Science.gov

Sample records for adp amp gtp

  1. The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid- and GTP-sensitive switch.

    PubMed

    Randazzo, P A; Terui, T; Sturch, S; Fales, H M; Ferrige, A G; Kahn, R A

    1995-06-16

    ADP-ribosylation factor 1 (Arf1) is an essential N-myristoylated 21-kDa GTP-binding protein with activities that include the regulation of membrane traffic and phospholipase D activity. Both the N terminus of the protein and the N-myristate bound to glycine 2 have previously been shown to be essential to the function of Arf in cells. We show that the bound nucleotide affects the conformation of either the N terminus or residues of Arf1 that are in direct contact with the N terminus. This was demonstrated by examining the effects of mutations in this N-terminal domain on guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) and GDP binding and dissociation kinetics. Arf1 mutants, lacking 13 or 17 residues from the N terminus or mutated at residues 3-7, had a greater affinity for GTP gamma S and a lower affinity for GDP than did the wild-type protein. As the N terminus is required for interactions with target proteins, we conclude that the N terminus of Arf1 is a GTP-sensitive effector domain. When Arf1 was acylated, the GTP-dependent conformational changes were codependent on added phospholipids. In the absence of phospholipids, myristoylated Arf1 has a lower affinity for GTP gamma S than for GDP, and in the presence of phospholipids, the myristoylated protein has a greater affinity for GTP gamma S than for GDP. Thus, N-myristoylation is a critical component in the construction of this phospholipid- and GTP-dependent switch.

  2. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  3. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.

    PubMed Central

    Donaldson, J G; Cassel, D; Kahn, R A; Klausner, R D

    1992-01-01

    The coatomer is a cytosolic protein complex that reversibly associates with Golgi membranes and is implicated in modulating Golgi membrane transport. The association of beta-COP, a component of coatomer, with Golgi membranes is enhanced by guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable analogue of GTP, and by a mixture of aluminum and fluoride ions (Al/F). Here we show that the ADP-ribosylation factor (ARF) is required for the binding of beta-COP. Thus, beta-COP contained in a coatomer fraction that has been resolved from ARF does not bind to Golgi membranes, whereas binding can be reconstituted by the addition of recombinant ARF. Furthermore, an N-terminal peptide of ARF, which blocks ARF binding to Golgi membranes, inhibits GTP[gamma S]- as well as the Al/F-enhanced binding of beta-COP. We show that Golgi coat protein binding involves a sequential reaction where an initial interaction of ARF and GTP[gamma S] with the membrane allows subsequent binding of beta-COP to take place in the absence of free ARF and GTP[gamma S]. The fungal metabolite brefeldin A, which is known to prevent the association of coat proteins with Golgi membrane, is shown to exert this effect by interfering with the initial ARF-membrane interaction step. Images PMID:1631136

  4. [Influence of ADP-ribose, AMP and adenosine on bioelectric activity of hibernating ground squirrel atrium and papillary muscle].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP and ADP-ribose (1x10(-5)) on bioelectric activity of atrium and papillary muscle of nonhibernating (rat) and hibernating (Yakutian ground squirrel) animals. Action potential (AP) was registered with use of standard microelectrode technique. AP duration (APD) at level of 90% repolarisation in rat atrium in control experiments was 30+/-5 ms, APD at level of 50% repolarisation was 12+/-2 ms. APD at level of 90% repolarisation in rat papillary muscle was 56+/-7 ms, at level of 50% repolarisation was 18+/-2 ms. APD at level of 90% repolarisation in ground squirrel atrium was 77+/-6, APD at level of 50% repolarisation was 38+/-6 ms. APD at level of 90% repolarisation in ground squirrel papillary muscle was 105+/-9 ms, APD at level of 50% repolarisation was 42+/-8 ms. Purine nucleotides and nucleoside, that were tested in work, except ADP-ribose, act as inhibitory factors and decrease APD both in rat and hibernating ground squirrel heart. ADP-ribose decreases APD in papillary muscle of hibernator but did not in its atrium. In ground squirrel atrium AMP and adenosine decrease APD at level of 50% repolarisation by 10+/-3% and 18+/-3% respectively. AMP and adenosine decrease APD at level of 90% repolarisation by 9+/-2% and 11+/-2% respectively. In ground squirrel papillary muscle ADP-ribose, AMP and adenosine decrease APD at level of 50% repolarisation by 26+/-8%, 23+/-8% and 26+/-7%. ADP-ribose, AMP and adenosine decrease APD at level of 90% repolarisation by 12+/-3%, 10+/-3%, 13+/-3%. Thus, decrease of APD in ground squirrel papillary muscle at level of 90% repolarisation during nucleotides and adenosine action was 2-2.5 fold less, than the rat.

  5. Interaction of the GTP-binding and GTPase-activating domains of ARD1 involves the effector region of the ADP-ribosylation factor domain.

    PubMed

    Vitale, N; Moss, J; Vaughan, M

    1997-02-14

    ADP-ribosylation factors (ARFs) are a family of approximately 20-kDa guanine nucleotide-binding proteins and members of the Ras superfamily, originally identified and purified by their ability to enhance the ADP-ribosyltransferase activity of cholera toxin and more recently recognized as critical participants in vesicular trafficking pathways and phospholipase D activation. ARD1 is a 64-kDa protein with an 18-kDa carboxyl-terminal ARF domain (p3) and a 46-kDa amino-terminal extension (p5) that is widely expressed in mammalian tissues. Using recombinant proteins, we showed that p5, the amino-terminal domain of ARD1, stimulates the GTPase activity of p3, the ARF domain, and appears to be the GTPase-activating protein (GAP) component of this bifunctional protein, whereas in other members of the Ras superfamily a separate GAP molecule interacts with the effector region of the GTP-binding protein. p5 stimulated the GTPase activity of p3 but not of ARF1, which differs from p3 in several amino acids in the effector domain. After substitution of 7 amino acids from p3 in the appropriate position in ARF1, the chimeric protein ARF1(39-45p3) bound to p5, which increased its GTPase activity. Specifically, after Gly40 and Thr45 in the putative effector domain of ARF1 were replaced with the equivalent Asp and Pro, respectively, from p3, functional interaction of the chimeric ARF1 with p5 was increased. Thus, Asp25 and Pro30 of the ARF domain (p3) of ARD1 are involved in its functional and physical interaction with the GTPase-activating (p5) domain of ARD1. After deletion of the amino-terminal 15 amino acids from ARF1(39-45p3), its interaction with p5 was essentially equivalent to that of p3, suggesting that the amino terminus of ARF1(39-45p3) may interfere with binding to p5. These results are consistent with the conclusion that the GAP domain of ARD1 interacts with the effector region of the ARF domain and thereby stimulates GTP hydrolysis.

  6. Cyclic AMP-dependent protein kinase interferes with GTP. gamma. S stimulated IP sub 3 formation in differentiated HL-60 cell membranes

    SciTech Connect

    Misaki, Naoyuki; Imaizumi, Taro; Watanabe, Yashuiro )

    1989-01-01

    The effects of addition of activated cyclic AMP-dependent protein kinase (PKA) on the function of islet-activating protein (IAP)-sensitive GTP-binding (G) protein were studied in the plasma membranes of {sup 3}H-inositol-labeled differentiated human leukemic (HL-60) cells. Pretreatment of the membranes with activated PKA in the presence of MgATP for 15 min. at 37{degree}C decreased GTP {gamma}S-stimulated inositol trisphosphate (IP{sub 3}) formation by about 30%, but had no influence on Ca{sup 2+}-stimulated IP{sub 3} formation. And autoradiography in the phosphorylation experiments of solubilized HL-60 cell membranes by PKA showed some {sup 32}P incorporated bands, and among them one of the major bands showed the migration at 40 kDa supporting that the G protein coupling with PI response was phosphorylated by PKA. These results showed that pretreatment with activated PKA inhibited the mediating function of the G protein between the fMLP receptor and phospholipase C by its phosphorylation.

  7. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    PubMed

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  8. Cyclen-based bismacrocycles for biological anion recognition. A potentiometric and NMR study of AMP, ADP and ATP nucleotide complexation.

    PubMed

    Delépine, Anne-Sophie; Tripier, Raphaël; Handel, Henri

    2008-05-21

    The behaviour of two cyclen-based bismacrocycles linked by aromatic spacers as receptors of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) anions is explored. The two bismacrocycles differ from one another by the nature of their spacers, which are respectively 1,3-dimethylbenzene (BMC), or 2,6-dimethylpyridine (BPyC). Potentiometric investigations supported by (1)H and (31)P NMR measurements were performed over a wide pH range to characterize and understand the driving forces implicated in the supramolecular assemblies. A comparison is also carried out with the results presented in this work and those obtained previously with these two ligands and inorganic phosphates. The comparison exhibits the importance of pi-stacking capability of the organic anions in the binding and hydrogen-bonding network. For BPyC, NMR studies highlight two coordination schemes depending on the protonation of the nitrogen atom of the pyridinyl spacer, which acts in acidic media as a supplementary anchoring point.

  9. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR).

  10. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress.

    PubMed

    Brunyanszki, Attila; Olah, Gabor; Coletta, Ciro; Szczesny, Bartosz; Szabo, Csaba

    2014-10-01

    We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.

  11. Kindlin-2 regulates hemostasis by controlling endothelial cell–surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism

    PubMed Central

    Pluskota, Elzbieta; Ma, Yi; Bledzka, Kamila M.; Bialkowska, Katarzyna; Soloviev, Dmitry A.; Szpak, Dorota; Podrez, Eugene A.; Fox, Paul L.; Hazen, Stanley L.; Dowling, James J.; Ma, Yan-Qing

    2013-01-01

    Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2+/− mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2+/− mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2+/− mice, kindlin-2+/− endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5′-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5′-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5′-nucleotidase (CD73) were increased twofold to threefold on kindlin-2+/− ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2+/− mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis. PMID:23896409

  12. Identification of a GTP-binding protein. cap alpha. subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    SciTech Connect

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.; Simon, M.I.

    1988-05-01

    Recent molecular cloning of cDNA for the ..cap alpha.. subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein ..cap alpha.. subunit, which they refer to as G/sub z/..cap alpha.., by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ ..cap alpha..-subunit cDNA. The deduced amino acid sequence of G/sub z/..cap alpha.. is 41-67% identical with those of other known G-protein ..cap alpha.. subunits. However, the 355-residue G/sub z/..cap alpha.. lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein ..cap alpha.. subunits. They suggest that G/sub z/..cap alpha.., which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems.

  13. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.

    PubMed

    Jana, Biman; Adkar, Bharat V; Biswas, Rajib; Bagchi, Biman

    2011-01-21

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  14. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  15. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi- derived COP-coated vesicles

    PubMed Central

    1993-01-01

    The cycle of nucleotide exchange and hydrolysis by a small GTP-binding protein, ADP-ribosylation factor (ARF), helps to provide vectoriality to vesicle transport. Coat assembly is triggered when ARF binds GTP, initiating transport vesicle budding, and coat disassembly is triggered when ARF hydrolyzes GTP, allowing the uncoated vesicle to fuse. PMID:8253837

  16. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP.

    PubMed

    Scholten, Arjen; Poh, Mee Kian; van Veen, Toon A B; van Breukelen, Bas; Vos, Marc A; Heck, Albert J R

    2006-06-01

    The cyclic nucleotide monophosphates cAMP and cGMP play an essential role in many signaling pathways. To analyze which proteins do interact with these second messenger molecules, we developed a chemical proteomics approach using cAMP and cGMP immobilized onto agarose beads, via flexible linkers in the 2- and 8-position of the nucleotide. Optimization of the affinity pull-down procedures in lysates of HEK293 cells revealed that a large variety of proteins could be pulled down specifically. Identification of these proteins by mass spectrometry showed that many of these proteins were indeed genuine cAMP or cGMP binding proteins. However, additionally many of the pulled-down proteins were more abundant AMP/ADP/ATP, GMP/GDP/GTP, or general DNA/RNA binding proteins. Therefore, a sequential elution protocol was developed, eluting proteins from the beads using solutions containing ADP, GDP, cGMP, and/or cAMP, respectively. Using this protocol, we were able to sequentially and selectively elute ADP, GDP, and DNA binding proteins. The fraction left on the beads was further enriched, for cAMP/cGMP binding proteins. Transferring this protocol to the analysis of the cGMP/cAMP "interactome" in rat heart ventricular tissue enabled the specific pull-down of known cAMP/cGMP binding proteins such as cAMP and cGMP dependent protein kinases PKA and PKG, several phosphodiesterases and 6 AKAPs, that interact with PKA. Among the latter class of proteins was the highly abundant sphingosine kinase type1-interating protein (SKIP), recently proposed to be a potential AKAP. Further bioinformatics analysis endorses that SKIP is indeed a genuine PKA interacting protein, which is highly abundant in heart ventricular tissue.

  17. The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor

    PubMed Central

    Losón, Oliver C.; Liu, Raymond; Rome, Michael E.; Meng, Shuxia; Kaiser, Jens T.; Shan, Shu-ou; Chan, David C.

    2014-01-01

    SUMMARY Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission. PMID:24508339

  18. The mitochondrial fission receptor MiD51 requires ADP as a cofactor.

    PubMed

    Losón, Oliver C; Liu, Raymond; Rome, Michael E; Meng, Shuxia; Kaiser, Jens T; Shan, Shu-ou; Chan, David C

    2014-03-04

    Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.

  19. Dynamic structure of membrane-anchored Arf•GTP

    PubMed Central

    Liu, Yizhou; Kahn, Richard A.; Prestegard, James H.

    2010-01-01

    Arfs (ADP ribosylation factors) are N-myristoylated GTP/GDP switch proteins playing key regulatory roles in vesicle transport in eukaryotic cells. ARFs execute their roles by anchoring to membrane surfaces where they interact with other proteins to initiate budding and maturation of transport vesicles. However, existing structures of Arf•GTP are limited to non-myristoylated and truncated forms with impaired membrane binding. We report a high resolution NMR structure for full-length myristoylated yeast (Saccharomyces cerevisiae) Arf1 in complex with a membrane mimic. The two domain structure, in which the myristoylated N-terminal helix is separated from the C-terminal domain by a flexible linker, suggests a level of adaptability in binding modes for the myriad of proteins with which Arf interacts, and allows predictions of specific lipid binding sites on some of these proteins. PMID:20601958

  20. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  1. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes.

    PubMed

    Paleotti, Olivia; Macia, Eric; Luton, Frederic; Klein, Stephanie; Partisani, Mariagrazia; Chardin, Pierre; Kirchhausen, Tom; Franco, Michel

    2005-06-03

    The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.

  2. AMP metabolism in the marine bacterium Beneckea natriegens.

    PubMed

    Pickard, M A; Whelihan, J A; Knowles, C J

    1980-05-01

    The catabolism of AMP by preparations from Beneckea natriegens has been reexamined. In the absence of ATP, cell-free extracts catabolized AMP via adenosine to inosine. When ATP was present, adenylate kinase converted AMP to ADP, lowering the rate of AMP catabolism. Particle-free supernatants (225,000 x g) metabolized AMP alone slowly, but adenylate kinase was active when ATP was added. Washed particulate fractions contained AMP nucleotidase activity which converted AMP to adenosine; in the presence of ATP, adenosine formation was reduced by residual adenylate kinase associated with the particulate fraction. IMP was not detected as a metabolite in these experiments.

  3. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations.

  4. ADP-ribosylation factor-like protein 4C (ARL4C) interacts with galectin-3 during oocyte development and embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-ribosylation factor-like protein 4 (ARL4) is a GTP-binding protein which belongs to the ADP-ribosylation factor protein (ARF) superfamily of small GTPases. ARL4 has been shown to be mainly related to the development of male germ cells and embryogenesis in mouse. To investigate the role of ARL4 i...

  5. Uncoupling of gamma-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins

    SciTech Connect

    Asano, T.; Ogasawara, N.

    1986-03-01

    Treatment of membranes from bovine cerebral cortex with N-ethylmaleimide (NEM) resulted in inhibition of gamma-aminobutyric acid (GABA) binding to GABAB receptors. The binding curve for increasing concentrations of agonist was shifted to the right by NEM treatment. Guanine nucleotide had little effect on the binding of GABA to NEM-treated membranes. The addition of purified GTP-binding proteins, which were the substrates of islet-activating protein (IAP), pertussis toxin, to the NEM-treated membranes caused a shift of the binding curve to the left, suggesting modification of GTP-binding proteins rather than receptors by NEM. The effect of NEM on two purified GTP-binding proteins, Gi (composed of three subunits with molecular weight of alpha, 41,000; beta, 35,000; gamma, 10,000) and Go (alpha, 39,000; beta, 35,000; gamma, 10,000) was studied. NEM did not significantly change guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding and GTPase activity of these two proteins. NEM-treated Gi and Go were not ADP-ribosylated by IAP and did not increase GABA binding to NEM-treated membranes. When alpha and beta gamma subunits were treated with NEM and then mixed with nontreated alpha and beta gamma to form Gi or Go, respectively, both oligomers with NEM-treated alpha-subunits lost their abilities to be IAP substrates and to couple to receptors. Results indicate that NEM uncoupled GTP-binding proteins from receptors by modifying alpha-subunits of GTP-binding proteins, and the site seemed to be on or near the site of ADP-ribosylation by IAP. When alpha and beta gamma subunits were treated with NEM and then mixed to form Gi or Go, GTP gamma S binding in the absence of Mg2+ and GTPase activity were changed, although they were not affected when oligomers were treated with NEM. Results suggest the existence of another sulfhydryl group which is protected from NEM by the association of subunits.

  6. Nuclear Ras2-GTP Controls Invasive Growth in Saccharomyces cerevisiae

    PubMed Central

    Broggi, Serena; Martegani, Enzo; Colombo, Sonia

    2013-01-01

    Using an eGFP-RBD3 probe, which specifically binds Ras-GTP, we recently showed that the fluorescent probe was localized to the plasma membrane and to the nucleus in wild type cells growing exponentially on glucose medium, indicating the presence of active Ras in these cellular compartments. To investigate the nuclear function of Ras-GTP, we generated a strain where Ras2 is fused to the nuclear export signal (NES) from the HIV virus, in order to exclude this protein from the nucleus. Our results show that nuclear active Ras2 is required for invasive growth development in haploid yeast, while the expression of the NES-Ras2 protein does not cause growth defects either on fermentable or non-fermentable carbon sources and does not influence protein kinase A (PKA) activity related phenotypes analysed. Moreover, we show that the cAMP/PKA pathway controls invasive growth influencing the localization of active Ras. In particular, we show that PKA activity plays a role in the localization of active Ras and influences the ability of the cells to invade the agar: high PKA activity leads to a predominant nuclear accumulation of active Ras and induces invasive growth, while low PKA activity leads to plasma membrane localization of active Ras and to a defective invasive growth phenotype. PMID:24244466

  7. Occurrence and Ecological Significance of GTP in the Ocean and in Microbial Cells

    PubMed Central

    Karl, D. M.

    1978-01-01

    A comparison between the ATP concentrations based on peak height light emission values (0 to 3 s) and integrated light flux determinations (15 to 75 s) for a variety of seawater samples revealed that the integrated method of light detection consistently yielded higher ATP concentrations, ranging from 1.38 to 2.35 times larger than the corresponding peak ATP values. A significant correlation (r = 0.923) was observed for a plot of ΔADP (i.e., integrated ATP - peak ATP) versus GTP + UTP, suggesting that the analytical interference on the ATP assay was the result of the presence of non-adenine nucleotide triphosphates. Size-fractionation studies revealed an enrichment of the non-adenine nucleotide triphosphates, relative to ATP, in the smallest size fraction analyzed (<10 μm). Investigations were conducted with 20 species of unicellular marine algae to determine their intracellular nucleotide concentrations, and these determinations were compared to the levels measured in lab cultures of the marine bacterium Serratia marinorubra. These results indicated that the intracellular GTP/ATP ratios in S. marinorubra increase in direct proportion to the rate of cell growth, and that the GTP/ATP ratios in bacteria are much greater than in growing algae, presumably due to the differences in rates of cellular biosynthesis. It is concluded that quantitative determinations of GTP/ATP ratios in environmental sample extracts may be useful for measuring microbial growth. PMID:16345313

  8. Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance

    PubMed Central

    1992-01-01

    Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was

  9. ADP's ABCs of Training

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company's core competence is processing data, it is sometimes easy to lose sight of the obvious--the information right under its nose. In the case of Automatic Data Processing, Inc. (ADP), a business outsourcing company specializing in human resources, payroll, tax, and benefits administrations solutions, that is not a problem. Through…

  10. ADP-ribosylation of transducin by pertussis toxin

    SciTech Connect

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-11-05

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is (TSP)ADP-ribosylated by pertussis toxin and (TSP)NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and TS kDa. The amino terminus of both 38- and TS-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The TS-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of (TSP)ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased (TSP)ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed (TSP)ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma.

  11. Defense ADP Acquisition Study.

    DTIC Science & Technology

    1981-11-30

    management issues. It also provides broad insight into the nature and causes of problems in the ADP acquisition process and offers several strategies ... strategy planning fails to provide the appropriate mission perspective. Curfent top-down strategic planning does not pro- vide the necessary guidance for the...recommendations presented here are more appropriately labeled strategies for change, rather than specific actions for improvement. (1) There Must Be a

  12. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  13. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI)

    PubMed Central

    1993-01-01

    Evidence is accumulating that the rho family, a member of the ras p21- related small GTP-binding protein superfamily, regulates cell morphology, cell motility, and smooth muscle contraction through the actomyosin system. The actomyosin system is also known to be essential for cytoplasmic division of cells (cytokinesis). In this study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein, named rho GDI, its stimulatory GDP/GTP exchange protein, named smg GDS, and botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in the cytoplasmic division using Xenopus embryos. The sperm-induced cytoplasmic division of Xenopus embryos was not affected by microinjection into the embryos of either smg GDS or the guanosine-5'-(3-O-thio)triphosphate (GTP gamma S)-bound form of rhoA p21, one member of the rho family, but completely inhibited by microinjection of rho GDI or C3. Under these conditions, nuclear division occurred normally but the furrow formation, which was induced by the contractile ring consisting of actomyosin just beneath the plasma membrane, was impaired. Comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 prevented the rho GDI action. Moreover, the sperm-induced cytoplasmic division of Xenopus embryos was inhibited by microinjection into the embryos of the rhoA p21 pre-ADP- ribosylated by C3 which might serve as a dominant negative inhibitor of endogenous rho p21. These results indicate that rho p21 together with its regulatory proteins regulates the cytoplasmic division through the actomyosin system. PMID:8436590

  14. ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment A/sub 1/

    SciTech Connect

    Gill, D.M.; Coburn, J.

    1987-10-06

    The authors have clarified relationships between cholera toxin, cholera toxin substrates, a membrane protein S that is required for toxin activity, and a soluble protein CF that is needed for the function of S. The toxin has little intrinsic ability to catalyze ADP-ribosylations unless it encounters the active form of the S protein, which is S liganded to GTP or to a GTP analogue. In the presence of CF, S x GTP forms readily, though reversibly, but a more permanent active species, S-guanosine 5'-O-(3-thiotriphosphate) (S x GTP..gamma..S), forms over a period of 10-15 min at 37/sup 0/C. Both guanosine 5'-O-(2-thiodiphosphate) and GTP block this quasi-permanent activation. Some S x GTP..gamma..S forms in membranes that are exposed to CF alone and then to GTP..gamma..S, with a wash in between, and it is possible that CF facilitates a G nucleotide exchange. S x GTP..gamma..S dissolved by nonionic detergents persists in solution and can be used to support the ADP-ribosylation of nucleotide-free substrates. In this circumstance, added guanyl nucleotides have no further effect. This active form of S is unstable, especially when heated, but the thermal inactivation above 45/sup 0/C is decreased by GTP..gamma..S. Active S is required equally for the ADP-ribosylation of all of cholera toxin's protein substrates, regardless of whether they bind GTP or not. They suggest that active S interacts directly with the enzymic A/sub 1/ fragments of cholera toxin and not with any toxin substrate. The activation and activity of S are independent of the state, or even the presence, of adenylate cyclase and seem to be involved with the cyclase system only via cholera toxin. S is apparently not related by function to certain other GTP binding proteins, including p21/sup ras/, and appears to be a new GTP binding protein whose physiologic role remains to be identified.

  15. GTP cyclohydrolase I feedback regulatory protein-dependent and -independent inhibitors of GTP cyclohydrolase I.

    PubMed

    Yoneyama, T; Wilson, L M; Hatakeyama, K

    2001-04-01

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates the feedback inhibition of GTP cyclohydrolase I activity by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) through protein complex formation. Since guanine and BH4 have a common pyrimidine ring structure, we examined the inhibitory effect of guanine and its analogs on the enzyme activity. Guanine, 8-hydroxyguanine, 8-methylguanine, and 8-bromoguanine inhibited the enzyme activity in a GFRP-dependent and pH-dependent manner and induced complex formation between GTP cyclohydrolase I and GFRP. The type of inhibition by this group is a mixed type. All these properties were shared with BH4. In striking contrast, inhibition by 8-azaguanine and 8-mercaptoguanine was GFRP-independent and pH-independent. The type of inhibition by 8-azaguanine and 8-mercaptoguanine was a competitive type. The two compounds did not induce complex formation between the enzyme and GFRP. These results demonstrate that guanine compounds of the first group bind to the BH4-binding site of the GTP cyclohydrolase I/GFRP complex, whereas 8-azaguanine and 8-mercaptoguanine bind to the active site of the enzyme. Finally, the possible implications in Lesch-Nyhan syndrome and Parkinson diseases of the inhibition of GTP cyclohydrolase I by guanine and 8-hydroxyguanine are discussed.

  16. Enhancement of β-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals

    PubMed Central

    Li, Chun-Chun; Le, Kang; Kato, Jiro; Moss, Joel; Vaughan, Martha

    2016-01-01

    Multifunctional β-catenin, with critical roles in both cell–cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with β-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with β-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on β-catenin activation. Levels of PKA-phosphorylated β-catenin S675 and β-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of β-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence. PMID:27162341

  17. Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP.

    PubMed

    Yoneyama, T; Hatakeyama, K

    1998-08-07

    The activity of GTP cyclohydrolase I is inhibited by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and stimulated by phenylalanine through complex formation with GTP cyclohydrolase I feedback regulatory protein (GFRP). Gel filtration experiments as well as enzyme activity measurements showed that the number of subunits of GFRP in both the inhibitory and stimulatory complexes is equal to that of GTP cyclohydrolase I. Because GFRP is a pentamer and GTP cyclohydrolase I was shown here by cross-linking experiments to be a decamer, the results indicate that two molecules of a pentameric GFRP associate with one molecule of GTP cyclohydrolase I. Gel filtration analysis suggested that the complex has a radius of gyration similar to that of the enzyme itself. These observations support our model that one molecule of GFRP binds to each of the two outer faces of the torus-shaped GTP cyclohydrolase I. For formation of the inhibitory protein complex, both BH4 and GTP were required; the median effective concentrations of BH4 and GTP were 2 and 26 microM, respectively. BH4 was the most potent of biopterins with different oxidative states. Among GTP analogues, dGTP as well as guanosine 5'-O-(3'-thiotriphosphate) exhibited similar inducibility compared with GTP, whereas other nucleotide triphosphates had no effect. On the other hand, phenylalanine alone was enough for formation of the stimulatory protein complex, and positive cooperativity was found for the phenylalanine-induced protein complex formation. Phenylalanine was the most potent of the aromatic amino acids.

  18. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  19. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase.

    PubMed

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.

  20. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  1. Mutants of PC12 cells with altered cyclic AMP responses

    SciTech Connect

    Block, T.; Kon, C.; Breckenridge, B.M.

    1984-10-01

    PCl2 cells, derived from a rat pheochromocytoma, were mutagenized and selected in media containing agents known to elevate intracellular concentrations of cyclic AMP (cAMP). More than 40 clones were isolated by selection with cholera toxin or 2-chloroadenosine or both. The variants that were deficient in accumulating cAMP were obtained by using a protocol in which 1 ..mu..m 8-bromo-cAMP was included in addition to the agonist. Certain of these variants were partially characterized with respect to the site of altered cAMP metabolism. The profiles of adenylate cyclase activity responsiveness of certain variants to guanosine-5'-(BETA,..gamma..-imido) triphosphate and to forskolin resembled those of UNC and cyc phenotypes of S49 lymphoma cells, which are functionally deficient in the GTP-sensitive coupling protein, N/sub s/. Other variants were characterized by increased cyclic nucleotide phosphodiesterase activity at low substrate concentration. Diverse morphological traits were observed among the variants, but it was not possible to assign them to a particular cAMP phenotype. Two revertants of a PCl2 mutant were isolated and observed to have regained a cellular cAMP response to 2-chloroadenosine and to forskolin. It is hoped that these PCl2 mutants will have utility for defining cAMP-mediated functions, including any links to the action of nerve growth factor, in cells derived from the neural crest.

  2. Tyr39 of ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis.

    PubMed

    Brucker, Sven; Gerwert, Klaus; Kötting, Carsten

    2010-08-06

    Ran is a member of the superfamily of small GTPases, which cycle between a GTP-bound "on" and a GDP-bound "off" state. Ran regulates nuclear transport. In order to maintain a gradient of excess Ran.GTP within the nucleoplasm and excess Ran.GDP within the cytoplasm, the hydrolysis of Ran.GTP in the nucleoplasm should be prevented, whereas in the cytoplasm, hydrolysis is catalyzed by Ran.GAP (GTPase-activating protein). In this article, we investigate the GTPase reaction of Ran in complex with its binding protein Ran-binding protein 1 by time-resolved Fourier transform infrared spectroscopy: We show that the slowdown of the intrinsic hydrolysis of RanGTP is accomplished by tyrosine 39, which is probably misplacing the attacking water. We monitored the interaction of Ran with RanGAP, which reveals two reactions steps. By isotopic labeling of Ran and RanGAP, we were able to assign the first step to a small conformational change within the catalytic site. The following bond breakage is the rate-limiting step of hydrolysis. An intermediate of protein-bound phosphate as found for Ras or Rap systems is kinetically unresolved. This demonstrates that despite the structural similarity among the G-domain of the GTPases, different reaction mechanisms are utilized.

  3. Structural basis unifying diverse GTP hydrolysis mechanisms.

    PubMed

    Anand, Baskaran; Majumdar, Soneya; Prakash, Balaji

    2013-02-12

    Central to biological processes is the regulation rendered by GTPases. Until recently, the GTP hydrolysis mechanism, exemplified by Ras-family (and G-α) GTPases, was thought to be universal. This mechanism utilizes a conserved catalytic Gln supplied "in cis" from the GTPase and an arginine finger "in trans" from a GAP (GTPase activating protein) to stabilize the transition state. However, intriguingly different mechanisms are operative in structurally similar GTPases. MnmE and dynamin like cation-dependent GTPases lack the catalytic Gln and instead employ a Glu/Asp/Ser situated elsewhere and in place of the arginine finger use a K(+) or Na(+) ion. In contrast, Rab33 possesses the Gln but does not utilize it for catalysis; instead, the GAP supplies both a catalytic Gln and an arginine finger in trans. Deciphering the underlying principles that unify seemingly unrelated mechanisms is central to understanding how diverse mechanisms evolve. Here, we recognize that steric hindrance between active site residues is a criterion governing the mechanism employed by a given GTPase. The Arf-ArfGAP structure is testimony to this concept of spatial (in)compatibility of active site residues. This understanding allows us to predict an as yet unreported hydrolysis mechanism and clarifies unexplained observations about catalysis by Rab11 and the need for HAS-GTPases to employ a different mechanism. This understanding would be valuable for experiments in which abolishing GTP hydrolysis or generating constitutively active forms of a GTPase is important.

  4. Biochemical and molecular characterization of barley plastidial ADP-glucose transporter (HvBT1).

    PubMed

    Soliman, Atta; Ayele, Belay T; Daayf, Fouad

    2014-01-01

    In cereals, ADP-glucose transporter protein plays an important role in starch biosynthesis. It acts as a main gate for the transport of ADP-glucose, the main precursor for starch biosynthesis during grain filling, from the cytosol into the amyloplasts of endospermic cells. In this study, we have shed some light on the molecular and biochemical characteristics of barley plastidial ADP-glucose transporter, HvBT1. Phylogenetic analysis of several BT1 homologues revealed that BT1 homologues are divided into two distinct groups. The HvBT1 is assigned to the group that represents BT homologues from monocotyledonous species. Some members of this group mainly work as nucleotide sugar transporters. Southern blot analysis showed the presence of a single copy of HvBT1 in barley genome. Gene expression analysis indicated that HvBT1 is mainly expressed in endospermic cells during grain filling; however, low level of its expression was detected in the autotrophic tissues, suggesting the possible role of HvBT1 in autotrophic tissues. The cellular and subcellular localization of HvBT1 provided additional evidence that HvBT1 targets the amyloplast membrane of the endospermic cells. Biochemical characterization of HvBT1 using E. coli system revealed that HvBT1 is able to transport ADP-glucose into E. coli cells with an affinity of 614.5 µM and in counter exchange of ADP with an affinity of 334.7 µM. The study also showed that AMP is another possible exchange substrate. The effect of non-labeled ADP-glucose and ADP on the uptake rate of [α-32P] ADP-glucose indicated the substrate specificity of HvBT1 for ADP-glucose and ADP.

  5. Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site.

    PubMed

    Jang, Tae-Ho; Lee, Dong-Sup; Choi, Kihang; Jeong, Eui Man; Kim, In-Gyu; Kim, Young Whan; Chun, Jung Nyeo; Jeon, Ju-Hong; Park, Hyun Ho

    2014-01-01

    Transglutaminase2 (TG2) is a multi-functional protein involved in various cellular processes, including apoptosis, differentiation, wound healing, and angiogenesis. The malfunction of TG2 causes many human disease including inflammatory disease, celiac disease, neurodegenerative diseases, tissue fibrosis, and cancers. Protein cross-linking activity, which is representative of TG2, is activated by calcium ions and suppressed by GTP. Here, we elucidated the structure of TG2 in complex with its endogenous inhibitor, GTP. Our structure showed why GTP is the optimal nucleotide for interacting with and inhibiting TG2. In addition, sequence comparison provided information describing the evolutionary scenario of GTP usage for controlling the activity of TG2.

  6. Ligand binding to the inhibitory and stimulatory GTP cyclohydrolase I/GTP cyclohydrolase I feedback regulatory protein complexes.

    PubMed

    Yoneyama, T; Hatakeyama, K

    2001-04-01

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.

  7. Proteins that interact with GTP during sporulation of Bacillus subtilis

    SciTech Connect

    Mitchell, C.; Vary, J.C. )

    1989-06-01

    During sporulation of Bacillus subtilis, several proteins were shown to interact with GTP in specific ways. UV light was used to cross-link ({alpha}-{sup 32}P)GTP to proteins in cell extracts at different stages of growth. After electrophoresis, 11 bands of radioactivity were found in vegetative cells, 4 more appeared during sporulation, and only 9 remained in mature spores. Based on the labeling pattern with or without UV light to cross-link either ({alpha}-{sup 32}P)GTP or ({gamma}-{sup 32}P)GTP, 11 bands of radioactivity were apparent guanine nucleotide-binding proteins, and 5 bands appeared to be phosphorylated and/or guanylated. Similar results were found with Bacillus megaterium. Assuming the GTP might be a type of signal for sporulation, it could interact with and regulate proteins by at least three mechanisms.

  8. Arginine-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes.

    PubMed Central

    Donnelly, L E; Rendell, N B; Murray, S; Allport, J R; Lo, G; Kefalas, P; Taylor, G W; MacDermot, J

    1996-01-01

    An Arg-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes (PMNs) was confirmed by the use of diethylamino-(benzylidineamino)guanidine (DEA-BAG) as an ADP-ribose acceptor. Two separate HPLC systems were used to separate ADP-ribosyl-DEA-BAG from reaction mixtures, and its presence was confirmed by electrospray mass spectrometry. ADP-ribosyl-DEA-BAG was produced in the presence of PMNs, but not in their absence. Incubation of DEA-BAG with ADP-ribose (0.1-10 mM) did not yield ADP-ribosyl-DEA-BAG, which indicates that ADP-ribosyl-DEA-BAG formed in the presence of PMNs was not simply a product of a reaction between DEA-BAG and free ADP-ribose, due possibly to the hydrolysis of NAD+ by an NAD+ glycohydrolase. The assay of mono(ADP-ribosyl)transferase with agmatine as a substrate was modified for intact PMNs, and the activity was found to be approx. 50-fold lower than that in rabbit cardiac membranes. The Km of the enzyme for NAD+ was 100.1 30.4 microM and the Vmax 1.4 0.2 pmol of ADP-ribosylagmatine/h per 10(6) cells. The enzyme is likely to be linked to the cell surface via a glycosylphosphatidylinositol anchor, since incubation of intact PMNs with phosphoinositol-specific phospholipase C (PI-PLC) led to a 98% decrease in mono(ADP-ribosyl)transferase activity in the cells. Cell surface proteins were labelled after exposure of intact PMNs to [32P]NAD+. Their molecular masses were 79, 67, 46, 36 and 26 kDa. The time course for labelling was non-linear under these conditions over a period of 4 h. The labelled products were identified as mono(ADP-ribosyl)ated proteins by hydrolysis with snake venom phosphodiesterase to yield 5'-AMP. PMID:8615841

  9. Blue News Update: BODIPY-GTP Binds to the Blue-Light Receptor YtvA While GTP Does Not

    PubMed Central

    Schmieder, Peter

    2012-01-01

    Light is an important environmental factor for almost all organisms. It is mainly used as an energy source but it is also a key factor for the regulation of multiple cellular functions. Light as the extracellular stimulus is thereby converted into an intracellular signal by photoreceptors that act as signal transducers. The blue-light receptor YtvA, a bacterial counterpart of plant phototropins, is involved in the stress response of Bacillus subtilis. The mechanism behind its activation, however, remains unknown. It was suggested based on fluorescence spectroscopic studies that YtvA function involves GTP binding and that this interaction is altered by absorption of light. We have investigated this interaction by several biophysical methods and show here using fluorescence spectroscopy, ITC titrations, and three NMR spectroscopic assays that while YtvA interacts with BODIPY-GTP as a fluorescent GTP analogue originally used for the detection of GTP binding, it does not bind GTP. PMID:22247770

  10. Cyclic AMP in prokaryotes.

    PubMed Central

    Botsford, J L; Harman, J G

    1992-01-01

    Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922

  11. Disaster Planning for Navy ADP Systems.

    DTIC Science & Technology

    1983-06-01

    including contingency planning . The National Bureau of Standards enhanced FIPS publication 31 in 1981 with its Guidelines for ADP Contingency Planning ... National Bureau of Standards, Federal Information Processing Standards Publication 87, Guidelines for ADP Contingency Planning , 27 March 1981. 62 14... Planning , Contingency , ADP, Department of the Navy, Risk Analysis 2. AGSTAC? ;= a i bsie -f tem. eseeem d Idmu~r Wy 68ek semle.) ADP systems have become

  12. Identification of ATP diphosphohydrolase activity in human term placenta using a novel assay for AMP.

    PubMed

    Papamarcaki, T; Tsolas, O

    1990-09-03

    Human term placenta contains an ATP diphosphohydrolase activity which hydrolyses ATP to ADP and inorganic phosphate and ADP to AMP and a second mole of inorganic phosphate. The activity has a pH optimum between 8.0 and 8.5. Magnesium or calcium ions are required for maximum activity. Other nucleoside phosphates, p-nitrophenyl phosphate or sodium pyrophosphate, are not hydrolysed. The activity is not due to ATPases, or to myokinase, as determined by the use of inhibitors. NaF and NaN3 were found to inhibit strongly the activity thus identifying it as an ATP diphosphohydrolase. A sensitive enzymatic assay for measurement of AMP, one of the products of the reaction, was established, based on the strong inhibition of muscle fructose 1,6-biphosphatase by AMP. The range of the assay was 0.05-0.8 microM AMP. ATP diphosphohydrolase was found to have a rate of AMP production from ADP twice the rate from ATP. Under the same conditions, the assay for Pi release, on the other hand, gave velocities similar to each other for the two substrates. The activity appears to be identical to the ADP-hydrolysing activity in placenta reported by others.

  13. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  14. Serine214 of Ras2p plays a role in the feedback regulation of the Ras-cAMP pathway in the yeast Saccharomyces cerevisiae.

    PubMed

    Xiaojia, Bai; Jian, Dong

    2010-06-03

    In the yeast Saccharomyces cerevisiae, Ras proteins are essential for the Ras-cAMP signaling pathway. A serine to alanine substitution at position 214 in the yeast Ras2p resulted in enhanced sensitivity to heat shock, reduced levels of storage glycogen and enhanced both basal cAMP level and glucose-induced cAMP signal. Further work showed that Ras2(Ala214)p had a higher GTP-binding capability than wild type Ras2p. These results suggested that serine 214 of Ras2p plays a role in the feedback regulation of the Ras-cAMP pathway.

  15. Negative feedback of extracellular ADP on ATP release in goldfish hepatocytes: a theoretical study.

    PubMed

    Chara, Osvaldo; Pafundo, Diego E; Schwarzbaum, Pablo J

    2010-06-21

    A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008]. The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback). The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release.

  16. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ASSISTANCE, MEDICAL ASSISTANCE AND STATE CHILDREN'S HEALTH INSURANCE PROGRAMS) Automatic Data Processing... appropriate ADP security requirements based on recognized industry standards or standards governing...

  17. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Physical security of ADP resources; (B) Equipment security to protect equipment from theft and unauthorized use; (C) Software and data security; (D) Telecommunications security; (E) Personnel security;...

  18. Transcriptome Analysis of Escherichia coli during dGTP Starvation

    PubMed Central

    Itsko, Mark

    2016-01-01

    ABSTRACT Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growing optA1 gpt cells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to derepress the de novo purine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including the rpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus. IMPORTANCE Control of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the

  19. Myristoylation of an inhibitory GTP-binding protein. alpha. subunit is essential for its membrane attachment

    SciTech Connect

    Jones, T.L.Z.; Simonds, W.F.; Merendino, J.J. Jr.; Brann, M.R.; Spiegel, A.M. )

    1990-01-01

    The authors transfected COS cells with cDNAs for the {alpha} subunits of stimulatory and inhibitory GTP-binding proteins, {alpha}{sub s} and {alpha}{sub i1}, respectively, and immunoprecipitated the metabolically labeled products with specific peptide antibodies. Cells were separated into particulate and soluble fractions before immunoprecipitation; ({sup 35}S)methionine-labeled {alpha}{sub s} and {alpha}{sub i} were both found primarily in the particulate fraction. ({sup 3}H)Myristate was incorporated into endogenous and transfected {alpha}{sub i} but could not be detected in {alpha}{sub s} even when it was overexpressed. They converted the second residue, glycine, of {alpha}{sub i1} into alanine by site-directed mutagenesis. Upon transfection of the mutant {alpha}{sub i1} into COS cells, the ({sup 35}S)methionine-labeled product was localized primarily to the soluble fraction, and, also unlike normal {alpha}{sub i1}, the mutant failed to incorporate ({sup 3}H)myristate. The unmyristoylated mutant {alpha}{sub i1} could still interact with the {beta}-{gamma} complex, since purified {beta}{gamma} subunits promoted pertussis toxin-catalyzed ADP-ribosylation of both the normal and mutant {alpha}{sub i1} subunits. These results indicate that myristoylation is critical for membrane attachment of {alpha}{sub i} but not {alpha}{sub s} subunits.

  20. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    PubMed

    Taymans, Jean-Marc; Vancraenenbroeck, Renée; Ollikainen, Petri; Beilina, Alexandra; Lobbestael, Evy; De Maeyer, Marc; Baekelandt, Veerle; Cookson, Mark R

    2011-01-01

    Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  1. AMPED Program Overview

    ScienceCinema

    Gur, Ilan

    2016-07-12

    An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.

  2. AMPED Program Overview

    SciTech Connect

    Gur, Ilan

    2014-03-04

    An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.

  3. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells.

    PubMed

    Chardin, P; Boquet, P; Madaule, P; Popoff, M R; Rubin, E J; Gill, D M

    1989-04-01

    Clostridium botulinum C3 is a recently discovered exoenzyme that ADP-ribosylates a eukaryotic GTP-binding protein of the ras superfamily. We show now that the bacterially-expressed product of the human rhoC gene is ADP-ribosylated by C3 and corresponds in size, charge and behavior to the dominant C3 substrate of eukaryotic cells. C3 treatment of Vero cells results in the disappearance of microfilaments and in actinomorphic shape changes without any apparent direct effect upon actin. Thus the ADP-ribosylation of a rho protein seems to be responsible for microfilament disassembly and we infer that the unmodified form of a rho protein may be involved in cytoskeletal control.

  4. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii.

    PubMed

    Pasquale, S M; Goodenough, U W

    1987-11-01

    When Chlamydomonas reinhardtii gametes of opposite mating type are mixed together, they adhere by a flagella-mediated agglutination that triggers three rapid mating responses: flagellar tip activation, cell wall loss, and mating structure activation accompanied by actin polymerization. Here we show that a transient 10-fold elevation of intracellular cAMP levels is also triggered by sexual agglutination. We further show that gametes of a single mating type can be induced to undergo all three mating responses when presented with exogenous dibutyryl-cAMP (db-cAMP). These events are also induced by cyclic nucleotide phosphodiesterase inhibitors, which elevate endogenous cAMP levels and act synergistically with db-cAMP. Non-agglutinating mutants of opposite mating type will fuse efficiently in the presence of db-cAMP. No activation of mating events is induced by calcium plus ionophores, 8-bromo-cGMP, dibutyryl-cGMP, nigericin at alkaline pH, phorbol esters, or forskolin. H-8, an inhibitor of cyclic nucleotide-dependent protein kinase, inhibits mating events in agglutinating cells and antagonizes the effects of cAMP on non-agglutinating cells. Adenylate cyclase activity was detected in both the gamete cell body and flagella, with the highest specific activity displayed in flagellar membrane fractions. The flagellar membrane adenylate cyclase is preferentially stimulated by Mn++, unresponsive to NaF, GTP, GTP gamma S, AlF4-, and forskolin, and is inhibited by trifluoperazine. Cyclic nucleotide phosphodiesterase activity is also present in flagella. Our observations indicate that cAMP is a sufficient initial signal for all of the known mating reaction events in C. reinhardtii, and suggest that the flagellar cyclase and/or phosphodiesterase may be important loci of control for the agglutination-stimulated production of this signal.

  5. Characterization of transducin from bovine retinal rod outer segments: mechanism and effects of cholera toxin-catalyzed adp-ribosylation

    SciTech Connect

    Navon, S.E.; Fung, B.K.K.

    1984-05-25

    Transducin, a guanine nucleotide-binding protein consisting of two subunits (T/sub ..cap alpha../ and T/sub ..beta gamma../), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T/sub ..cap alpha../ subunit is an activator of the phosphodiesterase, and the function of the T/sub ..beta gamma../ subunit is to physically link T/sub ..cap alpha../ with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T/sub ..cap alpha../ has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T/sub ..cap alpha../ with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(..beta..,..gamma..-im ido)triphosphate (Gpp(NH)p) and T/sub ..beta gamma../ were present at concentrations equal to that of T/sub ..cap alpha../ and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T/sub ..cap alpha../xGpp(NH)p, T/sub ..beta gamma../, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T/sub ..cap alpha../ coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 x 10/sup -3//s, which was 22-fold slower than the rate for the unmodified transducin. 30 references, 9 figures, 1 table.

  6. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation.

    PubMed

    Zhang, Ya-Lin; Guo, Huiling; Zhang, Chen-Song; Lin, Shu-Yong; Yin, Zhenyu; Peng, Yongying; Luo, Hui; Shi, Yuzhe; Lian, Guili; Zhang, Cixiong; Li, Mengqi; Ye, Zhiyun; Ye, Jing; Han, Jiahuai; Li, Peng; Wu, Jia-Wei; Lin, Sheng-Cai

    2013-10-01

    The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.

  7. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis.

    PubMed

    Sprang, Stephen R

    2016-08-01

    This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016.

  8. The Structural and Functional Characterization of Mammalian ADP-dependent Glucokinase*

    PubMed Central

    Richter, Jan P.; Goroncy, Alexander K.; Ronimus, Ron S.; Sutherland-Smith, Andrew J.

    2016-01-01

    The enzyme-catalyzed phosphorylation of glucose to glucose-6-phosphate is a reaction central to the metabolism of all life. ADP-dependent glucokinase (ADPGK) catalyzes glucose-6-phosphate production, utilizing ADP as a phosphoryl donor in contrast to the more well characterized ATP-requiring hexokinases. ADPGK is found in Archaea and metazoa; in Archaea, ADPGK participates in a glycolytic role, but a function in most eukaryotic cell types remains unknown. We have determined structures of the eukaryotic ADPGK revealing a ribokinase-like tertiary fold similar to archaeal orthologues but with significant differences in some secondary structural elements. Both the unliganded and the AMP-bound ADPGK structures are in the “open” conformation. The structures reveal the presence of a disulfide bond between conserved cysteines that is positioned at the nucleotide-binding loop of eukaryotic ADPGK. The AMP-bound ADPGK structure defines the nucleotide-binding site with one of the disulfide bond cysteines coordinating the AMP with its main chain atoms, a nucleotide-binding motif that appears unique to eukaryotic ADPGKs. Key amino acids at the active site are structurally conserved between mammalian and archaeal ADPGK, and site-directed mutagenesis has confirmed residues essential for enzymatic activity. ADPGK is substrate inhibited by high glucose concentration and shows high specificity for glucose, with no activity for other sugars, as determined by NMR spectroscopy, including 2-deoxyglucose, the glucose analogue used for tumor detection by positron emission tomography. PMID:26555263

  9. Molecular Dynamics Study of Hsp90 and ADP: Hydrogen Bond Analysis for ADP Dissociation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    The contacts between the N-terminal domain of heat shock protein 90 (N-Hsp90) and ADP involve both direct and water-mediated hydrogen bonds in X-ray crystallographic structure. We perform all-atom molecular dynamics (MD) simulations of N-Hsp90 and ADP to investigate the changes of the hydrogen bond lengths during ADP dissociation. We show the difference between the hydrogen bonds in the crystal structure and MD simulations. Moreover, the N6 group of ADP does not contact with the Cγ group of Asp93, and the hydrogen bonds between Asn51 side chain and ADP are stable in the early step of ADP dissociation.

  10. The pebble GTP exchange factor and the control of cytokinesis.

    PubMed

    O'Keefe, L; Somers, W G; Harley, A; Saint, R

    2001-12-01

    Several G proteins of the Rho family have been shown to be required for cytokinesis. The activity of these proteins is regulated by GTP exchange factors (GEFs), which stimulate GDP/GTP exchange, and by GTPase activating proteins (GAPs), which suppress activity by stimulating the intrinsic GTPase activity. The role of Rho family members during cytokinesis is likely to be determined by their spatial and temporal interactions with these factors. Here we focus on the role of the pebble (pbl) gene of Drosophila melanogaster, a RhoGEF that is required for cytokinesis. We summarise the evidence that the primary target of PBL is Rho1 and describe genetic approaches to elucidating the function of PBL and identifying other components of the PBL-activated Rho signalling pathway.

  11. Immunochemical similarity of GTP-binding proteins from different systems

    SciTech Connect

    Kalinina, S.N.

    1986-06-20

    It was found that antibodies against the GTP-binding proteins of bovine retinal photoreceptor membranes blocked the inhibitory effect of estradiol on phosphodiesterase from rat and human uterine cytosol and prevented the cumulative effect of catecholamines and guanylyl-5'-imidodiphosphate on rat skeletal muscle adenylate cyclase. It was established by means of double radial immunodiffusion that these antibodies form a precipitating complex with purified bovine brain tubulin as well as with retinal preparations obtained from eyes of the bull, pig, rat, frog, some species of fish, and one reptile species. Bands of precipitation were not observed with these antibodies when retinal preparations from invertebrates (squid and octopus) were used as the antigens. The antibodies obtained interacted with the ..cap alpha..- and ..beta..-subunits of GTP-binding proteins from bovine retinal photoreceptor membranes.

  12. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred...

  13. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.

    PubMed

    Pietropaolo, Adriana; Pierri, Ciro Leonardo; Palmieri, Ferdinando; Klingenberg, Martin

    2016-06-01

    The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC.

  14. Poly(ADP-ribosyl)ation in carcinogenesis.

    PubMed

    Masutani, Mitsuko; Fujimori, Hiroaki

    2013-12-01

    Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.

  15. Kinesin ATPase: Rate-Limiting ADP Release

    NASA Astrophysics Data System (ADS)

    Hackney, David D.

    1988-09-01

    The ATPase rate of kinesin isolated from bovine brain by the method of S. A. Kuznetsov and V. I. Gelfand [(1986) Proc. Natl. Acad. Sci. USA 83, 8530-8534)] is stimulated 1000-fold by interaction with tubulin (turnover rate per 120-kDa peptide increases from ≈ 0.009 sec-1 to 9 sec-1). The tubulin-stimulated reaction exhibits no extra incorporation of water-derived oxygens over a wide range of ATP and tubulin concentrations, indicating that Pi release is faster than the reversal of hydrolysis. ADP release, however, is slow for the basal reaction and its release is rate limiting as indicated by the very tight ADP binding (Ki < 5 nM), the retention of a stoichiometric level of bound ADP through ion-exchange chromatography and dialysis, and the reversible labeling of a bound ADP by [14C]ATP at the steady-state ATPase rate as shown by centrifuge gel filtration and inaccessibility to pyruvate kinase. Tubulin accelerates the release of the bound ADP consistent with its activation of the net ATPase reaction. The detailed kinetics of ADP release in the presence of tubulin are biphasic indicating apparent heterogeneity with a fraction of the kinesin active sites being unaffected by tubulin.

  16. Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I

    PubMed Central

    2014-01-01

    Background Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. Methods Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. Results Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. Conclusions

  17. Distribution of adenylate cyclase and GTP-binding proteins in hepatic plasma membranes.

    PubMed

    Dixon, B S; Sutherland, E; Alexander, A; Nibel, D; Simon, F R

    1993-10-01

    Hepatic membrane subfractions prepared from control rats demonstrated forskolin (FSK)-stimulated adenylate cyclase activity in the basolateral (sinusoidal) but not apical (canalicular) plasma membrane. After bile duct ligation (BDL) for 12 or 24 h, there was an increase in FSK-stimulated adenylate cyclase activity in the apical membrane (54.2 +/- 3.9 pmol.mg-1 x min-1). The mechanism for this increase was explored further. ATP hydrolysis was found to be much higher in the apical than the basolateral membrane. Increasing the ATP levels in the assay enhanced apical membrane adenylate cyclase activity (10.5 +/- 0.2 pmol.mg-l.min-1); however, total adenosinetriphosphatase (ATPase) activity was not altered after BDL. Extraction of the apical membrane with bile acids or other detergents resulted in a two- to threefold increase in adenylate cyclase activity (30.6 +/- 3.6 pmol.mg-1 x min-1; detergent C12E8) This suggested that bile duct ligation was acting via the detergent-like action of bile acids to uncover latent adenylate cyclase activity on apical membranes. Further studies demonstrated that both BDL and detergent extraction also enhanced toxin-directed ADP-ribosylation of Gs alpha (cholera toxin) and Gi alpha (pertussis toxin) in the apical but not the basolateral membrane. After BDL, Gi alpha was found to be twofold greater in the apical membrane than the basolateral membrane. Immunoblotting using specific G protein antibodies further confirmed that apical membranes from control rats had a higher concentration of Gi1, 2 alpha and beta and slightly elevated levels of Gi3 alpha and Gs alpha compared with the basolateral membrane. The results demonstrate that adenylate cyclase and heterotrimeric GTP-binding proteins are present on the apical membrane, but measurement of their functional activity requires detergent permeabilization of apical membrane vesicles and is limited by the presence of high ATPase activity.

  18. cAMP and Mitochondria

    PubMed Central

    Valsecchi, Federica; Ramos-Espiritu, Lavoisier S.; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Phosphorylation of mitochondrial proteins has emerged as a major regulatory mechanism for metabolic adaptation. cAMP signaling and PKA phosphorylation of mitochondrial proteins have just started to be investigated, and the presence of cAMP-generating enzymes and PKA inside mitochondria is still controversial. Here, we discuss the role of cAMP in regulating mitochondrial bioenergetics through protein phosphorylation and the evidence for soluble adenylyl cyclase as the source of cAMP inside mitochondria. PMID:23636265

  19. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    SciTech Connect

    Fendrick, J.L.; Iglewski, W.J. )

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  20. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function

    PubMed Central

    Hardie, D. Grahame

    2011-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. It arose very early during eukaryotic evolution, and its ancestral role may have been in the response to starvation. Recent work shows that the kinase is activated by increases not only in AMP, but also in ADP. Although best known for its effects on metabolism, AMPK has many other functions, including regulation of mitochondrial biogenesis and disposal, autophagy, cell polarity, and cell growth and proliferation. Both tumor cells and viruses establish mechanisms to down-regulate AMPK, allowing them to escape its restraining influences on growth. PMID:21937710

  1. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    PubMed

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  2. The GTP-binding protein RhoA localizes to the cortical granules of Strongylocentrotus purpuratas sea urchin egg and is secreted during fertilization.

    PubMed

    Cuéllar-Mata, P; Martínez-Cadena, G; López-Godínez, J; Obregón, A; García-Soto, J

    2000-02-01

    The sea urchin egg has thousands of secretory vesicles known as cortical granules. Upon fertilization, these vesicles undergo a Ca2+-dependent exocytosis. G-protein-linked mechanisms may take place during the egg activation. In somatic cells from mammals, GTP-binding proteins of the Rho family regulate a number of cellular processes, including organization of the actin cytoskeleton. We report here that a crude membrane fraction from homogenates of Strongylocentrotus purpuratus sea urchin eggs, incubated with C3 (which ADP-ribosylates specifically Rho proteins) and [32P]NAD, displayed an [32P]ADP-ribosylated protein of 25 kDa that had the following characteristics: i) identical electrophoretic mobility in SDS-PAGE gels as the [32P]ADP-ribosylated Rho from sea urchin sperm; ii) identical mobility in isoelectro focusing gels as human RhoA; iii) positive cross-reactivity by immunoblotting with an antibody against mammalian RhoA. Thus, unfertilized S. purpuratus eggs contain a mammalian RhoA-like protein. Immunocytochemical analyses indicated that RhoA was localized preferentially to the cortical granules; this was confirmed by experiments of [32P]ADP-ribosylation with C3 in isolated cortical granules. Rho was secreted and retained in the fertilization membrane after insemination or activation with A23187. It was observed that the Rho protein present in the sea urchin sperm acrosome was also secreted during the exocytotic acrosome reaction. Thus, Rho could participate in those processes related to the cortical granules, i.e., in the Ca2+-regulated exocytosis or actin reorganization that accompany the egg activation.

  3. Raman gains of ADP and KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Liang; Zhang, Qing-Hua; Wang, Bo; Xu, Xin-Guang; Wang, Zheng-Ping; Sun, Xun; Zhang, Fang; Zhang, Li-Song; Liu, Bao-An; Chai, Xiang-Xu

    2015-04-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51323002 and 51402173), the Independent Innovation Foundation of Shandong University, China (Grant Nos. IIFSDU and 2012JC016), the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0552), the Fund from the Key Laboratory of Neutron Physics, China Academy of Engineering Physics (Grant No. 2014BB07), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province, China (Grant No. JQ201218).

  4. GEFs: structural basis for their activation of small GTP-binding proteins.

    PubMed

    Cherfils, J; Chardin, P

    1999-08-01

    Small GTP-binding proteins of the Ras superfamily function as molecular switches in fundamental events such as signal transduction, cytoskeleton dynamics and intracellular trafficking. Guanine-nucleotide-exchange factors (GEFs) positively regulate these GTP-binding proteins in response to a variety of signals. GEFs catalyze the dissociation of GDP from the inactive GTP-binding proteins. GTP can then bind and induce structural changes that allow interaction with effectors. Representative structures of four main classes of exchange factors have been described recently and, in two cases, structures of the GTP-binding protein-GEF complex have been solved. These structures, together with biochemical studies, have allowed a deeper understanding of the mechanisms of activation of Ras-like GTP-binding proteins and suggested how they might represent targets for therapeutic intervention.

  5. A wheat embryo cell-free protein synthesis system not requiring an exogenous supply of GTP.

    PubMed

    Koga, Hirohisa; Misawa, Satoru; Shibui, Tatsuro

    2009-01-01

    Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous-flow wheat embryo cell-free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC-based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 microM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C-terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B(1-320)) gave almost the same result. The wheat embryo cell-free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48-h period at 26 degrees C.

  6. GTP-blot analysis of small GTP-binding proteins. The C-terminus is involved in renaturation of blotted proteins.

    PubMed

    Klinz, F J

    1994-10-01

    Recombinant c-Ha-ras, ralA and rap2, but not rap1A or rap1B proteins retained their ability to bind [alpha-32P]GTP after SDS/PAGE and transfer to nitrocellulose. Recombinant c-Has-ras missing the C-terminal 23 amino acid residues failed to bind [alpha-32P]GTP after the blot, and the ability of recombinant ralA missing the C-terminal 28 amino acid residues to bind [alpha-32P]GTP was decreased many-fold. The presence of nonionic detergents of the polyoxyethylene type such as Tween 20, Triton X-100, Nonidet P40 or Lubrol PX in the incubation buffer was necessary to induce renaturation of blotted recombinant c-Ha-ras protein, whereas other types of detergents were ineffective. We propose that detergents of the polyoxyethylene type induce the refolding of some types of blotted small GTP-binding proteins and that the C-terminus is involved in the refolding process. Membranes from NIH3T3 fibroblasts overexpressing c-Ha-ras protein showed much weaker binding of [alpha-32P]GTP as expected from the level of ras immunoreactivity. Treatment of fibroblasts with lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase, caused the accumulation of the unfarnesylated form of c-Ha-ras in the cytosol. Examination of [alpha-32P]GTP-binding and immunoreactivity for cytosolic and membrane-bound c-Ha-ras revealed that binding of [alpha-32P]GTP to unprocessed c-Ha-ras was increased about threefold compared to the same amount of processed c-Ha-ras. Our results demonstrate that detection and quantification of small GTP-binding proteins in eukaryotic cells by GTP-blot analysis is hampered by the fact that these proteins differ strongly in their ability to renature after blotting to nitrocellulose.

  7. 6-Acetyldihydrohomopterin and sepiapterin affect some GTP cyclohydrolase I's and not others

    SciTech Connect

    Jacobson, K.B.; Manos, R.E.

    1988-01-01

    The first enzyme in pteridine biosynthesis, GTP cyclohydrolase I, is a likely site for regulation of pteridine biosynthesis to occur. GTP cyclohydrolase I responds to hormonal treatment and is found altered in a variety of mice with genetically based neurological and immunological disorders. Genetic loci can greatly modify the activity of GTP cyclohydrolase: Punch mutant in Drosophila hph-1 in mouse and atypical phenylketonuria in human. This report examines the ability of Ahp and sepiapterin to alter the activity of GTP cyclohydrolase I from mouse liver, rat liver and Drosophila head. 20 refs., 2 tabs.

  8. GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling.

    PubMed

    Carlessi, Rodrigo; Levin-Salomon, Vered; Ciprut, Sara; Bialik, Shani; Berissi, Hanna; Albeck, Shira; Peleg, Yoav; Kimchi, Adi

    2011-09-01

    Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.

  9. Crystal structure of rat GTP cyclohydrolase I feedback regulatory protein, GFRP.

    PubMed

    Bader, G; Schiffmann, S; Herrmann, A; Fischer, M; Gütlich, M; Auerbach, G; Ploom, T; Bacher, A; Huber, R; Lemm, T

    2001-10-05

    Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.

  10. Mechanisms of calcium release induced by GTP and inositol 1,4,5-trisphosphate

    SciTech Connect

    Gill, D.L.; Chueh, S.H.; Mullaney, J.M.; Mallet, M.K.

    1987-05-01

    Recent studies show that Ca/sup 2 +/ efflux from ER is controlled by a sensitive and specific guanine nucleotide regulatory mechanism. Using microsomes of permeabilized cells derived from N1E-115 neuroblastoma or DDT/sub 1/MF-2 smooth muscle cell lines, both GTP and IP/sub 3/ effect Ca/sup 2 +/ release from a common intracellular pool; however, the mechanisms of activation of Ca/sup 2 +/ release by the two agents appear distinct with regard to several parameters. Studies using liver microsomes are currently investigating whether similar distinctions between the actions of IP/sub 3/ and GTP exist in other cell types. At present it is unknown if GTP-activated Ca/sup 2 +/ release is mediated by a G-protein-like activity. Studies indicate that such release is not altered by pertussis toxin. Since GTP..gamma..S is inactive and blocks the action of GTP, a modified G-protein activation process must be invoked. Current investigations are attempting to identify the protein(s) involved in GTP-mediated Ca/sup 2 +/ release by direct photo-crosslinking experiments using (..cap alpha..-/sup 32/P)GTP. Successful labeling of many nucleotide-binding proteins has been accomplished; most but not all labeling is displaced by ATP. GTP-specifically labeled proteins are being assessed as candidates for the GTP-mediated release process.

  11. The Protein Partners of GTP Cyclohydrolase I in Rat Organs

    PubMed Central

    Du, Jianhai; Teng, Ru-Jeng; Lawrence, Matt; Guan, Tongju; Xu, Hao; Ge, Ying; Shi, Yang

    2012-01-01

    Objective GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat. Methods and Results A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria. Conclusion GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis. PMID:22479495

  12. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom.

    PubMed

    Horta, C C; Rezende, B A; Oliveira-Mendes, B B R; Carmo, A O; Capettini, L S A; Silva, J F; Gomes, M T; Chávez-Olórtegui, C; Bravo, C E S; Lemos, V S; Kalapothakis, E

    2013-09-01

    Members of the spider genus Lasiodora are widely distributed in Brazil, where they are commonly known as caranguejeiras. Lasiodora spider venom is slightly harmful to humans. The bite of this spider causes local pain, edema and erythema. However, Lasiodora sp. spider venom may be a source of important pharmacological tools. Our research group has described previously that Lasiodora sp. venom produces bradycardia in the isolated rat heart. In the present work, we sought to evaluate the vascular effect of Lasiodora sp. venom and to isolate the vasoactive compounds from the venom. The results showed that Lasiodora spider venom induced a concentration-dependent vasodilation in rat aortic rings, which was dependent on the presence of a functional endothelium and abolished by the nitric oxide synthase (NOS) inhibitor L-NAME. Western blot experiments revealed that the venom also increased endothelial NOS function by increasing phosphorylation of the Ser¹¹⁷⁷ residue. Assay-directed fractionation isolated a vasoactive fraction from Lasiodora sp. venom. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) assays identified a mixture of two compounds: adenosine diphosphate (ADP, approximately 90%) and adenosine monophosphate (AMP, approximately 10%). The vasodilator effects of Lasiodora sp. whole venom, as well as ADP, were significantly inhibited by suramin, which is a purinergic P2-receptor antagonist. Therefore, the results of the present work indicate that ADP is a main vasodilator component of Lasiodora sp. spider venom.

  13. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    SciTech Connect

    Mahy, N.; Woolkalis, M.; Thermos, K.; Carlson, K.; Manning, D.; Reisine, T.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was to a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.

  14. Simplified /sup 14/CO/sub 2/-trapping microassay for GTP cyclohydrolases I and II

    SciTech Connect

    Shen, R.S.; Abell, C.W.

    1986-05-01

    GTP cyclohydrolases (GTP-CH) I and II catalyze the removal of the C/sub 8/ atom from GTP as formate. The reaction product of GTP-CH I is D-erythro-7,8-dihydroneopterin triphosphate, a key intermediate leading to the biosynthesis of folic acid in microorganisms and of tetrahydrobiopterin in mammals and microorganisms, and that of GTP-CH II is 2,5-diamino-6-hydroxy-4-(ribosylamino)pyrimidine 5'-phosphate, a key intermediate in the biosynthesis of riboflavin in microorganisms. They have simplified the /sup 14/CO/sub 2/-trapping assay of Burg and Brown for determining GTP-CH I and II activities. The assay consists of two consecutive steps which are carried out in a 2 ml tube. The first reaction yields formate from GTP (37/sup 0/C, 10 min). The reaction mixture contains 1 mM (8-/sup 14/C)-GTP (0.5 ..mu..Ci/..mu..mol), 50 mM Tris-HCl buffer (pH 8.2 for GTP-CH II and 7.7 for GTP-CH I), 0.2 M MgCl/sub 2/ for GTP-CH II or 0.3 M KCl and 1 mM EDTA for GTP-CH I, and enzyme in a final volume of 0.2 ml. The second reaction is the oxidation of /sup 14/C-formate to /sup 14/CO/sub 2/ (95/sup 0/C, 20 min) in the presence of 5% TCA and 1 mM formate (final volume 0.3 ml). Liberated /sup 14/CO/sub 2/ is trapped by the folded filter paper strip (1 x 4 cm), that has been placed inside the top of each tube and impregnated with 30 ..mu..l Protosol. This method is fast, comparable to the HPLC-fluorometric method for the assay of GTP-CH I activity, and ideal for performing a large number of determinations. Human and rat liver express both GTP-CH I and II activities. GTP-CH II is the predominant enzyme in both tissues and exists in multiple forms.

  15. 42 CFR 457.230 - FFP for State ADP expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false FFP for State ADP expenditures. 457.230 Section 457...; Reduction of Federal Medical Payments § 457.230 FFP for State ADP expenditures. FFP is available for State ADP expenditures for the design, development, or installation of mechanized claims processing...

  16. Discovery of widespread GTP-binding motifs in genomic DNA and RNA.

    PubMed

    Curtis, Edward A; Liu, David R

    2013-04-18

    Biological RNAs that bind small molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genome-encoded RNA fragments for naturally occurring GTP aptamers. Several aptamer classes were identified, including one (the "G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains ~75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (~300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.

  17. Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica.

    PubMed

    Jones, Cheryl P; Ingram-Smith, Cheryl

    2014-12-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.

  18. GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.

    PubMed

    Tatham, Amy L; Crabtree, Mark J; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J; Channon, Keith M

    2009-05-15

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r(2) = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r(2) = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression.

  19. Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP.

    PubMed

    Milstien, S; Jaffe, H; Kowlessur, D; Bonner, T I

    1996-08-16

    The activity of GTP cyclohydrolase I, the initial enzyme of the de novo pathway for biosynthesis of tetrahydrobiopterin, the cofactor required for aromatic amino acid hydroxylations and nitric oxide synthesis, is sensitive to end-product feedback inhibition by tetrahydrobiopterin. This inhibition by tetrahydrobiopterin is mediated by the GTP cyclohydrolase I feedback regulatory protein GFRP, previously named p35 (Harada, T., Kagamiyama, H., and Hatakeyama, K. (1993) Science 260, 1507-1510), and -phenylalanine specifically reverses the tetrahydrobiopterin-dependent inhibition. As a first step in the investigation of the physiological role of this unique mechanism of regulation, a convenient procedure has been developed to co-purify to homogeneity both GTP cyclohydrolase I and GFRP from rat liver. GTP cyclohydrolase I and GFRP exist in a complex which can be bound to a GTP-affinity column from which GTP cyclohydrolase I and GFRP are separately and selectively eluted. GFRP is dissociated from the GTP agarose-bound complex with 0.2 NaCl, a concentration of salt which also effectively blocks the tetrahydrobiopterin-dependent inhibitory activity of GFRP. GTP cyclohydrolase I is then eluted from the GTP-agarose column with GTP. Both GFRP and GTP cyclohydrolase I were then purified separately to near homogeneity by sequential high performance anion exchange and gel filtration chromatography. GFRP was found to have a native molecular mass of 20 kDa and consist of a homodimer of 9.5-kDa subunits. Based on peptide sequences obtained from purified GFRP, oligonucleotides were synthesized and used to clone a cDNA from a rat liver cDNA library by polymerase chain reaction-based methods. The cDNA contained an open reading frame that encoded a novel protein of 84 amino acids (calculated molecular mass 9665 daltons). This protein when expressed in Escherichia coli as a thioredoxin fusion protein had tetrahydrobiopterin-dependent GTP cyclohydrolase I inhibitory activity. Northern

  20. Structure of an ADP-ribosylation factor, ARF1, from Entamoeba histolytica bound to Mg(2+)-GDP.

    PubMed

    Serbzhinskiy, Dmitry A; Clifton, Matthew C; Sankaran, Banumathi; Staker, Bart L; Edwards, Thomas E; Myler, Peter J

    2015-05-01

    Entamoeba histolytica is the etiological agent of amebiasis, a diarrheal disease which causes amoebic liver abscesses and amoebic colitis. Approximately 50 million people are infected worldwide with E. histolytica. With only 10% of infected people developing symptomatic amebiasis, there are still an estimated 100,000 deaths each year. Because of the emergence of resistant strains of the parasite, it is necessary to find a treatment which would be a proper response to this challenge. ADP-ribosylation factor (ARF) is a member of the ARF family of GTP-binding proteins. These proteins are ubiquitous in eukaryotic cells; they generally associate with cell membranes and regulate vesicular traffic and intracellular signalling. The crystal structure of ARF1 from E. histolytica has been determined bound to magnesium and GDP at 1.8 Å resolution. Comparison with other structures of eukaryotic ARF proteins shows a highly conserved structure and supports the interswitch toggle mechanism of communicating the conformational state to partner proteins.

  1. ADP ribosylation factor 1 is required for synaptic vesicle budding in PC12 cells.

    PubMed

    Faúndez, V; Horng, J T; Kelly, R B

    1997-08-11

    Carrier vesicle generation from donor membranes typically progresses through a GTP-dependent recruitment of coats to membranes. Here we explore the role of ADP ribosylation factor (ARF) 1, one of the GTP-binding proteins that recruit coats, in the production of neuroendocrine synaptic vesicles (SVs) from PC12 cell membranes. Brefeldin A (BFA) strongly and reversibly inhibited SV formation in vivo in three different PC12 cell lines expressing vesicle-associated membrane protein-T Antigen derivatives. Other membrane traffic events remained unaffected by the drug, and the BFA effects were not mimicked by drugs known to interfere with formation of other classes of vesicles. The involvement of ARF proteins in the budding of SVs was addressed in a cell-free reconstitution system (Desnos, C., L. Clift-O'Grady, and R.B. Kelly. 1995. J. Cell Biol. 130:1041-1049). A peptide spanning the effector domain of human ARF1 (2-17) and recombinant ARF1 mutated in its GTPase activity, both inhibited the formation of SVs of the correct size. During in vitro incubation in the presence of the mutant ARFs, the labeled precursor membranes acquired different densities, suggesting that the two ARF mutations block at different biosynthetic steps. Cell-free SV formation in the presence of a high molecular weight, ARF-depleted fraction from brain cytosol was significantly enhanced by the addition of recombinant myristoylated native ARF1. Thus, the generation of SVs from PC12 cell membranes requires ARF and uses its GTPase activity, probably to regulate coating phenomena.

  2. Depigmenting action of platycodin D depends on the cAMP/Rho-dependent signalling pathway.

    PubMed

    Jung, Eunsun; Hwang, Wangtaek; Kim, Seungbeom; Kim, Young-Soo; Kim, Yeong-Shik; Lee, Jongsung; Park, Deokhoon

    2011-12-01

    The overproduction and accumulation of melanin in the skin could lead to a pigmentary disorders, such as melasma, freckle, postinflammatory melanoderma and solar lentigo. Therefore, this study was conducted to investigate the effects of platycodin D (PD) on melanogenesis and its action mechanisms. In this study, we found that PD significantly inhibited melanin synthesis at low concentrations. These effects were further demonstrated by the PD-induced inhibition of cAMP production, phosphorylation of the cAMP-response element-binding protein and expression of microphthalmia-associated transcription factor and its downstream genes, tyrosinase, tyrosinase-related proteins-1 and Dct/tyrosinase-related proteins-2, suggesting that PD inhibits melanogenesis through the downregulation of cAMP signalling. Furthermore, PD induced significant morphological changes in melanocytes, namely, the retraction of dendrites. A small GTPase assays revealed that PD stimulated an increase in GTP-bound Rho content, one of downstream molecules of cAMP, but not in Rac or CDC42 content. Moreover, a Rho inhibitor (C3 exoenzyme) and a Rho kinase inhibitor (Y27632) attenuated the dendrite retraction induced by PD. Taken together, these findings indicate that PD inhibits melanogenesis by inhibiting the cAMP-protein kinase A pathway and also suppresses melanocyte dendricity through activation of the Rho signal that is mediated by PD-induced reduction in cAMP production. Therefore, these results suggest that PD exerts its inhibitory effects on melanogenesis and melanocyte dendricity via suppression of cAMP signalling and may be introduced as an inhibitor of hyperpigmentation caused by UV irradiation or pigmented skin disorders.

  3. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe

    PubMed Central

    Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S.; Geyer, Elisabeth A.; Burns, Alexander; Ye, Xuecheng; Rice, Luke M.

    2016-01-01

    Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe—the switch from growing to shrinking—occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe. PMID:27146111

  4. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe.

    PubMed

    Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S; Geyer, Elisabeth A; Burns, Alexander; Ye, Xuecheng; Rice, Luke M

    2016-11-07

    Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe-the switch from growing to shrinking-occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe.

  5. Regulation of cyclic AMP metabolism by prostaglandins in rabbit cortical collecting tubule cells

    SciTech Connect

    Sonnenburg, W.K.

    1987-01-01

    In the rabbit cortical collecting tubule (RCCT), prostaglandin E/sub 1/ (PGE/sub 1/) and prostaglandin E/sub 2/ (PGE/sub 2/) at 1 nM inhibit arginine-vasopressin (AVP)-induced water reabsorption, while 100 nM PGE/sub 1/ and PGE/sub 2/ alone stimulate water reabsorption. Reported here are studies designed to investigate the molecular basis for the biphasic physiological action of PGE/sub 1/ and PGE/sub 2/ in the collecting duct. In freshly isolated RCCT cells, PGE/sub 1/, PGE/sub 2/, and 16,16-dimethyl-PGE/sub 2/ (DM-PGE/sub 2/) stimulated cAMP synthesis at concentrations ranging from 0.1 to 10 M. Other prostaglandins including the synthetic PGE/sub 2/ analogue, sulprostone, failed to stimulate cAMP synthesis. Moreover, sulprostone did not antagonize PGE/sub 2/-stimulated cAMP formation. In contrast, PGE/sub 2/ and sulprostone at concentrations ranging from 1 to 100 nM, inhibited AVP-induced cAMP accumulation in freshly isolated RCCT cells. PGE/sub 2/, PGE/sub 1/, DM-PGE/sub 2/ and sulprostone at 100 nM were equally effective in inhibiting AVP-induced cAMP formation. Moreover sulprostone inhibited AVP-stimulated adenylate cyclase activity. These results suggest that PGE derivatives mediate either inhibition or activation of adenylate cyclase by stimulating different PGE receptors. To further test this concept, PGE/sub 2/ binding to freshly isolated RCCT cell membranes was characterized. Two different classes of PGE/sub 2/ binding were detected. //sup 3/H/PGE/sub 2/ binding to the high affinity class of sites was increased by the GTP-analogue, GTP S, while pertussis toxin pretreatment blocked the stimulatory action. In contrast, //sup 3/H/ PGE/sub 2/ binding to the low affinity class of sites was decreased by GTP S; this inhibitory effect was not blocked by pertussis toxin pretreatment.

  6. Progress in the function and regulation of ADP-Ribosylation.

    PubMed

    Hottiger, Michael O; Boothby, Mark; Koch-Nolte, Friedrich; Lüscher, Bernhard; Martin, Niall M B; Plummer, Ruth; Wang, Zhao-Qi; Ziegler, Mathias

    2011-05-24

    Adenosine 5'-diphosphate (ADP)-ribosylation is a protein posttranslational modification that is catalyzed by ADP-ribosyltransferases (ARTs), using nicotinamide adenine dinucleotide (NAD(+)) as a substrate. Mono-ribosylation can be extended into polymers of ADP-ribose (PAR). Poly(ADP-ribosyl)polymerase (PARP) 1, the best-characterized cellular enzyme catalyzing this process, is the prototypical member of a family of mono- and poly(ADP-ribosyl)transferases. The physiological consequences of ADP-ribosylation are inadequately understood. PARP2010, the 18th International Conference on ADP-Ribosylation, attracted scientists from all over the world to Zurich, Switzerland. Highlights from this meeting include promising clinical trials with PARP inhibitors and new insights into cell, structural, and developmental biology of ARTs and the (glyco)hydrolase proteins that catalyze de-ADP-ribosylation of mono- or poly-ADP-ribosylated proteins. Moreover, potential links to the NAD-dependent sirtuin family were explored on the basis of a shared dependence on cellular NAD(+) concentrations and the relationship of ADP-ribosylation with intermediary metabolism and cellular energetics.

  7. A neutrophil GTP-binding protein that regulates cell free NADPH oxidase activation is located in the cytosolic fraction.

    PubMed

    Gabig, T G; Eklund, E A; Potter, G B; Dykes, J R

    1990-08-01

    The dormant O2(-)-generating oxidase in plasma membranes from unstimulated neutrophils becomes activated in the presence of arachidonate and a multicomponent cytosolic fraction. This process is stimulated by nonhydrolyzable GTP analogues and may involve a pertussis toxin insensitive GTP-binding protein. Our studies were designed to characterize the putative GTP-binding protein, localizing it to either membrane or cytosolic fraction in this system. Exposure of the isolated membrane fraction to guanosine-5'-(3-O-thio)triphosphate (GTP gamma S), with or without arachidonate, had no effect on subsequent NADPH oxidase activation by the cytosolic fraction. Preexposure of the cytosolic fraction to GTP gamma S alone did not enhance activation of the membrane oxidase. However, preexposure of the cytosol to GTP gamma S then arachidonate caused a four-fold enhancement of its ability to activate the membrane oxidase. This enhancement was evident after removal of unbound GTP gamma S and arachidonate, and was not augmented by additional GTP gamma S during membrane activation. A reconstitution assay was developed for cytosolic component(s) responsible for the GTP gamma S effect. Cytosol preincubated with GTP gamma 35S then arachidonate was fractionated by anion exchange chromatography. A single peak of protein-bound GTP gamma 35S was recovered that had reconstitutive activity. Cytosol preincubated with GTP gamma 35S alone was similarly fractionated and the same peak of protein-bound GTP gamma 35S was observed. However, this peak had no reconstitutive activity. We conclude that the GTP-binding protein regulating this cellfree system is located in the cytosolic fraction. The GTP gamma S-liganded form of this protein may be activated or stabilized by arachidonate.

  8. Altered beta-adrenergic receptor-stimulated cAMP formation in cultured skin fibroblasts from Alzheimer donors.

    PubMed

    Huang, H M; Gibson, G E

    1993-07-15

    An alteration in signal transduction systems in Alzheimer's disease would likely be of pathophysiological significance, because these steps are critical to normal brain function. Since dynamic processes are difficult to study in autopsied brain, the current studies utilized cultured skin fibroblasts. The beta-adrenergic-stimulated increase in cAMP was reduced approximately 80% in fibroblasts from Alzheimer's disease compared with age-matched controls. The deficit in Alzheimer fibroblasts in response to various adrenergic agonists paralleled their beta-adrenergic potency, and enhancement of cAMP accumulation by a non-adrenergic agonist, such as prostaglandin E1, was similar in Alzheimer and control fibroblasts. Diminished adenylate cyclase activity did not underlie these abnormalities, since direct stimulation of adenylate cyclase by forskolin elevated cAMP production equally in Alzheimer and control fibroblasts. Cholera toxin equally stimulated cAMP formation in Alzheimer and control fibroblasts. Moreover, cholera toxin partially reduced isoproterenol-induced cAMP deficit in Alzheimer fibroblasts. Pertussis toxin, on the other hand, did not alter the Alzheimer deficits. The results suggest either that the coupling of the GTP-binding protein(s) to the beta-adrenergic receptor is abnormal or that the sensitivity of receptor is altered with Alzheimer's disease. Further, any hypothesis about Alzheimer's disease must explain why a reduced beta-adrenergic-stimulated cAMP formation persists in tissue culture.

  9. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-09-20

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 ..mu..M isoproterenol and 50 ..mu..M GTP-..gamma..-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 ..mu..M GTP-..gamma..-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of ..beta..-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes.

  10. Experiment definition studies for AMPS Spacelab

    NASA Technical Reports Server (NTRS)

    Liemohn, H.

    1975-01-01

    The electrical charging of the space shuttle orbiter is discussed in relation to the AMPS Spacelab payload along with an operations research technique for the selection of AMPS Spacelab experiments. Experiments proposed for AMPS include: hydromagnetic wave experiments; bistatic sounder of AMPS wake; and an artificial meteor gun. Experiment objectives and instrument functions are given for all experiments.

  11. PD98059 and U0126 activate AMP-activated protein kinase by increasing the cellular AMP:ATP ratio and not via inhibition of the MAP kinase pathway.

    PubMed

    Dokladda, Kanchana; Green, Kevin A; Pan, David A; Hardie, D Grahame

    2005-01-03

    The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.

  12. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  13. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria

    PubMed Central

    Cereijo, Antonela E.; Asencion Diez, Matías D.; Dávila Costa, José S.; Alvarez, Héctor M.; Iglesias, Alberto A.

    2016-01-01

    Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions. PMID:27313571

  14. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?

    PubMed

    Hottiger, Michael O

    2011-06-06

    ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.

  15. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  16. Rasd1 modulates the coactivator function of NonO in the cyclic AMP pathway.

    PubMed

    Ong, Shufen Angeline; Tan, Jen Jen; Tew, Wai Loon; Chen, Ken-Shiung

    2011-01-01

    All living organisms exhibit autonomous daily physiological and behavioural rhythms to help them synchronize with the environment. Entrainment of circadian rhythm is achieved via activation of cyclic AMP (cAMP) and mitogen-activated protein kinase signaling pathways. NonO (p54nrb) is a multifunctional protein involved in transcriptional activation of the cAMP pathway and is involved in circadian rhythm control. Rasd1 is a monomeric G protein implicated to play a pivotal role in potentiating both photic and nonphotic responses of the circadian rhythm. In this study, we have identified and validated NonO as an interacting partner of Rasd1 via affinity pulldown, co-immunoprecipitation and indirect immunofluorescence studies. The GTP-hydrolysis activity of Rasd1 is required for the functional interaction. Functional interaction of Rasd1-NonO in the cAMP pathway was investigated via reporter gene assays, chromatin immunoprecipitation and gene knockdown. We showed that Rasd1 and NonO interact at the CRE-site of specific target genes. These findings reveal a novel mechanism by which the coregulator activity of NonO can be modulated.

  17. GTP binding to the. beta. -subunit of tubulin is greatly reduced in Alzheimers disease

    SciTech Connect

    Khatoon, S.; Slevin, J.T.; Haley, B.E.

    1987-05-01

    A decrease occurs (80-100%) in the (/sup 32/P)8N/sub 3/GTP photoinsertion into a cytosolic protein (55K M/sub r/) of Alzheimer's (AD) brain, tentatively identified as the ..beta..-subunit of tubulin (co-migration with purified tubulin, concentration dependence of interaction with GTP, ATP and their 8-azido photoprobes, and similar effects of Ca/sup 2 +/ and EDTA on photoinsertion). This agrees with prior observations of (/sup 32/P)8N/sub 3/GTP interactions with brain tubulin and a recent report on faulty microtubular assembly in AD brain. The decrease in (/sup 32/P)8N/sub 3/GTP photoinsertion into the 55K M/sub r/ protein of AD brain was in contrast with other photolabeled proteins, which remained at equal levels in AD and age-matched normal brain tissues. The 55K and 45K M/sub r/ were the two major (/sup 32/P)8N/sub 3/GTP photoinsertion species in non-AD brain. Of 5 AD brains, the photoinsertion of (/sup 32/P)8N/sub 3/GTP into the 55K M/sub r/ region was low or absent in 4 (55K/45K=0.1); one was 75% below normals (55K/45K=0.24). Total protein migrating at 55K M/sub r/ was similar in AD and controls. AD brain tubulin, while present, has its exchangeable GTP binding site on ..beta..-tubulin blocked/modified such that (/sup 32/P)8N/sub 3/GTP cannot interact normally with this site.

  18. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    SciTech Connect

    Baer, K.M.; Saibil, H.R.

    1988-01-05

    Light stimulates the hydrolysis of exogenous, (/sup 3/H)inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors.

  19. LACIE ADP/PI joint case study: ADP analysis guidelines. [using ERTS 1 photographs

    NASA Technical Reports Server (NTRS)

    Minter, T. C.

    1974-01-01

    The procedure is described which was used to train automatic data processing (ADP) analysts to process ERTS 1 imagery from a 5 nm by 6 nm area in Delisle, Canada, and to estimate wheat acreage using training fields provided by photointerpreters. The exercise also served to evaluate and test current large area crop inventory experiment (LACIE) procedures.

  20. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading

    PubMed Central

    1982-01-01

    Megakaryocytes from guinea pig bone marrow were isolated and maintained in liquid culture and were treated with ADP, thrombin, arachidonic acid, or collagen. Megakaryocytes spread with an active ruffled membrane in response to ADP (1-100 microM), thrombin (1.0 U/ml), and arachidonic acid (50 microM) but responded to collagen surfaces only if fibronectin was added to the cultures. Spreading could be blocked completely by dibutyryl cyclic AMP (dibutyryl cAMP) or isobutylmethylxanthine at 1 mM, as well as by cytochalasin D (2 microgram/ml), but not by colchicine up to 1 mg/ml. The distribution of contractile proteins was examined by immunofluorescence. In untreated, spherical cells, staining with antimyosin, antifilamin, anti-alpha- actinin, or with fluorescein-labeled subfragment 1 (FITC-S1) was diffuse and unpatterned. With antitubulin antibody, however, microtubules were seen in a dense array throughout the unspread cells. In actively ruffling spreading cells, myosin, filamin, and actin were visualized in the region of the ruffled membrane while alpha-actinin was seen most prominently in a band located proximal to the inner part of the ruffle. In fully spread cells, actin, myosin, filamin, and alpha- actinin were seen in filaments that filled the cytoplasm. Antimyosin and anti-alpha-actinin staining of the filaments was periodic with approximately 1 micrometer center-to-center spacing. Actin, filamin, and alpha-actinin were also identified in punctate spots throughout the spread cytoplasm. Microtubules were absent from the ruffle but filled the cytoplasm of fully spread cells. Rings, 1.5-2.5 micrometer in diameter, were seen with antitubulin in 13% of the spread cells. Our results show that megakaryocytes respond to platelet agonists, but typically by spreading, rather than extending, filopodia. From the changes in localization of contractile proteins and from time-lapse cinematography, we propose a model for cell spreading. PMID:6801061

  1. Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2.

    PubMed

    Dubiez, Etienne; Aleksandrov, Alexey; Lazennec-Schurdevin, Christine; Mechulam, Yves; Schmitt, Emmanuelle

    2015-03-11

    Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2γ, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2γ. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2.

  2. Interaction of a novel fluorescent GTP analogue with the small G-protein K-Ras.

    PubMed

    Iwata, Seigo; Masuhara, Kaori; Umeki, Nobuhisa; Sako, Yasushi; Maruta, Shinsaku

    2016-01-01

    A novel fluorescent guanosine 5'-triphosphate (GTP) analogue, 2'(3')-O-{6-(N-(7-nitrobenz-2-oxa-l,3-diazol-4-yl)amino) hexanoic}-GTP (NBD-GTP), was synthesized and utilized to monitor the effect of mutations in the functional region of mouse K-Ras. The effects of the G12S, A59T and G12S/A59T mutations on GTPase activity, nucleotide exchange rates were compared with normal Ras. Mutation at A59T resulted in reduction of the GTPase activity by 0.6-fold and enhancement of the nucleotide exchange rate by 2-fold compared with normal Ras. On the other hand, mutation at G12S only slightly affected the nucleotide exchange rate and did not affect the GTPase activity. We also used NBD-GTP to study the effect of these mutations on the interaction between Ras and SOS1, a guanine nucleotide exchange factor. The mutation at A59T abolished the interaction with SOS1. The results suggest that the fluorescent GTP analogue, NBD-GTP, is applicable to the kinetic studies for small G-proteins.

  3. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.

    PubMed

    Nocek, Boguslaw; Kochinyan, Samvel; Proudfoot, Michael; Brown, Greg; Evdokimova, Elena; Osipiuk, Jerzy; Edwards, Aled M; Savchenko, Alexei; Joachimiak, Andrzej; Yakunin, Alexander F

    2008-11-18

    Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.

  4. -Adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism

    SciTech Connect

    Buxton, I.L.O.; Brunton, L.L.

    1986-08-01

    When incubated with purified cardiomyocytes from adult rat ventricle, the 1-antagonist (TH)prazosin binds to a single class of sites with high affinity. Competition for (TH)prazosin binding by the 2-selective antagonist yohimbine and the nonselective -antagonist phentolamine demonstrates that these receptors are of the 1-subtype. In addition, incubation of myocyte membranes with (TH)yohimbine results in no measurable specific binding. Agonist competition for (TH)prazosin binding to membranes prepared from purified myocytes demonstrates the presence of two components of binding: 28% of 1-receptors interact with norepinephrine with high affinity (K/sub D/ = 36 nM), whereas the majority of receptors (72%) have a low affinity for agonist (K/sub D/ = 2.2 M). After addition of 10 M GTP, norepinephrine competes for (TH)prazosin binding to a single class of sites with lower affinity (K/sub D/ = 2.2 M). Incubation of intact myocytes for 2 min with 1 M norepinephrine leads to significantly less cyclic AMP (cAMP) accumulation than stimulation with either norepinephrine plus prazosin or isoproterenol. Likewise, incubation of intact myocytes with 10 W M norepinephrine leads to significantly less activation of cAMP-dependent protein kinase than when myocytes are stimulated by both norepinephrine and the 1-adrenergic antagonist, prazosin or the US -adrenergic agonist, isoproterenol. They conclude that the cardiomyocyte 1 receptor is coupled to a guanine nucleotide-binding protein, that 1-receptors are functionally linked to decreased intracellular cAMP content, and that this change in cellular cAMP is expressed as described activation of cAMP-dependent protein kinase.

  5. Ca2+, Mg2+-dependent endonuclease and ADP-ribosylation.

    PubMed

    Yoshihara, K; Tanaka, Y; Kamiya, T

    1983-01-01

    The molecular mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease by ADP-ribosylation was studied by using purified bull seminal plasma Ca2+, Mg2+-dependent endonuclease, endonuclease-stimulating proteins, and poly-(ADP-ribose) polymerase. The activity of an essentially homogeneous preparation of the endonuclease was markedly suppressed by its preincubation with NAD+, poly-(ADP-ribose) polymerase, DNA, and Mg2+. These four components of the incubation mixture were all essential for the suppression of the activity. Analyses of the initial and the chased reaction product by Sephadex G-100 column chromatography and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that Ca2+, Mg2+-dependent endonuclease was ADP-ribosylated during the incubation and its activity was markedly inhibited by the elongation of the ADP-ribose polymer covalently attached to the endonuclease. When the suppressed enzymes were mildly treated with an alkaline pH of 10.0, the activity was restored almost to the level of the unmodified control sample. These facts indicate that the linkage between the enzyme and poly(ADP-ribose) is hydrolyzed at this pH, and that the liberated polymer itself does not appreciably affect the endonuclease activity. These results also suggest that an electric repulsion between negative charges on DNA and poly(ADP-ribose) attached to Ca2+, Mg2+-dependent endonuclease is the basis for the observed suppression of the enzyme by ADP-ribosylation. Though histone H2B and H1 are shown to be as good endonuclease-stimulators (1) as they are good acceptors of ADP-ribose in poly(ADP-ribose) polymerase reaction (2), ADP-ribosylation of these two proteins did not affect their endonuclease-stimulating ability appreciably, at least under the conditions used.

  6. Evidence that phospholipase D mediates ADP ribosylation factor- dependent formation of Golgi coated vesicles

    PubMed Central

    1996-01-01

    Formation of coatomer-coated vesicles from Golgi-enriched membranes requires the activation of a small GTP-binding protein, ADP ribosylation factor (ARF). ARF is also an efficacious activator of phospholipase D (PLD), an activity that is relatively abundant on Golgi- enriched membranes. It has been proposed that ARF, which is recruited onto membranes from cytosolic pools, acts directly to promote coatomer binding and is in a 3:1 stoichiometry with coatomer on coated vesicles. We present evidence that cytosolic ARF is not necessary for initiating coat assembly on Golgi membranes from cell lines with high constitutive PLD activity. Conditions are also described under which ARF is at most a minor component relative to coatomer in coated vesicles from all cell lines tested, including Chinese hamster ovary cells. Formation of coated vesicles was sensitive to ethanol at concentrations that inhibit the production of phosphatidic acid (PA) by PLD. When PA was produced in Golgi membranes by an exogenous bacterial PLD, rather than with ARF and endogenous PLD, coatomer bound to Golgi membranes. Purified coatomer also bound selectively to artificial lipid vesicles that contained PA and phosphatidylinositol (4,5)-bisphosphate (PIP2). We propose that activation of PLD and the subsequent production of PA are key early events for the formation of coatomer-coated vesicles. PMID:8707816

  7. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    SciTech Connect

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J.

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  8. Characterization of GTP-binding proteins in Golgi-associated membrane vesicles from rat adipocytes.

    PubMed Central

    Schürmann, A; Rosenthal, W; Schultz, G; Joost, H G

    1992-01-01

    We have previously reported that guanine nucleotides inhibit glucose transport activity reconstituted from adipocyte membrane fractions. In order to further investigate the hypothetical involvement of guanine-nucleotide-binding proteins (GTP-binding proteins) in the regulation of insulin-sensitive glucose transport activity, we studied their subcellular distribution in adipocytes treated or not with insulin. Adipocytes were homogenized and fractionated to yield plasma membranes (PM) and a Golgi-enriched fraction of intracellular membranes (low-density microsomes, LDM). In these membrane fractions, total guanosine 5'-[gamma-[35S]thio]triphosphate ([35S]GTP[S]) binding, alpha- and beta-subunits of heterotrimeric G-proteins, proto-oncogenes Ha-ras and K-ras, and 23-28 kDa GTP-binding proteins were assayed. The levels of alpha s and alpha i (the alpha-subunits of Gs and Gi) were approx. 8-fold lower in LDM than in PM; beta-subunits, Ha-ras and K-ras were not detectable in LDM. Total GTP[S]-binding sites and 23-28 kDa GTP-binding proteins were present in LDM in approximately the same concentrations as in PM. Insulin gave rise to the characteristic translocation of glucose transporters, but failed to alter the subcellular distribution of any of the GTP-binding proteins. Fractionation of the LDM on a discontinuous sucrose gradient revealed that alpha s and alpha i, as detected with antiserum against a common peptide sequence (alpha common), and the bulk of the 23-28 kDa G-proteins sedimented at different sucrose densities. None of the GTP-binding proteins co-sedimented with glucose transporters. Furthermore, the inhibitory effect of GTP[S] on the reconstituted transport activity was lost in the peak fractions of glucose transporters partially purified on the sucrose gradient. These data indicate that LDM from adipocytes contain several GTP-binding proteins in discrete vesicle populations. However, the intracellular GTP-binding proteins are not tightly associated with the

  9. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  10. ADP-MAS: A Math and Science Curriculum.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This curriculum, Academia del Pueblo-Math and Science (ADP-MAS), is an outgrowth of the National Council of La Raza's Project EXCEL, a supplemental educational enrichment model for at-risk Latino students to be operated by Latino community-based organizations or public institutions, including schools with substantial Latino populations. ADP-MAS…

  11. Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii: Insights into GTP Binding and Dimerization

    SciTech Connect

    Newmister, Sean A.; Otte, Michele M.; Escalante-Semerena, Jorge C.; Rayment, Ivan

    2012-02-08

    In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in {ge}94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY{sup G153D} had 10-fold higher affinity for GTP than MjCobY{sup WT} but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY{sup G153D} in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).

  12. A novel GTP-dependent mechanism of ileal muscarinic metabotropic channel desensitization.

    PubMed Central

    Zholos, A. V.; Bolton, T. B.

    1996-01-01

    1. Cationic current (Icat) was evoked in single isolated smooth muscle cells either by activating muscarinic receptors with the stable muscarinic agonist, carbachol (CCh), or by dialysing cells with GTP-gamma S. It was studied using patch-clamp recording techniques in cells obtained by enzymatic digestion from the longitudinal muscle layer of the guinea-pig small intestine. 2. Icat appears only when muscarinic receptors or G-proteins are activated, but it is strongly voltage-dependent. Its activation could be described by the Boltzmann equation. During desensitization of Icat evoked by 50 microM CCh, the slope factor, k, remained constant whereas the maximal conductance, Gmax, slowly decreased and the potential of half-maximal activation, V1/2, shifted positively by 32 mV during 4 min. 3. At peak response either to extracellular application of CCh (GTP-free, or 1 mM GTP-containing, pipette solution) or to intracellular application of GTP-gamma S (no CCh), the size and voltage-dependent properties of Icat were similar. However, Icat desensitization was slower in the presence of GTP (CCh applied) in the pipette solution and much slower with GTP-gamma S in the pipette (no CCh) compared to GTP-free pipette solution (CCh applied); the decrease in Gmax with time was much delayed and the positive shift of the activation curve was inhibited. GDP-beta S added to the pipette solution at 2 mM abolished Icat in response to applied CCh; 50 microM did not prevent Icat generation but significantly accelerated desensitization. 4. It was concluded that the rate of desensitization of the carbachol-evoked cationic current was due to a decline in the concentration of activated G-protein in the cell, which reduced the maximum number of channels which could be opened and shifted their activation range to less negative potentials. PMID:8922752

  13. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  14. AMP-activated protein kinase: a target for drugs both ancient and modern.

    PubMed

    Hardie, D Grahame; Ross, Fiona A; Hawley, Simon A

    2012-10-26

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines.

  15. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction

    PubMed Central

    Neviere, Remi; Delguste, Florian; Durand, Arthur; Inamo, Jocelyn; Boulanger, Eric; Preau, Sebastien

    2016-01-01

    Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice. PMID:27973394

  16. Insights into glycogen metabolism in chemolithoautotrophic bacteria from distinctive kinetic and regulatory properties of ADP-glucose pyrophosphorylase from Nitrosomonas europaea.

    PubMed

    Machtey, Matías; Kuhn, Misty L; Flasch, Diane A; Aleanzi, Mabel; Ballicora, Miguel A; Iglesias, Alberto A

    2012-11-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.

  17. Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea

    PubMed Central

    Machtey, Matías; Kuhn, Misty L.; Flasch, Diane A.; Aleanzi, Mabel; Ballicora, Miguel A.

    2012-01-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO2 via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms. PMID:22961847

  18. Mechanism and catalytic strategy of the prokaryotic specific GTP cyclohydrolase IB.

    PubMed

    Paranagama, Naduni; Bonnett, Shilah A; Alvarez, Jonathan; Luthra, Amit; Stec, Boguslaw; Gustafson, Andrew; Iwata-Reuyl, Dirk; Swairjo, Manal

    2017-01-26

    GTP cyclohydrolase I catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine modified tRNA nucleosides in bacteria and archaea.  The type IB GTP cyclohydrolase (GCYH-IB) is a prokaryotic-specific enzyme found in a number of pathogens. GCYH-IB is structurally distinct from the canonical type IA GTP cyclohydrolase involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target.  We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB, and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxo-GTP, and one with a TRIS molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.

  19. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily

    PubMed Central

    2016-01-01

    ABSTRACT Dynamin superfamily proteins are multidomain mechano‐chemical GTPases which are implicated in nucleotide‐dependent membrane remodeling events. A prominent feature of these proteins is their assembly‐ stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin‐related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head‐to‐head fashion. A catalytic arginine finger from the phosphate binding (P‐) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization‐dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin‐like Irga6 which bears a glycine at the corresponding position in the P‐loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano‐chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580–593, 2016. PMID:27062152

  20. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.

    PubMed

    Ghosh, Agnidipta; Praefcke, Gerrit J K; Renault, Louis; Wittinghofer, Alfred; Herrmann, Christian

    2006-03-02

    Interferons are immunomodulatory cytokines that mediate anti-pathogenic and anti-proliferative effects in cells. Interferon-gamma-inducible human guanylate binding protein 1 (hGBP1) belongs to the family of dynamin-related large GTP-binding proteins, which share biochemical properties not found in other families of GTP-binding proteins such as nucleotide-dependent oligomerization and fast cooperative GTPase activity. hGBP1 has an additional property by which it hydrolyses GTP to GMP in two consecutive cleavage reactions. Here we show that the isolated amino-terminal G domain of hGBP1 retains the main enzymatic properties of the full-length protein and can cleave GDP directly. Crystal structures of the N-terminal G domain trapped at successive steps along the reaction pathway and biochemical data reveal the molecular basis for nucleotide-dependent homodimerization and cleavage of GTP. Similar to effector binding in other GTP-binding proteins, homodimerization is regulated by structural changes in the switch regions. Homodimerization generates a conformation in which an arginine finger and a serine are oriented for efficient catalysis. Positioning of the substrate for the second hydrolysis step is achieved by a change in nucleotide conformation at the ribose that keeps the guanine base interactions intact and positions the beta-phosphates in the gamma-phosphate-binding site.

  1. Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Werner, Ernst R; Bahrami, Soheyl; Heller, Regine; Werner-Felmayer, Gabriele

    2002-03-22

    GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine.

  2. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily.

    PubMed

    Daumke, Oliver; Praefcke, Gerrit J K

    2016-08-01

    Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016.

  3. Role of GTP-CHI links PAH and TH in melanin synthesis in silkworm, Bombyx mori.

    PubMed

    Chen, Ping; Wang, Jiying; Li, Haiyin; Li, Yan; Chen, Peng; Li, Tian; Chen, Xi; Xiao, Junjie; Zhang, Liang

    2015-08-10

    In insects, pigment patterns are formed by melanin, ommochromes, and pteridines. Here, the effects of pteridine synthesis on melanin formation were studied using 4th instar larvae of a wild-type silkworm strain, dazao (Bombyx mori), with normal color and markings. Results from injected larvae and in vitro integument culture indicated that decreased activity of guanosine triphosphate cyclohydrolase I (GTP-CH I, a rate-limiting enzyme for pteridine synthesis), lowers BH4 (6R-l-erythro-5,6,7,8-tetrahydrobiopterin, a production correlated with GTP-CH I activity) levels and eliminates markings and coloration. The conversion of phenylalanine and tyrosine to melanin was prevented when GTP-CH I was inhibited. When BH4 was added, phenylalanine was converted to tyrosine, and the tyrosine concentration increased. Tyrosine was then converted to melanin to create normal markings and coloration. Decreasing GTP-CH I activity did not affect L-DOPA (3,4-l-dihydroxyphenylalanine). GTP-CH I affected melanin synthesis by generating the BH4 used in two key reaction steps: (1) conversion of phenylalanine to tyrosine by PAH (phenylalanine hydroxylase) and (2) conversion of tyrosine to L-DOPA by TH (tyrosine hydroxylase). Expression profiles of BmGTPCH Ia, BmGTPCH Ib, BmTH, and BmPAH in the integument were consistent with the current findings.

  4. The lipid kinase PI5P4Kβ is an intracellular GTP sensor for metabolism and tumorigenesis

    PubMed Central

    Sumita, Kazutaka; Lo, Yu-Hua; Takeuchi, Koh; Senda, Miki; Kofuji, Satoshi; Ikeda, Yoshiki; Terakawa, Jumpei; Sasaki, Mika; Yoshino, Hirofumi; Majd, Nazanin; Zheng, Yuxiang; Kahoud, Emily Rose; Yokota, Takehiro; Emerling, Brooke M.; Asara, John M.; Ishida, Tetsuo; Locasale, Jason W.; Daikoku, Takiko; Anastasiou, Dimitrios; Senda, Toshiya; Sasaki, Atsuo T.

    2016-01-01

    Summary While cellular GTP concentration dramatically changes in response to an organism’s cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kβ, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kβ preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kβ is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kβ is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kβ. The critical role of the GTP-sensing activity of PI5P4Kβ in cancer signifies this lipid kinase as a cancer therapeutic target. PMID:26774281

  5. Chromosomal protein poly(ADP-ribosyl)ation in pancreatic nucleosomes.

    PubMed

    Aubin, R J; Dam, V T; Miclette, J; Brousseau, Y; Poirier, G G

    1982-03-01

    When pancreatic chromatin fragments were prepared and resolved in the presence of 80 mM NaCl, endogenous poly(ADP-ribose) polymerase activity was found to be maximal in nucleosome periodicities of four to five units and did not respond to any further increases in nucleosomal architecture. Furthermore, in nucleosome complexities spanning 1 through 14 and over unit lengths, polyacrylamide gel electrophoresis on acid-urea and acid-urea-Triton gels has shown pancreatic histone H1 to be the only actively ADP-ribosylated histone species. The extent of ADP-ribosylation of histone H1 was also demonstrated to retard the protein's mobility in acid-urea, acid-urea-Triton, and lithium dodecyl sulfate polyacrylamide gels and to consist of at least 12 distinct ADP-ribosylated species extractable in all nucleosome complexities studied. Finally, extraction and subsequent electrophoresis of total chromosomal proteins in the presence of lithium dodecyl sulfate also evidenced heavy ADP-ribosylation at the level of nonhistone chromosomal proteins of the high mobility group comigrating in the core histone region, as well as in the topmost region of the gels where poly(ADP-ribose) polymerase was found to form a poly(ADP-ribosyl)ated aggregate.

  6. Glycation and glycoxidation of histones by ADP-ribose.

    PubMed

    Cervantes-Laurean, D; Jacobson, E L; Jacobson, M K

    1996-05-03

    The reaction of long lived proteins with reducing sugars has been implicated in the pathophysiology of aging and age-related diseases. A likely intranuclear source of reducing sugar is ADP-ribose, which is generated following DNA damage from the turnover of ADP-ribose polymers. In this study, ADP-ribose has been shown to be a potent histone glycation and glycoxidation agent in vitro. Incubation of ADP-ribose with histones H1, H2A, H2B, and H4 at pH 7.5 resulted in the formation of ketoamine glycation conjugates. Incubation of histone H1 with ADP-ribose also rapidly resulted in the formation of protein carboxymethyllysine residues, protein-protein cross-links, and highly fluorescent products with properties similar to the advanced glycosylation end product pentosidine. The formation of glycoxidation products was related to the degradation of ketoamine glycation conjugates by two different pathways. One pathway resulted in the formation of protein carboxymethyllysine residues and release of an ADP moiety containing a glyceric acid fragment. A second pathway resulted in the release of ADP, and it is postulated that this pathway is involved in the formation of histone-histone cross-links and fluorescent advanced glycosylation end products.

  7. Creatine kinase inhibits ADP-induced platelet aggregation

    PubMed Central

    Horjus, D. L.; Nieuwland, R.; Boateng, K. B.; Schaap, M. C. L.; van Montfrans, G. A.; Clark, J. F.; Sturk, A.; Brewster, L. M.

    2014-01-01

    Bleeding risk with antiplatelet therapy is an increasing clinical challenge. However, the inter-individual variation in this risk is poorly understood. We assessed whether the level of plasma creatine kinase, the enzyme that utilizes ADP and phosphocreatine to rapidly regenerate ATP, may modulate bleeding risk through a dose-dependent inhibition of ADP-induced platelet activation. Exogenous creatine kinase (500 to 4000 IU/L, phosphocreatine 5 mM) added to human plasma induced a dose-dependent reduction to complete inhibition of ADP-induced platelet aggregation. Accordingly, endogenous plasma creatine kinase, studied in 9 healthy men (mean age 27.9 y, SE 3.3; creatine kinase 115 to 859 IU/L, median 358), was associated with reduced ADP-induced platelet aggregation (Spearman's rank correlation coefficient, −0.6; p < 0.05). After exercise, at an endogenous creatine kinase level of 4664, ADP-induced platelet aggregation was undetectable, normalizing after rest, with a concomitant reduction of creatine kinase to normal values. Thus, creatine kinase reduces ADP-induced platelet activation. This may promote bleeding, in particular when patients use platelet P2Y12 ADP receptor inhibitors. PMID:25298190

  8. Imaging changes in the cytosolic ATP-to-ADP ratio

    PubMed Central

    Tantama, Mathew; Yellen, Gary

    2015-01-01

    Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We therefore developed a genetically-encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy. PMID:25416365

  9. A family of ras-like GTP-binding proteins expressed in electromotor neurons.

    PubMed

    Ngsee, J K; Elferink, L A; Scheller, R H

    1991-02-05

    The cDNAs encoding seven low molecular weight (LMW) GTP-binding proteins were isolated from an electrode lobe library of the marine ray Discopyge ommata. Four were assigned as the ray homologues of previously identified LMW GTP-binding proteins rab1, ral, Krev, and rho. Three others showed unique sequences, including two exhibiting significant similarity to the yeast SEC4 protein. Northern analysis indicated that several of the transcripts are enriched in neural tissues with a moderate level of expression in cardiac muscle. This tissue distribution was corroborated with affinity purified antibodies against the LMW GTP-binding proteins. Subcellular fractionation revealed that the proteins co-purify with cholinergic synaptic vesicles. Immunohistochemical analysis confirms this localization. At least two of the proteins, oral and o-rho, are localized to the pre-synaptic terminals.

  10. Involvement of a small GTP binding protein in HIV-1 release

    PubMed Central

    Audoly, Gilles; Popoff, Michel R; Gluschankof, Pablo

    2005-01-01

    Background There is evidence suggesting that actin binding to HIV-1 encoded proteins, or even actin dynamics themselves, might play a key role in virus budding and/or release from the infected cell. A crucial step in the reorganisation of the actin cytoskeleton is the engagement of various different GTP binding proteins. We have thus studied the involvement of GTP-binding proteins in the final steps of the HIV-1 viral replication cycle. Results Our results demonstrate that virus production is abolished when cellular GTP binding proteins involved in actin polymerisation are inhibited with specific toxins. Conclusion We propose a new HIV budding working model whereby Gag interactions with pre-existing endosomal cellular tracks as well as with a yet non identified element of the actin polymerisation pathway are required in order to allow HIV-1 to be released from the infected cell. PMID:16080789

  11. Phase changes at the end of a microtubule with a GTP cap.

    PubMed Central

    Hill, T L; Chen, Y

    1984-01-01

    Examination of Monte Carlo kinetic simulations, based on a realistic set of microscopic rate constants that apply to the end of a microtubule with a GTP cap, suggests that the end of a microtubule alternates between two quasimacroscopic phases. In one phase, the microtubule end has a GTP cap that fluctuates in size; in the other phase, the GTP cap has been lost. These repeated phase changes take place at any given tubulin concentration in a wide range of concentrations. While in the first phase, the microtubule grows slowly; while in the second phase, it shortens rapidly and may disappear completely. These results are closely related to the recent experimental work of Mitchison and Kirschner [Mitchison, T. & Kirschner, M.W. (1984) Nature (London), in press]. PMID:6592585

  12. Activation of K+ channels in renal medullary vesicles by cAMP-dependent protein kinase

    SciTech Connect

    Reeves, W.B.; McDonald, G.A.; Mehta, P.; Andreoli, T.E. )

    1989-07-01

    ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide- and chloride-sensitive {sup 22}Na+ uptake and barium-sensitive, voltage-dependent {sup 86}Rb+ influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1 mM ATP, and 50 mM KCl, the barium-sensitive {sup 86}Rb+ influx increased from 361 {plus minus} 138 to 528 {plus minus} 120 pM/mg prot.30 sec (P less than 0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 microgram/ml) was also present in the vesicle solutions. The stimulation of {sup 86}Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.

  13. Type 2 Diabetes and ADP Receptor Blocker Therapy

    PubMed Central

    Samoš, Matej; Fedor, Marián; Kovář, František; Mokáň, Michal; Bolek, Tomáš; Galajda, Peter; Kubisz, Peter; Mokáň, Marián

    2016-01-01

    Type 2 diabetes (T2D) is associated with several abnormalities in haemostasis predisposing to thrombosis. Moreover, T2D was recently connected with a failure in antiplatelet response to clopidogrel, the most commonly used ADP receptor blocker in clinical practice. Clopidogrel high on-treatment platelet reactivity (HTPR) was repeatedly associated with the risk of ischemic adverse events. Patients with T2D show significantly higher residual platelet reactivity on ADP receptor blocker therapy and are more frequently represented in the group of patients with HTPR. This paper reviews the current knowledge about possible interactions between T2D and ADP receptor blocker therapy. PMID:26824047

  14. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  15. Regulation of β-adrenergic control of heart rate by GTP-cyclohydrolase 1 (GCH1) and tetrahydrobiopterin

    PubMed Central

    Adlam, David; Herring, Neil; Douglas, Gillian; De Bono, Joseph P.; Li, Dan; Danson, Edward J.; Tatham, Amy; Lu, Cheih-Ju; Jennings, Katie A.; Cragg, Stephanie J.; Casadei, Barbara; Paterson, David J.; Channon, Keith M.

    2012-01-01

    Aims Clinical markers of cardiac autonomic function, such as heart rate and response to exercise, are important predictors of cardiovascular risk. Tetrahydrobiopterin (BH4) is a required cofactor for enzymes with roles in cardiac autonomic function, including tyrosine hydroxylase and nitric oxide synthase. Synthesis of BH4 is regulated by GTP cyclohydrolase I (GTPCH), encoded by GCH1. Recent clinical studies report associations between GCH1 variants and increased heart rate, but the mechanistic importance of GCH1 and BH4 in autonomic function remains unclear. We investigate the effect of BH4 deficiency on the autonomic regulation of heart rate in the hph-1 mouse model of BH4 deficiency. Methods and results In the hph-1 mouse, reduced cardiac GCH1 expression, GTPCH enzymatic activity, and BH4 were associated with increased resting heart rate; blood pressure was not different. Exercise training decreased resting heart rate, but hph-1 mice retained a relative tachycardia. Vagal nerve stimulation in vitro induced bradycardia equally in hph-1 and wild-type mice both before and after exercise training. Direct atrial responses to carbamylcholine were equal. In contrast, propranolol treatment normalized the resting tachycardia in vivo. Stellate ganglion stimulation and isoproterenol but not forskolin application in vitro induced a greater tachycardic response in hph-1 mice. β1-adrenoceptor protein was increased as was the cAMP response to isoproterenol stimulation. Conclusion Reduced GCH1 expression and BH4 deficiency cause tachycardia through enhanced β-adrenergic sensitivity, with no effect on vagal function. GCH1 expression and BH4 are novel determinants of cardiac autonomic regulation that may have important roles in cardiovascular pathophysiology. PMID:22241166

  16. The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form

    PubMed Central

    Hauryliuk, Vasili; Mitkevich, Vladimir A.; Eliseeva, Natalia A.; Petrushanko, Irina Yu.; Ehrenberg, Måns; Makarov, Alexander A.

    2008-01-01

    Translocation of the tRNA·mRNA complex through the bacterial ribosome is driven by the multidomain guanosine triphosphatase elongation factor G (EF-G). We have used isothermal titration calorimetry to characterize the binding of GDP and GTP to free EF-G at 4°C, 20°C, and 37°C. The binding affinity of EF-G is higher to GDP than to GTP at 4°C, but lower at 37°C. The binding enthalpy and entropy change little with temperature in the case of GDP binding but change greatly in the case of GTP binding. These observations are compatible with a large decrease in the solvent-accessible hydrophobic surface area of EF-G on GTP, but not GDP, binding. The explanation we propose is the locking of the switch 1 and switch 2 peptide loops in the G domain of EF-G to the γ-phosphate of GTP. From these data, in conjunction with previously reported structural data on guanine nucleotide-bound EF-G, we suggest that EF-G enters the pretranslocation ribosome as an “activity chimera,” with the G domain activated by the presence of GTP but the overall factor conformation in the inactive form typical of a GDP-bound multidomain guanosine triphosphatase. We propose that the active overall conformation of EF-G is attained only in complex with the ribosome in its “ratcheted state,” with hybrid tRNA binding sites. PMID:18836081

  17. Arginine-Specific Mono ADP-Ribosylation In Vitro of Antimicrobial Peptides by ADP-Ribosylating Toxins

    PubMed Central

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues. PMID:22879887

  18. Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins.

    PubMed

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues.

  19. Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP.

    PubMed

    Maita, Nobuo; Okada, Kengo; Hatakeyama, Kazuyuki; Hakoshima, Toshio

    2002-02-05

    In the presence of phenylalanine, GTP cyclohydrolase I feedback regulatory protein (GFRP) forms a stimulatory 360-kDa complex with GTP cyclohydrolase I (GTPCHI), which is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. The crystal structure of the stimulatory complex reveals that the GTPCHI decamer is sandwiched by two GFRP homopentamers. Each GFRP pentamer forms a symmetrical five-membered ring similar to beta-propeller. Five phenylalanine molecules are buried inside each interface between GFRP and GTPCHI, thus enhancing the binding of these proteins. The complex structure suggests that phenylalanine-induced GTPCHI x GFRP complex formation enhances GTPCHI activity by locking the enzyme in the active state.

  20. GTP cyclohydrolase I inhibition by the prototypic inhibitor 2, 4-diamino-6-hydroxypyrimidine. Mechanisms and unanticipated role of GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Xie, L; Smith, J A; Gross, S S

    1998-08-14

    2,4-Diamino-6-hydroxypyrimidine (DAHP) is considered to be a selective and direct-acting inhibitor of GTP cyclohydrolase I (GTPCH), the first and rate-limiting enzyme in the pathway for synthesis of tetrahydrobiopterin (BH4). Accordingly, DAHP has been widely employed to distinguish whether de novo BH4 synthesis is required in a given biological system. Although it has been assumed that DAHP inhibits GTPCH by direct competition with substrate GTP, this has never been formally demonstrated. In view of apparent structural homology between DAHP and BH4, we questioned whether DAHP may mimic BH4 in its inhibition of GTPCH by an indirect mechanism, involving interaction with a recently cloned 9.5-kDa protein termed GTPCH Feedback Regulatory Protein (GFRP). We show by reverse transcription-polymerase chain reaction that GFRP mRNA is constitutively expressed in rat aortic smooth muscle cells and further induced by treatment with immunostimulants. Moreover, functional GFRP is expressed and immunostimulant-induced BH4 accumulates in sufficient quantity to trigger feedback inhibition of GTPCH. Studies with DAHP reveal that GFRP is also essential to achieve potent inhibition of GTPCH. Indeed, DAHP inhibits GTPCH by dual mechanisms. At a relatively low concentration, DAHP emulates BH4 and engages the GFRP-dependent feedback inhibitory system; at higher concentrations, DAHP competes directly for binding with GTP substrate. This knowledge predicts that DAHP would preferably target GTPCH in tissues with abundant GFRP.

  1. ADP-ribosylation of proteins: Enzymology and biological significance

    SciTech Connect

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probing of proteins involved in signal transduction and protein biosynthesis.

  2. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  3. ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation*

    PubMed Central

    Pelletán, Leonardo E.; Suhaiman, Laila; Vaquer, Cintia C.; Bustos, Matías A.; De Blas, Gerardo A.; Vitale, Nicolas; Mayorga, Luis S.; Belmonte, Silvia A.

    2015-01-01

    Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization. PMID:25713146

  4. Structure-based Mechanism of ADP-ribosylation by Sirtuins

    SciTech Connect

    Hawse, William F.; Wolberger, Cynthia

    2009-12-01

    Sirtuins comprise a family of enzymes found in all organisms, where they play a role in diverse processes including transcriptional silencing, aging, regulation of transcription, and metabolism. The predominant reaction catalyzed by these enzymes is NAD{sup +}-dependent lysine deacetylation, although some sirtuins exhibit a weaker ADP-ribosyltransferase activity. Although the Sir2 deacetylation mechanism is well established, much less is known about the Sir2 ADP-ribosylation reaction. We have studied the ADP-ribosylation activity of a bacterial sirtuin, Sir2Tm, and show that acetylated peptides containing arginine or lysine 2 residues C-terminal to the acetyl lysine, the +2 position, are preferentially ADP-ribosylated at the +2 residue. A structure of Sir2Tm bound to the acetylated +2 arginine peptide shows how this arginine could enter the active site and react with a deacetylation reaction intermediate to yield an ADP-ribosylated peptide. The new biochemical and structural studies presented here provide mechanistic insights into the Sir2 ADP-ribosylation reaction and will aid in identifying substrates of this reaction.

  5. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  6. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  7. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway

    PubMed Central

    Ma, Ming; Zhao, Lian-mei; Yang, Xing-xiao; Shan, Ya-nan; Cui, Wen-xuan; Chen, Liang; Shan, Bao-en

    2016-01-01

    p-Hydroxylcinnamaldehyde (CMSP) has been identified as an inhibitor of the growth of various cancer cells. However, its function in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. The aim of the present study was to characterize the differentiation effects of CMSP, as well as its mechanism in the differentiation of ESCC Kyse30 and TE-13 cells. The function of CMSP in the viability, colony formation, migration and invasion of Kyse30 and TE-13 cells was determined by MTS, colony-formation, wound healing and transwell assays. Western blotting and pull-down assays were used to investigate the effect of CMSP on the expression level of malignant markers of ESCC, as well as the activity of MAPKs, RhoA and GTP-RhoA in Kyse30 and TE-13 cells. We found that CMSP could inhibit proliferation and migration and induce Kyse30 and TE-13 cell differentiation, characterized by dendrite-like outgrowth, decreased expression of tumour-associated antigens, as well as the decreased expression of malignant markers. Furthermore, increased cAMP, p-P38 and decreased activities of ERK, JNK and GTP-RhoA, were detected after treatment with CMSP. These results indicated that CMSP induced the differentiation of Kyse30 and TE-13 cells through mediating the cAMP-RhoA-MAPK axis, which might provide new potential strategies for ESCC treatment. PMID:27501997

  8. Hypocretin stimulates [(35)S]GTP gamma S binding in Hcrtr 2-transfected cell lines and in brain homogenate.

    PubMed

    Shiba, T; Ozu, M; Yoshida, Y; Mignot, E; Nishino, S

    2002-06-14

    In vitro functional analyses of hypocretin/orexin receptor systems were performed using [(125)I]hypocretin radioreceptor and hypocretin-stimulated [(35)S]GTP gamma S binding assay in cell lines expressing human or canine (wild-type and narcoleptic-mutation) hypocretin receptor 2 (Hcrtr 2). Hypocretin-2 stimulated [(35)S]GTP gamma S binding in human and canine Hcrtr 2 expressing cell lines, while cell lines expressing the mutated canine Hcrtr 2 did not exhibit specific binding for [(125)I]hypocretin or hypocretin-stimulated [(35)S]GTP gamma S. In rat brain homogenates, regional specific hypocretin-stimulated [(35)S]GTP gamma S binding was also observed. Hypocretin-stimulated [(35)S]GTP gamma S binding, may thus be a useful functional assay for hypocretin receptors in both cell lines and brain tissue homogenates.

  9. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  10. GTP binding controls complex formation by the human ROCO protein MASL1.

    PubMed

    Dihanich, Sybille; Civiero, Laura; Manzoni, Claudia; Mamais, Adamantios; Bandopadhyay, Rina; Greggio, Elisa; Lewis, Patrick A

    2014-01-01

    The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leucine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocytoma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular complexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the regulation of its cellular function.

  11. Measuring Ras-family GTP levels in vivo--running hot and cold.

    PubMed

    Castro, Ariel F; Rebhun, John F; Quilliam, Lawrence A

    2005-10-01

    The detection of Ras-family GTPase activity is important in the determination of cell signaling events elicited by numerous ligands and cellular processes. This has been made much easier in recent years by the use of glutathione S-transferase (GST)-fused Ras binding domains. These domains from downstream effectors such as Raf and RalGDS preferentially bind the GTP-bound Ras proteins enabling their extraction and subsequent quantification by immunoblotting. Despite this advance, effectors that efficiently discriminate between GTP- and GDP-bound states are not available for many Ras-family members. While this hampers the ability to detect activity in tissue specimens, it is still possible to metabolically label cells with (32)Pi to load the GTP/GDP pool with labeled nucleotides, immunoprecipitate the Ras protein and detect the bound label following thin layer chromatographic separation and exposure to film or a phosphorimager. Using a transfection system and antibodies that recognize epitope tags one can test the ability of a protein to work as a GEF or GAP for a certain GTPase. Alternatively, if an immunoprecipitating antibody is available to the target GTPase, then analysis of endogenous GTP/GDP ratio is possible. Here we describe the detection of M-Ras and Rap1 activity by GST-RBD pull-down as well as that of Rheb and epitope-tagged R-Ras by classical metabolic labeling and immunoprecipitation.

  12. Isolation of cDNAs encoding GTP cyclohydrolase II from Arabidopsis thaliana.

    PubMed

    Kobayashi, M; Sugiyama, M; Yamamoto, K

    1995-07-28

    A GTP cyclohydrolase II-encoding gene from Arabidopsis thaliana was isolated through functional complementation of a mutant of Escherichia coli, BSV18, deficient in this protein. The derived amino-acid sequence constitutes a polypeptide of 27 kDa and shows 37-58% identity with previously published sequences of Escherichia coli, Bacillus subtilis, Photobacterium leiognathi and P. phosphoreum.

  13. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond

    PubMed Central

    Cavazza, Tommaso; Vernos, Isabelle

    2016-01-01

    The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context. PMID:26793706

  14. Characterization of GTP binding and hydrolysis in plasma membranes of zucchini

    NASA Technical Reports Server (NTRS)

    Perdue, D. O.; Lomax, T. L.

    1992-01-01

    We have investigated the possibility that G-protein-like entities may be present in the plasma membrane (PM) of zucchini (Cucurbita pepo L.) hypocotyls by examining a number of criteria common to animal and yeast G-proteins. The GTP binding and hydrolysis characteristics of purified zucchini PM are similar to the characteristics of a number of known G-proteins. Our results demonstrate GTP binding to a single PM site having a Kd value between 16-31 nM. This binding has a high specificity for guanine nucleotides, and is stimulated by Mg2+, detergents, and fluoride or aluminium ions. The GTPase activity (Km = 0.49 micromole) of zucchini PM shows a sensitivity to NaF similar to that seen for other G-proteins. Localization of GTP mu 35S binding to nitrocellulose blots of proteins separated by SDS-PAGE indicates a 30-kDa protein as the predominant GTP-binding species in zucchini PM. Taken together, these data indicate that plant PM contains proteins which are biochemically similar to previously characterized G-proteins.

  15. Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

    SciTech Connect

    De Weille, J.R.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M. )

    1989-04-01

    The actions of somatostatin and of the phorbol ester 4{beta}-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and {sup 86}Rb{sup +} flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K{sup +} channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive {sup 86}Rb{sup +} efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K{sup +} channels are discussed.

  16. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.

    PubMed

    Satpati, Priyadarshi; Clavaguéra, Carine; Ohanessian, Gilles; Simonson, Thomas

    2011-05-26

    Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force

  17. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    SciTech Connect

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP and noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.

  18. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  19. Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors.

    PubMed

    Woods, M D; Freshney, R I; Ball, S G; Vaughan, P F

    1989-09-01

    Two cell cultures, NEP2 and NEM2, isolated from human foetal brain have been maintained through several passages and found to express some properties of astrocytes. Both cell cultures contain adenylate cyclase stimulated by catecholamines with a potency order of isoprenaline greater than adrenaline greater than salbutamol much greater than noradrenaline, which is consistent with the presence of beta 2-adrenergic receptors. This study reports that the beta 2-adrenergic-selective antagonist ICI 118,551 is approximately 1,000 times more potent at inhibiting isoprenaline stimulation of cyclic AMP (cAMP) formation in both NEP2 and NEM2 than the beta 1-adrenergic-selective antagonist practolol. This observation confirms the presence of beta 2-adrenergic receptors in these cell cultures. The formation of cAMP in NEP2 is also stimulated by 5'-(N-ethylcarboxamido)adenosine (NECA) more potently than by either adenosine or N6-(L-phenylisopropyl)adenosine (L-PIA), which suggests that this foetal astrocyte expresses adenosine A2 receptors. Furthermore, L-PIA and NECA inhibit isoprenaline stimulation of cAMP formation, a result suggesting the presence of adenosine A1 receptors on NEP2. The presence of A1 receptors is confirmed by the observation that the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine reverses the inhibition of isoprenaline stimulation of cAMP formation by L-PIA and NECA. Additional evidence that NEP2 expresses adenosine receptors linked to the adenylate cyclase-inhibitory GTP-binding protein is provided by the finding that pretreatment of these cells with pertussis toxin reverses the adenosine inhibition of cAMP formation stimulated by either isoprenaline or forskolin.

  20. Regulation of cyclic AMP synthesis and degradation is modified in rat liver at late gestation.

    PubMed Central

    Martinez, C; Ruiz, P; Satrustegui, J; Andres, A; Carrascosa, J M

    1992-01-01

    Cyclic AMP (cAMP) is known to play a key role in regulating insulin action, and it is well documented that in several cases of physiological insulin resistance its concentration is increased. Since late pregnancy in the rat is associated with liver insulin resistance, we have studied possible alterations of some cellular mechanisms regulating the cAMP metabolism. (1) Liver cAMP concentration was shown to be increased by some 30% and 50% at 18 and 22 days of pregnancy respectively, compared with virgins. (2) Basal adenylate cyclase activity was higher only in the 18-days-pregnant rat, and the forskolin-stimulated maximal activity was similar in the three groups of animals. (3) alpha s protein is decreased in term-pregnant rats; however, coupling between Gs and adenylate cyclase is only impaired in the 18-days-pregnant animals, and stimulation by glucagon is impaired in both groups of pregnant animals. (4) Gi-2 protein was shown to be unable to elicit the tonic inhibition of adenylate cyclase in pregnant rats, although it was only decreased at 22 days of gestation. The increased alpha i-2 level detected by immunoblotting at 18 days of gestation did not correlate with its decreased ADP-ribosylation, suggesting that the protein is somehow modified at this stage. (5) Pregnancy is associated with a decrease in membrane phosphodiesterase activity. Our results show that late pregnancy is associated with increases in liver cAMP levels that might be involved in eliciting the characteristic insulin-resistant state, and suggest that mechanisms leading to these increments are changing during this phase of gestation. Images Fig. 2. Fig. 3. PMID:1326941

  1. Interrogating cyclic AMP signaling using optical approaches.

    PubMed

    Jiang, Jason Y; Falcone, Jeffrey L; Curci, Silvana; Hofer, Aldebaran M

    2017-03-01

    Optical reporters for cAMP represent a fundamental advancement in our ability to investigate the dynamics of cAMP signaling. These fluorescent sensors can measure changes in cAMP in single cells or in microdomains within cells as opposed to whole populations of cells required for other methods of measuring cAMP. The first optical cAMP reporters were FRET-based sensors utilizing dissociation of purified regulatory and catalytic subunits of PKA, introduced by Roger Tsien in the early 1990s. The utility of these sensors was vastly improved by creating genetically encoded versions that could be introduced into cells with transfection, the first of which was published in the year 2000. Subsequently, improved sensors have been developed using different cAMP binding platforms, optimized fluorescent proteins, and targeting motifs that localize to specific microdomains. The most common sensors in use today are FRET-based sensors designed around an Epac backbone. These rely on the significant conformational changes in Epac when it binds cAMP, altering the signal between FRET pairs flanking Epac. Several other strategies for optically interrogating cAMP have been developed, including fluorescent translocation reporters, dimerization-dependent FP based biosensors, BRET (bioluminescence resonance energy transfer)-based sensors, non-FRET single wavelength reporters, and sensors based on bacterial cAMP-binding domains. Other newly described mammalian cAMP-binding proteins such as Popdc and CRIS may someday be exploited in sensor design. With the proliferation of engineered fluorescent proteins and the abundance of cAMP binding targets in nature, the field of optical reporters for cAMP should continue to see rapid refinement in the coming years.

  2. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism

    PubMed Central

    Han, Ah-reum; Kang, Hye-Ri; Son, Jonghyeon; Kwon, Do Hoon; Kim, Sulhee; Lee, Woo Cheol; Song, Hyun Kyu; Song, Moon Jung; Hwang, Kwang Yeon

    2016-01-01

    GTP and branched-chain amino acids (BCAAs) are metabolic sensors that are indispensable for the determination of the metabolic status of cells. However, their molecular sensing mechanism remains unclear. CodY is a unique global transcription regulator that recognizes GTP and BCAAs as specific signals and affects expression of more than 100 genes associated with metabolism. Herein, we report the first crystal structures of the full-length CodY complex with sensing molecules and describe their functional states. We observed two different oligomeric states of CodY: a dimeric complex of CodY from Staphylococcus aureus with the two metabolites GTP and isoleucine, and a tetrameric form (apo) of CodY from Bacillus cereus. Notably, the tetrameric state shows in an auto-inhibitory manner by blocking the GTP-binding site, whereas the binding sites of GTP and isoleucine are clearly visible in the dimeric state. The GTP is located at a hinge site between the long helical region and the metabolite-binding site. Together, data from structural and electrophoretic mobility shift assay analyses improve understanding of how CodY senses GTP and operates as a DNA-binding protein and a pleiotropic transcription regulator. PMID:27596595

  3. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    PubMed Central

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  4. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    PubMed

    Li, Ruixi; Li, Jieru; Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.

  5. Identification of the platelet ADP receptor targeted by antithrombotic drugs.

    PubMed

    Hollopeter, G; Jantzen, H M; Vincent, D; Li, G; England, L; Ramakrishnan, V; Yang, R B; Nurden, P; Nurden, A; Julius, D; Conley, P B

    2001-01-11

    Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb-IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2Y(ADP), P2Y(AC), P2Ycyc or P2T(AC)) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the Gi-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.

  6. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  7. Gene expression and cAMP.

    PubMed Central

    Nagamine, Y; Reich, E

    1985-01-01

    By comparing the 5'-flanking region of the porcine gene for the urokinase form of plasminogen activator with those of other cAMP-regulated genes, we identify a 29-nucleotide sequence that is tentatively proposed as the cAMP-regulatory unit. Homologous sequences are present (i) in the cAMP-regulated rat tyrosine aminotransferase, prolactin, and phosphoenolpyruvate carboxykinase genes and (ii) 5' to the transcription initiation sites of cAMP-regulated Escherichia coli genes. From this we conclude that the expression of cAMP-responsive genes in higher eukaryotes may be controlled, as in E. coli, by proteins that form complexes with cAMP and then show sequence-specific DNA-binding properties. The complex formed by cAMP and the regulatory subunit of the type II mammalian protein kinase might be one candidate for this function. Based on several homologies we suggest that this subunit may have retained both the DNA-binding specificity and transcription-regulating properties in addition to the nucleotide-binding domains of the bacterial cAMP-binding protein. If this were so, dissociation of protein kinase by cAMP would activate two processes: (i) protein phosphorylation by the catalytic subunit and (ii) transcription regulation by the regulatory subunit. PMID:2991882

  8. Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.

    PubMed

    Mishra, Rajeev; Gara, Sudheer Kumar; Mishra, Shambhavi; Prakash, Balaji

    2005-05-01

    Ras superfamily GTP-binding proteins regulate important signaling events in the cell. Ras, which often serves as a prototype, efficiently hydrolyzes GTP in conjunction with its regulator GAP. A conserved glutamine plays a vital role in GTP hydrolysis in most GTP-binding proteins. Mutating this glutamine in Ras has oncogenic effects, since it disrupts GTP hydrolysis. The analysis presented here is of GTP-binding proteins that are a paradox to oncogenic Ras, since they have the catalytic glutamine (Glncat) substituted by a hydrophobic amino acid, yet can hydrolyze GTP efficiently. We term these proteins HAS-GTPases. Analysis of the amino acid sequences of HAS-GTPases reveals prominent presence of insertions around the GTP-binding pocket. Homology modeling studies suggest an interesting means to achieve catalysis despite the drastic hydrophobic substitution replacing the key Glncat of Ras-like GTPases. The substituted hydrophobic residue adopts a "retracted conformation," where it is positioned away from the GTP, as its role in catalysis would be unproductive. This conformation is further stabilized by interactions with hydrophobic residues in its vicinity. These interacting residues are strongly conserved and hydrophobic in all HAS-GTPases, and correspond to residues Asp92 and Tyr96 of Ras. An experimental support for the "retracted conformation" of Switch II arises from the crystal structures of Ylqf and hGBP1. This conformation allows us to hypothesize that, unlike in classical GTPases, catalytic residues could be supplied by regions other than the Switch II (i.e., either the insertions or a neighboring domain).

  9. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    SciTech Connect

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M. )

    1989-08-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.

  10. The RGK family: a regulatory tail of small GTP-binding proteins.

    PubMed

    Kelly, Kathleen

    2005-12-01

    RGK proteins are small Ras-related GTP-binding proteins that function as potent inhibitors of voltage-dependent calcium channels, and two members of the family, Gem and Rad, modulate Rho-dependent remodeling of the cytoskeleton. Within the Ras superfamily, RGK proteins have distinct structural and regulatory characteristics. It is an open question as to whether RGK proteins catalyze GTP hydrolysis in vivo. Binding of calmodulin and the 14-3-3 protein to RGK proteins controls downstream pathways. Here, we discuss the structural and functional properties of RGK proteins and highlight recent work by Beguin and colleagues addressing the mechanism of Gem regulation by calmodulin and 14-3-3.

  11. ADP Bid Protests: Better Disclosure and Accountability of Settlements Needed

    DTIC Science & Technology

    1990-03-01

    but Few A With Mosey S -7 The.Census Bureaus expeice and concern about ossCA’s bid 1rotest procedures prompted.a DN Aft•ment of Commerce official in...GAO/GGD-S-13 ADP Bid Protest Settlements * 4 r 0 @ Appendix I ADP Bid Protests Fil With the GSBCA and£ G O From April to September 30, 18N General...J. Socolar Special Assistant to the Comptroller General General Accounting Office 蚉 G Street, N.V. Vashington, D.C. 20548 Subject: Analysis of

  12. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2015-06-01

    RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP- (total of 3.06 μs) and GTP-bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25-40) and SwitchII (Residues 59-75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP-bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild-type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF-assisted nucleotide exchange.

  13. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  14. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  15. Mitochondrial GTP Insensitivity Contributes to Hypoglycemia in Hyperinsulinemia Hyperammonemia by Inhibiting Glucagon Release

    PubMed Central

    Choi, Cheol Soo; Lee, Hui-Young; Cabrera, Over; Pongratz, Rebecca L.; Zhao, Xiaojian; Birkenfeld, Andreas L.; Li, Changhong; Berggren, Per-Olof; Stanley, Charles; Shulman, Gerald I.

    2014-01-01

    Mitochondrial GTP (mtGTP)-insensitive mutations in glutamate dehydrogenase (GDHH454Y) result in fasting and amino acid–induced hypoglycemia in hyperinsulinemia hyperammonemia (HI/HA). Surprisingly, hypoglycemia may occur in this disorder despite appropriately suppressed insulin. To better understand the islet-specific contribution, transgenic mice expressing the human activating mutation in β-cells (H454Y mice) were characterized in vivo. As in the humans with HI/HA, H454Y mice had fasting hypoglycemia, but plasma insulin concentrations were similar to the controls. Paradoxically, both glucose- and glutamine-stimulated insulin secretion were severely impaired in H454Y mice. Instead, lack of a glucagon response during hypoglycemic clamps identified impaired counterregulation. Moreover, both insulin and glucagon secretion were impaired in perifused islets. Acute pharmacologic inhibition of GDH restored both insulin and glucagon secretion and normalized glucose tolerance in vivo. These studies support the presence of an mtGTP-dependent signal generated via β-cell GDH that inhibits α-cells. As such, in children with activating GDH mutations of HI/HA, this insulin-independent glucagon suppression may contribute importantly to symptomatic hypoglycemia. The identification of a human mutation causing congenital hypoglucagonemic hypoglycemia highlights a central role of the mtGTP–GDH–glucagon axis in glucose homeostasis. PMID:25024374

  16. RF3:GTP promotes rapid dissociation of the class 1 termination factor.

    PubMed

    Koutmou, Kristin S; McDonald, Megan E; Brunelle, Julie L; Green, Rachel

    2014-05-01

    Translation termination is promoted by class 1 and class 2 release factors in all domains of life. While the role of the bacterial class 1 factors, RF1 and RF2, in translation termination is well understood, the precise contribution of the bacterial class 2 release factor, RF3, to this process remains less clear. Here, we use a combination of binding assays and pre-steady state kinetics to provide a kinetic and thermodynamic framework for understanding the role of the translational GTPase RF3 in bacterial translation termination. First, we find that GDP and GTP have similar affinities for RF3 and that, on average, the t1/2 for nucleotide dissociation from the protein is 1-2 min. We further show that RF3:GDPNP, but not RF3:GDP, tightly associates with the ribosome pre- and post-termination complexes. Finally, we use stopped-flow fluorescence to demonstrate that RF3:GTP enhances RF1 dissociation rates by over 500-fold, providing the first direct observation of this step. Importantly, catalytically inactive variants of RF1 are not rapidly dissociated from the ribosome by RF3:GTP, arguing that a rotated state of the ribosome must be sampled for this step to efficiently occur. Together, these data define a more precise role for RF3 in translation termination and provide insights into the function of this family of translational GTPases.

  17. Ribosome-induced tuning of GTP hydrolysis by a translational GTPase.

    PubMed

    Maracci, Cristina; Peske, Frank; Dannies, Ev; Pohl, Corinna; Rodnina, Marina V

    2014-10-07

    GTP hydrolysis by elongation factor Tu (EF-Tu), a translational GTPase that delivers aminoacyl-tRNAs to the ribosome, plays a crucial role in decoding and translational fidelity. The basic reaction mechanism and the way the ribosome contributes to catalysis are a matter of debate. Here we use mutational analysis in combination with measurements of rate/pH profiles, kinetic solvent isotope effects, and ion dependence of GTP hydrolysis by EF-Tu off and on the ribosome to dissect the reaction mechanism. Our data suggest that--contrary to current models--the reaction in free EF-Tu follows a pathway that does not involve the critical residue H84 in the switch II region. Binding to the ribosome without a cognate codon in the A site has little effect on the GTPase mechanism. In contrast, upon cognate codon recognition, the ribosome induces a rearrangement of EF-Tu that renders GTP hydrolysis sensitive to mutations of Asp21 and His84 and insensitive to K(+) ions. We suggest that Asp21 and His84 provide a network of interactions that stabilize the positions of the γ-phosphate and the nucleophilic water, respectively, and thus play an indirect catalytic role in the GTPase mechanism on the ribosome.

  18. Fluoroaluminate treatment of rat liver microsomes inhibits GTP-dependent vesicle fusion.

    PubMed Central

    Comerford, J G; Dawson, A P

    1991-01-01

    1. Inhibition of GTP-dependent membrane fusion of rat liver microsomes requires preincubation of the membranes with GDP (17 microM) and relatively high Mg2+ concentration (0.5 mM) as well as AlCl3 (30 microM) and KF (5 mM). Preincubation is required for maximal inhibition (75%). 2. Vesicle fusion in rat liver microsomes has been demonstrated in the absence of polyethylene glycol (PEG). Further, inhibition by AlF4- of GTP-dependent vesicle fusion in the absence of PEG has been demonstrated. 3. Under similar preincubation conditions AlF4- can bring about inhibition (80%) of the high-affinity PEG-stimulated GTPase activity in rat liver microsomes, previously described by Nicchitta, Joseph & Williamson [(1986) FEBS Lett. 209, 243-248]. 4. Preincubation of small-Mr GTP-binding proteins (Gn proteins) on nitrocellulose strips with GDP (20 pM), AlCl3 (30 microM) and KF (5 mM) results in inhibition of binding of guanosine 5'-[gamma-[35S]thio]triphosphate to Gn proteins. The extent of inhibition of this binding differs for different Gn proteins. PMID:1747106

  19. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.

    PubMed

    Aleksandrov, Alexey; Field, Martin

    2013-09-01

    Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.

  20. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats

    PubMed Central

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832

  1. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G

    PubMed Central

    Li, Wen; Liu, Zheng; Koripella, Ravi Kiran; Langlois, Robert; Sanyal, Suparna; Frank, Joachim

    2015-01-01

    During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome. PMID:26229983

  2. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  3. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  4. An ecto-enzyme from Sulfolobus acidocaldarius strain 7 which catalyzes hydrolysis of inorganic pyrophosphate, ATP, and ADP: purification and characterization.

    PubMed

    Amano, T; Wakagi, T; Oshima, T

    1993-09-01

    Membranes of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium, show novel enzymatic activities to hydrolyze PPi, ATP, and ADP at an optimal pH of 3, equal to the growth optimum. The activity increased by about 2-fold on addition of PPi and/or Pi to the growth medium, when yeast extract and casamino acids were removed. The enzyme which hydrolyzes PPi at pH 3 was solubilized and purified by successive chromatographies. The final preparation showed a 26 kDa single band on SDS-PAGE, and a molecular mass of 35 kDa on gel permeation chromatography. The Km and Vmax for PPi were 0.16 mM and 33 mumol Pi released/min/mg at 55 degrees C. ATP and ADP were also good substrates. Divalent cations were not essential for activity. Substrate inhibition at more than 5 mM PPi, ATP or ADP was observed. AMP, glucose-6-phosphate, and p-nitrophenyl phosphate were not hydrolyzed at all. The activity was 4-fold stimulated by addition of the lipid fraction extracted from the organism.

  5. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate.

    PubMed

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-12-25

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.

  6. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate*

    PubMed Central

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-01-01

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. PMID:26515069

  7. Neutron crystal structure of RAS GTPase puts in question the protonation state of the GTP γ-phosphate

    SciTech Connect

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-10-29

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. As a result, the neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.

  8. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    PubMed

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo.

  9. Three Yersinia enterocolitica AmpD Homologs Participate in the Multi-Step Regulation of Chromosomal Cephalosporinase, AmpC

    PubMed Central

    Liu, Chang; Wang, Xin; Chen, Yuhuang; Hao, Huijing; Li, Xu; Liang, Junrong; Duan, Ran; Li, Chuchu; Zhang, Jing; Shao, Shihe; Jing, Huaiqi

    2016-01-01

    In many gram negative bacilli, AmpD plays a key role in both cell well-recycling pathway and β-lactamase regulation, inactivation of the ampD causes the accumulation of 1,6-anhydromuropeptides, and results in the ampC overproduction. In Yersinia enterocolitica, the regulation of ampC expression may also rely on the ampR-ampC system, the role of AmpD in this species is still unknown. In this study, three AmpD homologs (AmpD1, AmpD2, and AmpD3) have been identified in complete sequence of strain Y. enterocolitica subsp. palearctica 105.5R(r). To understand the role of three AmpD homologs, several mutant strains were constructed and analyzed where a rare ampC regulation mechanism was observed: low-effective ampD2 and ampD3 cooperate with the high-effective ampD1 in the three levels regulation of ampC expression. Enterobacteriaceae was used to be supposed to regulate ampC expression by two steps, three steps regulation was only observed in Pseudomonas aeruginosa. In this study, we first reported that Enterobacteriaceae Y. enterocolitica can also possess a three steps stepwise regulation mechanism, regulating the ampC expression precisely. PMID:27588018

  10. Three Yersinia enterocolitica AmpD Homologs Participate in the Multi-Step Regulation of Chromosomal Cephalosporinase, AmpC.

    PubMed

    Liu, Chang; Wang, Xin; Chen, Yuhuang; Hao, Huijing; Li, Xu; Liang, Junrong; Duan, Ran; Li, Chuchu; Zhang, Jing; Shao, Shihe; Jing, Huaiqi

    2016-01-01

    In many gram negative bacilli, AmpD plays a key role in both cell well-recycling pathway and β-lactamase regulation, inactivation of the ampD causes the accumulation of 1,6-anhydromuropeptides, and results in the ampC overproduction. In Yersinia enterocolitica, the regulation of ampC expression may also rely on the ampR-ampC system, the role of AmpD in this species is still unknown. In this study, three AmpD homologs (AmpD1, AmpD2, and AmpD3) have been identified in complete sequence of strain Y. enterocolitica subsp. palearctica 105.5R(r). To understand the role of three AmpD homologs, several mutant strains were constructed and analyzed where a rare ampC regulation mechanism was observed: low-effective ampD2 and ampD3 cooperate with the high-effective ampD1 in the three levels regulation of ampC expression. Enterobacteriaceae was used to be supposed to regulate ampC expression by two steps, three steps regulation was only observed in Pseudomonas aeruginosa. In this study, we first reported that Enterobacteriaceae Y. enterocolitica can also possess a three steps stepwise regulation mechanism, regulating the ampC expression precisely.

  11. The alpha-glycosidic bonds of poly(ADP-ribose) are acid-labile.

    PubMed

    Panzeter, P L; Zweifel, B; Althaus, F R

    1992-04-15

    The poly(ADP-ribosyl)ation system of higher eukaryotes produces multiple ADP-ribose polymers of distinct sizes which exhibit different binding affinities for histones. Although precipitation with trichloroacetic acid (TCA) is the standard procedure for isolation of poly(ADP-ribose) from biological material, we show here that poly(ADP-ribose) is not stable under acidic conditions. Storage of poly(ADP-ribose) as TCA pellets results in acid hydrolysis of polymers, the extent of which is dependent on storage time and temperature. The alpha-glycosidic, inter-residue bonds are the preferred sites of attack, thus reducing polymer sizes by integral numbers of ADP-ribose to yield artefactually more and smaller polymers than originally present. Therefore, poly(ADP-ribosyl)ation studies involving TCA precipitation, histone extraction with acids, or acidic incubations of ADP-ribose polymers must account for the impact of acids on resulting polymer populations.

  12. Inhibition of microsomal lipid peroxidation by cytosolic protein in presence of ADP and high concentration of Fe2+.

    PubMed

    Ramasarma, T; Muakkassah-Kelly, S; Hochstein, P

    1984-12-06

    Microsomal lipid peroxidation induced by NADPH, but not by ascorbate, was found to be inhibited by liver cytosol. This inhibition was not dependent on glutathione and was enhanced by ADP in presence of Fe2+ at a concentration of 50 microM or higher. ATP was also effective, but not AMP or cyclic AMP. The cytosolic factor appeared to be a protein as it was heat-labile (greater than 70 degrees C), was non-dialyzable and was precipitated by ammonium sulfate and acetone. It was stable for several months in frozen state and also when heated at 50 degrees C for 10 min. The inhibition by the cytosolic protein was obtained by producing a lag in the activity of lipid peroxidation and was reversed by ceruloplasmin but not by catalase, cytochrome c, hemoglobin or superoxide dismutase. This inhibitory effect by cytosol was limited to formation of lipid peroxides whereas oxygen uptake and NADPH oxidation remained unaffected. Regulation of lipid peroxidation by nucleotide-Fe complexes and cytosolic proteins is indicated by these studies.

  13. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.

    PubMed Central

    Monasterio, Octavio; Cárdenas, María Luz

    2003-01-01

    The kinetic mechanism of rat liver hexokinase D ('glucokinase') was studied under non-co-operative conditions with 2-deoxyglucose as substrate, chosen to avoid uncertainties derived from the co-operativity observed with the physiological substrate, glucose. The enzyme shows hyperbolic kinetics with respect to both 2-deoxyglucose and MgATP(2-), and the reaction follows a ternary-complex mechanism with K (m)=19.2+/-2.3 mM for 2-deoxyglucose and 0.56+/-0.05 mM for MgATP(2-). Product inhibition by MgADP(-) was mixed with respect to MgATP(2-) and was largely competitive with respect to 2-deoxyglucose, suggesting an ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. Dead-end inhibition by N -acetylglucosamine, AMP and the inert complex CrATP [the complex of ATP with chromium in the 3+ oxidation state, i.e. Cr(III)-ATP], studied with respect to both substrates, also supports an ordered mechanism with 2-deoxyglucose as first substrate. AMP appears to bind both to the free enzyme and to the E*dGlc complex. Experiments involving protection against inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) support the existence of the E*MgADP(-) and E*AMP complexes suggested by the kinetic studies. MgADP(-), AMP, 2-deoxyglucose, glucose and mannose were strong protectors, supporting the existence of binary complexes with the enzyme. Glucose 6-phosphate failed to protect, even at concentrations as high as 100 mM, and MgATP(2-) protected only slightly (12%). The inactivation results support the postulated ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. In addition, the straight-line dependence observed when the reciprocal value of the inactivation constant was plotted against the sugar-ligand concentration supports the view that there is just one sugar-binding site in hexokinase D. PMID:12513690

  14. Aminoglycoside 2′′-Phosphotransferase IIIa (APH(2′′)-IIIa) Prefers GTP over ATP

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Frase, Hilary; Byrnes, Laura J.; Vakulenko, Sergei B.

    2012-01-01

    Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2′′-phosphotransferase IIIa (APH(2′′)) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2′′)-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes. PMID:22367198

  15. Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE).

    PubMed

    Nwoba, Emeka Godfrey; Moheimani, Navid Reza; Ubi, Benjamin Ewa; Ogbonna, James Chukwuma; Vadiveloo, Ashiwin; Pluske, John R; Huisman, John Marinus

    2017-03-01

    Environmental consequences of high productivity piggeries are significant and can result in negative environmental impacts, hence bioremediation techniques (in particular using macroalgae) are therefore of great interest. Here, the growth potential of several freshwater macroalgae in anaerobic digestion piggery effluent (ADPE), their nutrient removal rates and biochemical composition of the biomass were investigated under outdoor climatic conditions. A consortium of two macroalgae, Rhizoclonium sp. and Ulothrix sp. was isolated and could efficiently grow in the ADPE. Maximum ammonium removal rate (30.6±6.50mg NH4(+)-NL(-1)d(-1)) was achieved at ADPE concentration equivalent to 248mgNH4(+)-NL(-1). Mean biomass productivity of 31.1±1.14g ash-free dry weight (AFDW) m(-2)d(-1) was achieved. Total carbohydrate and protein contents ranged between 42.8-54.8 and 43.4-45.0% AFDW, respectively, while total lipid content was very low. The study indicates the potential use of this macroalgal consortium for treating ADPE as well as source of animal feed production.

  16. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  17. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  18. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  19. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  20. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM REQUIREMENTS FOR PARTICIPATING STATE AGENCIES § 272.10 ADP/CIS... automate their food stamp program operations and computerize their systems for obtaining,...

  1. ADP correspondence system: Unsolicited proposal evaluation tracking application

    NASA Technical Reports Server (NTRS)

    Greene, W. A.; Goodwin, D. J.

    1976-01-01

    A complete description of a correspondence control system, designed to be used by non-ADP clerical personnel is provided. In addition to operating instructions, sufficient design and conceptual information is provided to allow use or adaption of the system in related applications. The complete COBOL program and documentation are available.

  2. A genetically encoded fluorescent reporter of ATP/ADP ratio

    PubMed Central

    Berg, Jim; Hung, Yin Pun; Yellen, Gary

    2008-01-01

    A fluorescent sensor of adenylate nucleotides was constructed by combining a circularly permuted variant of green fluorescent protein with a bacterial regulatory protein, GlnK1, from Methanococcus jannaschii. The affinity for Mg-ATP is below 100 nM, as seen for the other members of the bacterial PII regulator family – a surprisingly high affinity given normal intracellular [ATP] in the millimolar range. ADP binds to the same site, competing with Mg-ATP but producing a smaller change in fluorescence. With normal physiological concentrations of ATP and ADP, the binding site is saturated, but competition between the two substrates causes the sensor to behave as a nearly ideal reporter of the ATP/ADP concentration ratio. This principle for sensing the ratio of two analytes by competition at a high affinity site probably underlies the normal functioning of PII regulatory proteins. The engineered sensor, Perceval, can be used to monitor the ATP/ADP ratio during live cell imaging. PMID:19122669

  3. American Diploma Project (ADP) End-of-Course Exams: 2010 Annual Report

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    To assess the raised expectations of college and career readiness for all students, a group of American Diploma Project (ADP) Network states formed the ADP Assessment Consortium in 2005. The Consortium created Algebra I and II end-of-course exams, based in large part on Achieve's ADP mathematics benchmarks, which would provide an honest assessment…

  4. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups

    PubMed Central

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B.; Mackey, Michael C.; Lauzon, Anne-Marie

    2015-01-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo—suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  5. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups.

    PubMed

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B; Mackey, Michael C; Lauzon, Anne-Marie

    2015-02-03

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.

  6. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade

    SciTech Connect

    Liu Chunsheng; Zhang Xiaowei; Chang Hong; Jones, Paul; Wiseman, Steve; Naile, Jonathan; Hecker, Markus; Giesy, John P.; Zhou Bingsheng

    2010-09-15

    Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of all hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.

  7. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  8. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  9. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCECandida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator

  10. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.

    PubMed

    Han, Seungil; Tainer, John A

    2002-02-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing the NAD-binding pocket formed by the two perpendicular beta-sheet cores has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosytransferases are characterized by conserved Arg and catalytic Glu residues. Structural and mutagenic studies of the NAD-binding core of a binary toxin and a C3-like toxin identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD-binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD-binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  11. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    SciTech Connect

    Walker, G.; Bourguignon, L.Y. )

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  12. Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis.

    PubMed

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-05-19

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

  13. The integrated global temperature change potential (iGTP) and relationships between emission metrics

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Aamaas, Borgar; Berntsen, Terje; Fuglestvedt, Jan S.

    2011-12-01

    The Kyoto Protocol compares greenhouse gas emissions (GHGs) using the global warming potential (GWP) with a 100 yr time-horizon. The GWP was developed, however, to illustrate the difficulties in comparing GHGs. In response, there have been many critiques of the GWP and several alternative emission metrics have been proposed. To date, there has been little focus on understanding the linkages between, and interpretations of, different emission metrics. We use an energy balance model to mathematically link the absolute GWP, absolute global temperature change potential (AGTP), absolute ocean heat perturbation (AOHP), and integrated AGTP. For pulse emissions, energy conservation requires that AOHP = AGWP - iAGTP/λ and hence AGWP and iAGTP are closely linked and converge as AOHP decays to zero. When normalizing the metrics with CO2 (GWP, GTP, and iGTP), we find that the iGTP and GWP are similar numerically for a wide range of GHGs and time-horizons, except for very short-lived species. The similarity between the iGTPX and GWPX depends on how well a pulse emission of CO2 can substitute for a pulse emission of X across a range of time-horizons. The ultimate choice of emission metric(s) and time-horizon(s) depends on policy objectives. To the extent that limiting integrated temperature change over a specific time-horizon is consistent with the broader objectives of climate policy, our analysis suggests that the GWP represents a relatively robust, transparent and policy-relevant emission metric.

  14. Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium

    PubMed Central

    1991-01-01

    Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359). PMID:1986006

  15. A mechanism of catalyzed GTP hydrolysis by Ras protein through magnesium ion

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Nassar, Nicolas; Wang, Jin

    2011-11-01

    The hydrolysis by Ras plays pivotal roles in the activation of signaling pathways that lead to cell growth, proliferation, and differentiation. Despite their significant role in human cancer, the hydrolysis mechanism remains unclear. In the present Letter, we propose a GTP hydrolysis mechanism in which the γ phosphate is cut off primarily by magnesium ion. We studied both normal and mutated Ras and the cause of the malfunction of these mutants, compared the effect of Mg2+ and Mn2+. The simulation results are consistent with the experiments and support the new hydrolysis mechanism. This work will benefit both GTPases and ATPases hydrolysis studies.

  16. C++ Coding Standards for the AMP Project

    SciTech Connect

    Evans, Thomas M; Clarno, Kevin T

    2009-09-01

    This document provides an initial starting point to define the C++ coding standards used by the AMP nuclear fuel performance integrated code project and a part of AMP's software development process. This document draws from the experiences, and documentation [1], of the developers of the Marmot Project at Los Alamos National Laboratory. Much of the software in AMP will be written in C++. The power of C++ can be abused easily, resulting in code that is difficult to understand and maintain. This document gives the practices that should be followed on the AMP project for all new code that is written. The intent is not to be onerous but to ensure that the code can be readily understood by the entire code team and serve as a basis for collectively defining a set of coding standards for use in future development efforts. At the end of the AMP development in fiscal year (FY) 2010, all developers will have experience with the benefits, restrictions, and limitations of the standards described and will collectively define a set of standards for future software development. External libraries that AMP uses do not have to meet these requirements, although we encourage external developers to follow these practices. For any code of which AMP takes ownership, the project will decide on any changes on a case-by-case basis. The practices that we are using in the AMP project have been in use in the Denovo project [2] for several years. The practices build on those given in References [3-5]; the practices given in these references should also be followed. Some of the practices given in this document can also be found in [6].

  17. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

    PubMed Central

    D'Amours, D; Desnoyers, S; D'Silva, I; Poirier, G G

    1999-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism. PMID:10455009

  18. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues

    PubMed Central

    1988-01-01

    The role of a guanine nucleotide-binding protein (Gk) in the coupling between muscarinic receptor activation and opening of an inwardly rectifying K+ channel [IK(M)] was examined in cardiac atrial myocytes, using hydrolysis-resistant GTP analogues. In the absence of muscarinic agonist, GTP analogues produced a membrane current characteristic of IK(M). The initial rate of appearance of this receptor-independent IK(M) was measured for the various analogues in order to explore the kinetic properties of IK(M) activation. We found that IK(M) activation is controlled solely by the intracellular analogue/GTP ratio and not by the absolute concentrations of the nucleotides. Analogues competed with GTP for binding to Gk with the following relative affinities: GTP gamma S greater than GTP greater than GppNHp greater than GppCH2p. At sufficiently high intracellular concentrations, however, all GTP analogues produced the same rate of IK(M) activation. This analogue- independent limiting rate is likely to correspond to the rate of GDP release from inactive, GDP-bound Gk. Muscarinic receptor stimulation by nanomolar concentrations of acetylcholine (ACh), which do not elicit IK(M) under control conditions, catalyzed IK(M) activation in the presence of GTP analogues. The rate of Gk activation by ACh (kACh) was found to be described by the simple relationship kACh = 8.4 X 10(8) min- 1 M-1.[ACh] + 0.44 min-1, the first term of which presumably reflects the agonist-catalyzed rate of GDP release from the Gk.GDP complex, while the second term corresponds to the basal rate of receptor- independent GDP release. Combined with the estimated K0.5 of the IK(M)- [ACh] dose-effect relationship, 160 nM, this result also allowed us to estimate the rate of Gk.GTP hydrolysis, kcat, to be near 135 min-1. These results provide, for the first time, a quantitative description of the salient features of G-protein function in vivo. PMID:2455765

  19. Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonas sp. Strain ADP

    PubMed Central

    Martinez, Betsy; Tomkins, Jeffrey; Wackett, Lawrence P.; Wing, Rod; Sadowsky, Michael J.

    2001-01-01

    The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPβ plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how

  20. Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells

    PubMed Central

    Hasegawa, Keisuke; Ryu, Sung Jin

    2013-01-01

    Many mitotic factors were shown to be activated by Ran guanosine triphosphatase. Previous studies in Xenopus laevis egg extracts and in highly proliferative cells showed that mitotic chromosomes were surrounded by steep Ran guanosine triphosphate (GTP) concentration gradients, indicating that RanGTP-activated factors promote spindle assembly around chromosomes. However, the mitotic role of Ran in normal differentiated cells is not known. In this paper, we show that although the steep mitotic RanGTP gradients were present in rapidly growing cell lines and were required for chromosome congression in mitotic HeLa cells, the gradients were strongly reduced in slow-growing primary cells, such as HFF-1 fibroblasts. The overexpression of RCC1, the guanine nucleotide exchange factor for Ran, induced steeper mitotic RanGTP gradients in HFF-1 cells, showing the critical role of RCC1 levels in the regulation of mitosis by Ran. Remarkably, in vitro fusion of HFF-1 cells produced cells with steep mitotic RanGTP gradients comparable to HeLa cells, indicating that chromosomal gain can promote mitosis in aneuploid cancer cells via Ran. PMID:23319601

  1. Atmospheric, Magnetospheric and Plasmas in space (AMPS) spacelab payload definition study. Volume 4. Part 1, AMPS program specification

    NASA Technical Reports Server (NTRS)

    Keeley, J. T.

    1976-01-01

    The AMPS Program Specification delineates the AMPS Program requirements consistent with the resources defined in the AMPS Project Plan. All subsidiary specifications and requirements shall conform to the requirements presented. The requirements hierarchy for the AMPS program is illustrated. A brief description of each of the requirements documents and their intended use is provided.

  2. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  3. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  4. Comparative Analysis of Government and Private Sector ADP Acquisition.

    DTIC Science & Technology

    1984-03-01

    perscnnel, procedures, and equipment (including ADPE) which is designed , built, operated and maintained to collect, process, store, retrieve, and display...Automatic Data Ptrocessing and Teleccmmunica-ticns Management Policy), FPMR 101-36 (Autcmatic Data Processing aanagement), and FPMR 101-37...Circular A-109 within DOC. It was initially intended tc apply to those programs designated by the Secretary cf 26 Defenss as "M!a~cr systems Acqui’Siticn

  5. Magnesium Modulates Actin Binding and ADP Release in Myosin Motors*

    PubMed Central

    Swenson, Anja M.; Trivedi, Darshan V.; Rauscher, Anna A.; Wang, Yuan; Takagi, Yasuharu; Palmer, Bradley M.; Málnási-Csizmadia, András; Debold, Edward P.; Yengo, Christopher M.

    2014-01-01

    We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins. PMID:25006251

  6. Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    PubMed Central

    Mégnin-Chanet, Frédérique; Bollet, Marc A.

    2010-01-01

    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated. PMID:20725763

  7. Noncovalent protein interaction with poly(ADP-ribose).

    PubMed

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  8. Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules

    SciTech Connect

    Darchen, F.; Hammel, F.; Monteils, M.P.; Scherman, D. ); Zahraoui, A.; Tavitian, A. )

    1990-08-01

    The Rab3A protein belongs to a large family of small GTP-binding proteins that are present in eukaryotic cells and that share amino acid identities with the Ras proteins (products of the ras protooncogenes). Rab3A, which is specifically located in nervous and endocrine tissues, is suspected to play a key role in secretion. Its localization was investigated in bovine adrenal gland by using a polyclonal antibody. Rab3A was detected in adrenal medulla but not in adrenal cortex. In cultured adrenal medulla cells, Rab3A was specifically expressed in the catecholamine-secreting chromaffin cells. Subcellular fractionation suggested that Rab3A is about 30% cytosolic and that particulate Rab3A is associated with the membrane of chromaffin granules (the catecholamine storage organelles) and with a second compartment likely to be the plasma membrane. The Rab3A localization on chromaffin granule membranes was confirmed by immunoadsorption with an antibody against dopamine {beta}-hydroxylase. Rab3A was not extracted from this membrane by NaCl or KBr but was partially extracted by urea and totally solubilized by Triton X-100, suggesting either an interaction with an intrinsic protein or a membrane association through fatty acid acylation. This study suggests that Rab3A, which may also be located on other secretory vesicles containing noncharacterized small GTP-binding proteins, is involved in their biogenesis or in the regulated secretion process.

  9. The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis

    PubMed Central

    Bakal, Christopher J.; Finan, Dina; LaRose, José; Wells, Clark D.; Gish, Gerald; Kulkarni, Sarang; DeSepulveda, Paulo; Wilde, Andrew; Rottapel, Robert

    2005-01-01

    Rho GTPases regulate reorganization of actin and microtubule cytoskeletal structures during both interphase and mitosis. The timing and subcellular compartment in which Rho GTPases are activated is controlled by the large family of Rho GTP exchange factors (RhoGEFs). Here, we show that the microtubule-associated RhoGEF Lfc is required for the formation of the mitotic spindle during prophase/prometaphase. The inability of cells to assemble a functioning spindle after Lfc inhibition resulted in a delay in mitosis and an accumulation of prometaphase cells. Inhibition of Lfc's primary target Rho GTPase during prophase/prometaphase, or expression of a catalytically inactive mutant of Lfc, also prevented normal spindle assembly and resulted in delays in mitotic progression. Coinjection of constitutively active Rho GTPase rescued the spindle defects caused by Lfc inhibition, suggesting the requirement of RhoGTP in regulating spindle assembly. Lastly, we implicate mDia1 as an important effector of Lfc signaling. These findings demonstrate a role for Lfc, Rho, and mDia1 during mitosis. PMID:15976019

  10. Purification, crystallization and preliminary X-ray characterization of the human GTP fucose pyrophosphorylase

    SciTech Connect

    Quirk, Stephen; Seley-Radtke, Katherine L.

    2006-04-01

    The human GTP fucose pyrophosphohydrolase protein has been crystallized via the hanging-drop technique over a reservoir of polyethylene glycol (MW 8000) and ethylene glycol. The orthorhombic crystals diffract to 2.8 Å resolution. The human nucleotide-sugar metabolizing enzyme GTP fucose pyrophosphorylase (GFPP) has been purified to homogeneity by an affinity chromatographic procedure that utilizes a novel nucleoside analog. This new purification regime results in a protein preparation that produces significantly better crystals than traditional purification methods. The purified 66.6 kDa monomeric protein has been crystallized via hanging-drop vapor diffusion at 293 K. Crystals of the native enzyme diffract to 2.8 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. There is a single GFPP monomer in the asymmetric unit, giving a Matthews coefficient of 2.38 Å{sup 3} Da{sup −1} and a solvent content of 48.2%. A complete native data set has been collected as a first step in determining the three-dimensional structure of this enzyme.

  11. Structure of BipA in GTP form bound to the ratcheted ribosome

    PubMed Central

    Kumar, Veerendra; Chen, Yun; Ero, Rya; Ahmed, Tofayel; Tan, Jackie; Li, Zhe; Wong, Andrew See Weng; Bhushan, Shashi; Gao, Yong-Gui

    2015-01-01

    BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3′,5′-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation. PMID:26283392

  12. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    PubMed Central

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonardo G.; LeBarron, Jamie; Baxter, William T.; Shaikh, Tanvir R.; Grassucci, Robert A.; Nissen, Poul; Ehrenberg, Måns; Schulten, Klaus; Frank, Joachim

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-Å cryo-electron microscopy map of the aminoacyl-tRNA·EF-Tu·GDP·kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism. PMID:19122150

  13. Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin

    SciTech Connect

    Monaco, L.; Murtagh, J.J.; Newman, K.B.; Tsai, Su-Chen; Moss, J.; Vaughan, M. )

    1990-03-01

    ADP-ribosylation factors (ARFs) are {approx}20-kDa proteins that act as GTP-dependent allosteric activators of cholera toxin. With deoxyinosine-containing degenerate oligonucleotide primers corresponding to conserved GTP-binding domains in ARFs, the polymerase chain reaction (PCR) was used to amplify simultaneously from human DNA portions of three ARF genes that include codons for 102 amino acids, with intervening sequences. Amplification products that differed in size because of differences in intron sizes were separated by agarose gel electrophoresis. One amplified DNA contained no introns and had a sequence different from those of known AFRs. Based on this sequence, selective oligonucleotide probes were prepared and used to isolate clone {Psi}ARF 4, a putative ARF pseudogene, from a human genomic library in {lambda} phage EMBL3. Reverse transcription-PCR was then used to clone from human poly(A){sup +} RNA the cDNA corresponding to the expressed homolog of {Psi}ARF 4, referred to as human ARF 4. It appears that {Psi}ARF 4 arose during human evolution by integration of processed ARF 4 mRNA into the genome. Human ARF 4 differs from previously identified mammalian ARFs 1, 2, and 3. Hybridization of ARF 4-specific oligonucleotide probes with human, bovine, and rat RNA revealed a single 1.8-kilobase mRNA, which was clearly distinguished from the 1.9-kilobase mRNA for ARF 1 in these tissues. The PCR provides a powerful tool for investigating diversity in this and other multigene families, especially with primers targeted at domains believed to have functional significance.

  14. Histamine receptors on adult rat cardiomyocytes: antagonism of alpha/sub 1/-receptor stimulation of cAMP degradation

    SciTech Connect

    Buxton, I.L.O.; Bowen, S.M.

    1986-03-01

    Incubation of intact cardiomyocytes with the histamine antagonist (/sup 3/H)mepyramine results in rapid reversible binding to a single class of high affinity sites (K/sub D/ = 1.2nM; 50,000 sites/myocyte). In membranes from purified myocytes histamine competition of (/sup 3/H)mepyramine binding (K/sub D/ = 300nM) is not altered by GTP (10..mu..M). Competition of (/sup 3/H)mepyramine binding by H-receptor subtype-selective antagonists suggests the presence of a single class of H/sub 1/-receptors. Incubation of intact myocytes with histamine (luM, H/sub 1/ receptor activation) plus norepinephrine (NE 1uM, alpha/sub 1/ + beta/sub 1/ receptor activation) for 3 min leads to significantly more cAMP accumulation (36.5 pmol/10/sup 6/ myocytes) than NE alone (30 pmol/10/sup 6/ myocytes). Histamine alone does not alter basal cAMP = 10.4 pmol/10/sup 6/ myocytes, or beta/sub 1/ stimulation (isoproternol, 1uM) = 39.6 pmol/10/sup 6/ myocytes. Cyclic AMP accumulation with NE plus prazosin 10nM, (alpha/sub 1/ + beta/sub 1/ + alpha/sub 1/ blockade) is indistinguishable from NE + histamine, (alpha/sub 1/ + beta/sub 1/ + H/sub 1/) stimulation. Histamine competition for (/sup 3/H)prazosin binding suggests that histamine does not block alpha/sub 1/ receptors on the myocyte. These data suggest that H/sub 1/ receptor activation leads to antagonism of the alpha/sub 1/ receptor mediated activation of cAMP phosphodiesterase the authors have recently described.

  15. The mechanism of potent GTP cyclohydrolase I inhibition by 2,4-diamino-6-hydroxypyrimidine: requirement of the GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Kolinsky, Monica A; Gross, Steven S

    2004-09-24

    Inhibition of GTP cyclohydrolase I (GTPCH) has been used as a selective tool to assess the role of de novo synthesis of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) in a biological system. Toward this end, 2,4-diamino-6-hydroxypyrimidine (DAHP) has been used as the prototypical GTPCH inhibitor. Using a novel real-time kinetic microplate assay for GTPCH activity and purified prokaryote-expressed recombinant proteins, we show that potent inhibition by DAHP is not the result of a direct interaction with GTPCH. Rather, inhibition by DAHP in phosphate buffer occurs via an indirect mechanism that requires the presence of GTPCH feedback regulatory protein (GFRP). Notably, GFRP was previously discovered as the essential factor that reconstitutes inhibition of pure recombinant GTPCH by the pathway end product BH4. Thus, DAHP inhibits GTPCH by engaging the endogenous feedback inhibitory system. We further demonstrate that L-Phe fully reverses the inhibition of GTPCH by DAHP/GFRP, which is also a feature in common with inhibition by BH4/GFRP. These findings suggest that DAHP is not an indiscriminate inhibitor of GTPCH in biological systems; instead, it is predicted to preferentially attenuate GTPCH activity in cells that most abundantly express GFRP and/or contain the lowest levels of L-Phe.

  16. Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Herbst, Eric A F; Ritchie, Ian R; Beaudoin, Marie-Soleil; Smith, Jeffrey C; Neufer, P Darrell; Wright, David C; Holloway, Graham P

    2013-12-01

    Mitochondrial dysfunction and reactive oxygen species (ROS) have been implicated in the aetiology of skeletal muscle insulin resistance, although there is considerable controversy regarding these concepts. Mitochondrial function has been traditionally assessed in the presence of saturating ADP, but ATP turnover and the resultant ADP is thought to limit respiration in vivo. Therefore, we investigated the potential link between submaximal ADP-stimulated respiration rates, ROS generation and skeletal muscle insulin sensitivity in a model of type 2 diabetes mellitus, the ZDF rat. Utilizing permeabilized muscle fibres we observed that submaximal ADP-stimulated respiration rates (250-2000 μm ADP) were lower in ZDF rats than in lean controls, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transport chain function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with elevated submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. Together, these data suggest that mitochondrial dysfunction is present in skeletal muscle insulin resistance when assessed at submaximal ADP concentrations and that ADP dynamics may influence skeletal muscle insulin sensitivity through alterations in the propensity for mitochondrial ROS emission.

  17. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism

    PubMed Central

    2014-01-01

    Background AdpA is a key transcriptional regulator involved in the complex growth cycle of Streptomyces. Streptomyces are Gram-positive bacteria well-known for their production of secondary metabolites and antibiotics. Most work on AdpA has been in S. griseus, and little is known about the pathways it controls in other Streptomyces spp. We recently discovered interplay between ClpP peptidases and AdpA in S. lividans. Here, we report the identification of genes directly regulated by AdpA in S. lividans. Results Microarray experiments revealed that the expression of hundreds of genes was affected in a S. lividans adpA mutant during early stationary phase cultures in YEME liquid medium. We studied the expression of the S. lividans AdpA-regulated genes by quantitative real-time PCR analysis after various times of growth. In silico analysis revealed the presence of potential AdpA-binding sites upstream from these genes; electrophoretic mobility shift assays indicated that AdpA binds directly to their promoter regions. This work identifies new pathways directly controlled by AdpA and that are involved in S. lividans development (ramR, SLI7885 also known as hyaS and SLI6586), and primary (SLI0755-SLI0754 encoding CYP105D5 and Fdx4) or secondary (cchA, cchB, and hyaS) metabolism. Conclusions We characterised six S. lividans AdpA-dependent genes whose expression is directly activated by this pleiotropic regulator. Several of these genes are orthologous to bldA-dependent genes in S. coelicolor. Furthermore, in silico analysis suggests that over hundred genes may be directly activated or repressed by S. lividans AdpA, although few have been described as being part of any Streptomyces AdpA regulons. This study increases the number of known AdpA-regulated pathways in Streptomyces spp. PMID:24694298

  18. Regulation of AMP-activated protein kinase by natural and synthetic activators

    PubMed Central

    Grahame Hardie, David

    2015-01-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function. PMID:26904394

  19. AMP-activated protein kinase and energy balance in breast cancer

    PubMed Central

    Zhao, Hong; Orhan, Yelda C; Zha, Xiaoming; Esencan, Ecem; Chatterton, Robert T; Bulun, Serdar E

    2017-01-01

    Cancer growth and metastasis depends on the availability of energy. Energy-sensing systems are critical in maintaining a balance between the energy supply and utilization of energy for tumor growth. A central regulator in this process is AMP-activated protein kinase (AMPK). In times of energy deficit, AMPK is allosterically modified by the binding of increased levels of AMP and ADP, making it a target of specific AMPK kinases (AMPKKs). AMPK signaling prompts cells to produce energy at the expense of growth and motility, opposing the actions of insulin and growth factors. Increasing AMPK activity may thus prevent the proliferation and metastasis of tumor cells. Activated AMPK also suppresses aromatase, which lowers estrogen formation and prevents breast cancer growth. Biguanides can be used to activate AMPK, but AMPK activity is modified by many different interacting factors; understanding these factors is important in order to control the abnormal growth processes that lead to breast cancer neoplasia. Fatty acids, estrogens, androgens, adipokines, and another energy sensor, sirtuin-1, alter the phosphorylation and activation of AMPK. Isoforms of AMPK differ among tissues and may serve specific functions. Targeting AMPK regulatory processes at points other than the upstream AMPKKs may provide additional approaches for prevention of breast cancer neoplasia, growth, and metastasis. PMID:28337254

  20. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    PubMed

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  1. Further characterization of the red beet plasma membrane Ca sup 2+ -ATPase using GTP as an alternative substrate

    SciTech Connect

    Williams, L.E.; Schueler, S.B.; Briskin, D.P. )

    1990-03-01

    The GTP-driven component of Ca{sup 2+} uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca{sup 2+}-translocating ATPase and assess its utility as a probe for this transport system. Uptake of {sup 45}Ca{sup 2+} in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca{sup 2+} concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca{sup 2+}-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of {sup 45}Ca{sup 2+}-uptake by exogeneous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven {sup 45}Ca{sup 2+} uptake represents the capacity of the plasma membrane Ca{sup 2+}-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with ({gamma}-{sup 32}P)GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca{sup 2+}-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca{sup 2+}-ATPases present in animal cells.

  2. Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds.

    PubMed

    Yokoyama, Seiya; Kato, Kouji; Koba, Atsuko; Minami, Yuji; Watanabe, Keiichi; Yagi, Fumio

    2008-12-01

    Novel antimicrobial peptides (AMP), designated Cy-AMP1, Cy-AMP2, and Cy-AMP3, were purified from seeds of the cycad (Cycas revoluta) by a CM cellulofine column, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They had molecular masses of 4583.2 Da, 4568.9 Da and 9275.8 Da, respectively, by MALDI-TOF MS analysis. Half of the amino acid residues of Cy-AMP1 and Cy-AMP2 were cysteine, glycine and proline, and their sequences were similar. The sequence of Cy-AMP3 showed high homology to various lipid transfer proteins. For Cy-AMP1 and Cy-AMP2, the concentrations of peptides required for 50% inhibition (IC(50)) of the growth of plant pathogenic fungi, Gram-positive and Gram-negative bacteria were 7.0-8.9 microg/ml. The Cy-AMP3 had weak antimicrobial activity. The structural and antimicrobial characteristics of Cy-AMP1 and Cy-AMP2 indicated that they are a novel type of antimicrobial peptide belonging to a plant defensin family.

  3. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)- methylene-diphosphonate

    PubMed Central

    1995-01-01

    We have used cryoelectron microscopy to try to understand the structural basis for the role of GTP hydrolysis in destabilizing the microtubule lattice. We have measured a structural difference introduced into microtubules by replacing GTP with guanylyl- (alpha,beta)-methylene-diphosphonate (GMPCPP). In a stable GMPCPP microtubule lattice, the moire patterns change and the tubulin subunits increase in size by 1.5 A. This information provides a clue to the role of hydrolysis in inducing the structural change at the end of a microtubule during the transition from a growing to a shrinking phase. PMID:7822409

  4. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.

    PubMed

    Kuby, S A; Hamada, M; Johnson, M S; Russell, G A; Manship, M; Palmieri, R H; Fleming, G; Bredt, D S; Mildvan, A S

    1989-08-01

    Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamada et al., 1979). By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2- and MgADP-) and (b) the uncomplexed nucleotide substrates (ADP3- and AMP2-) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15-25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of epsilon AMP. The syntheses are described as a set of peptides corresponding to residues 31-45, 20-45, 5-45, and 1-45, and a set of peptides corresponding to residues 178-192, 178-194, and 172-194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: epsilon MgATP/epsilon ATP and epsilon MgADP/epsilon ADP are quantitatively presented in terms of their intrinsic dissociation constants (K'd) and values of N (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1-44) obtained from rabbit muscle myokinase (Kuby et al., 1984) and with the native enzyme (Hamada et al., 1979). In addition, the values of N and K'd are given for the second set of synthetic peptides to the fluorescent ligands epsilon AMP and epsilon ADP as well as for the peptide fragments MT-XII(172-194) and CB-VI(126-194) (Kuby et al., 1984) and, in turn, compared with the native enzyme. A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., the Ki for epsilon AMP and the value of KMg epsilon ATP obtained for

  5. Cytosolic free Ca2+ oscillations induced by diadenosine 5',5"'-P1,P3-triphosphate and diadenosine 5',5"'-P1,P4-tetraphosphate in single rat hepatocytes are indistinguishable from those induced by ADP and ATP respectively.

    PubMed

    Green, A K; Cobbold, P H; Dixon, C J

    1995-09-01

    Diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) induce distinctive patterns of [Ca2+]i oscillations in single rat hepatocytes. We show here that [Ca2+]i oscillations induced by Ap3A and ADP are indistinguishable and that [Ca2+]i oscillations induced by Ap4A closely resemble those induced by ATP. These similarities embrace the following: (1) ADP and Ap3A invariably induce [Ca2+]i transients of short duration (approx. 9 s). Ap4A, like ATP, can induce, depending upon the individual cell, either transients of short duration (approx. 9 s), transients of much longer duration or a mixture of short and long transients within a single response. We show here that the pattern of oscillations induced by Ap4A is similar to that induced by ATP in the same hepatocyte. (2) Elevated intracellular cyclic AMP concentration modulates Ap3A-induced transients, like ADP-induced transients, through an increase in both the peak [Ca2+]i and the frequency of the transients. In contrast, Ap4A-induced transients, like ATP-induced transients, develop an increased duration or a sustained rise in [Ca2+]i, with no rise in peak [Ca2+]i. (3) Ap3A-induced transients, like ADP-induced transients, are abolished by low concentrations of the phorbol ester 4 beta-phorbol 12,13-dibutyrate (PDB; 5-10 nM), whereas long Ap4A-induced transients, like long ATP-induced transients, are refractory to high concentrations of PDB (100 nM). We propose that the [Ca2+]i oscillations induced in rat hepatocytes by Ap3A are mediated by the same purinoceptor that mediates the effects of ADP, whereas the oscillations induced by Ap4A are mediated by the same purinoceptor(s) that mediate the effects of ATP.

  6. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.

    PubMed

    Doliba, Nicolai M; Babsky, Andriy M; Doliba, Nataliya M; Wehrli, Suzanne L; Osbakken, Mary D

    2015-03-01

    Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and

  7. Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca2+.

    PubMed Central

    Davidson, M M; Haslam, R J

    1994-01-01

    In human platelets, thrombin not only stimulates the phosphorylation of pleckstrin (P47) and of myosin P-light chains, but also induces the dephosphorylation of an 18-19 kDa phosphoprotein (P18) [Imaoka, Lynham and Haslam (1983) J. Biol. Chem. 258, 11404-11414]. We have now studied this protein in detail. The thrombin-induced dephosphorylation reaction did not begin until the phosphorylation of myosin P-light chains and the secretion of dense-granule 5-hydroxytryptamine were nearly complete, but did parallel the later stages of platelet aggregation. Experiments with ionophore A23187 and phorbol 12-myristate 13-acetate indicated that dephosphorylation of P18 was stimulated by Ca2+, but not by protein kinase C. Two-dimensional analysis of platelet proteins, using non-equilibrium pH gradient electrophoresis followed by SDS/PAGE, showed that thrombin decreased the amount of phosphorylated P18 in platelets by up to 70% and slightly increased the amount of a more basic unlabelled protein that was present in 3-fold excess of P18 in unstimulated platelets. These two proteins were identified as the phosphorylated and non-phosphorylated forms of the pH-sensitive actin-depolymerizing protein, cofilin, by sequencing of peptide fragments and immunoblotting with a monoclonal antibody specific for cofilin. The molar concentration of cofilin in platelets was approx. 10% that of actin. Platelet cofilin was phosphorylated exclusively on serine. Experiments with electropermeabilized platelets showed that dephosphorylation of cofilin could be stimulated by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the absence of Ca2+ or by a free Ca2+ concentration of 10 microM. This GTP[S]-induced dephosphorylation reaction was inhibited by 1-naphthyl phosphate, but not by okadaic acid. Our results add cofilin to the actin-binding proteins that may regulate the platelet cytoskeleton, and suggest that platelet cofilin can be activated by dephosphorylation reactions initiated either by a GTP

  8. Investigation of the action of poly(ADP-ribose)-synthesising enzymes on NAD+ analogues

    PubMed Central

    Wallrodt, Sarah; Simpson, Edward L

    2017-01-01

    ADP-ribosyl transferases with diphtheria toxin homology (ARTDs) catalyse the covalent addition of ADP-ribose onto different acceptors forming mono- or poly(ADP-ribos)ylated proteins. Out of the 18 members identified, only four are known to synthesise the complex poly(ADP-ribose) biopolymer. The investigation of this posttranslational modification is important due to its involvement in cancer and other diseases. Lately, metabolic labelling approaches comprising different reporter-modified NAD+ building blocks have stimulated and enriched proteomic studies and imaging applications of ADP-ribosylation processes. Herein, we compare the substrate scope and applicability of different NAD+ analogues for the investigation of the polymer-synthesising enzymes ARTD1, ARTD2, ARTD5 and ARTD6. By varying the site and size of the NAD+ modification, suitable probes were identified for each enzyme. This report provides guidelines for choosing analogues for studying poly(ADP-ribose)-synthesising enzymes. PMID:28382184

  9. Immunoaffinity fractionation of the poly(ADP-ribosyl)ated domains of chromatin.

    PubMed Central

    Malik, N; Miwa, M; Sugimura, T; Thraves, P; Smulson, M

    1983-01-01

    Antibody to poly(ADP-ribose) has been covalently coupled to Sepharose and utilized to isolate selectively oligonucleosomes undergoing the poly(ADP-ribosyl)ation reaction from the bulk of chromatin. Approximately 12% of the unfractionated oligonucleosomes were bound to the immunoaffinity column and these represented essentially 100% of the original poly(ADP-ribosyl)ated nucleosomal species in the unfractionated chromatin. Poly(ADP-ribosyl)ated chromatin was not bound by preimmune IgG columns. KSCN eluted the modified nucleosomes in the form of nucleoprotein complexes. The eluted chromatin components were shown to contain poly(ADP-ribosyl)ated histones as well as automodified poly(ADP-ribose) polymerase. By using [3H]lysine- and [3H]arginine-labeled chromatin, it was shown that the poly-(ADP-ribosyl)ated histones, attached to stretches of oligonucleosomes bound to the column, had a 6-fold enrichment of the modification compared to histones of the unfractionated chromatin. This indicated that non-poly(ADP-ribosyl)ated nucleosomes, connected and proximal to the modified regions, were copurified by this procedure. This allowed characterization of the oligonucleosomal DNA around poly(ADP-ribosyl)ated chromatin domains to be compared with the unbound bulk chromatin. The data indicated that immunofractionated poly(ADP-ribosyl)ated oligonucleosomal DNA contained significant amounts of internal single-strand breaks compared with bulk chromatin. The bound nucleo-protein complexes were found to be enzymatically active for poly(ADP-ribose) polymerase after elution from the antibody column. In contrast, the unbound nucleosomes, representing 90% of the unfractionated chromatin, were totally inactive in the poly(ADP-ribosyl)ation reaction. Images PMID:6573670

  10. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.

    PubMed

    Bhuta, P; Chládek, S

    1982-08-30

    The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3'-terminus of aminoacyl-tRNA)(System I) or by methanol ('uncoupled GTPase', System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu.GTP.70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KmGTP is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VmaxGTP, whereas KmGTP remains unaffected. Micrococcin is without any effect in both systems. The 'uncoupled GTPase' (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP.

  11. A novel GTP-binding protein hGBP3 interacts with NIK/HGK.

    PubMed

    Luan, Zhidong; Zhang, Yan; Liu, Aihua; Man, Yunfang; Cheng, Lu; Hu, Gengxi

    2002-10-23

    A novel human guanylate-binding protein (GBP) hGBP3 was identified and characterized. Similar as the two human guanylate-binding proteins hGBP1 and hGBP2, hGBP3 has the first two motifs of the three classical guanylate-binding motifs, GXXXXGKS (T) and DXXG, but lacks the N (T) KXD motif. Escherichia coli-expressed hGBP3 protein specifically binds to guanosine triphosphate (GTP). Using a yeast two-hybrid system, it was revealed that the N-terminal region of hGBP3 binds to the C-terminal regulatory domain of NIK/HGK, a member of the group I GCK (germinal center kinase) family. This interaction was confirmed by in vitro glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays.

  12. Small GTP-binding proteins of the ras family: a conserved functional mechanism?

    PubMed

    Chardin, P

    1991-04-01

    Mutated ras genes can acquire a transforming potential and are frequently detected in human tumors. The mammalian ras gene family includes at least 35 distinct members that can be divided into three main groups on the basis of their sequence similarity to ras, rho, or rab genes. All these genes encode small GTP-binding proteins. Rho proteins are implicated in actin organization and control of cell shape, probably by interacting with the cytoskeleton and intracellular membranes. Rab proteins are involved in vesicular traffic, and appear to control the translocation of vesicles from donor to acceptor membranes. The precise function of ras proteins is unknown, although the prevailing view is that they act as transducers of mitogenic signals. We propose that ras proteins, by analogy with rho and rab, are involved in the lateral segregation of multi-protein complexes at the plasma membrane, and we suggest how this process may be important for mitogenic signal transduction.

  13. Reduction of GTP cyclohydrolase I feedback regulating protein expression by hydrogen peroxide in vascular endothelial cells.

    PubMed

    Ishii, Masakazu; Shimizu, Shunichi; Wajima, Teruaki; Hagiwara, Tamio; Negoro, Takaharu; Miyazaki, Akira; Tobe, Takashi; Kiuchi, Yuji

    2005-02-01

    We examined the effect of H(2)O(2) on the expression of GTP cyclohydrolase I (GTPCH) feedback regulating protein (GFRP). Addition of H(2)O(2) to endothelial cells decreased GFRP mRNA levels, in contrast to the increase of tetrahydrobiopterin (BH(4)) content and GTPCH mRNA levels. The inhibitors of nitric oxide (NO) synthase and GTPCH had no influence on the decrease of GFRP mRNA levels in H(2)O(2)-treated cells. It is suggested that H(2)O(2) induces BH(4) synthesis through not only induction of GTPCH but also reduction of GFRP. The decrease of GFRP mRNA level appears to be independent of the produced NO and BH(4).

  14. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  15. NAD-dependent ADP-ribosylation of the human antimicrobial and immune-modulatory peptide LL-37 by ADP-ribosyltransferase-1.

    PubMed

    Picchianti, Monica; Russo, Carla; Castagnini, Marta; Biagini, Massimiliano; Soldaini, Elisabetta; Balducci, Enrico

    2015-04-01

    LL-37 is a cationic peptide belonging to the cathelicidin family that has antimicrobial and immune-modulatory properties. Here we show that the mammalian mono-ADP-ribosyltransferase-1 (ART1), which selectively transfers the ADP-ribose moiety from NAD to arginine residues, ADP-ribosylates LL-37 in vitro. The incorporation of ADP-ribose was first observed by Western blot analysis and then confirmed by MALDI-TOF. Mass-spectrometry showed that up to four of the five arginine residues present in LL-37 could be ADP-ribosylated on the same peptide when incubated at a high NAD concentration in the presence of ART1. The attachment of negatively charged ADP-ribose moieties considerably alters the positive charge of the arginine residues thus reducing the cationicity of LL-37. The cationic nature of LL-37 is key for its ability to interact with cell membranes or negatively charged biomolecules, such as DNA, RNA, F-actin and glycosaminoglycans. Thus, the ADP-ribosylation of LL-37 is expected to have the potential to modulate LL-37 biological activities in several physiological and pathological settings.

  16. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    PubMed

    Tucker, Julie A; Bennett, Neil; Brassington, Claire; Durant, Stephen T; Hassall, Giles; Holdgate, Geoff; McAlister, Mark; Nissink, J Willem M; Truman, Caroline; Watson, Martin

    2012-01-01

    Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  17. Effect of some new cAMP analogs on cAMP-dependent protein kinase isoenzymes.

    PubMed

    Szücs, K; Sági, G; Vereb, G

    1992-06-01

    1. Ten new cAMP analogs were synthesized by replacing the purine ring with with indazole, benzimidazole or benztriazole and/or their nitro and amino derivatives. 2. Each analog proved effective in activating cAMP-dependent protein kinase I (PK-I) purified from rabbit skeletal muscle and cAMP-dependent protein kinase II (PK-II) from bovine heart and chasing 8-[3H]cAMP bound to regulatory subunits in the half-maximal effective concentrations of 2 x 10(-8)-8 x 10(-6) M. 3. The N-1-beta-D-ribofuranosyl-indazole-3'5'-cyclophosphate(I) proved a very poor chaser and activator of both isoenzymes, but when indazole was attached at its N-2 to ribose (IV) or when its H at C-4 (equivalent to the position of amino-group in adenine) was substituted by an amino-(III) or especially nitro-group (II) its efficiency was dramatically increased. 4. Analogs containing benztriazole ring proved as powerful as cAMP irrespective of the presence of substituents (VII-X). 5. Benzimidazole derivatives with amino-(VI) or nitro-group (V) activated PK-II 3 and 20 times better than PK-I. 6. Attaching of ribose to N-2 of indazole or benztriazole increased the affinity to PK-II 10 and 4 times, respectively. 7. Chasing efficiency of cAMP analogs at half-saturating [3H]cAMP tended to correlate with activating potency only for PK-I but at saturating [3H]cAMP concentration for both isoenzymes. 8. On the basis of synergistic activation with 8-Br-cAMP a site 2-selective binding of nitro-benzimidazole (V) and unsubstituted benztriazole (VII) derivatives to PK-II is suggested.

  18. The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble.

    PubMed

    Smallhorn, Masha; Murray, Michael J; Saint, Robert

    2004-06-01

    Drosophila pebble (pbl) encodes a Rho-family GTP exchange factor (GEF) required for cytokinesis. The accumulation of high levels of PBL protein during interphase and the developmentally regulated expression of pbl in mesodermal tissues suggested that the primary cytokinetic mutant phenotype might be masking other roles. Using various muscle differentiation markers, we found that Even skipped (EVE) expression in the dorsal mesoderm is greatly reduced in pbl mutant embryos. EVE expression in the dorsalmost mesodermal cells is induced in response to DPP secreted by the dorsal epidermal cells. Further analysis revealed that this phenotype is likely to be a consequence of an earlier defect. pbl mutant mesodermal cells fail to undergo the normal epithelial-mesenchymal transition (EMT) and dorsal migration that follows ventral furrow formation. This phenotype is not a secondary consequence of failed cytokinesis, as it is rescued by a mutant form of pbl that does not rescue the cytokinetic defect. In wild-type embryos, newly invaginated cells at the lateral edges of the mesoderm extend numerous protrusions. In pbl mutant embryos, however, cells appear more tightly adhered to their neighbours and extend very few protrusions. Consistent with the dependence of the mesoderm EMT and cytokinesis on actin organisation, the GTP exchange function of the PBL RhoGEF is required for both processes. By contrast, the N-terminal BRCT domains of PBL are required only for the cytokinetic function of PBL. These studies reveal that a novel PBL-mediated intracellular signalling pathway operates in mesodermal cells during the transition from an epithelial to migratory mesenchymal morphology during gastrulation.

  19. The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    PubMed Central

    Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.

    2016-01-01

    ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838

  20. The rise and fall of poly(ADP-ribose): An enzymatic perspective.

    PubMed

    Pascal, John M; Ellenberger, Tom

    2015-08-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.

  1. The Rise and Fall of Poly (ADP-ribose). An Enzymatic Perspective

    PubMed Central

    Pascal, John M.; Ellenberger, Tom

    2015-01-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. PMID:25963443

  2. The actin-ADP-ribosylating Clostridium botulinum C2 toxin.

    PubMed

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is the prototype of actin-ADP-ribosylating toxins. The toxin consists of the enzyme component C2I and the separated binding/translocation component C2II. C2II is proteolytically activated to form heptamers, which bind the enzyme component. After endocytosis of the receptor-toxin complex, the enzyme component enters the cytosol from an acidic endosomal compartment to modify G-actin at arginine177. Recent data indicate that chaperons are involved in the translocation process of the toxin.

  3. Escherichia coli exports cyclic AMP via TolC.

    PubMed

    Hantke, Klaus; Winkler, Karin; Schultz, Joachim E

    2011-03-01

    In Escherichia coli more than 180 genes are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. However, more than 90% of cAMP that is made by intracellular adenylyl cyclases is found in the culture medium. How is cAMP exported from E. coli? In a tolC mutant, 0.03 mM IPTG (isopropyl-β-d-thiogalactopyranoside) was sufficient to induce β-galactosidase compared to 0.1 mM IPTG in the parent strain. In a cya mutant unable to produce cAMP about 1 mM extracellular cAMP was required to induce β-galactosidase, whereas in a cya tolC mutant 0.1 mM cAMP was sufficient. When cAMP in E. coli cya was generated intracellularly by a recombinant, weakly active adenylyl cyclase from Corynebacterium glutamicum, the critical level of cAMP necessary for induction of maltose degradation was only achieved in a tolC mutant and not in the parent strain. Deletion of a putative cAMP phosphodiesterase of E. coli, CpdA, resulted in a slightly similar, yet more diffuse phenotype. The data demonstrate that export of cAMP via TolC is a most efficient way of E. coli to lower high concentrations of cAMP in the cell and maintain its sensitivity in changing metabolic environments.

  4. Membrane tethering by the atlastin GTPase depends on GTP hydrolysis but not on forming the cross-over configuration.

    PubMed

    Saini, Simran G; Liu, Chuang; Zhang, Peijun; Lee, Tina H

    2014-12-01

    The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans dimerization between atlastins anchored in opposing membranes, accompanied by a cross-over conformational change, is thought to draw the membranes together for fusion. Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle have been carried out largely on atlastins lacking a membrane anchor. Consequently, whether fusion involves a discrete tethering step and, if so, the potential role of GTP hydrolysis and cross-over in tethering remain unknown. In this study, we used membrane-anchored atlastins in assays that separate tethering from fusion to dissect the requirements for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did not depend on cross-over. Thus GTP hydrolysis initiates stable head-domain contact in trans to tether opposing membranes, whereas cross-over formation plays a more pivotal role in powering the lipid rearrangements for fusion.

  5. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases.

    PubMed

    Kowalinski, Eva; Schuller, Anthony; Green, Rachel; Conti, Elena

    2015-07-07

    Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.

  6. Neutron crystal structure of RAS GTPase puts in question the protonation state of the GTP γ-phosphate

    DOE PAGES

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; ...

    2015-10-29

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the startmore » of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. As a result, the neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.« less

  7. Membrane tethering by the atlastin GTPase depends on GTP hydrolysis but not on forming the cross-over configuration

    PubMed Central

    Saini, Simran G.; Liu, Chuang; Zhang, Peijun; Lee, Tina H.

    2014-01-01

    The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans dimerization between atlastins anchored in opposing membranes, accompanied by a cross-over conformational change, is thought to draw the membranes together for fusion. Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle have been carried out largely on atlastins lacking a membrane anchor. Consequently, whether fusion involves a discrete tethering step and, if so, the potential role of GTP hydrolysis and cross-over in tethering remain unknown. In this study, we used membrane-anchored atlastins in assays that separate tethering from fusion to dissect the requirements for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did not depend on cross-over. Thus GTP hydrolysis initiates stable head-domain contact in trans to tether opposing membranes, whereas cross-over formation plays a more pivotal role in powering the lipid rearrangements for fusion. PMID:25253720

  8. Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane

    PubMed Central

    Augsten, Martin; Pusch, Rico; Biskup, Christoph; Rennert, Knut; Wittig, Ute; Beyer, Katja; Blume, Alfred; Wetzker, Reinhard; Friedrich, Karlheinz; Rubio, Ignacio

    2006-01-01

    Ras-GTP imaging studies using the Ras-binding domain (RBD) of the Ras effector c-Raf as a reporter for overexpressed Ras have produced discrepant results about the possible activation of Ras at the Golgi apparatus. We report that RBD oligomerization provides probes for visualization of endogenous Ras-GTP, obviating Ras overexpression and the side effects derived thereof. RBD oligomerization results in tenacious binding to Ras-GTP and interruption of Ras signalling. Trimeric RBD probes fused to green fluorescent protein report agonist-induced endogenous Ras activation at the plasma membrane (PM) of COS-7, PC12 and Jurkat cells, but do not accumulate at the Golgi. PM illumination is exacerbated by Ras overexpression and its sensitivity to dominant-negative RasS17N and pharmacological manipulations matches Ras-GTP formation assessed biochemically. Our data illustrate that endogenous Golgi-located Ras is not under the control of growth factors and argue for the PM as the predominant site of agonist-induced Ras activation. PMID:16282985

  9. Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances.

    PubMed

    Södergren, Anna L; Svensson Holm, Ann-Charlotte B; Ramström, Sofia; Lindström, Eva G; Grenegård, Magnus; Öllinger, Karin

    2016-01-01

    Exocytosis of lysosomal contents from platelets has been speculated to participate in clearance of thrombi and vessel wall remodelling. The mechanisms that regulate lysosomal exocytosis in platelets are, however, still unclear. The aim of this study was to identify the pathways underlying platelet lysosomal secretion and elucidate how this process is controlled by platelet inhibitors. We found that high concentrations of thrombin induced partial lysosomal exocytosis as assessed by analysis of the activity of released N-acetyl-β-glucosaminidase (NAG) and by identifying the fraction of platelets exposing the lysosomal-associated membrane protein (LAMP)-1 on the cell surface by flow cytometry. Stimulation of thrombin receptors PAR1 or PAR4 with specific peptides was equally effective in inducing LAMP-1 surface expression. Notably, lysosomal exocytosis in response to thrombin was significantly reduced if the secondary activation by ADP was inhibited by the P2Y12 antagonist cangrelor, while inhibition of thromboxane A2 formation by treatment with acetylsalicylic acid was of minor importance in this regard. Moreover, the NO-releasing drug S-nitroso-N-acetyl penicillamine (SNAP) or the cyclic AMP-elevating eicosanoid prostaglandin I2 (PGI2) significantly suppressed lysosomal exocytosis. We conclude that platelet inhibitors that mimic functional endothelium such as PGI2 or NO efficiently counteract lysosomal exocytosis. Furthermore, we suggest that secondary release of ADP and concomitant signaling via PAR1/4- and P2Y12 receptors is important for efficient platelet lysosomal exocytosis by thrombin.

  10. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.

    PubMed

    Praefcke, Gerrit J K; Kloep, Stephan; Benscheid, Utz; Lilie, Hauke; Prakash, Balaji; Herrmann, Christian

    2004-11-12

    The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies.

  11. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  12. AMPS/PC - AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM

    NASA Technical Reports Server (NTRS)

    Schroer, B. J.

    1994-01-01

    The AMPS/PC system is a simulation tool designed to aid the user in defining the specifications of a manufacturing environment and then automatically writing code for the target simulation language, GPSS/PC. The domain of problems that AMPS/PC can simulate are manufacturing assembly lines with subassembly lines and manufacturing cells. The user defines the problem domain by responding to the questions from the interface program. Based on the responses, the interface program creates an internal problem specification file. This file includes the manufacturing process network flow and the attributes for all stations, cells, and stock points. AMPS then uses the problem specification file as input for the automatic code generator program to produce a simulation program in the target language GPSS. The output of the generator program is the source code of the corresponding GPSS/PC simulation program. The system runs entirely on an IBM PC running PC DOS Version 2.0 or higher and is written in Turbo Pascal Version 4 requiring 640K memory and one 360K disk drive. To execute the GPSS program, the PC must have resident the GPSS/PC System Version 2.0 from Minuteman Software. The AMPS/PC program was developed in 1988.

  13. Frequency doubling of copper lasers using temperature-tuned ADP

    SciTech Connect

    Molander, W.A.

    1994-03-01

    The ability to generate high average power uv at 255 nm by frequency doubling the green line (510.6 nm) of copper lasers would greatly extend the utility of copper lasers. Material processing and microlithography are two areas of interest. The frequency-doubled copper laser could replace the KrF excimer laser, which has a similar wavelength (248 nm), in some applications. The frequency-doubled copper laser has a narrow linewidth and excellent beam quality at a competitive cost. Other attractive features are high reliability, low operating costs, and the absence of toxic gases. This paper will report recent progress in high-efficiency, high-average-power harmonic generation of the copper laser green line using noncritical phase matching in ADP. Frequency doubling of the yellow line (578.2 nm) and sum-frequency mixing of the two lines are also of interest. These processes, however, cannot be phase-matched in ADP and, therefore, will not be discussed here. The results reported and the issues identified here would be important in these other processes and also in many other frequency conversion schemes in the uv such as 4{omega} conversion of Nd{sup 3+}:YAG lasers.

  14. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  15. Metabolic roles of poly(ADP-ribose) polymerases.

    PubMed

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  16. The P2Y12 antagonists, 2-methylthioadenosine 5'-monophosphate triethylammonium salt and cangrelor (ARC69931MX), can inhibit human platelet aggregation through a Gi-independent increase in cAMP levels.

    PubMed

    Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T; Lam, Stephen C-T; Le Breton, Guy C

    2009-06-12

    ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5'-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors.

  17. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  18. ADP ribosylation factor 6 binding to phosphatidylinositol 4,5-bisphosphate-containing vesicles creates defects in the bilayer structure: an electron spin resonance study.

    PubMed Central

    Ge, M; Cohen, J S; Brown, H A; Freed, J H

    2001-01-01

    The effects of binding of myristoylated ADP ribosylation factor 6 (myr-ARF6), an activator of phospholipase D (PLD), to a model membrane were investigated using an electron spin resonance (ESR) labeling technique. Initial studies were conducted in vesicles composed of 1-palmitoyl-2-oleoyl phosphatidylethanolamine, dipalmitoylphosphatidylcholine, phosphatidylinositol 4,5-biphosphate (PIP(2)), and cholesterol. Recombinant ARF6 binding significantly enhances defects in both the headgroup and acyl-chain regions of the membrane, which are revealed by the emergence of sharp components in the spectra from a headgroup label, 1,2-dipalmitoylphosphatidyl-2,2,6,6-tetramethyl-1-piperidinyloxy-choline (DPPTC), and a chain label, 10PC, after myr-ARF6 binding. Binding of non-myristoylated ARF6 (non-ARF6) shows markedly reduced effects. Interestingly, no change in spectra from DPPTC was observed upon myr-ARF6 binding when PIP(2) in the vesicles was replaced by other negatively charged lipids, including phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol, even when normalized for charge. The production of the sharp peak appears to be a specific event, because another GTP binding protein, CDC42, which binds PIP(2) and activates PLD, fails to induce changes in vesicle structure. These results suggest a previously unappreciated role for ARF in mediating a protein/lipid interaction that produces defects in lipid bilayers. This function may serve as an initial event in destabilizing membrane structure for subsequent membrane fusion or biogenesis of vesicles. PMID:11463641

  19. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  20. Catalytic unit-independent phosphorylation and dephosphorylation of type II regulatory subunit of cyclic AMP-dependent protein kinase in rat liver plasma membranes.

    PubMed Central

    Kiss, Z; Luo, Y; Vereb, G

    1986-01-01

    Rat liver plasma membranes contain a 55 kDa protein which proved to be identical with type II regulatory subunit (RII) of the cyclic AMP-dependent protein kinase (kinase A) by several criteria (gel electrophoretic behaviour, peptide map, position of the autophosphorylated site). Analysis of phosphopeptide maps revealed that the membrane-bound RII was phosphorylated by a kinase which is unrelated to the catalytic unit (C) of kinase A. Dephosphorylation of the membrane-bound RII by an endogenous phosphatase was stimulated by both cyclic AMP and fluoride. Addition of C did not stimulate dephosphorylation even in the presence of ADP; moreover, protein inhibitor of C did not modify the effects of cyclic AMP or fluoride. The effects of both cyclic AMP and fluoride were, however, inhibited by C. Results indicate that rat liver plasma membranes contain a phosphorylation-dephosphorylation system for which RII is a relatively specific substrate. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3010951

  1. AMPS Supporting Research and Technology (SR and T) report. Atmospheric, Magnetospheric and Plasmas in Space (AMPS) definition study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A listing of candidate technology areas that require additional study is presented. These candidate tasks, identified during the AMPS Phase B studies, are requisites to the design, development, and operation of the AMPS concept selected for preliminary design.

  2. Detection of cyclic di-AMP using a competitive ELISA with a unique pneumococcal cyclic di-AMP binding protein

    PubMed Central

    Underwood, Adam J.; Zhang, Yang; Metzger, Dennis W.; Bai, Guangchun

    2014-01-01

    Cyclic di-AMP (c-di-AMP) is a signaling molecule that has been shown to play important roles in bacterial physiology and infections. Currently, c-di-AMP detection and quantification relies mostly on the use of high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC-MS). In this study, a competitive enzyme-linked immunosorbent assay (ELISA) for the quantification of c-di-AMP was developed, which utilizes a novel pneumococcal c-di-AMP binding protein (CabP) and a newly commercialized c-di-AMP derivative. With this new method, c-di-AMP concentrations in biological samples can be quickly and accurately quantified. Furthermore, this assay is much more efficient than current methods as it requires less overall cost and training while processing many samples at once. Therefore, this assay can be extensively used in research into c-di-AMP signaling. PMID:25239824

  3. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.

    PubMed

    Furuike, Yoshihiko; Akita, Yuka; Miyahara, Ikuko; Kamiya, Nobuo

    2016-03-29

    Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases.

  4. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  5. Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion.

    PubMed Central

    Kowluru, A; Seavey, S E; Li, G; Sorenson, R L; Weinhaus, A J; Nesher, R; Rabaglia, M E; Vadakekalam, J; Metz, S A

    1996-01-01

    Several GTP-binding proteins (G-proteins) undergo post-translational modifications (isoprenylation and carboxyl methylation) in pancreatic beta cells. Herein, two of these were identified as CDC42 and rap 1, using Western blotting and immunoprecipitation. Confocal microscopic data indicated that CDC42 is localized only in islet endocrine cells but not in acinar cells of the pancreas. CDC42 undergoes a guanine nucleotide-specific membrane association and carboxyl methylation in normal rat islets, human islets, and pure beta (HIT or INS-1) cells. GTPgammaS-dependent carboxyl methylation of a 23-kD protein was also demonstrable in secretory granule fractions from normal islets or beta cells. AFC (a specific inhibitor of prenyl-cysteine carboxyl methyl transferases) blocked the carboxyl methylation of CDC42 in five types of insulin-secreting cells, without blocking GTPgammaS-induced translocation, implying that methylation is a consequence (not a cause) of transfer to membrane sites. High glucose (but not a depolarizing concentration of K+) induced the carboxyl methylation of CDC42 in intact cells, as assessed after specific immunoprecipitation. This effect was abrogated by GTP depletion using mycophenolic acid and was restored upon GTP repletion by coprovision of guanosine. In contrast, although rap 1 was also carboxyl methylated, it was not translocated to the particulate fraction by GTPgammaS; furthermore, its methylation was also stimulated by 40 mM K+ (suggesting a role which is not specific to nutrient stimulation). AFC also impeded nutrient-induced (but not K+-induced) insulin secretion from islets and beta cells under static or perifusion conditions, whereas an inactive structural analogue of AFC failed to inhibit insulin release. These effects were reproduced not only by S-adenosylhomocysteine (another methylation inhibitor), but also by GTP depletion. Thus, the glucose- and GTP-dependent carboxyl methylation of G-proteins such as CDC42 is an obligate step in

  6. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production.

    PubMed

    Pulliainen, Arto T; Pieles, Kathrin; Brand, Cameron S; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W; Dehio, Christoph

    2012-06-12

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium.

  7. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  8. Molecular Toxicology of Chromatin: The Role of Poly (ADP-Ribose) in Gene Control

    DTIC Science & Technology

    1985-12-15

    mechanism is operative from NOD either directly ADY-ribosy- latintr "acceptor" proteins (%.g., hiatone), a reaction presumably catalyzed by the...24 Figures 1through 5. .. ............................. .. .. .. .. .........25-29’ 2. Mechanisms of’Poly(ADP-Ribose) Poiymerase Catalysis...Figures 1 through 3 .. ...................... ...........................46-48 3. Mechanism of inactivation of Poly(ADP-Ribose) Polymerase of Rat Liver

  9. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  10. 45 CFR 95.625 - Increased FFP for certain ADP systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (FFP) Specific Conditions for Ffp § 95.625 Increased FFP for certain ADP systems. (a) General. FFP is available at enhanced matching rates for the development of individual or integrated systems and the... 45 Public Welfare 1 2010-10-01 2010-10-01 false Increased FFP for certain ADP systems....

  11. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.

  12. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  13. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  14. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

    PubMed

    Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung

    2017-01-01

    Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

  15. GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis.

    PubMed

    Kapatos, G; Hirayama, K; Shimoji, M; Milstien, S

    1999-02-01

    Tetrahydrobiopterin, the coenzyme required for hydroxylation of phenylalanine, tyrosine, and tryptophan, regulates its own synthesis through feedback inhibition of GTP cyclohydrolase I (GTPCH) mediated by a regulatory subunit, the GTP cyclohydrolase feedback regulatory protein (GFRP). In the liver, L-phenylalanine specifically stimulates tetrahydrobiopterin synthesis by displacing tetrahydrobiopterin from the GTPCH-GFRP complex. To explore the role of this regulatory system in rat brain, we examined the localization of GFRP mRNA using double-label in situ hybridization. GFRP mRNA expression was abundant in serotonin neurons of the dorsal raphe nucleus but was undetectable in dopamine neurons of the midbrain or norepinephrine neurons of the locus coeruleus. Simultaneous nuclease protection assays for GFRP and GTPCH mRNAs showed that GFRP mRNA is most abundant within the brainstem and that the ratio of GFRP to GTPCH mRNA is much higher than in the ventral midbrain. Two species of GFRP mRNA differing by approximately 20 nucleotides in length were detected in brainstem but not in other tissues, with the longer, more abundant form being common to other brain regions. It is interesting that the pineal and adrenal glands did not contain detectable levels of GFRP mRNA, although GTPCH mRNA was abundant in both. Primary neuronal cultures were used to examine the role of GFRP-mediated regulation of GTPCH on tetrahydrobiopterin synthesis within brainstem serotonin neurons and midbrain dopamine neurons. L-Phenylalanine increased tetrahydrobiopterin levels in serotonin neurons to a maximum of twofold in a concentration-dependent manner, whereas D-phenylalanine and L-tryptophan were without effect. In contrast, tetrahydrobiopterin levels within cultured dopamine neurons were not altered by L-phenylalanine. The time course of this effect was very rapid, with a maximal response observed within 60 min. Inhibitors of tetrahydrobiopterin biosynthesis prevented the L

  16. Histamine H3-receptor activation augments voltage-dependent Ca2+ current via GTP hydrolysis in rabbit saphenous artery.

    PubMed

    Oike, M; Kitamura, K; Kuriyama, H

    1992-03-01

    1. Actions of histamine on the voltage-dependent Ba2+(Ca2+) currents (IBa, ICa) were investigated using the whole-cell patch-clamp technique on dispersed smooth muscle cells from the rabbit saphenous artery. 2. Histamine (half-maximal dose, EC50 = 530 nM) augmented the IBa evoked by a brief depolarizing pulse (100 ms duration; to +10 mV from a holding potential of -80 mV) in a concentration-dependent manner. The maximum augmentation was obtained with 30 microM-histamine (1.29 times control). This augmentation of IBa was inhibited by the H3-antagonist, thioperamide (Ki = 30 nM, slope of the Schild plot = 1.0), but not by H1- or H2-antagonists (mepyramine or diphenhydramine, or cimetidine, respectively). 3. An H3-agonist, R alpha-methylhistamine (EC50 = 93 nM), also augmented IBa in a concentration-dependent manner at a holding potential of -80 mV and the maximum augmentation (1.25 times control) was obtained with 10 microM. This augmentation was also inhibited by thioperamide, but not by the above H1- and H2- antagonists. 4. Intracellularly applied 500 microM-guanosine 5'-triphosphate (GTP) enhanced, but 1 mM-guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) abolished, the histamine-induced augmentation of IBa. When one of the non-hydrolysable GTP analogues, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S; greater than 5 microM), guanylyl-imidodiphosphate (GMP-PNP; 200 microM) or guanylyl (beta, gamma-methylene)-diphosphonate (GMP-PCP; 1 mM) was intracellularly applied, the IBa amplitude evoked without the application of histamine was not affected, but the excitatory effect of histamine on IBa was reversed to an inhibition. Pre-treatment with pertussis toxin (PTX: 300 ng/ml and 3 micrograms/ml) did not modify the histamine-induced responses in the absence or presence of GTP gamma S. 5. 4 beta-Phorbol 12,13-dibutylate (PDBu) increased the amplitude of IBa. However, this action of PDBu was not enhanced by the application of GTP (500 microM) in the pipette, but

  17. Cyclic AMP (cAMP) Receptor Protein-cAMP Complex Regulates Heparosan Production in Escherichia coli Strain Nissle 1917.

    PubMed

    Yan, Huihui; Bao, Feifei; Zhao, Liping; Yu, Yanying; Tang, Jiaqin; Zhou, Xianxuan

    2015-11-01

    Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of heparin, a widely used clinical anticoagulant drug. The availability of heparosan is a significant concern for the cost-effective synthesis of bioengineered heparin. The carbon source is known as the pivotal factor affecting heparosan production. However, the mechanism by which carbon sources control the biosynthesis of heparosan is unclear. In this study, we found that the biosynthesis of heparosan was influenced by different carbon sources. Glucose inhibits the biosynthesis of heparosan, while the addition of either fructose or mannose increases the yield of heparosan. Further study demonstrated that the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex binds to the upstream region of the region 3 promoter and stimulates the transcription of the gene cluster for heparosan biosynthesis. Site-directed mutagenesis of the CRP binding site abolished its capability of binding CRP and eliminated the stimulative effect on transcription. (1)H nuclear magnetic resonance (NMR) analysis was further performed to determine the Escherichia coli strain Nissle 1917 (EcN) heparosan structure and quantify extracellular heparosan production. Our results add to the understanding of the regulation of heparosan biosynthesis and may contribute to the study of other exopolysaccharide-producing strains.

  18. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.

    PubMed

    Cantó, Carles; Sauve, Anthony A; Bai, Peter

    2013-12-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.

  19. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-11-17

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.

  20. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  1. Poly(ADP-Ribose) Polymerases in Aging - Friend or Foe?

    PubMed

    Vida, András; Abdul-Rahman, Omar; Mikó, Edit; Brunyánszki, Attila; Bai, Peter

    2016-01-01

    Poly(ADP-ribose) polymerases were originally described as DNA repair enzymes. PARP-1, PARP-2 and PARP-3 can be activated by DNA damage and the resulting activation of these enzymes that facilitate DNA repair, seems to be a prerequisite of successful aging. PARP activation helps to maintain genomic integrity through supporting DNA repair systems; however, in parallel these enzymes limit metabolic fitness and make the organism more prone for metabolic diseases. In addition, several other pathways (e.g., proteostasis, nutrient sensing, stem cell proliferation or cellular communication) all contributing to aging, were shown to be PARP mediated. In this review we aim to summarize our current knowledge on the role of PARPs in aging.

  2. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  3. A New Use for a Familiar Fold: the X-Ray Crystal Structure of GTP-Bound GTP Cyclohydrolase III From Methanocaldococcus Jannaschii Reveals a Two Metal Ion Catalytic Mechanism

    SciTech Connect

    Morrison, S.D.; Roberts, S.A.; Zegeer, A.M.; Montfort, W.R.; Bandarian, V.

    2009-05-26

    GTP cyclohydrolase (GCH) III from Methanocaldococcus jannaschii, which catalyzes the conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), has been shown to require Mg{sup 2+} for catalytic activity and is activated by monovalent cations such as K{sup +} and ammonium [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084]. The reaction is formally identical to that catalyzed by a GCH II ortholog (SCO 6655) from Streptomyces coelicolor; however, SCO 6655, like other GCH II proteins, is a zinc-containing protein. The structure of GCH III complexed with GTP solved at 2 {angstrom} resolution clearly shows that GCH III adopts a distinct fold that is closely related to the palm domains of phosphodiesterases, such as DNA polymerase I. GCH III is a tetramer of identical subunits; each monomer is composed of an N- and a C-terminal domain that adopt nearly superimposible structures, suggesting that the protein has arisen by gene duplication. Three metal ions were located in the active site, two of which occupy positions that are analogous to those occupied by divalent metal ions in the structures of a number of palm domain containing proteins, such as DNA polymerase I. Two conserved Asp residues that coordinate the metal ions, which are also found in palm domain containing proteins, are observed in GCH III. Site-directed variants (Asp{yields}Asn) of these residues in GCH III are less active than wild-type. The third metal ion, most likely a potassium ion, is involved in substrate recognition through coordination of O6 of GTP. The arrangement of the metal ions in the active site suggests that GCH III utilizes two metal ion catalysis. The structure of GCH III extends the repertoire of possible reactions with a palm fold to include cyclohydrolase chemistry.

  4. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42.

    PubMed Central

    Shinjo, K; Koland, J G; Hart, M J; Narasimhan, V; Johnson, D I; Evans, T; Cerione, R A

    1990-01-01

    We have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated Gp (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human Gp protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins (approximately 50% identical), and the rac proteins (approximately 70% identical). The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell-division-cycle protein CDC42. The human placental gene, which we designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein. Images PMID:2124704

  5. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42.

    PubMed

    Shinjo, K; Koland, J G; Hart, M J; Narasimhan, V; Johnson, D I; Evans, T; Cerione, R A

    1990-12-01

    We have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated Gp (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human Gp protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins (approximately 50% identical), and the rac proteins (approximately 70% identical). The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell-division-cycle protein CDC42. The human placental gene, which we designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein.

  6. Molecular cloning of the gene for the human placental GTP-binding protein G sub p (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42

    SciTech Connect

    Shinjo, K.; Koland, J.G.; Hart, M.J.; Narasimhan, V.; Cerione, R.A. ); Johnson, D.I. ); Evans, T. )

    1990-12-01

    The authors have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated G{sub p} (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human G{sub p} protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins and the rac proteins. The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell division-cycle protein CDC42. The human placental gene, which they designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein.

  7. Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav.

    PubMed

    Vicente-Manzanares, Miguel; Cruz-Adalia, Aranzazu; Martín-Cófreces, Noa B; Cabrero, José R; Dosil, Mercedes; Alvarado-Sánchez, Brenda; Bustelo, Xosé R; Sánchez-Madrid, Francisco

    2005-04-15

    Rho GTPases control many facets of cell polarity and migration; namely, the reorganization of the cellular cytoskeleton to extracellular stimuli. Rho GTPases are activated by GTP exchange factors (GEFs), which induce guanosine diphosphate (GDP) release and the stabilization of the nucleotide-free state. Thus, the role of GEFs in the regulation of the cellular response to extracellular cues during cell migration is a critical step of this process. In this report, we have analyzed the activation and subcellular localization of the hematopoietic GEF Vav in human peripheral blood lymphocytes stimulated with the chemokine stromal cell-derived factor-1 (SDF-1alpha). We show a robust activation of Vav and its redistribution to motility-associated subcellular structures, and we provide biochemical evidence of the recruitment of Vav to the membrane of SDF-1alpha-activated human lymphocytes, where it transiently interacts with the SDF-1alpha receptor CXCR4. Overexpression of a dominant negative form of Vav abolished lymphocyte polarization, actin polymerization, and migration. SDF-1alpha-mediated cell polarization and migration also were impaired by overexpression of an active, oncogenic Vav, although the mechanism appears to be different. Together, our data postulate a pivotal role for Vav in the transmission of the migratory signal through the chemokine receptor CXCR4.

  8. Phenylalanine improves dilation and blood pressure in GTP cyclohydrolase inhibition-induced hypertensive rats.

    PubMed

    Mitchell, Brett M; Dorrance, Anne M; Webb, R Clinton

    2004-06-01

    GTP cyclohydrolase (GTPCH), the rate-limiting enzyme in the production of the nitric oxide synthase cofactor tetrahydrobiopterin (BH4), is partly regulated by the GTPCH feedback regulatory protein (GFRP). GFRP can inhibit GTPCH by end-product negative feedback, and L-phenylalanine (L-Phe) reverses this inhibition and increases BH4 biosynthesis in vitro. We hypothesized that L-Phe would increase endothelium-dependent relaxation and decrease blood pressure in rats made hypertensive by GTPCH inhibition. Di-amino-hydroxypyrimidine (DAHP, 10 mmol/L), a known inhibitor of GTPCH, was given with or without L-Phe or D-Phe (2 mmol/L) in the drinking water of rats for 3 days and blood pressure was measured via tail-cuff. Endothelium-intact aortic segments were hung in organ chambers for measurement of isometric force generation. Systolic blood pressure was increased significantly in DAHP-treated rats compared with controls. The addition of L-Phe attenuated the hypertensive effect, whereas D-Phe had no effect. Acetylcholine- and A23187-induced relaxation was decreased in aortas from DAHP-treated rats compared with controls, but was restored in aortas from DAHP+L-Phe-treated rats. Following NOS inhibition, sensitivity to sodium nitroprusside was increased in aortas from DAHP-treated rats, but restored in DAHP+L-Phe-treated rats. These results suggest that L-Phe can reverse GTPCH inhibition in vivo leading to increased vasodilation and decreased blood pressure.

  9. Inhibitory GTP binding protein G/sub i/ regulates US -adrenoceptor affinity towards US -agonists

    SciTech Connect

    Marbach, I.; Levitzki, A.

    1987-05-01

    Treatment of S-49 lymphoma cell membranes with pertussis toxin (PT) causes a three-fold reduction of US -adrenoceptor (US AR) affinity towards isoproterenol. A similar treatment with cholera toxin (CT) does not cause such a modulation. The effects were studied by the detailed analysis of SVI-cyanopindolol (CYP) binding curves in the absence and presence of increasing agonist concentrations. Thus, the authors were able to compare in detail the effects of G/sub s/ and G/sub i/ on the agonist-associated state of the US AR. In contrast to these findings, PT treatment does not have any effect on the displacement of SVI-CYP by (-)isoproterenol. These results demonstrate that the inhibitory GTP protein G/sub i/ modulates the US AR affinity towards US -agonists. This might be due to the association of G/sub i/ with the agonist-bound US AR x G/sub s/ x C complex within the membrane. This hypothesis, as well as others, is under investigation.

  10. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

    PubMed Central

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-01-01

    Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI: http://dx.doi.org/10.7554/eLife.03473.001 PMID:25144938

  11. Fiscal Year 2011 Infrastructure Refactorizations in AMP

    SciTech Connect

    Berrill, Mark A.; Philip, Bobby; Sampath, Rahul S.; Allu, Srikanth; Barai, Pallab; Cochran, Bill; Clarno, Kevin T.; Dilts, Gary A.

    2011-09-01

    In Fiscal Year 2011 (FY11), the AMP (Advanced MultiPhysics) Nuclear Fuel Performance code [1] went through a thorough review and refactorization based on the lessons-learned from the previous year, in which the version 0.9 of the software was released as a prototype. This report describes the refactorization work that has occurred or is in progress during FY11.

  12. Active Materials for Photonic Systems (AMPS)

    DTIC Science & Technology

    2007-11-02

    market . Overall Program Summary The overall objective of the Active Materials for Photonic Systems (AMPS) program was to develop and demonstrate...mode fiber, with alignment tolerances of several microns functions well for data communications , single mode fiber is required for several significant...in the laser/optics community . Boeing and MCNC have signed a memorandum of agreement for commercialization and are actively seeking partners for

  13. Cyclic AMP (cAMP) confers drug resistance against DNA damaging agents via PKAIA in CML cells.

    PubMed

    Xiao, Ling-Yi; Kan, Wai-Ming

    2017-01-05

    Cyclic adenosine monophosphate (cAMP) regulates many vital functions such as metabolism, proliferation, differentiation and death. Depending on cell types and stimulators, cAMP could either promote or attenuate cell death. cAMP signal can be transduced by protein kinase A (PKA) and/or exchange protein directly activated by cAMP (EPAC). In CML cells, cAMP may suppress their proliferation and enhance their differentiation. However, the role of cAMP on DNA damaging agent toxicity and the mechanism involved has not been studied. In this study, we studied the effect of cAMP on the sensitivity of CML cells to DNA damaging agents. We observed that forskolin (FSK) and dibutyryl-cAMP (DBcAMP) decreased cisplatin and etoposide-induced cell death in K562 cells. Moreover, PKA activator prevented K562 cells from DNA damaging agent-induced cell death while EPAC activator had no effect. Furthermore, we found that the PKA subtype, PKAIA, was involved in cAMP-attenuated resistance in K562 cells. Taken together, our results suggest that increased cAMP level confers CML cells to acquire a novel mechanism against DNA damaging agent toxicity via PKAIA. Thus, PKAIA inhibitor may be helpful in overcoming the resistance to DNA damaging agents in CML cells.

  14. Copper Regulates Cyclic AMP-Dependent Lipolysis

    PubMed Central

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.

    2016-01-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  15. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  16. Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins.

    PubMed

    Bialik, Shani; Kimchi, Adi

    2012-10-01

    DAPK (death-associated protein kinase) is a newly recognized member of the mammalian family of ROCO proteins, characterized by common ROC (Ras of complex proteins) and COR (C-terminal of ROC) domains. In the present paper, we review our recent work showing that DAPK is functionally a ROCO protein; its ROC domain binds and hydrolyses GTP. Furthermore, GTP binding regulates DAPK catalytic activity in a novel manner by enhancing autophosphorylation on inhibitory Ser308, thereby promoting the kinase 'off' state. This is a novel mechanism for in cis regulation of kinase activity by the distal ROC domain. The functional similarities between DAPK and the Parkinson's disease-associated protein LRRK2 (leucine-rich repeat protein kinase 2), another member of the ROCO family, are also discussed.

  17. Preparation and crystallization of the stimulatory and inhibitory complexes of GTP cyclohydrolase I and its feedback regulatory protein GFRP.

    PubMed

    Maita, N; Okada, K; Hirotsu, S; Hatakeyama, K; Hakoshima, T

    2001-08-01

    Mammalian GTP cyclohydrolase I is a decameric enzyme in the first and rate-limiting step in the biosynthesis of tetrahydrobiopterin, which is an essential cofactor for enzymes producing neurotransmitters such as catecholamines and for nitric oxide synthases. The enzyme is dually regulated by its feedback regulatory protein GFRP in the presence of its stimulatory effector phenylalanine and its inhibitory effector biopterin. Here, both the stimulatory and inhibitory complexes of rat GTP cyclohydrolase I bound to GFRP were crystallized by vapour diffusion. Diffraction data sets at resolutions of 3.0 and 2.64 A were collected for the stimulatory and inhibitory complexes, respectively. Each complex consists of two GTPCHI pentamer rings and two GFRP pentamer rings, with pseudo-52 point-group symmetry.

  18. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting.

    PubMed

    Rothman, J H; Raymond, C K; Gilbert, T; O'Hara, P J; Stevens, T H

    1990-06-15

    Members of the Mx protein family promote interferon-inducible resistance to viral infection in mammals and act by unknown mechanisms. We identified an Mx-like protein in yeast and present genetic evidence for its cellular function. This protein, the VPS1 product, is essential for vacuolar protein sorting, normal organization of intracellular membranes, and growth at high temperature, implying that Mx-like proteins are engaged in fundamental cellular processes in eukaryotes. Vps1p contains a tripartite GTP binding motif, which suggests that binding to GTP is essential to its role in protein sorting. Vps1p-specific antibody labels punctate cytoplasmic structures that condense to larger structures in a Golgi-accumulating sec7 mutant; thus, Vps1p may associate with an intermediate organelle of the secretory pathway.

  19. Phospholipid metabolism in zymosan stimulated human monocytes: modulation by cyclic AMP (cAMP)

    SciTech Connect

    Godfrey R.W.; Manzi, R.M.; Hoffstein, S.T.

    1986-05-01

    Oxygenated products of arachidonic acid (AA) are critical components in the development of the inflammatory response. Monocytes exposed to inflammatory stimuli are capable of converting free AA into these bioactive molecules. However, the limiting step in the formation of these compounds is thought to be the mechanism responsible for the release of esterified AA from phospholipids. When (/sup 3/H) AA labeled monocytes were challenged with opsonized zymosan, 28 +/- 2% of the incorporated counts were released compared to 8 +/- 1% for the control. Upon pretreatment with isobutyl methyl xanthine (IBMX) or dibutyrl cyclic AMP (d-cAMP) zymosan stimulated AA release was markedly reduced. The IC/sub 50/'s were 4 x 10/sup -4/M and 7 x 10/sup -4/M respectively. Analysis of (/sup 3/H) AA incorporation into cellular phospholipids showed that phosphatidylcholine (PC) and phosphatidylinositol (PI) were the primary pools labeled. Loss of label from both of these pools was evident after exposure to zymosan, however, pretreatment of cells with IBMX or d-cAMP inhibited release of (/sup 3/H)AA from the PC pool but not from the PI pool. The results show that human monocytes challenged with opsonized zymosan release arachidonic acid via cAMP-dependent and independent pathways. Furthermore, they suggest that a phospholipase activity (possibly A/sub 2/) against PC is modulated by cAMP.

  20. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda

    PubMed Central

    Burak, Matthew J.; Guja, Kip E.; Garcia-Diaz, Miguel

    2015-01-01

    8-Oxo-7,8,-dihydro-2′-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala510 and Asn513, play differential roles in dNTP selectivity. Specifically, Ala510 and Asn513 facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases. PMID:26220180

  1. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore

    PubMed Central

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A.J.; Goetze, Tom A.; Edwardson, J. Michael; Barrera, Nelson P.; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  2. Obligatory role in GTP hydrolysis for the amide carbonyl oxygen of the Mg(2+)-coordinating Thr of regulatory GTPases.

    PubMed

    Zurita, Adolfo; Zhang, Yinghao; Pedersen, Lee; Darden, Tom; Birnbaumer, Lutz

    2010-05-25

    When G-protein alpha subunits binds GTP and Mg(2+), they transition from their inactive to their active conformation. This transition is accompanied by completion of the coordination shell of Mg(2+) with electrons from six oxygens: two water molecules, the ss and gamma phosphoryls of GTP, a helix-alpha1 Ser, and a switch I domain (SWI) Thr, and the repositioning of SWI and SWII domains. SWII binds and regulates effector enzymes and facilitates GTP hydrolysis by repositioning the gamma-carbonyl of a Gln. Mutating the Ser generates regulatory GTPases that cannot lock Mg(2+) into its place and are locked in their inactive state with dominant negative properties. Curiously, mutating the Thr appears to reduce GTP hydrolysis. The reason for this difference is not known because it is also not known why removal of the Thr should affect the overall GTPase cycle differently than removal of the Ser. Working with recombinant Gsalpha, we report that mutating its SWI-Thr to either Ala, Glu, Gln, or Asp results not only in diminished GTPase activity but also in spontaneous activation of the SWII domain. Upon close examination of existing alpha subunit crystals, we noted the oxygen of the backbone carbonyl of SWI-Thr and of the gamma-carbonyl of SWII Gln to be roughly equidistant from the oxygen of the hydrolytic H(2)O. Our observations indicate that the Gln and Thr carbonyls play equihierarchical roles in the GTPase process and provide the mechanism that explains why mutating the Thr mimics mutating the Gln and not that of the Ser.

  3. Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket.

    PubMed

    Gunasekara, Sanjiva M; Hicks, Matt N; Park, Jin; Brooks, Cory L; Serate, Jose; Saunders, Cameron V; Grover, Simranjeet K; Goto, Joy J; Lee, Jin-Won; Youn, Hwan

    2015-10-30

    The Escherichia coli cAMP receptor protein (CRP) requires cAMP binding to undergo a conformational change for DNA binding and transcriptional regulation. Two CRP residues, Thr(127) and Ser(128), are known to play important roles in cAMP binding through hydrogen bonding and in the cAMP-induced conformational change, but the connection between the two is not completely clear. Here, we simultaneously randomized the codons for these two residues and selected CRP mutants displaying high CRP activity in a cAMP-producing E. coli. Many different CRP mutants satisfied the screening condition for high CRP activity, including those that cannot form any hydrogen bonds with the incoming cAMP at the two positions. In vitro DNA-binding analysis confirmed that these selected CRP mutants indeed display high CRP activity in response to cAMP. These results indicate that the hydrogen bonding ability of the Thr(127) and Ser(128) residues is not critical for the cAMP-induced CRP activation. However, the hydrogen bonding ability of Thr(127) and Ser(128) was found to be important in attaining high cAMP affinity. Computational analysis revealed that most natural cAMP-sensing CRP homologs have Thr/Ser, Thr/Thr, or Thr/Asn at positions 127 and 128. All of these pairs are excellent hydrogen bonding partners and they do not elevate CRP activity in the absence of cAMP. Taken together, our analyses suggest that CRP evolved to have hydrogen bonding residues at the cAMP pocket residues 127 and 128 for performing dual functions: preserving high cAMP affinity and keeping CRP inactive in the absence of cAMP.

  4. Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins

    PubMed Central

    1994-01-01

    Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells. PMID:8051203

  5. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus.

    PubMed

    Ölschläger, Stephan; Neyts, Johan; Günther, Stephan

    2011-08-01

    Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) is the standard treatment for Lassa fever, though its mode of action is unknown. One possibility is depletion of the intracellular GTP pool via inhibition of the cellular enzyme inosine monophosphate dehydrogenase (IMPDH). This study compared the anti-arenaviral effect of ribavirin with that of two other IMPDH inhibitors, mycophenolic acid (MPA) and 5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR). All three compounds were able to inhibit Lassa virus replication by ≥2 log units in cell culture. Restoring the intracellular GTP pool by exogenous addition of guanosine reversed the inhibitory effects of MPA and EICAR, while ribavirin remained fully active. Analogous experiments performed with Zaire Ebola virus showed that IMPDH inhibitors are also active against this virus, although to a lesser extent than against Lassa virus. In conclusion, the experiments with MPA and EICAR indicate that replication of Lassa and Ebola virus is sensitive to depletion of the GTP pool mediated via inhibition of IMPDH. However, this is not the predominant mechanism by which ribavirin exerts its in-vitro antiviral effect on Lassa virus.

  6. GTP cyclohydrolase I feedback regulatory protein is a pentamer of identical subunits. Purification, cDNA cloning, and bacterial expression.

    PubMed

    Yoneyama, T; Brewer, J M; Hatakeyama, K

    1997-04-11

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by tetrahydrobiopterin and also mediates the stimulatory effect of phenylalanine on the enzyme activity. To characterize the molecular structure of GFRP, we have purified it from rat liver using an efficient step of affinity chromatography and isolated cDNA clones, based on partial amino acid sequences of peptides derived from purified GFRP. Comparison between the amino acid sequence deduced from the cDNA and the N-terminal amino acid sequence of purified GFRP showed that the mature form of GFRP consists of 83 amino acid residues with a calculated Mr of 9,542. The isolated GFRP cDNA was expressed in Escherichia coli as a fusion protein with six consecutive histidine residues at its N terminus. The fusion protein was affinity-purified and digested with thrombin to remove the histidine tag. The resulting recombinant GFRP showed kinetic properties similar to those of GFRP purified from rat liver. Cross-linking experiments using dimethyl suberimidate indicated that GFRP was a pentamer of 52 kDa. Sedimentation equilibrium measurements confirmed the pentameric structure of GFRP by giving an average Mr of 49,734, which is 5 times the calculated molecular weight of the recombinant GFRP polypeptide. Based on the pentameric structure of GFRP, we have proposed a model for the quaternary structure of GFRP and GTP cyclohydrolase I complexes.

  7. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24.

    PubMed Central

    Zhao, Z S; Leung, T; Manser, E; Lim, L

    1995-01-01

    Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling. PMID:7565673

  8. Unique 5′-P recognition and basis for dG:dGTP misincorporation of ASFV DNA polymerase X

    PubMed Central

    Chen, Yiqing; Zhang, Jing; Liu, Hehua; Gao, Yanqing; Li, Xuhang; Zheng, Lina; Cui, Ruixue; Yao, Qingqing; Rong, Liang; Li, Jixi; Huang, Zhen; Ma, Jinbiao; Gan, Jianhua

    2017-01-01

    African swine fever virus (ASFV) can cause highly lethal disease in pigs and is becoming a global threat. ASFV DNA Polymerase X (AsfvPolX) is the most distinctive DNA polymerase identified to date; it lacks two DNA-binding domains (the thumb domain and 8-KD domain) conserved in the homologous proteins. AsfvPolX catalyzes the gap-filling reaction during the DNA repair process of the ASFV virus genome; it is highly error prone and plays an important role during the strategic mutagenesis of the viral genome. The structural basis underlying the natural substrate binding and the most frequent dG:dGTP misincorporation of AsfvPolX remain poorly understood. Here, we report eight AsfvPolX complex structures; our structures demonstrate that AsfvPolX has one unique 5′-phosphate (5′-P) binding pocket, which can favor the productive catalytic complex assembly and enhance the dGTP misincorporation efficiency. In combination with mutagenesis and in vitro catalytic assays, our study also reveals the functional roles of the platform His115-Arg127 and the hydrophobic residues Val120 and Leu123 in dG:dGTP misincorporation and can provide information for rational drug design to help combat ASFV in the future. PMID:28245220

  9. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    PubMed

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  10. Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue

    PubMed Central

    Martello, Rita; Leutert, Mario; Jungmichel, Stephanie; Bilan, Vera; Larsen, Sara C.; Young, Clifford; Hottiger, Michael O.; Nielsen, Michael L.

    2016-01-01

    Although protein ADP-ribosylation is involved in diverse biological processes, it has remained a challenge to identify ADP-ribose acceptor sites. Here, we present an experimental workflow for sensitive and unbiased analysis of endogenous ADP-ribosylation sites, capable of detecting more than 900 modification sites in mammalian cells and mouse liver. In cells, we demonstrate that Lys residues, besides Glu, Asp and Arg residues, are the dominant in vivo targets of ADP-ribosylation during oxidative stress. In normal liver tissue, we find Arg residues to be the predominant modification site. The cellular distribution and biological processes that involve ADP-ribosylated proteins are different in cultured cells and liver tissue, in the latter of which the majority of sites were found to be in cytosolic and mitochondrial protein networks primarily associated with metabolism. Collectively, we describe a robust methodology for the assessment of the role of ADP-ribosylation and ADP-ribosyltransferases in physiological and pathological states. PMID:27686526

  11. Formation of. beta. ,. gamma. -methylene-7,8-dihydroneopterin 3'-triphosphate from. beta. ,. gamma. -methyleneguanosine 5'-triphosphate by GTP cyclohydrolase I of Escherichia coli

    SciTech Connect

    Ferre, J.; Jacobson, K.B.

    1984-01-01

    GTP cyclohydrolase I of Escherichia coli converts (..beta..,..gamma..-methylene)GTP to a fluorescent product that is characterized as (..beta..,..gamma..-methylene)dihydroneopterin triphosphate. Interaction between the GTP analog and the enzyme gave a K/sub i/ of 3.0 ..mu..M, which may be compared to the K/sub m/ of 0.1 ..mu..M for GTP. This new analog of dihydroneopterin triphosphate may, in turn, be converted to the same greenish-yellow pteridines (compounds X, X1, and X2) that are obtained from dihydroneopterin triphosphate. Because of its stability to phosphatase action, this analog may be useful for studies in pteridine metabolism. 14 references, 5 figures.

  12. GTP gamma S causes contraction of skinned frog skeletal muscle via the DHP-sensitive Ca2+ channels of sealed T-tubules.

    PubMed

    Somasundaram, B; Tregear, R T; Trentham, D R

    1991-03-01

    We have investigated the involvement of G-proteins in excitation-contraction coupling of fast-twitch skeletal muscle, using a fibre preparation designed to retain intact T-tubules and sarcoplasmic reticulum. The nonhydrolysable analogue of guanosine triphosphate, GTP gamma S (50-500 microM) caused a strong, transient isometric contraction in this preparation. Reduction of ethylene-bis(oxonitrilo)tetraacete (EGTA) in the sealed T-tubules from 5 mM to 0.1 mM lowered the threshold to GTP gamma S and removal of sodium reversibly raised it. The dihydropyridine (DHP) calcium channel antagonists nicardipine and nifedipine allowed a first contraction and then blocked subsequent GTP gamma S action. The phenylalkylamine methoxyverapamil (D-600) did likewise, reversibly, at 10 degrees C. The guanosine diphosphate analogue, GDP beta S, and procaine reversibly blocked the action of GTP gamma S; pertussis toxin also blocked it. Photolytic release of 40-100 microM GTP gamma S within 0.1 s from S-caged GTP gamma S caused contraction after a latent period of 0.3-20 s. We conclude that GTP gamma S can activate contraction in frog skeletal muscle via a route requiring both the integrity of the T-tubular DHP-sensitive calcium channel (DHPr) and the presence of sodium in the sealed T-tubules. We propose that in this preparation GTP gamma S activates a G-protein, which in turn activates the DHPr as a calcium channel and releases stored calcium from within the sealed T-tubule. Implications of these results for the excitation-contraction coupling mechanism in skeletal muscle are discussed.

  13. Identification of a Specific Assembly of the G Protein Golf as a Critical and Regulated Module of Dopamine and Adenosine-Activated cAMP Pathways in the Striatum

    PubMed Central

    Hervé, Denis

    2011-01-01

    In the principal neurons of striatum (medium spiny neurons, MSNs), cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological circumstances, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Gαolf/β2/γ7 in particular association with adenylyl cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor (D1R)-dependent cAMP signaling is modulated by the neuronal levels of Gαolf, indicating that Gαolf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1R responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Gαolf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1R stimulation, occurring despite an unaltered D1R density. In conclusion, alterations in the highly specialized assembly of Gαolf/β2/γ7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1R signaling in the striatum. PMID:21886607

  14. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.

    PubMed

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  15. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  16. Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1.

    PubMed

    Hauk, Glenn; Bowman, Gregory D

    2015-01-01

    The DEAD-box RNA helicase Ded1, which is essential in yeast and known as DDX3 in humans, shuttles between the nucleus and cytoplasm and takes part in several basic processes including RNA processing and translation. A key interacting partner of Ded1 is the exportin Xpo1, which together with the GTP-bound state of the small GTPase Ran, facilitates unidirectional transport of Ded1 out of the nucleus. Here we demonstrate that Xpo1 and Ran[GTP] together reduce the RNA-stimulated ATPase and helicase activities of Ded1. Binding and inhibition of Ded1 by Xpo1 depend on the affinity of the Ded1 nuclear export sequence (NES) for Xpo1 and the presence of Ran[GTP]. Association with Xpo1/Ran[GTP] reduces RNA-stimulated ATPase activity of Ded1 by increasing the apparent KM for the RNA substrate. Despite the increased KM, the Ded1:Xpo1:Ran[GTP] ternary complex retains the ability to bind single stranded RNA, suggesting that Xpo1/Ran[GTP] may modulate the substrate specificity of Ded1. These results demonstrate that, in addition to transport, exportins such as Xpo1 also have the capability to alter enzymatic activities of their cargo.

  17. A yeast 2-hybrid analysis of human GTP cyclohydrolase I protein interactions.

    PubMed

    Swick, Lance; Kapatos, Gregory

    2006-06-01

    The yeast 2-hybrid system was used to identify protein domains involved in the oligomerization of human guanosine 5'-triphosphate (GTP) Cyclohydrolase I (GCH1) and the interaction of GCH1 with its regulatory partner, GCH1 feedback regulatory protein (GFRP). When interpreted within the structural framework derived from crystallography, our results indicate that the GCH1 N-terminal alpha-helices are not the only domains involved in the formation of dimers from monomers and also suggest an important role for the C-terminal alpha-helix in the assembly of dimers to form decamers. Moreover, a previously unknown role of the extended N-terminal alpha-helix in the interaction of GCH1 and GFRP was revealed. To discover novel GCH1 protein binding partners, we used the yeast 2-hybrid system to screen a human brain library with GCH1 N-terminal amino acids 1-96 as prey. This protruding extension of GCH1 contains two canonical Type-I Src homology-3 (SH3) ligand domains located within amino acids 1-42. Our screen yielded seven unique clones that were subsequently shown to require amino acids 1-42 for binding to GCH1. The interaction of one of these clones, Activator of Heat Shock 90 kDa Protein (Aha1), with GCH1 was validated by glutathione-s-transferase (GST) pull-down assay. Although the physiological relevance of the Aha1-GCH1 interaction requires further study, Aha1 may recruit GCH1 into the endothelial nitric oxide synthase/heat shock protein (eNOS/Hsp90) complex to support changes in endothelial nitric oxide production through the local synthesis of BH4.

  18. PRESERVING MITOCHONDRIAL FUNCTION PREVENTS THE PROTEASOMAL DEGRADATION OF GTP CYCLOHYDROLASE I

    PubMed Central

    SHARMA, SHRUTI; SUN, XUTONG; KUMAR, SANJIV; RAFIKOV, RUSLAN; ARAMBURO, ANGELA; KALKAN, GOKHAN; TIAN, JING; REHMANI, IMRAN; KALLARACKAL, SUPHIN; FINEMAN, JEFFERY R.; BLACK, STEPHEN M.

    2012-01-01

    The development of pulmonary hypertension is a common accompaniment of congenital heart disease (CHD) with increased pulmonary blood flow. Our recent evidence suggests that asymmetric dimethylarginine (ADMA)-induced mitochondrial dysfunction causes endothelial nitric oxide synthase (eNOS) uncoupling secondary to a proteasome-dependent degradation of GTP cyclohydrolase I (GCH1) that results in a decrease in the NOS co-factor, tetrahydrobiopterin (BH4). Decreases in NO signaling are thought to be an early hallmark of endothelial dysfunction. As L-carnitine plays an important role in maintaining mitochondrial function in this study we examined the protective mechanisms and the therapeutic potential of L-carnitine on NO signaling in pulmonary arterial endothelial cells (PAEC) and in a lamb model of CHD and increased pulmonary blood flow (Shunt). Acetyl L-carnitine (ALC) attenuated the ADMA-mediated proteasomal degradation of GCH1. This preservation was associated with a decrease in the association of GCH1 with the Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) and a decrease in its ubiquitination. This in turn prevented the decrease in BH4 levels induced by ADMA and preserved NO signaling. Treatment of Shunt lambs with L-carnitine also reduced GCH1/CHIP interactions, attenuated the ubiquitination and degradation of GCH1, and increased BH4 levels compared to vehicle treated Shunt lambs. The increases in BH4 were associated with decreased NOS uncoupling and enhanced NO generation. Thus, we conclude that L-carnitine may have a therapeutic potential in the treatment of pulmonary hypertension in children with CHD with increased pulmonary blood flow. PMID:22583703

  19. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes.

    PubMed

    Berger, G; Quarck, R; Tenza, D; Levy-Toledano, S; de Gunzburg, J; Cramer, E M

    1994-10-01

    Several functions have been proposed for Rap1B in human platelets, including the regulation of phospholipase (PL) C gamma and Ca2+ ATPase. However, its localization is largely unknown. In the present study we have investigated the subcellular distribution of Rap1 by immunocytochemical techniques using affinity purified polyclonal antibodies raised against residues 121-137 common to the 95% homologous Rap1A and Rap1B proteins. By immunofluorescence, a positive labelling was obtained on intact resting platelets and was abolished after adsorption of the antibodies with the control peptide. Immunoelectron microscopy was then used to further define the subcellular localization of Rap1B in platelets and megakaryocytes (MK). In resting cells, immunolabelling for Rap1B was associated with the plasma membrane, mostly at its inner face, and lined the membrane of the open canalicular system (OCS). Some labelling was also found outlining the alpha-granules, identified as such by a double labelling with an anti-GPIIb-IIIa. On thrombasthenic platelets the same localization was observed. When platelets were stimulated by thrombin, immunolabelling for Rap1B was redistributed to the zones of fusion of the granules with the OCS, and to the plasma membrane with a higher concentration on pseudopods. Human MK expressed Rap1 and the staining revealed the association of the protein with the demarcation membranes and alpha-granules. This study presents a first approach to the localization of a small GTP binding-protein Rap1B in whole platelets and MK, and shows its association with both the plasma and OCS membranes, as well as with the alpha-granule membranes.

  20. A recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins

    PubMed Central

    1996-01-01

    GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resulted in sizeable basal (or agonist-independent) currents while coexpression with a G-protein-linked receptor, yielded additional agonist-induced currents. Coexpression of KGP and hGIRK1 (a human brain homolog of GIRK1/Kir3.1) produced much larger basal currents than those observed with KGP or hGIRK1 alone, and upon coexpression with receptor, similarly large agonist-induced currents could be obtained. Pertussis toxin treatment significantly diminished agonist-dependent currents due to either KGP or KGP/hGIRK1 expression. Interestingly, PTX also significantly reduced basal KGP or KGP/hGIRK1 currents, suggesting that basal activity is largely the result of G-protein gating as well. When the two channels were coexpressed with receptor, the relative increase in current elicited by agonist was similar whether KGP and hGIRK1 were expressed alone or together. When in vitro translated or when expressed in Xenopus oocytes or CHO mammalian cells, KGP gave rise to a nonglycosylated 45-kD protein. Antibodies directed against either KGP or hGIRK1 coprecipitated both proteins coexpressed in oocytes, providing evidence for the heteromeric assembly of the two channels and suggesting that the current potentiation seen with coexpression of the two channel subunits is due to specific interactions between them. An endogenous oocyte protein similar in size to KGP was also coprecipitated with hGIRK1. PMID:8868049

  1. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  2. Oscillations of cAMP with the cardiac cycle.

    PubMed

    Wikman-Coffelt, J; Sievers, R; Coffelt, R J; Parmley, W W

    1983-03-16

    Oscillations of cAMP with the cardiac cycle were demonstrated in the rat heart using a stimulator-triggered rapid freeze-clamp to decrease the temperature of the heart from 37 degrees C to -80 degrees C in 5 msec (20,000 degrees/sec) at a predetermined phase of the cardiac cycle. The nucleotide, cAMP, oscillated 60% with the cardiac cycle during normal working conditions, the higher cAMP value occurring during systole.

  3. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification In Vivo, with Special Reference to Poly(ADP-ribose) Binding Protein Modules.

    PubMed

    Miwa, Masanao; Ida, Chieri; Yamashita, Sachiko; Tanaka, Masakazu; Fujisawa, Junichi

    2016-01-01

    PolyADP-ribosylation is a unique posttranslational modification of proteins, involved in various cellular functions including stability of chromatin. PolyADP-ribosylation modifies acceptor proteins with a large negatively charged poly(ADP-ribose) (PAR) to greatly change the structure and function of the acceptor proteins. In addition various specific motifs of proteins were recently found to interact non-covalently with PAR thereby changing the spaciotemporal activity of protein-protein interaction in cells. However, the structure of PAR to which specific protein motifs should bind is not fully characterized. The present work will review the structure, physicochemical properties and quantification of PAR in vivo, with special reference to PAR binding protein modules.

  4. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis.

    PubMed

    Masuda, W; Takenaka, S; Inageda, K; Nishina, H; Takahashi, K; Katada, T; Tsuyama, S; Inui, H; Miyatake, K; Nakano, Y

    1997-03-17

    In Euglena gracilis, the activity of ADP-ribosyl cyclase, which produces cyclic ADP-ribose, oscillated during the cell cycle in a synchronous culture induced by a light-dark cycle, and a marked increase in the activity was observed in the G2 phase. Similarly, the ADP-ribosyl cyclase activity rose extremely immediately before cell division started, when synchronous cell division was induced by adding cobalamin (which is an essential growth factor and participates in DNA synthesis in this organism) to its deficient culture. Further, cADPR in these cells showed a maximum level immediately before cell division started. A dose-dependent Ca2+ release was observed when microsomes were incubated with cADPR.

  5. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  6. Cardiac cAMP: production, hydrolysis, modulation and detection

    PubMed Central

    Boularan, Cédric; Gales, Céline

    2015-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability. PMID:26483685

  7. Mechanisms Restricting Diffusion of Intracellular cAMP.

    PubMed

    Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D

    2016-01-22

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.

  8. Unidirectional growth of pure and L-lysine added ADP crystals from aqueous solution

    NASA Astrophysics Data System (ADS)

    Salarian, Samaneh; Dizaji, Hamid Rezagholipour

    2014-01-01

    Pure and L-lysine added ammonium dihydrogen phosphate (ADP) crystals were grown in the <001> direction by Sankaranarayanan-Ramasamy (S-R) method. The grown crystals were characterized by X-Ray diffractometry (XRD), UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR) and Vicker's Microhardness analysis. XRD spectrum of each of the grown crystals proved its crystallinity. The crystals showed good transparency in the entire visible region. FT-IR spectra of the specimens revealed the presence of functional groups in them. The hardness of the pure and L-lysine added ADP crystals were measured and that of the added one was found higher. Meanwhile, it was found that the ADP crystals (pure and L-lysine added) grown by S-R method had higher hardness compared to ADP crystal grown by conventional method.

  9. An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase.

    PubMed Central

    Thomassin, H; Jacobson, M K; Guay, J; Verreault, A; Aboul-ela, N; Menard, L; Poirier, G G

    1990-01-01

    The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. Images PMID:2395636

  10. ADP-ribosylation of membrane components by pertussis and cholera toxin

    SciTech Connect

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.

  11. Poly(ADP-ribose)polymerase inhibition decreases angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Godlewski, Grzegorz; Batkai, Sandor; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-12-01

    Inhibitors of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme involved in regulating cell death and cellular responses to DNA repair, show considerable promise in the treatment of cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation. We have recently demonstrated that PARP inhibition with 3-aminobenzamide or PJ-34 reduced vascular endothelial growth factor (VEGF)-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Here, we show dose-dependent reduction of VEGF- and basic fibroblast growth factor (bFGF)-induced proliferation, migration, and tube formation of HUVECs in vitro by two potent PARP inhibitors 5-aminoisoquinolinone-hydrochloride (5-AIQ) and 1,5-isoquinolinediol (IQD). Moreover, PARP inhibitors prevented the sprouting of rat aortic ring explants in an ex vivo assay of angiogenesis. These results establish the novel concept that PARP inhibitors have antiangiogenic effects, which may have tremendous clinical implications for the treatment of various cancers, tumor metastases, and certain retinopathies.

  12. Serine ADP-Ribosylation Depends on HPF1.

    PubMed

    Bonfiglio, Juan José; Fontana, Pietro; Zhang, Qi; Colby, Thomas; Gibbs-Seymour, Ian; Atanassov, Ilian; Bartlett, Edward; Zaja, Roko; Ahel, Ivan; Matic, Ivan

    2017-03-02

    ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.

  13. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  14. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  15. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  16. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds

    PubMed Central

    Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.

    2017-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060

  17. Metal-free cAMP-dependent protein kinase can catalyze phosphoryl transfer.

    PubMed

    Gerlits, Oksana; Das, Amit; Keshwani, Malik M; Taylor, Susan; Waltman, Mary Jo; Langan, Paul; Heller, William T; Kovalevsky, Andrey

    2014-05-20

    X-ray structures of several ternary product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with no bound metal ions and with Na(+) or K(+) coordinated at two metal-binding sites. The metal-free PKAc and the enzyme with alkali metals were able to facilitate the phosphoryl transfer reaction. In all studied complexes, the ATP and the substrate peptide (SP20) were modified into the products ADP and the phosphorylated peptide. The products of the phosphotransfer reaction were also found when ATP-γS, a nonhydrolyzable ATP analogue, reacted with SP20 in the PKAc active site containing no metals. Single turnover enzyme kinetics measurements utilizing (32)P-labeled ATP confirmed the phosphotransferase activity of the enzyme in the absence of metal ions and in the presence of alkali metals. In addition, the structure of the apo-PKAc binary complex with SP20 suggests that the sequence of binding events may become ordered in a metal-free environment, with SP20 binding first to prime the enzyme for subsequent ATP binding. Comparison of these structures reveals conformational and hydrogen bonding changes that might be important for the mechanism of catalysis.

  18. Metal-Free cAMP-Dependent Protein Kinase Can Catalyze Phosphoryl Transfer

    PubMed Central

    2015-01-01

    X-ray structures of several ternary product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with no bound metal ions and with Na+ or K+ coordinated at two metal-binding sites. The metal-free PKAc and the enzyme with alkali metals were able to facilitate the phosphoryl transfer reaction. In all studied complexes, the ATP and the substrate peptide (SP20) were modified into the products ADP and the phosphorylated peptide. The products of the phosphotransfer reaction were also found when ATP-γS, a nonhydrolyzable ATP analogue, reacted with SP20 in the PKAc active site containing no metals. Single turnover enzyme kinetics measurements utilizing 32P-labeled ATP confirmed the phosphotransferase activity of the enzyme in the absence of metal ions and in the presence of alkali metals. In addition, the structure of the apo-PKAc binary complex with SP20 suggests that the sequence of binding events may become ordered in a metal-free environment, with SP20 binding first to prime the enzyme for subsequent ATP binding. Comparison of these structures reveals conformational and hydrogen bonding changes that might be important for the mechanism of catalysis. PMID:24786636

  19. ADP stimulates the respiratory burst without activation of ERK and AKT in rat alveolar macrophages.

    PubMed

    Gozal, E; Forman, H J; Torres, M

    2001-09-01

    Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP > ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.

  20. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

    PubMed

    Gagné, Jean-Philippe; Ethier, Chantal; Defoy, Daniel; Bourassa, Sylvie; Langelier, Marie-France; Riccio, Amanda A; Pascal, John M; Moon, Kyung-Mee; Foster, Leonard J; Ning, Zhibin; Figeys, Daniel; Droit, Arnaud; Poirier, Guy G

    2015-06-01

    An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.

  1. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  2. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  3. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor.

    PubMed Central

    Abousalham, Abdelkarim; Hobman, Tom C; Dewald, Jay; Garbutt, Michael; Brindley, David N

    2002-01-01

    Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation. PMID:11802796

  4. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish.

    PubMed

    Nakano, Tsuyoshi; Takahashi-Nakaguchi, Azusa; Yamamoto, Masafumi; Watanabe, Masahiko

    2015-01-01

    The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.

  5. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.

    PubMed

    Valdor, Rut; Schreiber, Valérie; Saenz, Luis; Martínez, Teresa; Muñoz-Suano, Alba; Dominguez-Villar, Margarita; Ramírez, Pablo; Parrilla, Pascual; Aguado, Enrique; García-Cózar, Francisco; Yélamos, José

    2008-04-01

    The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.

  6. A Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate in Permeabilized Cells

    PubMed Central

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-01-01

    We have previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by a Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In this manuscript we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides, such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity and myosin ATPase activity. Here we report that addition of BeF3− and Na3VO4 to media containing digitonin-permeabilized cells inhibit all ATP-ADP utilizing reactions, except the ANT-mediated mitochondrial ATP-ADP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase, due to its sensitivity to BeF3− and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler, and expressed as a function of citrate synthase activity per total amount of protein. PMID:20691655

  7. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  8. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    PubMed

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  9. Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli

    PubMed Central

    Kneidinger, Bernd; Marolda, Cristina; Graninger, Michael; Zamyatina, Alla; McArthur, Fiona; Kosma, Paul; Valvano, Miguel A.; Messner, Paul

    2002-01-01

    The steps involved in the biosynthesis of the ADP-l-glycero-β-d-manno-heptose (ADP-l-β-d-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-d-β-d-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-d-β-d-heptose. Our results demonstrate that the synthesis of ADP-d-β-d-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional d-β-d-heptose 7-phosphate kinase/d-β-d-heptose 1-phosphate adenylyltransferase), and GmhB (d,d-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-l-β-d-heptose precursor utilized in the assembly of inner core LPS. PMID:11751812

  10. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells.

    PubMed

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-12-01

    We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.

  11. Cyclic AMP Effectors Regulate Myometrial Oxytocin Receptor Expression.

    PubMed

    Yulia, Angela; Singh, Natasha; Lei, Kaiyu; Sooranna, Suren R; Johnson, Mark R

    2016-11-01

    The factors that initiate human labor are poorly understood. We have tested the hypothesis that a decline in cAMP/protein kinase A (PKA) function leads to the onset of labor. Initially, we identified myometrial cAMP/PKA-responsive genes (six up-regulated and five down-regulated genes) and assessed their expression in myometrial samples taken from different stages of pregnancy and labor. We found that the oxytocin receptor (OTR) was one of the cAMP-repressed genes, and, given the importance of OTR in the labor process, we studied the mechanisms involved in greater detail using small interfering RNA, chemical agonists, and antagonists of the cAMP effectors. We found that cAMP-repressed genes, including OTR, increased with the onset of labor. Our in vitro studies showed that cAMP acting via PKA reduced OTR expression but that in the absence of PKA, cAMP acts via exchange protein activated by cAMP (EPAC) to increase OTR expression. In early labor myometrial samples, PKA levels and activity declined and Epac1 levels increased, perhaps accounting for the increase in myometrial OTR mRNA and protein levels at this time. In vitro exposure of myometrial cells to stretch and IL-1β increased OTR levels and reduced basal and forskolin-stimulated cAMP and PKA activity, as judged by phospho-cAMP response element-binding protein levels, but neither stretch nor IL-1β had any effect on PKA or EPAC1 levels. In summary, there is a reduction in the activity of the cAMP/PKA pathway with the onset of human labor potentially playing a critical role in regulating OTR expression and the transition from myometrial quiescence to activation.

  12. Revisiting cAMP signaling in the carotid body

    PubMed Central

    Nunes, Ana R.; Holmes, Andrew P.; Conde, Sílvia V.; Gauda, Estelle B.; Monteiro, Emília C.

    2014-01-01

    Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations. PMID:25389406

  13. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication.

    PubMed

    Nishikiori, Masaki; Mori, Masashi; Dohi, Koji; Okamura, Hideyasu; Katoh, Etsuko; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-12-01

    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.

  14. Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins.

    PubMed

    Paganini, Simona; Guidetti, Gianni Francesco; Catricalà, Silvia; Trionfini, Piera; Panelli, Simona; Balduini, Cesare; Torti, Mauro

    2006-01-01

    The Rap family of small GTP-binding proteins is composed by four different members: Rap1A, Rap1B, Rap2A and Rap2B. In this work we report the identification and characterization of a fifth member of this family of small GTPases. This new protein is highly homologous to Rap2A and Rap2B, binds labeled GTP on nitrocellulose, and is recognized by a specific anti-Rap2 antibody, but not by an anti-Rap1 antibody. The protein has thus been named Rap2C. Binding of GTP to recombinant purified Rap2C was Mg(2+)-dependent. However, accurate comparison of the kinetics of nucleotide binding and release revealed that Rap2C bound GTP less efficiently and possessed slower rate of GDP release compared to the highly homologous Rap2B. Moreover, in the presence of Mg(2+), the relative affinity of Rap2C for GTP was only about twofold higher than that for GDP, while, under the same conditions, Rap2B was able to bind GTP with about sevenfold higher affinity than GDP. When expressed in eukaryotic cells, Rap2C localized at the plasma membrane, as dictated by the presence of a CAAX motif at the C-terminus. We found that Rap2C represented the predominant Rap2 protein expressed in circulating mononuclear leukocytes, but was not present in platelets. Importantly, Rap2C was found to be expressed in human megakaryocytes, suggesting that the protein may be down-regulated during platelets generation. This work demonstrates that Rap2C is a new member of the Rap2 subfamily of proteins, able to bind guanine nucleotides with peculiar properties, and differently expressed by various hematopoietic subsets. This new protein may therefore contribute to the still poorly clarified cellular events regulated by this subfamily of GTP-binding proteins.

  15. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

    PubMed

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-09-18

    Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the β-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the β- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.

  16. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  17. Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase: an X-ray crystallographic study of complexes with various metals and peptide substrate SP20.

    PubMed

    Gerlits, Oksana; Waltman, Mary Jo; Taylor, Susan; Langan, Paul; Kovalevsky, Andrey

    2013-05-28

    X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg(2+), Ca(2+), Sr(2+), and Ba(2+) metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg(2+), nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5'-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues.

  18. Irreversible stimulation of adenylate cyclase activity of fat cell membranes of phosphoramidate and phosphonate analogs of GTP.

    PubMed

    Cuatrecasas, P; Bennett, V; Jacobs, S

    1975-01-01

    The ability of 5'-guanylylimidodiphosphate (Gpp(NH)p) to stimulate irreversibly the adenylate cyclease activity of fat cell membranes has been studied by preincubating the membranes with this or related analogs followed by assaying after thoroughly washing the membranes. Activation can occur in a simple Tris-HCl buffer, in the absence of added divalent cations and in the presence of EDTA. Dithiothreitol enhances the apparent degree of activation, perhaps by stabilization. The importance of utilizing optimal conditions for stabilizing enzyme activity, and of measuring the simultaneous changes in the control enzyme, is illustrated. The organomercurial, p-aminophenylmercuric acetate, inhibits profoundly the activity of the native as well as the Gpp(NH)p-stimulated adenylate cyclase, but in both cases subsequent exposure to dithiothreitol restores fully the original enzyme activity. However, the mercurial-inactivated enzyme does not react with Gpp(NP)p, as evidenced by the subsequent restoration of only the control enzyme activity upon exposure to dithiothreitol. Thus, reaction with Gpp(NH)p requires intact sulfhydryl groups, but the activated state is not irreversibly destroyed by the inactivation caused by sulfhydryl blockade. GTP and, less effectively, GDP and ATP inhibit activation by Gpp(NH)p, but interpretations are complicated by the facts that this inhibition is overcome with time and that GTP and ATP can protect potently from spontaneous inactivation. These two nucleotides can be used in the Gpp(NH)p preincubation to stabilize the enzyme. The Gpp(NH)p-activated enzyme cannot be reversed spontaneously during prolonged incubation at 30 degrees C in the absence or presence of GTP, ATP, MgCl2, glycine, dithiothreitol, NaF or EDTA. The strong nucleophile, neutral hydroxylamine, decreases the Gpp(NH)p-activated enzyme activity and no subsequent activation is detected upon re-exposure to the nucleotide.

  19. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits

    PubMed Central

    Gao, Ning; Zavialov, Andrey V.; Ehrenberg, Måns; Frank, Joachim

    2008-01-01

    Summary After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a GTP-hydrolysis dependent manner. Based on a previous cryo-electron microscopy (cryo-EM) study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF containing post-termination ribosome triggers an inter-domain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9 Å (FSC at 0.5 cutoff) cryo-EM map of a 50S EFG GDPNP RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the non-cleavable GTP analogue GDPNP. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in tRNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G’s domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits. PMID:17996252

  20. Mutagenesis in the switch IV of the helical domain of the human Gsalpha reduces its GDP/GTP exchange rate.

    PubMed

    Echeverría, V; Hinrichs, M V; Torrejón, M; Ropero, S; Martinez, J; Toro, M J; Olate, J

    2000-01-01

    The Galpha subunits of heterotrimeric G proteins are constituted by a conserved GTPase "Ras-like" domain (RasD) and by a unique alpha-helical domain (HD). Upon GTP binding, four regions, called switch I, II, III, and IV, have been identified as undergoing structural changes. Switch I, II, and III are located in RasD and switch IV in HD. All Galpha known functions, such as GTPase activity and receptor, effector, and Gbetagamma interaction sites have been found to be localized in RasD, but little is known about the role of HD and its switch IV region. Through the construction of chimeras between human and Xenopus Gsalpha we have previously identified a HD region, encompassing helices alphaA, alphaB, and alphaC, that was responsible for the observed functional differences in their capacity to activate adenylyl cyclase (Antonelli et al. [1994]: FEBS Lett 340:249-254). Since switch IV is located within this region and contains most of the nonconservative amino acid differences between both Gsalpha proteins, in the present work we constructed two human Gsalpha mutant proteins in which we have changed four and five switch IV residues for the ones present in the Xenopus protein. Mutants M15 (hGsalphaalphaS133N, M135P, P138K, P143S) and M17 (hGsalphaalphaS133N, M135P, V137Y, P138K, P143S) were expressed in Escherichia coli, purified, and characterized by their ability to bind GTPgammaS, dissociate GDP, hydrolyze GTP, and activate adenylyl cyclase. A decreased rate of GDP release, GTPgammaS binding, and GTP hydrolysis was observed for both mutants, M17 having considerably slower kinetics than M15 for all functions tested. Reconstituted adenylyl cyclase activity with both mutants showed normal activation in the presence of AlF(4)(-), but a decreased activation with GTPgammaS, which is consistent with the lower GDP dissociating rate they displayed. These data provide new evidence on the role that HD is playing in modulating the GDP/GTP exchange of the Gsalpha subunit.

  1. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion.

    PubMed

    Schwede, Frank; Chepurny, Oleg G; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E; MacDonald, Patrick E; Genieser, Hans-G; Herberg, Friedrich W; Holz, George G

    2015-07-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.

  2. Termination and activation of store-operated cyclic AMP production

    PubMed Central

    Maiellaro, Isabella; Lefkimmiatis, Konstantinos; Moyer, Mary Pat; Curci, Silvana; Hofer, Aldebaran M

    2012-01-01

    Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1-AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store-operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET-based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store-operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system. PMID:22681560

  3. NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation - A Novel Role for NDK

    PubMed Central

    Mishra, Saurabh; Jakkala, Kishor; Srinivasan, Ramanujam; Arumugam, Muthu; Ranjeri, Raghavendra; Gupta, Prabuddha; Rajeswari, Haryadi; Ajitkumar, Parthasarathi

    2015-01-01

    Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK’s NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding

  4. Activated cAMP receptors switch encystation into sporulation.

    PubMed

    Kawabe, Yoshinori; Morio, Takahiro; James, John L; Prescott, Alan R; Tanaka, Yoshimasa; Schaap, Pauline

    2009-04-28

    Metazoan embryogenesis is controlled by a limited number of signaling modules that are used repetitively at successive developmental stages. The development of social amoebas shows similar reiterated use of cAMP-mediated signaling. In the model Dictyostelium discoideum, secreted cAMP acting on 4 cAMP receptors (cARs1-4) coordinates cell movement during aggregation and fruiting body formation, and induces the expression of aggregation and sporulation genes at consecutive developmental stages. To identify hierarchy in the multiple roles of cAMP, we investigated cAR heterogeneity and function across the social amoeba phylogeny. The gene duplications that yielded cARs 2-4 occurred late in evolution. Many species have only a cAR1 ortholog that duplicated independently in the Polysphondylids and Acytostelids. Disruption of both cAR genes of Polysphondylium pallidum (Ppal) did not affect aggregation, but caused complete collapse of fruiting body morphogenesis. The stunted structures contained disorganized stalk cells, which supported a mass of cysts instead of spores; cAMP triggered spore gene expression in Ppal, but not in the cAR null mutant, explaining its sporulation defect. Encystation is the survival strategy of solitary amoebas, and lower taxa, like Ppal, can still encyst as single cells. Recent findings showed that intracellular cAMP accumulation suffices to trigger encystation, whereas it is a complementary requirement for sporulation. Combined, the data suggest that cAMP signaling in social amoebas evolved from cAMP-mediated encystation in solitary amoebas; cAMP secretion in aggregates prompted the starving cells to form spores and not cysts, and additionally organized fruiting body morphogenesis. cAMP-mediated aggregation was the most recent innovation.

  5. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

    PubMed Central

    Beck, Florian; Geiger, Jörg; Gambaryan, Stepan; Solari, Fiorella A.; Dell’Aica, Margherita; Loroch, Stefan; Mattheij, Nadine J.; Mindukshev, Igor; Pötz, Oliver; Jurk, Kerstin; Burkhart, Julia M.; Fufezan, Christian; Heemskerk, Johan W. M.; Walter, Ulrich

    2017-01-01

    Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein–coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways. PMID:28060719

  6. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects

    PubMed Central

    KANAI, Yoshiyuki

    2016-01-01

    Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD+ as a substrate in the presence of Mg2+. The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: “Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE”, and “Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)”. On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is “heteroclitic” fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to “heteroclitic” have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of “heteroclitic”. PMID:27477457

  7. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  8. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor

    PubMed Central

    Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi

    2016-01-01

    V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367

  9. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Spacelab payload definition study. Volume 3, book 2: AMPS equipment to Spacelab ICD

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The interfaces between AMPS Payload No.(TBD) and Spacelab are described. The interfaces specified cover the AMPS physical, electrical, and thermal interfaces that are established to prescribe the standard Spacelab configuration required to perform the mission. If the configuration definition changes due to change of Spacelab equipment model, or serial numbers, then reidentification of the Labcraft payload may be required.

  10. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases.

    PubMed

    de Wit, R J; Hekstra, D; Jastorff, B; Stec, W J; Baraniak, J; Van Driel, R; Van Haastert, P J

    1984-07-16

    A series cAMP derivatives with modifications in the adenine, ribose and cyclophosphate moiety were screened for their binding affinity for the two types of cAMP-binding sites in mammalian protein kinase type 1. In addition, the activation of the kinase by these analogs was monitored. The binding data indicate that cAMP is bound to both sites in a comparable manner: the adenine appears to have no hydrogen-bond interactions with the binding sites, whereas the ribose may be bound by three hydrogen bonds involving the 2', 3' and 5' positions of cAMP. The binding data are not conclusive about the nature of the interaction with the exocyclic oxygen atoms on phosphorus, though a charge interaction seems to be absent. The cAMP molecule seems to be bound in the syn conformation. The results of activation experiments show that modifications in the adenine and ribose moiety do not affect the maximal activation level, while alteration of the two exocyclic oxygen atoms may result in a reduced maximal activation level and in one case, (Rp)-adenosine 3', 5'-monophosphorothioate [Rp-cAMPS], in total absence of activation even at concentrations at which the analog saturates both binding sites. Since occupancy of the cAMP-binding sites by this derivative apparently did not lead to activation of the enzyme, we examined whether this compound could antagonize the activation by cAMP. Indeed (Rp)-cAMPS was found to inhibit cAMP stimulated kinase activity at concentrations compatible to its binding affinity. Also with mammalian protein kinase type II (Rp)-cAMPS showed antagonistic activity, while with a cAMP-dependent protein kinase from Dictyostelium discoideum partial agonistic activity was observed. Previously a mechanism for activation of protein kinase type I was proposed involving a charge interaction between the equatorial exocyclic oxygen atom and the binding site [De Wit et. al. (1982) Eur. J. Biochem 122, 95-99]. This was based on measurements with impure preparations of (Rp)-cAMPS

  11. Purification, crystallization and preliminary crystallographic analysis of a GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus

    SciTech Connect

    Wu, Hao; Sun, Lei; Brouns, Stan J. J.; Fu, Sheng; Akerboom, Jasper; Li, Xuemei; Oost, John van der

    2007-03-01

    A GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus has been crystallized. Combined with biochemical analyses, it is expected that the structure of this protein will give insight in the function of a relatively unknown subfamily of the GTPase superfamily. A predicted GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus, termed SsGBP, has been cloned and overexpressed in Escherichia coli. The purified protein was crystallized using the hanging-drop vapour-diffusion technique in the presence of 0.05 M cadmium sulfate and 0.8 M sodium acetate pH 7.5. A single-wavelength anomalous dispersion data set was collected to a maximum resolution of 2.0 Å using a single cadmium-incorporated crystal. The crystal form belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with approximate unit-cell parameters a = 65.0, b = 72.6, c = 95.9 Å and with a monomer in the asymmetric unit.

  12. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins.

    PubMed

    Prakash, B; Praefcke, G J; Renault, L; Wittinghofer, A; Herrmann, C

    2000-02-03

    Interferon-gamma is an immunomodulatory substance that induces the expression of many genes to orchestrate a cellular response and establish the antiviral state of the cell. Among the most abundant antiviral proteins induced by interferon-gamma are guanylate-binding proteins such as GBP1 and GBP2. These are large GTP-binding proteins of relative molecular mass 67,000 with a high-turnover GTPase activity and an antiviral effect. Here we have determined the crystal structure of full-length human GBP1 to 1.8 A resolution. The amino-terminal 278 residues constitute a modified G domain with a number of insertions compared to the canonical Ras structure, and the carboxy-terminal part is an extended helical domain with unique features. From the structure and biochemical experiments reported here, GBP1 appears to belong to the group of large GTP-binding proteins that includes Mx and dynamin, the common property of which is the ability to undergo oligomerization with a high concentration-dependent GTPase activity.

  13. RanGTP-Binding Protein NXT1 Facilitates Nuclear Export of Different Classes of RNA In Vitro

    PubMed Central

    Ossareh-Nazari, Batool; Maison, Christèle; Black, Ben E.; Lévesque, Lyne; Paschal, Bryce M.; Dargemont, Catherine

    2000-01-01

    To better characterize the mechanisms responsible for RNA export from the nucleus, we developed an in vitro assay based on the use of permeabilized HeLa cells. This new assay supports nuclear export of U1 snRNA, tRNA, and mRNA in an energy- and Xenopus extract-dependent manner. U1 snRNA export requires a 5′ monomethylated cap structure, the nuclear export signal receptor CRM1, and the small GTPase Ran. In contrast, mRNA export does not require the participation of CRM1. We show here that NXT1, an NTF2-related protein that binds directly to RanGTP, strongly stimulates export of U1 snRNA, tRNA, and mRNA. The ability of NXT1 to promote export is dependent on its capacity to bind RanGTP. These results support the emerging view that NXT1 is a general export factor, functioning on both CRM1-dependent and CRM1-independent pathways of RNA export. PMID:10848583

  14. Mutational analysis of op18/stathmin-tubulin-interacting surfaces. Binding cooperativity controls tubulin GTP hydrolysis in the ternary complex.

    PubMed

    Segerman, B; Larsson, N; Holmfeldt, P; Gullberg, M

    2000-11-17

    Oncoprotein 18 (Op18) is a microtubule regulator that forms a ternary complex with two tubulin heterodimers. Dispersed regions of Op18 are involved in two-site cooperative binding and subsequent modulation of tubulin GTPase activity. Here we have analyzed specific determinants of Op18 that govern both stoichiometry and positive cooperativity in tubulin binding and consequent stimulatory and inhibitory effects on tubulin GTPase activity. The data revealed that the central and C-terminal regions of Op18 contain overlapping binding-motifs contacting both tubulin heterodimers, suggesting that these regions of Op18 are wedged into the previously noted 1-nm gap between the two longitudinally arranged tubulin heterodimers. Both the N- and C-terminal flanks adjacent to the central region are involved in stabilizing the ternary complex, but only the C-terminal flank does so by imposing positive binding cooperativity. Within the C-terminal flank, deletion of a 7-amino acid region attenuated positive binding cooperativity and resulted in a switch from stimulation to inhibition of tubulin GTP hydrolysis. This switch can be explained by attenuated binding cooperativity, because Op18 under these conditions may block longitudinal contact surfaces of single tubulins with consequent interference of tubulin-tubulin interaction-dependent GTP hydrolysis. Together, our results suggest that Op18 links two tubulin heterodimers via longitudinal contact surfaces to form a ternary GTPase productive complex.

  15. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  16. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

    PubMed Central

    Matsui, T; Amano, M; Yamamoto, T; Chihara, K; Nakafuku, M; Ito, M; Nakano, T; Okawa, K; Iwamatsu, A; Kaibuchi, K

    1996-01-01

    The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway. Images PMID:8641286

  17. GABAB receptor GTP-binding is decreased in the prefrontal cortex but not the hippocampus of aged rats

    PubMed Central

    McQuail, Joseph A.; Bañuelos, Cristina; LaSarge, Candi L.; Nicolle, Michelle M.; Bizon, Jennifer L.

    2011-01-01

    GABAB receptors (GABABRs) have been linked to a wide range of physiological and cognitive processes and are of interest for treating a number of neurodegenerative and psychiatric disorders. As many of these diseases are associated with advanced age, it is important to understand how the normal aging process impacts GABABR expression and signaling. Thus, we investigated GABABR expression and function in the prefrontal cortex (PFC) and hippocampus of young and aged rats characterized in a spatial learning task. Baclofen-stimulated GTP-binding and GABABR1 and GABABR2 proteins were reduced in the PFC of aged rats but these reductions were not associated with spatial learning abilities. In contrast, hippocampal GTP-binding was comparable between young and aged rats but reduced hippocampal GABABR1 expression was observed in aged rats with spatial learning impairment. These data demonstrate marked regional differences in GABABR complexes in the adult and aged brain and could have implications for both understanding the role of GABAergic processes in normal brain function and the development of putative interventions that target this system. PMID:22169202

  18. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks

    PubMed Central

    Rakhimova, Alina; Ura, Seiji; Hsu, Duen-Wei; Wang, Hong-Yu; Pears, Catherine J.; Lakin, Nicholas D.

    2017-01-01

    ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair. PMID:28252050

  19. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  20. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    SciTech Connect

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  1. Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness

    PubMed Central

    Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda

    2015-01-01

    Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin

  2. Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes

    PubMed Central

    Martinez-Zamudio, Ricardo

    2012-01-01

    The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation. PMID:22547677

  3. Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    PubMed Central

    Tulin, Alexei; Naumova, Natalia M.; Menon, Ammini K.; Spradling, Allan C.

    2006-01-01

    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins. PMID:16219773

  4. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  5. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    PubMed

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.

  6. A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT

    PubMed Central

    Chinopoulos, Christos; Vajda, Szilvia; Csanády, László; Mándi, Miklós; Mathe, Katalin; Adam-Vizi, Vera

    2009-01-01

    A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8–7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes. PMID:19289073

  7. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein.

    PubMed

    Iyer, Divya; Anaya-Bergman, Cecilia; Jones, Kevin; Yanamandra, Sai; Sengupta, Dipanwita; Miyazaki, Hiroshi; Lewis, Janina P

    2010-06-01

    The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRR(TP)) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17.

  8. Effect of mutational alteration of Asn-128 in the putative GTP-binding domain of tetracycline resistance determinant Tet(O) from Campylobacter jejuni.

    PubMed Central

    Grewal, J; Manavathu, E K; Taylor, D E

    1993-01-01

    The deduced amino acid sequence of Campylobacter jejuni Tet(O), cloned in Escherichia coli, has shown that it contains the five highly conserved sequences of the GTP-binding domain found in other GTPases. Asn-128 belongs to the G4 motif of such a domain and is involved in hydrogen bonding with the guanine ring of the nucleotide. Substitution of Asn-128 by 11 other amino acids resulted in a decrease in tetracycline resistance, indicating that tetracycline resistance conferred by Tet(O) is related to GTP binding. The effect of the mutations on the GTP-binding domain is discussed with the EF-Tu-GDP complex as a model. PMID:8109930

  9. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  10. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.

    PubMed

    DiFrancesco, D; Tortora, P

    1991-05-09

    Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.

  11. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  12. A potential link between insulin signaling and GLUT4 translocation: Association of Rab10-GTP with the exocyst subunit Exoc6/6b

    SciTech Connect

    Sano, Hiroyuki; Peck, Grantley R.; Blachon, Stephanie; Lienhard, Gustav E.

    2015-09-25

    Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the two highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.

  13. AMP-18 Targets p21 to Maintain Epithelial Homeostasis

    PubMed Central

    Chen, Peili; Li, Yan Chun; Toback, F. Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD. PMID:25919700

  14. Intracellular cAMP signaling by soluble adenylyl cyclase

    PubMed Central

    Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen

    2011-01-01

    Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cAMP. sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems which are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells. PMID:21490586

  15. Cyclic AMP and the regeneration of retinal ganglion cell axons.

    PubMed

    Hellström, Mats; Harvey, Alan R

    2014-11-01

    In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN-optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections

  16. Growth of cerium(III)-doped ADP crystals and characterization studies

    NASA Astrophysics Data System (ADS)

    Vanchinathan, K.; Muthu, K.; Bhagavannarayana, G.; Meenakshisundaram, SP.

    2012-09-01

    Single crystals of Ce(III)-doped ammonium dihydrogen phosphate (ADP) are grown by conventional slow evaporation of aqueous solution and Sankaranarayanan-Ramasamy (SR) technique. High-resolution X-ray diffraction (HRXRD) studies reveal that the crystalline perfection is substantially better in the case of SR-grown crystal. Morphological changes are observed in the doped specimen. Doping has some influence on the DRS spectra and the band gap energy is estimated by Kubelka-Munk algorithm. Lattice parameters are determined by single crystal XRD analysis. The powder X-ray diffraction and FT-IR analyses indicate that the crystal undergoes considerable stress as a result of doping. The incorporation of Ce(III) into the crystalline matrix of ADP is confirmed by energy dispersive X-ray spectroscopy (EDS). Thermal studies reveal no decomposition up to the melting point and no significant changes are observed as a result of foreign ion incorporation in ADP crystalline matrix.

  17. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.

    PubMed

    Alemasova, Elizaveta E; Pestryakov, Pavel E; Sukhanova, Maria V; Kretov, Dmitry A; Moor, Nina A; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2015-12-01

    Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.

  18. Office of Inspector General report on audit of controls over the ADP support services contract

    SciTech Connect

    1997-08-15

    In March 1995, the Department awarded a cost-plus-award-fee contract to DynCorp valued at approximately $246 million over 5 years for ADP support services at Headquarters. The performance period for the contract was a 3-year base period with two 1-year options. The contract statement of work identified 24 information management functional areas that required technical support services, including Automated Office Systems Support and Local Area Network support. The purpose of the audit was to evaluate the cost-plus-award-fee contract for ADP support services at Headquarters. The objective was to determine whether the Department`s program offices at Headquarters were managing their ADP support services contract costs.

  19. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives.

    PubMed

    Gagné, Jean-Philippe; Hendzel, Michael J; Droit, Arnaud; Poirier, Guy G

    2006-04-01

    Recent discoveries have resulted in significant breakthroughs in the understanding of PARPs and PARG functions within a broad range of cellular processes. The novel and sometimes unexpected pathways that are regulated by poly(ADP-ribosylation) bring new questions and hypotheses, some of them being contentious. In this review, we highlight current areas of investigation such as the clinical potential of PARP and PARG inhibitors and the important mitotic regulatory functions of poly(ADP-ribose) in cell-cycle progression, a recent discovery that has broadened our knowledge regarding poly(ADP-ribose) functions. A special emphasis is placed on recent advances in relation to PARG that are stimulating new directions in future research. Noticeably, the existence of various PARG isoforms characterized by distinct cellular localizations and nucleocytoplasmic shuttling properties challenges our current comprehension of pADPr metabolism. Observations and suppositions towards functionally important regulatory elements in the N-terminal portion of PARG are also discussed.

  20. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens

    PubMed Central

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R.; Matic, Ivan; Peleg, Anton Y.; Leys, David; Traven, Ana; Ahel, Ivan

    2015-01-01

    Summary Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  1. ADP-2Ho as a Phasing Tool for Nucleotide-Containing Proteins

    SciTech Connect

    Ku,S.; Smith, G.; Howell, P.

    2007-01-01

    Trivalent holmium ions were shown to isomorphously replace magnesium ions to form an ADP-2Ho complex in the nucleotide-binding domain of Bacillus subtilis 5-methylthioribose (MTR) kinase. This nucleotide-holmium complex provided sufficient phasing power to allow SAD and SIRAS phasing of this previously unknown structure using the L{sub III} absorption edge of holmium. The structure of ADP-2Ho reveals that the two Ho ions are approximately 4 {angstrom} apart and are likely to share their ligands: the phosphoryl O atoms of ADP and a water molecule. The structure determination of MTR kinase using data collected using Cu K X-radiation was also attempted. Although the heavy-atom substructure determination was successful, interpretation of the map was more challenging. The isomorphous substitution of holmium for magnesium in the MTR kinase-nucleotide complex suggests that this could be a useful phasing tool for other metal-dependent nucleotide-containing proteins.

  2. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    SciTech Connect

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-09-20

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10/sup -6/ M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla.

  3. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody

    PubMed Central

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-01-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  4. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody.

    PubMed

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-04-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry.

  5. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  6. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  7. Purification and properties of poly(ADP-ribose)polymerase from Crithidia fasciculata. Automodification and poly(ADP-ribosyl)ation of DNA topoisomerase I.

    PubMed

    Podestá, Dolores; García-Herreros, María I; Cannata, Joaquín J B; Stoppani, Andrés O M; Fernández Villamil, Silvia H

    2004-06-01

    Poly(ADP-ribose)polymerase has been purified more than 160000-fold from Crithidia fasciculata. This is the first PARP isolated to apparent homogeneity from trypanosomatids. The purified enzyme absolutely required DNA for catalytic activity and histones enhanced it 2.5-fold, when the DNA:histone ratio was 1:1.3. The enzyme required no magnesium or any other metal ion cofactor. The apparent molecular mass of 111 kDa, determined by gel filtration would correspond to a dimer of two identical 55-kDa subunits. Activity was inhibited by nicotinamide, 3-aminobenzamide, theophylline, thymidine, xanthine and hypoxanthine but not by adenosine. The enzyme was localized to the cell nucleus. Our findings suggest that covalent poly(ADP-ribosyl)ation of PARP itself or DNA topoisomerase I resulted in the inhibition of their activities and provide an initial biochemical characterization of this covalent post-translational modification in trypanosomatids.

  8. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    PubMed Central

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  9. Atmospheric, Magnetospheric and Plasmas in Space (AMPS) spacelab payload definition study. Volume 3: Interface control documents. Part 2: AMPS payload to spacelab ICD

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The AMPS to Spacelab Interface Control Document which is to be used as a guide for format and information content in generating specific AMPS Mission ICDs is presented. This document is meant to supplement the Spacelab Payload Accommodations Handbook in that it only defines interfaces which are not discussed in the handbook to the level required for design purposes. The AMPS Top Level Requirements Tree, illustrates this ICD by a shaded area and its relationship to the other AMPS technical documents. Other interface documents shown are the Level II, AMPS to Space Shuttle Vehicle ICD and the Level III, AMPS to Instruments ICD.

  10. Sustained antagonism of acute ethanol-induced ataxia following microinfusion of cyclic AMP and cpt-cAMP in the mouse cerebellum.

    PubMed

    Dar, M Saeed

    2011-05-01

    Ataxia is a conspicuous physical manifestation of alcohol consumption in humans and laboratory animals. Previously we reported possible involvement of cAMP in ethanol-induced ataxia. We now report a sustained antagonism of ataxia due to multiple ethanol injections following intracerebellar (ICB) cAMP or cpt-cAMP microinfusion. Adenylyl cyclase drugs cAMP, cpt-cAMP, Sp-cAMP, Rp-cAMP, adenosine A₁ agonist, N⁶-cyclohexyladenosine (CHA) and GABA(A) agonist muscimol were directly microinfused into the cerebellum of CD-1 male mice to evaluate their effect on ethanol (2 g/kg; i.p.) ataxia. Drug microinfusions were made via stereotaxically implanted stainless steel guide cannulas. Rotorod was used to evaluate the ethanol's ataxic response. Intracerebellar cAMP (0.1, 1, 10 fmol) or cpt-cAMP (0.5, 1, 2 fmol) 60 min before ethanol treatment, dose-dependently attenuated ethanol-induced ataxia in general agreement with previous observations. Intracerebellar microinfusion of cAMP (100 fmol) or cpt-cAMP (2 fmol) produced a sustained attenuation of ataxia following ethanol administration at 1, 4, 7 and 25 h or 31 h post-cAMP/cpt-cAMP microinfusion. At 31 h post-cAMP, the ataxic response of ethanol reappeared. Additionally, marked antagonism to the accentuation of ethanol-induced ataxia by adenosine A₁ and GABA(A) agonists, CHA (34 pmol) and muscimol (88 pmol), respectively, was noted 24h after cAMP and cpt-cAMP treatment. This indicated possible participation of AC/cAMP/PKA signaling in the co-modulation of ethanol-induced ataxia by A₁ adenosinergic and GABAergic systems. No change in normal motor coordination was noted when cAMP or cpt-cAMP microinfusion was followed by saline. Finally, Rp-cAMP (PKA inhibitor, 22 pmol) accentuated ethanol-induced ataxia and antagonized its attenuation by cAMP whereas Sp-cAMP (PKA activator, 22 pmol) produced just the opposite effects, further indicating participation of cAMP-dependent PKA downstream. Overall, the results support a role of

  11. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    PubMed

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  12. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    The proteins were transferred to a nitrocellulose membrane and PARP was detected using anti-human PARP monoclonal antibody. Since PARP is a basic...to check if this modification is due to poly(ADP-ribosyl)ation of the protein , the membrane was stripped off and re-probed with anti-PAR polyclonal...detect any poly(ADP- ribosyl)ated proteins corresponding to the molecular weight of PARP (116 kDa) (Figure 18 ), we initiated experiment to test possible

  13. [The action of ADP ribose on the mechanical and bioelectrical activity of the frog heart].

    PubMed

    Sosulina, L Iu; Sukhova, G S; Chudnyĭ, M N; Ashmarin, I P

    1999-04-01

    In the frog isolated heart, cyclic perfusion of ADP-ribose induced a dose-dependent decrease in the heart rate and the contraction force, a decrease in the AP duration as well as in the rate of rise in the sinus node. It also shortened the atrial AP and exerted no significant effect upon multicellular ventricular preparations. In conditions of systemic administration in unanesthetised frogs, the ADP-ribose induced a reversible increase in the heart rate due, probably, to a sympathetic effect.

  14. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    PubMed

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  15. ADP Regulates the Structure and Function of the Protein KaiC

    DTIC Science & Technology

    2016-08-11

    AFRL-AFOSR-VA-TR-2016-0294 ADP Regulates the Structure and Function of the Protein KaiC Andy LiWang UNIVERSITY OF CALIFORNIA MERCED 5200 N LAKE RD...REPORT TYPE Final Performance 3. DATES COVERED (From - To) 01 Aug 2013 to 31 Jul 2017 4. TITLE AND SUBTITLE ADP Regulates the Structure and Function of...LiWang lab exploited this in vitro clock system to gain an atomic -resolution understanding of a circadian clock. The rationale is that fundamental

  16. Inhibition of ADP-ribosyltransferase activity of cholera toxin by MDL 12330A and chlorpromazine.

    PubMed

    Bitonti, A J

    1984-04-30

    ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.

  17. Dictyostelium discoideum lipids modulate cell-cell cohesion and cyclic AMP signaling.

    PubMed Central

    Fontana, D R; Luo, C S; Phillips, J C

    1991-01-01

    During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum. PMID:1846024

  18. Amped Up! - Volume 1, No. 3, May/June 2015

    SciTech Connect

    2015-05-01

    Welcome to the latest issue of our bimonthly newsletter, Amped Up!, highlighting the initiatives, events and technologies in the Office of Energy Efficiency and Renewable Energy that influence change.

  19. Detection and quantification of poly-ADP-ribosylated cellular proteins of spleen and liver tissues of mice in vivo by slot and Western blot immunoprobing using polyclonal antibody against mouse ADP-ribose polymer.

    PubMed

    Sharan, R N; Devi, B Jaylata; Humtsoe, J O; Saikia, Jyoti R; Kma, L

    2005-10-01

    Poly-ADP-ribosylation (PAR) of cellular proteins has been shown to have decisive roles in diverse cellular functions including carcinogenesis. There are indications that metabolic level of poly-ADP-ribosylated cellular proteins might indicate carcinogenesis and, therefore, could be potentially used in cancer screening program. Keeping in mind the limitations of currently available assays of cellular PAR, a new assay is being reported that measures the metabolic level of poly-ADP-ribosylated cellular proteins. The ELISA based slot and Western blot immunoassay used polyclonal antibody against natural, heterogeneous ADP-ribose polymers. It could be successfully employed to qualitatively and quantitatively assay metabolic levels of poly-ADP-ribosylated proteins of spleen and liver tissues of normal mice or mice exposed to dimethylnitrosamine for up to 8 weeks; potentially PAR of cellular proteins could be assayed in any tissue or biopsy. Implications of the results in cancer screening program have been discussed.

  20. Production and release of cyclic AMP by Daphnia pulex: implications of grazing activity

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1982-04-01

    Daphnia pulex, a common cladoceran zooplankton species, contains tissue cAMP concentrations similar to those found in algae, bacteria, and aquatic macrophytes. Daphnia release significant quantities of cAMP into the extracellular medium. Release of algal cellular cAMP as a result of digstive degradation of algal cells may also be an important source of dissolved cAMP in lakewater.

  1. Production and release of cyclic AMP by Daphnia pulex: implications of grazing activity

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1982-04-01

    Daphnia pulex, a common cladoceran zooplankton species, contains tissue cAMP concentrations similar to those found in algae, bacteria, and aquatic macrophytes. Daphnia release significant quantities of cAMP into the extracellular medium. Release of algal cellular cAMP as a result of digestive degradation of algal cells may also be an important source of dissolved cAMP in lakewater.

  2. Why Ampère did not discover electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Williams, L. Pearce

    1986-04-01

    In 1832, after Michael Faraday had announced his discovery of electromagnetic induction, Andre-Marie Ampère claimed that he had actually discovered the induction of one current by another in 1822. In fact, he had, but did not really publish the fact at that time. This article explores the reasons for Ampère's failure to lay claim to a discovery that would have guaranteed him scientific immortality.

  3. Microgravity changes in heart structure and cyclic-AMP metabolism

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  4. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  5. The role of ADP in the modulation of the calcium-efflux pathway in rat brain mitochondria.

    PubMed Central

    Vitorica, J; Satrústegui, J

    1985-01-01

    The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed. PMID:3977831

  6. A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis

    PubMed Central

    1996-01-01

    Several members of the rho/rac family of small GTP-binding proteins are known to regulate the distribution of the actin cytoskeleton in various subcellular processes. We describe here a novel rac protein, racE, which is specifically required for cytokinesis, an actomyosin-mediated process. The racE gene was isolated in a molecular genetic screen devised to isolate genes required for cytokinesis in Dictyostelium. Phenotypic characterization of racE mutants revealed that racE is not essential for any other cell motility event, including phagocytosis, chemotaxis, capping, or development. Our data provide the first genetic evidence for the essential requirement of a rho-like protein, specifically in cytokinesis, and suggest a role for these proteins in coordinating cytokinesis with the mitotic events of the cell cycle. PMID:8682867

  7. Allostery and Conformational Dynamics in cAMP-binding Acyltransferases*

    PubMed Central

    Podobnik, Marjetka; Siddiqui, Nida; Rebolj, Katja; Nambi, Subhalaxmi; Merzel, Franci; Visweswariah, Sandhya S.

    2014-01-01

    Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein. PMID:24748621

  8. Allostery and conformational dynamics in cAMP-binding acyltransferases.

    PubMed

    Podobnik, Marjetka; Siddiqui, Nida; Rebolj, Katja; Nambi, Subhalaxmi; Merzel, Franci; Visweswariah, Sandhya S

    2014-06-06

    Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.

  9. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    SciTech Connect

    Lin, Tao; Meng, Lingjun; Tsai, Robert Y.L.

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  10. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis.

    PubMed

    deLivron, Megan A; Makanji, Heeren S; Lane, Maura C; Robinson, Victoria L

    2009-11-10

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and beta-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  11. A Novel Domain in Translational GTPase BipA Mediates Interaction with the 70S Ribosome and Influences GTP Hydrolysis

    SciTech Connect

    deLivron, M.; Makanji, H; Lane, M; Robinson, V

    2009-01-01

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and {beta}-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  12. The pioneering spirit of Takashi Sugimura: his studies of the biochemistry of poly(ADP-ribosylation) and of cancer.

    PubMed

    Masutani, Mitsuko

    2012-03-01

    Takashi Sugimura has accomplished many scientific achievements in the field of biochemistry and in cancer research. Sugimura's group identified the novel polymer poly(ADP-ribose) in parallel to P. Mandel's and O. Hayaishi's groups and demonstrated the presence of the enzyme poly(ADP-ribose) polymerase (PARP). He also discovered the cognate catabolic enzyme, poly(ADP-ribose) glycohydrolase (PARG) and further elucidated the biology of poly(ADP-ribose). The astonishing discovery of pierisin, an apoptogenic peptide that ADP-ribosyaltes DNA, profoundly illuminates his scientific character and curiosity as well. Sugimura's work in cancer research shows an extraordinarily wide range, which includes the establishment of new methods in chemical carcinogenesis, the identification of various environmental mutagens/carcinogens and new tumour promoters. He also established the concept that cancer is a disease of DNA and contributed to the development of the concept of the multi-step model of carcinogenesis.

  13. Activation of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4alpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cytosolic isoform of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C) is a key enzyme of gluconeogenesis and glyceroneogenesis. While this enzyme is often over-expressed in diabetes and obesity, studies showed that decrease in its expression results in lessening the diseases condition in animal...

  14. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells.

    PubMed

    Park, Su Hyun; Park, Tae Jun; Lim, In Kyoung

    2011-04-15

    We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H(2)O(2), rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.

  15. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP.

    PubMed

    Cheng, Y S; Patterson, C E; Staeheli, P

    1991-09-01

    The primary structures of interferon (IFN)-induced guanylate-binding proteins (GBPs) were deduced from cloned human and murine cDNAs. These proteins contained only two of the three sequence motifs typically found in GTP/GDP-binding proteins. The N(T)KXD motif, which is believed to confer guanine specificity in other nucleotide-binding proteins, was absent. Nevertheless, the IFN-induced GBPs exhibited a high degree of selectivity for binding to agarose-immobilized guanine nucleotides. An interesting feature of IFN-induced GBPs is that they strongly bound to GMP agarose in addition to GDP and GTP agaroses but failed to bind to ATP agarose and all other nucleotide agaroses tested. Both GTP and GMP, but not ATP, competed for binding of murine GBP-1 to agarose-immobilized GMP. The IFN-induced GBPs thus define a distinct novel family of proteins with GTP-binding activity. We further demonstrate that human and murine cells contain at least two genes encoding IFN-induced GBPs. The cloned murine cDNA codes for GBP-1, an IFN-induced protein previously shown to be absent from mice of Gbp-1b genotype.

  16. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells

    SciTech Connect

    Park, Su Hyun; Park, Tae Jun; Lim, In Kyoung

    2011-04-15

    We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H{sub 2}O{sub 2}, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.

  17. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS.

    PubMed

    Maresso, Anthony W; Baldwin, Michael R; Barbieri, Joseph T

    2004-09-10

    Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.

  18. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and implementation of a computer security program; major responsibility for the direction, planning... judgement as to the unique characteristics of the system or the safeguards protecting the system. Criteria... categories is as follows: Category Criteria ADP-I Responsibility or the development and administration...

  19. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and implementation of a computer security program; major responsibility for the direction, planning... judgement as to the unique characteristics of the system or the safeguards protecting the system. Criteria... categories is as follows: Category Criteria ADP-I Responsibility or the development and administration...