Science.gov

Sample records for adp glucose pyrophosphorylase

  1. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  2. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-04

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.

  3. Comparison of Starch and ADP-Glucose Pyrophosphorylase Levels in Nonembryogenic Cells and Developing Embryos from Induced Carrot Cultures

    PubMed Central

    Keller, Gregory L.; Nikolau, Basil J.; Ulrich, Thomas H.; Wurtele, Eve Syrkin

    1988-01-01

    Cultures of carrot (Daucus carota L.) in a medium without added 2,4-dichlorophenoxyacetic acid were separated into fractions of embryos at different stages of development (large globular and heart, torpedo, and germinating) and nonembryogenic cells. The average starch content per cell in these fractions was similar. However, due to the smaller sizes of the cells of the embryos relative to the nonembryogenic cells, starch content per weight of tissue was higher in the embryos. The ADP-glucose pyrophosphorylase activity per cell in the nonembryogenic cells was double that of the embryo cells. Furthermore, the ratio of ADP-glucose pyrophosphorylase to starch was over 2-fold higher in the nonembryogenic cells, indicating that starch content is not simply determined by ADP-glucose pyrophosphorylase levels. ADP-glucose pyrophosphorylase activity of all culture fractions was directly proportional to the level of a single 50 kilodalton polypeptide detected by immunoblot analysis, using antiserum raised to the purified spinach leaf enzyme. In the same immunoblot analysis, novel polypeptides of 63 and 100 kilodalton were detected in embryos but were absent from nonembryogenic cells. This is one of the few reported examples of specific proteins which differentially accumulate in embryos and nonembryogenic cells. Images Fig. 2 PMID:16665929

  4. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  5. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  6. Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor

    PubMed Central

    Asención Diez, Matías D.; Peirú, Salvador; Demonte, Ana M.; Gramajo, Hugo

    2012-01-01

    Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high Vmax in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (Vmax of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium. PMID:22210767

  7. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase.

    PubMed Central

    Greene, T W; Woodbury, R L; Okita, T W

    1996-01-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. PMID:8938421

  8. Insights into glycogen metabolism in chemolithoautotrophic bacteria from distinctive kinetic and regulatory properties of ADP-glucose pyrophosphorylase from Nitrosomonas europaea.

    PubMed

    Machtey, Matías; Kuhn, Misty L; Flasch, Diane A; Aleanzi, Mabel; Ballicora, Miguel A; Iglesias, Alberto A

    2012-11-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.

  9. Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea

    PubMed Central

    Machtey, Matías; Kuhn, Misty L.; Flasch, Diane A.; Aleanzi, Mabel; Ballicora, Miguel A.

    2012-01-01

    Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO2 via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms. PMID:22961847

  10. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Wang, Y.; Janes, H. W.

    1998-01-01

    The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.

  11. Insights of interaction between small and large subunits of ADP-glucose pyrophosphorylase from bread wheat (Triticum aestivum L.).

    PubMed

    Danishuddin, Mohd; Chatrath, Ravish; Singh, Rajender

    2011-05-07

    Lack of knowledge of three dimensional structures of small and large subunits of ADP- glucose pyrophosphorylase (AGPase) in wheat has hindered efforts to understand the binding specifities of substrate and catalytic mechanism. Thus, to understand the structure activity relationship, 3D structures were built by homology modelling based on crystal structure of potato tuber ADP-glucose pyrophosphorylase. Selected models were refined by energy minimization and further validated by Procheck and Prosa-web analysis. Ramachandran plot showed that overall main chain and side chain parameters are favourable. Moreover, Z-score of the models from Prosa-web analysis gave the conformation that they are in the range of the template. Interaction analysis depicts the involvement of six amino acids in hydrogen bonding (AGP-SThr422-AGP-LMet138, AGP- SArg420-AGP-LGly47, AGP-SSer259-AGP-LSer306, AGP-SGlu241-AGP-LIle311, AGPSGln113- AGP-LGlu286 and AGP-SGln70-AGP-LLys291). Fifteen amino acids of small subunit were able to make hydrophobic contacts with seventeen amino acids of large subunit. Furthermore, decrease in the solvent accessible surface area in the amino acids involved in interaction were also reported. All the distances were formed in between 2.27 to 3.78Å. The present study focussed on heterodimeric structure of (AGPase). This predicted complex not only enhance our understanding of the interaction mechanism between these subunits (AGP-L and AGP-S) but also enable to further study to obtain better variants of this enzyme for the improvement of the plant yield.

  12. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria

    PubMed Central

    Cereijo, Antonela E.; Asencion Diez, Matías D.; Dávila Costa, José S.; Alvarez, Héctor M.; Iglesias, Alberto A.

    2016-01-01

    Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions. PMID:27313571

  13. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility

    PubMed Central

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W.; Jeon, Jong-Seong

    2016-01-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4. Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice. PMID:27588462

  14. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility.

    PubMed

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W; Jeon, Jong-Seong

    2016-10-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.

  15. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    PubMed

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris.

  16. [Enhancement of photoassimilate utilization by manipulation of ADP-glucose pyrophosphorylase gene]. Final progress report

    SciTech Connect

    Okita, T.W.

    1999-04-01

    Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.

  17. A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare).

    PubMed Central

    Thorbjørnsen, T; Villand, P; Kleczkowski, L A; Olsen, O A

    1996-01-01

    ADP-glucose pyrophosphorylase (AGPase), a heterotetrameric enzyme composed of two small and two large subunits, catalyses the first committed step of starch synthesis in plant tissues. In an attempt to learn more about the organization and expression of the small-subunit gene of AGPase, we have studied the small-subunit transcripts as well as the structure of the gene encoding these transcripts in barley (Hordeum vulgare L. cv. Bomi). Two different transcripts (bepsF1 and blps14) were identified: bepF1 was abundantly expressed in the starchy endosperm but not in leaves, whereas blps14 was isolated from leaves but was also found to be present at a moderate level in the starchy endosperm. The sequences for the two transcripts are identical over approx. 90% of the length, with differences being confined solely to their 5' ends. In blps14, the unique 5' end is 259 nt long and encodes a putative plastid transit peptide sequence. For the 178-nt 5' end of bepsF1, on the other hand, no transit peptide sequence could be recognized. A lambda clone that hybridized to the AGPase transcripts was isolated from a barley genomic library and characterized. The restriction map has suggested a complex organization of the gene, with alternative exons encoding the different 5' ends of the two transcripts followed by nine exons coding for the common part of the transcripts. The sequence of a portion of the genomic clone, covering the alternative 5'-end exons as well as upstream regions, has verified that both transcripts are encoded by the gene. The results suggest that the small-subunit gene of barley AGPase transcribes two different mRNAs by a mechanism classified as alternative splicing. PMID:8546676

  18. Transcriptional and Metabolic Adjustments in ADP-Glucose Pyrophosphorylase-Deficient bt2 Maize Kernels1[W

    PubMed Central

    Cossegal, Magalie; Chambrier, Pierre; Mbelo, Sylvie; Balzergue, Sandrine; Martin-Magniette, Marie-Laure; Moing, Annick; Deborde, Catherine; Guyon, Virginie; Perez, Pascual; Rogowsky, Peter

    2008-01-01

    During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of 1H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo

  19. Identification of Regions Critically Affecting Kinetics and Allosteric Regulation of the Escherichia coli ADP-Glucose Pyrophosphorylase by Modeling and Pentapeptide-Scanning Mutagenesis▿

    PubMed Central

    Ballicora, Miguel A.; Erben, Esteban D.; Yazaki, Terutaka; Bertolo, Ana L.; Demonte, Ana M.; Schmidt, Jennifer R.; Aleanzi, Mabel; Bejar, Clarisa M.; Figueroa, Carlos M.; Fusari, Corina M.; Iglesias, Alberto A.; Preiss, Jack

    2007-01-01

    ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu102 and Pro103 was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains. PMID:17496097

  20. Molecular characterization and sequence diversity of genes encoding the large subunit of the ADP-glucose pyrophosphorylase in wheat (Triticum aestivum L.).

    PubMed

    Rose, Meghan K; Huang, Xiu-Qiang; Brûlé-Babel, Anita

    2016-02-01

    The large subunit of ADP glucose pyrophosphorylase (AGPase), the rate limiting enzyme in starch biosynthesis in Triticum aestivum L., is encoded by the ADP glucose pyrophosphorylase large subunit (AGP-L) gene. This was the first report on the development of three genome-specific primer sets for isolating the complete genomic sequence of all three homoeologous AGP-L genes on group 1 chromosomes. All three AGP-L genes consisted of 15 introns and 15 exons. The lengths of the structural genes from start to stop codon were 3334 bp for AGP-L-A1, 3351 bp for AGP-L-B1, and 3340 bp for AGP-L-D1. The coding region was 1569 bases long in all three genomes. All three AGP-L genes encoded 522 amino acid residues including the transit peptide sequences with 62 amino acid residues and the mature protein with 460 amino acid residues. The mature protein of three AGP-L genes was highly conserved. Three AGP-L genes were sequenced in 47 diverse spring and winter wheat genotypes. One and two haplotypes were found for AGP-L-D1 and AGP-L-A1, respectively. In total, 67 SNPs (single nucleotide polymorphisms) and 13 indels (insertions or deletions) forming five haplotypes were identified for AGP-L-B1. All 13 indels and 58 of the 67 SNPs among the 47 genotypes were located in the non-coding regions, while the remaining nine SNPs were synonymous substitutions in the coding region. Significant LD was found among the 45 SNPs and ten indels located from intron 2 to intron 3. Association analysis indicated that four SNPs were strongly associated with seed number per spike and thousand kernel weight.

  1. Mutagenesis of cysteine 81 prevents dimerization of the APS1 subunit of ADP-glucose pyrophosphorylase and alters diurnal starch turnover in Arabidopsis thaliana leaves.

    PubMed

    Hädrich, Nadja; Hendriks, Janneke H M; Kötting, Oliver; Arrivault, Stéphanie; Feil, Regina; Zeeman, Samuel C; Gibon, Yves; Schulze, Waltraud X; Stitt, Mark; Lunn, John E

    2012-04-01

    Many plants, including Arabidopsis thaliana, retain a substantial portion of their photosynthate in leaves in the form of starch, which is remobilized to support metabolism and growth at night. ADP-glucose pyrophosphorylase (AGPase) catalyses the first committed step in the pathway of starch synthesis, the production of ADP-glucose. The enzyme is redox-activated in the light and in response to sucrose accumulation, via reversible breakage of an intermolecular cysteine bridge between the two small (APS1) subunits. The biological function of this regulatory mechanism was investigated by complementing an aps1 null mutant (adg1) with a series of constructs containing a full-length APS1 gene encoding either the wild-type APS1 protein or mutated forms in which one of the five cysteine residues was replaced by serine. Substitution of Cys81 by serine prevented APS1 dimerization, whereas mutation of the other cysteines had no effect. Thus, Cys81 is both necessary and sufficient for dimerization of APS1. Compared to control plants, the adg1/APS1(C81S) lines had higher levels of ADP-glucose and maltose, and either increased rates of starch synthesis or a starch-excess phenotype, depending on the daylength. APS1 protein levels were five- to tenfold lower in adg1/APS1(C81S) lines than in control plants. These results show that redox modulation of AGPase contributes to the diurnal regulation of starch turnover, with inappropriate regulation of the enzyme having an unexpected impact on starch breakdown, and that Cys81 may play an important role in the regulation of AGPase turnover.

  2. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    PubMed

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  3. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    PubMed Central

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  4. Regulatory properties of ADP glucose pyrophosphorylase are required for adjustment of leaf starch synthesis in different photoperiods.

    PubMed

    Mugford, Sam T; Fernandez, Olivier; Brinton, Jemima; Flis, Anna; Krohn, Nicole; Encke, Beatrice; Feil, Regina; Sulpice, Ronan; Lunn, John E; Stitt, Mark; Smith, Alison M

    2014-12-01

    Arabidopsis (Arabidopsis thaliana) leaves synthesize starch faster in short days than in long days, but the mechanism that adjusts the rate of starch synthesis to daylength is unknown. To understand this mechanism, we first investigated whether adjustment occurs in mutants lacking components of the circadian clock or clock output pathways. Most mutants adjusted starch synthesis to daylength, but adjustment was compromised in plants lacking the GIGANTEA or FLAVIN-BINDING, KELCH REPEAT, F BOX1 components of the photoperiod-signaling pathway involved in flowering. We then examined whether the properties of the starch synthesis enzyme adenosine 5'-diphosphate-glucose pyrophosphorylase (AGPase) are important for adjustment of starch synthesis to daylength. Modulation of AGPase activity is known to bring about short-term adjustments of photosynthate partitioning between starch and sucrose (Suc) synthesis. We found that adjustment of starch synthesis to daylength was compromised in plants expressing a deregulated bacterial AGPase in place of the endogenous AGPase and in plants containing mutant forms of the endogenous AGPase with altered allosteric regulatory properties. We suggest that the rate of starch synthesis is in part determined by growth rate at the end of the preceding night. If growth at night is low, as in short days, there is a delay before growth recovers during the next day, leading to accumulation of Suc and stimulation of starch synthesis via activation of AGPase. If growth at night is fast, photosynthate is used for growth at the start of the day, Suc does not accumulate, and starch synthesis is not up-regulated.

  5. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    PubMed

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  6. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants.

    PubMed

    Thormählen, Ina; Ruber, Joachim; von Roepenack-Lahaye, Edda; Ehrlich, Sven-Matthias; Massot, Vincent; Hümmer, Christine; Tezycka, Justyna; Issakidis-Bourguet, Emmanuelle; Geigenberger, Peter

    2013-01-01

    Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.

  7. Dithiothreitol decreases in vitro activity of ADP-glucose pyrophosphorylase from leaves of apple (Malus domestica Borkh.) and many other plant species.

    PubMed

    Chen, Li-Song; Qi, Yi-Ping

    2007-01-01

    Inclusion of dithiothreitol (DTT) in the extraction buffer and pre-incubation of apple leaf ADP-glucose pyrophosphorylase (AGPase) with DTT resulted in a decrease in AGPase activity whether the assay was performed in the presence or absence of 3-phosphoglycerate (PGA). When PGA was included in the pre-incubation mixture or when pre-incubation of AGPase with PGA was followed by DTT, the latter did not cause any decrease in AGPase activity. However, once AGPase was decreased by DTT, subsequent incubation of the enzyme with PGA did not reverse the decrease. Pre-incubation of AGPase from leaves of Arabidopsis thaliana, sorghum, soybean, tobacco, spinach, wheat, barley, tomato and potato, and tubers of potato with DTT, generally caused a decrease in AGPase activity when assayed in the presence of PGA. When assayed in the absence of PGA, however, a diverse response of AGPase was observed among species to pre-incubation with DTT. The activity of AGPase from potato tubers was increased by DTT; the activity of AGPase from both potato and tomato leaves was not affected by DTT; the activity of AGPase from leaves of other species was decreased by DTT. It is concluded that DTT decreases in vitro activity of AGPase from leaves of apple and many other plant species such that DTT should not be routinely included in the extraction or assay mixture of leaf AGPase.

  8. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.

    PubMed

    Weigelt, Kathleen; Küster, Helge; Rutten, Twan; Fait, Aaron; Fernie, Alisdair R; Miersch, Otto; Wasternack, Claus; Emery, R J Neil; Desel, Christine; Hosein, Felicia; Müller, Martin; Saalbach, Isolde; Weber, Hans

    2009-01-01

    We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis.

  9. Structure Function Relationships of ADP-Glucose Pyrophosphorylase and Branching Enzyme: Manipulation of Their Genes for Alteration of Starch Quanlity and Quantity

    SciTech Connect

    Jack Preiss

    2006-02-16

    Conversion of the Potato tuber ADP-glucose Pyrophopshorylase Regulatory Subunit into a Catalytic Subunit. ADP-glucose synthesis, a rate-limiting reaction in starch synthesis, is catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). The enzyme in plants is allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by inorganic phosphate (Pi) and is composed of two subunits as a heterotetramer, a2b2. Subunit a is the catalytic subunit and subunit b is designated as the regulatory subunit.The b subunit increases the affinty of the activator for the catalytic subunit. Recent results have shown that the subunits are derived from the same ancestor subunit as the regulatory subunit can be converted to a catalytically subunit via mutation of just two amino acids. Lys44 and Thr54 in the large subunit from potato tuber were converted to the homologous catalytic subunit residues, Arg33 and Lys43. The activity of the large subunit mutants cannot be readily tested with a co-expressed wild-type small (catalytic) subunit because of the intrinsic activity of the latter. We co-expressed the regulatory-subunit mutants with SmallD145N, an inactive S subunit in which the catalytic Asp145 was mutated. The activity of the small (catalytic) subunit was reduced more than three orders of magnitude. Coexpression of the L subunit double mutant LargeK44R/T54K with SmallD145N generated an enzyme with considerable activity, 10% and 18% of the wildtype enzyme, in the ADP-glucose synthetic and pyrophosphorolytic direction, respectively. Replacement of those two residues in the small subunit by the homologous amino acids in the L subunits (mutations R33K and K43T) decreased the activity one and two orders of magnitude. The wild-type enzyme and SmallD145NLargeK44R/T54K had very similar kinetic properties indicating that the substrate site has been conserved. The fact that only two mutations in the L subunit restored enzyme activity is very strong evidence that the large subunit is

  10. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber.

    PubMed

    Kim, Tae-Won; Goo, Young-Min; Lee, Cheol-Ho; Lee, Byung-Hyun; Bae, Jung-Myung; Lee, Shin-Woo

    2009-10-01

    Molecular farming refers to the process of creating bioengineered plants with the capability of producing potentially valuable products, such as drugs, vaccines, and chemicals. We have investigated the potential of the sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter and its transit peptide (TP) as an expression system for the mass production of foreign proteins in potato. The ibAGP1 promoter and its TP sequence were transformed into potato along with beta-glucuronidase (GUS) as a reporter gene, and GUS activity was subsequently analyzed in the transgenic potato plants. In tuber tissues, GUS activity in transgenic plants carrying only the ibAGP1 promoter (ibAGP1::GUS) increased up to 15.6-fold compared with that of transgenic plants carrying only the CaMV35S promoter (CaMV35S::GUS). GUS activity in transgenic plants was further enhanced by the addition of the sweetpotato TP to the recombinant vector (ibAGP1::TP::GUS), with tuber tissues showing a 26-fold increase in activity compared with that in the CaMV35S::GUS-transgenic lines. In leaf tissues, the levels of GUS activity found in ibAGP1::GUS-transgenic lines were similar to those in CaMV35S::GUS-lines, but they were significantly enhanced in ibAGP1::TP::GUS-lines. GUS activity gradually increased with increasing tuber diameter in ibAGP1::GUS-transgenic plants, reaching a maximum level when the tuber was 35 mm in diameter. In contrast, extremely elevated levels of GUS activity - up to about 10-fold higher than that found in CaMV35S::GUS-lines - were found in ibAGP1::TP::GUS-transgenic lines at a much earlier stage of tuber development (diameter 4 mm), and these higher levels were maintained throughout the entire tuber developmental stage. These results suggest that the sweetpotato ibAGP1 promoter and its TP are a potentially strong foreign gene expression system that can be used for molecular farming in potato plants.

  11. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme.

    PubMed

    Tuncel, Aytug; Kawaguchi, Joe; Ihara, Yasuharu; Matsusaka, Hiroaki; Nishi, Aiko; Nakamura, Tetsuhiro; Kuhara, Satoru; Hirakawa, Hideki; Nakamura, Yasunori; Cakir, Bilal; Nagamine, Ai; Okita, Thomas W; Hwang, Seon-Kap; Satoh, Hikaru

    2014-06-01

    Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme.

  12. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  13. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  14. Impact of Heterologous Expression of Escherichia coli UDP-Glucose Pyrophosphorylase on Trehalose and Glycogen Synthesis in Corynebacterium glutamicum

    PubMed Central

    Padilla, Leandro; Morbach, Susanne; Krämer, Reinhard; Agosin, Eduardo

    2004-01-01

    Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway. PMID:15240254

  15. Screening assay for inhibitors of a recombinant Streptococcus pneumoniae UDP-glucose pyrophosphorylase.

    PubMed

    Zavala, Agustín; Kovacec, Verónica; Levín, Gustavo; Moglioni, Albertina; Miranda, María Victoria; García, Ernesto; Bonofiglio, Laura; Mollerach, Marta

    2017-12-01

    The UDP-glucose pyrophosphorylase of Streptococcus pneumoniae (GalUSpn) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of pneumococcus. Since the eukaryotic enzymes are completely unrelated to their prokaryotic counterparts, we propose that the GalU enzyme is a critical target to fight the pneumococcal disease. A recombinant GalUSpn was overexpressed and purified. An enzymatic assay that is rapid, sensitive and easy to perform was developed. This assay was appropriate for screening chemical libraries for searching GalU inhibitors. This work represents a fundamental step in the exploration of novel antipneumococcal drugs.

  16. Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity

    PubMed Central

    Dong, Suomeng; Yin, Weixiao; Kong, Guanghui; Yang, Xinyu; Qutob, Dinah; Chen, Qinghe; Kale, Shiv D.; Sui, Yangyang; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Gijzen, Mark; M. Tyler, Brett; Wang, Yuanchao

    2011-01-01

    Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity. PMID:22102810

  17. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides.

  18. Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase.

    PubMed

    Soares, Jose Sergio M; Gentile, Agustina; Scorsato, Valeria; Lima, Aline da C; Kiyota, Eduardo; Dos Santos, Marcelo Leite; Piattoni, Claudia V; Huber, Steven C; Aparicio, Ricardo; Menossi, Marcelo

    2014-11-28

    Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.

  19. Oligomerization, Membrane Association, and in Vivo Phosphorylation of Sugarcane UDP-glucose Pyrophosphorylase*

    PubMed Central

    Soares, Jose Sergio M.; Gentile, Agustina; Scorsato, Valeria; Lima, Aline da C.; Kiyota, Eduardo; dos Santos, Marcelo Leite; Piattoni, Claudia V.; Huber, Steven C.; Aparicio, Ricardo; Menossi, Marcelo

    2014-01-01

    Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution. PMID:25320091

  20. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase.

    PubMed

    Führing, Jana; Damerow, Sebastian; Fedorov, Roman; Schneider, Julia; Münster-Kühnel, Anja-Katharina; Gerardy-Schahn, Rita

    2013-04-01

    Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.

  1. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    PubMed

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality.

  2. Brittle-1, an Adenylate Translocator, Facilitates Transfer of Extraplastidial Synthesized ADP-Glucose into Amyloplasts of Maize Endosperms1

    PubMed Central

    Shannon, Jack C.; Pien, Fang-Mei; Cao, Heping; Liu, Kang-Chien

    1998-01-01

    Amyloplasts of starchy tissues such as those of maize (Zea mays L.) function in the synthesis and accumulation of starch during kernel development. ADP-glucose pyrophosphorylase (AGPase) is known to be located in chloroplasts, and for many years it was generally accepted that AGPase was also localized in amyloplasts of starchy tissues. Recent aqueous fractionation of young maize endosperm led to the conclusion that 95% of the cellular AGPase was extraplastidial, but immunolocalization studies at the electron- and light-microscopic levels supported the conclusion that maize endosperm AGPase was localized in the amyloplasts. We report the results of two nonaqueous procedures that provide evidence that in maize endosperms in the linear phase of starch accumulation, 90% or more of the cellular AGPase is extraplastidial. We also provide evidence that the brittle-1 protein (BT1), an adenylate translocator with a KTGGL motif common to the ADP-glucose-binding site of starch synthases and bacterial glycogen synthases, functions in the transfer of ADP-glucose into the amyloplast stroma. The importance of the BT1 translocator in starch accumulation in maize endosperms is demonstrated by the severely reduced starch content in bt1 mutant kernels. PMID:9701580

  3. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism.

    PubMed

    Coleman, Heather D; Ellis, Dave D; Gilbert, Margarita; Mansfield, Shawn D

    2006-01-01

    The effects of the overexpression of sucrose synthase (SuSy) and UDP-glucose pyrophosphorylase (UGPase) on plant growth and metabolism were evaluated in tobacco (Nicotiana tabacum cv. Xanthi). T(1) transgenic plants expressing either gene under the control of a tandem repeat cauliflower mosaic virus 35S promoter (2x35S) or a xylem-localized 4CL promoter (4-coumarate:CoA ligase; 4CL) were generated, and reciprocally crossed to generate plants expressing both genes. Transcript levels, enzyme activity, growth parameters, fibre properties and carbohydrate content of stem tissue were quantified. The expression profiles of both genes confirmed the expression pattern of the promoters: 2x35S expressed more strongly in leaves, while 4CL expression was highest in stem tissue. In-depth plant characterization revealed that the single-transgene lines showed significant increases in the height growth compared with corresponding control lines. The double-transgene plants demonstrated an additive effect, proving to be even taller than the single-transgene parents. Several of these lines had associated increases in soluble sugar content. Although partitioning of storage carbohydrates into starch or cellulose was not observed, the increased height growth and increases in soluble carbohydrates suggest a role for SuSy as a marker in sink strength and lend credit to the function of UGPase in a similar role. The up-regulation of these two genes, although not increasing the percentage cellulose content, was effective in increasing the total biomass, and thus the overall cellulose yield, from a given plant.

  4. An HPLC method for the assay of UDP-glucose pyrophosphorylase and UDP-glucose-4-epimerase in Solieria chordalis (Rhodophyceae).

    PubMed

    Goulard, F; Diouris, M; Deslandes, E; Floc'h, J Y

    2001-01-01

    An efficient method to assay both UDP-glucose pyrophosphorylase and UDP-glucose-4-epimerase in a crude extract of the red seaweed, Solieria chordalis is described. The method is based on the direct quantification by reverse-phase high-performance liquid chromatography of the UDP-sugars generated in the reaction mixture. UDP-glucose, UDP-galactose and UTP were detected by spectrophotometry at 254 nm and their recoveries ranged from 97 to 100%. In the course of the reaction, a correlation was observed between the reduction in the area of the substrate peak and the occurrence of product peak(s). This highly reproducible method for enzyme assay is fast since no intermediate reaction mixture is required.

  5. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase

    PubMed Central

    Mariño, Karina; Güther, Maria Lucia Sampaio; Wernimont, Amy K; Amani, Mernhaz; Hui, Raymond; Ferguson, Michael AJ

    2010-01-01

    The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4′-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme. PMID:20724435

  6. Loss of starch granule initiation has a deleterious effect on the growth of arabidopsis plants due to an accumulation of ADP-glucose.

    PubMed

    Ragel, Paula; Streb, Sebastian; Feil, Regina; Sahrawy, Mariam; Annunziata, Maria Grazia; Lunn, John E; Zeeman, Samuel; Mérida, Ángel

    2013-09-01

    STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.

  7. Biochemical and molecular characterization of barley plastidial ADP-glucose transporter (HvBT1).

    PubMed

    Soliman, Atta; Ayele, Belay T; Daayf, Fouad

    2014-01-01

    In cereals, ADP-glucose transporter protein plays an important role in starch biosynthesis. It acts as a main gate for the transport of ADP-glucose, the main precursor for starch biosynthesis during grain filling, from the cytosol into the amyloplasts of endospermic cells. In this study, we have shed some light on the molecular and biochemical characteristics of barley plastidial ADP-glucose transporter, HvBT1. Phylogenetic analysis of several BT1 homologues revealed that BT1 homologues are divided into two distinct groups. The HvBT1 is assigned to the group that represents BT homologues from monocotyledonous species. Some members of this group mainly work as nucleotide sugar transporters. Southern blot analysis showed the presence of a single copy of HvBT1 in barley genome. Gene expression analysis indicated that HvBT1 is mainly expressed in endospermic cells during grain filling; however, low level of its expression was detected in the autotrophic tissues, suggesting the possible role of HvBT1 in autotrophic tissues. The cellular and subcellular localization of HvBT1 provided additional evidence that HvBT1 targets the amyloplast membrane of the endospermic cells. Biochemical characterization of HvBT1 using E. coli system revealed that HvBT1 is able to transport ADP-glucose into E. coli cells with an affinity of 614.5 µM and in counter exchange of ADP with an affinity of 334.7 µM. The study also showed that AMP is another possible exchange substrate. The effect of non-labeled ADP-glucose and ADP on the uptake rate of [α-32P] ADP-glucose indicated the substrate specificity of HvBT1 for ADP-glucose and ADP.

  8. Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L. ) Heynh lacking ADPglucose pyrophosphorylase activity

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.; Preiss, J. )

    1988-04-01

    A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F{sub 1} progeny of a cross between the mutant and wild type had a specific activity of ADP-glucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.

  9. Oligomerization, membrane association and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is a C4 plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms involved in sucrose accumulation in sugarcane are not well understood and little is known with regard to factors that control the extent of sucrose storage in stalks. UDP-glucose pyroph...

  10. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  11. Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis.

    PubMed

    Medeot, Daniela B; Romina Rivero, María; Cendoya, Eugenia; Contreras-Moreira, Bruno; Rossi, Fernando A; Fischer, Sonia E; Becker, Anke; Jofré, Edgardo

    2016-03-01

    In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.

  12. Enhanced Production of Polysaccharide Through the Overexpression of Homologous Uridine Diphosphate Glucose Pyrophosphorylase Gene in a Submerged Culture of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Ji, Sen-Lin; Liu, Rui; Ren, Meng-Fei; Li, Huan-Jun; Xu, Jun-Wei

    2015-01-01

    This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

  13. The Production and Utilization of GDP-glucose in the Biosynthesis of Trehalose 6-Phosphate by Streptomyces venezuelae.

    PubMed

    Asención Diez, Matías D; Miah, Farzana; Stevenson, Clare E M; Lawson, David M; Iglesias, Alberto A; Bornemann, Stephen

    2017-01-20

    Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate.

  14. The Production and Utilization of GDP-glucose in the Biosynthesis of Trehalose 6-Phosphate by Streptomyces venezuelae*

    PubMed Central

    Asención Diez, Matías D.; Miah, Farzana; Stevenson, Clare E. M.; Lawson, David M.; Iglesias, Alberto A.; Bornemann, Stephen

    2017-01-01

    Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli. However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae. The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate. PMID:27903647

  15. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms.

    PubMed

    Li, Jun; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Muñoz, Francisco José; Ovecka, Miroslav; Montero, Manuel; Sesma, María Teresa; Alonso-Casajús, Nora; Almagro, Goizeder; Sánchez-López, Angela María; Hidalgo, Maite; Zamarbide, Marta; Pozueta-Romero, Javier

    2013-02-01

    Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. In cereal endosperms, it is widely assumed that the stepwise reactions of SuSy, UDPglucose pyrophosphorylase and ADPglucose (ADPG) pyrophosphorylase (AGP) take place in the cytosol to convert sucrose into ADPG necessary for starch biosynthesis, although it has also been suggested that SuSy may participate in the direct conversion of sucrose into ADPG. In this study, the levels of the major primary carbon metabolites, and the activities of starch metabolism-related enzymes were assessed in endosperms of transgenic maize plants ectopically expressing StSUS4, which encodes a potato SuSy isoform. A total of 29 fertile lines transformed with StSUS4 were obtained, five of them containing a single copy of the transgene that was still functional after five generations. The number of seeds per ear of the five transgenic lines containing a single StSUS4 copy was comparable with that of wild-type (WT) control seeds. However, transgenic seeds accumulated 10-15% more starch at the mature stage, and contained a higher amylose/amylopectin balance than WT seeds. Endosperms of developing StSUS4-expressing seeds exhibited a significant increase in SuSy activity, and in starch and ADPG contents when compared with WT endosperms. No significant changes could be detected in the transgenic seeds in the content of soluble sugars, and in activities of starch metabolism-related enzymes when compared with WT seeds. A suggested metabolic model is presented wherein both AGP and SuSy are involved in the production of ADPG linked to starch biosynthesis in maize endosperm cells.

  16. Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Georgelis, Nikolaos; Hannah, L Curtis

    2014-02-01

    ADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase. Glycogen content, kinetic parameters and heat stability were measured in AGPases having mutations in these sites and interesting differences were observed. This study expands on our earlier evolutionary work by determining how all Type II and positively selected sites affect kinetic constants, heat stability and catalytic rates at increased temperatures. Variants with enhanced properties were identified and combined into one gene, designated Sh2-E. Enhanced properties include: heat stability, enhanced activity at 37 °C, activity at 55 °C, reduced Ka and activity in the absence of activator. The resulting enzyme exhibited all improved properties of the various individual changes. Additionally, Sh2-E was expressed with a small subunit variant with enhanced enzyme properties resulting in an enzyme that has exceptional heat stability, a high catalytic rate at increased temperatures and significantly decreased Km values for both substrates in the absence of the activator.

  17. Decreasing the mitochondrial synthesis of malate in potato tubers does not affect plastidial starch synthesis, suggesting that the physiological regulation of ADPglucose pyrophosphorylase is context dependent.

    PubMed

    Szecowka, Marek; Osorio, Sonia; Obata, Toshihiro; Araújo, Wagner L; Rohrmann, Johannes; Nunes-Nesi, Adriano; Fernie, Alisdair R

    2012-12-01

    Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering.

  18. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm

    PubMed Central

    Li, Sanfeng; Wei, Xiangjin; Ren, Yulong; Qiu, Jiehua; Jiao, Guiai; Guo, Xiuping; Tang, Shaoqing; Wan, Jianmin; Hu, Peisong

    2017-01-01

    Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules. PMID:28054650

  19. Glucose and ethylene signalling pathways converge to regulate trans-differentiation of epidermal transfer cells in Vicia narbonensis cotyledons.

    PubMed

    Andriunas, Felicity A; Zhang, Hui-Ming; Weber, Hans; McCurdy, David W; Offler, Christina E; Patrick, John W

    2011-12-01

    Transfer cells are specialized transport cells containing invaginated wall ingrowths that provide an amplified plasma membrane surface area with high densities of transporter proteins. They trans-differentiate from differentiated cells at sites where enhanced rates of nutrient transport occur across apo/symplasmic boundaries. Despite their physiological importance, the signal(s) and signalling cascades responsible for initiating their trans-differentiation are poorly understood. In culture, adaxial epidermal cells of Vicia narbonensis cotyledons were induced to trans-differentiate to a transfer cell morphology. Manipulating their intracellular glucose concentrations by transgenic knock-down of ADP-glucose pyrophosphorylase expression and/or culture on a high-glucose medium demonstrated that glucose functioned as a negative regulator of wall ingrowth induction. In contrast, glucose had no detectable effect on wall ingrowth morphology. The effect on wall ingrowth induction of culture on media containing glucose analogues suggested that glucose acts through a hexokinase-dependent signalling pathway. Elevation of an epidermal cell-specific ethylene signal alone, or in combination with glucose analogues, countered the negative effect of glucose on wall ingrowth induction. Glucose modulated the amplitude of ethylene-stimulated wall ingrowth induction by down-regulating the expression of ethylene biosynthetic genes and an ethylene insensitive 3 (EIN3)-like gene (EIL) encoding a key transcription factor in the ethylene signalling cascade. A model is presented describing the interaction between glucose and ethylene signalling pathways regulating the induction of wall ingrowth formation in adaxial epidermal cells.

  20. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis.

    PubMed

    Damerow, Sebastian; Hoppe, Carolin; Bandini, Giulia; Zarnovican, Patricia; Buettner, Falk F R; Ferguson, Michael A J; Routier, Françoise H

    2015-10-01

    Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection.

  1. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.

    PubMed

    Colleoni, Christophe; Linka, Marc; Deschamps, Philippe; Handford, Michael G; Dupree, Paul; Weber, Andreas P M; Ball, Steven G

    2010-12-01

    The acquisition of photosynthesis by eukaryotic cells through enslavement of a cyanobacterium represents one of the most remarkable turning points in the history of life on Earth. In addition to endosymbiotic gene transfer, the acquisition of a protein import apparatus and the coordination of gene expression between host and endosymbiont genomes, the establishment of a metabolic connection was crucial for a functional endosymbiosis. It was previously hypothesized that the first metabolic connection between both partners of endosymbiosis was achieved through insertion of a host-derived metabolite transporter into the cyanobacterial plasma membrane. Reconstruction of starch metabolism in the common ancestor of photosynthetic eukaryotes suggested that adenosine diphosphoglucose (ADP-Glc), a bacterial-specific metabolite, was likely to be the photosynthate, which was exported from the early cyanobiont. However, extant plastid transporters that have evolved from host-derived endomembrane transporters do not transport ADP-Glc but simple phosphorylated sugars in exchange for orthophosphate. We now show that those eukaryotic nucleotide sugar transporters, which define the closest relatives to the common ancestor of extant plastid envelope carbon translocators, possess an innate ability for transporting ADP-Glc. Such an unexpected ability would have been required to establish plastid endosymbiosis.

  2. Purification of rat kidney glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase enzymes using 2',5'-ADP Sepharose 4B affinity in a single chromatography step.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2012-01-01

    The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.

  3. Immunocytochemical localization of ADPglucose pyrophosphorylase in developing potato tuber cells

    SciTech Connect

    Kim, Woo Taek; Franceschi, V.R.; Okita, T.W. ); Robinson, N.L.; Morell, M.; Preiss, J. )

    1989-09-01

    The subcellular localization of ADPglucose pyrophosphorylase, a key regulatory enzyme in starch biosynthesis, was determined in developing potato tuber cells by immunocytochemical localization techniques at the light microscopy level. Specific labeling of ADPglucose pyrophosphorylase by either immunofluorescence or immunogold followed by silver enhancement was detected only in the amyloplasts and indicates that this enzyme is located exclusively in the amyloplasts in developing potato tuber cells. Labeling occurred on the starch grains and, in some instances, specific labeling patterns were evident which may be related to sites active in starch deposition.

  4. Localization of the human UGP2 gene encoding the muscle isoform of UDPglucose pyrophosphorylase to 2p13-p14 by fluorescence in situ hybridization

    SciTech Connect

    Cheng, Sou-De; Peng, Hwei-Ling; Chang, Hwan-You

    1997-02-01

    UDPglucose pyrophosphorylase (UGP, EC 2.7.7.9) catalyzes the transfer of a glucose moiety from Glc1P to MgUTP, forming UDPglc and MgPPi. This reaction is necessary in several tissues. In liver and muscle, UDPglc is the direct precursor of glycogen, while in lactating mammary gland it is converted to UDPgalactose and thence lactose. Liver also requires UDPglc for the formation of UDPglucuronate, which then acts as a source for the formation of soluble glucuronides of xenobiotic and endobiotic metabolites destined for excretion. 6 refs., 1 fig.

  5. GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

    PubMed

    Jiang, Hechun; Ouyang, Haomiao; Zhou, Hui; Jin, Cheng

    2008-09-01

    GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Afsrb1, which is a homologue of yeast SRB1/PSA1/VIG9, was identified in the Aspergillus fumigatus genome. The Afsrb1 gene was expressed in Escherichia coli, and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Afsrb1 promoter with an inducible Aspergillus nidulans alcA promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P(alcA)-Afsrb1, and was lethal to strain YJ-gmpp. Repression of Afsrb1 expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Afsrb1 gene is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

  6. ADP's ABCs of Training

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company's core competence is processing data, it is sometimes easy to lose sight of the obvious--the information right under its nose. In the case of Automatic Data Processing, Inc. (ADP), a business outsourcing company specializing in human resources, payroll, tax, and benefits administrations solutions, that is not a problem. Through…

  7. Defense ADP Acquisition Study.

    DTIC Science & Technology

    1981-11-30

    management issues. It also provides broad insight into the nature and causes of problems in the ADP acquisition process and offers several strategies ... strategy planning fails to provide the appropriate mission perspective. Curfent top-down strategic planning does not pro- vide the necessary guidance for the...recommendations presented here are more appropriately labeled strategies for change, rather than specific actions for improvement. (1) There Must Be a

  8. Mutagenesis of the potato ADPglucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation

    SciTech Connect

    Greene, T.W.; Chantler, S.E.; Kahn, M.L.

    1996-02-20

    ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS in an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.

  9. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival, and fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioinformatics search of the genome of the red flour beetle, Tribolium castaneum, resulted in the identification of two genes encoding proteins closely related to UDP-N-acetylglucosamine pyrophosphorylases (UAP), which provide the activated precursor, UDP-N-acetylglucosamine, for the synthesis of ...

  10. The subunit structure of potato tuber ADPglucose pyrophosphorylase. [Solanum tuberosum L

    SciTech Connect

    Okita, T.W.; Nakata, P.A.; Anderson, J.M. ); Sowokinos, J. ); Morell, M.; Preiss, J. )

    1990-06-01

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.

  11. Disaster Planning for Navy ADP Systems.

    DTIC Science & Technology

    1983-06-01

    including contingency planning . The National Bureau of Standards enhanced FIPS publication 31 in 1981 with its Guidelines for ADP Contingency Planning ... National Bureau of Standards, Federal Information Processing Standards Publication 87, Guidelines for ADP Contingency Planning , 27 March 1981. 62 14... Planning , Contingency , ADP, Department of the Navy, Risk Analysis 2. AGSTAC? ;= a i bsie -f tem. eseeem d Idmu~r Wy 68ek semle.) ADP systems have become

  12. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Progress report, [March 15, 1989--April 14, 1990

    SciTech Connect

    Okita, T.W.

    1990-12-31

    The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of the gene that encodes for ADPglucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. During the last two years we have obtained information on the structure of this enzyme from both potato tuber and rice endosperm, using a combination of biochemical and molecular biological approaches. Moreover, we present evidence that this enzyme may be localized at discrete regions of the starch grain within the amyloplast, and plays a role in controlling overall starch biosynthesis in potato tubers.

  13. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ASSISTANCE, MEDICAL ASSISTANCE AND STATE CHILDREN'S HEALTH INSURANCE PROGRAMS) Automatic Data Processing... appropriate ADP security requirements based on recognized industry standards or standards governing...

  14. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Physical security of ADP resources; (B) Equipment security to protect equipment from theft and unauthorized use; (C) Software and data security; (D) Telecommunications security; (E) Personnel security;...

  15. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Summary of progress, [April 15, 1991--April 14, 1992

    SciTech Connect

    Okita, T.W.

    1992-12-31

    The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of genes encoding enzymes that may be rate-limiting in starch biosynthesis. In developing storage tissues such as tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. In view of the regulatory role of ADPglucose pyrophosphorylase in starch biosynthesis at both the genetic and biochemical level, we have focused our attention on the genes that encode for this enzyme in potato tubers. The proposed objectives of the grant were to (1) analyze the structure of the tuber enzyme, (2) isolate and characterize the structure of its genes, and (3) identify the regulatory elements controlling ADPglucose pyrophosphorylase during plant development. During the last two and 1/2 years we have met or have made considerable progress in achieving these objectives as discussed in more detail below.

  16. Structure of uridine diphosphate N-acetylglucosamine pyrophosphorylase from Entamoeba histolytica.

    PubMed

    Edwards, Thomas E; Gardberg, Anna S; Phan, Isabelle Q H; Zhang, Yang; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2015-05-01

    Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.

  17. Molecular Dynamics Study of Hsp90 and ADP: Hydrogen Bond Analysis for ADP Dissociation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    The contacts between the N-terminal domain of heat shock protein 90 (N-Hsp90) and ADP involve both direct and water-mediated hydrogen bonds in X-ray crystallographic structure. We perform all-atom molecular dynamics (MD) simulations of N-Hsp90 and ADP to investigate the changes of the hydrogen bond lengths during ADP dissociation. We show the difference between the hydrogen bonds in the crystal structure and MD simulations. Moreover, the N6 group of ADP does not contact with the Cγ group of Asp93, and the hydrogen bonds between Asn51 side chain and ADP are stable in the early step of ADP dissociation.

  18. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred...

  19. Poly(ADP-ribosyl)ation in carcinogenesis.

    PubMed

    Masutani, Mitsuko; Fujimori, Hiroaki

    2013-12-01

    Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.

  20. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene. Progress report, [April 15, 1988--April 14, 1989

    SciTech Connect

    Okita, T.W.

    1989-12-31

    During this period researchers have been successful in determining the structure of the rice pyrophosphorylase gene. Potato tuber ADPglucose pyrophosphorylse purification and structure studies were carried out as well as recombinant DNA studies. Evidence suggests that the tuber form is made up of subunits with similar molecular weights and immunological relatedness. In contrast, the spinach leaf enzyme and presumably the maize endosperm species is composed of two dissimilar sununits encoded by different genes.

  1. Kinesin ATPase: Rate-Limiting ADP Release

    NASA Astrophysics Data System (ADS)

    Hackney, David D.

    1988-09-01

    The ATPase rate of kinesin isolated from bovine brain by the method of S. A. Kuznetsov and V. I. Gelfand [(1986) Proc. Natl. Acad. Sci. USA 83, 8530-8534)] is stimulated 1000-fold by interaction with tubulin (turnover rate per 120-kDa peptide increases from ≈ 0.009 sec-1 to 9 sec-1). The tubulin-stimulated reaction exhibits no extra incorporation of water-derived oxygens over a wide range of ATP and tubulin concentrations, indicating that Pi release is faster than the reversal of hydrolysis. ADP release, however, is slow for the basal reaction and its release is rate limiting as indicated by the very tight ADP binding (Ki < 5 nM), the retention of a stoichiometric level of bound ADP through ion-exchange chromatography and dialysis, and the reversible labeling of a bound ADP by [14C]ATP at the steady-state ATPase rate as shown by centrifuge gel filtration and inaccessibility to pyruvate kinase. Tubulin accelerates the release of the bound ADP consistent with its activation of the net ATPase reaction. The detailed kinetics of ADP release in the presence of tubulin are biphasic indicating apparent heterogeneity with a fraction of the kinesin active sites being unaffected by tubulin.

  2. The Structural and Functional Characterization of Mammalian ADP-dependent Glucokinase*

    PubMed Central

    Richter, Jan P.; Goroncy, Alexander K.; Ronimus, Ron S.; Sutherland-Smith, Andrew J.

    2016-01-01

    The enzyme-catalyzed phosphorylation of glucose to glucose-6-phosphate is a reaction central to the metabolism of all life. ADP-dependent glucokinase (ADPGK) catalyzes glucose-6-phosphate production, utilizing ADP as a phosphoryl donor in contrast to the more well characterized ATP-requiring hexokinases. ADPGK is found in Archaea and metazoa; in Archaea, ADPGK participates in a glycolytic role, but a function in most eukaryotic cell types remains unknown. We have determined structures of the eukaryotic ADPGK revealing a ribokinase-like tertiary fold similar to archaeal orthologues but with significant differences in some secondary structural elements. Both the unliganded and the AMP-bound ADPGK structures are in the “open” conformation. The structures reveal the presence of a disulfide bond between conserved cysteines that is positioned at the nucleotide-binding loop of eukaryotic ADPGK. The AMP-bound ADPGK structure defines the nucleotide-binding site with one of the disulfide bond cysteines coordinating the AMP with its main chain atoms, a nucleotide-binding motif that appears unique to eukaryotic ADPGKs. Key amino acids at the active site are structurally conserved between mammalian and archaeal ADPGK, and site-directed mutagenesis has confirmed residues essential for enzymatic activity. ADPGK is substrate inhibited by high glucose concentration and shows high specificity for glucose, with no activity for other sugars, as determined by NMR spectroscopy, including 2-deoxyglucose, the glucose analogue used for tumor detection by positron emission tomography. PMID:26555263

  3. Raman gains of ADP and KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Liang; Zhang, Qing-Hua; Wang, Bo; Xu, Xin-Guang; Wang, Zheng-Ping; Sun, Xun; Zhang, Fang; Zhang, Li-Song; Liu, Bao-An; Chai, Xiang-Xu

    2015-04-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51323002 and 51402173), the Independent Innovation Foundation of Shandong University, China (Grant Nos. IIFSDU and 2012JC016), the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0552), the Fund from the Key Laboratory of Neutron Physics, China Academy of Engineering Physics (Grant No. 2014BB07), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province, China (Grant No. JQ201218).

  4. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase.

    PubMed

    Kempinski, Chase F; Haffar, Rawaa; Barth, Carina

    2011-05-01

    The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .

  5. GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco.

    PubMed

    Ai, Taobo; Liao, Xuehong; Li, Rui; Fan, Linhong; Luo, Fengxue; Xu, Ying; Wang, Shenghua

    Pogonatherum paniceum is a highly drought- and salt-tolerant plant species that is typically used for ecological restoration and the conservation of soil and water in many countries. Understanding the molecular mechanisms underlying plant abiotic stress responses, especially to salinity and drought stresses, in species such as P. paniceum could be important to broader crop improvement efforts. GDP-D-mannose pyrophosphorylase (GMPase) is the limiting enzyme in the synthesis of L-ascorbic acid (AsA), which plays a crucial role in the detoxification of reactive oxygen species (ROS). We have cloned and characterized the cDNA of the PpGMP gene of P. paniceum encoding a GMPase. The full-length cDNA sequence contains 1411 nucleotides encoding a putative protein with 361 amino acid residues and an approximate molecular mass of 39.68 kDa. The GMPase transcript was up-regulated in P. paniceum plants subjected to salinity and drought stress, respectively. Transgenic tobacco expressing PpGMPase exhibited enhanced salinity and drought resistance, a higher seed germination rate, better growth performance, a higher AsA content, a more stable redox state, higher superoxide dismutase (SOD) activity, and lower levels of malonaldehyde (MDA) and H2O2 under drought and salinity stress. Taken together, expression of PpGMPase in tobacco conferred salinity and drought stress tolerance by increasing the content of AsA, thereby enhancing ROS-detoxifying functions. Thus, PpGMP is a potential candidate gene for crop improvement.

  6. Purification, crystallization and preliminary X-ray characterization of the human GTP fucose pyrophosphorylase

    SciTech Connect

    Quirk, Stephen; Seley-Radtke, Katherine L.

    2006-04-01

    The human GTP fucose pyrophosphohydrolase protein has been crystallized via the hanging-drop technique over a reservoir of polyethylene glycol (MW 8000) and ethylene glycol. The orthorhombic crystals diffract to 2.8 Å resolution. The human nucleotide-sugar metabolizing enzyme GTP fucose pyrophosphorylase (GFPP) has been purified to homogeneity by an affinity chromatographic procedure that utilizes a novel nucleoside analog. This new purification regime results in a protein preparation that produces significantly better crystals than traditional purification methods. The purified 66.6 kDa monomeric protein has been crystallized via hanging-drop vapor diffusion at 293 K. Crystals of the native enzyme diffract to 2.8 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. There is a single GFPP monomer in the asymmetric unit, giving a Matthews coefficient of 2.38 Å{sup 3} Da{sup −1} and a solvent content of 48.2%. A complete native data set has been collected as a first step in determining the three-dimensional structure of this enzyme.

  7. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells

    PubMed Central

    Du, Xueliang; Matsumura, Takeshi; Edelstein, Diane; Rossetti, Luciano; Zsengellér, Zsuzsanna; Szabó, Csaba; Brownlee, Michael

    2003-01-01

    In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein–1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1–deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage. PMID:14523042

  8. 42 CFR 457.230 - FFP for State ADP expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false FFP for State ADP expenditures. 457.230 Section 457...; Reduction of Federal Medical Payments § 457.230 FFP for State ADP expenditures. FFP is available for State ADP expenditures for the design, development, or installation of mechanized claims processing...

  9. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes.

    PubMed

    Tuncel, Aytug; Okita, Thomas W

    2013-10-01

    Significant improvements in crop productivity are required to meet the nutritional requirements of a growing world population. This challenge is magnified by an increased demand for bioenergy as a means to mitigate carbon inputs into the environment. Starch is a major component of the harvestable organs of many crop plants, and various endeavors have been taken to improve the yields of starchy organs through the manipulation of starch synthesis. Substantial efforts have centered on the starch regulatory enzyme ADPglucose pyrophosphorylase (AGPase) due to its pivotal role in starch biosynthesis. These efforts include over-expression of this enzyme in cereal plants such as maize, rice and wheat as well as potato and cassava, as they supply the bulk of the staple food worldwide. In this perspective, we describe efforts to increase starch yields in cereal grains by first providing an introduction about the importance of source-sink relationship and the motives behind the efforts to alter starch biosynthesis and turnover in leaves. We then discuss the catalytic and regulatory properties of AGPase and the molecular approaches used to enhance starch synthesis by manipulation of this process during grain filling using seed-specific promoters. Several studies have demonstrated increases in starch content per seed using endosperm-specific promoters, but other studies have demonstrated an increase in seed number with only marginal impact on seed weight. Potential mechanisms that may be responsible for this paradoxical increase in seed number will also be discussed. Finally, we describe current efforts and future prospects to improve starch yield in cereals. These efforts include further enhancement of starch yield in rice by augmenting the process of ADPglucose transport into amyloplast as well as other enzymes involved in photoassimilate partitioning in seeds.

  10. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    SciTech Connect

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi; Kita, Akiko; Fukami, Takaaki A.; Mio, Toshiyuki; Yamada-Okabe, Hisafumi; Yamada-Okabe, Toshiko; Miki, Kunio

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the product complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.

  11. The Pool of ADP and ATP Regulates Anaerobic Product Formation in Resting Cells of Lactococcus lactis

    PubMed Central

    Palmfeldt, Johan; Paese, Marco; Hahn-Hägerdal, Bärbel; van Niel, Ed W. J.

    2004-01-01

    Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed. PMID:15345435

  12. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde 3-phosphate dehydrogenase in rodent muscle cells.

    PubMed

    Hosokawa, Kaori; Hamada, Yoji; Fujiya, Atsushi; Murase, Masatoshi; Maekawa, Ryuya; Niwa, Yasuhiro; Izumoto, Takako; Seino, Yusuke; Tsunekawa, Shin; Arima, Hiroshi

    2017-02-07

    S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase (PARP) inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independently of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.

  13. A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.R.; Preiss, J. )

    1988-12-01

    A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.

  14. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria.

    PubMed

    Liu, Xiaojian; Li, Feng; Li, Daqi; Ma, Enbo; Zhang, Wenqing; Zhu, Kun Yan; Zhang, Jianzhen

    2013-01-01

    UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA's derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species.

  15. Molecular and Functional Analysis of UDP-N-Acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria

    PubMed Central

    Li, Daqi; Ma, Enbo; Zhang, Wenqing; Zhu, Kun Yan; Zhang, Jianzhen

    2013-01-01

    UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA’s derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species. PMID:23977188

  16. Progress in the function and regulation of ADP-Ribosylation.

    PubMed

    Hottiger, Michael O; Boothby, Mark; Koch-Nolte, Friedrich; Lüscher, Bernhard; Martin, Niall M B; Plummer, Ruth; Wang, Zhao-Qi; Ziegler, Mathias

    2011-05-24

    Adenosine 5'-diphosphate (ADP)-ribosylation is a protein posttranslational modification that is catalyzed by ADP-ribosyltransferases (ARTs), using nicotinamide adenine dinucleotide (NAD(+)) as a substrate. Mono-ribosylation can be extended into polymers of ADP-ribose (PAR). Poly(ADP-ribosyl)polymerase (PARP) 1, the best-characterized cellular enzyme catalyzing this process, is the prototypical member of a family of mono- and poly(ADP-ribosyl)transferases. The physiological consequences of ADP-ribosylation are inadequately understood. PARP2010, the 18th International Conference on ADP-Ribosylation, attracted scientists from all over the world to Zurich, Switzerland. Highlights from this meeting include promising clinical trials with PARP inhibitors and new insights into cell, structural, and developmental biology of ARTs and the (glyco)hydrolase proteins that catalyze de-ADP-ribosylation of mono- or poly-ADP-ribosylated proteins. Moreover, potential links to the NAD-dependent sirtuin family were explored on the basis of a shared dependence on cellular NAD(+) concentrations and the relationship of ADP-ribosylation with intermediary metabolism and cellular energetics.

  17. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene. Progress report, [April 15, 1987--April 14, 1988

    SciTech Connect

    Okita, T.W.

    1988-12-31

    Many agronomically important crops are viewed as significant resources of renewable energy. Overall crop productivity could be increased if the efficiency of photoassimilate conversion into dry matter such as starch were improved in storage tissues. Starch production is controlled by the catalytic activity of ADPglucose pyrophosphorylase in the first step of starch biosynthesis. This research focuses on the genetic structure and molecular mechanisms by which it is controlled during plant development and how it is affected by environmental and hormonal conditions. The current goal is to isolate the genes for this enzyme present in both cereal endosperm and potato tuber tissues, and to elucidate its structure and the controlling sequences responsible for gene expression. The long term goal is the improvement of starch production in storage organs by manipulating this gene so that it encodes an enzyme refractive to inorganic phosphate inhibition.

  18. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase genes. Progress report, [April 15, 1990--April 14, 1991

    SciTech Connect

    Okita, T.W.

    1990-12-31

    The long term goal of this project is to assess the feasibility of increasing the conversion of photosynthate a key regulatory enzyme in starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is primarily regulated by the gene activation, expression, and allosteric regulation of ADPglucose pyrophosphorylase, as well as starch synthase, and branching enzyme. During the last year we have elucidated the structure of both subunits which compose this tetrameric enzyme and determined the temporal and spatial expression of the genes encoding each subunit as well as their correlation to starch biosynthesis. Genomic clones to both subunits have also been isolated and the gene structure of the small subunit determined. Transgenic potato plants have been produced containing deletions of the small subunit promoter. Currently, cis acting elements and their involvement in spatial and temporal expression are under investigation.

  19. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?

    PubMed

    Hottiger, Michael O

    2011-06-06

    ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.

  20. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  1. LACIE ADP/PI joint case study: ADP analysis guidelines. [using ERTS 1 photographs

    NASA Technical Reports Server (NTRS)

    Minter, T. C.

    1974-01-01

    The procedure is described which was used to train automatic data processing (ADP) analysts to process ERTS 1 imagery from a 5 nm by 6 nm area in Delisle, Canada, and to estimate wheat acreage using training fields provided by photointerpreters. The exercise also served to evaluate and test current large area crop inventory experiment (LACIE) procedures.

  2. Ca2+, Mg2+-dependent endonuclease and ADP-ribosylation.

    PubMed

    Yoshihara, K; Tanaka, Y; Kamiya, T

    1983-01-01

    The molecular mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease by ADP-ribosylation was studied by using purified bull seminal plasma Ca2+, Mg2+-dependent endonuclease, endonuclease-stimulating proteins, and poly-(ADP-ribose) polymerase. The activity of an essentially homogeneous preparation of the endonuclease was markedly suppressed by its preincubation with NAD+, poly-(ADP-ribose) polymerase, DNA, and Mg2+. These four components of the incubation mixture were all essential for the suppression of the activity. Analyses of the initial and the chased reaction product by Sephadex G-100 column chromatography and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that Ca2+, Mg2+-dependent endonuclease was ADP-ribosylated during the incubation and its activity was markedly inhibited by the elongation of the ADP-ribose polymer covalently attached to the endonuclease. When the suppressed enzymes were mildly treated with an alkaline pH of 10.0, the activity was restored almost to the level of the unmodified control sample. These facts indicate that the linkage between the enzyme and poly(ADP-ribose) is hydrolyzed at this pH, and that the liberated polymer itself does not appreciably affect the endonuclease activity. These results also suggest that an electric repulsion between negative charges on DNA and poly(ADP-ribose) attached to Ca2+, Mg2+-dependent endonuclease is the basis for the observed suppression of the enzyme by ADP-ribosylation. Though histone H2B and H1 are shown to be as good endonuclease-stimulators (1) as they are good acceptors of ADP-ribose in poly(ADP-ribose) polymerase reaction (2), ADP-ribosylation of these two proteins did not affect their endonuclease-stimulating ability appreciably, at least under the conditions used.

  3. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  4. ADP-MAS: A Math and Science Curriculum.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This curriculum, Academia del Pueblo-Math and Science (ADP-MAS), is an outgrowth of the National Council of La Raza's Project EXCEL, a supplemental educational enrichment model for at-risk Latino students to be operated by Latino community-based organizations or public institutions, including schools with substantial Latino populations. ADP-MAS…

  5. A glgC gene essential only for the first of two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2).

    PubMed Central

    Martin, M C; Schneider, D; Bruton, C J; Chater, K F; Hardisson, C

    1997-01-01

    By using a PCR approach based on conserved regions of ADP-glucose pyrophosphorylases, a glgC gene was cloned from Streptomyces coelicolor A3(2). The deduced glgC gene product showed end-to-end relatedness to other bacterial ADP-glucose pyrophosphorylases. The glgC gene is about 1,000 kb from the leftmost chromosome end and is not closely linked to either of the two glgB genes of S. coelicolor, which encode glycogen branching enzymes active in different locations in differentiated colonies. Disruption of glgC eliminated only the first of two temporal peaks of ADP-glucose pyrophosphorylase activity and glycogen accumulation and prevented cytologically observable glycogen accumulation in the substrate mycelium of colonies (phase I), while glycogen deposition in young spore chains (phase II) remained readily detectable. The cloned glgC gene therefore encodes an ADP-glucose pyrophosphorylase essential only for phase I (and it is therefore named glgCI). A second, phase II-specific, glgC gene should also exist in S. coelicolor, though it was not detected by hybridization analysis. PMID:9401038

  6. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  7. Chromosomal protein poly(ADP-ribosyl)ation in pancreatic nucleosomes.

    PubMed

    Aubin, R J; Dam, V T; Miclette, J; Brousseau, Y; Poirier, G G

    1982-03-01

    When pancreatic chromatin fragments were prepared and resolved in the presence of 80 mM NaCl, endogenous poly(ADP-ribose) polymerase activity was found to be maximal in nucleosome periodicities of four to five units and did not respond to any further increases in nucleosomal architecture. Furthermore, in nucleosome complexities spanning 1 through 14 and over unit lengths, polyacrylamide gel electrophoresis on acid-urea and acid-urea-Triton gels has shown pancreatic histone H1 to be the only actively ADP-ribosylated histone species. The extent of ADP-ribosylation of histone H1 was also demonstrated to retard the protein's mobility in acid-urea, acid-urea-Triton, and lithium dodecyl sulfate polyacrylamide gels and to consist of at least 12 distinct ADP-ribosylated species extractable in all nucleosome complexities studied. Finally, extraction and subsequent electrophoresis of total chromosomal proteins in the presence of lithium dodecyl sulfate also evidenced heavy ADP-ribosylation at the level of nonhistone chromosomal proteins of the high mobility group comigrating in the core histone region, as well as in the topmost region of the gels where poly(ADP-ribose) polymerase was found to form a poly(ADP-ribosyl)ated aggregate.

  8. Glycation and glycoxidation of histones by ADP-ribose.

    PubMed

    Cervantes-Laurean, D; Jacobson, E L; Jacobson, M K

    1996-05-03

    The reaction of long lived proteins with reducing sugars has been implicated in the pathophysiology of aging and age-related diseases. A likely intranuclear source of reducing sugar is ADP-ribose, which is generated following DNA damage from the turnover of ADP-ribose polymers. In this study, ADP-ribose has been shown to be a potent histone glycation and glycoxidation agent in vitro. Incubation of ADP-ribose with histones H1, H2A, H2B, and H4 at pH 7.5 resulted in the formation of ketoamine glycation conjugates. Incubation of histone H1 with ADP-ribose also rapidly resulted in the formation of protein carboxymethyllysine residues, protein-protein cross-links, and highly fluorescent products with properties similar to the advanced glycosylation end product pentosidine. The formation of glycoxidation products was related to the degradation of ketoamine glycation conjugates by two different pathways. One pathway resulted in the formation of protein carboxymethyllysine residues and release of an ADP moiety containing a glyceric acid fragment. A second pathway resulted in the release of ADP, and it is postulated that this pathway is involved in the formation of histone-histone cross-links and fluorescent advanced glycosylation end products.

  9. Creatine kinase inhibits ADP-induced platelet aggregation

    PubMed Central

    Horjus, D. L.; Nieuwland, R.; Boateng, K. B.; Schaap, M. C. L.; van Montfrans, G. A.; Clark, J. F.; Sturk, A.; Brewster, L. M.

    2014-01-01

    Bleeding risk with antiplatelet therapy is an increasing clinical challenge. However, the inter-individual variation in this risk is poorly understood. We assessed whether the level of plasma creatine kinase, the enzyme that utilizes ADP and phosphocreatine to rapidly regenerate ATP, may modulate bleeding risk through a dose-dependent inhibition of ADP-induced platelet activation. Exogenous creatine kinase (500 to 4000 IU/L, phosphocreatine 5 mM) added to human plasma induced a dose-dependent reduction to complete inhibition of ADP-induced platelet aggregation. Accordingly, endogenous plasma creatine kinase, studied in 9 healthy men (mean age 27.9 y, SE 3.3; creatine kinase 115 to 859 IU/L, median 358), was associated with reduced ADP-induced platelet aggregation (Spearman's rank correlation coefficient, −0.6; p < 0.05). After exercise, at an endogenous creatine kinase level of 4664, ADP-induced platelet aggregation was undetectable, normalizing after rest, with a concomitant reduction of creatine kinase to normal values. Thus, creatine kinase reduces ADP-induced platelet activation. This may promote bleeding, in particular when patients use platelet P2Y12 ADP receptor inhibitors. PMID:25298190

  10. Imaging changes in the cytosolic ATP-to-ADP ratio

    PubMed Central

    Tantama, Mathew; Yellen, Gary

    2015-01-01

    Adenosine triphosphate (ATP) is a central metabolite that plays fundamental roles as an energy transfer molecule, a phosphate donor, and a signaling molecule inside cells. The phosphoryl group transfer potential of ATP provides a thermodynamic driving force for many metabolic reactions, and phosphorylation of both small metabolites and large proteins can serve as a regulatory modification. In the process of phosphoryl transfer from ATP, the diphosphate ADP is produced, and as a result, the ATP-to-ADP ratio is an important physiological control parameter. The ATP-to-ADP ratio is directly proportional to cellular energy charge and phosphorylation potential. Furthermore, several ATP-dependent enzymes and signaling proteins are regulated by ADP, and their activation profiles are a function of the ATP-to-ADP ratio. Finally, regeneration of ATP from ADP can serve as an important readout of energy metabolism and mitochondrial function. We therefore developed a genetically-encoded fluorescent biosensor tuned to sense ATP-to-ADP ratios in the physiological range of healthy mammalian cells. Here we present a protocol for using this biosensor to visualize energy status using live-cell fluorescence microscopy. PMID:25416365

  11. Type 2 Diabetes and ADP Receptor Blocker Therapy

    PubMed Central

    Samoš, Matej; Fedor, Marián; Kovář, František; Mokáň, Michal; Bolek, Tomáš; Galajda, Peter; Kubisz, Peter; Mokáň, Marián

    2016-01-01

    Type 2 diabetes (T2D) is associated with several abnormalities in haemostasis predisposing to thrombosis. Moreover, T2D was recently connected with a failure in antiplatelet response to clopidogrel, the most commonly used ADP receptor blocker in clinical practice. Clopidogrel high on-treatment platelet reactivity (HTPR) was repeatedly associated with the risk of ischemic adverse events. Patients with T2D show significantly higher residual platelet reactivity on ADP receptor blocker therapy and are more frequently represented in the group of patients with HTPR. This paper reviews the current knowledge about possible interactions between T2D and ADP receptor blocker therapy. PMID:26824047

  12. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  13. Arginine-Specific Mono ADP-Ribosylation In Vitro of Antimicrobial Peptides by ADP-Ribosylating Toxins

    PubMed Central

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues. PMID:22879887

  14. Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins.

    PubMed

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues.

  15. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei.

    PubMed

    Peña-Diaz, Priscila; Pelosi, Ludovic; Ebikeme, Charles; Colasante, Claudia; Gao, Fei; Bringaud, Frederic; Voncken, Frank

    2012-12-07

    Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u(-) revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.

  16. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice.

    PubMed

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-02-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 (-) and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice.

  17. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice

    PubMed Central

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-01-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 – and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice. PMID:25399020

  18. ADP-ribosylation of proteins: Enzymology and biological significance

    SciTech Connect

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probing of proteins involved in signal transduction and protein biosynthesis.

  19. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  20. Structure-based Mechanism of ADP-ribosylation by Sirtuins

    SciTech Connect

    Hawse, William F.; Wolberger, Cynthia

    2009-12-01

    Sirtuins comprise a family of enzymes found in all organisms, where they play a role in diverse processes including transcriptional silencing, aging, regulation of transcription, and metabolism. The predominant reaction catalyzed by these enzymes is NAD{sup +}-dependent lysine deacetylation, although some sirtuins exhibit a weaker ADP-ribosyltransferase activity. Although the Sir2 deacetylation mechanism is well established, much less is known about the Sir2 ADP-ribosylation reaction. We have studied the ADP-ribosylation activity of a bacterial sirtuin, Sir2Tm, and show that acetylated peptides containing arginine or lysine 2 residues C-terminal to the acetyl lysine, the +2 position, are preferentially ADP-ribosylated at the +2 residue. A structure of Sir2Tm bound to the acetylated +2 arginine peptide shows how this arginine could enter the active site and react with a deacetylation reaction intermediate to yield an ADP-ribosylated peptide. The new biochemical and structural studies presented here provide mechanistic insights into the Sir2 ADP-ribosylation reaction and will aid in identifying substrates of this reaction.

  1. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  2. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  3. Growth and wax ester production of an Acinetobacter baylyi ADP1 mutant deficient in exopolysaccharide capsule synthesis.

    PubMed

    Kannisto, Matti; Efimova, Elena; Karp, Matti; Santala, Ville

    2017-01-01

    Acinetobacter baylyi ADP1 naturally produces wax esters that could be used as a raw material in industrial applications. We attempted to improve wax ester yield of A. baylyi ADP1 by removing rmlA, a gene involved in exopolysaccharide production. Growth rate, biomass formation and wax ester yield on 4-hydroxybenzoate were not affected, but the rmlA (-) strain grew slower on acetate, while reaching similar biomass and wax ester yield. The rmlA (-) cells had malformed shape and large size and grew poorly on glucose without expression of the gene for pyruvate kinase (pykF) from Escherichia coli. The pykF-expressing rmlA (-) strain had similar growth rate, lowered biomass formation and improved wax ester production on glucose as compared to the wild-type strain expressing pykF. Cultivation of the pykF-expressing rmlA (-) strain on an elevated glucose concentration in a medium supplemented with amino acids resulted in doubled molar wax ester yield and acetate production.

  4. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    PubMed Central

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  5. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    PubMed

    Li, Ruixi; Li, Jieru; Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.

  6. Identification of the platelet ADP receptor targeted by antithrombotic drugs.

    PubMed

    Hollopeter, G; Jantzen, H M; Vincent, D; Li, G; England, L; Ramakrishnan, V; Yang, R B; Nurden, P; Nurden, A; Julius, D; Conley, P B

    2001-01-11

    Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb-IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2Y(ADP), P2Y(AC), P2Ycyc or P2T(AC)) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the Gi-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.

  7. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  8. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  9. ADP Bid Protests: Better Disclosure and Accountability of Settlements Needed

    DTIC Science & Technology

    1990-03-01

    but Few A With Mosey S -7 The.Census Bureaus expeice and concern about ossCA’s bid 1rotest procedures prompted.a DN Aft•ment of Commerce official in...GAO/GGD-S-13 ADP Bid Protest Settlements * 4 r 0 @ Appendix I ADP Bid Protests Fil With the GSBCA and£ G O From April to September 30, 18N General...J. Socolar Special Assistant to the Comptroller General General Accounting Office 蚉 G Street, N.V. Vashington, D.C. 20548 Subject: Analysis of

  10. The alpha-glycosidic bonds of poly(ADP-ribose) are acid-labile.

    PubMed

    Panzeter, P L; Zweifel, B; Althaus, F R

    1992-04-15

    The poly(ADP-ribosyl)ation system of higher eukaryotes produces multiple ADP-ribose polymers of distinct sizes which exhibit different binding affinities for histones. Although precipitation with trichloroacetic acid (TCA) is the standard procedure for isolation of poly(ADP-ribose) from biological material, we show here that poly(ADP-ribose) is not stable under acidic conditions. Storage of poly(ADP-ribose) as TCA pellets results in acid hydrolysis of polymers, the extent of which is dependent on storage time and temperature. The alpha-glycosidic, inter-residue bonds are the preferred sites of attack, thus reducing polymer sizes by integral numbers of ADP-ribose to yield artefactually more and smaller polymers than originally present. Therefore, poly(ADP-ribosyl)ation studies involving TCA precipitation, histone extraction with acids, or acidic incubations of ADP-ribose polymers must account for the impact of acids on resulting polymer populations.

  11. Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE).

    PubMed

    Nwoba, Emeka Godfrey; Moheimani, Navid Reza; Ubi, Benjamin Ewa; Ogbonna, James Chukwuma; Vadiveloo, Ashiwin; Pluske, John R; Huisman, John Marinus

    2017-03-01

    Environmental consequences of high productivity piggeries are significant and can result in negative environmental impacts, hence bioremediation techniques (in particular using macroalgae) are therefore of great interest. Here, the growth potential of several freshwater macroalgae in anaerobic digestion piggery effluent (ADPE), their nutrient removal rates and biochemical composition of the biomass were investigated under outdoor climatic conditions. A consortium of two macroalgae, Rhizoclonium sp. and Ulothrix sp. was isolated and could efficiently grow in the ADPE. Maximum ammonium removal rate (30.6±6.50mg NH4(+)-NL(-1)d(-1)) was achieved at ADPE concentration equivalent to 248mgNH4(+)-NL(-1). Mean biomass productivity of 31.1±1.14g ash-free dry weight (AFDW) m(-2)d(-1) was achieved. Total carbohydrate and protein contents ranged between 42.8-54.8 and 43.4-45.0% AFDW, respectively, while total lipid content was very low. The study indicates the potential use of this macroalgal consortium for treating ADPE as well as source of animal feed production.

  12. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  13. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  14. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  15. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... those which result in effective programs or in cost effective reductions in errors and improvements in...) transferable system is incompatible with it; the State agency's data base management software is incompatible with the transferable system; the State agency's ADP experts are not familiar with the...

  16. 7 CFR 272.10 - ADP/CIS Model Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM REQUIREMENTS FOR PARTICIPATING STATE AGENCIES § 272.10 ADP/CIS... automate their food stamp program operations and computerize their systems for obtaining,...

  17. ADP correspondence system: Unsolicited proposal evaluation tracking application

    NASA Technical Reports Server (NTRS)

    Greene, W. A.; Goodwin, D. J.

    1976-01-01

    A complete description of a correspondence control system, designed to be used by non-ADP clerical personnel is provided. In addition to operating instructions, sufficient design and conceptual information is provided to allow use or adaption of the system in related applications. The complete COBOL program and documentation are available.

  18. A genetically encoded fluorescent reporter of ATP/ADP ratio

    PubMed Central

    Berg, Jim; Hung, Yin Pun; Yellen, Gary

    2008-01-01

    A fluorescent sensor of adenylate nucleotides was constructed by combining a circularly permuted variant of green fluorescent protein with a bacterial regulatory protein, GlnK1, from Methanococcus jannaschii. The affinity for Mg-ATP is below 100 nM, as seen for the other members of the bacterial PII regulator family – a surprisingly high affinity given normal intracellular [ATP] in the millimolar range. ADP binds to the same site, competing with Mg-ATP but producing a smaller change in fluorescence. With normal physiological concentrations of ATP and ADP, the binding site is saturated, but competition between the two substrates causes the sensor to behave as a nearly ideal reporter of the ATP/ADP concentration ratio. This principle for sensing the ratio of two analytes by competition at a high affinity site probably underlies the normal functioning of PII regulatory proteins. The engineered sensor, Perceval, can be used to monitor the ATP/ADP ratio during live cell imaging. PMID:19122669

  19. American Diploma Project (ADP) End-of-Course Exams: 2010 Annual Report

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    To assess the raised expectations of college and career readiness for all students, a group of American Diploma Project (ADP) Network states formed the ADP Assessment Consortium in 2005. The Consortium created Algebra I and II end-of-course exams, based in large part on Achieve's ADP mathematics benchmarks, which would provide an honest assessment…

  20. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups

    PubMed Central

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B.; Mackey, Michael C.; Lauzon, Anne-Marie

    2015-01-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo—suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  1. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups.

    PubMed

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B; Mackey, Michael C; Lauzon, Anne-Marie

    2015-02-03

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.

  2. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

    PubMed

    Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M

    2014-07-15

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.

  3. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    PubMed Central

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  4. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.

    PubMed

    Han, Seungil; Tainer, John A

    2002-02-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing the NAD-binding pocket formed by the two perpendicular beta-sheet cores has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosytransferases are characterized by conserved Arg and catalytic Glu residues. Structural and mutagenic studies of the NAD-binding core of a binary toxin and a C3-like toxin identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD-binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD-binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  5. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

    PubMed Central

    D'Amours, D; Desnoyers, S; D'Silva, I; Poirier, G G

    1999-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism. PMID:10455009

  6. Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonas sp. Strain ADP

    PubMed Central

    Martinez, Betsy; Tomkins, Jeffrey; Wackett, Lawrence P.; Wing, Rod; Sadowsky, Michael J.

    2001-01-01

    The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPβ plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how

  7. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  8. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  9. Comparative Analysis of Government and Private Sector ADP Acquisition.

    DTIC Science & Technology

    1984-03-01

    perscnnel, procedures, and equipment (including ADPE) which is designed , built, operated and maintained to collect, process, store, retrieve, and display...Automatic Data Ptrocessing and Teleccmmunica-ticns Management Policy), FPMR 101-36 (Autcmatic Data Processing aanagement), and FPMR 101-37...Circular A-109 within DOC. It was initially intended tc apply to those programs designated by the Secretary cf 26 Defenss as "M!a~cr systems Acqui’Siticn

  10. Magnesium Modulates Actin Binding and ADP Release in Myosin Motors*

    PubMed Central

    Swenson, Anja M.; Trivedi, Darshan V.; Rauscher, Anna A.; Wang, Yuan; Takagi, Yasuharu; Palmer, Bradley M.; Málnási-Csizmadia, András; Debold, Edward P.; Yengo, Christopher M.

    2014-01-01

    We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, β-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg2+-dependent manner (0.3–9.0 mm free Mg2+) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg2+ in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg2+ in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg2+ coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg2+ concentrations, demonstrating that the ADP release rate constant is slowed by Mg2+ in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg2+ reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg2+ inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg2+-dependent alterations in actin binding. Overall, our results suggest that Mg2+ reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins. PMID:25006251

  11. Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    PubMed Central

    Mégnin-Chanet, Frédérique; Bollet, Marc A.

    2010-01-01

    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated. PMID:20725763

  12. Noncovalent protein interaction with poly(ADP-ribose).

    PubMed

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  13. ADP-ribosylation of transducin by pertussis toxin

    SciTech Connect

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-11-05

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is (TSP)ADP-ribosylated by pertussis toxin and (TSP)NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and TS kDa. The amino terminus of both 38- and TS-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The TS-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of (TSP)ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased (TSP)ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed (TSP)ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma.

  14. Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Herbst, Eric A F; Ritchie, Ian R; Beaudoin, Marie-Soleil; Smith, Jeffrey C; Neufer, P Darrell; Wright, David C; Holloway, Graham P

    2013-12-01

    Mitochondrial dysfunction and reactive oxygen species (ROS) have been implicated in the aetiology of skeletal muscle insulin resistance, although there is considerable controversy regarding these concepts. Mitochondrial function has been traditionally assessed in the presence of saturating ADP, but ATP turnover and the resultant ADP is thought to limit respiration in vivo. Therefore, we investigated the potential link between submaximal ADP-stimulated respiration rates, ROS generation and skeletal muscle insulin sensitivity in a model of type 2 diabetes mellitus, the ZDF rat. Utilizing permeabilized muscle fibres we observed that submaximal ADP-stimulated respiration rates (250-2000 μm ADP) were lower in ZDF rats than in lean controls, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transport chain function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with elevated submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. Together, these data suggest that mitochondrial dysfunction is present in skeletal muscle insulin resistance when assessed at submaximal ADP concentrations and that ADP dynamics may influence skeletal muscle insulin sensitivity through alterations in the propensity for mitochondrial ROS emission.

  15. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism

    PubMed Central

    2014-01-01

    Background AdpA is a key transcriptional regulator involved in the complex growth cycle of Streptomyces. Streptomyces are Gram-positive bacteria well-known for their production of secondary metabolites and antibiotics. Most work on AdpA has been in S. griseus, and little is known about the pathways it controls in other Streptomyces spp. We recently discovered interplay between ClpP peptidases and AdpA in S. lividans. Here, we report the identification of genes directly regulated by AdpA in S. lividans. Results Microarray experiments revealed that the expression of hundreds of genes was affected in a S. lividans adpA mutant during early stationary phase cultures in YEME liquid medium. We studied the expression of the S. lividans AdpA-regulated genes by quantitative real-time PCR analysis after various times of growth. In silico analysis revealed the presence of potential AdpA-binding sites upstream from these genes; electrophoretic mobility shift assays indicated that AdpA binds directly to their promoter regions. This work identifies new pathways directly controlled by AdpA and that are involved in S. lividans development (ramR, SLI7885 also known as hyaS and SLI6586), and primary (SLI0755-SLI0754 encoding CYP105D5 and Fdx4) or secondary (cchA, cchB, and hyaS) metabolism. Conclusions We characterised six S. lividans AdpA-dependent genes whose expression is directly activated by this pleiotropic regulator. Several of these genes are orthologous to bldA-dependent genes in S. coelicolor. Furthermore, in silico analysis suggests that over hundred genes may be directly activated or repressed by S. lividans AdpA, although few have been described as being part of any Streptomyces AdpA regulons. This study increases the number of known AdpA-regulated pathways in Streptomyces spp. PMID:24694298

  16. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    PubMed

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  17. Metabolome response to glucose in the β-cell line INS-1 832/13.

    PubMed

    Lorenz, Matthew A; El Azzouny, Mahmoud A; Kennedy, Robert T; Burant, Charles F

    2013-04-12

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is triggered by metabolism of the sugar to increase ATP/ADP ratio that blocks the KATP channel leading to membrane depolarization and insulin exocytosis. Other metabolic pathways believed to augment insulin secretion have yet to be fully elucidated. To study metabolic changes during GSIS, liquid chromatography with mass spectrometry was used to determine levels of 87 metabolites temporally following a change in glucose from 3 to 10 mM glucose and in response to increasing concentrations of glucose in the INS-1 832/13 β-cell line. U-[(13)C]Glucose was used to probe flux in specific metabolic pathways. Results include a rapid increase in ATP/ADP, anaplerotic tricarboxylic acid cycle flux, and increases in the malonyl CoA pathway, support prevailing theories of GSIS. Novel findings include that aspartate used for anaplerosis does not derive from the glucose fuel added to stimulate insulin secretion, glucose flux into glycerol-3-phosphate, and esterification of long chain CoAs resulting in rapid consumption of long chain CoAs and de novo generation of phosphatidic acid and diacylglycerol. Further, novel metabolites with potential roles in GSIS such as 5-aminoimidazole-4-carboxamide ribotide (ZMP), GDP-mannose, and farnesyl pyrophosphate were found to be rapidly altered following glucose exposure.

  18. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  19. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-08-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  20. Soybean cotyledon starch metabolism is sensitive to altered gravity conditions

    NASA Technical Reports Server (NTRS)

    Brown, C. S.; Piastuch, W. C.; Knott, W. M.

    1994-01-01

    We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.

  1. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT).

    PubMed

    Civelek, V N; Deeney, J T; Kubik, K; Schultz, V; Tornheim, K; Corkey, B E

    1996-05-01

    Stimulation of insulin release by glucose requires increased metabolism of glucose and a rise in cytosolic free Ca2+ in the pancreatic beta-cell. It is accompanied by increases in respiratory rate, pyridine and flavin nucleotide reduction state, intracellular pH and the ATP/ADP ratio. To test alternative proposals of the regulatory relationships among free Ca2+, mitochondrial metabolism and cellular energy state, we determined the temporal sequence of these metabolic and ionic changes following addition of glucose to clonal pancreatic beta-cells (HIT). Combined measurements of the native fluorescence of reduced pyridine nucleotides and oxidized flavin, intracellular pH, and free Ca2+ were performed together with simultaneous measurement of O2 tension or removal of samples for assay of the ATP/ADP ratio. The initial changes were detected in three phases. First, decreases occurred in the ATP/ADP ratio (<3 s) and increases in pyridine (2 +/- 1 s) and flavin (2 +/- 1 s) nucleotide reduction. Next, increases in the O2 consumption rate (20 +/- 5 s), the ATP/ADP ratio (29 +/- 12 s) and internal pH (48 +/- 5 s) were observed. Finally, cytosolic free Ca2+ rose (114 +/- 10 s). Maximal changes in the ATP/ADP ratio, O2 consumption and pyridine and flavin nucleotide fluorescence preceded the beginning of the Ca2+ change. These relationships are consistent with a model in which phosphorylation of glucose is the initial event which generates the signals that lead to an increase in respiration, a rise in the ATP/ADP ratio and finally influx of Ca2+. Our results indicate that Ca2+ does not function as the initiator of increased mitochondrial respiration.

  2. Investigation of the action of poly(ADP-ribose)-synthesising enzymes on NAD+ analogues

    PubMed Central

    Wallrodt, Sarah; Simpson, Edward L

    2017-01-01

    ADP-ribosyl transferases with diphtheria toxin homology (ARTDs) catalyse the covalent addition of ADP-ribose onto different acceptors forming mono- or poly(ADP-ribos)ylated proteins. Out of the 18 members identified, only four are known to synthesise the complex poly(ADP-ribose) biopolymer. The investigation of this posttranslational modification is important due to its involvement in cancer and other diseases. Lately, metabolic labelling approaches comprising different reporter-modified NAD+ building blocks have stimulated and enriched proteomic studies and imaging applications of ADP-ribosylation processes. Herein, we compare the substrate scope and applicability of different NAD+ analogues for the investigation of the polymer-synthesising enzymes ARTD1, ARTD2, ARTD5 and ARTD6. By varying the site and size of the NAD+ modification, suitable probes were identified for each enzyme. This report provides guidelines for choosing analogues for studying poly(ADP-ribose)-synthesising enzymes. PMID:28382184

  3. Immunoaffinity fractionation of the poly(ADP-ribosyl)ated domains of chromatin.

    PubMed Central

    Malik, N; Miwa, M; Sugimura, T; Thraves, P; Smulson, M

    1983-01-01

    Antibody to poly(ADP-ribose) has been covalently coupled to Sepharose and utilized to isolate selectively oligonucleosomes undergoing the poly(ADP-ribosyl)ation reaction from the bulk of chromatin. Approximately 12% of the unfractionated oligonucleosomes were bound to the immunoaffinity column and these represented essentially 100% of the original poly(ADP-ribosyl)ated nucleosomal species in the unfractionated chromatin. Poly(ADP-ribosyl)ated chromatin was not bound by preimmune IgG columns. KSCN eluted the modified nucleosomes in the form of nucleoprotein complexes. The eluted chromatin components were shown to contain poly(ADP-ribosyl)ated histones as well as automodified poly(ADP-ribose) polymerase. By using [3H]lysine- and [3H]arginine-labeled chromatin, it was shown that the poly-(ADP-ribosyl)ated histones, attached to stretches of oligonucleosomes bound to the column, had a 6-fold enrichment of the modification compared to histones of the unfractionated chromatin. This indicated that non-poly(ADP-ribosyl)ated nucleosomes, connected and proximal to the modified regions, were copurified by this procedure. This allowed characterization of the oligonucleosomal DNA around poly(ADP-ribosyl)ated chromatin domains to be compared with the unbound bulk chromatin. The data indicated that immunofractionated poly(ADP-ribosyl)ated oligonucleosomal DNA contained significant amounts of internal single-strand breaks compared with bulk chromatin. The bound nucleo-protein complexes were found to be enzymatically active for poly(ADP-ribose) polymerase after elution from the antibody column. In contrast, the unbound nucleosomes, representing 90% of the unfractionated chromatin, were totally inactive in the poly(ADP-ribosyl)ation reaction. Images PMID:6573670

  4. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    SciTech Connect

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J.

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  5. NAD-dependent ADP-ribosylation of the human antimicrobial and immune-modulatory peptide LL-37 by ADP-ribosyltransferase-1.

    PubMed

    Picchianti, Monica; Russo, Carla; Castagnini, Marta; Biagini, Massimiliano; Soldaini, Elisabetta; Balducci, Enrico

    2015-04-01

    LL-37 is a cationic peptide belonging to the cathelicidin family that has antimicrobial and immune-modulatory properties. Here we show that the mammalian mono-ADP-ribosyltransferase-1 (ART1), which selectively transfers the ADP-ribose moiety from NAD to arginine residues, ADP-ribosylates LL-37 in vitro. The incorporation of ADP-ribose was first observed by Western blot analysis and then confirmed by MALDI-TOF. Mass-spectrometry showed that up to four of the five arginine residues present in LL-37 could be ADP-ribosylated on the same peptide when incubated at a high NAD concentration in the presence of ART1. The attachment of negatively charged ADP-ribose moieties considerably alters the positive charge of the arginine residues thus reducing the cationicity of LL-37. The cationic nature of LL-37 is key for its ability to interact with cell membranes or negatively charged biomolecules, such as DNA, RNA, F-actin and glycosaminoglycans. Thus, the ADP-ribosylation of LL-37 is expected to have the potential to modulate LL-37 biological activities in several physiological and pathological settings.

  6. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    PubMed

    Tucker, Julie A; Bennett, Neil; Brassington, Claire; Durant, Stephen T; Hassall, Giles; Holdgate, Geoff; McAlister, Mark; Nissink, J Willem M; Truman, Caroline; Watson, Martin

    2012-01-01

    Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  7. The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    PubMed Central

    Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.

    2016-01-01

    ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838

  8. The rise and fall of poly(ADP-ribose): An enzymatic perspective.

    PubMed

    Pascal, John M; Ellenberger, Tom

    2015-08-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.

  9. The Rise and Fall of Poly (ADP-ribose). An Enzymatic Perspective

    PubMed Central

    Pascal, John M.; Ellenberger, Tom

    2015-01-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. PMID:25963443

  10. The actin-ADP-ribosylating Clostridium botulinum C2 toxin.

    PubMed

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is the prototype of actin-ADP-ribosylating toxins. The toxin consists of the enzyme component C2I and the separated binding/translocation component C2II. C2II is proteolytically activated to form heptamers, which bind the enzyme component. After endocytosis of the receptor-toxin complex, the enzyme component enters the cytosol from an acidic endosomal compartment to modify G-actin at arginine177. Recent data indicate that chaperons are involved in the translocation process of the toxin.

  11. An ecto-enzyme from Sulfolobus acidocaldarius strain 7 which catalyzes hydrolysis of inorganic pyrophosphate, ATP, and ADP: purification and characterization.

    PubMed

    Amano, T; Wakagi, T; Oshima, T

    1993-09-01

    Membranes of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium, show novel enzymatic activities to hydrolyze PPi, ATP, and ADP at an optimal pH of 3, equal to the growth optimum. The activity increased by about 2-fold on addition of PPi and/or Pi to the growth medium, when yeast extract and casamino acids were removed. The enzyme which hydrolyzes PPi at pH 3 was solubilized and purified by successive chromatographies. The final preparation showed a 26 kDa single band on SDS-PAGE, and a molecular mass of 35 kDa on gel permeation chromatography. The Km and Vmax for PPi were 0.16 mM and 33 mumol Pi released/min/mg at 55 degrees C. ATP and ADP were also good substrates. Divalent cations were not essential for activity. Substrate inhibition at more than 5 mM PPi, ATP or ADP was observed. AMP, glucose-6-phosphate, and p-nitrophenyl phosphate were not hydrolyzed at all. The activity was 4-fold stimulated by addition of the lipid fraction extracted from the organism.

  12. Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion.

    PubMed

    Pizarro-Delgado, Javier; Fasciani, Ilaria; Temperan, Ana; Romero, María; González-Nieto, Daniel; Alonso-Magdalena, Paloma; Nualart-Marti, Anna; Estil'les, Elisabet; Paul, David L; Martín-del-Río, Rafael; Montanya, Eduard; Solsona, Carles; Nadal, Angel; Barrio, Luis Carlos; Tamarit-Rodríguez, J

    2014-06-15

    The existence of functional connexin36 (Cx36) hemichannels in β-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 μM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC₅₀ ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet β-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.

  13. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  14. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase.

    PubMed

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.

  15. Frequency doubling of copper lasers using temperature-tuned ADP

    SciTech Connect

    Molander, W.A.

    1994-03-01

    The ability to generate high average power uv at 255 nm by frequency doubling the green line (510.6 nm) of copper lasers would greatly extend the utility of copper lasers. Material processing and microlithography are two areas of interest. The frequency-doubled copper laser could replace the KrF excimer laser, which has a similar wavelength (248 nm), in some applications. The frequency-doubled copper laser has a narrow linewidth and excellent beam quality at a competitive cost. Other attractive features are high reliability, low operating costs, and the absence of toxic gases. This paper will report recent progress in high-efficiency, high-average-power harmonic generation of the copper laser green line using noncritical phase matching in ADP. Frequency doubling of the yellow line (578.2 nm) and sum-frequency mixing of the two lines are also of interest. These processes, however, cannot be phase-matched in ADP and, therefore, will not be discussed here. The results reported and the issues identified here would be important in these other processes and also in many other frequency conversion schemes in the uv such as 4{omega} conversion of Nd{sup 3+}:YAG lasers.

  16. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  17. Metabolic roles of poly(ADP-ribose) polymerases.

    PubMed

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  18. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  19. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  20. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  1. UDP-sugar pyrophosphorylase is essential for arabinose and xylose recycling, and is required during vegetative and reproductive growth in Arabidopsis.

    PubMed

    Geserick, Claudia; Tenhaken, Raimund

    2013-04-01

    Numerous nucleotide sugars are needed in plants to synthesize cell wall polymers and glycoproteins. The de novo synthesis of nucleotide sugars is of major importance. During growth, however, some polymers are broken down to monosaccharides. Reactivation of these sugars into nucleotide sugars occurs in two steps: first, by a substrate-specific sugar-1-kinase and, second, by UDP-sugar-pyrophosphorylase (USP), which has broad substrate specificity. A knock-out of the USP gene results in non-fertile pollen. By using various genetic complementation approaches we obtained a strong (>95%) knock-down line in USP that allowed us to investigate the physiological role of the enzyme during the life cycle. Mutant plants show an arabinose reduction in the cell wall, and accumulate mainly two sugars, arabinose and xylose, in the cytoplasm. The arabinogalactanproteins in usp mutants show no significant reduction in size. USP is also part of the myo-inositol oxygenation pathway to UDP-glucuronic acid; however, free glucuronic acid does not accumulate in cells, suggesting alternative conversion pathways of this monosaccharide. The knock-down plants are mostly sterile because of the improper formation of anthers and pollen sacks.

  2. Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

    PubMed Central

    Carss, Keren J.; Stevens, Elizabeth; Foley, A. Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A.; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G.; Abdenur, Jose E.; Grosmann, Carla M.; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B.; Young, Helen K.; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G.; North, Kathryn N.; Hoffman, Eric; Stemple, Derek L.; Hurles, Matthew E.; van Bokhoven, Hans; Campbell, Kevin P.; Lefeber, Dirk J.; Lin, Yung-Yao; Muntoni, Francesco

    2013-01-01

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. PMID:23768512

  3. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  4. Molecular Toxicology of Chromatin: The Role of Poly (ADP-Ribose) in Gene Control

    DTIC Science & Technology

    1985-12-15

    mechanism is operative from NOD either directly ADY-ribosy- latintr "acceptor" proteins (%.g., hiatone), a reaction presumably catalyzed by the...24 Figures 1through 5. .. ............................. .. .. .. .. .........25-29’ 2. Mechanisms of’Poly(ADP-Ribose) Poiymerase Catalysis...Figures 1 through 3 .. ...................... ...........................46-48 3. Mechanism of inactivation of Poly(ADP-Ribose) Polymerase of Rat Liver

  5. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  6. 45 CFR 95.625 - Increased FFP for certain ADP systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (FFP) Specific Conditions for Ffp § 95.625 Increased FFP for certain ADP systems. (a) General. FFP is available at enhanced matching rates for the development of individual or integrated systems and the... 45 Public Welfare 1 2010-10-01 2010-10-01 false Increased FFP for certain ADP systems....

  7. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    SciTech Connect

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin; Roach, Peter J.

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  8. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.

  9. Purinergic inhibition of glucose transport in cardiomyocytes.

    PubMed

    Fischer, Y; Becker, C; Löken, C

    1999-01-08

    ATP is known to act as an extracellular signal in many organs. In the heart, extracellular ATP modulates ionic processes and contractile function. This study describes a novel, metabolic effect of exogenous ATP in isolated rat cardiomyocytes. In these quiescent (i.e. noncontracting) cells, micromolar concentrations of ATP depressed the rate of basal, catecholamine-stimulated, or insulin-stimulated glucose transport by up to 60% (IC50 for inhibition of insulin-dependent glucose transport, 4 microM). ATP decreased the amount of glucose transporters (GLUT1 and GLUT4) in the plasma membrane, with a concomitant increase in intracellular microsomal membranes. A similar glucose transport inhibition was produced by P2 purinergic agonists with the following rank of potencies: ATP approximately ATPgammaS approximately 2-methylthio-ATP (P2Y-selective) > ADP > alpha,betameATP (P2X-selective), whereas the P1 purinoceptor agonist adenosine was ineffective. The effect of ATP was suppressed by the poorly subtype-selective P2 antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonic acid but, surprisingly, not by the nonselective antagonist suramin nor by the P2Y-specific Reactive Blue 2. Glucose transport inhibition by ATP was not affected by a drastic reduction of the extracellular concentrations of calcium (down to 10(-9) M) or sodium (down to 0 mM), and it was not mimicked by a potassium-induced depolarization, indicating that purinoceptors of the P2X family (which are nonselective cation channels whose activation leads to a depolarizing sodium and calcium influx) are not involved. Inhibition was specific for the transmembrane transport of glucose because ATP did not inhibit (i) the rate of glycolysis under conditions where the transport step is no longer rate-limiting nor (ii) the rate of [1-14C]pyruvate decarboxylation. In conclusion, extracellular ATP markedly inhibits glucose transport in rat cardiomyocytes by promoting a redistribution of glucose transporters from the

  10. The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor

    PubMed Central

    Losón, Oliver C.; Liu, Raymond; Rome, Michael E.; Meng, Shuxia; Kaiser, Jens T.; Shan, Shu-ou; Chan, David C.

    2014-01-01

    SUMMARY Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission. PMID:24508339

  11. The mitochondrial fission receptor MiD51 requires ADP as a cofactor.

    PubMed

    Losón, Oliver C; Liu, Raymond; Rome, Michael E; Meng, Shuxia; Kaiser, Jens T; Shan, Shu-ou; Chan, David C

    2014-03-04

    Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.

  12. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  13. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  14. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.

    PubMed

    Cantó, Carles; Sauve, Anthony A; Bai, Peter

    2013-12-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.

  15. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-11-17

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.

  16. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  17. Poly(ADP-Ribose) Polymerases in Aging - Friend or Foe?

    PubMed

    Vida, András; Abdul-Rahman, Omar; Mikó, Edit; Brunyánszki, Attila; Bai, Peter

    2016-01-01

    Poly(ADP-ribose) polymerases were originally described as DNA repair enzymes. PARP-1, PARP-2 and PARP-3 can be activated by DNA damage and the resulting activation of these enzymes that facilitate DNA repair, seems to be a prerequisite of successful aging. PARP activation helps to maintain genomic integrity through supporting DNA repair systems; however, in parallel these enzymes limit metabolic fitness and make the organism more prone for metabolic diseases. In addition, several other pathways (e.g., proteostasis, nutrient sensing, stem cell proliferation or cellular communication) all contributing to aging, were shown to be PARP mediated. In this review we aim to summarize our current knowledge on the role of PARPs in aging.

  18. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  19. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.

    PubMed

    Mugabo, Yves; Zhao, Shangang; Lamontagne, Julien; Al-Mass, Anfal; Peyot, Marie-Line; Corkey, Barbara E; Joly, Erik; Madiraju, S R Murthy; Prentki, Marc

    2017-03-09

    Glucose metabolism promotes insulin secretion in β-cells via metabolic coupling factors that are incompletely defined. Moreover, chronically elevated glucose causes β-cell dysfunction, but little is known about how cells handle excess fuels to avoid toxicity. Here we sought to determine which among the candidate pathways and coupling factors best correlates with glucose-stimulated insulin secretion (GSIS), define the fate of glucose in the β-cell, and identify pathways possibly involved in excess-fuel detoxification. We exposed isolated rat islets for 1 h to increasing glucose concentrations and measured various pathways and metabolites. Glucose oxidation, oxygen consumption, and ATP production correlated well with GSIS and saturated at 16 mM glucose. However, glucose utilization, glycerol release, triglyceride and glycogen contents, free fatty acid (FFA) content and release, and cholesterol and cholesterol esters increased linearly up to 25 mM glucose. Besides being oxidized, glucose was mainly metabolized via glycerol production and release and lipid synthesis (particularly FFA, triglycerides, and cholesterol), whereas glycogen production was comparatively low. Using targeted metabolomics in INS-1(832/13) cells, we found that several metabolites correlated well with GSIS, in particular, some Krebs cycle intermediates, malonyl-CoA, and lower ADP levels. Glucose dose dependently increased the dihydroxyacetone phosphate/glycerol 3-phosphate ratio in INS1(832/13) cells, indicating a more oxidized state of NAD in the cytosol upon glucose stimulation. Overall, the data support a role for accelerated oxidative mitochondrial metabolism, anaplerosis, and malonyl-CoA/lipid signaling in β-cell metabolic signaling and suggest that a decrease in ADP levels is important in GSIS. The results also suggest that excess-fuel detoxification pathways in β-cells possibly comprise glycerol and FFA formation and release extracellularly and the diversion of glucose carbons to

  20. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    PubMed

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  1. Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue

    PubMed Central

    Martello, Rita; Leutert, Mario; Jungmichel, Stephanie; Bilan, Vera; Larsen, Sara C.; Young, Clifford; Hottiger, Michael O.; Nielsen, Michael L.

    2016-01-01

    Although protein ADP-ribosylation is involved in diverse biological processes, it has remained a challenge to identify ADP-ribose acceptor sites. Here, we present an experimental workflow for sensitive and unbiased analysis of endogenous ADP-ribosylation sites, capable of detecting more than 900 modification sites in mammalian cells and mouse liver. In cells, we demonstrate that Lys residues, besides Glu, Asp and Arg residues, are the dominant in vivo targets of ADP-ribosylation during oxidative stress. In normal liver tissue, we find Arg residues to be the predominant modification site. The cellular distribution and biological processes that involve ADP-ribosylated proteins are different in cultured cells and liver tissue, in the latter of which the majority of sites were found to be in cytosolic and mitochondrial protein networks primarily associated with metabolism. Collectively, we describe a robust methodology for the assessment of the role of ADP-ribosylation and ADP-ribosyltransferases in physiological and pathological states. PMID:27686526

  2. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  3. Blood Glucose Monitoring Devices

    MedlinePlus

    ... the Bar for Blood Glucose Meter Performance Recalls & Alerts Shasta Technologies GenStrip Blood Glucose Test Strips May ... Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA ...

  4. Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages.

    PubMed

    Badejo, Adebanjo A; Jeong, Seok T; Goto-Yamamoto, Nami; Esaka, Muneharu

    2007-09-01

    Acerola (Malpighia glabra L.) is one of the richest natural sources of L-ascorbic acid (AsA; vitamin C). GDP-D-mannose pyrophosphorylase (GMP; EC 2.7.7.13) was found to play a major role in the proposed AsA biosynthetic pathway in plants, considering that Arabidopsis vtc1-1 mutant with point mutation in this gene has a highly reduced AsA content. GMP cDNA was isolated from acerola fruits, designated MgGMP, using rapid amplification of cDNA ends (RACE), and its expression was monitored during fruit ripening. The full-length cDNA was found to have an ORF of 1083bp encoding a polypeptide of 361 amino acids. In silico analysis of the predicted amino acid sequence showed a pI of 6.45 and molecular mass of 39.7kD. MgGMP showed over 80% amino acid sequence identity with other plant GMP homologues. The phylogenetic tree shows the close relation of MgGMP to the GMP of other plants as against those from parasite, yeasts and mammals. Southern analysis indicated that M. glabra contains not less than two copies of GMP genes. Northern blot analysis showed the transcript abundance of MgGMP in all the organs of acerola examined, with the fruit having the highest expression. The relative transcript abundance of MgGMP mRNA levels in the fruits changes as the ripening process progresses, with the unripe green fruits having the highest relative mRNA level, and the lowest was found in the fruits at advanced ripening stage. A strong correlation was also observed between the relative MgGMP mRNA levels and the AsA contents of acerola during fruit ripening.

  5. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis.

    PubMed

    Barth, Carina; Gouzd, Zachary A; Steele, Hilary P; Imperio, Ryan M

    2010-01-01

    Ascorbic acid (AA) is an antioxidant fulfilling a multitude of cellular functions. Given its pivotal role in maintaining the rate of cell growth and division in the quiescent centre of the root, it was hypothesized that the AA-deficient Arabidopsis thaliana mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 have altered root growth. To test this hypothesis, root development was studied in the wild type and vtc mutants grown on Murashige and Skoog medium. It was discovered, however, that only the vtc1-1 mutant has strongly retarded root growth, while the other vtc mutants exhibit a wild-type root phenotype. It is demonstrated that the short-root phenotype in vtc1-1 is independent of AA deficiency and oxidative stress. Instead, vtc1-1 is conditionally hypersensitive to ammonium (NH(4)(+)). To provide new insights into the mechanism of NH(4)(+) sensitivity in vtc1-1, root development, NH(4)(+) content, glutamine synthetase (GS) activity, glutamate dehydrogenase activity, and glutamine content were assessed in wild-type and vtc1-1 mutant plants grown in the presence and absence of high NH(4)(+) and the GS inhibitor MSO. Since VTC1 encodes a GDP-mannose pyrophosphorylase, an enzyme generating GDP-mannose for AA biosynthesis and protein N-glycosylation, it was also tested whether protein N-glycosylation is affected in vtc1-1. Furthermore, since root development requires the action of a variety of hormones, it was investigated whether hormone homeostasis is linked to NH(4)(+) sensitivity in vtc1-1. Our data suggest that NH(4)(+) hypersensitivity in vtc1-1 is caused by disturbed N-glycosylation and that it is associated with auxin and ethylene homeostasis and/or nitric oxide signalling.

  6. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis

    PubMed Central

    Barth, Carina; Gouzd, Zachary A.; Steele, Hilary P.; Imperio, Ryan M.

    2010-01-01

    Ascorbic acid (AA) is an antioxidant fulfilling a multitude of cellular functions. Given its pivotal role in maintaining the rate of cell growth and division in the quiescent centre of the root, it was hypothesized that the AA-deficient Arabidopsis thaliana mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 have altered root growth. To test this hypothesis, root development was studied in the wild type and vtc mutants grown on Murashige and Skoog medium. It was discovered, however, that only the vtc1-1 mutant has strongly retarded root growth, while the other vtc mutants exhibit a wild-type root phenotype. It is demonstrated that the short-root phenotype in vtc1-1 is independent of AA deficiency and oxidative stress. Instead, vtc1-1 is conditionally hypersensitive to ammonium (NH4+). To provide new insights into the mechanism of NH4+ sensitivity in vtc1-1, root development, NH4+ content, glutamine synthetase (GS) activity, glutamate dehydrogenase activity, and glutamine content were assessed in wild-type and vtc1-1 mutant plants grown in the presence and absence of high NH4+ and the GS inhibitor MSO. Since VTC1 encodes a GDP-mannose pyrophosphorylase, an enzyme generating GDP-mannose for AA biosynthesis and protein N-glycosylation, it was also tested whether protein N-glycosylation is affected in vtc1-1. Furthermore, since root development requires the action of a variety of hormones, it was investigated whether hormone homeostasis is linked to NH4+ sensitivity in vtc1-1. Our data suggest that NH4+ hypersensitivity in vtc1-1 is caused by disturbed N-glycosylation and that it is associated with auxin and ethylene homeostasis and/or nitric oxide signalling. PMID:20007685

  7. Two Leptinotarsa uridine diphosphate N-acetylglucosamine pyrophosphorylases are specialized for chitin synthesis in larval epidermal cuticle and midgut peritrophic matrix.

    PubMed

    Shi, Ji-Feng; Fu, Jia; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-01-01

    Uridine diphosphate-N-acetylglucosamine-pyrophosphorylase (UAP) is involved in the biosynthesis of chitin, an essential component of the epidermal cuticle and midgut peritrophic matrix (PM) in insects. In the present paper, two putative LdUAP genes were cloned in Leptinotarsa decemlineata. In vivo bioassay revealed that 20-hydroxyecdysone (20E) and an ecdysteroid agonist halofenozide activated the expression of the two LdUAPs, whereas a decrease in 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD and a 20E signaling gene LdFTZ-F1 repressed the expression. Juvenile hormone (JH), a JH analog pyriproxyfen and an increase in JH by RNAi of an allatostatin gene LdAS-C downregulated LdUAP1 but upregulated LdUAP2, whereas a decrease in JH by silencing of a JH biosynthesis gene LdJHAMT had converse effects. Thus, expression of LdUAPs responded to both 20E and JH. Moreover, knockdown of LdUAP1 reduced chitin contents in whole larvae and integument samples, thinned tracheal taenidia, impaired larval-larval molt, larval-pupal ecdysis and adult emergence. In contrast, silencing of LdUAP2 significantly reduced foliage consumption, decreased chitin content in midgut samples, damaged PM, and retarded larval growth. The resulting larvae had lighter fresh weights, smaller body sizes and depleted fat body. As a result, the development was arrested. Combined knockdown of LdUAP1 and LdUAP2 caused an additive negative effect. Our data suggest that LdUAP1 and LdUAP2 have specialized functions in biosynthesizing chitin in the epidermal cuticle and PM respectively in L. decemlineata.

  8. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance.

    PubMed

    Cree-Green, Melanie; Newcomer, Bradley R; Brown, Mark S; Baumgartner, Amy D; Bergman, Bryan; Drew, Brendan; Regensteiner, Judith G; Pyle, Laura; Reusch, Jane E B; Nadeau, Kristen J

    2015-02-01

    Insulin resistance (IR) increases cardiovascular morbidity and is associated with mitochondrial dysfunction. IR is now recognized to be present in type 1 diabetes; however, its relationship with mitochondrial function is unknown. We determined the relationship between IR and muscle mitochondrial function in type 1 diabetes using the hyperinsulinemic-euglycemic clamp and (31)P-MRS before, during, and after near-maximal isometric calf exercise. Volunteers included 21 nonobese adolescents with type 1 diabetes and 17 nondiabetic control subjects with similar age, sex, BMI, Tanner stage, and activity levels. We found that youths with type 1 diabetes were more insulin resistant (median glucose infusion rate 10.1 vs. 18.9 mg/kglean/min; P < 0.0001) and had a longer time constant of the curve of ADP conversion to ATP (23.4 ± 5.3 vs. 18.8 ± 3.9 s, P < 0.001) and a lower rate of oxidative phosphorylation (median 0.09 vs. 0.21 mmol/L/s, P < 0.001). The ADP time constant (β = -0.36, P = 0.026) and oxidative phosphorylation (β = 0.02, P < 0.038) were related to IR but not HbA1c. Normal-weight youths with type 1 diabetes demonstrated slowed postexercise ATP resynthesis and were more insulin resistant than control subjects. The correlation between skeletal muscle mitochondrial dysfunction in type 1 diabetes and IR suggests a relationship between mitochondrial dysfunction and IR in type 1 diabetes.

  9. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  10. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  11. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  12. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification In Vivo, with Special Reference to Poly(ADP-ribose) Binding Protein Modules.

    PubMed

    Miwa, Masanao; Ida, Chieri; Yamashita, Sachiko; Tanaka, Masakazu; Fujisawa, Junichi

    2016-01-01

    PolyADP-ribosylation is a unique posttranslational modification of proteins, involved in various cellular functions including stability of chromatin. PolyADP-ribosylation modifies acceptor proteins with a large negatively charged poly(ADP-ribose) (PAR) to greatly change the structure and function of the acceptor proteins. In addition various specific motifs of proteins were recently found to interact non-covalently with PAR thereby changing the spaciotemporal activity of protein-protein interaction in cells. However, the structure of PAR to which specific protein motifs should bind is not fully characterized. The present work will review the structure, physicochemical properties and quantification of PAR in vivo, with special reference to PAR binding protein modules.

  13. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis.

    PubMed

    Masuda, W; Takenaka, S; Inageda, K; Nishina, H; Takahashi, K; Katada, T; Tsuyama, S; Inui, H; Miyatake, K; Nakano, Y

    1997-03-17

    In Euglena gracilis, the activity of ADP-ribosyl cyclase, which produces cyclic ADP-ribose, oscillated during the cell cycle in a synchronous culture induced by a light-dark cycle, and a marked increase in the activity was observed in the G2 phase. Similarly, the ADP-ribosyl cyclase activity rose extremely immediately before cell division started, when synchronous cell division was induced by adding cobalamin (which is an essential growth factor and participates in DNA synthesis in this organism) to its deficient culture. Further, cADPR in these cells showed a maximum level immediately before cell division started. A dose-dependent Ca2+ release was observed when microsomes were incubated with cADPR.

  14. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  15. Unidirectional growth of pure and L-lysine added ADP crystals from aqueous solution

    NASA Astrophysics Data System (ADS)

    Salarian, Samaneh; Dizaji, Hamid Rezagholipour

    2014-01-01

    Pure and L-lysine added ammonium dihydrogen phosphate (ADP) crystals were grown in the <001> direction by Sankaranarayanan-Ramasamy (S-R) method. The grown crystals were characterized by X-Ray diffractometry (XRD), UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR) and Vicker's Microhardness analysis. XRD spectrum of each of the grown crystals proved its crystallinity. The crystals showed good transparency in the entire visible region. FT-IR spectra of the specimens revealed the presence of functional groups in them. The hardness of the pure and L-lysine added ADP crystals were measured and that of the added one was found higher. Meanwhile, it was found that the ADP crystals (pure and L-lysine added) grown by S-R method had higher hardness compared to ADP crystal grown by conventional method.

  16. An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase.

    PubMed Central

    Thomassin, H; Jacobson, M K; Guay, J; Verreault, A; Aboul-ela, N; Menard, L; Poirier, G G

    1990-01-01

    The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. Images PMID:2395636

  17. ADP-ribosylation of membrane components by pertussis and cholera toxin

    SciTech Connect

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.

  18. Poly(ADP-ribose)polymerase inhibition decreases angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Godlewski, Grzegorz; Batkai, Sandor; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-12-01

    Inhibitors of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme involved in regulating cell death and cellular responses to DNA repair, show considerable promise in the treatment of cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation. We have recently demonstrated that PARP inhibition with 3-aminobenzamide or PJ-34 reduced vascular endothelial growth factor (VEGF)-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Here, we show dose-dependent reduction of VEGF- and basic fibroblast growth factor (bFGF)-induced proliferation, migration, and tube formation of HUVECs in vitro by two potent PARP inhibitors 5-aminoisoquinolinone-hydrochloride (5-AIQ) and 1,5-isoquinolinediol (IQD). Moreover, PARP inhibitors prevented the sprouting of rat aortic ring explants in an ex vivo assay of angiogenesis. These results establish the novel concept that PARP inhibitors have antiangiogenic effects, which may have tremendous clinical implications for the treatment of various cancers, tumor metastases, and certain retinopathies.

  19. Serine ADP-Ribosylation Depends on HPF1.

    PubMed

    Bonfiglio, Juan José; Fontana, Pietro; Zhang, Qi; Colby, Thomas; Gibbs-Seymour, Ian; Atanassov, Ilian; Bartlett, Edward; Zaja, Roko; Ahel, Ivan; Matic, Ivan

    2017-03-02

    ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.

  20. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  1. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  2. ADP stimulates the respiratory burst without activation of ERK and AKT in rat alveolar macrophages.

    PubMed

    Gozal, E; Forman, H J; Torres, M

    2001-09-01

    Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP > ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.

  3. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

    PubMed

    Gagné, Jean-Philippe; Ethier, Chantal; Defoy, Daniel; Bourassa, Sylvie; Langelier, Marie-France; Riccio, Amanda A; Pascal, John M; Moon, Kyung-Mee; Foster, Leonard J; Ning, Zhibin; Figeys, Daniel; Droit, Arnaud; Poirier, Guy G

    2015-06-01

    An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.

  4. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  5. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  6. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish.

    PubMed

    Nakano, Tsuyoshi; Takahashi-Nakaguchi, Azusa; Yamamoto, Masafumi; Watanabe, Masahiko

    2015-01-01

    The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.

  7. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.

    PubMed

    Valdor, Rut; Schreiber, Valérie; Saenz, Luis; Martínez, Teresa; Muñoz-Suano, Alba; Dominguez-Villar, Margarita; Ramírez, Pablo; Parrilla, Pascual; Aguado, Enrique; García-Cózar, Francisco; Yélamos, José

    2008-04-01

    The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.

  8. A Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate in Permeabilized Cells

    PubMed Central

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-01-01

    We have previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by a Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In this manuscript we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides, such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity and myosin ATPase activity. Here we report that addition of BeF3− and Na3VO4 to media containing digitonin-permeabilized cells inhibit all ATP-ADP utilizing reactions, except the ANT-mediated mitochondrial ATP-ADP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase, due to its sensitivity to BeF3− and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler, and expressed as a function of citrate synthase activity per total amount of protein. PMID:20691655

  9. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  10. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    PubMed

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  11. Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli

    PubMed Central

    Kneidinger, Bernd; Marolda, Cristina; Graninger, Michael; Zamyatina, Alla; McArthur, Fiona; Kosma, Paul; Valvano, Miguel A.; Messner, Paul

    2002-01-01

    The steps involved in the biosynthesis of the ADP-l-glycero-β-d-manno-heptose (ADP-l-β-d-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-d-β-d-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-d-β-d-heptose. Our results demonstrate that the synthesis of ADP-d-β-d-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional d-β-d-heptose 7-phosphate kinase/d-β-d-heptose 1-phosphate adenylyltransferase), and GmhB (d,d-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-l-β-d-heptose precursor utilized in the assembly of inner core LPS. PMID:11751812

  12. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells.

    PubMed

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-12-01

    We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.

  13. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.

    PubMed Central

    Monasterio, Octavio; Cárdenas, María Luz

    2003-01-01

    The kinetic mechanism of rat liver hexokinase D ('glucokinase') was studied under non-co-operative conditions with 2-deoxyglucose as substrate, chosen to avoid uncertainties derived from the co-operativity observed with the physiological substrate, glucose. The enzyme shows hyperbolic kinetics with respect to both 2-deoxyglucose and MgATP(2-), and the reaction follows a ternary-complex mechanism with K (m)=19.2+/-2.3 mM for 2-deoxyglucose and 0.56+/-0.05 mM for MgATP(2-). Product inhibition by MgADP(-) was mixed with respect to MgATP(2-) and was largely competitive with respect to 2-deoxyglucose, suggesting an ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. Dead-end inhibition by N -acetylglucosamine, AMP and the inert complex CrATP [the complex of ATP with chromium in the 3+ oxidation state, i.e. Cr(III)-ATP], studied with respect to both substrates, also supports an ordered mechanism with 2-deoxyglucose as first substrate. AMP appears to bind both to the free enzyme and to the E*dGlc complex. Experiments involving protection against inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) support the existence of the E*MgADP(-) and E*AMP complexes suggested by the kinetic studies. MgADP(-), AMP, 2-deoxyglucose, glucose and mannose were strong protectors, supporting the existence of binary complexes with the enzyme. Glucose 6-phosphate failed to protect, even at concentrations as high as 100 mM, and MgATP(2-) protected only slightly (12%). The inactivation results support the postulated ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. In addition, the straight-line dependence observed when the reciprocal value of the inactivation constant was plotted against the sugar-ligand concentration supports the view that there is just one sugar-binding site in hexokinase D. PMID:12513690

  14. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  15. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  16. The glucose oxidase-peroxidase assay for glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  17. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

    PubMed Central

    Beck, Florian; Geiger, Jörg; Gambaryan, Stepan; Solari, Fiorella A.; Dell’Aica, Margherita; Loroch, Stefan; Mattheij, Nadine J.; Mindukshev, Igor; Pötz, Oliver; Jurk, Kerstin; Burkhart, Julia M.; Fufezan, Christian; Heemskerk, Johan W. M.; Walter, Ulrich

    2017-01-01

    Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein–coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbβ3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways. PMID:28060719

  18. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects

    PubMed Central

    KANAI, Yoshiyuki

    2016-01-01

    Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD+ as a substrate in the presence of Mg2+. The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: “Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE”, and “Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)”. On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is “heteroclitic” fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to “heteroclitic” have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of “heteroclitic”. PMID:27477457

  19. Negative feedback of extracellular ADP on ATP release in goldfish hepatocytes: a theoretical study.

    PubMed

    Chara, Osvaldo; Pafundo, Diego E; Schwarzbaum, Pablo J

    2010-06-21

    A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008]. The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback). The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release.

  20. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  1. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor

    PubMed Central

    Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi

    2016-01-01

    V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367

  2. Arginine-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes.

    PubMed Central

    Donnelly, L E; Rendell, N B; Murray, S; Allport, J R; Lo, G; Kefalas, P; Taylor, G W; MacDermot, J

    1996-01-01

    An Arg-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes (PMNs) was confirmed by the use of diethylamino-(benzylidineamino)guanidine (DEA-BAG) as an ADP-ribose acceptor. Two separate HPLC systems were used to separate ADP-ribosyl-DEA-BAG from reaction mixtures, and its presence was confirmed by electrospray mass spectrometry. ADP-ribosyl-DEA-BAG was produced in the presence of PMNs, but not in their absence. Incubation of DEA-BAG with ADP-ribose (0.1-10 mM) did not yield ADP-ribosyl-DEA-BAG, which indicates that ADP-ribosyl-DEA-BAG formed in the presence of PMNs was not simply a product of a reaction between DEA-BAG and free ADP-ribose, due possibly to the hydrolysis of NAD+ by an NAD+ glycohydrolase. The assay of mono(ADP-ribosyl)transferase with agmatine as a substrate was modified for intact PMNs, and the activity was found to be approx. 50-fold lower than that in rabbit cardiac membranes. The Km of the enzyme for NAD+ was 100.1 30.4 microM and the Vmax 1.4 0.2 pmol of ADP-ribosylagmatine/h per 10(6) cells. The enzyme is likely to be linked to the cell surface via a glycosylphosphatidylinositol anchor, since incubation of intact PMNs with phosphoinositol-specific phospholipase C (PI-PLC) led to a 98% decrease in mono(ADP-ribosyl)transferase activity in the cells. Cell surface proteins were labelled after exposure of intact PMNs to [32P]NAD+. Their molecular masses were 79, 67, 46, 36 and 26 kDa. The time course for labelling was non-linear under these conditions over a period of 4 h. The labelled products were identified as mono(ADP-ribosyl)ated proteins by hydrolysis with snake venom phosphodiesterase to yield 5'-AMP. PMID:8615841

  3. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers.

    PubMed

    Okazaki, Arimichi; Gameiro, Paulo A; Christodoulou, Danos; Laviollette, Laura; Schneider, Meike; Chaves, Frances; Stemmer-Rachamimov, Anat; Yazinski, Stephanie A; Lee, Richard; Stephanopoulos, Gregory; Zou, Lee; Iliopoulos, Othon

    2017-03-27

    Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel-Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL-/- RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL-/- cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor-induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra-S phase checkpoint, and suppressed the growth of VHL-/- RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL-/- cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.

  4. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  5. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks

    PubMed Central

    Rakhimova, Alina; Ura, Seiji; Hsu, Duen-Wei; Wang, Hong-Yu; Pears, Catherine J.; Lakin, Nicholas D.

    2017-01-01

    ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair. PMID:28252050

  6. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  7. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    SciTech Connect

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  8. Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness

    PubMed Central

    Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda

    2015-01-01

    Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin

  9. Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter.

    PubMed

    Conrath, Uwe; Linke, Christoph; Jeblick, Wolfgang; Geigenberger, Peter; Quick, W Paul; Neuhaus, H Ekkehard

    2003-05-01

    Recently, it has been reported that tubers of transgenic potato ( Solanum tuberosum L.) plants with decreased activity of the plastidic ATP/ADP transporter (AATP1) contain less starch, despite having an increased glucose level [P. Geigenberger et al. (2001) Plant Physiol 125:1667-1678]. The metabolic alterations correlated with enhanced resistance to the bacterium Erwinia carotovora. Here it is shown that transgenic potato tubers, possessing less starch yet increased glucose levels due to the expression of a cytoplasm-localized yeast invertase, exhibit drastic susceptibility to E. carotovora. In addition, it is demonstrated that AATP1 anti-sense tubers show an increased capacity to ward off the pathogenic fungus Alternaria solani. In contrast to AATP1 anti-sense tubers, the corresponding leaf tissue does not show changes in carbohydrate accumulation. However, upon elicitor treatment, AATP1 anti-sense leaves possess an increased capacity to release H(2)O(2) and activate various defence-related genes, reactions that are associated with substantially delayed appearance of disease symptoms caused by Phytophthora infestans. Grafting experiments between AATP1 anti-sense plants and wild-type plants indicate the presence of a signal that is generated in AATP1 rootstocks and primes wild-type scions for potentiated activation of cellular defence responses in leaves. Together, the results suggest that (i) the enhanced pathogen tolerance of AATP1 anti-sense tubers is not due to "high sugar resistance", (ii) the increased disease resistance of AATP1 anti-sense tubers is effective against different types of pathogen and (iii) a systemic signal induced by antisensing the plastidic ATP/ADP transporter in potato tubers confers increased resistance to pathogens.

  10. Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes

    PubMed Central

    Martinez-Zamudio, Ricardo

    2012-01-01

    The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation. PMID:22547677

  11. Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    PubMed Central

    Tulin, Alexei; Naumova, Natalia M.; Menon, Ammini K.; Spradling, Allan C.

    2006-01-01

    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins. PMID:16219773

  12. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  13. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    PubMed

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.

  14. A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT

    PubMed Central

    Chinopoulos, Christos; Vajda, Szilvia; Csanády, László; Mándi, Miklós; Mathe, Katalin; Adam-Vizi, Vera

    2009-01-01

    A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8–7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes. PMID:19289073

  15. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein.

    PubMed

    Iyer, Divya; Anaya-Bergman, Cecilia; Jones, Kevin; Yanamandra, Sai; Sengupta, Dipanwita; Miyazaki, Hiroshi; Lewis, Janina P

    2010-06-01

    The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRR(TP)) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17.

  16. Growth of cerium(III)-doped ADP crystals and characterization studies

    NASA Astrophysics Data System (ADS)

    Vanchinathan, K.; Muthu, K.; Bhagavannarayana, G.; Meenakshisundaram, SP.

    2012-09-01

    Single crystals of Ce(III)-doped ammonium dihydrogen phosphate (ADP) are grown by conventional slow evaporation of aqueous solution and Sankaranarayanan-Ramasamy (SR) technique. High-resolution X-ray diffraction (HRXRD) studies reveal that the crystalline perfection is substantially better in the case of SR-grown crystal. Morphological changes are observed in the doped specimen. Doping has some influence on the DRS spectra and the band gap energy is estimated by Kubelka-Munk algorithm. Lattice parameters are determined by single crystal XRD analysis. The powder X-ray diffraction and FT-IR analyses indicate that the crystal undergoes considerable stress as a result of doping. The incorporation of Ce(III) into the crystalline matrix of ADP is confirmed by energy dispersive X-ray spectroscopy (EDS). Thermal studies reveal no decomposition up to the melting point and no significant changes are observed as a result of foreign ion incorporation in ADP crystalline matrix.

  17. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.

    PubMed

    Alemasova, Elizaveta E; Pestryakov, Pavel E; Sukhanova, Maria V; Kretov, Dmitry A; Moor, Nina A; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2015-12-01

    Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.

  18. Office of Inspector General report on audit of controls over the ADP support services contract

    SciTech Connect

    1997-08-15

    In March 1995, the Department awarded a cost-plus-award-fee contract to DynCorp valued at approximately $246 million over 5 years for ADP support services at Headquarters. The performance period for the contract was a 3-year base period with two 1-year options. The contract statement of work identified 24 information management functional areas that required technical support services, including Automated Office Systems Support and Local Area Network support. The purpose of the audit was to evaluate the cost-plus-award-fee contract for ADP support services at Headquarters. The objective was to determine whether the Department`s program offices at Headquarters were managing their ADP support services contract costs.

  19. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives.

    PubMed

    Gagné, Jean-Philippe; Hendzel, Michael J; Droit, Arnaud; Poirier, Guy G

    2006-04-01

    Recent discoveries have resulted in significant breakthroughs in the understanding of PARPs and PARG functions within a broad range of cellular processes. The novel and sometimes unexpected pathways that are regulated by poly(ADP-ribosylation) bring new questions and hypotheses, some of them being contentious. In this review, we highlight current areas of investigation such as the clinical potential of PARP and PARG inhibitors and the important mitotic regulatory functions of poly(ADP-ribose) in cell-cycle progression, a recent discovery that has broadened our knowledge regarding poly(ADP-ribose) functions. A special emphasis is placed on recent advances in relation to PARG that are stimulating new directions in future research. Noticeably, the existence of various PARG isoforms characterized by distinct cellular localizations and nucleocytoplasmic shuttling properties challenges our current comprehension of pADPr metabolism. Observations and suppositions towards functionally important regulatory elements in the N-terminal portion of PARG are also discussed.

  20. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens

    PubMed Central

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R.; Matic, Ivan; Peleg, Anton Y.; Leys, David; Traven, Ana; Ahel, Ivan

    2015-01-01

    Summary Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  1. ADP-2Ho as a Phasing Tool for Nucleotide-Containing Proteins

    SciTech Connect

    Ku,S.; Smith, G.; Howell, P.

    2007-01-01

    Trivalent holmium ions were shown to isomorphously replace magnesium ions to form an ADP-2Ho complex in the nucleotide-binding domain of Bacillus subtilis 5-methylthioribose (MTR) kinase. This nucleotide-holmium complex provided sufficient phasing power to allow SAD and SIRAS phasing of this previously unknown structure using the L{sub III} absorption edge of holmium. The structure of ADP-2Ho reveals that the two Ho ions are approximately 4 {angstrom} apart and are likely to share their ligands: the phosphoryl O atoms of ADP and a water molecule. The structure determination of MTR kinase using data collected using Cu K X-radiation was also attempted. Although the heavy-atom substructure determination was successful, interpretation of the map was more challenging. The isomorphous substitution of holmium for magnesium in the MTR kinase-nucleotide complex suggests that this could be a useful phasing tool for other metal-dependent nucleotide-containing proteins.

  2. Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing.

    PubMed

    Rufino, Ana T; Rosa, Susana C; Judas, Fernando; Mobasheri, Ali; Lopes, M Celeste; Mendes, Alexandrina F

    2013-08-01

    ATP-sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose-sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels and membrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT-1 and GLUT-3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia-like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT-1 and GLUT-3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT-1 and GLUT-3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus that modulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes.

  3. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody

    PubMed Central

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-01-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  4. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody.

    PubMed

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-04-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry.

  5. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  6. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  7. Purification and properties of poly(ADP-ribose)polymerase from Crithidia fasciculata. Automodification and poly(ADP-ribosyl)ation of DNA topoisomerase I.

    PubMed

    Podestá, Dolores; García-Herreros, María I; Cannata, Joaquín J B; Stoppani, Andrés O M; Fernández Villamil, Silvia H

    2004-06-01

    Poly(ADP-ribose)polymerase has been purified more than 160000-fold from Crithidia fasciculata. This is the first PARP isolated to apparent homogeneity from trypanosomatids. The purified enzyme absolutely required DNA for catalytic activity and histones enhanced it 2.5-fold, when the DNA:histone ratio was 1:1.3. The enzyme required no magnesium or any other metal ion cofactor. The apparent molecular mass of 111 kDa, determined by gel filtration would correspond to a dimer of two identical 55-kDa subunits. Activity was inhibited by nicotinamide, 3-aminobenzamide, theophylline, thymidine, xanthine and hypoxanthine but not by adenosine. The enzyme was localized to the cell nucleus. Our findings suggest that covalent poly(ADP-ribosyl)ation of PARP itself or DNA topoisomerase I resulted in the inhibition of their activities and provide an initial biochemical characterization of this covalent post-translational modification in trypanosomatids.

  8. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    PubMed Central

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  9. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    The proteins were transferred to a nitrocellulose membrane and PARP was detected using anti-human PARP monoclonal antibody. Since PARP is a basic...to check if this modification is due to poly(ADP-ribosyl)ation of the protein , the membrane was stripped off and re-probed with anti-PAR polyclonal...detect any poly(ADP- ribosyl)ated proteins corresponding to the molecular weight of PARP (116 kDa) (Figure 18 ), we initiated experiment to test possible

  10. [The action of ADP ribose on the mechanical and bioelectrical activity of the frog heart].

    PubMed

    Sosulina, L Iu; Sukhova, G S; Chudnyĭ, M N; Ashmarin, I P

    1999-04-01

    In the frog isolated heart, cyclic perfusion of ADP-ribose induced a dose-dependent decrease in the heart rate and the contraction force, a decrease in the AP duration as well as in the rate of rise in the sinus node. It also shortened the atrial AP and exerted no significant effect upon multicellular ventricular preparations. In conditions of systemic administration in unanesthetised frogs, the ADP-ribose induced a reversible increase in the heart rate due, probably, to a sympathetic effect.

  11. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    PubMed

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  12. ADP Regulates the Structure and Function of the Protein KaiC

    DTIC Science & Technology

    2016-08-11

    AFRL-AFOSR-VA-TR-2016-0294 ADP Regulates the Structure and Function of the Protein KaiC Andy LiWang UNIVERSITY OF CALIFORNIA MERCED 5200 N LAKE RD...REPORT TYPE Final Performance 3. DATES COVERED (From - To) 01 Aug 2013 to 31 Jul 2017 4. TITLE AND SUBTITLE ADP Regulates the Structure and Function of...LiWang lab exploited this in vitro clock system to gain an atomic -resolution understanding of a circadian clock. The rationale is that fundamental

  13. Inhibition of ADP-ribosyltransferase activity of cholera toxin by MDL 12330A and chlorpromazine.

    PubMed

    Bitonti, A J

    1984-04-30

    ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.

  14. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  15. Continuous Glucose Monitoring

    MedlinePlus

    ... la salud en español Health Statistics Healthy Moments Radio Broadcast Clinical Trials For Health Care Professionals Community ... A transmitter sends information about glucose levels via radio waves from the sensor to a pagerlike wireless ...

  16. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  17. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  18. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  19. Detection and quantification of poly-ADP-ribosylated cellular proteins of spleen and liver tissues of mice in vivo by slot and Western blot immunoprobing using polyclonal antibody against mouse ADP-ribose polymer.

    PubMed

    Sharan, R N; Devi, B Jaylata; Humtsoe, J O; Saikia, Jyoti R; Kma, L

    2005-10-01

    Poly-ADP-ribosylation (PAR) of cellular proteins has been shown to have decisive roles in diverse cellular functions including carcinogenesis. There are indications that metabolic level of poly-ADP-ribosylated cellular proteins might indicate carcinogenesis and, therefore, could be potentially used in cancer screening program. Keeping in mind the limitations of currently available assays of cellular PAR, a new assay is being reported that measures the metabolic level of poly-ADP-ribosylated cellular proteins. The ELISA based slot and Western blot immunoassay used polyclonal antibody against natural, heterogeneous ADP-ribose polymers. It could be successfully employed to qualitatively and quantitatively assay metabolic levels of poly-ADP-ribosylated proteins of spleen and liver tissues of normal mice or mice exposed to dimethylnitrosamine for up to 8 weeks; potentially PAR of cellular proteins could be assayed in any tissue or biopsy. Implications of the results in cancer screening program have been discussed.

  20. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  1. The role of ADP in the modulation of the calcium-efflux pathway in rat brain mitochondria.

    PubMed Central

    Vitorica, J; Satrústegui, J

    1985-01-01

    The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed. PMID:3977831

  2. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  3. The pioneering spirit of Takashi Sugimura: his studies of the biochemistry of poly(ADP-ribosylation) and of cancer.

    PubMed

    Masutani, Mitsuko

    2012-03-01

    Takashi Sugimura has accomplished many scientific achievements in the field of biochemistry and in cancer research. Sugimura's group identified the novel polymer poly(ADP-ribose) in parallel to P. Mandel's and O. Hayaishi's groups and demonstrated the presence of the enzyme poly(ADP-ribose) polymerase (PARP). He also discovered the cognate catabolic enzyme, poly(ADP-ribose) glycohydrolase (PARG) and further elucidated the biology of poly(ADP-ribose). The astonishing discovery of pierisin, an apoptogenic peptide that ADP-ribosyaltes DNA, profoundly illuminates his scientific character and curiosity as well. Sugimura's work in cancer research shows an extraordinarily wide range, which includes the establishment of new methods in chemical carcinogenesis, the identification of various environmental mutagens/carcinogens and new tumour promoters. He also established the concept that cancer is a disease of DNA and contributed to the development of the concept of the multi-step model of carcinogenesis.

  4. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol

    SciTech Connect

    Srisomsap, C.; Richardson, K.L.; Jay, J.C.; Marchase, R.B. )

    1989-12-05

    UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha-Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in both mammalian cells and Paramecium is a cytoplasmic glycoprotein of 62-63 kDa. When cytoplasmic proteins from rat liver were fractionated by preparative isoelectric focusing following incubation of a liver homogenate with the 35S-labeled phosphorothioate analogue of UDP-Glc ((beta-35S)UDP-Glc), the acceptor was found to have a pI of about 6.0. This fraction, when not labeled prior to the focusing, became very heavily labeled when mixed with (beta-35S). UDP-Glc and intact liver microsomes, a rich source of the Glc-phosphotransferase. In addition, it was observed that the isoelectric fractions of the cytosol having pI values of 2-3.2 contained a degradative activity, alpha-Glc-1-P phosphodiesterase, that was capable of removing alpha-Glc-1-P, monitored through radioactive labeling both in the sugar and the phosphate, as an intact unit from the 62-kDa acceptor. Identification of the product of this cleavage was substantiated by its partial transformation to UDP-Glc in the presence of UTP and UDP-Glc pyrophosphorylase. The alpha-Glc-1-P phosphodiesterase had a pH optimum of 7.5 and was not effectively inhibited by any of the potential biochemical inhibitors that were tested. Specificity for the Glc-alpha-1-P-6-Man diester was suggested by the diesterase's inability to degrade UDP-Glc or glucosylphosphoryldolichol. This enzyme may be important in the regulation of secretion since the alpha-Glc-1-P present on the 62-kDa phosphoglycoprotein appears to be removed and then rapidly replaced in response to secretagogue.

  5. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS.

    PubMed

    Maresso, Anthony W; Baldwin, Michael R; Barbieri, Joseph T

    2004-09-10

    Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.

  6. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and implementation of a computer security program; major responsibility for the direction, planning... judgement as to the unique characteristics of the system or the safeguards protecting the system. Criteria... categories is as follows: Category Criteria ADP-I Responsibility or the development and administration...

  7. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and implementation of a computer security program; major responsibility for the direction, planning... judgement as to the unique characteristics of the system or the safeguards protecting the system. Criteria... categories is as follows: Category Criteria ADP-I Responsibility or the development and administration...

  8. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and implementation of a computer security program; major responsibility for the direction, planning... judgement as to the unique characteristics of the system or the safeguards protecting the system. Criteria... categories is as follows: Category Criteria ADP-I Responsibility or the development and administration...

  9. The NASA/USRA ADP at the University of Central Florida

    NASA Technical Reports Server (NTRS)

    Anderson, L. A.; Armitage, P. K.

    1992-01-01

    An approach to learning engineering design is discussed with particular attention given to the impact of the NASA/Universities Space Research Association (USRA) Advanced Design Program (ADP) on that process. Attention is also given to a teaching method stressing science discipline and creativity and various selected space related designs.

  10. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.

    PubMed

    Marbaix, Alexandre Y; Noël, Gaëtane; Detroux, Aline M; Vertommen, Didier; Van Schaftingen, Emile; Linster, Carole L

    2011-12-02

    The reduced forms of NAD and NADP, two major nucleotides playing a central role in metabolism, are continuously damaged by enzymatic or heat-dependent hydration. We report the molecular identification of the eukaryotic dehydratase that repairs these nucleotides and show that this enzyme (Carkd in mammals, YKL151C in yeast) catalyzes the dehydration of the S form of NADHX and NADPHX, at the expense of ATP, which is converted to ADP. Surprisingly, the Escherichia coli homolog, YjeF, a bidomain protein, catalyzes a similar reaction, but using ADP instead of ATP. The latter reaction is ascribable to the C-terminal domain of YjeF. This represents an unprecedented example of orthologous enzymes using either ADP or ATP as phosphoryl donor. We also show that eukaryotic proteins homologous to the N-terminal domain of YjeF (apolipoprotein A-1-binding protein (AIBP) in mammals, YNL200C in yeast) catalyze the epimerization of the S and R forms of NAD(P)HX, thereby allowing, in conjunction with the energy-dependent dehydratase, the repair of both epimers of NAD(P)HX. Both enzymes are very widespread in eukaryotes, prokaryotes, and archaea, which together with the ADP dependence of the dehydratase in some species indicates the ancient origin of this repair system.

  11. Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study

    NASA Technical Reports Server (NTRS)

    Holcombe, V.

    2003-01-01

    A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.

  12. 45 CFR 95.625 - Increased FFP for certain ADP systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Increased FFP for certain ADP systems. 95.625 Section 95.625 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GENERAL... associated computer equipment that support the administration of State plans for Titles IV-D, IV-E,...

  13. 7 CFR 277.18 - Establishment of an Automated Data Processing (ADP) and Information Retrieval System.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Processing Services means: (1) Services to operate ADP equipment, either by private sources, or by employees...) Services provided by private sources or by employees of the State agency or by State and local... operate the system; a description of system performance requirements; and a description of the...

  14. 7 CFR 277.18 - Establishment of an Automated Data Processing (ADP) and Information Retrieval System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Processing Services means: (1) Services to operate ADP equipment, either by private sources, or by employees...) Services provided by private sources or by employees of the State agency or by State and local... operate the system; a description of system performance requirements; and a description of the...

  15. 7 CFR 277.18 - Establishment of an Automated Data Processing (ADP) and Information Retrieval System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Processing Services means: (1) Services to operate ADP equipment, either by private sources, or by employees...) Services provided by private sources or by employees of the State agency or by State and local... operate the system; a description of system performance requirements; and a description of the...

  16. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  17. 10 CFR 95.49 - Security of automatic data processing (ADP) systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security...

  18. 10 CFR 95.49 - Security of automatic data processing (ADP) systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security...

  19. Automated Data Processing Equipment for the Fleet Marine Force (ADPE-FMF).

    DTIC Science & Technology

    1982-06-01

    Systems Management Officer ( ISMO )--------------------------------------38 2. Information Systems Coordinator (ISC)-------39 3. Staff Officers...Management Officer ( ISMO ) of the First Marine Amphibious Force (IMAF), then spent the bulk of their time interviewing individual unit Information...interviews, the IMAF ISMO and his ADP personnel were interviewed. Interviews were taped for later review. E. FOLLOW-ON STUDY For the following four

  20. 48 CFR 245.608-72 - Screening excess automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Screening excess automatic data processing equipment (ADPE). 245.608-72 Section 245.608-72 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal...

  1. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    PubMed Central

    2011-01-01

    Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering. PMID:21592360

  2. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  3. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    PubMed

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  4. Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology.

    PubMed

    Strosznajder, Robert Piotr; Czubowicz, Kinga; Jesko, Henryk; Strosznajder, Joanna Benigna

    2010-06-01

    The biological roles of poly(ADP-ribose) polymers (PAR) and poly(ADP-ribosyl)ation of proteins in the central nervous system are diverse. The homeostasis of PAR orchestrated by poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) is crucial for cell physiology and pathology. Both enzymes are ubiquitously distributed in neurons and glia; however, they are segregated at the subcellular level. PARP-1 serves as a "nick sensor" for single- or double-stranded breaks in DNA and is involved in long and short patch base-excision repair, while PARG breaks down PAR. The stimulation of PARP-1 and PAR formation can activate proinflammatory transcription factors, including nuclear factor kappa B. However, hyperactivation of PARP-1 can result in depletion of NAD/ATP, and in PAR-dependent mitochondrial pore formation leading to release of apoptosis inducing factor and cell death. The role of PAR as a death signaling molecule in brain ischemia-reperfusion and inflammation as well as the effect of gender and aging is presented in this review. Modulating the PAR level through pharmacological or genetic intervention on PARP-1/PARG activity and gene expression should be a valuable way for neuroprotective strategy.

  5. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  6. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.

    PubMed Central

    De Flora, A; Guida, L; Franco, L; Zocchi, E; Pestarino, M; Usai, C; Marchetti, C; Fedele, E; Fontana, G; Raiteri, M

    1996-01-01

    CD38, a type II transmembrane glycoprotein predominantly expressed in blood cells, is a bifunctional ectoenzyme directly involved in the metabolism of cADP-ribose (cADPR). This is a potent Ca2+ mobilizer in several types of cells. The relationship between the ectocellular site of cADPR production and its intracellular calcium-related functions is poorly understood. Cultured rat cerebellar granule cells showed both enzymic activities of CD38, ADP-ribosyl cyclase and cADPR hydrolase, at a ratio of 16 to 1 respectively, and were immunostained by the anti-(human CD38) monoclonal antibody IB4. In these cells externally added cADPR and beta-NAD+ (the precursor of cADPR), but not alpha-NAD+ or ADP-ribose, enhanced the peak of the depolarization-induced rise in intracellular Ca2+ concentration. This effect was inhibited by 1 microM ryanodine, suggesting a potentiation of calcium-induced calcium release by cADPR. CD38 ectoenzyme activities, ADP-ribosyl cyclase and cADPR hydrolase, were also demonstrated in vivo by microdialysis of adult rat cerebellum, where IB4 bound to granule neurons selectively. Trace amounts (11.5 +/- 3.8 nM) of NAD+ were detected by microdialysis sampling and sensitive assays in the basal interstitial fluid of the cerebellum. These results provide a link between ectocellular cADPR turnover and intracellular calcium mobilization in cerebellum. PMID:8973582

  7. 7 CFR 277.18 - Establishment of an Automated Data Processing (ADP) and Information Retrieval System.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... review of proposed contracts. Those standards include a requirement for maximum practical open and free... Processing Services means: (1) Services to operate ADP equipment, either by private sources, or by employees...) Services provided by private sources or by employees of the State agency or by State and...

  8. ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load

    PubMed Central

    Petrova, Kseniya; Tomba, Giulia; Vendruscolo, Michele

    2012-01-01

    Gene expression programs that regulate the abundance of the chaperone BiP adapt the endoplasmic reticulum (ER) to unfolded protein load. However, such programs are slow compared with physiological fluctuations in secreted protein synthesis. While searching for mechanisms that fill this temporal gap in coping with ER stress, we found elevated levels of adenosine diphosphate (ADP)–ribosylated BiP in the inactive pancreas of fasted mice and a rapid decline in this modification in the active fed state. ADP ribosylation mapped to Arg470 and Arg492 in the substrate-binding domain of hamster BiP. Mutations that mimic the negative charge of ADP-ribose destabilized substrate binding and interfered with interdomain allosteric coupling, marking ADP ribosylation as a rapid posttranslational mechanism for reversible inactivation of BiP. A kinetic model showed that buffering fluctuations in unfolded protein load with a recruitable pool of inactive chaperone is an efficient strategy to minimize both aggregation and costly degradation of unfolded proteins. PMID:22869598

  9. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt.

    PubMed

    Lafon-Hughes, Laura; Vilchez Larrea, Salomé C; Kun, Alejandra; Fernández Villamil, Silvia H

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  10. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    PubMed Central

    Vilchez Larrea, Salomé C.; Kun, Alejandra

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications. PMID:25332845

  11. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    SciTech Connect

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-05-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis.

  12. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    SciTech Connect

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  13. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    SciTech Connect

    C Simmons; C Magee; D Smith; L Lauman; J Chaput; J Allen

    2011-12-31

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADP cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.

  14. Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage.

    PubMed

    Bartz, René; Seemann, Joachim; Zehmer, John K; Serrero, Ginette; Chapman, Kent D; Anderson, Richard G W; Liu, Pingsheng

    2007-08-01

    Mono-ADP-ribosylation is emerging as an important posttranslational modification that modulates a variety of cell signaling pathways. Here, we present evidence that mono-ADP-ribosylation of the transcriptional corepressor C terminal binding protein, brefeldin A (BFA)-induced ADP-ribosylated substrate (CtBP1/BARS) regulates neutral lipid storage in droplets that are surrounded by a monolayer of phospholipid and associated proteins. CtBP1/BARS is an NAD-binding protein that becomes ribosylated when cells are exposed to BFA. Both endogenous lipid droplets and droplets enlarged by oleate treatment are lost after 12-h exposure to BFA. Lipid loss requires new protein synthesis, and it is blocked by multiple ribosylation inhibitors, but it is not stimulated by disruption of the Golgi apparatus or the endoplasmic reticulum unfolded protein response. Small interfering RNA knockdown of CtBP1/BARS mimics the effect of BFA, and mouse embryonic fibroblasts derived from embryos that are deficient in CtBP1/BARS seem to be defective in lipid accumulation. We conclude that mono-ADP-ribosylation of CtBP1/BARS inactivates its repressor function, which leads to the activation of genes that regulate neutral lipid storage.

  15. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    PubMed

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  16. Poly(ADP-ribosyl)ation of a herpes simplex virus immediate early polypeptide

    SciTech Connect

    Preston, C.M.; Notarianni, E.L.

    1983-12-01

    In vitro poly(ADP-ribosyl)ation of the herpes simplex virus type 1 (HSV-1) immediate early polypeptide Vmw175 is reported. The phenomenon was most clearly observed by use of the temperature-sensitive mutant tsK, which overproduces Vmw175 at the nonpermissive temperature (NPT) and has a mutation in the coding sequences for this polypeptide. Nuclei prepared from cells which were infected with tsK at NPT and subsequently downshifted to the permissive temperature incorporated (/sup 32/P)NAD into Vmw175. This reaction did not occur when nuclei were prepared from cells constantly maintained at NPT, showing that only functional Vmw175 can be radiolabeled with (/sup 32/P)NAD. The identity of the acceptor protein was confirmed by demonstrating the expected electrophoretic mobility differences between the HSV-1 and HSV-2 counterparts of Vmw175. The use of suitable inhibitors demonstrated that the reaction represented mono- or poly(ADP-ribosyl)ation, and further analysis showed the presence of long poly(ADP-ribose) chains attached to Vmw175. Poly(ADP-ribosyl)ation may be important as a cause or result of the regulation of viral transcription by Vmw175. Radiolabeling of another virus-specified polypeptide (approximate molecular weight 38,000), thought to be a structural component of the input virus, is also reported.

  17. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    PubMed Central

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius

    2015-01-01

    The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281

  18. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    SciTech Connect

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.

  19. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  20. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Zhou, Yan; Hirata, Aiko; Sugimoto, Yukiko; Takagi, Kenichi; Akao, Takeshi; Ohya, Yoshikazu; Takagi, Hiroshi; Shimoi, Hitoshi

    2015-10-23

    The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.

  1. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae

    PubMed Central

    Watanabe, Daisuke; Zhou, Yan; Hirata, Aiko; Sugimoto, Yukiko; Takagi, Kenichi; Akao, Takeshi; Ohya, Yoshikazu; Takagi, Hiroshi

    2015-01-01

    The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains. PMID:26497456

  2. UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli.

    PubMed Central

    Böhringer, J; Fischer, D; Mosler, G; Hengge-Aronis, R

    1995-01-01

    The sigma S subunit of RNA polymerase is the master regulator of a regulatory network that controls stationary-phase induction as well as osmotic regulation of many genes in Escherichia coli. In an attempt to identify additional regulatory components in this network, we have isolated Tn10 insertion mutations that in trans alter the expression of osmY and other sigma S-dependent genes. One of these mutations conferred glucose sensitivity and was localized in pgi (encoding phosphoglucose isomerase). pgi::Tn10 strains exhibit increased basal levels of expression of osmY and otsBA in exponentially growing cells and reduced osmotic inducibility of these genes. A similar phenotype was also observed for pgm and galU mutants, which are deficient in phosphoglucomutase and UDP-glucose pyrophosphorylase, respectively. This indicates that the observed effects on gene expression are related to the lack of UDP-glucose (or a derivative thereof), which is common to all three mutants. Mutants deficient in UDP-galactose epimerase (galE mutants) and trehalose-6-phosphate synthase (otsA mutants) do not exhibit such an effect on gene expression, and an mdoA mutant that is deficient in the first step of the synthesis of membrane-derived oligosaccharides, shows only a partial increase in the expression of osmY. We therefore propose that the cellular content of UDP-glucose serves as an internal signal that controls expression of osmY and other sigma S-dependent genes. In addition, we demonstrate that pgi, pgm, and galU mutants contain increased levels of sigma S during steady-state growth, indicating that UDP-glucose interferes with the expression of sigma S itself. PMID:7814331

  3. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Tsuneki, Hiroshi; Sekizaki, Naoto; Suzuki, Takashi; Kobayashi, Shinjiro; Wada, Tsutomu; Okamoto, Tadashi; Kimura, Ikuko; Sasaoka, Toshiyasu

    2007-07-02

    Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of vascular complications in diabetes. Although some clinical evidences suggest the use of an antioxidant reagent coenzyme Q10 in diabetes with hypertension, the direct effect of coenzyme Q10 on the endothelial functions has not been examined. In the present study, we therefore investigated the protective effect of coenzyme Q10 against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC). HUVEC exposed to high glucose (30 mM) exhibited abnormal properties, including the morphological and biochemical features of apoptosis, overproduction of reactive oxygen species, activation of protein kinase Cbeta2, and increase in endothelial nitric oxide synthase expression. Treatment with coenzyme Q10 strongly inhibited these changes in HUVEC under high glucose condition. In addition, coenzyme Q10 inhibited high glucose-induced cleavage of poly(ADP-ribose) polymerase, an endogenous caspase-3 substrate. These results suggest that coenzyme Q10 prevents reactive oxygen species-induced apoptosis through inhibition of the mitochondria-dependent caspase-3 pathway. Moreover, consistent with previous reports, high glucose caused upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and promoted the adhesion of U937 monocytic cells. Coenzyme Q10 displayed potent inhibitory effects against these endothelial abnormalities. Thus, we provide the first evidence that coenzyme Q10 has a beneficial effect in protecting against the endothelial dysfunction by high glucose-induced oxidative stress in vitro.

  4. Continuous Glucose Monitoring

    PubMed Central

    Fritschi, Cynthia; Quinn, Laurie; Penckofer, Sue; Surdyk, Patricia M.

    2010-01-01

    Purpose The purpose of this descriptive study was to document the experience of wearing a continuous glucose monitoring (CGM) device in women with type 2 diabetes (T2DM). The availability of CGM has provided patients and clinicians with the opportunity to describe the immediate effects of diet, exercise, and medications on blood glucose levels; however, there are few data examining patients’ experiences and acceptability of using CGM. Methods Thirty-five women with T2DM wore a CGM for 3 days. Semistructured interviews were conducted to capture the self-described experience of wearing a CGM. Three open-ended questions were used to guide the participants’ self-reflection. Interviews were transcribed and analyzed. Results The women verbalized both positive and negative aspects of needing to check their blood glucose more frequently and wearing the monitor. After viewing the results, most women were surprised by the magnitude and frequency of blood glucose excursions. They immediately examined their behaviors during the time they wore the CGM. Independent problem-solving skills became apparent as they attempted to identify reasons for hyperglycemia by retracing food intake, physical activity, and stress experiences during the period of CGM. Most important, the majority of women stated they were interested in changing their diabetes-related self-care behaviors, especially eating and exercise behaviors, after reviewing their CGM results. Conclusions CGM is generally acceptable to women with T2DM and offers patients and their health care practitioners a possible alternative to routine glucose monitoring for assessing the effects of real-life events on blood glucose levels. PMID:20016057

  5. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  6. Redundancy in Glucose Sensing

    PubMed Central

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C.; McAuley, Sybil A.; Krishnamurthy, Balasubramanian; Jenkins, Alicia J.; Colman, Peter G.; Ward, Glenn M.; MacIsaac, Richard J.; Shah, Rajiv; O’Neal, David N.

    2015-01-01

    Background: Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Methods: Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Results: Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Conclusions: Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with ‘best-in-class’ of non-redundant sensors. PMID:26499476

  7. Protein Kinase C isoform epsilon (ε) negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets

    PubMed Central

    Bynagari-Settipalli, Yamini S; Lakhani, Parth; Jin, Jianguo; Bhavaraju, Kamala; Rico, Mario C.; Kim, Soochong; Woulfe, Donna; Kunapuli, Satya P

    2012-01-01

    Objective Members of Protein Kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. In this study we investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. Methods and Results A pan-PKC inhibitor GF109203X potentiated ADP-induced cPLA2 phosphorylation and thromboxane generation, as well as ERK activation and intracellular calcium (Ca2+i) mobilization, two signaling molecules, upstream of cPLA2 activation. Thus, PKCs inhibit cPLA2 activation by inhibiting ERK and Ca2+i mobilization. Since, the inhibitor of Classical PKC isoforms, GO-6976 did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP- induced thromboxane generation, calcium mobilization and ERK phosphorylation were potentiated in PKCε null murine platelets compared to platelets from wild type (WT) littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε KO and WT was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in FeCl3-induced arterial injury model and shorter bleeding times in tail bleeding experiments. Conclusion We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis. PMID:22362759

  8. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS.

    PubMed

    Colanzi, Antonino; Grimaldi, Giovanna; Catara, Giuliana; Valente, Carmen; Cericola, Claudia; Liberali, Prisca; Ronci, Maurizio; Lalioti, Vasiliki S; Bruno, Agostino; Beccari, Andrea R; Urbani, Andrea; De Flora, Antonio; Nardini, Marco; Bolognesi, Martino; Luini, Alberto; Corda, Daniela

    2013-06-11

    ADP-ribosylation is a posttranslational modification that modulates the functions of many target proteins. We previously showed that the fungal toxin brefeldin A (BFA) induces the ADP-ribosylation of C-terminal-binding protein-1 short-form/BFA-ADP-ribosylation substrate (CtBP1-S/BARS), a bifunctional protein with roles in the nucleus as a transcription factor and in the cytosol as a regulator of membrane fission during intracellular trafficking and mitotic partitioning of the Golgi complex. Here, we report that ADP-ribosylation of CtBP1-S/BARS by BFA occurs via a nonconventional mechanism that comprises two steps: (i) synthesis of a BFA-ADP-ribose conjugate by the ADP-ribosyl cyclase CD38 and (ii) covalent binding of the BFA-ADP-ribose conjugate into the CtBP1-S/BARS NAD(+)-binding pocket. This results in the locking of CtBP1-S/BARS in a dimeric conformation, which prevents its binding to interactors known to be involved in membrane fission and, hence, in the inhibition of the fission machinery involved in mitotic Golgi partitioning. As this inhibition may lead to arrest of the cell cycle in G2, these findings provide a strategy for the design of pharmacological blockers of cell cycle in tumor cells that express high levels of CD38.

  9. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.

    PubMed

    Frizzell, Kristine M; Gamble, Matthew J; Berrocal, Jhoanna G; Zhang, Tong; Krishnakumar, Raga; Cen, Yana; Sauve, Anthony A; Kraus, W Lee

    2009-12-04

    Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.

  10. Modulated anharmonic ADPs are intrinsic to aperiodic crystals: a case study on incommensurate Rb2ZnCl4

    PubMed Central

    Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; van Smaalen, Sander

    2011-01-01

    A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb2ZnCl4, at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to be important for a correct description of the displacive modulation. The resulting functions do not provide evidence for an interpretation of the modulation by a soliton model. PMID:21586828

  11. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... Elsevier Saunders; 2012:chap 42. Read More Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Review Date 2/11/2016 Updated by: ... A.M. Editorial team. Related MedlinePlus Health Topics G6PD Deficiency Browse the Encyclopedia A.D.A.M., Inc. ...

  12. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  13. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases.

    PubMed

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R; Kümmerer, Beate M; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-02-02

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.

  14. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases

    PubMed Central

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R.; Kümmerer, Beate M.; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-01-01

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict. PMID:28150709

  15. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

    PubMed Central

    Khadka, Prabhat; Hsu, Joseph K.; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A.; Mangerich, Aswin; Croteau, Deborah L.

    2015-01-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response. PMID:26391948

  16. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging

    PubMed Central

    Altmeyer, Matthias; Hottiger, Michael O.

    2009-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein, which functions as molecular stress sensor. Reactive oxygen species, responsible for the most plausible and currently acceptable global mechanism to explain the aging process, strongly activate the enzymatic activity of PARP1 and the formation of poly(ADP-ribose) (PAR) from NAD+. Consumption of NAD+ links PARP1 to energy metabolism and to a large number of NAD+-dependent enzymes, such as the sirtuins. As transcriptional cofactor for NF-κB-dependent gene expression, PARP1 is also connected to the immune response, which is implicated in almost all age-related or associated diseases. Accordingly, numerous experimental studies have demonstrated the beneficial effects of PARP inhibition for several age-related diseases. This review summarizes recent findings on PARP1 and puts them in the context of metabolic stress and inflammation in aging. PMID:20157531

  17. An archaeal ADP-dependent serine kinase involved in cysteine biosynthesis and serine metabolism

    PubMed Central

    Makino, Yuki; Sato, Takaaki; Kawamura, Hiroki; Hachisuka, Shin-ichi; Takeno, Ryo; Imanaka, Tadayuki; Atomi, Haruyuki

    2016-01-01

    Routes for cysteine biosynthesis are still unknown in many archaea. Here we find that the hyperthermophilic archaeon Thermococcus kodakarensis generates cysteine from serine via O-phosphoserine, in addition to the classical route from 3-phosphoglycerate. The protein responsible for serine phosphorylation is encoded by TK0378, annotated as a chromosome partitioning protein ParB. The TK0378 protein utilizes ADP as the phosphate donor, but in contrast to previously reported ADP-dependent kinases, recognizes a non-sugar substrate. Activity is specific towards free serine, and not observed with threonine, homoserine and serine residues within a peptide. Genetic analyses suggest that TK0378 is involved in serine assimilation and clearly responsible for cysteine biosynthesis from serine. TK0378 homologs, present in Thermococcales and Desulfurococcales, are most likely not ParB proteins and constitute a group of kinases involved in serine utilization. PMID:27857065

  18. CTCF participates in DNA damage response via poly(ADP-ribosyl)ation

    PubMed Central

    Han, Deqiang; Chen, Qian; Shi, Jiazhong; Zhang, Feng; Yu, Xiaochun

    2017-01-01

    CCCTC-binding factor (CTCF) plays an essential role in regulating the structure of chromatin by binding DNA strands for defining the boundary between active and heterochromatic DNA. However, the role of CTCF in DNA damage response remains elusive. Here, we show that CTCF is quickly recruited to the sites of DNA damage. The fast recruitment is mediated by the zinc finger domain and poly (ADP-ribose) (PAR). Further analyses show that only three zinc finger motifs are essential for PAR recognition. Moreover, CTCF-deficient cells are hypersensitive to genotoxic stress such as ionizing radiation (IR). Taken together, these results suggest that CTCF participate in DNA damage response via poly(ADP-ribosylation). PMID:28262757

  19. ADP-ribosylating bacterial enzymes for the targeted control of mucosal tolerance and immunity.

    PubMed

    Lycke, Nils

    2004-12-01

    The questions of whether mucosal tolerance and IgA immunity are mutually exclusive or can coexist and whether they represent priming of the local immune system through the same or different activation pathways are addressed. Two strategies were attempted: the first using cholera toxin (CT) or the enzymatically inactive receptor-binding B subunit of CT (CTB), and the second using CTA1-DD or an enzymatically inactive mutant thereof, CTA1R7K-DD. The CTA1-DD adjuvant is a fusion protein composed of the ADP-ribosylating part of CT, CTA1, and DD, which is derived from Staphylococcus areus protein A and targets the molecule to B cells. Here, we provide compelling evidence that delivery of antigen in the absence of ADP ribosylation can promote tolerance, whereas ADP-ribosyltransferase activity induces IgA immunity and prevents tolerance. By linking antigen to the ADP-ribosylating enzymes we could show that CT, although potentially binding to all nucleated cells, in fact, bound preferentially to dendritic cells (DCs) in vivo. On the other hand, DD-bound antigen was distinctly targeted to B cells and probably also to follicular dendritic cells (FDCs) in vivo. Interestingly, the CT and CTA1-DD adjuvants gave equally enhancing effects on mucosal and systemic responses, but appeared to target different APCs in vivo. CT- or CTB-conjugated antigen accumulated in mucosal and systemic DCs. Whereas only CT promoted an active IgA response, CTB induced tolerance to the conjugated antigen. Following intravenous injection of CT-conjugated antigen, DCs in the marginal zone (MZ) of the spleen were selectively targeted. Interestingly, CTB delivered antigen to the same MZ DCs, but failed to induce maturation and upregulation of costimulatory molecules in these cells. Thus, ADP-ribosylation was necessary for a strong enhancing effect of immune responses following CT/CTB-dependent delivery of antigen to the MZ DCs. Moreover, using CTA1-DD, antigen was targeted to the B cell follicle and FDC

  20. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  1. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  2. Effect of L-cysteine on optical, thermal and mechanical properties of ADP crystal for NLO application

    NASA Astrophysics Data System (ADS)

    Shaikh, R. N.; Shirsat, M. D.; Koinkar, P. M.; Hussaini, S. S.

    2015-06-01

    The ammonium dihydrogen phosphate (ADP) crystal doped with amino acid L-cysteine (LC) was grown by a slow evaporation technique. The grown crystal was transparent in the entire visible region, which is an essential requirement for a nonlinear crystal. The LC doping enhances the optical band gap of ADP (5.35 eV). The TG/DTA analysis of LC doped ADP crystal confirms the optimum thermal stability of grown crystal. The enhancement in the mechanical stability after LC doping was confirmed by Vicker's microhardness test. The LC doping showed significant impact on dielectric properties (dielectric constant and dielectric loss) of grown crystal. The third order nonlinear behavior of LC doped ADP crystal was investigated using a Z-scan technique at 632.8 nm and effective nonlinear optical parameters were evaluated.

  3. Serine is a new target residue for endogenous ADP-ribosylation on histones

    PubMed Central

    Colby, Thomas; Zhang, Qi; Atanassov, Ilian; Zaja, Roko; Palazzo, Luca; Stockum, Anna; Ahel, Ivan; Matic, Ivan

    2016-01-01

    ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage. PMID:27723750

  4. Development of an ADP Training Program to Serve the EPA Data Processing Community.

    DTIC Science & Technology

    1976-07-29

    package and interprCLing output. CLASS SIZE: 10 - 15 COURSE OFFERING LOCATION Any EPA office or lab with access to a computing facility which runs the BMI ...Rort rc:_ EPA Contract-#-68-O1-3357 < PDevelopment of an ADP Training Program to Serve the EPA Data Processing Community: Submitted to Prepared by Mr...Street Technical Operations Branch Alexandria, Virginia 22314 EPA /WSH Washington, DC 20460 ClI- LU Jul-,219, 1976 -- ADVANCED COBOL TARGET AUDIENCE To

  5. Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies.

    PubMed

    Lyons, Bronwyn; Ravulapalli, Ravikiran; Lanoue, Jason; Lugo, Miguel R; Dutta, Debajyoti; Carlin, Stephanie; Merrill, A Rod

    2016-05-20

    A bioinformatics strategy was used to identify Scabin, a novel DNA-targeting enzyme from the plant pathogen 87.22 strain of Streptomyces scabies Scabin shares nearly 40% sequence identity with the Pierisin family of mono-ADP-ribosyltransferase toxins. Scabin was purified to homogeneity as a 22-kDa single-domain enzyme and was shown to possess high NAD(+)-glycohydrolase (Km (NAD) = 68 ± 3 μm; kcat = 94 ± 2 min(-1)) activity with an RSQXE motif; it was also shown to target deoxyguanosine and showed sigmoidal enzyme kinetics (K0.5(deoxyguanosine) = 302 ± 12 μm; kcat = 14 min(-1)). Mass spectrometry analysis revealed that Scabin labels the exocyclic amino group on guanine bases in either single-stranded or double-stranded DNA. Several small molecule inhibitors were identified, and the most potent compounds were found to inhibit the enzyme activity with Ki values ranging from 3 to 24 μm PJ34, a well known inhibitor of poly-ADP-ribosyltransferases, was shown to be the most potent inhibitor of Scabin. Scabin was crystallized, representing the first structure of a DNA-targeting mono-ADP-ribosyltransferase enzyme; the structures of the apo-form (1.45 Å) and with two inhibitors (P6-E, 1.4 Å; PJ34, 1.6 Å) were solved. These x-ray structures are also the first high resolution structures of the Pierisin subgroup of the mono-ADP-ribosyltransferase toxin family. A model of Scabin with its DNA substrate is also proposed.

  6. Nonlinear Force-Length Relationship in the ADP-Induced Contraction of Skeletal Myofibrils

    PubMed Central

    Shimamoto, Yuta; Kono, Fumiaki; Suzuki, Madoka; Ishiwata, Shin'ichi

    2007-01-01

    The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca2+ and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca2+, we investigated the force-sarcomere length (SL) relationship in rabbit skeletal myofibrils (a single myofibril or a thin bundle) at SL > 2.2 μm in the absence of Ca2+ at various levels of activation by exogenous MgADP (4–20 mM) in the presence of 1 mM MgATP. The individual SLs were measured by phase-contrast microscopy to confirm the homogeneity of the striation pattern of sarcomeres during activation. We found that at partial activation with 4–8 mM MgADP, the developed force nonlinearly depended on the length of overlap between the thick and the thin filaments; that is, contrary to the maximal activation, the maximal active force was generated at shorter overlap. Besides, the active force became larger, whereas this nonlinearity tended to weaken, with either an increase in [MgADP] or the lateral osmotic compression of the myofilament lattice induced by the addition of a macromolecular compound, dextran T-500. The model analysis, which takes into account the [MgADP]- and the lattice-spacing-dependent probability of cross-bridge formation, was successfully applied to account for the force-SL relationship observed at partial activation. These results strongly suggest that the cross-bridge works as a cooperative activator, the function of which is highly sensitive to as little as ≤1 nm changes in the lattice spacing. PMID:17890380

  7. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.

    PubMed

    Pietropaolo, Adriana; Pierri, Ciro Leonardo; Palmieri, Ferdinando; Klingenberg, Martin

    2016-06-01

    The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC.

  8. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  9. Serine is a new target residue for endogenous ADP-ribosylation on histones.

    PubMed

    Leidecker, Orsolya; Bonfiglio, Juan José; Colby, Thomas; Zhang, Qi; Atanassov, Ilian; Zaja, Roko; Palazzo, Luca; Stockum, Anna; Ahel, Ivan; Matic, Ivan

    2016-12-01

    ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage.

  10. Alternative mechanisms of inhibiting activity of poly (ADP-ribose) polymerase-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Bezbaruah, Babul Kumar; V, Athira K; Sykam, Shivaji

    2016-01-01

    Poly ADP-ribose polymerase (PARP-1), a DNA nick-sensor enzyme, is an abundant nuclear protein. Upon sensing DNA breaks, PARP-1 gets activated and cleaves NAD into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP-1 itself. Poly(ADP-ribosylation) mainly contributes to DNA repairing mechanism. However, oxidative stress-induced over-activation of PARP-1 consumes excess of NAD and consequently ATP, culminating into cell necrosis. This cellular suicide pathway has been implicated in several conditions such as stroke, myocardial ischemia, diabetes. Thus, it can be a rationale approach to inhibit the activity of PARP-1 for reducing detrimental effects associated with oxidative stress-induced over-activation of PARP-1. Several preclinical as well as clinical studies of PARP-1 inhibitors have been used in conditions such as cancer, stroke and traumatic brain injury. Conventionally, there are many studies which employed the concept of direct inhibition of PARP-1 by competing with NAD. Here, in the present review, we highlight several prospective alternative approaches for the inhibition of PARP-1 activity.

  11. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom.

    PubMed

    Horta, C C; Rezende, B A; Oliveira-Mendes, B B R; Carmo, A O; Capettini, L S A; Silva, J F; Gomes, M T; Chávez-Olórtegui, C; Bravo, C E S; Lemos, V S; Kalapothakis, E

    2013-09-01

    Members of the spider genus Lasiodora are widely distributed in Brazil, where they are commonly known as caranguejeiras. Lasiodora spider venom is slightly harmful to humans. The bite of this spider causes local pain, edema and erythema. However, Lasiodora sp. spider venom may be a source of important pharmacological tools. Our research group has described previously that Lasiodora sp. venom produces bradycardia in the isolated rat heart. In the present work, we sought to evaluate the vascular effect of Lasiodora sp. venom and to isolate the vasoactive compounds from the venom. The results showed that Lasiodora spider venom induced a concentration-dependent vasodilation in rat aortic rings, which was dependent on the presence of a functional endothelium and abolished by the nitric oxide synthase (NOS) inhibitor L-NAME. Western blot experiments revealed that the venom also increased endothelial NOS function by increasing phosphorylation of the Ser¹¹⁷⁷ residue. Assay-directed fractionation isolated a vasoactive fraction from Lasiodora sp. venom. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) assays identified a mixture of two compounds: adenosine diphosphate (ADP, approximately 90%) and adenosine monophosphate (AMP, approximately 10%). The vasodilator effects of Lasiodora sp. whole venom, as well as ADP, were significantly inhibited by suramin, which is a purinergic P2-receptor antagonist. Therefore, the results of the present work indicate that ADP is a main vasodilator component of Lasiodora sp. spider venom.

  12. Rifamycin Antibiotic Resistance by ADP-Ribosylation: Structure and Diversity of Arr

    SciTech Connect

    Baysarowich, J.; Koteva, K; Hughes, D; Ejim, L; Griffiths, E; Zhang, K; Junop, M; Wright, G

    2008-01-01

    The rifamycin antibiotic rifampin is important for the treatment of tuberculosis and infections caused by multidrug-resistant Staphylococcus aureus. Recent iterations of the rifampin core structure have resulted in new drugs and drug candidates for the treatment of a much broader range of infectious diseases. This expanded use of rifamycin antibiotics has the potential to select for increased resistance. One poorly characterized mechanism of resistance is through Arr enzymes that catalyze ADP-ribosylation of rifamycins. We find that genes encoding predicted Arr enzymes are widely distributed in the genomes of pathogenic and nonpathogenic bacteria. Biochemical analysis of three representative Arr enzymes from environmental and pathogenic bacterial sources shows that these have equally efficient drug resistance capacity in vitro and in vivo. The 3D structure of one of these orthologues from Mycobacterium smegmatis was determined and reveals structural homology with ADP-ribosyltransferases important in eukaryotic biology, including poly(ADP-ribose) polymerases (PARPs) and bacterial toxins, despite no significant amino acid sequence homology with these proteins. This work highlights the extent of the rifamycin resistome in microbial genera with the potential to negatively impact the expanded use of this class of antibiotic.

  13. Residual force depression in single sarcomeres is abolished by MgADP-induced activation.

    PubMed

    Trecarten, Neal; Minozzo, Fabio C; Leite, Felipe S; Rassier, Dilson E

    2015-06-03

    The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii) to evaluate if force depression is inhibited when single sarcomeres are activated with MgADP, which biases crossbridges into a strongly-bound state. Single sarcomeres (n = 16) were isolated from rabbit psoas myofibrils using two micro-needles (one compliant, one rigid), piercing the sarcomere externally adjacent to the Z-lines. The sarcomeres were contracted isometrically and subsequently shortened, in both Ca(2+)- and MgADP-activating solutions. Shortening in Ca(2+)-activated samples resulted in a 27.44 ± 9.04% force depression when compared to isometric contractions produced at similar final sarcomere lengths (P < 0.001). There was no force depression in MgADP-activated sarcomeres (force depression = -1.79 ± 9.69%, P =  0.435). These results suggest that force depression is a sarcomeric property, and that is associated with an inhibition of myosin-actin interactions.

  14. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  15. Expanding functions of ADP-ribosylation in the maintenance of genome integrity.

    PubMed

    Martin-Hernandez, K; Rodriguez-Vargas, J-M; Schreiber, V; Dantzer, F

    2017-03-01

    Cell response to genotoxic stress requires a complex network of sensors and effectors from numerous signaling and repair pathways, among them the nuclear poly(ADP-ribose) polymerase 1 (PARP1) plays a central role. PARP1 is catalytically activated in the setting of DNA breaks. It uses NAD(+) as a donor and catalyses the synthesis and subsequent covalent attachment of branched ADP-ribose polymers onto itself and various acceptor proteins to promote repair. Its inhibition is now considered as an efficient therapeutic strategy to potentiate the cytotoxic effect of chemotherapy and radiation or to exploit synthetic lethality in tumours with defective homologous recombination mediated repair. Still, efforts made on understanding the role of PARylation in DNA repair continues to yield novel discoveries. Over the last years, our knowledge in this field has been particularly advanced by the discovery of novel biochemical and functional properties featuring PARP1, by the characterization of the other PARP family members and by the identification of a panel of enzymes capable of erasing poly(ADP-ribose). The aim of this review is to provide an overview of these newest findings and their relevance in genome surveillance.

  16. The role of poly(ADP-ribose) in the DNA damage signaling network.

    PubMed

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  17. PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres

    SciTech Connect

    Liu, Yie; Wu, Jun; Schreiber, Valerie; Dunlap, John; Dantzer, Francoise; Wang, Yisong

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  18. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

    PubMed

    Le May, Nicolas; Iltis, Izarn; Amé, Jean-Christophe; Zhovmer, Alexander; Biard, Denis; Egly, Jean-Marc; Schreiber, Valérie; Coin, Frédéric

    2012-12-14

    Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription. Silencing of PARG or knockout of its enzymatic activity maintains the H3K9me2 mark at the promoter of the RAR-dependent genes, leading to the absence of preinitiation complex formation. In the absence of PARG, we found that the H3K9 demethylase KDM4D/JMJD2D became PARsylated. Mutation of two glutamic acids located in the Jumonji N domain of KDM4D inhibited PARsylation. PARG becomes dispensable for ligand-dependent transcription when either a PARP inhibitor or a non-PARsylable KDM4D/JMJD2D mutant is used. Our results define PARG as a coactivator regulating chromatin remodeling during RA-dependent gene expression.

  19. Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens.

    PubMed

    Kawahara, Kazuki; Yonogi, Shinya; Munetomo, Ryota; Oki, Hiroya; Yoshida, Takuya; Kumeda, Yuko; Matsuda, Shigeaki; Kodama, Toshio; Ohkubo, Tadayasu; Iida, Tetsuya; Nakamura, Shota

    2016-11-11

    Binary enterotoxin of Clostridium perfringens (BEC), consisting of the components BECa and BECb, was recently identified as a novel enterotoxin produced by C. perfringens that causes acute gastroenteritis in humans. Although the detailed mechanism of cell intoxication by BEC remains to be defined, BECa shows both NAD(+)-glycohydrolase and actin ADP-ribosyltransferase activities in the presence of NAD(+). In this study, we determined the first crystal structure of BECa in its apo-state and in complex with NADH. The structure of BECa shows striking resemblance with other binary actin ADP-ribosylating toxins (ADPRTs), especially in terms of its overall protein fold and mechanisms of substrate recognition. We present a detailed picture of interactions between BECa and NADH, including bound water molecules located near the C1'-N glycosidic bond of NADH and the catalytically important ADP-ribosylating turn-turn (ARTT) loop. We observed that the conformational rearrangement of the ARTT loop, possibly triggered by a conformational change involving a conserved tyrosine residue coupled with substrate binding, plays a crucial role in catalysis by properly positioning a catalytic glutamate residue in the E-X-E motif of the ARTT loop in contact with the nucleophile. Our results for BECa provide insight into the common catalytic mechanism of the family of binary actin ADPRTs.

  20. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  1. Effect of growth factors on nuclear and mitochondrial ADP-ribosylation processes during astroglial cell development and aging in culture.

    PubMed

    Spina Purrello, Vittoria; Cormaci, Gianfrancesco; Denaro, Luca; Reale, Salvatore; Costa, Antonino; Lalicata, Calogera; Sabbatini, Maurizio; Marchetti, Bianca; Avola, Roberto

    2002-03-15

    Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I) and insulin (INS) are powerful mitogens and may regulate gene expression in cultured astrocytes by ADP-ribosylation process. Nuclear poly-ADP ribose polymerase (PARP) and mitochondrial monoADP-ribosyltransferase (ADPRT) are the key enzymes involved in poly-ADP-ribosylation and mono ADP-ribosylation, respectively. In this investigation the effect of EGF, bFGF, IGF-I or INS on nuclear PARP and mitochondrial ADPRT activities were assessed in nuclei and mitochondria purified from developing (30 DIV) or aging (90 and 190 DIV) primary rat astrocyte cultures. A marked increase of PARP activity in bFGF or IGF-I treated astroglial cell cultures at 30 DIV was found. Nuclear PARP and mitochondrial ADPRT activities were greatly stimulated by treatment with EGF or INS alone or together in astrocyte cultures at 30 DIV. Nuclear PARP and mitochondrial ADPRT activities showed a more remarkable increase in control untreated astrocyte cultures at 190 DIV than at 90 DIV. These findings suggest that ADP-ribosylation process is involved in DNA damage and repair during cell differentiation and aging in culture. Twelve hours treatment with EGF, INS or bFGF significantly stimulated nuclear PARP and mitochondrial ADPRT activities in 190 DIV aging astrocyte cultures. The above results indicate that EGF, INS and bFGF may play a crucial role in the post-translational modification of chromosomal proteins including ADP-ribosylation process in in vitro models. This suggests that growth factors regulate genomic stability in glial cells during development and maturation, stimulating nuclear and mitochondrial ADP-ribosylation processes in developing or aging astrocyte cultures.

  2. Distribution of cytotoxic and DNA ADP-ribosylating activity in crude extracts from butterflies among the family Pieridae

    PubMed Central

    Matsumoto, Yasuko; Nakano, Tsuyoshi; Yamamoto, Masafumi; Matsushima-Hibiya, Yuko; Odagiri, Ken-Ichi; Yata, Osamu; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji

    2008-01-01

    Cabbage butterflies, Pieris rapae and Pieris brassicae, contain strong cytotoxic proteins, designated as pierisin-1 and -2, against cancer cell lines. These proteins exhibit DNA ADP-ribosylating activity. To determine the distribution of substances with cytotoxicity and DNA ADP-ribosylating activity among other species, crude extracts from 20 species of the family Pieridae were examined for cytotoxicity in HeLa cells and DNA ADP-ribosylating activity. Both activities were detected in extracts from 13 species: subtribes Pierina (Pieris rapae, Pieris canidia, Pieris napi, Pieris melete, Pieris brassicae, Pontia daplidice, and Talbotia naganum), Aporiina (Aporia gigantea, Aporia crataegi, Aporia hippia, and Delias pasithoe), and Appiadina (Appias nero and Appias paulina). All of these extracts contained substances recognized by anti-pierisin-1 antibodies, with a molecular mass of ≈100 kDa established earlier for pierisin-1. Moreover, sequences containing NAD-binding sites, conserved in ADP-ribosyltransferases, were amplified from genomic DNA from 13 species of butterflies with cytotoxicity and DNA ADP-ribosylating activity by PCR. Extracts from seven species, Appias lyncida, Leptosia nina, Anthocharis scolymus, Eurema hecabe, Catopsilia pomona, Catopsilia scylla, and Colias erate, showed neither cytotoxicity nor DNA ADP-ribosylating activity, and did not contain substances recognized by anti-pierisin-1 antibodies. Sequences containing NAD-binding sites were not amplified from genomic DNA from these seven species. Thus, pierisin-like proteins, showing cytotoxicity and DNA ADP-ribosylating activity, are suggested to be present in the extracts from butterflies not only among the subtribe Pierina, but also among the subtribes Aporiina and Appiadina. These findings offer insight to understanding the nature of DNA ADP-ribosylating activity in the butterfly. PMID:18256183

  3. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant.

    PubMed

    Zhang, Chanjuan; Ouyang, Bo; Yang, Changxian; Zhang, Xiaohui; Liu, Hui; Zhang, Yuyang; Zhang, Junhong; Li, Hanxia; Ye, Zhibiao

    2013-01-01

    As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.

  4. Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism

    PubMed Central

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003

  5. UDP-glucose:solasodine glucosyltransferase from eggplant (Solanum melongena L.) leaves: partial purification and characterization.

    PubMed

    Paczkowski, C; Kalinowska, M; Wojciechowski, Z A

    1997-01-01

    Uridine 5'-diphosphoglucose-dependent glucosyltransferase which catalyzes the glycosylation of solasodine i.e. UDP-glucose:solasodine glucosyltransferase, is present in leaves, roots, unripe fruits and unripe seeds of eggplant (Solanum melongena L.). The glucosylation product is chromatographically identical with authentic solasodine 3 beta-D-monoglucoside, a putative intermediate in the biosynthesis of solasodine-based glycoalkaloids characteristic of the eggplant. The enzyme was purified about 50-fold from crude cytosol fraction of eggplant leaves by ammonium sulphate precipitation and column chromatography on Q-Sepharose and Sephadex G-100. The native enzyme has a molecular mass of approx. 55 kDa and pH optimum of 8.5. Divalent metal ions are not required for its activity but the presence of free-SH groups is essential. Besides solasodine (Km = 0.04 microM), the enzyme effectively glucosylates tomatidine, another steroidal alkaloid of the spirosolane type, but it is virtually inactive towards the solanidane-type steroidal alkaloids such as solanidine or demissidine. The enzyme is specific for UDP-glucose (Km = 2.1 microM) since unlabelled ADP-, GDP-, CDP- or TDP-glucose could not effectively compete with UDP-[14C]glucose used as the sugar donor for solasodine glucosylation. Moreover, no synthesis of labelled solasodine galactoside was observed when UDP-[14C]glucose was replaced with UDP-[14C]galactose.

  6. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  7. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  8. A Comparative Study of Vasorelaxant Effects of ATP, ADP, and Adenosine on the Superior Mesenteric Artery of SHR.

    PubMed

    Watanabe, Shun; Matsumoto, Takayuki; Ando, Makoto; Kobayashi, Shota; Iguchi, Maika; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    We investigated superior mesenteric arteries from spontaneously hypertensive rats (SHR) to determine the relaxation responses induced by ATP, ADP, and adenosine and the relationship between the relaxant effects of these compounds and nitric oxide (NO) or cyclooxygenase (COX)-derived prostanoids. In rat superior mesenteric artery, relaxation induced by ATP and ADP but not by adenosine was completely eliminated by endothelial denudation. In the superior mesenteric arteries isolated from SHR [vs. age-matched control Wistar Kyoto rats (WKY)], a) ATP- and ADP-induced relaxations were weaker, whereas adenosine-induced relaxation was similar in both groups, b) ATP- and ADP-induced relaxations were substantially and partly reduced by N(G)-nitro-L-arginine [a NO synthase (NOS) inhibitor], respectively, c) indomethacin, an inhibitor of COX, increased ATP- and ADP-induced relaxations, d) ADP-induced relaxation was weaker under combined inhibition by NOS and COX, and e) adenosine-induced relaxation was not altered by treatment with these inhibitors. These data indicate that levels of responsiveness to these nucleotides/adenosine vary in the superior mesenteric arteries from SHR and WKY and are differentially modulated by NO and COX-derived prostanoids.

  9. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.

    PubMed

    Frieden, C; Patane, K

    1985-07-16

    The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.

  10. Production of an antiserum specific to the ADP-ribosylated form of elongation factor 2 from archaebacteria and eukaryotes.

    PubMed

    Siegmund, K D; Klink, F

    1992-11-09

    An antiserum to ADP-ribosylated elongation factor 2 (ADPR-EF-2) from S. acidocaldarius was raised in rabbits using stained, homogenized, ADPR-EF-2-containing slices from SDS-gels as a source of antigen. Elongation factor 2 (EF-2) from S. acidocaldarius was cloned in E. coli and the expressed gene product was used in order to adsorb all anti-EF-2 antibodies which do not contain the ADP-ribosyl group within their epitopes, as E. coli is unable to synthesize the ADP-ribosyl acceptor diphthamide. The remaining antibodies were specific to ADP-ribosylated EF-2 from Thermoplasma acidophilum, S. acidocaldarius and Desulfurococcus mucosus. ADP-ribosylated EF-2 from eukaryotic sources also reacted with the adsorbed antiserum as shown for EF-2 isolated from the killi-fish Cynolebias whitei, the mouse species BALB/c and Han/Wistar rats. The adsorbed antiserum did not cross-react with ADP-ribosylated actin or rho protein or with FAD-containing D-amino acid oxidase.

  11. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    PubMed Central

    2010-01-01

    Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothesize that a decrease in the concentration of total poly-ADP-ribose adducts of peripheral blood lymphocyte (PBL) proteins strongly correlates with the incidence of human cancer. Results Using a novel immunoprobe assay, we show a statistically significant (P ≤ 0.001) reduction (~ 42 to 49%) in the level of poly-ADP-ribose adducts of PBL proteins of patients with advanced cancers of head & neck (H & N) region (comprising fourteen distinct cancers at different sites), breast and cervix in comparison to healthy controls. Conclusions These findings imply potential utility of the poly-ADP-ribose adducts of PBL proteins as a novel and general biomarker of human cancers with potentials of significant clinical and epidemiological applications. PMID:21034502

  12. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin

    PubMed Central

    Belyy, Alexander; Tabakova, Irina; Lang, Alexander E.; Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-01-01

    Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia. PMID:26713879

  13. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    PubMed

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

  14. [Closure of Ca2+-dependent pores by cyclosporin A: the role of magnesium ions, adenine nucleotides, and conformation status of the ADP/ATP antiporter].

    PubMed

    Andreev, A Iu; Mikhaĭlova, L M; Starkov, A A

    1994-10-01

    Effects of ADP and Mg2+ on the ability of cyclosporin A to "reseal" mitochondria permeabilized by Ca2+ and P(i) have been studied. Cyclosporin A was completely ineffective, when ADP and Mg2+ were not included into the incubation medium. Both ADP and Mg2+ used at high concentrations potentiated the effect of cyclosporin A and prevented it reversal by carboxyatractylate. Data on the influence of different concentrations of ADP and Mg2+ on the resealing efficiency of cyclosporin A suggest that the true effector modulating the state of the Ca(2+)-dependent pore is the ADP-Mg2+ complex, but not ADP or Mg2+ used separately. The ability of non-hydrolyzable analogs of adenine nucleotides, ADP-S and ATP-S, to potentiate the resealing action of cyclosporin on mitochondria permeabilized by loading of different Ca2+ concentrations to that of ADP was compared. ATP-S was ineffective when the pore was induced by high concentrations of Ca2+. The results obtained are discussed in terms of hypothesis on the direct involvement of the ADP/ATP antiporter in regulation of the inner mitochondrial membrane Ca(2+)-dependent pore state.

  15. Starch Synthesis in Shriveled and Plump Triticale Seeds 1

    PubMed Central

    Ching, Te May; Poklemba, Chris J.; Metzger, Robert J.

    1983-01-01

    Seven lines of triticale (X Triticosecale Wittmack) with either shriveled or plump seed characteristics were planted in the field, and seed developmental changes in weight, starch content, the activity of starch biosynthetic and degradative enzymes, and ATP content were studied in three consecutive years in Oregon. Experimental results varied among genotypes and with growing environment, but overall indicated that: (a) amylase activity was higher in shriveled lines, but was not directly synchronized with the occurrence of shriveling at later stages of seed formation; (b) ADP-glucose starch synthase contributed to starch accumulation in triticale, but it appeared not to be associated with shriveledness as no stage-related changes were observed; and (c) ADP-glucose pyrophosphorylase activity was 2- to 3-fold higher in plump lines than that of shriveled lines, indicating that this enzyme may play an important role in the degree of plumpness or stach accumulation of triticale seeds. PMID:16663276

  16. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean

    2017-03-01

    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O2 uptake, flux of carbon between sucrose and CO2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways.

  17. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  18. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    PubMed

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  19. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  20. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1.

    PubMed

    Santala, Suvi; Efimova, Elena; Koskinen, Perttu; Karp, Matti Tapani; Santala, Ville

    2014-03-21

    Wax esters are industrially relevant high-value molecules. For sustainable production of wax esters, bacterial cell factories are suggested to replace the chemical processes exploiting expensive starting materials. However, it is well recognized that new sophisticated solutions employing synthetic biology toolbox are required to improve and tune the cellular production platform to meet the product requirements. For example, saturated wax esters with alkanol chain lengths C12 or C14 that are convenient for industrial uses are rare among bacteria. Acinetobacter baylyi ADP1, a natural producer of wax esters, is a convenient model organism for studying the potentiality and modifiability of wax esters in a natural host by means of synthetic biology. In order to establish a controllable production platform exploiting well-characterized biocomponents, and to modify the wax ester synthesis pathway of A. baylyi ADP1 in terms product quality, a fatty acid reductase complex LuxCDE with an inducible arabinose promoter was employed to replace the natural fatty acyl-CoA reductase acr1 in ADP1. The engineered strain was able to produce wax esters by the introduced synthetic pathway. Moreover, the fatty alkanol chain length profile of wax esters was found to shift toward shorter and more saturated carbon chains, C16:0 accounting for most of the alkanols. The study demonstrates the potentiality of recircuiting a biosynthesis pathway in a natural producer, enabling a regulated production of a customized bioproduct. Furthermore, the LuxCDE complex can be potentially used as a well-characterized biopart in a variety of synthetic biology applications involving the production of long-chain hydrocarbons.

  1. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.

    PubMed

    Erener, Süheda; Hesse, Mareike; Kostadinova, Radina; Hottiger, Michael O

    2012-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a chromatin-associated enzyme that was described to affect chromatin compaction. Previous reports suggested a dynamic modulation of the chromatin landscape during adipocyte differentiation. We thus hypothesized that PARP1 plays an important transcriptional role in adipogenesis and metabolism and therefore used adipocyte development and function as a model to elucidate the molecular action of PARP1 in obesity-related diseases. Our results show that PARP1-dependent ADP-ribose polymer (PAR) formation increases during adipocyte development and, at late time points of adipogenesis, is involved in the sustained expression of PPARγ2 and of PPARγ2 target genes. During adipogenesis, PARP1 was recruited to PPARγ2 target genes such as CD36 or aP2 in a PAR-dependent manner. Our results also reveal a PAR-dependent decrease in repressory histone marks (e.g. H3K9me3) and an increase in stimulatory marks (e.g. H3K4me3) at the PPARγ2 promoter, suggesting that PARP1 may exert its regulatory function during adipogenesis by altering histone marks. Interestingly, activation of PARP1 enzymatic activity was prevented with a topoisomerase II inhibitor. These data hint at topoisomerase II-dependent, transient, site-specific double-strand DNA breaks as the cause for poly(ADP)-ribose formation, adipogenic gene expression, and adipocyte function. Together, our study identifies PARP1 as a critical regulator of PPARγ2-dependent gene expression with implications in adipocyte function and obesity-related disease models.

  2. Platelets promote cartilage repair and chondrocyte proliferation via ADP in a rodent model of osteoarthritis.

    PubMed

    Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu

    2016-01-01

    Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.

  3. Phylogenetic approach for inferring the origin and functional evolution of bacterial ADP-ribosylation superfamily.

    PubMed

    Chellapandi, P; Sakthishree, S; Bharathi, M

    2013-09-01

    Bacterial ADP-ribosyltransferases (BADPRTs) are extensively contributed to determine the strain-specific virulence state and pathogenesis in human hosts. Understanding molecular evolution and functional diversity of the BADPRTs is an important standpoint to describe the fundamental behind in the vaccine designing for bacterial infections. In the present study, we have evaluated the origin and functional evolution of conserved domains within the BADPRTs by analyzing their sequence-function relationship. To represent the evolution history of BADPRTs, phylogenetic trees were constructed based on their protein sequence, structure and conserved domains using different evolutionary programs. Sequence divergence and genetic diversity were studied herein to deduce the functional evolution of conserved domains across the family and superfamily. The results of sequence similarity search have shown that three hypothetical proteins (above 90%) were identical to the members of BADPRTs and their functions were annotated by phylogenetic approach. Phylogenetic analysis of this study has revealed the family members of BADPRTs were phylogenetically related to one another, functionally diverged within the same family, and dispersed into closely related bacteria. The presence of core substitution pattern in the conserved domains would determine the family-specific function of BADPRTs. Functional diversity of the BADPRTs was exclusively distinguished by Darwinian positive selection (diphtheria toxin C and pertussis toxin S) and neutral selection (arginine ADP-ribosyltransferase, enterotoxin A and binary toxin A) acting on the existing domains. Many of the family members were sharing their sequence-specific features from members in the arginine ADP-ribosyltransferase family. Conservative functions of members in the BADPRTs have shown to be expanded only within closely related families, and retained as such in pathogenic bacteria by evolutionary process (domain duplication or

  4. The mitochondrial 2-oxoglutarate carrier is part of a metabolic pathway that mediates glucose- and glutamine-stimulated insulin secretion.

    PubMed

    Odegaard, Matthew L; Joseph, Jamie W; Jensen, Mette V; Lu, Danhong; Ilkayeva, Olga; Ronnebaum, Sarah M; Becker, Thomas C; Newgard, Christopher B

    2010-05-28

    Glucose-stimulated insulin secretion from pancreatic islet beta-cells is dependent in part on pyruvate cycling through the pyruvate/isocitrate pathway, which generates cytosolic alpha-ketoglutarate, also known as 2-oxoglutarate (2OG). Here, we have investigated if mitochondrial transport of 2OG through the 2-oxoglutarate carrier (OGC) participates in control of nutrient-stimulated insulin secretion. Suppression of OGC in clonal pancreatic beta-cells (832/13 cells) and isolated rat islets by adenovirus-mediated delivery of small interfering RNA significantly decreased glucose-stimulated insulin secretion. OGC suppression also reduced insulin secretion in response to glutamine plus the glutamate dehydrogenase activator 2-amino-2-norbornane carboxylic acid. Nutrient-stimulated increases in glucose usage, glucose oxidation, glutamine oxidation, or ATP:ADP ratio were not affected by OGC knockdown, whereas suppression of OGC resulted in a significant decrease in the NADPH:NADP(+) ratio during stimulation with glucose but not glutamine + 2-amino-2-norbornane carboxylic acid. Finally, OGC suppression reduced insulin secretion in response to a membrane-permeant 2OG analog, dimethyl-2OG. These data reveal that the OGC is part of a mechanism of fuel-stimulated insulin secretion that is common to glucose, amino acid, and organic acid secretagogues, involving flux through the pyruvate/isocitrate cycling pathway. Although the components of this pathway must remain intact for appropriate stimulus-secretion coupling, production of NADPH does not appear to be the universal second messenger signal generated by these reactions.

  5. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  6. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.

  7. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation.

    PubMed

    Mateyak, Maria K; Kinzy, Terri Goss

    2013-08-23

    Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo. ADP(R) of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADP(R)-eEF2.

  8. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  9. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation

    PubMed Central

    Aguilera-Gomez, Angelica; van Oorschot, Marinke M; Veenendaal, Tineke; Rabouille, Catherine

    2016-01-01

    PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress. DOI: http://dx.doi.org/10.7554/eLife.21475.001 PMID:27874829

  10. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    SciTech Connect

    Fendrick, J.L.; Iglewski, W.J. )

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  11. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    PubMed

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  12. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity

    PubMed Central

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-01-01

    Summary We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  13. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes.

  14. [Glucose homeostasis in children. I. Regulation of blood glucose].

    PubMed

    Otto Buczkowska, E; Szirer, G; Jarosz-Chobot, P

    2001-01-01

    The amount of glucose in the circulation depends on its absorption from the intestine, uptake by and release from the liver and uptake by peripheral tissues. Insulin and glucagon together control the metabolities required by peripheral tissues and both are involved in maintaining glucose homeostasis. Insulin is considered to be an anabolic hormone in that it promotes the synthesis of protein, lipid and glycogen. The key target tissues for insulin are liver, muscles and adipose tissue. Glucagon acts largely to increase catabolic processes. Between meals or during fast, the most tightly regulated process is the release of glucose from the liver. During fasting glucose is produced from glycogen and is formed by enzymes on the gluconeogenic pathway. Fetal metabolism is directed to ensure anabolism with formation of glycogen, fat and protein. Glucogen is stored in the liver and serves as the immediate source of new glucose during first few hours after birth. Glucose is the most important substrate for brain metabolism. Due to the large size of neonatal brain in relation to body weight cerebral glucose consumption is particularly high. Postnatal hormonal changes have a central role in regulating glucose mobilization through glycogenolysis and gluconeogenesis. The initial glucagon surge is the key adaptive change which triggers the switch to glucose production. The control of insulin and glucagon secretion is of fundamental importance during first hours after birth. Children have a decreased tolerance to starvation when compared with adults, they are more prone to develop hypoglycaemia after short fasting. The faster rate in the fall of blood glucose and gluconeogenic substrates and rapid rate of ketogenesis are characteristic features of fasting adaptation in children.

  15. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  16. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  17. The art of blocking ADP-ribosyltransferases (ARTs): nanobodies as experimental and therapeutic tools to block mammalian and toxin ARTs.

    PubMed

    Menzel, Stephan; Rissiek, Björn; Haag, Friedrich; Goldbaum, Fernando A; Koch-Nolte, Friedrich

    2013-08-01

    In 1901, the first Nobel Prize in Physiology or Medicine was awarded to Emil von Behring for his ground-breaking discovery of serum therapy: serum from horses vaccinated with toxin-containing culture medium of Corynebacterium diphtheriae contained life-saving 'antitoxins'. The molecular nature of the ADP-ribosylating toxin and the neutralizing antibodies were unraveled only 50 years later. Today, von Behring's antibody therapy is being refined with a new generation of recombinant antibodies and antibody fragments. Nanobodies, which are single-domain antibodies derived from the peculiar heavy-chain antibodies of llamas and other camelids, are emerging as a promising new class of highly specific enzyme inhibitors. In this review, we illustrate the potential of nanobodies as tools to block extracellular and intracellular ADP-ribosyltransferases (ARTs), using the toxin-related membrane-bound mammalian ecto-enzyme ARTC2 and the actin-ADP-ribosylating Salmonella virulence plasmid factor B toxin of Salmonella enterica as examples.

  18. By Releasing ADP, Acanthamoeba castellanii Causes an Increase in the Cytosolic Free Calcium Concentration and Apoptosis in Wish Cells

    PubMed Central

    Mattana, A.; Tozzi, M. G.; Costa, M.; Delogu, G.; Fiori, P. L.; Cappuccinelli, P.

    2001-01-01

    The role played by soluble molecules that may participate in acanthamoebal cytopathogenicity has yet to be fully characterized. We demonstrate here that Acanthamoeba castellanii trophozoites constitutively release ADP in the medium. Cell-free supernatants prepared from A. castellanii, by interaction with specific P2y2 purinoceptors expressed on the Wish cell membrane, caused a biphasic rise in [Ca2+]i, extensive cell membrane blebbing, cytoskeletal disorganization, and the breakdown of nuclei. Cell damage induced by amoebic supernatants was blocked by the P2y2 inhibitor Suramin. The same results were found in Wish cells exposed to purified ADP. These findings suggest that pathogenic free-living A. castellanii may have a cytopathic effect on human epithelial cells through ADP release, by a process that begins with a rise of cytosolic free-calcium concentration, and culminates in apoptosis. PMID:11349088

  19. P2Y12-ADP receptor antagonists: Days of future and past

    PubMed Central

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-01-01

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients. PMID:27231519

  20. Tankyrase Polymerization Is Controlled by Its Sterile Alpha Motif and Poly(ADP-Ribose) Polymerase Domains

    PubMed Central

    De Rycker, Manu; Price, Carolyn M.

    2004-01-01

    Tankyrases are novel poly(ADP-ribose) polymerases that have SAM and ankyrin protein-interaction domains. They are found at telomeres, centrosomes, nuclear pores, and Golgi vesicles and have been shown to participate in telomere length regulation. Their other function(s) are unknown, and it has been difficult to envision a common role at such diverse cellular locations. We have shown that tankyrase 1 polymerizes through its sterile alpha motif (SAM) domain to assemble large protein complexes. In vitro polymerization is reversible and still allows interaction with ankyrin-domain binding proteins. Polymerization can also occur in vivo, with SAM-dependent association of overexpressed tankyrase leading to formation of large tankyrase-containing vesicles, disruption of Golgi structure, and inhibition of apical secretion. Finally, tankyrase polymers are dissociated efficiently by poly(ADP-ribosy)lation. This disassembly is prevented by mutation of the PARP domain. Our findings indicate that tankyrase 1 has the unique capacity to promote both assembly and disassembly of large protein complexes. Thus, tankyrases appear to be master scaffolding proteins that regulate the formation of dynamic protein networks at different cellular locations. This implies a common scaffolding function for tankyrases at each location, with specific tankyrase interaction partners conferring location-specific roles to each network, e.g., telomere compaction or regulation of vesicle trafficking. PMID:15509784

  1. Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines

    PubMed Central

    Zaremba, T; Ketzer, P; Cole, M; Coulthard, S; Plummer, E R; Curtin, N J

    2009-01-01

    Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the catalytic domain that reduces PARP-1 activity. Methods: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in a panel of 19 solid and haematological, adult and paediatric human cancer cell lines. Results: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV=103%), with the lowest and the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV=32%) was observed in PARP-1 protein expression with the lowest expression being 2.0 ng μg−1 (HS-5 cells) and the highest being 7.1 ng μg−1 (ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the PARP-1 protein levels were 23-fold higher. Conclusions: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated polymorphisms, T2444C and CA. PMID:19568233

  2. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  3. Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration

    PubMed Central

    Brochier, Camille; Jones, James I.; Willis, Dianna E.; Langley, Brett

    2015-01-01

    Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules—such as myelin-derived Nogo and myelin-associated glycoprotein—or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration. PMID:26598704

  4. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    PubMed

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  5. Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification.

    PubMed

    Eisemann, Travis; McCauley, Michael; Langelier, Marie-France; Gupta, Kushol; Roy, Swati; Van Duyne, Gregory D; Pascal, John M

    2016-10-04

    The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering (SAXS) to investigate solution conformations of the complete ankyrin repeat domain. Mutagenesis and binding studies using the bivalent TNKS binding domain of Axin1 demonstrate that only certain ARC combinations function together. The physical basis for these restrictions is explained by both rigid and flexible ankyrin repeat elements determined in our structural analysis. SAXS analysis is consistent with a dynamic ensemble of TNKS ankyrin repeat conformations modulated by Axin1 interaction. TNKS ankyrin repeat domain is thus an adaptable binding platform with structural features that can explain selectivity toward diverse proteins, and has implications for TNKS positioning of bound targets for poly(ADP-ribose) modification.

  6. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    PubMed Central

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao

    2015-01-01

    PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN–AKT pathway that can be explored further for cancer treatment. PMID:25547115

  7. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae

    DOE PAGES

    Becker, Argentina; Kannan, T. R.; Taylor, Alexander B.; ...

    2015-04-06

    Mycoplasma pneumoniae (Mp) infections cause tracheobronchitis and “walking” pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. In this paper, we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem β-trefoil domains associate to form anmore » overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal β-trefoil domain. Finally, the results enhance our understanding of Mp pathogenicity and suggest a novel avenue for the development of therapies to treat Mp-associated asthma and other acute and chronic airway diseases.« less

  8. Role of CD38, a cyclic ADP-ribosylcyclase, in morphine antinociception and tolerance.

    PubMed

    Hull, Lynn C; Rabender, Christopher; Gabra, Bichoy H; Zhang, Fan; Li, Pin-Lan; Dewey, William L

    2010-09-01

    Our previous studies have demonstrated that an increase in intracellular levels of Ca(2+) in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca(2+) signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate beta-NAD(+) in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38-cADPR-ryanodine receptor Ca(2+) signaling pathway. These inhibitors were the ADP-ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 muM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(-/-)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(-/-) and WT animals. It was also found that less tolerance to morphine developed in CD38(-/-) mice compared with WT animals. These results indicate that cADRP-ryanodine receptor Ca(2+) signaling associated with CD38 plays an important role in morphine tolerance.

  9. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1

    PubMed Central

    Luo, Xin; Kraus, W. Lee

    2012-01-01

    Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD+ as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD+ metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data. PMID:22391446

  10. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation

    PubMed Central

    Iwata, Hiroshi; Goettsch, Claudia; Sharma, Amitabh; Ricchiuto, Piero; Goh, Wilson Wen Bin; Halu, Arda; Yamada, Iwao; Yoshida, Hideo; Hara, Takuya; Wei, Mei; Inoue, Noriyuki; Fukuda, Daiju; Mojcher, Alexander; Mattson, Peter C.; Barabási, Albert-László; Boothby, Mark; Aikawa, Elena; Singh, Sasha A.; Aikawa, Masanori

    2016-01-01

    Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation. PMID:27796300

  11. adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria.

    PubMed

    Kawamata, Hibiki; Tiranti, Valeria; Magrané, Jordi; Chinopoulos, Christos; Manfredi, Giovanni

    2011-08-01

    Mutations in the heart and muscle isoform of adenine nucleotide translocator 1 (ANT1) are associated with autosomal-dominant progressive external opthalmoplegia (adPEO) clinically characterized by exercise intolerance, ptosis and muscle weakness. The pathogenic mechanisms underlying the mitochondrial myopathy caused by ANT1 mutations remain largely unknown. In yeast, expression of ANT1 carrying mutations corresponding to the human adPEO ones causes a wide range of mitochondrial abnormalities. However, functional studies of ANT1 mutations in mammalian cells are lacking, because they have been hindered by the fact that ANT1 expression leads to apoptotic cell death in commonly utilized replicating cell lines. Here, we successfully express functional ANT1 in differentiated mouse myotubes, which naturally contain high levels of ANT1, without causing cell death. We demonstrate, for the first time in these disease-relevant mammalian cells, that mutant human ANT1 causes dominant mitochondrial defects characterized by decreased ADP-ATP exchange function and abnormal translocator reversal potential. These abnormalities are not due to ANT1 loss of function, because knocking down Ant1 in myotubes causes functional changes different from ANT1 mutants. Under certain physiological conditions, mitochondria consume ATP to maintain membrane potential by reversing the ADP-ATP transport. The modified properties of mutant ANT1 can be responsible for disease pathogenesis in adPEO, because exchange reversal occurring at higher than normal membrane potential can cause excessive energy depletion and nucleotide imbalance in ANT1 mutant muscle cells.

  12. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase.

    PubMed

    Kotaka, Masayo; Graeff, Richard; Chen, Zhe; Zhang, Li He; Lee, Hon Cheung; Hao, Quan

    2012-01-20

    Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.

  13. Hydrogen ADPs with Cu Kα data? Invariom and Hirshfeld atom modelling of fluconazole.

    PubMed

    Orben, Claudia M; Dittrich, Birger

    2014-06-01

    For the structure of fluconazole [systematic name: 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol] monohydrate, C13H12F2N6O·H2O, a case study on different model refinements is reported, based on single-crystal X-ray diffraction data measured at 100 K with Cu Kα radiation to a resolution of sin θ/λ of 0.6 Å(-1). The structure, anisotropic displacement parameters (ADPs) and figures of merit from the independent atom model are compared to `invariom' and `Hirshfeld atom' refinements. Changing from a spherical to an aspherical atom model lowers the figures of merit and improves both the accuracy and the precision of the geometrical parameters. Differences between results from the two aspherical-atom refinements are small. However, a refinement of ADPs for H atoms is only possible with the Hirshfeld atom density model. It gives meaningful results even at a resolution of 0.6 Å(-1), but requires good low-order data.

  14. Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation

    PubMed Central

    Huang, Peiwu; Zhuang, Zhixiong; Liu, Jianjun; Gao, Wei; Liu, Yinpin; Huang, Haiyan

    2016-01-01

    Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer. PMID:27003318

  15. NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1.

    PubMed

    Wang, Shao-Hui; Liao, Xiao-Mei; Liu, Dan; Hu, Juan; Yin, Yang-Yang; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2012-11-01

    Nerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear. In this study we found that NGF administration facilitates the hippocampus-dependent long-term memory and synaptic plasticity by increasing the activity of PARP-1, a polymerase mediating the PolyADP-ribosylation and important for the memory formation. Co-application of 3-Aminobenzamide (3-AB), a specific inhibitor of PARP-1, distinctly blocked the boosting effect of NGF on memory and synaptic plasticity, and the activation of downstream PKA-CREB signal pathway. Our data provide the first evidence that NGF supplement facilitates synaptic plasticity and the memory ability through PARP-1-mediated protein polyADP-ribosylation and activation of PKA-CREB pathway.

  16. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    PubMed

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  17. Readers of poly(ADP-ribose): designed to be fit for purpose

    PubMed Central

    Teloni, Federico; Altmeyer, Matthias

    2016-01-01

    Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions. PMID:26673700

  18. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.

    PubMed

    Nocek, Boguslaw; Kochinyan, Samvel; Proudfoot, Michael; Brown, Greg; Evdokimova, Elena; Osipiuk, Jerzy; Edwards, Aled M; Savchenko, Alexei; Joachimiak, Andrzej; Yakunin, Alexander F

    2008-11-18

    Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.

  19. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity

    SciTech Connect

    Meyer, Ralph G. . E-mail: meyerg@vet.upenn.edu; Meyer-Ficca, Mirella L.; Whatcott, Clifford J.; Jacobson, Elaine L.; Jacobson, Myron K.

    2007-08-01

    Poly(ADP-ribose)glycohydrolase (PARG) is the major enzyme capable of rapidly hydrolyzing poly(ADP-ribose) (PAR) formed by the diverse members of the PARP enzyme family. This study presents an alternative splice mechanism by which two novel PARG protein isoforms of 60 kDa and 55 kDa are expressed from the human PARG gene, termed hPARG60 and hPARG55, respectively. Homologous forms were found in the mouse (mPARG63 and mPARG58) supporting the hypothesis that expression of small PARG isoforms is conserved among mammals. A PARG protein of {approx} 60 kDa has been described for decades but with its genetic basis unknown, it was hypothesized to be a product of posttranslational cleavage of larger PARG isoforms. While this is not excluded entirely, isolation and expression of cDNA clones from different sources of RNA indicate that alternative splicing leads to expression of a catalytically active hPARG60 in multiple cell compartments. A second enzyme, hPARG55, that can be expressed through alternative translation initiation from hPARG60 transcripts is strictly targeted to the mitochondria. Functional studies of a mitochondrial targeting signal (MTS) in PARG exon IV suggest that hPARG60 may be capable of shuttling between nucleus and mitochondria, which would be in line with a proposed function of PAR in genotoxic stress-dependent, nuclear-mitochondrial crosstalk.

  20. Glucose tolerance test - non-pregnant

    MedlinePlus

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test; Diabetic - glucose tolerance test ... The most common glucose tolerance test is the oral glucose ... the test begins, a sample of blood will be taken. You will then ...

  1. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium

    PubMed Central

    Barbe, Valérie; Vallenet, David; Fonknechten, Nuria; Kreimeyer, Annett; Oztas, Sophie; Labarre, Laurent; Cruveiller, Stéphane; Robert, Catherine; Duprat, Simone; Wincker, Patrick; Ornston, L. Nicholas; Weissenbach, Jean; Marlière, Philippe; Cohen, Georges N.; Médigue, Claudine

    2004-01-01

    Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major ‘islands of catabolic diversity’, now an apparent ‘archipelago of catabolic diversity’, within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism. PMID:15514110

  2. Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation.

    PubMed Central

    Liang, J H; Nielsen, G M; Lies, D P; Burris, R H; Roberts, G P; Ludden, P W

    1991-01-01

    Reversible ADP-ribosylation of dinitrogenase reductase forms the basis of posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. This report describes the physiological effects of mutations in the genes encoding the enzymes that add and remove the ADP-ribosyl moiety. Mutants lacking a functional draT gene had no dinitrogenase reductase ADP-ribosyltransferase (DRAT, the draT gene product) activity in vitro and were incapable of modifying dinitrogenase reductase with ADP-ribose in vivo. Mutants lacking a functional draG gene had no dinitrogenase reductase-activating glycohydrolase (DRAG, the draG gene product) activity in vitro and were unable to remove ADP-ribose from the modified dinitrogenase reductase in vivo. Strains containing polar mutations in draT had no detectable DRAG activity in vitro, suggesting likely cotranscription of draT and draG. In strains containing draT and lacking a functional draG, dinitrogenase reductase accumulated in the active form under derepressing conditions but was rapidly ADP-ribosylated in response to conditions that cause inactivation. Detection of DRAT in these cells in vitro demonstrated that DRAT is itself subject to posttranslational regulation in vivo. Mutants affected in an open reading frame immediately downstream of draTG showed regulation of dinitrogenase reductase by ADP-ribosylation, although differences in the rates of ADP-ribosylation were apparent. Images FIG. 5 FIG. 6 PMID:1938894

  3. ADP-ribosylation factor-like protein 4C (ARL4C) interacts with galectin-3 during oocyte development and embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-ribosylation factor-like protein 4 (ARL4) is a GTP-binding protein which belongs to the ADP-ribosylation factor protein (ARF) superfamily of small GTPases. ARL4 has been shown to be mainly related to the development of male germ cells and embryogenesis in mouse. To investigate the role of ARL4 i...

  4. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  5. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  6. Monofluorophosphate Blocks Internal Polysaccharide Synthesis in Streptococcus mutans

    PubMed Central

    Naleway, Conrad; Iglesias, Alberto A.; Ballicora, Miguel A.

    2017-01-01

    Streptococcus mutans is the leading cause of dental caries worldwide by accumulating a glycogen-like internal polysaccharide (IPS) that contributes to cariogenicity when sugars are in excess. Sodium monofluorophosphate (MFP) is an active anticariogenic compound in toothpastes. Herein, we show that MFP inhibits (with an I0.5 of 1.5 mM) the S. mutans ADP-glucose pyrophosphorylase (EC 2.7.7.27), which catalyzes the key step in IPS biosynthesis. Enzyme inhibition by MFP is similar to orthophosphate (Pi), except that the effect caused by MFP is not reverted by fructose-1,6-bisP, as occurs with Pi. Inhibition was correlated with a decrease in acidogenesis and IPS accumulation in S. mutans cells cultured with 2 mM sodium MFP. These effects were not mimicked by sodium fluoride. Considering that glycogen synthesis occurs by different pathways in mammals and bacteria, ADP-glucose pyrophosphorylase could be visualized as a molecular target for controlling S. mutans virulence. Our results strongly suggest that MFP is a suitable compound to affect such a target, inducing an anticariogenic effect primarily by inhibiting a key step in IPS synthesis. PMID:28125652

  7. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.

    PubMed

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  8. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    PubMed Central

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    Abstract In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin. PMID:28179956

  9. Spermatid Head Elongation with Normal Nuclear Shaping Requires ADP-Ribosyltransferase PARP11 (ARTD11) in Mice1

    PubMed Central

    Meyer-Ficca, Mirella L.; Ihara, Motomasa; Bader, Jessica J.; Leu, N. Adrian; Beneke, Sascha; Meyer, Ralph G.

    2015-01-01

    ABSTRACT Sperm are highly differentiated cells characterized by their species-specific nuclear shapes and extremely condensed chromatin. Abnormal head shapes represent a form of teratozoospermia that can impair fertilization capacity. This study shows that poly(ADP-ribose) polymerase-11 (ARTD11/PARP11), a member of the ADP-ribosyltransferase (ARTD) family, is expressed preferentially in spermatids undergoing nuclear condensation and differentiation. Deletion of the Parp11 gene results in teratozoospermia and male infertility in mice due to the formation of abnormally shaped fertilization-incompetent sperm, despite normal testis weights and sperm counts. At the subcellular level, PARP11-deficient elongating spermatids reveal structural defects in the nuclear envelope and chromatin detachment associated with abnormal nuclear shaping, suggesting functional relevance of PARP11 for nuclear envelope stability and nuclear reorganization during spermiogenesis. In vitro, PARP11 exhibits mono(ADP-ribosyl)ation activity with the ability to ADP-ribosylate itself. In transfected somatic cells, PARP11 colocalizes with nuclear pore components, such as NUP153. Amino acids Y77, Q86, and R95 in the N-terminal WWE domain, as well as presence of the catalytic domain, are essential for colocalization of PARP11 with the nuclear envelope, but catalytic activity of the protein is not required for colocalization with NUP153. This study demonstrates that PARP11 is a novel enzyme important for proper sperm head shaping and identifies it as a potential factor involved in idiopathic mammalian teratozoospermia. PMID:25673562

  10. 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether and ATP ether. Affinity reagents for labeling ATPases.

    PubMed

    Chuan, H; Wang, J H

    1988-09-15

    The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).

  11. Importance of measurement of platelet reactivity to ADP in patients with coronary artery disease: an historical account.

    PubMed

    Tantry, Udaya S; Mahla, Elisabeth; Gesheff, Martin G; Gurbel, Paul A

    2013-11-01

    The pivotal roles of platelets in physiological hemostasis and pathological thrombosis at the site of plaque rupture are well established. The latter roles provide the fundamental basis for the most widely implemented pharmacologic management of coronary artery disease--dual antiplatelet therapy with aspirin to inhibit platelet thromboxane A2 generation, and a P2Y12 receptor inhibitor to prevent adenosine diphosphate (ADP)-induced platelet activation. Although suboptimal pharmacodynamic efficacy, also described as high on-treatment platelet reactivity to ADP, has been associated with greater risk for post-stenting ischemic event occurrence, enhanced responsiveness is associated with higher risk for bleeding in selected patients. In this review article, we aim to provide an historical account of the one and a half century long journey starting with the first description of platelets through the first report of ex vivo measurement of ADP-induced platelet aggregation, the first demonstration of an association between ADP-induced platelet aggregation and post-stenting ischemic event occurrence, and finally to the most recent description of a 'therapeutic window' concept for P2Y12 receptor inhibitor therapy.

  12. Platelet activation by ADP is increased in selected patients with anterior ischemic optic neuropathy or retinal vein occlusion.

    PubMed

    Kuhli-Hattenbach, Claudia; Hellstern, Peter; Kohnen, Thomas; Hattenbach, Lars-Olof

    2017-02-16

    To investigate whether adenosine diphosphate (ADP)-induced platelet hyperaggregability is associated with nonarteritic anterior ischemic optic neuropathy (NAION) or retinal vein occlusion (RVO). We retrospectively reviewed thrombophilia screening data of patients with NAION or RVO without a history of arterial hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette abuse. Patients with a positive family history for thromboembolism were not excluded. Platelet aggregation (area under the curve, AUC) after induction of 0.5, 1.0, and 2.0 µmol of ADP was estimated in 25 NAION and RVO patients and compared with 25 healthy controls. We observed significantly greater platelet aggregation post 0.5 (P = 0.002) and 1.0 (P = 0.008) µmol of ADP among NAION and RVO patients compared with healthy controls. Platelet hyperaggregability was significantly more prevalent in patients than in controls (56% vs. 8%; P = 0.0006). Our results suggest that in NAION and RVO patients without a history of arterial hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette abuse, platelets are significantly hyperreactive after induction of very low concentrations of ADP when compared with healthy individuals. This hyperreactivity is particularly evident in patients with a family history of thromboembolism.

  13. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase

    PubMed Central

    Holbourn, Kenneth P.; Sutton, J. Mark; Evans, Hazel R.; Shone, Clifford C.; Acharya, K. Ravi

    2005-01-01

    C3 exoenzymes (members of the ADP-ribosyltranferase family) are produced by Clostridium botulinum (C3bot1 and -2), Clostridium limosum (C3lim), Bacillus cereus (C3cer), and Staphylococcus aureus (C3stau1–3). These exoenzymes lack a translocation domain but are known to specifically inactivate Rho GTPases in host target cells. Here, we report the crystal structure of C3bot1 in complex with RalA (a GTPase of the Ras subfamily) and GDP at a resolution of 2.66 Å. RalA is not ADP-ribosylated by C3 exoenzymes but inhibits ADP-ribosylation of RhoA by C3bot1, C3lim, and C3cer to different extents. The structure provides an insight into the molecular interactions between C3bot1 and RalA involving the catalytic ADP-ribosylating turn–turn (ARTT) loop from C3bot1 and helix α4 and strand β6 (which are not part of the GDP-binding pocket) from RalA. The structure also suggests a molecular explanation for the different levels of C3-exoenzyme inhibition by RalA and why RhoA does not bind C3bot1 in this manner. PMID:15809419

  14. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.

    PubMed

    Holbourn, Kenneth P; Sutton, J Mark; Evans, Hazel R; Shone, Clifford C; Acharya, K Ravi

    2005-04-12

    C3 exoenzymes (members of the ADP-ribosyltranferase family) are produced by Clostridium botulinum (C3bot1 and -2), Clostridium limosum (C3lim), Bacillus cereus (C3cer), and Staphylococcus aureus (C3stau1-3). These exoenzymes lack a translocation domain but are known to specifically inactivate Rho GTPases in host target cells. Here, we report the crystal structure of C3bot1 in complex with RalA (a GTPase of the Ras subfamily) and GDP at a resolution of 2.66 A. RalA is not ADP-ribosylated by C3 exoenzymes but inhibits ADP-ribosylation of RhoA by C3bot1, C3lim, and C3cer to different extents. The structure provides an insight into the molecular interactions between C3bot1 and RalA involving the catalytic ADP-ribosylating turn-turn (ARTT) loop from C3bot1 and helix alpha4 and strand beta6 (which are not part of the GDP-binding pocket) from RalA. The structure also suggests a molecular explanation for the different levels of C3-exoenzyme inhibition by RalA and why RhoA does not bind C3bot1 in this manner.

  15. Association of sperm morphology and the sperm deformity index (SDI) with poly (ADP-ribose) polymerase (PARP) cleavage inhibition.

    PubMed

    Aziz, Nabil; Sharma, Rakesh K; Mahfouz, Reda; Jha, Rajesh; Agarwal, Ashok

    2011-06-30

    Apoptosis was induced in immature and mature sperm in the presence or absence of poly (ADP-ribose) polymerase (PARP) inhibitor. The association of cleaved (cPARP) with sperm morphology was examined using sperm deformity index (SDI) score. The SDI scores are associated with PARP cleavage as an early marker of apoptosis.

  16. Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells.

    PubMed

    Choi, Young Eun; Park, Eunmi

    2015-12-01

    Poly(ADP-ribose) polymerase (PARP) inhibitor has shown promising responses in homologous recombination (HR) repair-deficient cancer cells. More specifically, targeting HR pathway in combination with PARP inhibitor has been an effective chemotherapy strategy by so far. Curcumin has been recognized as anticancer agents for several types of cancers. Here, we demonstrate that curcumin inhibits a critical step in HR pathway, Rad51 foci formation, and accumulates γ-H2AX levels in MDA-MB-231 breast cancer cells. Curcumin also directly reduces HR and induces cell death with cotreatment of PARP inhibitor in MDA-MB-231 breast cancer cells. Moreover, curcumin, when combined with ABT-888, could effectively delayed breast tumor formation in vivo. Our study indicates that cotreatment of curcumin and PARP inhibitor might be useful for the combination chemotherapy for aggressive breast cancer treatment as a natural bioactive compound.

  17. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release.

    PubMed

    Sitsapesan, R; McGarry, S J; Williams, A J

    1995-11-01

    In a variety of vertebrate and invertebrate tissues the ryanodine-sensitive Ca2+ channel is the pathway for Ca2+ release from intracellular stores. The mechanism for activation of the ryanodine receptor-channel complex appears to depend both on the ryanodine receptor isoform and the cell type. In addition, a complex combination of endogenous intracellular compounds regulates channel gating. In this article, Rebecca Sitsapesan, Stephen McGarry and Alan Williams review the mechanisms involved in cyclic ADP-ribose (cADPR)-induced Ca2+ release and discuss the likelihood that cADPR-activated Ca2+ release is mediated by one of the recognized isoforms of the ryanodine receptor-Ca2+ channel complex.

  18. Real-Time Cellular Imaging of Protein Poly(ADP-ribos)ylation.

    PubMed

    Buntz, Annette; Wallrodt, Sarah; Gwosch, Eva; Schmalz, Michael; Beneke, Sascha; Ferrando-May, Elisa; Marx, Andreas; Zumbusch, Andreas

    2016-09-05

    Poly(ADP-ribos)ylation (PARylation) is an important posttranslational protein modification, and is involved in major cellular processes such as gene regulation and DNA repair. Its dysregulation has been linked to several diseases, including cancer. Despite its importance, methods to observe PARylation dynamics within cells are rare. By following a chemical biology approach, we developed a fluorescent NAD(+) analogue that proved to be a competitive building block for protein PARylation in vitro and in cells. This allowed us to directly monitor the turnover of PAR in living cells at DNA damage sites after near-infrared (NIR) microirradiation. Additionally, covalent and noncovalent interactions of selected target proteins with PAR chains were visualized in cells by using FLIM-FRET microscopy. Our results open up new opportunities for the study of protein PARylation in real time and in live cells, and will thus contribute to a better understanding of its significance in a cellular context.

  19. Acinetobacter baylyi ADP1 as a model for metabolic system biology.

    PubMed

    de Berardinis, Véronique; Durot, Maxime; Weissenbach, Jean; Salanoubat, Marcel

    2009-10-01

    Information produced by the annotation of an 'average bacterial genome' can be separated into three parts. One-third represents what we know, another third what we think we know, and the last third what we know we do not know. Knowledge of metabolism is also described by this three thirds rule. Understanding how a cell operates will require a better knowledge of the two ignored thirds of its parts. Moreover, metabolism needs to be further investigated using organisms whose life styles are different from those of model organisms. In this short review, we present Acinetobacter baylyi ADP1 as an environmental model especially suitable for large-scale genetic manipulation. Resources have been constructed in the past few years that can form the basis for diverse metabolic studies: the genome sequence, a single gene mutant collection, and a genome-scale metabolic model.

  20. Synaptic functions of the IQSEC family of ADP-ribosylation factor guanine nucleotide exchange factors.

    PubMed

    Um, Ji Won

    2016-06-28

    Postsynaptic scaffolding proteins interact with numerous synaptic proteins to ensure the organization and specialization of functional excitatory and inhibitory synapses. IQSECs (IQ motif and SEC7 domain-containing proteins) are a class of ADP ribosylation factor-guanine nucleotide exchange factors (ARF-GEFs), whose functions are beginning to be understood as both scaffolding and signaling proteins. Specifically, IQSEC1 binds to PSD-95, and IQSEC2 functions as a regulator of AMPA receptor trafficking at excitatory synapses, whereas IQSEC3 interacts with gephyrin to promote inhibitory synapse development. Here, I review the currently known findings on IQSECs and discuss the possible relations between dysfunctions of IQSECs and the pathophysiology of brain disorders.

  1. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1.

    PubMed

    Ullrich, O; Diestel, A; Eyüpoglu, I Y; Nitsch, R

    2001-12-01

    Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.

  2. Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS).

    PubMed

    Nardini, Marco; Spanò, Stefania; Cericola, Claudia; Pesce, Alessandra; Damonte, Gianluca; Luini, Alberto; Corda, Daniela; Bolognesi, Martino

    2002-06-01

    Brefeldin A-ADP ribosylated substrate (BARS) is a newly discovered enzyme involved in membrane fission, catalyzing the formation of phosphatidic acid by transfer of an acyl group from acyl-CoA to lysophosphatidic acid. A truncated form of BARS, lacking the C-terminal segment expected to interact with the Golgi membrane, has been expressed in soluble form in Escherichia coli, purified and crystallized. BARS crystals diffract up to 2.5 A resolution using synchrotron radiation and belong to space group P6(2)22/P6(4)22, with unit-cell parameters a = b = 89.2, c = 162.6 A, alpha = beta = 90, gamma = 120 degrees and one molecule (39.5 kDa) per asymmetric unit. SeMet-substituted BARS has been crystallized under growth conditions very similar to those of the native protein.

  3. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer.

    PubMed

    Todorova, Tanya; Bock, Florian J; Chang, Paul

    2015-06-01

    Post-transcriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) polymerase-13 (PARP13), also known as ZC3HAV1 and zinc-finger antiviral protein (ZAP), is an RNA-binding protein that regulates the stability and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally affect miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the prosurvival cytokine receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 4 (TRAILR4) suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target.

  4. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes.

  5. Ca2+, NAD(P)H and membrane potential changes in pancreatic β-cells by methyl succinate: comparison with glucose

    PubMed Central

    Heart, Emma; Yaney, Gordon C.; Corkey, Richard F.; Schultz, Vera; Luc, Esthere; Liu, Lihan; Deeney, Jude T.; Shirihai, Orian; Tornheim, Keith; Smith, Peter J. S.; Corkey, Barbara E.

    2006-01-01

    The present study was undertaken to determine the main metabolic secretory signals generated by the mitochondrial substrate MeS (methyl succinate) compared with glucose in mouse and rat islets and to understand the differences. Glycolysis and mitochondrial metabolism both have key roles in the stimulation of insulin secretion by glucose. Both fuels elicited comparable oscillatory patterns of Ca2+ and changes in plasma and mitochondrial membrane potential in rat islet cells and clonal pancreatic β-cells (INS-1). Saturation of the Ca2+ signal occurred between 5 and 6 mM MeS, while secretion reached its maximum at 15 mM, suggesting operation of a KATP-channel-independent pathway. Additional responses to MeS and glucose included elevated NAD(P)H autofluorescence in INS-1 cells and islets and increases in assayed NADH and NADPH and the ATP/ADP ratio. Increased NADPH and ATP/ADP ratios occurred more rapidly with MeS, although similar levels were reached after 5 min of exposure to each fuel, whereas NADH increased more with MeS than with glucose. Reversal of MeS-induced cell depolarization by Methylene Blue completely inhibited MeS-stimulated secretion, whereas basal secretion and KCl-induced changes in these parameters were not affected. MeS had no effect on secretion or signals in the mouse islets, in contrast with glucose, possibly due to a lack of malic enzyme. The data are consistent with the common intermediates being pyruvate, cytosolic NADPH or both, and suggest that cytosolic NADPH production could account for the more rapid onset of MeS-induced secretion compared with glucose stimulation. PMID:17181533

  6. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate.

    PubMed Central

    Dargie, P J; Agre, M C; Lee, H C

    1990-01-01

    We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs. Images PMID:2100201

  7. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives.

    PubMed Central

    Oiwa, K; Eccleston, J F; Anson, M; Kikumoto, M; Davis, C T; Reid, G P; Ferenczi, M A; Corrie, J E; Yamada, A; Nakayama, H; Trentham, D R

    2000-01-01

    Single-molecule and macroscopic reactions of fluorescent nucleotides with myosin have been compared. The single-molecule studies serve as paradigms for enzyme-catalyzed reactions and ligand-receptor interactions analyzed as individual stochastic processes. Fluorescent nucleotides, called Cy3-EDA-ATP and Cy5-EDA-ATP, were derived by coupling the dyes Cy3.29.OH and Cy5.29.OH (compounds XI and XIV, respectively, in, Bioconjug. Chem. 4:105-111)) with 2'(3')-O-[N-(2-aminoethyl)carbamoyl]ATP (EDA-ATP). The ATP(ADP) analogs were separated into their respective 2'- and 3'-O-isomers, the interconversion rate of which was 30[OH(-)] s(-1) (0.016 h(-1) at pH 7.1) at 22 degrees C. Macroscopic studies showed that 2'(3')-O-substituted nucleotides had properties similar to those of ATP and ADP in their interactions with myosin, actomyosin, and muscle fibers, although the ATP analogs did not relax muscle as well as ATP did. Significant differences in the fluorescence intensity of Cy3-nucleotide 2'- and 3'-O-isomers in free solution and when they interacted with myosin were evident. Single-molecule studies using total internal reflection fluorescence microscopy showed that reciprocal mean lifetimes of the nucleotide analogs interacting with myosin filaments were one- to severalfold greater than predicted from macroscopic data. Kinetic and equilibrium data of nucleotide-(acto)myosin interactions derived from single-molecule microscopy now have a biochemical and physiological framework. This is important for single-molecule mechanical studies of motor proteins. PMID:10827983

  8. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading

    PubMed Central

    1982-01-01

    Megakaryocytes from guinea pig bone marrow were isolated and maintained in liquid culture and were treated with ADP, thrombin, arachidonic acid, or collagen. Megakaryocytes spread with an active ruffled membrane in response to ADP (1-100 microM), thrombin (1.0 U/ml), and arachidonic acid (50 microM) but responded to collagen surfaces only if fibronectin was added to the cultures. Spreading could be blocked completely by dibutyryl cyclic AMP (dibutyryl cAMP) or isobutylmethylxanthine at 1 mM, as well as by cytochalasin D (2 microgram/ml), but not by colchicine up to 1 mg/ml. The distribution of contractile proteins was examined by immunofluorescence. In untreated, spherical cells, staining with antimyosin, antifilamin, anti-alpha- actinin, or with fluorescein-labeled subfragment 1 (FITC-S1) was diffuse and unpatterned. With antitubulin antibody, however, microtubules were seen in a dense array throughout the unspread cells. In actively ruffling spreading cells, myosin, filamin, and actin were visualized in the region of the ruffled membrane while alpha-actinin was seen most prominently in a band located proximal to the inner part of the ruffle. In fully spread cells, actin, myosin, filamin, and alpha- actinin were seen in filaments that filled the cytoplasm. Antimyosin and anti-alpha-actinin staining of the filaments was periodic with approximately 1 micrometer center-to-center spacing. Actin, filamin, and alpha-actinin were also identified in punctate spots throughout the spread cytoplasm. Microtubules were absent from the ruffle but filled the cytoplasm of fully spread cells. Rings, 1.5-2.5 micrometer in diameter, were seen with antitubulin in 13% of the spread cells. Our results show that megakaryocytes respond to platelet agonists, but typically by spreading, rather than extending, filopodia. From the changes in localization of contractile proteins and from time-lapse cinematography, we propose a model for cell spreading. PMID:6801061

  9. Poly ADP ribosylation as a possible mechanism of microwave--biointeraction.

    PubMed

    Singh, N; Rudra, N; Bansal, P; Mathur, R; Behari, J; Nayar, U

    1994-07-01

    Electromagnetic fields (EMFs) affect the metabolism of the body including the nervous, endocrine, cardiovascular, hematological as well as the reproductive system. EMFs are environmental pollutants, thus posing a health hazard which can cause steric changes in the molecule located at the cell surface. Microwaves are known to cause chromosomal abberations and act as tumor promoters. The process involves a stream of signals from cell membrane to nucleus and other organelles. The present investigations aim to understand the mechanism of biological effects of microwaves (2.45 GHz). The effect was studied on poly ADP-ribosylation, which is a post translational modification of chromatin protein catalysed by the enzyme poly ADPR polymerase using NAD+ as the substrate. Poly ADP-ribosylation has been shown to be involved in several aspects of chromatin structure and function. Twenty-three days old rats weighing 42-48 gms were exposed at a microwave dose level of 1.0 mW/cm2. After exposure for sixty days the animals were sacrificed and an estimation of poly ADPR polymerase activity was undertaken in different organs of these animals. There was an increase of 20% in its activity in liver, 35% in testis, whereas brain showed a 53% decrease in diencephalon and 20% decrease in the cortex in the exposed animals as compared to their respective controls. There was no change in enzyme activity in spleen and kidney. This was accompanied by concomitant changes in NAD+ levels. The above results may be cited as important events in carcinogenesis and tumor promotion related to microwave exposure and the signal transduction mechanism involved. The goal is to shed light on complex ecogenetic interactions leading to cancer modulation of gene expression by epigenetic mechanism.

  10. Transcriptional regulation by Poly(ADP-ribose) polymerase-1 during T cell activation

    PubMed Central

    Saenz, Luis; Lozano, Juan J; Valdor, Rut; Baroja-Mazo, Alberto; Ramirez, Pablo; Parrilla, Pascual; Aparicio, Pedro; Sumoy, Lauro; Yélamos, José

    2008-01-01

    Background Accumulating evidence suggests an important role for the enzyme poly(ADP-ribose) polymerase-1 (PARP-1) as an integral part of the gene expression regulatory machinery during development and in response to specific cellular signals. PARP-1 might modulate gene expression through its catalytic activity leading to poly(ADP-ribosyl)ation of nuclear proteins or by its physical association with relevant proteins. Recently, we have shown that PARP-1 is activated during T cell activation. However, the proposed role of PARP-1 in reprogramming T cell gene expression upon activation remains largely unexplored. Results In the present study we use oligonucleotide microarray analysis to gain more insight into the role played by PARP-1 during the gene expression reprogramming that takes place in T cells upon activation with anti-CD3 stimulation alone, or in combination with anti-CD28 co-stimulation. We have identified several groups of genes with expression modulated by PARP-1. The expression of 129 early-response genes to anti-CD3 seems to be regulated by PARP-1 either in a positive (45 genes) or in a negative manner (84 genes). Likewise, in the presence of co-stimulation (anti-CD3 + anti-CD28 stimulation), the expression of 203 genes is also regulated by PARP-1 either up (173 genes) or down (30 genes). Interestingly, PARP-1 deficiency significantly alters expression of genes associated with the immune response such as chemokines and genes involved in the Th1/Th2 balance. Conclusion This study provides new insights into changes in gene expression mediated by PARP-1 upon T cell activation. Pathway analysis of PARP-1 as a nuclear signalling molecule in T cells would be of relevance for the future development of new therapeutic approaches targeting PARP-1 in the acquired immune response. PMID:18412984

  11. Synthesis of adenosine-imprinted microspheres for the recognition of ADP-ribosylated proteins.

    PubMed

    Gong, Xia; Tang, Biao; Liu, Jing Jing; You, Xiang Yu; Gu, Jing; Deng, Jiao Yu; Xie, Wei-Hong

    2017-01-15

    Core-shell structural adenosine-imprinted microspheres were prepared via a two-step procedure. Polystyrene core particles (CP) were firstly prepared via a reversible addition-fragmentation chain transfer (RAFT) polymerization leaving the iniferter on the surface of the cores, then a molecularly imprinted polymer (MIP) shell was synthesized on the surface of the cores by using acrylamide (AAm) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The formation and growth of the MIP layer were seen dependent on the initiator (AIBN), AAm and the polymerization time used within the polymerization. SEM/TEM images showed that the dimensions of the cores and shells were 2μM and 44nm, respectively. The MIP microspheres exhibited a fast rebinding rate within 2h and a maximum adsorption capacity of 177μg per gram for adenosine. The adsorption fitted a Langmuir-Freundlich (LF) isotherm model with a KLF value of 41mL/μg and a qm value of 177μg/g for the MIP microspheres. The values were larger than those for a non-molecularly imprinted polymer (NIP) particles (5mL/μg and 88μg/g) indicating a better adsorption ability towards adenosine. The MIP microspheres showed a good selectivity for adenosine with a higher adsorption (683nmol/g) for adenosine than that (91nmol/g, 24nmol/g and 54nmol/g) for guanosine, cytidine and uridine respectively. Further experiment proved that the adenosine-imprinted polymer microspheres also had a good selectivity for ADP-ribosylated proteins that the MIP could extract the ADP-ribosylated proteins from the cell extract samples.

  12. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases.

    PubMed

    Zaganas, Ioannis; Pajęcka, Kamilla; Wendel Nielsen, Camilla; Schousboe, Arne; Waagepetersen, Helle S; Plaitakis, Andreas

    2013-06-01

    Glutamate dehydrogenase (GDH) uses ammonia to reversibly convert α-ketoglutarate to glutamate using NADP(H) and NAD(H) as cofactors. While GDH in most mammals is encoded by a single GLUD1 gene, humans and other primates have acquired a GLUD2 gene with distinct tissue expression profile. The two human isoenzymes (hGDH1 and hGDH2), though highly homologous, differ markedly in their regulatory properties. Here we obtained hGDH1 and hGDH2 in recombinant form and studied their Km for ammonia in the presence of 1.0 mM ADP. The analyses showed that lowering the pH of the buffer (from 8.0 to 7.0) increased the Km for ammonia substantially (hGDH1: from 12.8 ± 1.4 mM to 57.5 ± 1.6 mM; hGDH2: from 14.7 ± 1.6 mM to 62.2 ± 1.7 mM), thus essentially precluding reductive amination. Moreover, lowering the ADP concentration to 0.1 mM not only increased the K0.5 [NH4 (+)] of hGDH2, but also introduced a positive cooperative binding phenomenon in this isoenzyme. Hence, intra-mitochondrial acidification, as occurring in astrocytes during glutamatergic transmission should favor the oxidative deamination of glutamate. Similar considerations apply to the handling of glutamate by the proximal convoluted tubules of the kidney during systemic acidosis. The reverse could apply for conditions of local or systemic hyperammonemia or alkalosis.

  13. areABC Genes Determine the Catabolism of Aryl Esters in Acinetobacter sp. Strain ADP1

    PubMed Central

    Jones, Rheinallt M.; Collier, Lauren S.; Neidle, Ellen L.; Williams, Peter A.

    1999-01-01

    Acinetobacter sp. strain ADP1 is able to grow on a range of esters of aromatic alcohols, converting them to the corresponding aromatic carboxylic acids by the sequential action of three inducible enzymes: an areA-encoded esterase, an areB-encoded benzyl alcohol dehydrogenase, and an areC-encoded benzaldehyde dehydrogenase. The are genes, adjacent to each other on the chromosome and transcribed in the order areCBA, were located 3.5 kbp upstream of benK. benK, encoding a permease implicated in benzoate uptake, is at one end of the ben-cat supraoperonic cluster for benzoate catabolism by the β-ketoadipate pathway. Two open reading frames which may encode a transcriptional regulator, areR, and a porin, benP, separate benK from areC. Each are gene was individually expressed to high specific activity in Escherichia coli. The relative activities against different substrates of the cloned enzymes were, within experimental error, identical to that of wild-type Acinetobacter sp. strain ADP1 grown on either benzyl acetate, benzyl alcohol, or 4-hydroxybenzyl alcohol as the carbon source. The substrate preferences of all three enzymes were broad, encompassing a range of substituted aromatic compounds and in the case of the AreA esterase, different carboxylic acids. The areA, areB, and areC genes were individually disrupted on the chromosome by insertion of a kanamycin resistance cassette, and the rates at which the resultant strains utilized substrates of the aryl ester catabolic pathway were severely reduced as determined by growth competitions between the mutant and wild-type strains. PMID:10419955

  14. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  15. Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization.

    PubMed Central

    de Souza, M L; Sadowsky, M J; Wackett, L P

    1996-01-01

    Pseudomonas sp. strain ADP metabolizes atrazine to carbon dioxide and ammonia via the intermediate hydroxyatrazine. The genetic potential to produce hydroxyatrazine was previously attributed to a 1.9-kb AvaI DNA fragment from strain ADP (M. L. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373-3378, 1995). In this study, sequence analysis of the 1.9-kb AvaI fragment indicated that a single open reading frame, atzA, encoded an activity transforming atrazine to hydroxyatrazine. The open reading frame for the chlorohydrolase was determined by sequencing to be 1,419 nucleotides and encodes a 473-amino-acid protein with a predicted subunit molecular weight of 52,421. The deduced amino acid sequence matched the first 10 amino acids determined by protein microsequencing. The protein AtzA was purified to homogeneity by ammonium sulfate precipitation and anion-exchange chromatography. The subunit and holoenzyme molecular weights were 60,000 and 245,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. The purified enzyme in H2(18)O yielded [18O]hydroxyatrazine, indicating that AtzA is a chlorohydrolase and not an oxygenase. The most related protein sequence in GenBank was that of TrzA, 41% identity, from Rhodococcus corallinus NRRL B-15444R. TrzA catalyzes the deamination of melamine and the dechlorination of deethylatrazine and desisopropylatrazine but is not active with atrazine. AtzA catalyzes the dechlorination of atrazine, simazine, and desethylatrazine but is not active with melamine, terbutylazine, or desethyldesisopropylatrazine. Our results indicate that AtzA is a novel atrazine-dechlorinating enzyme with fairly restricted substrate specificity and contributes to the microbial hydrolysis of atrazine to hydroxyatrazine in soils and groundwater. PMID:8759853

  16. Comparison of luminescence ADP production assay and radiometric scintillation proximity assay for Cdc7 kinase.

    PubMed

    Takagi, Toshimitsu; Shum, David; Parisi, Monika; Santos, Ruth E; Radu, Constantin; Calder, Paul; Rizvi, Zahra; Frattini, Mark G; Djaballah, Hakim

    2011-09-01

    Several assay technologies have been successfully adapted and used in HTS to screen for protein kinase inhibitors; however, emerging comparative analysis studies report very low hit overlap between the different technologies, which challenges the working assumption that hit identification is not dependent on the assay method of choice. To help address this issue, we performed two screens on the cancer target, Cdc7-Dbf4 heterodimeric protein kinase, using a direct assay detection method measuring [(33)P]-phosphate incorporation into the substrate and an indirect method measuring residual ADP production using luminescence. We conducted the two screens under similar conditions, where in one, we measured [(33)P]-phosphate incorporation using scintillation proximity assay (SPA), and in the other, we detected luminescence signal of the ATP-dependent luciferase after regenerating ATP from residual ADP (LUM). Surprisingly, little or no correlation were observed between the positives identified by the two methods; at a threshold of 30% inhibition, 25 positives were identified in the LUM screen whereas the SPA screen only identified two positives, Tannic acid and Gentian violet, with Tannic acid being common to both. We tested 20 out of the 25 positive compounds in secondary confirmatory study and confirmed 12 compounds including Tannic acid as Cdc7-Dbf4 kinase inhibitors. Gentian violet, which was only positive in the SPA screen, inhibited luminescence detection and categorized as a false positive. This report demonstrates the strong impact in detection format on the success of a screening campaign and the importance of carefully designed confirmatory assays to eliminate those compounds that target the detection part of the assay.

  17. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.

    PubMed

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J; Lin, Chien-Te; Kane, Daniel A; Lee, Nam-Sihk; Cortright, Ronald N; Bamman, Marcas M; Neufer, P Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (P<0.05) in simvastatin-treated (5 μM) vs control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.

  18. Orienteering performance and ingestion of glucose and glucose polymers.

    PubMed

    Kujala, U M; Heinonen, O J; Kvist, M; Kärkkäinen, O P; Marniemi, J; Niittymäki, K; Havas, E

    1989-06-01

    The benefit of glucose polymer ingestion in addition to 2.5 per cent glucose before and during a prolonged orienteering competition was studied. The final time in the competition in the group ingesting 2.5 per cent glucose (group G, n = 10) was 113 min 37 s +/- 8 min 11 s, and in the group which had additionally ingested glucose polymer (group G + GP, n = 8) 107 min 18s +/- 4 min 41 s (NS). One fifth (21 per cent) of the time difference between the two groups was due to difference in orienteering errors. Group G + GP orienteered the last third of the competition faster than group G (p less than 0.05). The time ratio between the last third of the competition and the first third of the competition was lower in group G + GP than in group G (p less than 0.05). After the competition, there was statistically insignificant tendency to higher serum glucose and lower serum free fatty acid concentrations in group G + GP, and serum insulin concentration was higher in group G + GP than in group G (p less than 0.05). Three subjects reported that they exhausted during the competition. These same three subjects had the lowest serum glucose concentrations after the competition (2.9 mmol.1(-1), 2.9 mmol.1(-1), 3.5 mmol.1(-1] and all of them were from group G. It is concluded that glucose polymer syrup ingestion is beneficial for prolonged psychophysical performance.

  19. Affinity for MgADP and force of unbinding from actin of myosin purified from tonic and phasic smooth muscle

    PubMed Central

    Léguillette, Renaud; Zitouni, Nedjma B.; Govindaraju, Karuthapillai; Fong, Laura M.; Lauzon, Anne-Marie

    2008-01-01

    Smooth muscle is unique in its ability to maintain force at low MgATP consumption. This property, called the latch state, is more prominent in tonic than phasic smooth muscle. Studies performed at the muscle strip level have suggested that myosin from tonic muscle has a greater affinity for MgADP and therefore remains attached to actin longer than myosin from phasic muscle, allowing for cross-bridge dephosphorylation and latch-bridge formation. An alternative hypothesis is that after dephosphorylation, myosin reattaches to actin and maintains force. We investigated these fundamental properties of smooth muscle at the molecular level. We used an in vitro motility assay to measure actin filament velocity (νmax) when propelled by myosin purified from phasic or tonic muscle at increasing [MgADP]. Myosin was 25% thiophosphorylated and 75% unphosphorylated to approximate in vivo conditions. The slope of νmax versus [MgADP] was significantly greater for tonic (−0.51 ± 0.04) than phasic muscle myosin (−0.15 ± 0.04), demonstrating the greater MgADP affinity of myosin from tonic muscle. We then used a laser trap assay to measure the unbinding force from actin of populations of unphosphorylated tonic and phasic muscle myosin. Both myosin types attached to actin, and their unbinding force (0.092 ± 0.022 pN for phasic muscle and 0.084 ± 0.017 pN for tonic muscle) was not statistically different. We conclude that the greater affinity for MgADP of tonic muscle myosin and the reattachment of dephosphorylated myosin to actin may both contribute to the latch state. PMID:18614813

  20. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  1. Evidence of platelet sensitization to ADP following discontinuation of clopidogrel therapy in patients with stable coronary artery disease.

    PubMed

    Lordkipanidzé, Marie; Diodati, Jean G; Schampaert, Erick; Palisaitis, Donald A; Pharand, Chantal

    2015-01-01

    Epidemiological studies have linked clopidogrel discontinuation with an increased incidence of ischemic events. This has led to the hypothesis that clopidogrel discontinuation may result in a pharmacological rebound. We evaluated the impact of clopidogrel discontinuation on platelet function. Platelet aggregation was measured by light transmission aggregometry (LTA) in response to adenosine diphosphate (ADP) 0.5, 1, 1.5, 2.5, 5 and 10 µM and by VerifyNow® P2Y12, in 37 clinically stable coronary artery disease (CAD) patients scheduled to discontinue clopidogrel treatment, and 37 clinically stable CAD patients not taking clopidogrel. Platelet function was assessed the day before clopidogrel cessation and 1, 3, 7, 14, 21 and 28 days after. Clopidogrel had been initiated a median of 555 days (ranging from 200 to 2280 days) before the treating cardiologist recommended its discontinuation. All participants were taking aspirin, most commonly 80 mg daily although a minority was prescribed 325 mg daily. Following clopidogrel discontinuation, VerifyNow® P2Y12 did not detect any rebound platelet activity, but ADP-induced LTA showed platelet sensitization to ADP, particularly at low ADP levels. Increased platelet activity was detectable seven days after clopidogrel cessation and remained higher than in controls 28 days after discontinuation. No clinical event occurred in any of the participants during the 28 days following clopidogrel cessation. In conclusion, platelet sensitization to ADP as a consequence of chronic clopidogrel administration may partially explain the recrudescence of ischemic events following clopidogrel discontinuation in otherwise stable coronary artery patients.

  2. [Influence of ADP-ribose, AMP and adenosine on bioelectric activity of hibernating ground squirrel atrium and papillary muscle].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP and ADP-ribose (1x10(-5)) on bioelectric activity of atrium and papillary muscle of nonhibernating (rat) and hibernating (Yakutian ground squirrel) animals. Action potential (AP) was registered with use of standard microelectrode technique. AP duration (APD) at level of 90% repolarisation in rat atrium in control experiments was 30+/-5 ms, APD at level of 50% repolarisation was 12+/-2 ms. APD at level of 90% repolarisation in rat papillary muscle was 56+/-7 ms, at level of 50% repolarisation was 18+/-2 ms. APD at level of 90% repolarisation in ground squirrel atrium was 77+/-6, APD at level of 50% repolarisation was 38+/-6 ms. APD at level of 90% repolarisation in ground squirrel papillary muscle was 105+/-9 ms, APD at level of 50% repolarisation was 42+/-8 ms. Purine nucleotides and nucleoside, that were tested in work, except ADP-ribose, act as inhibitory factors and decrease APD both in rat and hibernating ground squirrel heart. ADP-ribose decreases APD in papillary muscle of hibernator but did not in its atrium. In ground squirrel atrium AMP and adenosine decrease APD at level of 50% repolarisation by 10+/-3% and 18+/-3% respectively. AMP and adenosine decrease APD at level of 90% repolarisation by 9+/-2% and 11+/-2% respectively. In ground squirrel papillary muscle ADP-ribose, AMP and adenosine decrease APD at level of 50% repolarisation by 26+/-8%, 23+/-8% and 26+/-7%. ADP-ribose, AMP and adenosine decrease APD at level of 90% repolarisation by 12+/-3%, 10+/-3%, 13+/-3%. Thus, decrease of APD in ground squirrel papillary muscle at level of 90% repolarisation during nucleotides and adenosine action was 2-2.5 fold less, than the rat.

  3. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

    PubMed

    Zhao, Kehao; Harshaw, Robyn; Chai, Xiaomei; Marmorstein, Ronen

    2004-06-08

    Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.

  4. Effects of some drugs on human erythrocyte glucose 6-phosphate dehydrogenase: an in vitro study.

    PubMed

    Akkemik, Ebru; Budak, Harun; Ciftci, Mehmet

    2010-12-01

    Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of human have been investigated. For this purpose, at the beginning, erythrocyte glucose 6-phosphate dehydrogenase was purified 2256 times in a yield of 44.22% by using ammonium sulphate precipitation and 2', 5'-ADP Sepharose 4B affinity gel. Temperature of +4°C was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. This method was utilized for all kinetic studies. Ketotifen, dacarbazine, thiocolchicoside, meloxicam, methotrexate, furosemide, olanzapine, methylprednizolone acetate, paricalcitol, ritodrine hydrochloride, and gadobenate-dimeglumine were used as drugs. All the drugs indicated the inhibitory effects on the enzyme. Ki constants for glucose 6-phosphate dehydrogenase were found by means of Lineweaver-Burk graphs. While methylprednizolone acetate showed competitive inhibition, the others displayed non-competitive inhibition. In addition, IC(50) values of the drugs were determined by plotting Activity% vs [I].

  5. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  6. Effects of Glucose Starvation on Mitochondrial Subpopulations in the Meristematic and Submeristematic Regions of Maize Root

    PubMed Central

    Couée, Ivan; Jan, Murielle; Carde, Jean-Pierre; Brouquisse, Renaud; Raymond, Philippe; Pradet, Alain

    1992-01-01

    Mitochondria isolated from 3-mm long maize (Zea mays L. var Dea) root tips were found to be heterogeneous on Percoll density gradients. The ultrastructure of these isolated mitochondria correlated well with that of mitochondria observed in situ and was consistent with the existence of mitochondria at different stages of maturation during cell development. The mitochondria of higher density presented an ultrastructure with many cristae and a dense matrix. These mitochondria showed classic respiratory properties, although with low ADP/O ratios. In contrast, the mitochondria of lower density showed few cristae and a clear matrix and did not seem to be fully functional because their rate of respiration was low and showed weak respiratory control. Lower- and higher- density mitochondria were shown to be differentially affected during the first stages of glucose starvation. The higher-density mitochondria from glucose-starved maize root tips retained the ultrastructure and most of the respiratory properties of nonstarved mitochondria, whereas lower- and intermediate-density mitochondria were absent in the mitochondrial preparations from glucose-starved maize root tips and were not observed in situ. Quantitatively, there was a decrease of the total mitochondrial pool when expressed as the amount of mitochondrial protein per root tip. However, this decrease affected low- and intermediate-density mitochondria, but not higher-density mitochondria. Thus, it was shown that a significant pool of functional mitochondria is maintained in maize root tips during the first stages of glucose starvation. The reasons for these apparently selective effects of glucose starvation on mitochondria are discussed in relation to effects on mitotic and differentiation processes. Images Figure 2 Figure 3 Figure 4 PMID:16653214

  7. Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells.

    PubMed

    Comin-Anduix, Begona; Boros, Laszlo G; Marin, Silvia; Boren, Joan; Callol-Massot, Carles; Centelles, Josep J; Torres, Josep L; Agell, Neus; Bassilian, Sara; Cascante, Marta

    2002-11-29

    The fermented extract of wheat germ, trade name Avemar, is a complex mixture of biologically active molecules with potent anti-metastatic activities in various human malignancies. Here we report the effect of Avemar on Jurkat leukemia cell viability, proliferation, cell cycle distribution, apoptosis, and the activity of key glycolytic/pentose cycle enzymes that control carbon flow for nucleic acid synthesis. The cytotoxic IC(50) concentration of Avemar for Jurkat tumor cells is 0.2 mg/ml, and increasing doses of the crude powder inhibit Jurkat cell proliferation in a dose-dependent fashion. At concentrations higher than 0.2 mg/ml, Avemar inhibits cell growth by more than 50% (72 h of incubation), which is preceded by the appearance of a sub-G(1) peak on flow histograms at 48 h. Laser scanning cytometry of propidium iodide- and annexin V-stained cells indicated that the growth-inhibiting effect of Avemar was consistent with a strong induction of apoptosis. Inhibition by benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone of apoptosis but increased proteolysis of poly(ADP-ribose) indicate caspases mediate the cellular effects of Avemar. Activities of glucose-6-phosphate dehydrogenase and transketolase were inhibited in a dose-dependent fashion, which correlated with decreased (13)C incorporation and pentose cycle substrate flow into RNA ribose. This decrease in pentose cycle enzyme activities and carbon flow toward nucleic acid precursor synthesis provide the mechanistic understanding of the cell growth-controlling and apoptosis-inducing effects of fermented wheat germ. Avemar exhibits about a 50-fold higher IC(50) (10.02 mg/ml) for peripheral blood lymphocytes to induce a biological response, which provides the broad therapeutic window for this supplemental cancer treatment modality with no toxic effects.

  8. Poly(ADP-ribosylation) regulates chromatin organization through histone H3 modification and DNA methylation of the first cell cycle of mouse embryos

    SciTech Connect

    Osada, Tomoharu; Rydén, Anna-Margareta; Masutani, Mitsuko

    2013-04-26

    Highlights: •Histone modification of the mouse pronuclei is regulated by poly(ADP-ribosylation). •Hypermethylation of the mouse female pronuclei is maintained by poly(ADP-ribosylation). •Parp1 is physically interacted with Suz12, which may function in the pronuclei. •Poly(ADP-ribosylation) affects ultrastructure of chromatin of the mouse pronucleus. -- Abstract: We examined the roles of poly(ADP-ribosylation) in chromatin remodeling during the first cell cycle of mouse embryos. Drug-based inhibition of poly(ADP-ribosylation) by a PARP inhibitor, PJ-34, revealed up-regulation of dimethylation of histone H3 at lysine 4 in male pronuclei and down-regulation of dimethylation of histone H3 at lysine 9 (H3K9) and lysine 27 (H3K27). Association of poly(ADP-ribosylation) with histone modification was suggested to be supported by the interaction of Suz12, a histone methyltransferase in the polycomb complex, with Parp1. PARP activity was suggested to be required for a proper localization and maintenance of Suz12 on chromosomes. Notably, DNA methylation level of female pronuclei in one-cell embryos was robustly decreased by PJ-34. Electron microscopic analysis showed a frequent appearance of unusual electron-dense areas within the female pronuclei, implying the disorganized and hypercondensed chromatin ultrastructure. These results show that poly(ADP-ribosylation) is important for the integrity of non-equivalent epigenetic dynamics of pronuclei during the first cell cycle of mouse embryos.

  9. Meal related glucose monitoring is a method of diagnosing glucose intolerance in pregnancies with high probability of gestational diabetes but normal glucose tolerance by oral glucose tolerance test.

    PubMed

    John, Mathew; Gopinath, Deepa

    2013-06-01

    Gestational diabetes mellitus diagnosed by classical oral glucose tolerance test can result in fetal complications like macrosomia and polyhydramnios. Guidelines exist on management of patients diagnose by abnormal oral glucose tolerance test with diet modification followed by insulin. Even patients with abnormal oral glucose tolerance test maintaining apparently normal blood sugars with diet are advised insulin if there is accelerated fetal growth. But patients with normal oral glucose tolerance test can present with macrosomia and polyhydramnios. These patients are labelled as not having gestational diabetes mellitus and are followed up with repeat oral glucose tolerance test. We hypothesise that these patients may have an altered placental threshold to glucose or abnormal sensitivity of fetal tissues to glucose. Meal related glucose monitoring in these patients can identify minor abnormalities in glucose disturbance and should be treated to targets similar to physiological levels of glucose in non pregnant adults.

  10. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants.

    PubMed Central

    Shima, J; Penyige, A; Ochi, K

    1996-01-01

    Mutants resistant to 3-aminobenzamide, a known inhibitor of ADP-ribosyltransferase, were obtained from Streptomyces coelicolor A3(2). One (strain 27) was analyzed in detail. Mutant 27 had a reduced ADP-ribosyl-transferase activity, exhibited substantial changes from the wild type in ADP-ribosylated protein profile during cell aging, and was defective in producing aerial mycelium and antibiotics. A 92-kDa ADP-ribosylated protein disappeared at the onset of differentiation in the parent strain but was present in mutant 27. Four ADP-ribosylated proteins (39, 41, 43, and 46 kDa) appeared at the onset of differentiation in the parent strain but were missing in mutant 27. Failure to ADP-ribosylate these four proteins was detected when the parent strain was grown in the presence of subinhibitory amounts of 3-aminobenzamide. Genetic analysis showed that the mutation, named brgA, conferring resistance to 3-aminobenzamide, cosegregated with the altered phenotypes (i.e., defects in ADP-ribosylation and aerial mycelium formation) and was mapped to a new locus near uraA. The brgA mutants were nonconditionally deficient in producing aerial mycelium and antibiotics, as determined by using various media, and had a morphological and physiological phenotype quite different from that of a bldG mutant carrying a mutation which was previously mapped near uraA. Among the known bld mutants, bldA, bldD, and bldG mutants exhibited a ADP-ribosylated protein profile similar to that of the wild type, while like mutant 27, bldB, bldC, and bldH mutants failed to ADP-ribosylate certain proteins. PMID:8682781

  11. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants.

    PubMed

    Shima, J; Penyige, A; Ochi, K

    1996-07-01

    Mutants resistant to 3-aminobenzamide, a known inhibitor of ADP-ribosyltransferase, were obtained from Streptomyces coelicolor A3(2). One (strain 27) was analyzed in detail. Mutant 27 had a reduced ADP-ribosyl-transferase activity, exhibited substantial changes from the wild type in ADP-ribosylated protein profile during cell aging, and was defective in producing aerial mycelium and antibiotics. A 92-kDa ADP-ribosylated protein disappeared at the onset of differentiation in the parent strain but was present in mutant 27. Four ADP-ribosylated proteins (39, 41, 43, and 46 kDa) appeared at the onset of differentiation in the parent strain but were missing in mutant 27. Failure to ADP-ribosylate these four proteins was detected when the parent strain was grown in the presence of subinhibitory amounts of 3-aminobenzamide. Genetic analysis showed that the mutation, named brgA, conferring resistance to 3-aminobenzamide, cosegregated with the altered phenotypes (i.e., defects in ADP-ribosylation and aerial mycelium formation) and was mapped to a new locus near uraA. The brgA mutants were nonconditionally deficient in producing aerial mycelium and antibiotics, as determined by using various media, and had a morphological and physiological phenotype quite different from that of a bldG mutant carrying a mutation which was previously mapped near uraA. Among the known bld mutants, bldA, bldD, and bldG mutants exhibited a ADP-ribosylated protein profile similar to that of the wild type, while like mutant 27, bldB, bldC, and bldH mutants failed to ADP-ribosylate certain proteins.

  12. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  13. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  14. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    PubMed

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (KATP) activity, with KATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and KATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished KATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic KATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. KATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains KATP closure. Single channel recordings indicate that NN414 alters KATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to KATP, probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists.

  15. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture.

    PubMed

    Jacques, Flavia Jesus; Silva, Thayane Martins; da Silva, Flavia Emenegilda; Ornelas, Isis Moraes; Ventura, Ana Lucia Marques

    2017-03-24

    Nucleotides stimulate phosphorylation of CREB to induce cell proliferation and survival in diverse cell types. We report here that ADP induces the phosphorylation of CREB in a time- and concentration-dependent manner in chick embryo retinal progenitors in culture. ADP-induced increase in phospho-CREB is mediated by P2 receptors as it is blocked by PPADS but not by the adenosine antagonists DPCPX or ZM241385. Incubation of the cultures with the CREB inhibitor KG-501 prevents ADP-induced incorporation of [(3)H]-thymidine, indicating that CREB is involved in retinal cell proliferation. No effect of this compound is observed on the viability of retinal progenitors. While no significant increase in CREB phosphorylation is observed with the P2Y1 receptor agonist MRS2365, ADP-induced phosphorylation of CREB is blocked by the P2Y13 receptor selective antagonist MRS2211, but not by MRS2179 or PSB0739, two antagonists of the P2Y1 and P2Y12 receptors, respectively, suggesting that ADP-induced CREB phosphorylation is mediated by P2Y13 receptors. ADP-induced increase in phospho-CREB is attenuated by the PI3K inhibitor LY241385 and completely prevented by the MEK inhibitor U0126, suggesting that at least ERK is involved in ADP-induced CREB phosphorylation. A pharmacological profile similar to the activation and inhibition of CREB phosphorylation is observed in the phosphorylation of ERK, suggesting that P2Y13 receptors mediate ADP induced ERK/CREB pathway in the cultures. While no increase in [(3)H]-thymidine incorporation is observed with the P2Y1 receptor agonist MRS2365, both MRS2179 and MRS2211 prevent ADP-mediated increase in [(3)H]-thymidine incorporation, but not progenitor's survival, suggesting that both P2Y1 and P2Y13 receptor subtypes are involved in ADP-induced cell proliferation. P2Y1 receptor-mediated increase in [Ca(2+)]i is observed in glial cells only when cultures maintained for 9days are used. In glia from cultures cultivated for only 2days, no increase in [Ca

  16. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  17. Physiological Conditions Conducive to High Cyanophycin Content in Biomass of Acinetobacter calcoaceticus Strain ADP1

    PubMed Central

    Elbahloul, Yasser; Krehenbrink, Martin; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-01-01

    The effects of the inorganic medium components, the initial pH, the incubation temperature, the oxygen supply, the carbon-to-nitrogen ratio, and chloramphenicol on the synthesis of cyanophycin (CGP) by Acinetobacter calcoaceticus strain ADP1 were studied in a mineral salts medium containing sodium glutamate and ammonium sulfate as carbon and nitrogen sources, respectively. Variation of all these factors resulted in maximum CGP contents of only about 3.5% (wt/wt) of the cell dry matter (CDM), and phosphate depletion triggered CGP accumulation most substantially. However, addition of arginine to the medium as the sole carbon source for growth promoted CGP accumulation most strikingly. This effect was systematically studied, and an optimized phosphate-limited medium containing 75 mM arginine and 10 mM ammonium sulfate yielded a CGP content of 41.4% (wt/wt) of the CDM at 30°C. The CGP content of the cells was further increased to 46.0% (wt/wt) of the CDM by adding 2.5 μg of chloramphenicol per ml of medium in the accumulation phase. These contents are by far the highest CGP contents of bacterial cells ever reported. CGP was easily isolated from the cells by using an acid extraction method, and this CGP contained about equimolar amounts of aspartic acid and arginine and no detectable lysine; the molecular masses ranged from 21 to 29 kDa, and the average molecular mass was about 25 kDa. Transmission electron micrographs of thin sections of cells revealed large CGP granules that frequently had an irregular shape with protuberances at the surface and often severely deformed the cells. A cphI::ΩKm mutant of strain ADP1 with a disrupted putative cyanophycinase gene accumulated significantly less CGP than the wild type accumulated, although the cells expressed cyanophycin synthetase at about the same high level. It is possible that the intact CphI protein is involved in the release of CGP primer molecules from initially synthesized CGP. The resulting lower concentration of

  18. Glucose, glycolysis and lymphocyte responses.

    PubMed

    Donnelly, Raymond P; Finlay, David K

    2015-12-01

    Activated lymphocytes engage in robust growth and rapid proliferation. To achieve this, they tend to adopt a form of glucose metabolism termed aerobic glycolysis. This type of metabolism allows for the use of large amounts of glucose to generate energy, but also to support biosynthetic processes. This review article will discuss how aerobic glycolysis supports the biosynthetic demands of activated T cells, B cells and Natural Killer cells, and the emerging concept that glycolysis is integrally linked to the differentiation and function of these lymphocyte populations.

  19. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    PubMed

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  20. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    PubMed

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors.

  1. Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis.

    PubMed

    Tomlin, G C; Hamilton, G E; Gardner, D C; Walmsley, R M; Stateva, L I; Oliver, S G

    2000-09-01

    Complementation studies and allele replacement in Saccharomyces cerevisiae revealed that PSA1/VIG9, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type SRB1 gene. Cloning and sequencing of the srb1-1 allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 (srb1(D276)). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of srb1(D276). A previously reported complementing gene, which this study has now identified as PDE2, is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the SRB1 gene. srb and pde2 mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

  2. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy.

    PubMed

    Henry, Victoria A; Jessop, Julie L P; Peeples, Tonya L

    2017-02-01

    High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.

  3. Ca(2+)-loading modulates potencies of cyclosporin A, Mg2+ and ADP to recouple permeabilized rat liver mitochondria.

    PubMed

    Andreyev AYu; Mikhaylova, L M; Starkov, A A; Kushnareva YuE

    1994-09-01

    We studied the relative potencies of cyclosporin A and endogenous effectors (Mg2+ and ADP) to recouple rat liver mitochondria permeabilized by different Ca(2+)-loading in a P(i)-containing medium. Recoupling efficiency of cyclosporin A dramatically decreased at high Ca(2+)-loading (approx. 100 nM of Ca2+/mg protein and more). Mitochondria permeabilized by high Ca2+ were recoupled with approximately equal efficiency by higher cyclosporin A concentrations or by adding 1-5 mM Mg2+ together with low concentrations of cyclosporin A while potentiating effect of ADP on the cyclosporin A recoupling potency was insignificant. Mg2+ ions at concentrations of 3 mM and higher also prevented the carboxyatractylate-induced reversion of cyclosporin A recoupling effect. The data point to competitive relationships between cyclosporin A and/or Mg2+ ions and Ca2+ ions for the site(s) regulating permeability state of the pore.

  4. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    PubMed Central

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  5. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling.

    PubMed

    Ruf, A; de Murcia, G; Schulz, G E

    1998-03-17

    Inhibitors of poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30) are of clinical interest because they have potential for improving radiation therapy and chemotherapy of cancer. The refined binding structures of four such inhibitors are reported together with the refined structure of the unligated catalytic fragment of the enzyme. Following their design, all inhibitors bind at the position of the nicotinamide moiety of the substrate NAD+. The observed binding mode suggests inhibitor improvements that avoid other NAD(+)-binding enzymes. Because the binding pocket of NAD+ has been strongly conserved during evolution, the homology with ADP-ribosylating bacterial toxins could be used to extend the bound nicotinamide, which is marked by the inhibitors, to the full NAD+ molecule.

  6. The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs.

    PubMed

    Barth, Holger; Blöcker, Dagmar; Aktories, Klaus

    2002-12-01

    Several bacterial protein toxins, including Clostridium botulinum C2 toxin, Clostridum perfringens iota toxin, Clostridium difficile ADP-ribosyltransferase, and the Bacillus-produced vegetative insecticidal proteins, target the cytoskeleton by ADP-ribosylation of actin. All these toxins are binary in structure and consist of an enzyme component, possessing ADP-ribosyltransferase activity and a separated binding and translocation component, which is involved in the delivery of the enzyme component into the cell. The toxins are not only important virulence factors but also cell biological tools to study the function of the actin cytoskeleton. Moreover, the binary toxins turned out to be effective transporter systems for the delivery of specific fusion toxins (e.g., Rho-ADP-ribosylating C3 exoenzyme) into cells. The present review describes the biological functions of the toxins, focuses on recent studies on the uptake and delivery mechanism and discusses the usage as a drug delivery system.

  7. Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica.

    PubMed

    Jones, Cheryl P; Ingram-Smith, Cheryl

    2014-12-01

    Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.

  8. The Key Involvement of Poly (ADP-Ribosylation) in Defense against Toxic Agents in Molecular Biology Studies

    DTIC Science & Technology

    1989-11-15

    polymerase increased very early and remained high for up to 48 after which it decreased to pre-induced levels. Polymerase transcript levels did not change...the Ub- PADPRP junction. HUMAN POLY(ADP-RIBOSE) POLYMERASE IS FUNCTIONAL IN SCHr2OSACCHAROMYCES POMBE (MS IN PREP.) The full length cDNA for human...PADPRP has been introduced into the yeast Schizosaccharomyces pombe under the transcriptional control of the SV40 early promoter. A number of haploid

  9. The Key Involvement of Poly(ADP-Ribosylation) in Defense Against Toxic Agents in Molecular Biology Studies

    DTIC Science & Technology

    1991-12-17

    for the polymerase increased very early and remained high for up to 48 after which it decreased to pre-induced levels. Polymerase transcript levels...cleave the Ub-PADPRP Junction. HUMAN POLY(ADP-RIBOSE) POLYMERASE IS FUNCTIONAL IN SC.=OSACCHAROMYCES POMBE (MS IN PREP.) T