping; Orihara, Kanami; Uzonna, Jude Ezeh

    2014-09-01

    Although it is generally believed that CD4(+) T cells play important roles in anti-Leishmania immunity, some studies suggest that they may be dispensable, and that MHC II-restricted CD3(+)CD4(-)CD8(-) (double negative, DN) T cells may be more important in regulating primary anti-Leishmania immunity. In addition, while there are reports of increased numbers of DN T cells in Leishmania-infected patients, dogs and mice, concrete evidence implicating these cells in secondary anti-Leishmania immunity has not yet been documented. Here, we report that DN T cells extensively proliferate and produce effector cytokines (IFN-γ, TNF and IL-17) and granzyme B (GrzB) in the draining lymph nodes and spleens of mice following primary and secondary L. major infections. DN T cells from healed mice display functional characteristics of protective anti-Leishmania memory-like cells: rapid and extensive proliferation and effector cytokines production following L. major challenge in vitro and in vivo. DN T cells express predominantly (> 95%) alpha-beta T cell receptor (αβ TCR), are Leishmania-specific, restricted mostly by MHC class II molecules and display transcriptional profile of innate-like genes. Using in vivo depletion and adoptive transfer studies, we show that DN T cells contribute to optimal primary and secondary anti-Leishmania immunity in mice. These results directly identify DN T cells as important players in effective and protective primary and secondary anti-L. major immunity in experimental cutaneous leishmaniasis.

  7. Hoxb4 Overexpression in CD4 Memory Phenotype T Cells Increases the Central Memory Population upon Homeostatic Proliferation

    PubMed Central

    Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J.

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation. PMID:24324706

  8. Partial reconstitution of virus-specific memory CD8{sup +} T cells following whole body {gamma}-irradiation

    SciTech Connect

    Grayson, Jason M. . E-mail: jgrayson@wfubmc.edu; Laniewski, Nathan G.; Holbrook, Beth C.

    2006-04-25

    CD8{sup +} memory T cells are critical in providing immunity to viral infection. Previous studies documented that antigen-specific CD8{sup +} memory T cells are more resistant to radiation-induced apoptosis than naive T cells. Here, we determined the number and in vivo function of memory CD8{sup +} T cells as immune reconstitution progressed following irradiation. Immediately following irradiation, the number of memory CD8{sup +} T cells declined 80%. As reconstitution progressed, the number of memory cells reached a zenith at 33% of pre-irradiation levels, and was maintained for 120 days post-irradiation. In vitro, memory CD8{sup +} T cells were able to produce cytokines at all times post-irradiation, but when adoptively transferred, they were not able to expand upon rechallenge immediately following irradiation, but regained this ability as reconstitution progressed. When proliferation was examined in vitro, irradiated memory CD8{sup +} T cells were able to respond to mitogenic growth but were unable to divide.

  9. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells.

    PubMed

    Kusmartsev, Sergei; Nagaraj, Srinivas; Gabrilovich, Dmitry I

    2005-10-01

    T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.

  10. Tumor associated CD8+ T-cell tolerance induced by bone marrow derived immature myeloid cells1

    PubMed Central

    Kusmartsev, Sergei; Nagaraj, Srinivas; Gabrilovich, Dmitry I.

    2005-01-01

    T-cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T-cell tolerance remains unresolved. Using an experimental system employing the adoptive transfer of transgenic T cells into naïve recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T-cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC including tumor-derived CD11c+ DCs were able to render T cells non-responsive. ImC are able to take-up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce antigen-specific T-cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T-cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy. PMID:16177103

  11. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  12. Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies

    PubMed Central

    Deniger, Drew C.; Maiti, Sourindra N.; Mi, Tiejuan; Switzer, Kirsten C.; Ramachandran, Vijaya; Hurton, Lenka V.; Ang, Sonny; Olivares, Simon; Rabinovich, Brian A.; Huls, Helen; Lee, Dean A.; Bast, Robert C.; Champlin, Richard E.; Cooper, Laurence J.N.

    2014-01-01

    Purpose To activate and propagate populations of γδT cells expressing polyclonal repertoire of γ and δ TCR chains for adoptive immunotherapy for cancer, which has yet to be achieved. Experimental Design Clinical-grade artificial antigen presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδT cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing. Results γδT cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL-2 and IL-21. Propagated γδT cells were polyclonal as they expressed Vδ1, Vδ2, Vδ3, Vδ5, Vδ7, and Vδ8 with Vγ2, Vγ3, Vγ7, Vγ8, Vγ9, Vγ10, and Vγ11 TCR chains. Interferon-γ production by Vδ1, Vδ2, and Vδ1negVδ2neg subsets was inhibited by pan-TCRγδantibody when added to co-cultures of polyclonal γδT cells and tumor cell lines. Polyclonal γδT cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδT cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδT cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1negVδ2neg>Vδ2) of survival of mice with ovarian cancer xenografts. Conclusions Polyclonal γδT cells can be activated and propagated with clinical-grade aAPC and demonstrate broad anti-tumor activities, which will facilitate the implementation of γδT cell cancer immunotherapies in humans. PMID:24833662

  13. T-Cell Receptor Gene Therapy of Established Tumors in a Murine Melanoma Model

    PubMed Central

    Abad, John D.; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A.; Jorritsma, Annelies; Hsu, Gary; Gattinoni, Luca; Cohen, Cyrille J.; Paulos, Chrystal M.; Palmer, Douglas C.; Haanen, John B. A. G.; Schumacher, Ton N. M.; Rosenberg, Steven A.; Restifo, Nicholas P.; Morgan, Richard A.

    2008-01-01

    Summary Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-γ secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies. PMID:18157006

  14. T-cell receptor gene therapy of established tumors in a murine melanoma model.

    PubMed

    Abad, John D; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A; Jorritsma, Annelies; Hsu, Cary; Gattinoni, Luca; Cohen, Cyrille J; Paulos, Chrystal M; Palmer, Douglas C; Haanen, John B A G; Schumacher, Ton N M; Rosenberg, Steven A; Restifo, Nicholas P; Morgan, Richard A

    2008-01-01

    Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-gamma secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies.

  15. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation

    PubMed Central

    Roberto, Alessandra; Castagna, Luca; Zanon, Veronica; Bramanti, Stefania; Crocchiolo, Roberto; McLaren, James E.; Gandolfi, Sara; Tentorio, Paolo; Sarina, Barbara; Timofeeva, Inna; Santoro, Armando; Carlo-Stella, Carmelo; Bruno, Benedetto; Carniti, Cristiana; Corradini, Paolo; Gostick, Emma; Ladell, Kristin; Price, David A.; Roederer, Mario; Mavilio, Domenico

    2015-01-01

    Early T-cell reconstitution following allogeneic transplantation depends on the persistence and function of T cells that are adoptively transferred with the graft. Posttransplant cyclophosphamide (pt-Cy) effectively prevents alloreactive responses from unmanipulated grafts, but its effect on subsequent immune reconstitution remains undetermined. Here, we show that T memory stem cells (TSCM), which demonstrated superior reconstitution capacity in preclinical models, are the most abundant circulating T-cell population in the early days following haploidentical transplantation combined with pt-Cy and precede the expansion of effector cells. Transferred naive, but not TSCM or conventional memory cells preferentially survive cyclophosphamide, thus suggesting that posttransplant TSCM originate from naive precursors. Moreover, donor naive T cells specific for exogenous and self/tumor antigens persist in the host and contribute to peripheral reconstitution by differentiating into effectors. Similarly, pathogen-specific memory T cells generate detectable recall responses, but only in the presence of the cognate antigen. We thus define the cellular basis of T-cell reconstitution following pt-Cy at the antigen-specific level and propose to explore naive-derived TSCM in the clinical setting to overcome immunodeficiency. These trials were registered at www.clinicaltrials.gov as #NCT02049424 and #NCT02049580. PMID:25742699

  16. Regulatory T cells.

    PubMed

    Thompson, Claire; Powrie, Fiona

    2004-08-01

    Regulatory T (TR) cells are a subset of T cells that function to control immune responses. Different populations of TR cells have been described, including thymically derived CD4(+)CD25+ TR cells and Tr1 cells induced in the periphery through exposure to antigen. A transcription factor, Foxp3, has been identified that is essential for CD4(+)CD25+ TR cell development and function. There is now evidence that transforming growth factor-beta might play a role in this pathway. CD4(+)CD25+ TR cells proliferate extensively in vivo in an antigen-specific manner, and can respond to both self and foreign peptides. By suppressing excessive immune responses, TR cells play a key role in the maintenance of self-tolerance, thus preventing autoimmune disease, as well as inhibiting harmful inflammatory diseases such as asthma and inflammatory bowel disease.

  17. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    NASA Astrophysics Data System (ADS)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  18. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model.

    PubMed

    Lee, Eun-Sol; Lim, Jung-Yeon; Im, Keon-Il; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2015-01-01

    Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy. Treg cells were generated from eGFP-expressing C57BL/6 mice (Tregegfp cells) to distinguish the transferred Treg cells; recipients were then examined at different time points after BMT. Systemic infusion of MSCs and Treg cells improved survival and GVHD scores, effectively downregulating pro-inflammatory Th×and Th17 cells. These therapeutic effects of combined cell therapy resulted in an increased Foxp3+ Treg cell population. Compared to single cell therapy, adoptively transferred Tregegfp cells only showed prolonged survival in the combined cell therapy group on day 21 after allogeneic BMT. In addition, Foxp3+ Treg cells, generated endogenously from recipients, significantly increased. Significantly higher levels of Tregegfp cells were also detected in aGVHD target organs in the combined cell therapy group compared to the Treg cells group. Thus, our data indicate that MSCs may induce the long-term survival of transferred Treg cells, particularly in aGVHD target organs, and may increase the repopulation of endogenous Treg cells in recipients after BMT. Together, these results support the potential of combined cell therapy using MSCs and Treg cells for preventing aGVHD.

  19. HMGB1 is an early and critical mediator in an animal model of uveitis induced by IRBP-specific T cells.

    PubMed

    Jiang, Guomin; Sun, Deming; Yang, Huan; Lu, Qingxian; Kaplan, Henry J; Shao, Hui

    2014-04-01

    It is largely unknown how invading autoreactive T cells initiate the pathogenic process inside the diseased organ in organ-specific autoimmune disease. In this study, we used a chronic uveitis disease model in mice--EAU--induced by adoptive transfer of uveitogenic IRBP-specific T cells and showed that HMGB1, an important endogenous molecule that serves as a danger signal, was released rapidly from retinal cells into the ECM and intraocular fluid in response to IRBP-specific T cell transfer. HMGB1 release required direct cell-cell contact between retinal cells and IRBP-specific T cells and was an active secretion from intact retinal cells. Administration of HMGB1 antagonists inhibited severity of EAU significantly via mechanisms that include inhibition of IRBP-specific T cell proliferation and their IFN-γ and IL-17 production. The inflammatory effects of HMGB1 may signal the TLR/MyD88 pathway, as MyD88(-/-) mice had a high level of HMGB1 in the eye but did not develop EAU after IRBP-specific T cell transfer. Our study demonstrates that HMGB1 is an early and critical mediator of ocular inflammation initiated by autoreactive T cell invasion.

  20. [Advances in ex vivo expansion and immunotherapy application of regulatory T cells].

    PubMed

    Yan, Li; Shao, Zong-Hong

    2015-04-01

    CD4+ CD25+ regulatory T cells (Treg) play a fundamental role in the establishment and maintenance of immune tolerance. In a some of experimental models, it was found that Tregs can quench autoimmune diseases, maintain allogeneic transplants, and prevent allergic diseases. A major obstacle to their clinical application is related to their definitive phenotype and very limited number of these cells in peripheral circulation, no more than 5%-10% of total CD4+ T cells. Recent progress of technologies for Treg sorting with multicolor flow cytometry and immuno-absorbing columns has overcome these obstacles, and opened the doors to the clinical application of Treg. This review highlight the characteristics of Treg, describe the current information of cell sorting and ex vivo expansion techniques, and outline the adoptive transfer experiments and clinical trials of immunotherapy that have been developed in recent years. It is foreseeable that Treg adoptive transfusion will be a promising immunosuppressive therapy.

  1. NKG2D⁺ IFN-γ⁺ CD8⁺ T cells are responsible for palladium allergy.

    PubMed

    Kawano, Mitsuko; Nakayama, Masafumi; Aoshima, Yusuke; Nakamura, Kyohei; Ono, Mizuho; Nishiya, Tadashi; Nakamura, Syou; Takeda, Yuri; Dobashi, Akira; Takahashi, Akiko; Endo, Misato; Ito, Akiyo; Ueda, Kyosuke; Sato, Naoki; Higuchi, Shigehito; Kondo, Takeru; Hashimoto, Suguru; Watanabe, Masamichi; Watanabe, Makoto; Takahashi, Tetsu; Sasaki, Keiichi; Nakamura, Masanori; Sasazuki, Takehiko; Narushima, Takayuki; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-01-01

    Nickel, cobalt, and chromium are well known to be causal agents of allergic contact dermatitis. Palladium (Pd) can also cause allergic disease and exposure results from wide use of this metal in dental restorations and jewelry. Metal allergy is categorized as a delayed-type hypersensitivity, and metal-responsive T cell clones have been isolated from allergic patients. However, compared to nickel, little is known about the pathology of allergic disease mediated by Pd, and pathogenic T cells are poorly understood. To identify the pathogenic T cells that are responsible for onset of Pd allergy, we enriched metal-responsive lymphocytes by sequential adoptive transfer of involved lymph node cells. Here we show that sequential adoptive transfer gradually increased the incidence and the intensity of Pd allergy, and CD8⁺ T cells are responsible for the disease as CD8⁺ T cell-depleted mice and β2-microglobulin-deficient mice did not develop Pd allergy. In addition, we found that draining lymph node cells skewed toward CD8⁺ T cells in response to Pd challenge in 8th adoptive transferred recipient mice. The CD8⁺ T cells expressed NKG2D, a costimulatory molecule involved in the production of IFN-γ. NKG2D ligand was also induced in Pd-injected tissues. Furthermore, both NKG2D ligand-transgenic mice, where NKG2D is downmodulated, and IFN-γ-deficient mice showed impaired Pd allergy. Taken together, these results indicate that IFN-γ-producing NKG2D⁺ CD8⁺ T cells are responsible for Pd allergy and suggest that NKG2D is a potential therapeutic target for treatment of metal allergy.

  2. CD101 inhibits the expansion of colitogenic T cells

    PubMed Central

    Schey, Regina; Dornhoff, Heike; Baier, Julia L.C.; Purtak, Martin; Opoka, Robert; Koller, Anna Katharina; Atreya, Raya; Rau, Tilman T.; Daniel, Christoph; Amann, Kerstin; Bogdan, Christian; Mattner, Jochen

    2015-01-01

    CD101 exerts negative-costimulatory effects in vitro, but its function in vivo remains poorly defined. CD101 is abundantly expressed on lymphoid and myeloid cells in intestinal tissues, but absent from naïve splenic T cells. Here, we assessed the impact of CD101 on the course of inflammatory bowel disease (IBD). Using a T cell transfer model of chronic colitis, we found that in recipients of naïve T cells from CD101+/+ donors up to 30% of the recovered lymphocytes expressed CD101, correlating with an increased IL-2-mediated FoxP3-expression. Transfer of CD101−/− T cells caused more severe colitis and was associated with an expansion of IL-17-producing T cells and an enhanced expression of IL-2Rα/β independently of FoxP3. The co-transfer of naïve and regulatory T cells (Treg) protected most effectively from colitis, when both donor and recipient mice expressed CD101. While the expression of CD101 on T cells was sufficient for Treg-function and the inhibition of T cell proliferation, sustained IL-10-production required additional CD101-expression by myeloid cells. Finally, in patients with IBD a reduced CD101-expression on peripheral and intestinal monocytes and CD4+ T cells correlated with enhanced IL-17-production and disease activity. Thus, CD101-deficiency is a novel marker for progressive colitis and potential target for therapeutic intervention. PMID:26813346

  3. Chronic exposure to IFNα drives medullar lymphopoiesis towards T-cell differentiation in mice.

    PubMed

    Di Scala, Marianna; Gil-Fariña, Irene; Vanrell, Lucia; Sánchez-Bayona, Rodrigo; Alignani, Diego; Olagüe, Cristina; Vales, Africa; Berraondo, Pedro; Prieto, Jesús; González-Aseguinolaza, Gloria

    2015-08-01

    Interferon-α is a potent antiviral agent and a vigorous adjuvant in the induction of T-cell responses but its use is limited by hematologic toxicity. Interferon-α alters hematopoietic stem cell dormancy and impairs myelocytic and erythrocytic/megakaryocytic differentiation from hematopoietic progenitors. However, the effect of chronic interferon-α exposure on hematopoietic precursors has still not been well characterized. Here, we transduced the liver of mice with an adenoassociated vector encoding interferon-α to achieve sustained high serum levels of the cytokine. The bone marrow of these animals showed diminished long-term and short-term hematopoietic