Science.gov

Sample records for adp-ribose polymerase cleavage

  1. Association of sperm morphology and the sperm deformity index (SDI) with poly (ADP-ribose) polymerase (PARP) cleavage inhibition.

    PubMed

    Aziz, Nabil; Sharma, Rakesh K; Mahfouz, Reda; Jha, Rajesh; Agarwal, Ashok

    2011-06-30

    Apoptosis was induced in immature and mature sperm in the presence or absence of poly (ADP-ribose) polymerase (PARP) inhibitor. The association of cleaved (cPARP) with sperm morphology was examined using sperm deformity index (SDI) score. The SDI scores are associated with PARP cleavage as an early marker of apoptosis.

  2. Poly(ADP-ribose)polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1.

    PubMed

    Lebedeva, Natalia A; Anarbaev, Rashid O; Sukhanova, Maria; Vasil'eva, Inna A; Rechkunova, Nadejda I; Lavrik, Olga I

    2015-06-15

    The influence of poly(ADP-ribose)polymerase 1 (PARP1) on the apurinic/apyrimidinic (AP)-site cleavage activity of tyrosyl-DNA phosphodiesterase 1 (TDP1) and interaction of PARP1 and TDP1 were studied. The efficiency of single or clustered AP-site hydrolysis catalysed by TDP1 was estimated. It was shown that the efficiency of AP-site cleavage increases in the presence of an additional AP-site in the opposite DNA strand depending on its position. PARP1 stimulates TDP1; the stimulation effect was abolished in the presence of NAD(+). The interaction of these two proteins was characterized quantitatively by measuring the dissociation constant for the TDP1-PARP1 complex using fluorescently-labelled proteins. The distance between the N-termini of the proteins within the complex was estimated using FRET. The data obtained suggest that PARP1 and TDP1 bind in an antiparallel orientation; the N-terminus of the former protein interacts with the C-terminal domain of the latter. The functional significance of PARP1 and TDP1 interaction in the process of DNA repair was demonstrated for the first time.

  3. The efficiency of Poly(ADP-Ribose) Polymerase (PARP) cleavage on detection of apoptosis in an experimental model of testicular torsion.

    PubMed

    Aslan Koşar, Pınar; Tuncer, Hamdi; Cihangir Uğuz, Abdülhadi; Espino Palma, Javier; Darıcı, Hakan; Onaran, İbrahim; Çiğ, Bilal; Koşar, Alim; Rodriguez Moratinos, Ana Beatriz

    2015-10-01

    The aim of this study was to evaluate the histopathological and apoptotic changes occurring in the rat ipsilateral and contralateral testes, after experimental spermatic cord torsion, and to explore and the role of poly(ADP-ribose) polymerase (PARP) cleavage in testicular torsion-detorsion injury. A total of 37 Wistar albino rats were subjected to 720° unilateral spermatic cord torsion for 1, 2 and 4 h, followed by 4-h reperfusion, or else to a sham operation (control group). Histology of the testicle was evaluated using haematoxylin-eosin (H&E) staining and Johnsen's scoring system. Germ cell apoptosis was evaluated via active caspase-3 immunostaining, and PARP expression levels were evaluated via Western blotting. The mean Johnsen's tubular biopsy scores (JTBS) of the ipsilateral testicles were lower for all torsion groups than for the controls (P < 0.05), but the JTBS of the contralateral testicles were only lower in the 4-h torsion group (P < 0.05). The mean apoptosis score (AS) of the ipsilateral and contralateral testicles was significantly higher in the torsion groups than in the sham group. AS increased correlatively with torsion time, in both testicles. The effect of testicular torsion on PARP cleavage was time dependent, with the highest effect observed after 4 h of testicular torsion (P < 0.05). Testicular torsion caused time-dependent histological changes, apoptosis and increases in PARP cleavage. Our results suggest that testicular torsion-detorsion injury caused cell damage and germ cell apoptosis that apparently involved cleavage of PARP. Increased PARP cleavage could, in turn, lead to enhanced apoptosis.

  4. Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    PubMed Central

    Mégnin-Chanet, Frédérique; Bollet, Marc A.

    2010-01-01

    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated. PMID:20725763

  5. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    PubMed

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  6. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.

    PubMed

    Cantó, Carles; Sauve, Anthony A; Bai, Peter

    2013-12-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.

  7. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-11-17

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.

  8. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  9. Poly(ADP-Ribose) Polymerases in Aging - Friend or Foe?

    PubMed

    Vida, András; Abdul-Rahman, Omar; Mikó, Edit; Brunyánszki, Attila; Bai, Peter

    2016-01-01

    Poly(ADP-ribose) polymerases were originally described as DNA repair enzymes. PARP-1, PARP-2 and PARP-3 can be activated by DNA damage and the resulting activation of these enzymes that facilitate DNA repair, seems to be a prerequisite of successful aging. PARP activation helps to maintain genomic integrity through supporting DNA repair systems; however, in parallel these enzymes limit metabolic fitness and make the organism more prone for metabolic diseases. In addition, several other pathways (e.g., proteostasis, nutrient sensing, stem cell proliferation or cellular communication) all contributing to aging, were shown to be PARP mediated. In this review we aim to summarize our current knowledge on the role of PARPs in aging.

  10. Poly(ADP-ribose)polymerase inhibition decreases angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Godlewski, Grzegorz; Batkai, Sandor; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-12-01

    Inhibitors of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme involved in regulating cell death and cellular responses to DNA repair, show considerable promise in the treatment of cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation. We have recently demonstrated that PARP inhibition with 3-aminobenzamide or PJ-34 reduced vascular endothelial growth factor (VEGF)-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Here, we show dose-dependent reduction of VEGF- and basic fibroblast growth factor (bFGF)-induced proliferation, migration, and tube formation of HUVECs in vitro by two potent PARP inhibitors 5-aminoisoquinolinone-hydrochloride (5-AIQ) and 1,5-isoquinolinediol (IQD). Moreover, PARP inhibitors prevented the sprouting of rat aortic ring explants in an ex vivo assay of angiogenesis. These results establish the novel concept that PARP inhibitors have antiangiogenic effects, which may have tremendous clinical implications for the treatment of various cancers, tumor metastases, and certain retinopathies.

  11. Metabolic roles of poly(ADP-ribose) polymerases.

    PubMed

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  12. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  13. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  14. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  15. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  16. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging

    PubMed Central

    Altmeyer, Matthias; Hottiger, Michael O.

    2009-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein, which functions as molecular stress sensor. Reactive oxygen species, responsible for the most plausible and currently acceptable global mechanism to explain the aging process, strongly activate the enzymatic activity of PARP1 and the formation of poly(ADP-ribose) (PAR) from NAD+. Consumption of NAD+ links PARP1 to energy metabolism and to a large number of NAD+-dependent enzymes, such as the sirtuins. As transcriptional cofactor for NF-κB-dependent gene expression, PARP1 is also connected to the immune response, which is implicated in almost all age-related or associated diseases. Accordingly, numerous experimental studies have demonstrated the beneficial effects of PARP inhibition for several age-related diseases. This review summarizes recent findings on PARP1 and puts them in the context of metabolic stress and inflammation in aging. PMID:20157531

  17. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  18. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.

    PubMed

    Frizzell, Kristine M; Gamble, Matthew J; Berrocal, Jhoanna G; Zhang, Tong; Krishnakumar, Raga; Cen, Yana; Sauve, Anthony A; Kraus, W Lee

    2009-12-04

    Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.

  19. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.

    PubMed

    Erener, Süheda; Hesse, Mareike; Kostadinova, Radina; Hottiger, Michael O

    2012-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a chromatin-associated enzyme that was described to affect chromatin compaction. Previous reports suggested a dynamic modulation of the chromatin landscape during adipocyte differentiation. We thus hypothesized that PARP1 plays an important transcriptional role in adipogenesis and metabolism and therefore used adipocyte development and function as a model to elucidate the molecular action of PARP1 in obesity-related diseases. Our results show that PARP1-dependent ADP-ribose polymer (PAR) formation increases during adipocyte development and, at late time points of adipogenesis, is involved in the sustained expression of PPARγ2 and of PPARγ2 target genes. During adipogenesis, PARP1 was recruited to PPARγ2 target genes such as CD36 or aP2 in a PAR-dependent manner. Our results also reveal a PAR-dependent decrease in repressory histone marks (e.g. H3K9me3) and an increase in stimulatory marks (e.g. H3K4me3) at the PPARγ2 promoter, suggesting that PARP1 may exert its regulatory function during adipogenesis by altering histone marks. Interestingly, activation of PARP1 enzymatic activity was prevented with a topoisomerase II inhibitor. These data hint at topoisomerase II-dependent, transient, site-specific double-strand DNA breaks as the cause for poly(ADP)-ribose formation, adipogenic gene expression, and adipocyte function. Together, our study identifies PARP1 as a critical regulator of PPARγ2-dependent gene expression with implications in adipocyte function and obesity-related disease models.

  20. Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines

    PubMed Central

    Zaremba, T; Ketzer, P; Cole, M; Coulthard, S; Plummer, E R; Curtin, N J

    2009-01-01

    Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the catalytic domain that reduces PARP-1 activity. Methods: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in a panel of 19 solid and haematological, adult and paediatric human cancer cell lines. Results: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV=103%), with the lowest and the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV=32%) was observed in PARP-1 protein expression with the lowest expression being 2.0 ng μg−1 (HS-5 cells) and the highest being 7.1 ng μg−1 (ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the PARP-1 protein levels were 23-fold higher. Conclusions: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated polymorphisms, T2444C and CA. PMID:19568233

  1. Alternative mechanisms of inhibiting activity of poly (ADP-ribose) polymerase-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Bezbaruah, Babul Kumar; V, Athira K; Sykam, Shivaji

    2016-01-01

    Poly ADP-ribose polymerase (PARP-1), a DNA nick-sensor enzyme, is an abundant nuclear protein. Upon sensing DNA breaks, PARP-1 gets activated and cleaves NAD into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP-1 itself. Poly(ADP-ribosylation) mainly contributes to DNA repairing mechanism. However, oxidative stress-induced over-activation of PARP-1 consumes excess of NAD and consequently ATP, culminating into cell necrosis. This cellular suicide pathway has been implicated in several conditions such as stroke, myocardial ischemia, diabetes. Thus, it can be a rationale approach to inhibit the activity of PARP-1 for reducing detrimental effects associated with oxidative stress-induced over-activation of PARP-1. Several preclinical as well as clinical studies of PARP-1 inhibitors have been used in conditions such as cancer, stroke and traumatic brain injury. Conventionally, there are many studies which employed the concept of direct inhibition of PARP-1 by competing with NAD. Here, in the present review, we highlight several prospective alternative approaches for the inhibition of PARP-1 activity.

  2. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.

    PubMed

    Valdor, Rut; Schreiber, Valérie; Saenz, Luis; Martínez, Teresa; Muñoz-Suano, Alba; Dominguez-Villar, Margarita; Ramírez, Pablo; Parrilla, Pascual; Aguado, Enrique; García-Cózar, Francisco; Yélamos, José

    2008-04-01

    The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.

  3. Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration

    PubMed Central

    Brochier, Camille; Jones, James I.; Willis, Dianna E.; Langley, Brett

    2015-01-01

    Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules—such as myelin-derived Nogo and myelin-associated glycoprotein—or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration. PMID:26598704

  4. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

    PubMed

    Zhao, Kehao; Harshaw, Robyn; Chai, Xiaomei; Marmorstein, Ronen

    2004-06-08

    Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.

  5. Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells.

    PubMed

    Choi, Young Eun; Park, Eunmi

    2015-12-01

    Poly(ADP-ribose) polymerase (PARP) inhibitor has shown promising responses in homologous recombination (HR) repair-deficient cancer cells. More specifically, targeting HR pathway in combination with PARP inhibitor has been an effective chemotherapy strategy by so far. Curcumin has been recognized as anticancer agents for several types of cancers. Here, we demonstrate that curcumin inhibits a critical step in HR pathway, Rad51 foci formation, and accumulates γ-H2AX levels in MDA-MB-231 breast cancer cells. Curcumin also directly reduces HR and induces cell death with cotreatment of PARP inhibitor in MDA-MB-231 breast cancer cells. Moreover, curcumin, when combined with ABT-888, could effectively delayed breast tumor formation in vivo. Our study indicates that cotreatment of curcumin and PARP inhibitor might be useful for the combination chemotherapy for aggressive breast cancer treatment as a natural bioactive compound.

  6. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1.

    PubMed

    Ullrich, O; Diestel, A; Eyüpoglu, I Y; Nitsch, R

    2001-12-01

    Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.

  7. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer.

    PubMed

    Todorova, Tanya; Bock, Florian J; Chang, Paul

    2015-06-01

    Post-transcriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) polymerase-13 (PARP13), also known as ZC3HAV1 and zinc-finger antiviral protein (ZAP), is an RNA-binding protein that regulates the stability and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally affect miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the prosurvival cytokine receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 4 (TRAILR4) suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target.

  8. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

    PubMed Central

    Khadka, Prabhat; Hsu, Joseph K.; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A.; Mangerich, Aswin; Croteau, Deborah L.

    2015-01-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response. PMID:26391948

  9. Tankyrase Polymerization Is Controlled by Its Sterile Alpha Motif and Poly(ADP-Ribose) Polymerase Domains

    PubMed Central

    De Rycker, Manu; Price, Carolyn M.

    2004-01-01

    Tankyrases are novel poly(ADP-ribose) polymerases that have SAM and ankyrin protein-interaction domains. They are found at telomeres, centrosomes, nuclear pores, and Golgi vesicles and have been shown to participate in telomere length regulation. Their other function(s) are unknown, and it has been difficult to envision a common role at such diverse cellular locations. We have shown that tankyrase 1 polymerizes through its sterile alpha motif (SAM) domain to assemble large protein complexes. In vitro polymerization is reversible and still allows interaction with ankyrin-domain binding proteins. Polymerization can also occur in vivo, with SAM-dependent association of overexpressed tankyrase leading to formation of large tankyrase-containing vesicles, disruption of Golgi structure, and inhibition of apical secretion. Finally, tankyrase polymers are dissociated efficiently by poly(ADP-ribosy)lation. This disassembly is prevented by mutation of the PARP domain. Our findings indicate that tankyrase 1 has the unique capacity to promote both assembly and disassembly of large protein complexes. Thus, tankyrases appear to be master scaffolding proteins that regulate the formation of dynamic protein networks at different cellular locations. This implies a common scaffolding function for tankyrases at each location, with specific tankyrase interaction partners conferring location-specific roles to each network, e.g., telomere compaction or regulation of vesicle trafficking. PMID:15509784

  10. Poly (ADP-Ribose) Polymerase Mediates Diabetes-Induced Retinal Neuropathy

    PubMed Central

    Mohammad, Ghulam; Siddiquei, Mohammad Mairaj

    2013-01-01

    Retinal neuropathy is an early event in the development of diabetic retinopathy. One of the potential enzymes that are activated by oxidative stress in the diabetic retina is poly (ADP-ribose) polymerase (PARP). We investigated the effect of the PARP inhibitor 1,5-isoquinolinediol on the expression of the neurodegeneration mediators and markers in the retinas of diabetic rats. After two weeks of streptozotocin-induced diabetes, rats were treated with 1,5-isoquinolinediol (3 mg/kg/day). After 4 weeks of diabetes, the retinas were harvested and the levels of reactive oxygen species (ROS) were determined fluorometrically and the expressions of PARP, phosporylated-ERK1/2, BDNF, synaptophysin, glutamine synthetase (GS), and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, PARP-1/2, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expressions of BDNF synaptophysin and GS were significantly decreased in the retinas of diabetic rats, compared to nondiabetic rats. Administration of 1,5-isoquinolinediol did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of PARP, ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF, synaptophysin, and GS. These findings suggest a beneficial effect of the PARP inhibitor in increasing neurotrophic support and ameliorating early retinal neuropathy induced by diabetes. PMID:24347828

  11. Poly (ADP-ribose) Polymerase 1 Protein Expression in Normal and Neoplastic Prostatic Tissue

    PubMed Central

    Salemi, M.; Galia, A.; Fraggetta, F.; La Corte, C.; Pepe, P.; La Vignera, S.; Improta, G.; Bosco, P.; Calogero, A.E.

    2013-01-01

    A genetic background has been implicated in the development of prostate cancer. Protein microarrays have enabled the identification of proteins, some of which associated with apoptosis, that may play a role in the development of such a tumor. Inhibition of apoptosis is a co-factor that contributes to the onset and progression of prostate cancer, though the molecular mechanisms are not entirely understood. Poly (ADP-ribose) polymerase 1 (PARP-1) gene is required for translocation of the apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. Hence, it is involved in programmed cell death. Different PARP-1 gene expression has been observed in various tumors such as glioblastoma, lung, ovarian, endometrial, and skin cancers. We evaluated the expression of PARP-1 protein in prostatic cancer and normal prostate tissues by immunohistochemistry in 40 men with prostate cancer and in 37 normal men. Positive nuclear PARP-1 staining was found in all samples (normal prostate and prostate cancer tissues). No cytoplasmic staining was observed in any sample. PARP-1-positive cells resulted significantly higher in patients with prostate carcinoma compared with controls (P<0.001). PARP-1 over-expression in prostate cancer tissue compared with normal prostate suggests a greater activity of PARP-1 in these tumors. These findings suggest that PARP-1 expression in prostate cancer is an attempt to trigger apoptosis in this type of tumor similarly to what reported in other cancers. PMID:23807292

  12. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  13. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

    PubMed

    Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M

    2014-07-15

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.

  14. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  15. Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats.

    PubMed

    Martin, D R; Lewington, A J; Hammerman, M R; Padanilam, B J

    2000-11-01

    The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.

  16. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  17. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    PubMed Central

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  18. Poly (ADP) ribose polymerase inhibition: A potential treatment of malignant peripheral nerve sheath tumor.

    PubMed

    Kivlin, Christine M; Watson, Kelsey L; Al Sannaa, Ghadah A; Belousov, Roman; Ingram, Davis R; Huang, Kai-Lieh; May, Caitlin D; Bolshakov, Svetlana; Landers, Sharon M; Kalam, Azad Abul; Slopis, John M; McCutcheon, Ian E; Pollock, Raphael E; Lev, Dina; Lazar, Alexander J; Torres, Keila E

    2016-01-01

    Poly (ADP) ribose polymerase (PARP) inhibitors, first evaluated nearly a decade ago, are primarily used in malignancies with known defects in DNA repair genes, such as alterations in breast cancer, early onset 1/2 (BRCA1/2). While no specific mutations in BRCA1/2 have been reported in malignant peripheral nerve sheath tumors (MPNSTs), MPNST cells could be effectively targeted with a PARP inhibitor to drive cells to synthetic lethality due to their complex karyotype and high level of inherent genomic instability. In this study, we assessed the expression levels of PARP1 and PARP2 in MPNST patient tumor samples and correlated these findings with overall survival. We also determined the level of PARP activity in MPNST cell lines. In addition, we evaluated the efficacy of the PARP inhibitor AZD2281 (Olaparib) in MPNST cell lines. We observed decreased MPNST cell proliferation and enhanced apoptosis in vitro at doses similar to, or less than, the doses used in cell lines with established defective DNA repair genes. Furthermore, AZD2281 significantly reduced local growth of MPNST xenografts, decreased the development of macroscopic lung metastases, and increased survival of mice with metastatic disease. Our results suggest that AZD2281 could be an effective therapeutic option in MPNST and should be further investigated for its potential clinical use in this malignancy.

  19. PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres

    SciTech Connect

    Liu, Yie; Wu, Jun; Schreiber, Valerie; Dunlap, John; Dantzer, Francoise; Wang, Yisong

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  20. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    PubMed

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  1. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics.

  2. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells.

    PubMed

    Gottipati, Ponnari; Vischioni, Barbara; Schultz, Niklas; Solomons, Joyce; Bryant, Helen E; Djureinovic, Tatjana; Issaeva, Natalia; Sleeth, Kate; Sharma, Ricky A; Helleday, Thomas

    2010-07-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) is activated by DNA single-strand breaks (SSB) or at stalled replication forks to facilitate DNA repair. Inhibitors of PARP efficiently kill breast, ovarian, or prostate tumors in patients carrying hereditary mutations in the homologous recombination (HR) genes BRCA1 or BRCA2 through synthetic lethality. Here, we surprisingly show that PARP1 is hyperactivated in replicating BRCA2-defective cells. PARP1 hyperactivation is explained by the defect in HR as shRNA depletion of RAD54, RAD52, BLM, WRN, and XRCC3 proteins, which we here show are all essential for efficient HR and also caused PARP hyperactivation and correlated with an increased sensitivity to PARP inhibitors. BRCA2-defective cells were not found to have increased levels of SSBs, and PAR polymers formed in HR-defective cells do not colocalize to replication protein A or gammaH2AX, excluding the possibility that PARP hyperactivity is due to increased SSB repair or PARP induced at damaged replication forks. Resistance to PARP inhibitors can occur through genetic reversion in the BRCA2 gene. Here, we report that PARP inhibitor-resistant BRCA2-mutant cells revert back to normal levels of PARP activity. We speculate that the reason for the sensitivity of HR-defective cells to PARP inhibitors is related to the hyperactivated PARP1 in these cells. Furthermore, the presence of PAR polymers can be used to identify HR-defective cells that are sensitive to PARP inhibitors, which may be potential biomarkers.

  3. Transcriptional regulation by Poly(ADP-ribose) polymerase-1 during T cell activation

    PubMed Central

    Saenz, Luis; Lozano, Juan J; Valdor, Rut; Baroja-Mazo, Alberto; Ramirez, Pablo; Parrilla, Pascual; Aparicio, Pedro; Sumoy, Lauro; Yélamos, José

    2008-01-01

    Background Accumulating evidence suggests an important role for the enzyme poly(ADP-ribose) polymerase-1 (PARP-1) as an integral part of the gene expression regulatory machinery during development and in response to specific cellular signals. PARP-1 might modulate gene expression through its catalytic activity leading to poly(ADP-ribosyl)ation of nuclear proteins or by its physical association with relevant proteins. Recently, we have shown that PARP-1 is activated during T cell activation. However, the proposed role of PARP-1 in reprogramming T cell gene expression upon activation remains largely unexplored. Results In the present study we use oligonucleotide microarray analysis to gain more insight into the role played by PARP-1 during the gene expression reprogramming that takes place in T cells upon activation with anti-CD3 stimulation alone, or in combination with anti-CD28 co-stimulation. We have identified several groups of genes with expression modulated by PARP-1. The expression of 129 early-response genes to anti-CD3 seems to be regulated by PARP-1 either in a positive (45 genes) or in a negative manner (84 genes). Likewise, in the presence of co-stimulation (anti-CD3 + anti-CD28 stimulation), the expression of 203 genes is also regulated by PARP-1 either up (173 genes) or down (30 genes). Interestingly, PARP-1 deficiency significantly alters expression of genes associated with the immune response such as chemokines and genes involved in the Th1/Th2 balance. Conclusion This study provides new insights into changes in gene expression mediated by PARP-1 upon T cell activation. Pathway analysis of PARP-1 as a nuclear signalling molecule in T cells would be of relevance for the future development of new therapeutic approaches targeting PARP-1 in the acquired immune response. PMID:18412984

  4. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    SciTech Connect

    Gebhard, Catherine; Staehli, Barbara E.; Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine; Matter, Christian M.; Hassa, Paul O.; Hottiger, Michael O.; Malinski, Tadeusz; Luescher, Thomas F.; and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  5. Prevention of tumorigenesis of oncogene-transformed rat fibroblasts with DNA site inhibitors of poly(ADP ribose) polymerase

    SciTech Connect

    Tseng, A. Jr.; Lee, W.M.F.; Kirsten, E.; Hakam, A.; McLick, J.; Buki, K.; Kun, E.

    1987-02-01

    The EJ-ras gene was placed under the transcriptional control of the steroid-inducible mouse mammary tumor virus promoter/enhancer and introduced into Rat-1 fibroblasts, yielding the 14C cell line. When these cells were exposed to dexamethasone in vitro, EJ-ras mRNA was induced 15- to 20-fold, the cells grew in agar, and, after injection of cells into syngenic Fischer 344 rats, they produced lethal fibrosarcomas. Inhibitors of poly(ADP ribose) polymerase, which prevent the activation of the purified enzyme by a synthrtic octadeoxyribonucleotide duplex, inhibited both in vivo tumorigenicity and in vitro growth in soft agar. The enzyme inhibitor 1,2-benzopyrone, which was studied in detail, and other polymerase inhibitors had no effect on EJ-ras mRNA or p21 protein expression. Poly(ADP ribose) polymerase was inhibited by the drug in both untreated and dexamethasone-treated cells both in vitro and in vivo to the same extent, but biological consequences of enzyme inhibition were manifest only when the cells were in the transformed tumorigenic state.

  6. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery

    PubMed Central

    Noël, Georges; Giocanti, Nicole; Fernet, Marie; Mégnin-Chanet, Frédérique; Favaudon, Vincent

    2003-01-01

    Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose) synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose) synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks. PMID:12866953

  7. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials.

    PubMed

    Yuan, Bo; Ye, Na; Song, Shan-Shan; Wang, Yu-Ting; Song, Zilan; Chen, Hua-Dong; Chen, Chuan-Huizi; Huan, Xia-Juan; Wang, Ying-Qing; Su, Yi; Shen, Yan-Yan; Sun, Yi-Ming; Yang, Xin-Ying; Chen, Yi; Guo, Shi-Yan; Gan, Yong; Gao, Zhi-Wei; Chen, Xiao-Yan; Ding, Jian; He, Jin-Xue; Zhang, Ao; Miao, Ze-Hong

    2017-02-01

    Poly(ADP-ribose)polymerase (PARP)1/2 inhibitors have been proved to be clinically effective anticancer drugs. Here we report a new PARP1/2 inhibitor, simmiparib, displaying apparently improved preclinical anticancer activities relative to the first approved inhibitor olaparib. Simmiparib inhibited PARP1/2 approximately 2-fold more potently than olaparib, with more than 90-fold selectivity over the other tested PARP family members. Simmiparib and olaparib caused similar cellular PARP1-DNA trapping. Simmiparib selectively induced the accumulation of DNA double-strand breaks, G2/M arrest and apoptosis in homologous recombination repair (HR)-deficient cells. Consistently, simmiparib showed 26- to 235-fold selectivity in its antiproliferative activity against HR-deficient cells over the corresponding isogenic HR-proficient cells. Notably, its antiproliferative activity was 43.8-fold more potent than that of olaparib in 11 HR-deficient cancer cell lines. Simmiparib also potentiated the proliferative inhibition of several conventional anticancer drugs. Simmiparib reduced the poly(ADP-ribose) formation in HR-deficient cancer cells and xenografts. When orally administered to nude mice bearing xenografts, simmiparib revealed excellent pharmacokinetic properties. Simmiparib caused approximately 10-fold greater growth inhibition than olaparib against HR-deficient human cancer cell- or tissue-derived xenografts in nude mice. Collectively, these findings support the undergoing clinical trials of simmiparib.

  8. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    PubMed Central

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI. PMID:17225870

  9. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    SciTech Connect

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  10. Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases

    PubMed Central

    Morales, Julio C.; Li, Longshan; Fattah, Farjana J.; Dong, Ying; Bey, Erik A.; Patel, Malina; Gao, Jinming; Boothman, David A.

    2016-01-01

    Poly (ADP-ribose) polymerases (PARPs) are a family of related enzymes that share the ability to catalyze the transfer of ADP-ribose to target proteins. PARPs play an important role in various cellular processes, including modulation of chromatin structure, transcription, replication, recombination, and DNA repair. The role of PARP proteins in DNA repair is of particular interest, in view of the finding that certain tumors defective in homologous recombination mechanisms, may rely on PARP-mediated DNA repair for survival, and are sensitive to its inhibition. PARP inhibitors may also increase tumor sensitivity to DNA-damaging agents. Clinical trials of PARP inhibitors are investigating the utility of these approaches in cancer. The hyperactivation of PARP has also been shown to result in a specific programmed cell death pathway involving NAD+/ATP depletion, mu-calpain activation, loss of mitochondrial membrane potential, and the release of apoptosis inducing factor. Hyperactivation of the PARP pathway may be exploited to selectively kill cancer cells. Other PARP forms, including tankyrase 1 (PARP 5a), which plays an important role in enhancing telomere elongation by telomerase, have been found to be potential targets in cancer therapy. The PARP pathway and its inhibition thus offers a number of opportunities for therapeutic intervention in both cancer and other disease states. PMID:24579667

  11. Postnatal Age Influences Hypoglycemia-induced Poly(ADP-ribose) Polymerase-1 Activation in the Brain Regions of Rats

    PubMed Central

    Rao, Raghavendra; Sperr, Dustin; Ennis, Kathleen; Tran, Phu

    2009-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) overactivation plays a significant role in hypoglycemia-induced brain injury in adult rats. To determine the influence of postnatal age on PARP-1 activation, developing and adult male rats were subjected to acute hypoglycemia of equivalent severity and duration. The expression of PARP-1 and its downstream effectors, apoptosis inducing factor (Aifm1), caspase 3 (Casp3), NF-κB (Nfkb1) and bcl-2 (Bcl2), and cellular poly(ADP-ribose) (PAR) polymer expression was assessed in the cerebral cortex, hippocampus, striatum and hypothalamus at 0 h and 24 h post-hypoglycemia. Compared with the control group, PARP-1 expression increased in the cerebral cortex of adult rats 24 h post-hypoglycemia, but not at 0 h, and was accompanied by increased number of PAR-positive cells. The expression was not altered in other brain regions. Aifm1, Nfkb1, Casp3, and Bcl2 expression also increased in the cerebral cortex of adult rats 24 h post-hypoglycemia. Conversely, hypoglycemia did not alter PARP-1 expression and its downstream effectors in any brain region in developing rats. These data parallel the previously demonstrated pattern of hypoglycemia-induced brain injury and suggest that PARP-1 overactivation may determine age- and region-specific vulnerability during hypoglycemia. PMID:19687776

  12. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes.

    PubMed

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2'-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI.

  13. Association of poly(ADP-ribose) polymerase with nuclear subfractions catalyzed with sodium tetrathionate and hydrogene peroxide crosslinks.

    PubMed

    Desnoyers, S; Kirkland, J B; Poirier, G G

    1996-06-21

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which catalyzes the transfer of ADP-ribose units from NAD+ to a variety of nuclear proteins under the stimulation of DNA strand break. To examine its role in DNA repair, we have been studying the interaction of PARP with other nuclear proteins using disulfide cross-linking, initiated by sodium tetrathionate (NaTT). Chinese Hamster Ovary (CHO) cells were extracted sequentially with Nonidet P40 (detergent), nucleases (DNase+RNase), and high salt (1.6 M NaCl) with and without the addition of a sulfhydryl reducing agent. The residual structures are referred to as the nuclear matrix, and are implicated in the organization of DNA repair and replication. Treatment of the cells with NaTT causes the crosslinking of PARP to the nuclear matrix. Activating PARP by pretreating the cells with H2O2 did not increase the cross-linking of PARP with the nuclear matrix, suggesting a lack of additional interaction of the enzyme with the nuclear matrix during DNA repair. Both NaTT and H2O2 induced crosslinks of PARP that were extractable with high salt. To shorten the procedure, these crosslinks were extracted from cells without nucleases and high salt treatment, using phosphate buffer. Using western blotting, these crosslinks appeared as a smear of high molecular weight species including a possible dimer of PARP at 230 kDa, which return to 116 kDa following reduction with beta-mercaptoethanol.

  14. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  15. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    PubMed Central

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-01-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain. PMID:27904474

  16. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.

    PubMed

    Wang, Ying-Qing; Wang, Ping-Yuan; Wang, Yu-Ting; Yang, Guang-Fu; Zhang, Ao; Miao, Ze-Hong

    2016-11-10

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.

  17. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1

    PubMed Central

    Wang, Yingfei; An, Ran; Umanah, George K.; Park, Hyejin; Nambiar, Kalyani; Eacker, Stephen M.; Kim, BongWoo; Bao, Lei; Harraz, Maged M.; Chang, Calvin; Chen, Rong; Wang, Jennifer E.; Kam, Tae-In; Jeong, Jun Seop; Xie, Zhi; Neifert, Stewart; Qian, Jiang; Andrabi, Shaida A.; Blackshaw, Seth; Zhu, Heng; Song, Hongjun; Ming, Guo-li; Dawson, Valina L.; Dawson, Ted M.

    2016-01-01

    Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation. PMID:27846469

  18. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling.

    PubMed

    Ruf, A; de Murcia, G; Schulz, G E

    1998-03-17

    Inhibitors of poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30) are of clinical interest because they have potential for improving radiation therapy and chemotherapy of cancer. The refined binding structures of four such inhibitors are reported together with the refined structure of the unligated catalytic fragment of the enzyme. Following their design, all inhibitors bind at the position of the nicotinamide moiety of the substrate NAD+. The observed binding mode suggests inhibitor improvements that avoid other NAD(+)-binding enzymes. Because the binding pocket of NAD+ has been strongly conserved during evolution, the homology with ADP-ribosylating bacterial toxins could be used to extend the bound nicotinamide, which is marked by the inhibitors, to the full NAD+ molecule.

  19. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

    PubMed

    Pic, Emilie; Gagné, Jean-Philippe; Poirier, Guy G

    2011-12-01

    PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

  20. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span.

    PubMed Central

    Grube, K; Bürkle, A

    1992-01-01

    Poly(ADP-ribosyl)ation is a eukaryotic posttranslational modification of proteins that is strongly induced by the presence of DNA strand breaks and plays a role in DNA repair and the recovery of cells from DNA damage. We compared poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) activities in Percoll gradient-purified, permeabilized mononuclear leukocytes from mammalian species of different maximal life span. Saturating concentrations of a double-stranded octameric oligonucleotide were applied to provide a direct and maximal stimulation of PARP. Our results on 132 individuals from 13 different species yield a strong positive correlation between PARP activity and life span (r = 0.84; P << 0.001), with human cells displaying approximately 5 times the activity of rat cells. Intraspecies comparisons with both rat and human cells from donors of all age groups revealed some decline of PARP activity with advancing age, but it was only weakly correlated. No significant polymer degradation was detectable under our assay conditions, ruling out any interference by poly(ADP-ribose) glycohydrolase activity. By Western blot analysis of mononuclear leukocytes from 11 species, using a crossreactive antiserum directed against the extremely well-conserved NAD-binding domain, no correlation between the amount of PARP protein and the species' life spans was found, suggesting a greater specific enzyme activity in longer-lived species. We propose that a higher poly(ADP-ribosyl)ation capacity in cells from long-lived species might contribute to the efficient maintenance of genome integrity and stability over their longer life span. Images PMID:1465394

  1. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans.

    PubMed

    Gagnon, Steve N; Hengartner, Michael O; Desnoyers, Serge

    2002-11-15

    Poly(ADP-ribose) polymerases (PARPs) are an expanding, well-conserved family of enzymes found in many metazoan species, including plants. The enzyme catalyses poly(ADP-ribosyl)ation, a post-translational modification that is important in DNA repair and programmed cell death. In the present study, we report the finding of an endogenous source of poly(ADP-ribosyl)ation in total extracts of the nematode Caenorhabditis elegans. Two cDNAs encoding highly similar proteins to human PARP-1 (huPARP-1) and huPARP-2 are described, and we propose to name the corresponding enzymes poly(ADP-ribose) metabolism enzyme 1 (PME-1) and PME-2 respectively. PME-1 (108 kDa) shares 31% identity with huPARP-1 and has an overall structure similar to other PARP-1 subfamily members. It contains sequences having considerable similarity to zinc-finger motifs I and II, as well as with the catalytic domain of huPARP-1. PME-2 (61 kDa) has structural similarities with the catalytic domain of PARPs in general and shares 24% identity with huPARP-2. Recombinant PME-1 and PME-2 display PARP activity, which may partially account for the similar activity found in the worm. A partial duplication of the pme-1 gene with pseudogene-like features was found in the nematode genome. Messenger RNA for pme-1 are 5'-tagged with splice leader 1, whereas those for pme - 2 are tagged with splice leader 2, suggesting an operon-like expression for pme - 2. The expression pattern of pme-1 and pme-2 is also developmentally regulated. Together, these results show that PARP-1 and -2 are conserved in evolution and must have important functions in multicellular organisms. We propose using C. elegans as a model to understand better the functions of these enzymes.

  2. Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1.

    PubMed

    Chen, Yong; Bang, Sookhee; Park, Soohyun; Shi, Hanyuan; Kim, Sangwon F

    2015-07-15

    NAD(+) plays essential roles in cellular energy homoeostasis and redox state, functioning as a cofactor along the glycolysis and citric acid cycle pathways. Recent discoveries indicated that, through the NAD(+)-consuming enzymes, this molecule may also be involved in many other cellular and biological outcomes such as chromatin remodelling, gene transcription, genomic integrity, cell division, calcium signalling, circadian clock and pluripotency. Poly(ADP-ribose) polymerase 1 (PARP1) is such an enzyme and dysfunctional PARP1 has been linked with the onset and development of various human diseases, including cancer, aging, traumatic brain injury, atherosclerosis, diabetes and inflammation. In the present study, we showed that overexpressed acyl-CoA-binding domain containing 3 (ACBD3), a Golgi-bound protein, significantly reduced cellular NAD(+) content via enhancing PARP1's polymerase activity and enhancing auto-modification of the enzyme in a DNA damage-independent manner. We identified that extracellular signal-regulated kinase (ERK)1/2 as well as de novo fatty acid biosynthesis pathways are involved in ACBD3-mediated activation of PARP1. Importantly, oxidative stress-induced PARP1 activation is greatly attenuated by knocking down the ACBD3 gene. Taken together, these findings suggest that ACBD3 has prominent impacts on cellular NAD(+) metabolism via regulating PARP1 activation-dependent auto-modification and thus cell metabolism and function.

  3. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells

    PubMed Central

    Du, Xueliang; Matsumura, Takeshi; Edelstein, Diane; Rossetti, Luciano; Zsengellér, Zsuzsanna; Szabó, Csaba; Brownlee, Michael

    2003-01-01

    In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein–1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1–deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage. PMID:14523042

  4. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers.

    PubMed

    Okazaki, Arimichi; Gameiro, Paulo A; Christodoulou, Danos; Laviollette, Laura; Schneider, Meike; Chaves, Frances; Stemmer-Rachamimov, Anat; Yazinski, Stephanie A; Lee, Richard; Stephanopoulos, Gregory; Zou, Lee; Iliopoulos, Othon

    2017-03-27

    Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel-Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL-/- RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL-/- cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor-induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra-S phase checkpoint, and suppressed the growth of VHL-/- RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL-/- cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.

  5. Targeting Human Poly(ADP-Ribose) Polymerase-1 with Natural Medicines and Its Potential Applications in Ovarian Cancer Therapeutics.

    PubMed

    Song, Min; Li, Jun-Lan; Li, Xiao-Ping; Kan, Shi-Feng

    2015-09-07

    Targeting poly(ADP-ribose) polymerase-1 (PARP-1) has been established as an efficient therapeutics for advanced ovarian cancer. In this study, we describe an integrated procedure that combines virtual computer screening and an experimental enzyme assay to discover novel potent PARP-1 inhibitors from more than 130000 commercially available natural products. The protocol employed a stepwise strategy to fast exclude typical PARP-1 non-binders and then performing rigorous prediction to identify promising candidates with high potency against PARP-1. Consequently, eight natural products were hit and tested to determine their inhibitory activities against the PARP-1 catalytic domain. From these, four compounds, i.e., puerarin, phloretin, chlorogenic acid, and biochanin A, were found to have high or moderate potencies with inhibitory IC50 values of 6, 470, 25, and 86 nM, respectively. The values are comparable to that (IC50  = 1.94 nM) of the FDA-approved agent olaparib. Structural and energetic analyses of the modeled structures of the PARP-1 catalytic domain complexed with the newly identified inhibitors revealed a common binding mode in the complexes: the active site of PARP-1 is composed of a thin polar helix and a flat non-polar pocket; the inhibitors can form a number of hydrogen bonds and electrostatic forces with the helix, while tightly packing against the pocket to define chemical interactions.

  6. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    PubMed

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  7. Effect of silicon dioxide on expression of poly (ADP-ribose) polymerase mRNA and protein.

    PubMed

    Gao, Ai; Song, Shanshan; Wang, Danlin; Peng, Wei; Tian, Lin

    2009-07-01

    Silicon dioxide induces acute injury and chronic pulmonary fibrosis. International Agency for Research on Cancer (IARC) listed it as a human carcinogen in 1996. However, the molecular mechanisms to induce cancer are not understood yet. The content of poly (ADP-ribose) polymerases (PARP) mRNA and protein in Hela cells treated with concentrations of silicon dioxide up to 400microg/ml was determined by real-time fluorogenetic quantitative PCR (RQ-PCR) and immunofluorescence assay, respectively. MTT assay was used to determine cell viability. The results showed that viability at 400microg/ml silica was significantly decreased but not at lower concentrations. The protein content of gamma-H2AX in silica-treated group was significantly higher than the controls. The PARP mRNA and protein levels were significantly reduced with a dose response manner from the lowest silicon dioxide level. Our findings suggested that silicon dioxide increased the expression of gamma-H2AX and inhibited the expression of PARP mRNA and protein in Hela cells.

  8. Inhibition of Poly(ADP-Ribose) Polymerase Enhances Radiochemosensitivity in Cancers Proficient in DNA Double-Strand Break Repair.

    PubMed

    Shunkwiler, Lauren; Ferris, Gina; Kunos, Charles

    2013-02-08

    Pharmacologic inhibitors of poly(ADP-ribose) polymerase (PARP) putatively enhance radiation toxicity in cancer cells. Although there is considerable information on the molecular interactions of PARP and BRCA1- and BRCA2-deficient cancers, very little is known of the PARP inhibition effect upon cancers proficient in DNA double-strand break repair after ionizing radiation or after stalled replication forks. In this work, we investigate whether PARP inhibition by ABT-888 (veliparib) augments death-provoking effects of ionizing radiation, or of the topoisomerase I poison topotecan, within uterine cervix cancers cells harboring an unfettered, overactive ribonucleotide reductase facilitating DNA double-strand break repair and contrast these findings with ovarian cancer cells whose regulation of ribonucleotide reductase is relatively intact. Cell lethality of a radiation-ABT-888 combination is radiation and drug dose dependent. Data particularly highlight an enhanced topotecan-ABT-888 cytotoxicity, and corresponds to an increased number of unrepaired DNA double-strand breaks. Overall, our findings support enhanced radiochemotherapy toxicity in cancers proficient in DNA double-strand break repair when PARP is inhibited by ABT-888.

  9. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  10. 3-aminobenzamide, one of poly(ADP-ribose)polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury.

    PubMed

    Meng, Xianqing; Song, Wenqi; Deng, Bin; Xing, Ziling; Zhang, Weihong

    2015-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is anubiquitous, DNA repair-associated enzyme, which participates in gene expression, cell death, central nerve system (CNS) disorders and oxidative stress. According to the previous studies, PARP-1 over-activation may lead to over-consumption of ATP and even cell apoptosis. Spinal cord injury (SCI) is an inducement towards PARP-1 over-activation due to its massive damage to DNA. 3-aminobenzamide (3-AB) is a kind of PARP-1 inhibitors. The relationship among PARP-1, 3-AB, SCI and apoptosis has not been fully understood. Hence, in the present study, we focused on the effects of 3-AB on cell apoptosis after SCI. Accordingly, SCI model was constructed artificially, and 3-AB was injected intrathecally into the Sprague-Dawley (SD) rats. The results demonstrated an increase in cell apoptosis after SCI. Furthermore, PARP-1 was over-activated after SCI but inhibited by 3-AB injection. In addition, apoptosis-inducing factor (AIF) was inhibited but B-cell lymphoma-2 (Bcl-2) was up-regulated by 3-AB. Interestingly, caspase-3 was not significantly altered with or without 3-AB. In conclusion, our experiments showed that 3-AB, as a PARP-1 inhibitor, could inhibit cell apoptosis after SCI in caspase-independent way, which could provide a better therapeutic target for the treatment of SCI.

  11. Neurological and histological consequences induced by in vivo cerebral oxidative stress: evidence for beneficial effects of SRT1720, a sirtuin 1 activator, and sirtuin 1-mediated neuroprotective effects of poly(ADP-ribose) polymerase inhibition.

    PubMed

    Gueguen, Cindy; Palmier, Bruno; Plotkine, Michel; Marchand-Leroux, Catherine; Besson, Valérie C

    2014-01-01

    Poly(ADP-ribose)polymerase and sirtuin 1 are both NAD(+)-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribose)polymerase, decreases NAD(+) level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribose)polymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribose)polymerase inhibition restores NAD(+) level and sirtuin 1 activity in vitro. In vitro sirtuin 1 induction protects neurons from cell loss induced by oxidative stress. In this context, the role of sirtuin 1 and its involvement in beneficial effects of poly(ADP-ribose)polymerase inhibition were evaluated in vivo in a model of cerebral oxidative stress induced by intrastriatal infusion of malonate in rat. Malonate promoted a NAD(+) decrease that was not prevented by 3-aminobenzamide, a poly(ADP-ribose)polymerase inhibitor, at 4 and 24 hours. However, 3-aminobenzamide increased nuclear SIRT1 activity/expression ratio after oxidative stress. Malonate induced a neurological deficit associated with a striatal lesion. Both were reduced by 3-aminobenzamide and SRT1720, a sirtuin 1 activator, showing beneficial effects of poly(ADP-ribose)polymerase inhibition and sirtuin 1 activation on oxidative stress consequences. EX527, a sirtuin 1 inhibitor, given alone, modified neither the score nor the lesion, suggesting that endogenous sirtuin 1 was not activated during cerebral oxidative stress. However, its association with 3-aminobenzamide suppressed the neurological improvement and the lesion reduction induced by 3-aminobenzamide. The association of 3-aminobenzamide with SRT1720, the sirtuin 1 activator, did not lead to a better protection than 3-aminobenzamide alone. The present data represent the first demonstration that the sirtuin 1 activator SRT1720 is neuroprotective during in vivo cerebral oxidative stress. Furthermore sirtuin 1 activation is involved in the beneficial effects of poly(ADP-ribose)polymerase inhibition after in vivo cerebral oxidative stress.

  12. Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1).

    PubMed

    Khodyreva, S N; Prasad, R; Ilina, E S; Sukhanova, M V; Kutuzov, M M; Liu, Y; Hou, E W; Wilson, S H; Lavrik, O I

    2010-12-21

    The capacity of human poly(ADP-ribose) polymerase-1 (PARP-1) to interact with intact apurinic/apyrimidinic (AP) sites in DNA has been demonstrated. In cell extracts, sodium borohydride reduction of the PARP-1/AP site DNA complex resulted in covalent cross-linking of PARP-1 to DNA; the identity of cross-linked PARP-1 was confirmed by mass spectrometry. Using purified human PARP-1, the specificity of PARP-1 binding to AP site-containing DNA was confirmed in competition binding experiments. PARP-1 was only weakly activated to conduct poly(ADP-ribose) synthesis upon binding to AP site-containing DNA, but was strongly activated for poly(ADP-ribose) synthesis upon strand incision by AP endonuclease 1 (APE1). By virtue of its binding to AP sites, PARP-1 could be poised for its role in base excision repair, pending DNA strand incision by APE1 or the 5'-dRP/AP lyase activity in PARP-1.

  13. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein.

    PubMed

    von Kobbe, Cayetano; Harrigan, Jeanine A; Schreiber, Valérie; Stiegler, Patrick; Piotrowski, Jason; Dawut, Lale; Bohr, Vilhelm A

    2004-01-01

    Werner syndrome (WS) is a genetic premature aging disorder in which patients appear much older than their chronological age. The gene mutated in WS encodes a nuclear protein (WRN) which possesses 3'-5' exonuclease and ATPase-dependent 3'-5' helicase activities. The genomic instability associated with WS cells and the biochemical characteristics of WRN suggest that WRN plays a role in DNA metabolic pathways such as transcription, replication, recombination and repair. Recently we have identified poly(ADP-ribose) polymerase-1 (PARP-1) as a new WRN interacting protein. In this paper, we further mapped the interacting domains. We found that PARP-1 bound to the N-terminus of WRN and to the C-terminus containing the RecQ-conserved (RQC) domain. WRN bound to the N-terminus of PARP-1 containing DNA binding and BRCA1 C-terminal (BRCT) domains. We show that unmodified PARP-1 inhibited both WRN exonuclease and helicase activities, and to our knowledge is the only known WRN protein partner that inactivates both of the WRN's catalytic activities suggesting a biologically significant regulation. Moreover, this dual inhibition seems to be specific for PARP-1, as PARP-2 did not affect WRN helicase activity and only slightly inhibited WRN exonuclease activity. The differential effect of PARP-1 and PARP-2 on WRN catalytic activity was not due to differences in affinity for WRN or the DNA substrate. Finally, we demonstrate that the inhibition of WRN by PARP-1 was influenced by the poly(ADP-ribosyl)ation state of PARP-1. The biological relevance of the specific modulation of WRN catalytic activities by PARP-1 are discussed in the context of pathways in which these proteins may function together, namely in the repair of DNA strand breaks.

  14. Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis.

    PubMed

    Mey, Lilli; Hörmann, Mareike; Schleicher, Nadine; Reuter, Peter; Dönges, Simone; Kinscherf, Ralf; Gassmann, Max; Gerriets, Tibo; Al-Fakhri, Nadia

    2013-11-01

    Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to

  15. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala; Mohan, Pritam; Bezbaruah, Babul Kumar

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) functions at the center of cellular stress and sways the immune system at several key points, thus modulates inflammatory diseases. The antiinflammatory properties of PARP-1 inhibitors have been demonstrated ameliorating effect in various neuroinflammatory disorders. It has been reported that there is a close relationship between the inflammatory processes and major depressive disorder. In the present study, we have elucidated the role of oxidative-nitrosative stress-PARP-1 pathway in lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical alterations in mice. 3-Aminobenzamide (10 and 30mg/kg) and imipramine (10 and 30mg/kg) were administered once daily for 14days. Mice were challenged with LPS (1mg/kg, i.p.) 30min after drug administration on the 14th day. The mRNA expression level of PARP-1 (12h after LPS injection) in the hippocampus was measured through quantitative real-time PCR. All the behavioral and biochemical parameters were assessed at 24h after LPS injection. The expression level of PARP-1mRNA was found significantly up-regulated in the hippocampus at 12h after LPS administration. Results showed that the LPS-challenged mice exhibited an increase in immobility time seen in forced swimming test and tail suspension test. LPS increased the levels of proinflammatory cytokines and oxido-nitrosative stress parameters in the hippocampus. However, pretreatment with 3-aminobenzamide (30mg/kg) significantly reversed the LPS-induced alterations in behavioral parameters, proinflammatory cytokines, oxidative-nitrosative stress and PARP-1 mRNA levels. Imipramine failed to prevent the up-regulation of PARP-1 induced by LPS administration. Our results emphasized that oxidative-nitrosative stress-PARP-1 cascade can play a key role in LPS-induced neurobehavioral and neurochemical anomalies.

  16. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages.

    PubMed

    Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Yates, John R; Moore, Kathryn J; Fisher, Edward A; Garabedian, Michael J

    2016-05-20

    Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.

  17. Radiosensitization effect of poly(ADP-ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation.

    PubMed

    Hirai, Takahisa; Shirai, Hidenori; Fujimori, Hiroaki; Okayasu, Ryuichi; Sasai, Keisuke; Masutani, Mitsuko

    2012-06-01

    Poly(ADP-ribose) polymerase (PARP)-1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ-irradiation and X-irradiation. We investigated the impact of PARP inhibition on the responses to γ-irradiation (low liner energy transfer [LET] radiation) and carbon-ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa-2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ-irradiation and carbon-ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ-irradiation and LET 13 and LET 70 carbon-ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ-H2AX were observed both after γ-irradiation and carbon-ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated-p53 (Ser-15) was observed after γ-irradiation but not after carbon-ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ-irradiation and carbon-ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ-irradiation and carbon-ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR.

  18. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity

    PubMed Central

    Yoon, Sang Pil

    2016-01-01

    Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of PARP1 inhibition on oxidative stress is associated with sirtuin 3 (SIRT3) activation. Exposure to 400 µM cisplatin for 8 hours in cells decreased activity and expression of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPX), and SIRT3, while it increased their lysine acetylation. However, treatment with 1 µM PJ34 hydrochloride, a potent PARP1 inhibitor, restored activity and/or expression in those antioxidant enzymes, decreased lysine acetylation of those enzymes, and improved SIRT3 expression and activity in the cisplatin-injured cells. Using transfection with SIRT3 double nickase plasmids, SIRT3-deficient cells given cisplatin did not show the ameliorable effect of PARP1 inhibition on lysine acetylation and activity of antioxidant enzymes, including MnSOD, catalase and GPX. Furthermore, SIRT3 deficiency in cisplatin-injured cells prevented PARP1 inhibition-induced increase in forkhead box O3a transcriptional activity, and upregulation of MnSOD and catalase. Finally, loss of SIRT3 in cisplatin-exposed cells removed the protective effect of PARP1 inhibition against oxidative stress, represented by the concentration of lipid hydroperoxide and 8-hydroxy-2'-deoxyguanosine; and necrotic cell death represented by a percentage of propidium iodide–positively stained cells. Taken together, these results indicate that PARP1 inhibition protects kidney proximal tubular cells against oxidative stress through SIRT3 activation during cisplatin nephrotoxicity. PMID:27722009

  19. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  20. NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1.

    PubMed

    Wang, Shao-Hui; Liao, Xiao-Mei; Liu, Dan; Hu, Juan; Yin, Yang-Yang; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2012-11-01

    Nerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear. In this study we found that NGF administration facilitates the hippocampus-dependent long-term memory and synaptic plasticity by increasing the activity of PARP-1, a polymerase mediating the PolyADP-ribosylation and important for the memory formation. Co-application of 3-Aminobenzamide (3-AB), a specific inhibitor of PARP-1, distinctly blocked the boosting effect of NGF on memory and synaptic plasticity, and the activation of downstream PKA-CREB signal pathway. Our data provide the first evidence that NGF supplement facilitates synaptic plasticity and the memory ability through PARP-1-mediated protein polyADP-ribosylation and activation of PKA-CREB pathway.

  1. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.

    PubMed

    Guzyk, Mykhailo M; Tykhomyrov, Artem A; Nedzvetsky, Victor S; Prischepa, Irina V; Grinenko, Tatiana V; Yanitska, Lesya V; Kuchmerovska, Tamara M

    2016-10-01

    Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR

  2. Synthesis and biological evaluation of substituted 2-phenyl-2H-indazole-7-carboxamides as potent poly(ADP-ribose) polymerase (PARP) inhibitors.

    PubMed

    Scarpelli, Rita; Boueres, Julia K; Cerretani, Mauro; Ferrigno, Federica; Ontoria, Jesus M; Rowley, Michael; Schultz-Fademrecht, Carsten; Toniatti, Carlo; Jones, Philip

    2010-01-15

    A potent series of substituted 2-phenyl-2H-indazole-7-carboxamides were synthesized and evaluated as inhibitors of poly (ADP-ribose) polymerase (PARP). This extensive SAR exploration culminated with the identification of substituted 5-fluoro-2-phenyl-2H-indazole-7-carboxamide analog 48 which displayed excellent PARP enzyme inhibition with IC(50)=4nM, inhibited proliferation of cancer cell lines deficient in BRCA-1 with CC(50)=42nM and showed encouraging pharmacokinetic properties in rats compared to the lead 6.

  3. Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADP-ribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells

    PubMed Central

    FENG, XIAOXING; KOH, DAVID W.

    2013-01-01

    The genome-protecting role of poly(ADP-ribose) (PAR) has identified PAR polymerase-1 (PARP-1) and PAR glycohydrolase (PARG), two enzymes responsible for the synthesis and hydrolysis of PAR, as chemotherapeutic targets. Each has been previously individually evaluated in chemotherapy, but the effects of combination PARP-1 and PARG inhibition in cancer cells are not known. Here we determined the effects of the inhibition of PARP-1 and the absence or RNAi knockdown of PARG on PAR synthesis, cell death after chemotherapy and long-term viability. Using three experimental/clinical PARP-1 inhibitors in PARG-null cells, we show decreased levels of PAR and increased short-term and long-term viability with each inhibitor, with the exception of DPQ. Treatment with the experimental chemotherapeutic agent, N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), led to increased cell death in PARG-null cells, but decreased cell death when pretreated with each PARP-1 inhibitor. Similar results were observed in MNNG-treated HeLa cells, where RNAi knockdown of PARG or pretreatment with ABT-888 led to increased HeLa cell death, whereas combination PARG RNAi knockdown + ABT-888 failed to produce increased cell death. The results demonstrate the ability of the PARP-1 inhibitors to decrease PAR levels, maintain viability and decrease PAR-mediated cell death after chemotherapeutic treatment in the absence of PARG. Further, the results demonstrate that the combination of PARP-1 and PARG inhibition in chemotherapy does not produce increased HeLa cell death. Thus, the results indicate that inhibiting both PARP-1 and PARG, which both are chemotherapeutic targets that increase cancer cell death, does not lead to synergistic cell death in HeLa cells. Therefore, strategies that target PAR metabolism for the improved treatment of cancer may be required to target PARP-1 and PARG individually in order to optimize cancer cell death. PMID:23254695

  4. Stable and Reusable Electrochemical Biosensor for Poly(ADP-ribose) Polymerase and Its Inhibitor Based on Enzyme-Initiated Auto-PARylation.

    PubMed

    Xu, Yuanyuan; Liu, Li; Wang, Zhaoyin; Dai, Zhihui

    2016-07-27

    A stable and reusable electrochemical biosensor for the label-free detection of poly(ADP-ribose) polymerase (PARP) is designed in this work. C-kit-1, a thiol-modified G-quadruplex oligonucleotide, is first self-assembled on a gold electrode surface. The G-quadruplex structure of c-kit-1 can specifically tether and activate PARP, resulting in the generation of negatively charged poly(ADP-ribose) polymer (PAR). On the basis of electrostatic attraction, PAR facilitates the surface accumulation of positively charged electrochemical signal molecules. Through the characterization of electrochemical signal molecules, the label-free quantification of PARP is simply implemented. On the basis of the proposed method, selective quantification of PARP can be achieved over the linear range from 0.01 to 1 U with a calculated detection limit of 0.003U. Further studies also demonstrate the applicability of the proposed method to biosamples revealing the broad potential in practical applications. Furthermore, inhibitor of PARP has also been detected with this biosensor. Meanwhile, benefited from self-assembly on solid surface, this biosensor possesses two important features, i.e., reusability and stability, which are desirable in related biosensors.

  5. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent.

    PubMed

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Luo, Yan; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F; Frost, David; Donawho, Cherrie; Jarvis, Ken; Bouska, Jennifer; Marsh, Kennan C; Rosenberg, Saul H; Giranda, Vincent L; Penning, Thomas D

    2008-07-15

    Poly(ADP-ribose) polymerases (PARPs) play significant roles in various cellular functions including DNA repair and control of RNA transcription. PARP inhibitors have been demonstrated to potentiate the effect of cytotoxic agents or radiation in a number of animal tumor models. Utilizing a benzimidazole carboxamide scaffold in which the amide forms a key intramolecular hydrogen bond for optimal interaction with the enzyme, we have identified a novel series of PARP inhibitors containing a quaternary methylene-amino substituent at the C-2 position of the benzimidazole. Geminal dimethyl analogs at the methylene-amino substituent were typically more potent than mono-methyl derivatives in both intrinsic and cellular assays. Smaller cycloalkanes such as cyclopropyl or cyclobutyl were tolerated at the quaternary carbon while larger rings were detrimental to potency. In vivo efficacy data in a B16F10 murine flank melanoma model in combination with temozolomide (TMZ) are described for two optimized analogs.

  6. Purification and properties of poly(ADP-ribose)polymerase from Crithidia fasciculata. Automodification and poly(ADP-ribosyl)ation of DNA topoisomerase I.

    PubMed

    Podestá, Dolores; García-Herreros, María I; Cannata, Joaquín J B; Stoppani, Andrés O M; Fernández Villamil, Silvia H

    2004-06-01

    Poly(ADP-ribose)polymerase has been purified more than 160000-fold from Crithidia fasciculata. This is the first PARP isolated to apparent homogeneity from trypanosomatids. The purified enzyme absolutely required DNA for catalytic activity and histones enhanced it 2.5-fold, when the DNA:histone ratio was 1:1.3. The enzyme required no magnesium or any other metal ion cofactor. The apparent molecular mass of 111 kDa, determined by gel filtration would correspond to a dimer of two identical 55-kDa subunits. Activity was inhibited by nicotinamide, 3-aminobenzamide, theophylline, thymidine, xanthine and hypoxanthine but not by adenosine. The enzyme was localized to the cell nucleus. Our findings suggest that covalent poly(ADP-ribosyl)ation of PARP itself or DNA topoisomerase I resulted in the inhibition of their activities and provide an initial biochemical characterization of this covalent post-translational modification in trypanosomatids.

  7. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level.

    PubMed Central

    Yamagoe, S; Kohda, T; Oishi, M

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed. Images PMID:1828533

  8. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors(†).

    PubMed

    Patel, Maulik R; Pandya, Kashyap G; Lau-Cam, Cesar A; Singh, Satyakam; Pino, Maria A; Billack, Blase; Degenhardt, Kurt; Talele, Tanaji T

    2012-04-01

    A group of novel N-1-substituted indazole-3-carboxamide derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy was applied to a weakly active unsubstituted 1H-indazole-3-carboxamide 2, by introducing a three carbon linker between 1H-indazole-3-carboxamide and different heterocycles, and led to compounds 4 [1-(3-(piperidine-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) =36μm] and 5 [1-(3-(2,3-dioxoindolin-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) = 6.8μm]. Compound 5 was evaluated in rats for its protective action against diabetes induced by a treatment with streptozotocin, a known diabetogenic agent. In addition to preserving the ability of the pancreas to secrete insulin, compound 5 was also able to attenuate the ensuing hyperglycemic response to a significant extent.

  9. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression.

    PubMed

    Ooi, Theng Choon; Mohammad, Nur Hafiza; Sharif, Razinah

    2014-12-01

    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.

  10. The Angiotensin-converting enzyme inhibitor captopril inhibits poly(adp-ribose) polymerase activation and exerts beneficial effects in an ovine model of burn and smoke injury.

    PubMed

    Asmussen, Sven; Bartha, Eva; Olah, Gabor; Sbrana, Elena; Rehberg, Sebastian W; Yamamoto, Yusuke; Enkhbaatar, Perenlei; Hawkins, Hal K; Ito, Hiroshi; Cox, Robert A; Traber, Lillian D; Traber, Daniel L; Szabo, Csaba

    2011-10-01

    We investigated the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril in a clinically relevant ovine model of smoke and burn injury, with special reference to oxidative stress and activation of poly(ADP-ribose) polymerase, in the lung and in circulating leukocytes. Female, adult sheep (28-40 kg) were divided into three groups. After tracheostomy and under deep anesthesia, both vehicle-control-treated (n = 5) and captopril-treated (20 mg/kg per day, i.v., starting 0.5 h before the injury) (n = 5) groups were subjected to 2 × 20%, third-degree burn injury and were insufflated with 48 breaths of cotton smoke. A sham group not receiving burn/smoke was also studied (n = 5). Animals were mechanically ventilated and fluid resuscitated for 24 h in the awake state. Burn and smoke injury resulted in an upregulation of ACE in the lung, evidenced by immunohistochemical determination and Western blotting. Burn and smoke injury resulted in pulmonary dysfunction, as well as systemic hemodynamic alterations. Captopril treatment of burn and smoke animals improved PaO2/FiO2 ratio and pulmonary shunt fraction and reduced the degree of lung edema. There was a marked increase in PAR levels in circulating leukocytes after burn/smoke injury, which was significantly decreased by captopril. The pulmonary level of ACE and the elevated pulmonary levels of transforming growth factor β in response to burn and smoke injury were significantly decreased by captopril treatment. Our results suggest that the ACE inhibitor captopril exerts beneficial effects on the pulmonary function in burn/smoke injury. The effects of the ACE inhibitor may be related to the prevention of reactive oxygen species-induced poly(ADP-ribose)polymerase overactivation. Angiotensin-converting enzyme inhibition may also exert additional beneficial effects by inhibiting the expression of the profibrotic mediator transforming growth factor β.

  11. Reduced estradiol-induced vasodilation and poly-(ADP-ribose) polymerase (PARP) activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS).

    PubMed

    Masszi, Gabriella; Horvath, Eszter Maria; Tarszabo, Robert; Benko, Rita; Novak, Agnes; Buday, Anna; Tokes, Anna-Maria; Nadasy, Gyorgy L; Hamar, Peter; Benyó, Zoltán; Varbiro, Szabolcs

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.

  12. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    SciTech Connect

    Nagy, Edit; Caidahl, Kenneth; Franco-Cereceda, Anders; Baeck, Magnus

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. Black-Right-Pointing-Pointer We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. Black-Right-Pointing-Pointer Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. Black-Right-Pointing-Pointer The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. Black-Right-Pointing-Pointer Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C{sub 4} (LTC{sub 4}) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = -0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = -0.498; P = 0.0298) only in tricuspid aortic valves

  13. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    PubMed

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.

  14. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  15. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    SciTech Connect

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  16. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity

    PubMed Central

    Duan, Yuntao; Gross, Robert A; Sheu, Shey-Shing

    2007-01-01

    Mitochondrial Ca2+ uptake and poly(ADP-ribose) polymerase-1 (PARP-1) activation are both required for glutamate-induced excitotoxic neuronal death. Since activation of the glutamate receptors can induce increased levels of reactive oxygen species (ROS), we investigated the relationship of mitochondrial Ca2+ uptake and ROS generation, and the possibility that ROS increase is a required signal for PARP-1 activation in cultured striatal neurons. Based on the spatial profile of NMDA-induced ROS generation, we found that only mitochondria showed a significant ROS increase within 30 min after NMDA receptor activation. This ROS increase was inhibited by the mitochondrial complex inhibitors rotenone and oligomycin, but not by the cytosolic phospholipase A2 or xanthine oxidase inhibitors. Mitochondrial ROS generation was also inhibited by both removal of Ca2+ from extracellular medium and blockage of mitochondrial Ca2+ uptake by either a mitochondrial uncoupler or a Ca2+ uniporter inhibitor. Furthermore, both DNA damage and PARP-1 activation induced by NMDA treatment was inhibited by blocking mitochondrial Ca2+ uptake or by antioxidants. Our results demonstrate that ROS production during the early stage of acute excitotoxicity derives primarily from mitochondria and is Ca2+-dependent. More importantly, the increase of mitochondrial ROS serves as a signal for PARP-1 activation, suggesting that concomitant mitochondrial Ca2+ uptake and PARP-1 activation constitute a unified mechanism for excitotoxic neuronal death. PMID:17947304

  17. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo.

    PubMed

    Liu, Yie; Snow, Bryan E; Kickhoefer, Valerie A; Erdmann, Natalie; Zhou, Wen; Wakeham, Andrew; Gomez, Marla; Rome, Leonard H; Harrington, Lea

    2004-06-01

    Vault poly(ADP-ribose) polymerase (VPARP) was originally identified as a minor protein component of the vault ribonucleoprotein particle, which may be involved in molecular assembly or subcellular transport. In addition to the association of VPARP with the cytoplasmic vault particle, subpopulations of VPARP localize to the nucleus and the mitotic spindle, indicating that VPARP may have other cellular functions. We found that VPARP was associated with telomerase activity and interacted with exogenously expressed telomerase-associated protein 1 (TEP1) in human cells. To study the possible role of VPARP in telomerase and vault complexes in vivo, mVparp-deficient mice were generated. Mice deficient in mVparp were viable and fertile for up to five generations, with no apparent changes in telomerase activity or telomere length. Vaults purified from mVparp-deficient mouse liver appeared intact, and no defect in association with other vault components was observed. Mice deficient in mTep1, whose disruption alone does not affect telomere function but does affect the stability of vault RNA, showed no additional telomerase or telomere-related phenotypes when the mTep1 deficiency was combined with an mVparp deficiency. These data suggest that murine mTep1 and mVparp, alone or in combination, are dispensable for normal development, telomerase catalysis, telomere length maintenance, and vault structure in vivo.

  18. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity.

    PubMed

    Wang, Zhigang; Qian, Hui; Yiu, Shek-Man; Sun, Jianwei; Zhu, Guangyu

    2014-02-01

    Small-molecule inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) have currently drawn much attention as promising chemotherapeutic drug candidates, and there is a need to develop more potent PARP inhibitors with improved bioavailability. Here we report a strategy to improve the cytotoxicity of PARP inhibitors by conjugation with organometallic ruthenium(II)-arene compounds. We also report a systematic study to reveal the mechanism of action of these ruthenium-PARP inhibitor conjugates. The complexes have been synthesized and characterized spectroscopically. The improved antiproliferative activity from the as-prepared complexes in four human cancer cell lines has indicated their potential for further development as antitumor drugs. Cellular uptake study reveals that the most active complex 3 easily entered into cells. Target validation assays show that the complexes inhibited PARP-1 slightly better than the original PARP inhibitors, that complex 3 strongly bound to DNA and inhibited transcription, and that this complex arrested the cell cycle at the G0/G1 stage. This type of information could shed light on the design of the next generation of more active ruthenium-PARP inhibitor conjugates.

  19. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  20. Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064.

    PubMed Central

    Bowman, K. J.; White, A.; Golding, B. T.; Griffin, R. J.; Curtin, N. J.

    1998-01-01

    The ability of the potent poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025 (8-hydroxy-2-methyl-quinazolin-4-[3H]one) to potentiate the cytotoxicity of a panel of mechanistically diverse anti-cancer agents was evaluated in L1210 cells. NU1025 enhanced the cytotoxicity of the DNA-methylating agent MTIC, gamma-irradiation and bleomycin 3.5-, 1.4- and 2-fold respectively. The cytotoxicities of the thymidylate synthase inhibitor, nolatrexed, and the cytotoxic nucleoside, gemcitabine, were not increased. Potentiation of MTIC cytotoxicity by a delayed exposure to NU1025 was equally effective as by a simultaneous exposure to NU1025, indicating that the effects of NU1025 were mediated by an inhibition of the cellular recovery. The recovery from potentially lethal gamma-irradiation damage cytotoxicity in plateau-phase cells was also inhibited by NU1025. Investigation of DNA strand breakage and repair in gamma-irradiated cells by alkaline elution demonstrated that NU1025 caused a marked retardation of DNA repair. A structurally different PARP inhibitor, NU1064 (2-methylbenzimidazole-4-carboxamide), also potentiated the cytotoxicity of MTIC, to a similar extent to NU1025. NU1064 potentiated a sublethal concentration of a DNA methylating agent in a concentration-dependent manner. Collectively, these data suggest that the most suitable cytotoxic agents for use in combination with PARP inhibitors are methylating agents, bleomycin and ionizing radiation, but not anti-metabolites. PMID:9823965

  1. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  2. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    PubMed

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  3. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress.

    PubMed

    Brunyanszki, Attila; Olah, Gabor; Coletta, Ciro; Szczesny, Bartosz; Szabo, Csaba

    2014-10-01

    We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.

  4. The 3′–5′ DNA Exonuclease TREX1 Directly Interacts with Poly(ADP-ribose) Polymerase-1 (PARP1) during the DNA Damage Response*

    PubMed Central

    Miyazaki, Takuya; Kim, Yong-Soo; Yoon, Jeongheon; Wang, Hongsheng; Suzuki, Teruhiko; Morse, Herbert C.

    2014-01-01

    The main function of the 3′–5′ DNA exonuclease TREX1 is to digest cytosolic single-stranded DNA to prevent activation of cell-intrinsic responses to immunostimulatory DNA. TREX1 translocates to the nucleus following DNA damage with its nuclear activities being less well defined. Although mutations in human TREX1 have been linked to autoimmune/inflammatory diseases, the mechanisms contributing to the pathogenesis of these diseases remain incompletely understood. Here, using mass spectrometry and co-immunoprecipitation assays and in vivo overexpression models, we show that TREX1 interacts with poly(ADP-ribose) polymerase-1 (PARP1), a nuclear enzyme involved in the DNA damage response. Two zinc finger domains at the amino terminus of PARP1 were required for the interaction with TREX1 that occurs after nuclear translocation of TREX1 in response to DNA damage. Functional studies suggested that TREX1 may contribute to stabilization of PARP1 levels in the DNA damage response and its activity. These results provide new insights into the mechanisms of single-stranded DNA repair following DNA damage and alterations induced by gene mutations. PMID:25278026

  5. The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells

    PubMed Central

    Bhute, Vijesh J.; Ma, Yan; Bao, Xiaoping; Palecek, Sean P.

    2016-01-01

    Breast tumors are characterized into subtypes based on their surface marker expression, which affects their prognosis and treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising results in clinical trials, both as single agents and in combination with other chemotherapeutics, in several subtypes of breast cancer patients. Here, we used NMR-based metabolomics to probe cell line-specific effects of the PARP inhibitor Veliparib and radiation on metabolism in three breast cancer cell lines. Our data reveal several cell line-independent metabolic changes upon PARP inhibition. Pathway enrichment and topology analysis identified that nitrogen metabolism, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism were enriched after PARP inhibition in all three breast cancer cell lines. Many metabolic changes due to radiation and PARP inhibition were cell line-dependent, highlighting the need to understand how these treatments affect cancer cell response via changes in metabolism. Finally, both PARP inhibition and radiation induced a similar metabolic responses in BRCA-mutant HCC1937 cells, but not in MCF7 and MDAMB231 cells, suggesting that radiation and PARP inhibition share similar interactions with metabolic pathways in BRCA mutant cells. Our study emphasizes the importance of differences in metabolic responses to cancer treatments in different subtypes of cancers. PMID:27811964

  6. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba.

    PubMed

    Rybaczek, Dorota

    2016-07-01

    Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression.

  7. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    PubMed Central

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  8. Effect of acute poly(ADP-ribose) polymerase inhibition by 3-AB on blood-brain barrier permeability and edema formation after focal traumatic brain injury in rats.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Palmier, Bruno; Po, Christelle; Beziaud, Tiphaine; Puybasset, Louis; Plotkine, Michel; Gillet, Brigitte; Meric, Philippe; Marchand-Leroux, Catherine

    2010-06-01

    Recent evidence supports a crucial role for matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) disruption and vasogenic edema formation after traumatic brain injury (TBI). Although the exact causes of MMP-9 upregulation after TBI are not fully understood, several arguments suggest a contribution of the enzyme poly(ADP-ribose)polymerase (PARP) in the neuroinflammatory response leading to MMP-9 activation. The objectives of this study were to evaluate the effect of PARP inhibition by 3-aminobenzamide (3-AB) (1) on MMP-9 upregulation and BBB integrity, (2) on edema formation as assessed by magnetic resonance imaging (MRI), (3) on neuron survival as assessed by (1)H magnetic resonance spectroscopy ((1)H-MRS), and (4) on neurological deficits at the acute phase of TBI. Western blots and zymograms showed blunting of MMP-9 upregulation 6 h after TBI. BBB permeability was decreased at the same time point in 3-AB-treated rats compared to vehicle-treated rats. Cerebral MRI showed less "free" water in 3-AB-treated than in vehicle-treated rats 6 h after TBI. MRI findings 24 h after TBI indicated predominant cytotoxic edema, and at this time point no significant differences were found between 3-AB- and vehicle-treated rats with regard to MMP-9 upregulation, BBB permeability, or MRI changes. At both 6 and 24 h, neurological function was better in the 3-AB-treated than in the vehicle-treated rats. These data suggest that PARP inhibition by 3-AB protected the BBB against hyperpermeability induced by MMP-9 upregulation, thereby decreasing vasogenic edema formation 6 h after TBI. Furthermore, our data confirm the neuroprotective effect of 3-AB at the very acute phase of TBI.

  9. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation.

    PubMed

    Bhat, K Ramachandra; Benton, Betty J; Ray, Radharaman

    2006-01-01

    Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.

  10. Exploiting the Achilles heel of cancer: the therapeutic potential of poly(ADP-ribose) polymerase inhibitors in BRCA2-defective cancer.

    PubMed

    Kyle, S; Thomas, H D; Mitchell, J; Curtin, N J

    2008-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates DNA single-strand break-base excision repair to maintain genomic stability. Inhibition or loss of PARP activity leads to a recombinogenic phenotype characterized by increased sister chromatid exchange. Deficiency in homologous recombination (HR) owing to loss of BRCA1 or BRCA2 is associated with hereditary cancers of the breast, ovary, pancreas and prostate. We investigated the therapeutic potential of PARP inhibitors in HR and BRCA2-defective cells. We exposed cells defective in the HR component XRCC3 (irs1SF) and BRCA2 (V-C8) and their parental (AA8, V79) or deficiency corrected (CXR3, V-C8+B2) cells to the PARP inhibitors NU1025 and AG14361. Mice bearing BRCA2-deficient and BRCA2-proficient tumours were treated with AG14361. All HR-defective cells were hypersensitive to normally non-cytotoxic concentrations of PARP inhibitors. Cells lacking BRCA2 were 20 times more sensitive to PARP inhibitor-induced cytotoxicity. Three out of five BRCA2-defective xenografts responded to the potent PARP inhibitor, AG14361, and one tumour regressed completely, compared with non-responses in the BRCA2-proficient tumours treated with AG14361 or any mice treated with vehicle control. Untreated PARP-1(-/-) mouse embryo fibroblasts (MEFs) accumulated more DNA double-strand breaks than did PARP-1(+/+) MEFs. We believe the underlying cytotoxic mechanism is due to PARP inhibitor-mediated suppression of repair of DNA single-strand breaks, which are converted to DNA double-strand breaks at replication. These replication-associated double-strand breaks, which are normally repaired by HR, become cytotoxic in cells defective in HR. Using a DNA repair inhibitor alone to selectively kill a tumour represents an exciting new concept in cancer therapy.

  11. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy.

    PubMed

    Adaikalakoteswari, Antonysunil; Rema, Mohan; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2007-01-01

    Although oxidative stress and the subsequent DNA damage is one of the obligatory signals for poly(ADP-ribose) polymerase (PARP) activation and nuclear factor-kappa B (NFkappaB) alterations, these molecular aspects have not been collectively examined in epidemiological and clinical settings. Therefore, this study attempts to assess the oxidative DNA damage and its downstream effector signals in peripheral blood lymphocytes from Type 2 diabetes subjects without and with microangiopathy along with age-matched non-diabetic subjects. The basal DNA damage, lipid peroxidation and protein carbonyl content were significantly (p<0.05) higher in patients with and without microangiopathy compared to control subjects. Formamido Pyrimidine Glycosylase (FPG)-sensitive DNA strand breaks which represents reliable indicator of oxidative DNA damage were also significantly (p<0.001) higher in diabetic patients with (19.41+/-2.5) and without microangiopathy (16.53+/-2.0) compared to control subjects (1.38+/-0.85). Oxidative DNA damage was significantly correlated to poor glycemic control. PARP mRNA expression and PARP activity were significantly (p<0.05) increased in cells from diabetic patients with (0.31+/-0.03 densitometry units; 0.22+/-0.02PARPunits/mgprotein, respectively) and without (0.35+/-0.02; 0.42+/-0.05) microangiopathy compared to control (0.19+/-0.02; 0.11+/-0.02) subjects. Diabetic subjects with and without microangiopathy exhibited a significantly (p<0.05) higher (80%) NFkappaB binding activity compared to control subjects. In diabetic patients, FPG-sensitive DNA strand breaks correlated positively with PARP gene expression, PARP activity and NFkappaB binding activity. This study provides a comprehensive molecular evidence for increased oxidative stress and genomic instability in Type 2 diabetic subjects even prior to vascular pathology and hence reveals a window of opportunity for early therapeutic intervention.

  12. Effect of poly(ADP-ribose)polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Di Girolamo, Daniela; Beneke, Sascha; Calabrò, Viola; Quesada, Piera

    2015-04-01

    Depending on their genetic background (p53(wt) versus p53(null)), carcinoma cells are more or less sensitive to drug-induced cell cycle arrest and/or apoptosis. Among the members of the p53 family, p63 is characterized by two N-terminal isoforms, TAp63 and ΔNp63. TAp63 isoform has p53-like functions, while ΔNp63 acts as a dominant negative inhibitor of p53. We have previously published that TAp63 is involved in poly(ADP-ribose)polymerase-1 (PARP-1) signaling of DNA damage deriving from DNA topoisomerase I (TOP I) inhibition in carcinoma cells. In the present study, we treated MCF7 breast carcinoma cells (p53(+)/ΔNp63(-)) or SCC022 (p53(-)/ΔNp63(+)) squamous carcinoma cells with the TOP I inhibitor topotecan (TPT) and the PJ34 PARP inhibitor, to compare their effects in the two different cell contexts. In MCF7 cells, we found that PJ34 addition reverts TPT-dependent PARP-1 auto-modification and triggers caspase-dependent PARP-1 proteolysis. Moreover, TPT as single agent stimulates p53(ser15) phosphorylation, p53 PARylation and occupancy of the p21WAF promoter by p53 resulting in an increase of p21WAF expression. Interestingly, PJ34 in combination with TPT enhances p53 occupancy at the BAX promoter and is associated with increased BAX protein level. In SCC022 cells, instead, TPT+PJ34 combined treatment reduces the level of the anti-apoptotic ΔNp63α protein without inducing apoptosis. Remarkably, in such cells, either exogenous p53 or TAp63 can rescue the apoptotic program in response to the treatment. All together our results suggest that in cancer cells PARP inhibitor(s) can operate in the choice between growth arrest and apoptosis by modulating p53 family-dependent signal.

  13. p63 involvement in poly(ADP-ribose) polymerase 1 signaling of topoisomerase I-dependent DNA damage in carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Malanga, Maria; Calabrò, Viola; Quesada, Piera

    2013-04-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) inhibitors are thought as breakthrough for cancer treatment in solid tumors such as breast cancer through their effects on PARP's enzymatic activity. Our previous findings showed that the hydrophilic PARP inhibitor PJ34 enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to topotecan, a DNA Topoisomerase I (TOP 1) inhibitor. In the present study, we combine the classical TOP 1 poison camptothecin or its water-soluble derivative topotecan with PJ34 to investigate the potentiation of chemotherapeutic efficiency in MCF7 (p53(WT)), MDA-MB231 (p53(mut)) breast carcinoma cells and SCC022 (p53(null)) squamous carcinoma cells. We show that, following TPT-PJ34 combined treatment, MCF7 cells exhibit apoptotic death while MDA-MB231 and SCC022 cells are more resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 addition reverts TPT-dependent PARP-1 automodification and triggers caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, stimulates p53 expression while in combination with PJ34 increases p53, TAp63α and TAp63γ protein levels with a concomitant reduction of MDM2 protein. The identification of p63 proteins as new players involved in the cancer cell response to TPT-PJ34 is relevant for a better understanding of the PARP1-dependent signaling of DNA damage. Furthermore, our data indicate that, in response to TPT-PJ34 combined chemotherapy, a functional cooperation between p53 and TAp63 proteins may occur and be essential to trigger apoptotic cell death.

  14. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  15. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    SciTech Connect

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J.

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  16. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.

  17. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson's disease.

    PubMed

    Wu, Xiao-li; Wang, Ping; Liu, Yun-hui; Xue, Yi-xue

    2014-05-01

    Neuro-inflammation and dysfunction of blood-brain barrier play an important role in the occurrence, development, and neuronal degeneration of Parkinson's disease (PD). Studies have demonstrated that a variety of cytokines such as TNF-α and IL-1β destroy the structure and function of blood-brain barrier. The damage to blood-brain barrier results in death of dopaminergic neurons, while protection of blood-brain barrier slows down the progression of PD. Also, it has been shown that activation of poly (ADP-ribose) polymerase (PARP) plays an important role in causing damage to blood-brain barrier. In addition, the PARP inhibitor 3-AB has been shown to protect blood-brain barrier from damage and has neuroprotective effects. In this study, using a lipopolysaccharide (LPS)-induced PD rat model, we investigated whether 3-AB protects blood-brain barrier and dopaminergic neurons from functional damage. LPS significantly increased Evans blue content in the substantia nigra which peaked at 12 h, while administration of 3-AB significantly inhibited the LPS-induced increase in Evans blue content and also significantly increased the expression of the tight junction-associated proteins claudin-5, occludin and ZO-1. 3-AB also increased the number of tyrosine hydroxylase positive cells and reduced the IL-1β and TNF-α content significantly. According to western blot analysis, 3-AB significantly reduced the p-ERK1/2 expression, while the expression of p-p38MAPK increased. These results suggest that 3-AB protects the blood-brain barrier from functional damage in an LPS-induced PD rat model and dopaminergic neurons are protected from degeneration by upregulation of tight junction-associated proteins. These protective effects of 3-AB may be related to modulation of the ERK1/2 pathway.

  18. Poly(ADP-Ribose) Polymerase 1–Sirtuin 1 Functional Interplay Regulates LPS-Mediated High Mobility Group Box 1 Secretion

    PubMed Central

    Walko, Thomas D; Di Caro, Valentina; Piganelli, Jon; Billiar, Timothy R; Clark, Robert SB; Aneja, Rajesh K

    2014-01-01

    Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD+) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD+-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis. PMID:25517228

  19. Influence of 3-aminobenzamide, an inhibitor of poly(ADP-ribose)polymerase, in the evaluation of the genotoxicity of doxorubicin, cyclophosphamide and zidovudine in female mice.

    PubMed

    Yadav, L; Khan, S; Shekh, K; Jena, G B

    2014-08-01

    Testing new chemical entities for genotoxicity is an integral part of the preclinical drug-development process. Lowering the detection limit and enhancing the sensitivity of genotoxicity assays is required, as the standard test-battery fails to detect some carcinogens (non-genotoxic) and weak genotoxins. One of the mechanisms that affect the detection of weak genotoxins is related with the DNA-repair efficiency of the cell system used. In the present study, 3-aminobenzamide (3-AB, 30 mg/kg body-weight), a poly(ADP-ribose)polymerase inhibitor, was used to evaluate the DNA-damaging potential of zidovudine (AZT, 400 mg/kg bw), doxorubicin (DOX, 5 mg/kg bw) and cyclophosphamide (CP, 50 mg/kg bw, as a positive control) and sucrose (SUC, 3 g/kg bw, as a negative control) in Swiss female mice. The endpoints considered included micronucleus formation, DNA breakage (in peripheral blood lymphocytes, bone marrow and liver; comet assay) and chromosome aberrations, as well as immunohistochemistry of PARP-1 and phosphorylated histone H2AX (γ-H2AX). The results clearly indicate that the genotoxicity of zidovudine (AZT), doxorubicin (DOX) and cyclophosphamide (CP) was significantly increased in the combination treatments (3-AB+AZT, 3-AB+DOX, 3-AB+CP) as compared with the respective controls (treatment with AZT, DOX and CP alone). There was no increase in the genotoxicity per se after treatment with SUC, 3-AB or 3-AB+SUC, compared with the control (saline). Correlation analysis suggests that all genotoxicity parameters are well correlated with each other. The results clearly show that the genotoxicity of weak genotoxins can be enhanced and detected in the presence of 3-AB in mice. Thus, this approach can be used in the pre-clinical genotoxicity screening of weak genotoxins.

  20. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    PubMed

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.

  1. The rise and fall of poly(ADP-ribose): An enzymatic perspective.

    PubMed

    Pascal, John M; Ellenberger, Tom

    2015-08-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.

  2. The Rise and Fall of Poly (ADP-ribose). An Enzymatic Perspective

    PubMed Central

    Pascal, John M.; Ellenberger, Tom

    2015-01-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. PMID:25963443

  3. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I.

    PubMed

    Malanga, Maria; Czubaty, Alicja; Girstun, Agnieszka; Staron, Krzysztof; Althaus, Felix R

    2008-07-18

    Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.

  4. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type.

    PubMed

    Kaufmann, S H; Brunet, G; Talbot, B; Lamarr, D; Dumas, C; Shaper, J H; Poirier, G

    1991-02-01

    The recovery of the enzyme poly(ADP-ribose) polymerase (pADPRp) in the nuclease- and 1.6 M NaCl-resistant nuclear subfraction prepared from a number of different sources was assessed by Western blotting. When rat liver nuclei were treated with DNase I and RNase A followed by 1.6 M NaCl, approximately 10% of the nuclear pADPRp was recovered in the sedimentable fraction. The proportion of pADPRp recovered with the residual fraction decreased to less than 5% of the total nuclear polymerase when nuclei were prepared in the presence of the sulfhydryl blocking reagent iodoacetamide and increased to approximately 50% of the total nuclear pADPRp when nuclei were treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to fractionation. To determine whether this effect of disulfide bond formation was unique to rat liver nuclei, nuclear matrix/cytoskeleton structures were prepared in situ by sequentially treating monolayers of tissue culture cells with Nonidet-P40, DNase I and RNase A, and 1.6 M NaCl (S.H. Kaufmann and J.H. Shaper (1991) Exp. Cell Res. 192, 511-523). When nuclear monolayers were prepared from HTC rat hepatoma cells, CaLu-1 human lung carcinoma cells, and CHO hamster ovary cells in the absence of NaTT, pADPRp was undetectable in the nuclease- and 1.6 M NaCl-resistant fraction. In contrast, when nuclear monolayers were isolated in the presence of NaTT, from 5% (CaLu-1) to 26% (HTC cells) of the total nuclear pADPRp was recovered with the nuclease- and salt-resistant fraction. Examination of these residual structures by SDS-polyacrylamide gel electrophoresis under nonreducing conditions suggested that pADPRp was present as a component of disulfide cross-linked complexes. Further analysis by immunofluorescence revealed that the pADPRp was diffusely distributed throughout the CaLu-1 or CHO nuclear matrix. In addition, when matrices were prepared in the absence of RNase A, pADPRp was also observed in the residual nucleoli. These

  5. Molecular Toxicology of Chromatin: The Role of Poly (ADP-Ribose) in Gene Control

    DTIC Science & Technology

    1985-12-15

    mechanism is operative from NOD either directly ADY-ribosy- latintr "acceptor" proteins (%.g., hiatone), a reaction presumably catalyzed by the...24 Figures 1through 5. .. ............................. .. .. .. .. .........25-29’ 2. Mechanisms of’Poly(ADP-Ribose) Poiymerase Catalysis...Figures 1 through 3 .. ...................... ...........................46-48 3. Mechanism of inactivation of Poly(ADP-Ribose) Polymerase of Rat Liver

  6. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo

    PubMed Central

    Liu, Feng; Jiang, Ning; Xiao, Zhi-yong; Cheng, Jun-ping; Mei, Yi-zhou; Zheng, Pan; Wang, Li; Zhang, Xiao-rui; Zhou, Xin-bo

    2016-01-01

    Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD+/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage. PMID:27077006

  7. No Silver Bullet – Canonical Poly(ADP-Ribose) Polymerases (PARPs) Are No Universal Factors of Abiotic and Biotic Stress Resistance of Arabidopsis thaliana

    PubMed Central

    Rissel, Dagmar; Heym, Peter P.; Thor, Kathrin; Brandt, Wolfgang; Wessjohann, Ludger A.; Peiter, Edgar

    2017-01-01

    Abiotic and biotic stress can have a detrimental impact on plant growth and productivity. Hence, there is a substantial demand for key factors of stress responses to improve yield stability of crops. Members of the poly(ADP-ribose)polymerase (PARP) protein family, which post-translationally modify (PARylate) nuclear proteins, have been suggested as such universal determinants of plant stress responses. A role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants. To further elucidate the role of PARP proteins under stress, T-DNA knockout mutants for the three Arabidopsis thaliana PARP genes were subjected to drought, osmotic, salt, and oxidative stress. To exclude a functional redundancy, which was indicated by a transcriptional upregulation of the remaining parp genes, a parp triple mutant was generated. Surprisingly, parp mutant plants did not differ from wild type plants in any of these stress experiments, independent from the number of PARP genes mutated. The parp triple mutant was also analyzed for callose formation in response to the pathogenassociated molecular pattern flg22. Unexpectedly, callose formation was unaltered in the mutant, albeit pharmacological PARP inhibition robustly blocked this immune response, confirming previous reports. Evidently, pharmacological inhibition appears to be more robust than the abolition of all PARP genes, indicating the presence of so-far undescribed proteins with PARP activity. This was supported by the finding that protein PARylation was not absent, but even increased in the parp triple mutant. Candidates for novel PARP-inhibitor targets may be found in the SRO protein family. These proteins harbor a catalytic PARP-like domain and are centrally involved in stress responses. Molecular modeling analyses, employing animal PARPs as templates, indeed indicated a capability of the SRO proteins RCD1 and

  8. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.

  9. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    SciTech Connect

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.; Medeiros, Matthew K.; Liu, Ke J.; Lau, Serrine S.; Gandolfi, A.J.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA

  10. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    SciTech Connect

    Zhu, Yan; Li, Guodong; Dong, Yafeng; Zhou, Helen H.; Kong, Bo; Aleksunes, Lauren M.; Richardson, Jason R.; Li, Fei; Guo, Grace L.

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.

  11. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    NASA Astrophysics Data System (ADS)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  12. Thrombin or Ca(++)-ionophore-mediated fall in endothelial ATP levels independent of poly(ADP-Ribose) polymerase activity and NAD levels--comparison with the effects of hydrogen peroxide.

    PubMed

    Halldórsson, Haraldur; Thors, Brynhildur; Thorgeirsson, Gudmundur

    2015-01-01

    To test the hypothesis that a fall in cellular ATP following stimulation of endothelial cells with thrombin is secondary to a decrease in NAD levels caused by poly(ADP-Ribose)polymerase (PARP), we measured the levels of NAD and ATP in endothelial cells after treatment with thrombin, the Ca(++)-ionophore A23187, or hydrogen peroxide (H2O2), and compared the effects of inhibitors of PARP, NAD synthesis, and ADP-ribose breakdown on these responses. Neither thrombin nor A23187 caused a reduction in endothelial NAD levels and A23187 affected ATP levels independently of NAD levels or PARP activity. H2O2 induced lowering of NAD caused modest lowering of ATP but marked additional ATP-lowering, independent of PARP and NAD, was also demonstrated. We conclude that in endothelial cells ATP levels are largely independent of NAD and PARP, which do not play a role in thrombin or Ca(++)-ionophore-mediated lowering of ATP. H2O2 caused ATP lowering through a similar mechanism as thrombin and A23187 but, additionally, caused a further ATP lowering through its intense stimulation of PARP and marked lowering of NAD.

  13. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

    SciTech Connect

    Penning, Thomas D.; Zhu, Gui-Dong; Gong, Jianchun; Thomas, Sheela; Gandhi, Viraj B.; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F.; Park, Chang H.; Fry, Elizabeth H.; Donawho, Cherrie K.; Frost, David J.; Buchanan, Fritz G.; Bukofzer, Gail T.; Rodriguez, Luis E.; Bontcheva-Diaz, Velitchka; Bouska, Jennifer J.; Osterling, Donald J.; Olson, Amanda M.; Marsh, Kennan C.; Luo, Yan; Giranda, Vincent L.

    2010-06-21

    We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K{sub i} of 1 nM and an EC{sub 50} of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

  14. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  15. Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells.

    PubMed

    Comin-Anduix, Begona; Boros, Laszlo G; Marin, Silvia; Boren, Joan; Callol-Massot, Carles; Centelles, Josep J; Torres, Josep L; Agell, Neus; Bassilian, Sara; Cascante, Marta

    2002-11-29

    The fermented extract of wheat germ, trade name Avemar, is a complex mixture of biologically active molecules with potent anti-metastatic activities in various human malignancies. Here we report the effect of Avemar on Jurkat leukemia cell viability, proliferation, cell cycle distribution, apoptosis, and the activity of key glycolytic/pentose cycle enzymes that control carbon flow for nucleic acid synthesis. The cytotoxic IC(50) concentration of Avemar for Jurkat tumor cells is 0.2 mg/ml, and increasing doses of the crude powder inhibit Jurkat cell proliferation in a dose-dependent fashion. At concentrations higher than 0.2 mg/ml, Avemar inhibits cell growth by more than 50% (72 h of incubation), which is preceded by the appearance of a sub-G(1) peak on flow histograms at 48 h. Laser scanning cytometry of propidium iodide- and annexin V-stained cells indicated that the growth-inhibiting effect of Avemar was consistent with a strong induction of apoptosis. Inhibition by benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone of apoptosis but increased proteolysis of poly(ADP-ribose) indicate caspases mediate the cellular effects of Avemar. Activities of glucose-6-phosphate dehydrogenase and transketolase were inhibited in a dose-dependent fashion, which correlated with decreased (13)C incorporation and pentose cycle substrate flow into RNA ribose. This decrease in pentose cycle enzyme activities and carbon flow toward nucleic acid precursor synthesis provide the mechanistic understanding of the cell growth-controlling and apoptosis-inducing effects of fermented wheat germ. Avemar exhibits about a 50-fold higher IC(50) (10.02 mg/ml) for peripheral blood lymphocytes to induce a biological response, which provides the broad therapeutic window for this supplemental cancer treatment modality with no toxic effects.

  16. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  17. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1).

    PubMed

    Said, Riham Soliman; El-Demerdash, Ebtehal; Nada, Ahmed Shafik; Kamal, Mohamed M

    2016-03-01

    This study hypothesized that resveratrol, a silencing information regulator 1 (SIRT1) activator, would counteract the inflammatory signaling associated with radiotherapy-induced premature ovarian failure (POF). Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation to induce POF and treated with resveratrol (25mg/kg) once daily for two weeks before and three days post irradiation. Resveratrol preserves the entire ovarian follicle pool manifested by increasing serum anti-Müllerian hormone (AMH) levels. Radiation triggered inflammatory process in the ovary through enhanced NF-κB and poly(ADP-ribose) polymerase (PARP)-1 expression which convinced the expression of inflammatory markers including IL-6, IL-8, and visfatin mRNA levels, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression with a concomitant reduction in IL-10 mRNA levels. Resveratrol significantly counteracted the effect of radiation and upregulated the gene expression of peroxisome proliferator-activated receptor γ (PPAR-γ) and SIRT1. Resveratrol-activated SIRT1 expression was associated with inhibition of PARP-1 and NF-κB expression-mediated inflammatory cytokines. Our findings suggest that resveratrol restored ovarian function through increasing AMH levels, and diminishing ovarian inflammation, predominantly via upregulation of PPAR-γ and SIRT1 expression leading to inhibition of NF-κB provoked inflammatory cytokines.

  18. Discovery and Structure–Activity Relationship of Novel 2,3-Dihydrobenzofuran-7-carboxamide and 2,3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives as Poly(ADP-ribose)polymerase-1 Inhibitors

    PubMed Central

    2015-01-01

    Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 μM). To facilitate synthetically feasible derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide (36, IC50 = 16.2 μM). The electrophilic 2-position of this scaffold was accessible for extended modifications. Substituted benzylidene derivatives at the 2-position were found to be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino of the benzylidene moiety resulted in significant improvement in inhibition of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed selective cytotoxicity in BRCA2-deficient DT40 cells. Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to a multidomain PARP-1 structure were obtained, providing insights into further development of these inhibitors. PMID:24922587

  19. Chromosomal damage and micronucleus induction by MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor: Evidence for a non-DNA-reactive mode of action.

    PubMed

    Yamamura, Eiji; Muto, Shigeharu; Yamada, Katsuya; Sato, Yuko; Iwase, Yumiko; Uno, Yoshifumi

    2015-04-01

    MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that competes with the binding of the PARP substrate nicotinamide adenine dinucleotide (NAD), is being developed as a neuroprotective agent against acute ischemic stroke. MP-124 increased structural chromosomal aberration in CHL/IU cells, but showed negative results in the bacterial reverse mutation test, and the rat bone marrow micronucleus (MN) and the rat liver unscheduled DNA synthesis tests after the intravenous bolus injection. Thus, MP-124 did not appear to be direct-acting mutagen. Since, PARP-1 is a key enzyme in DNA repair, the effect of continuous PARP-1 inhibition by MP-124 was further examined in the rat MN test under 24-h intravenous infusion, and an increase in micronucleated immature erythrocytes (MNIE) was observed. The increase was clearly reduced by co-treatment with nicotinic acid, which resulted in increased intracellular NAD levels. This is consistent with the established activity of MP-124 as a competitive inhibitor of PARP and provides strong evidence that the DNA-damaging effect that leads to the increase in MNIE is a secondary effect of PARP-1 inhibition. This mechanism is expected to result in a threshold for the induction of MNIE by MP-124, and allows for the establishment of a safe margin of exposure for the therapeutic use of MP-124.

  20. Phase I, Dose-Escalation, 2-Part Trial of Poly(ADP-Ribose) Polymerase Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers.

    PubMed

    de Bono, Johann; Ramanathan, Ramesh K; Mina, Lida; Chugh, Rashmi; Glaspy, John; Rafii, Saeed; Kaye, Stan; Sachdev, Jasgit; Heymach, John; Smith, David C; Henshaw, Joshua W; Herriott, Ashleigh; Patterson, Miranda; Curtin, Nicola J; Byers, Lauren Averett; Wainberg, Zev A

    2017-02-27

    Talazoparib inhibits poly(ADP-ribose) polymerase (PARP) catalytic activity, trapping PARP1 on damaged DNA and causing cell death in BRCA1/2-mutated cells. We evaluated talazoparib therapy in this 2-part, phase I, first-in-human trial. Antitumor activity, maximum tolerated dose (MTD), pharmacokinetics, and pharmacodynamics of once-daily talazoparib were determined in an open-label, multicenter, dose-escalation study (NCT01286987). The MTD was 1.0 mg/day, with an elimination half-life of 50 hours. Treatment-related adverse events included fatigue (26/71 patients; 37%) and anemia (25/71 patients; 35%). Grade 3 to 4 adverse events included anemia (17/71 patients; 24%) and thrombocytopenia (13/71 patients; 18%). Sustained PARP inhibition was observed at doses ≥0.60 mg/day. At 1.0 mg/day, confirmed responses were observed in 7/14 (50%) and 5/12 (42%) patients with BRCA mutation-associated breast and ovarian cancers, respectively, and in patients with pancreatic and small cell lung cancer. Talazoparib demonstrated single-agent antitumor activity and was well tolerated in patients at the recommended dose of 1.0 mg/day.

  1. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects

    PubMed Central

    KANAI, Yoshiyuki

    2016-01-01

    Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD+ as a substrate in the presence of Mg2+. The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: “Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE”, and “Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)”. On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is “heteroclitic” fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to “heteroclitic” have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of “heteroclitic”. PMID:27477457

  2. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway.

    PubMed

    Xie, F; Sun, S; Xu, A; Zheng, S; Xue, M; Wu, P; Zeng, J H; Bai, L

    2014-01-16

    Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn's disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor

  3. Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca(2+) Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?

    PubMed

    Gerace, Elisabetta; Pellegrini-Giampietro, Domenico E; Moroni, Flavio; Mannaioni, Guido

    2015-01-01

    A significant number of laboratories observed that poly (ADP-ribose) polymerase (PARP) inhibitors, administered a few hours after ischemic or traumatic brain injury, may drastically reduce the subsequent neurological damage. It has also been shown that PARP inhibitors, administered for 24 hours to rats with permanent middle cerebral artery occlusion (MCAO), may reduce the number of dying neurons for a long period after surgery, thus suggesting that these agents could reduce the delayed brain damage and the neurological and cognitive impairment (dementia) frequently observed a few months after a stroke. In organotypic hippocampal slices exposed to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), an alkylating agent able to activate PARP, a selective and delayed degeneration of the CA1 pyramidal cells which was anatomically similar to that observed after a short period of oxygen and glucose deprivation (OGD) has been described. Biochemical and electrophysiological approaches showed that MNNG exposure caused an increased expression and function of the calcium permeable α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in the CA1 but not in the CA3 hippocampal region. PARP inhibitors prevented this increase and reduced CA1 cell death. The AMPA receptor antagonist 2,3-dihydroxy-6- nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione or the selective Ca(2+) permeable AMPA channel blocker 1-Naphthyl acetyl spermine (NASPM), also reduced the MNNG-induced CA1 pyramidal cell death. Since activation of PARP-1 facilitate the expression of Ca(2+) permeable channels and the subsequent delayed cell death, PARP inhibitors administered a few hours after a stroke may not only reduce the early post-ischemic brain damage but also the late neuronal death frequently occurring after severe stroke.

  4. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

    PubMed Central

    Vaziri, H; West, M D; Allsopp, R C; Davison, T S; Wu, Y S; Arrowsmith, C H; Poirier, G G; Benchimol, S

    1997-01-01

    Telomere loss has been proposed as a mechanism for counting cell divisions during aging in normal somatic cells. How such a mitotic clock initiates the intracellular signalling events that culminate in G1 cell cycle arrest and senescence to restrict the lifespan of normal human cells is not known. We investigated the possibility that critically short telomere length activates a DNA damage response pathway involving p53 and p21(WAF1) in aging cells. We show that the DNA binding and transcriptional activity of p53 protein increases with cell age in the absence of any marked increase in the level of p53 protein, and that p21(WAF1) promoter activity in senescent cells is dependent on both p53 and the transcriptional co-activator p300. Moreover, we detected increased specific activity of p53 protein in AT fibroblasts, which exhibit accelerated telomere loss and undergo premature senescence, compared with normal fibroblasts. We investigated the possibility that poly(ADP-ribose) polymerase is involved in the post-translational activation of p53 protein in aging cells. We show that p53 protein can associate with PARP and inhibition of PARP activity leads to abrogation of p21 and mdm2 expression in response to DNA damage. Moreover, inhibition of PARP activity leads to extension of cellular lifespan. In contrast, hyperoxia, an activator of PARP, is associated with accelerated telomere loss, activation of p53 and premature senescence. We propose that p53 is post-translationally activated not only in response to DNA damage but also in response to the critical shortening of telomeres that occurs during cellular aging. PMID:9312059

  5. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity.

    PubMed

    Kiss, Borbála; Szántó, Magdolna; Szklenár, Mónika; Brunyánszki, Attila; Marosvölgyi, Tamás; Sárosi, Eszter; Remenyik, Éva; Gergely, Pál; Virág, László; Decsi, Tamás; Rühl, Ralph; Bai, Peter

    2015-04-01

    Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.

  6. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    PubMed

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  7. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells

    PubMed Central

    2014-01-01

    Introduction Breast cancer is a devastating disease that results in approximately 40,000 deaths each year in the USA. Current drug screening and chemopreventatitive methods are suboptimal, due in part to the poor specificity of compounds for cancer cells. Poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi)-mediated therapy is a promising approach for familial breast cancers caused by mutations of breast cancer-associated gene-1 and -2 (BRCA1/2), yet drug resistance frequently occurs during the treatment. Moreover, PARPis exhibit very little effect on cancers that are proficient for DNA repair and clinical efficacy for PARPis as single-agent therapies has yet to be illustrated. Methods Using a quantitative high-throughput screening approach, we screened a library containing 2,816 drugs, most of which are approved for human or animal use by the Food and Drug Administration (FDA) or other countries, to identify compounds that sensitize breast cancer cells to PARPi. After initial screening, we performed further cellular and molecular analysis on lestaurtinib, which is an orally bioavailable multikinase inhibitor and has been used in clinical trials for myeloproliferative disorders and acute myelogenous leukemia. Results Our study indicated that lestaurtinib is highly potent against breast cancers as a mono-treatment agent. It also strongly enhanced the activity of the potent PARPi AG14361 on breast cancer cell growth both in vitro and in vivo conditions. The inhibition of cancer growth is measured by increased apoptosis and reduced cell proliferation. Consistent with this, the treatment results in activation of caspase 3/7, and accumulation of cells in the G2 phase of the cell cycle, irrespective of their BRCA1 status. Finally, we demonstrated that AG14361 inhibits NF-κB signaling, which is further enhanced by lestaurtinib treatment. Conclusions Lestaurtinib amplifies the ability of the PARP1 inhibitor AG14361 to kill BRCA1 mutant and wild-type breast cancer

  8. Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    PubMed Central

    Tulin, Alexei; Naumova, Natalia M.; Menon, Ammini K.; Spradling, Allan C.

    2006-01-01

    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins. PMID:16219773

  9. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    PubMed

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  10. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt.

    PubMed

    Lafon-Hughes, Laura; Vilchez Larrea, Salomé C; Kun, Alejandra; Fernández Villamil, Silvia H

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  11. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    PubMed Central

    Vilchez Larrea, Salomé C.; Kun, Alejandra

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications. PMID:25332845

  12. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  13. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  14. Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology.

    PubMed

    Strosznajder, Robert Piotr; Czubowicz, Kinga; Jesko, Henryk; Strosznajder, Joanna Benigna

    2010-06-01

    The biological roles of poly(ADP-ribose) polymers (PAR) and poly(ADP-ribosyl)ation of proteins in the central nervous system are diverse. The homeostasis of PAR orchestrated by poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) is crucial for cell physiology and pathology. Both enzymes are ubiquitously distributed in neurons and glia; however, they are segregated at the subcellular level. PARP-1 serves as a "nick sensor" for single- or double-stranded breaks in DNA and is involved in long and short patch base-excision repair, while PARG breaks down PAR. The stimulation of PARP-1 and PAR formation can activate proinflammatory transcription factors, including nuclear factor kappa B. However, hyperactivation of PARP-1 can result in depletion of NAD/ATP, and in PAR-dependent mitochondrial pore formation leading to release of apoptosis inducing factor and cell death. The role of PAR as a death signaling molecule in brain ischemia-reperfusion and inflammation as well as the effect of gender and aging is presented in this review. Modulating the PAR level through pharmacological or genetic intervention on PARP-1/PARG activity and gene expression should be a valuable way for neuroprotective strategy.

  15. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  16. The role of poly(ADP-ribose) in the DNA damage signaling network.

    PubMed

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  17. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

    PubMed

    Le May, Nicolas; Iltis, Izarn; Amé, Jean-Christophe; Zhovmer, Alexander; Biard, Denis; Egly, Jean-Marc; Schreiber, Valérie; Coin, Frédéric

    2012-12-14

    Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription. Silencing of PARG or knockout of its enzymatic activity maintains the H3K9me2 mark at the promoter of the RAR-dependent genes, leading to the absence of preinitiation complex formation. In the absence of PARG, we found that the H3K9 demethylase KDM4D/JMJD2D became PARsylated. Mutation of two glutamic acids located in the Jumonji N domain of KDM4D inhibited PARsylation. PARG becomes dispensable for ligand-dependent transcription when either a PARP inhibitor or a non-PARsylable KDM4D/JMJD2D mutant is used. Our results define PARG as a coactivator regulating chromatin remodeling during RA-dependent gene expression.

  18. Glycation and glycoxidation of histones by ADP-ribose.

    PubMed

    Cervantes-Laurean, D; Jacobson, E L; Jacobson, M K

    1996-05-03

    The reaction of long lived proteins with reducing sugars has been implicated in the pathophysiology of aging and age-related diseases. A likely intranuclear source of reducing sugar is ADP-ribose, which is generated following DNA damage from the turnover of ADP-ribose polymers. In this study, ADP-ribose has been shown to be a potent histone glycation and glycoxidation agent in vitro. Incubation of ADP-ribose with histones H1, H2A, H2B, and H4 at pH 7.5 resulted in the formation of ketoamine glycation conjugates. Incubation of histone H1 with ADP-ribose also rapidly resulted in the formation of protein carboxymethyllysine residues, protein-protein cross-links, and highly fluorescent products with properties similar to the advanced glycosylation end product pentosidine. The formation of glycoxidation products was related to the degradation of ketoamine glycation conjugates by two different pathways. One pathway resulted in the formation of protein carboxymethyllysine residues and release of an ADP moiety containing a glyceric acid fragment. A second pathway resulted in the release of ADP, and it is postulated that this pathway is involved in the formation of histone-histone cross-links and fluorescent advanced glycosylation end products.

  19. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity

    SciTech Connect

    Meyer, Ralph G. . E-mail: meyerg@vet.upenn.edu; Meyer-Ficca, Mirella L.; Whatcott, Clifford J.; Jacobson, Elaine L.; Jacobson, Myron K.

    2007-08-01

    Poly(ADP-ribose)glycohydrolase (PARG) is the major enzyme capable of rapidly hydrolyzing poly(ADP-ribose) (PAR) formed by the diverse members of the PARP enzyme family. This study presents an alternative splice mechanism by which two novel PARG protein isoforms of 60 kDa and 55 kDa are expressed from the human PARG gene, termed hPARG60 and hPARG55, respectively. Homologous forms were found in the mouse (mPARG63 and mPARG58) supporting the hypothesis that expression of small PARG isoforms is conserved among mammals. A PARG protein of {approx} 60 kDa has been described for decades but with its genetic basis unknown, it was hypothesized to be a product of posttranslational cleavage of larger PARG isoforms. While this is not excluded entirely, isolation and expression of cDNA clones from different sources of RNA indicate that alternative splicing leads to expression of a catalytically active hPARG60 in multiple cell compartments. A second enzyme, hPARG55, that can be expressed through alternative translation initiation from hPARG60 transcripts is strictly targeted to the mitochondria. Functional studies of a mitochondrial targeting signal (MTS) in PARG exon IV suggest that hPARG60 may be capable of shuttling between nucleus and mitochondria, which would be in line with a proposed function of PAR in genotoxic stress-dependent, nuclear-mitochondrial crosstalk.

  20. Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification.

    PubMed

    Eisemann, Travis; McCauley, Michael; Langelier, Marie-France; Gupta, Kushol; Roy, Swati; Van Duyne, Gregory D; Pascal, John M

    2016-10-04

    The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering (SAXS) to investigate solution conformations of the complete ankyrin repeat domain. Mutagenesis and binding studies using the bivalent TNKS binding domain of Axin1 demonstrate that only certain ARC combinations function together. The physical basis for these restrictions is explained by both rigid and flexible ankyrin repeat elements determined in our structural analysis. SAXS analysis is consistent with a dynamic ensemble of TNKS ankyrin repeat conformations modulated by Axin1 interaction. TNKS ankyrin repeat domain is thus an adaptable binding platform with structural features that can explain selectivity toward diverse proteins, and has implications for TNKS positioning of bound targets for poly(ADP-ribose) modification.

  1. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1

    PubMed Central

    Luo, Xin; Kraus, W. Lee

    2012-01-01

    Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD+ as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD+ metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data. PMID:22391446

  2. The alpha-glycosidic bonds of poly(ADP-ribose) are acid-labile.

    PubMed

    Panzeter, P L; Zweifel, B; Althaus, F R

    1992-04-15

    The poly(ADP-ribosyl)ation system of higher eukaryotes produces multiple ADP-ribose polymers of distinct sizes which exhibit different binding affinities for histones. Although precipitation with trichloroacetic acid (TCA) is the standard procedure for isolation of poly(ADP-ribose) from biological material, we show here that poly(ADP-ribose) is not stable under acidic conditions. Storage of poly(ADP-ribose) as TCA pellets results in acid hydrolysis of polymers, the extent of which is dependent on storage time and temperature. The alpha-glycosidic, inter-residue bonds are the preferred sites of attack, thus reducing polymer sizes by integral numbers of ADP-ribose to yield artefactually more and smaller polymers than originally present. Therefore, poly(ADP-ribosyl)ation studies involving TCA precipitation, histone extraction with acids, or acidic incubations of ADP-ribose polymers must account for the impact of acids on resulting polymer populations.

  3. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  4. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase.

    PubMed

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.

  5. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  6. Noncovalent protein interaction with poly(ADP-ribose).

    PubMed

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  7. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    PubMed

    Tucker, Julie A; Bennett, Neil; Brassington, Claire; Durant, Stephen T; Hassall, Giles; Holdgate, Geoff; McAlister, Mark; Nissink, J Willem M; Truman, Caroline; Watson, Martin

    2012-01-01

    Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  8. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    SciTech Connect

    Whatcott, Clifford J.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Myron K.

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  9. An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase.

    PubMed Central

    Thomassin, H; Jacobson, M K; Guay, J; Verreault, A; Aboul-ela, N; Menard, L; Poirier, G G

    1990-01-01

    The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. Images PMID:2395636

  10. Transition-State Analysis of 2-O-Acetyl-ADP-Ribose Hydrolysis by Human Macrodomain 1

    PubMed Central

    2015-01-01

    Macrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates. Competitive radiolabeled-isotope effects and mass spectrometry were used to obtain KIE data to yield intrinsic KIE values. Intrinsic KIEs were matched to a quantum chemical structure of the TS that includes the active site residues Asp184 and Asn174 and a structural water molecule. Transition-state analysis supports a concerted mechanism with an early TS involving simultaneous nucleophilic water attack and leaving group bond cleavage where the breaking C–O ester bond = 1.60 Å and the C–O bond to the attacking water nucleophile = 2.30 Å. The MacroD1 TS provides mechanistic understanding of the OAADPr esterase chemistry. PMID:25051211

  11. Investigation of the action of poly(ADP-ribose)-synthesising enzymes on NAD+ analogues

    PubMed Central

    Wallrodt, Sarah; Simpson, Edward L

    2017-01-01

    ADP-ribosyl transferases with diphtheria toxin homology (ARTDs) catalyse the covalent addition of ADP-ribose onto different acceptors forming mono- or poly(ADP-ribos)ylated proteins. Out of the 18 members identified, only four are known to synthesise the complex poly(ADP-ribose) biopolymer. The investigation of this posttranslational modification is important due to its involvement in cancer and other diseases. Lately, metabolic labelling approaches comprising different reporter-modified NAD+ building blocks have stimulated and enriched proteomic studies and imaging applications of ADP-ribosylation processes. Herein, we compare the substrate scope and applicability of different NAD+ analogues for the investigation of the polymer-synthesising enzymes ARTD1, ARTD2, ARTD5 and ARTD6. By varying the site and size of the NAD+ modification, suitable probes were identified for each enzyme. This report provides guidelines for choosing analogues for studying poly(ADP-ribose)-synthesising enzymes. PMID:28382184

  12. [The action of ADP ribose on the mechanical and bioelectrical activity of the frog heart].

    PubMed

    Sosulina, L Iu; Sukhova, G S; Chudnyĭ, M N; Ashmarin, I P

    1999-04-01

    In the frog isolated heart, cyclic perfusion of ADP-ribose induced a dose-dependent decrease in the heart rate and the contraction force, a decrease in the AP duration as well as in the rate of rise in the sinus node. It also shortened the atrial AP and exerted no significant effect upon multicellular ventricular preparations. In conditions of systemic administration in unanesthetised frogs, the ADP-ribose induced a reversible increase in the heart rate due, probably, to a sympathetic effect.

  13. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives.

    PubMed

    Gagné, Jean-Philippe; Hendzel, Michael J; Droit, Arnaud; Poirier, Guy G

    2006-04-01

    Recent discoveries have resulted in significant breakthroughs in the understanding of PARPs and PARG functions within a broad range of cellular processes. The novel and sometimes unexpected pathways that are regulated by poly(ADP-ribosylation) bring new questions and hypotheses, some of them being contentious. In this review, we highlight current areas of investigation such as the clinical potential of PARP and PARG inhibitors and the important mitotic regulatory functions of poly(ADP-ribose) in cell-cycle progression, a recent discovery that has broadened our knowledge regarding poly(ADP-ribose) functions. A special emphasis is placed on recent advances in relation to PARG that are stimulating new directions in future research. Noticeably, the existence of various PARG isoforms characterized by distinct cellular localizations and nucleocytoplasmic shuttling properties challenges our current comprehension of pADPr metabolism. Observations and suppositions towards functionally important regulatory elements in the N-terminal portion of PARG are also discussed.

  14. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  15. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  16. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  17. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification In Vivo, with Special Reference to Poly(ADP-ribose) Binding Protein Modules.

    PubMed

    Miwa, Masanao; Ida, Chieri; Yamashita, Sachiko; Tanaka, Masakazu; Fujisawa, Junichi

    2016-01-01

    PolyADP-ribosylation is a unique posttranslational modification of proteins, involved in various cellular functions including stability of chromatin. PolyADP-ribosylation modifies acceptor proteins with a large negatively charged poly(ADP-ribose) (PAR) to greatly change the structure and function of the acceptor proteins. In addition various specific motifs of proteins were recently found to interact non-covalently with PAR thereby changing the spaciotemporal activity of protein-protein interaction in cells. However, the structure of PAR to which specific protein motifs should bind is not fully characterized. The present work will review the structure, physicochemical properties and quantification of PAR in vivo, with special reference to PAR binding protein modules.

  18. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    PubMed Central

    2010-01-01

    Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothesize that a decrease in the concentration of total poly-ADP-ribose adducts of peripheral blood lymphocyte (PBL) proteins strongly correlates with the incidence of human cancer. Results Using a novel immunoprobe assay, we show a statistically significant (P ≤ 0.001) reduction (~ 42 to 49%) in the level of poly-ADP-ribose adducts of PBL proteins of patients with advanced cancers of head & neck (H & N) region (comprising fourteen distinct cancers at different sites), breast and cervix in comparison to healthy controls. Conclusions These findings imply potential utility of the poly-ADP-ribose adducts of PBL proteins as a novel and general biomarker of human cancers with potentials of significant clinical and epidemiological applications. PMID:21034502

  19. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.

    PubMed Central

    De Flora, A; Guida, L; Franco, L; Zocchi, E; Pestarino, M; Usai, C; Marchetti, C; Fedele, E; Fontana, G; Raiteri, M

    1996-01-01

    CD38, a type II transmembrane glycoprotein predominantly expressed in blood cells, is a bifunctional ectoenzyme directly involved in the metabolism of cADP-ribose (cADPR). This is a potent Ca2+ mobilizer in several types of cells. The relationship between the ectocellular site of cADPR production and its intracellular calcium-related functions is poorly understood. Cultured rat cerebellar granule cells showed both enzymic activities of CD38, ADP-ribosyl cyclase and cADPR hydrolase, at a ratio of 16 to 1 respectively, and were immunostained by the anti-(human CD38) monoclonal antibody IB4. In these cells externally added cADPR and beta-NAD+ (the precursor of cADPR), but not alpha-NAD+ or ADP-ribose, enhanced the peak of the depolarization-induced rise in intracellular Ca2+ concentration. This effect was inhibited by 1 microM ryanodine, suggesting a potentiation of calcium-induced calcium release by cADPR. CD38 ectoenzyme activities, ADP-ribosyl cyclase and cADPR hydrolase, were also demonstrated in vivo by microdialysis of adult rat cerebellum, where IB4 bound to granule neurons selectively. Trace amounts (11.5 +/- 3.8 nM) of NAD+ were detected by microdialysis sampling and sensitive assays in the basal interstitial fluid of the cerebellum. These results provide a link between ectocellular cADPR turnover and intracellular calcium mobilization in cerebellum. PMID:8973582

  20. Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation

    PubMed Central

    Huang, Peiwu; Zhuang, Zhixiong; Liu, Jianjun; Gao, Wei; Liu, Yinpin; Huang, Haiyan

    2016-01-01

    Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer. PMID:27003318

  1. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    PubMed

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  2. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    SciTech Connect

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  3. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation.

    PubMed Central

    Virág, L; Scott, G S; Cuzzocrea, S; Marmer, D; Salzman, A L; Szabó, C

    1998-01-01

    The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis

  4. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage

    PubMed Central

    Kang, Ho Chul; Lee, Yun-Il; Shin, Joo-Ho; Andrabi, Shaida A.; Chi, Zhikai; Gagné, Jean-Philippe; Lee, Yunjong; Ko, Han Seok; Lee, Byoung Dae; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase. Iduna’s E3 ligase activity requires PAR binding because point mutations at Y156A and R157A eliminate Iduna’s PAR binding and Iduna’s E3 ligase activity. Iduna’s E3 ligase activity also requires an intact really interesting new gene (RING) domain because Iduna possessing point mutations at either H54A or C60A is devoid of ubiquitination activity. Tandem affinity purification reveals that Iduna binds to a number of proteins that are either PARsylated or bind PAR including PAR polymerase-1, 2 (PARP1, 2), nucleolin, DNA ligase III, KU70, KU86, XRCC1, and histones. PAR binding to Iduna activates its E3 ligase function, and PAR binding is required for Iduna ubiquitination of PARP1, XRCC1, DNA ligase III, and KU70. Iduna’s PAR-dependent ubiquitination of PARP1 targets it for proteasomal degradation. Via PAR binding and ubiquitin E3 ligase activity, Iduna protects against cell death induced by the DNA damaging agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest and promotes cell survival after γ-irradiation. Moreover, Iduna facilitates DNA repair by reducing apurinic/apyrimidinic (AP) sites after MNNG exposure and facilitates DNA repair following γ-irradiation as assessed by the comet assay. These results define Iduna as a PAR-dependent E3 ligase that regulates cell survival and DNA repair. PMID:21825151

  5. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release.

    PubMed

    Sitsapesan, R; McGarry, S J; Williams, A J

    1995-11-01

    In a variety of vertebrate and invertebrate tissues the ryanodine-sensitive Ca2+ channel is the pathway for Ca2+ release from intracellular stores. The mechanism for activation of the ryanodine receptor-channel complex appears to depend both on the ryanodine receptor isoform and the cell type. In addition, a complex combination of endogenous intracellular compounds regulates channel gating. In this article, Rebecca Sitsapesan, Stephen McGarry and Alan Williams review the mechanisms involved in cyclic ADP-ribose (cADPR)-induced Ca2+ release and discuss the likelihood that cADPR-activated Ca2+ release is mediated by one of the recognized isoforms of the ryanodine receptor-Ca2+ channel complex.

  6. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate.

    PubMed Central

    Dargie, P J; Agre, M C; Lee, H C

    1990-01-01

    We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs. Images PMID:2100201

  7. [Influence of ADP-ribose, AMP and adenosine on bioelectric activity of hibernating ground squirrel atrium and papillary muscle].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP and ADP-ribose (1x10(-5)) on bioelectric activity of atrium and papillary muscle of nonhibernating (rat) and hibernating (Yakutian ground squirrel) animals. Action potential (AP) was registered with use of standard microelectrode technique. AP duration (APD) at level of 90% repolarisation in rat atrium in control experiments was 30+/-5 ms, APD at level of 50% repolarisation was 12+/-2 ms. APD at level of 90% repolarisation in rat papillary muscle was 56+/-7 ms, at level of 50% repolarisation was 18+/-2 ms. APD at level of 90% repolarisation in ground squirrel atrium was 77+/-6, APD at level of 50% repolarisation was 38+/-6 ms. APD at level of 90% repolarisation in ground squirrel papillary muscle was 105+/-9 ms, APD at level of 50% repolarisation was 42+/-8 ms. Purine nucleotides and nucleoside, that were tested in work, except ADP-ribose, act as inhibitory factors and decrease APD both in rat and hibernating ground squirrel heart. ADP-ribose decreases APD in papillary muscle of hibernator but did not in its atrium. In ground squirrel atrium AMP and adenosine decrease APD at level of 50% repolarisation by 10+/-3% and 18+/-3% respectively. AMP and adenosine decrease APD at level of 90% repolarisation by 9+/-2% and 11+/-2% respectively. In ground squirrel papillary muscle ADP-ribose, AMP and adenosine decrease APD at level of 50% repolarisation by 26+/-8%, 23+/-8% and 26+/-7%. ADP-ribose, AMP and adenosine decrease APD at level of 90% repolarisation by 12+/-3%, 10+/-3%, 13+/-3%. Thus, decrease of APD in ground squirrel papillary muscle at level of 90% repolarisation during nucleotides and adenosine action was 2-2.5 fold less, than the rat.

  8. PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation

    PubMed Central

    Andersson, Anneli; Bluwstein, Andrej; Kumar, Nitin; Teloni, Federico; Traenkle, Jens; Baudis, Michael; Altmeyer, Matthias; Hottiger, Michael O.

    2016-01-01

    Harmful oxidation of proteins, lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced, causing ‘oxidative stress’. Nuclear poly-ADP-ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However, what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase protein array (RPPA) and in-depth analysis of key stress signaling components, we observed that PAR formation induced by H2O2 was mediated by the PLC/IP3R/Ca2+/PKCα signaling axis. Mechanistically, H2O2-induced PAR formation correlated with Ca2+-dependent DNA damage, which, however, was PKCα-independent. In contrast, PAR formation was completely lost upon knockdown of PKCα, suggesting that DNA damage alone was not sufficient for inducing PAR formation, but required a PKCα-dependent process. Intriguingly, the loss of PAR formation observed upon PKCα depletion was overcome when the chromatin structure-modifying protein HMGB1 was co-depleted with PKCα, suggesting that activation and nuclear translocation of PKCα releases the inhibitory effect of HMGB1 on PAR formation. Together, these results identify PKCα and HMGB1 as important co-regulators involved in H2O2-induced PAR formation, a finding that may have important relevance for oxidative stress-associated pathophysiological conditions. PMID:27198223

  9. Readers of poly(ADP-ribose): designed to be fit for purpose

    PubMed Central

    Teloni, Federico; Altmeyer, Matthias

    2016-01-01

    Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions. PMID:26673700

  10. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response

    PubMed Central

    Zhang, Feng; Shi, Jiazhong; Chen, Shih-Hsun; Bian, Chunjing; Yu, Xiaochun

    2015-01-01

    Following DNA double-strand breaks, poly(ADP-ribose) (PAR) is quickly and heavily synthesized to mediate fast and early recruitment of a number of DNA damage response factors to the sites of DNA lesions and facilitates DNA damage repair. Here, we found that EXO1, an exonuclease for DNA damage repair, is quickly recruited to the sites of DNA damage via PAR-binding. With further dissection of the functional domains of EXO1, we report that the PIN domain of EXO1 recognizes PAR both in vitro and in vivo and the interaction between the PIN domain and PAR is sufficient for the recruitment. We also found that the R93G variant of EXO1, generated by a single nucleotide polymorphism, abolishes the interaction and the early recruitment. Moreover, our study suggests that the PAR-mediated fast recruitment of EXO1 facilities early DNA end resection, the first step of homologous recombination repair. We observed that other PIN domains could also recognize DNA damage-induced PAR. Taken together, our study demonstrates a novel class of PAR-binding module that plays an important role in DNA damage response. PMID:26400172

  11. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    PubMed

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  12. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    The proteins were transferred to a nitrocellulose membrane and PARP was detected using anti-human PARP monoclonal antibody. Since PARP is a basic...to check if this modification is due to poly(ADP-ribosyl)ation of the protein , the membrane was stripped off and re-probed with anti-PAR polyclonal...detect any poly(ADP- ribosyl)ated proteins corresponding to the molecular weight of PARP (116 kDa) (Figure 18 ), we initiated experiment to test possible

  13. The N-terminal Region of Chromodomain Helicase DNA-binding Protein 4 (CHD4) Is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose)*

    PubMed Central

    Silva, Ana P. G.; Ryan, Daniel P.; Galanty, Yaron; Low, Jason K. K.; Vandevenne, Marylene; Jackson, Stephen P.; Mackay, Joel P.

    2016-01-01

    Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response. PMID:26565020

  14. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    PubMed

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-04

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  15. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    SciTech Connect

    Nakadate, Yusuke; Kodera, Yasuo; Kitamura, Yuka; Tachibana, Taro; Tamura, Tomohide; Koizumi, Fumiaki

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  16. Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype

    SciTech Connect

    McCurry, L.S.; Jacobson, M.K.

    1981-01-25

    Treatment of normal human cells with DNA-damaging agents such as uv light or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stimulates the conversion of NAD to the chromosomal polymer poly(ADP-ribose) which in turn results in a rapid depletion of the cellular NAD pool. The effect of uv light or MNNG on the NAD pools of seven cell lines of human fibroblasts either homozygous or heterozygous for the xeroderma pigmentosum genotype has been studied. Xeroderma pigmentosum cells of genetic complementation groups A, C, and D are deficient in the excision repair of DNA damage caused by uv light. Following uv treatment, the NAD content of these cells was unchanged or only slightly reduced. All of the cell lines are able to excise DNA damage caused by MNNG and all of the cell lines had a greatly reduced content of NAD following MNNG treatment. The results demonstrate a close relationship between the conversion of NAD to poly(ADP-ribose) and DNA excision repair in human cells.

  17. ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of the NUDT9H Domain

    PubMed Central

    Kühn, Frank J. P.; Kühn, Cornelia; Winking, Mathis; Hoffmann, Daniel C.; Lückhoff, Andreas

    2016-01-01

    The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nv

  18. Role of free radicals and poly(ADP-ribose) synthetase in intestinal tight junction permeability.

    PubMed Central

    Cuzzocrea, S.; Mazzon, E.; De Sarro, A.; Caputi, A. P.

    2000-01-01

    BACKGROUND: Small intestine permeability is frequently altered in inflammatory bowel disease and may be caused by the translocation of intestinal toxins through leaky small intestine tight junctions (TJ) and adherence (1,2). The role of hydrogen peroxide (H2O2), and nitric oxide (NO) and PARS in the permeability and structure of small intestine TJ is not clearly understood. MATERIALS AND METHODS: In vitro study, MDCK (Madin-Darby Canine Kidney) cells were exposed to H2O2 (100 microM for 2h), or zymosan (200 microl of stock solution 1 mg/ml for 4h), in the presence or absence of a treatment with poly(ADP-ribose) synthetase (PARS) inhibitor 3-aminobenzamide (3-AB: 3 mM) or with n-acetylcysteine (NAC 10 mM). In vivo study, wild-type mice (WT) and mice lacking (KO) of the inducible (or type 2) nitric oxide synthase (iNOS) were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.). In addition INOSWT mice were treated with 3-AB (10 mg/kg, i.p.) or with NAC (40 mg/kg, i.p.) 1 hour and 6 h after zymosan administration. RESULTS: Exposure of MDCK cells to hydrogen peroxide caused a significant impairment in mitochondrial respiration that was associated with a reduction of cells adherence as well as derangement of the junctional proteins. A significant increase of nitrate and nitrite levels, stable metabolites of nitric oxide (NO), were found in MDCK supernatant after zymosan incubation. NO production was associated with a significant reduction of cell adherence and impairment of occludin protein. Pre-treatment of the cells with 3-AB or with NAC caused a significant prevention of H2O2-mediated occludin junctional damage as well as reduced the NO-induced occludin damage. In addition, H2O2 and NO are able to induce a significant derangement of beta-catenin and Zonula Ocludence-1 (ZO-1). We found an increase of tight junctional permeability to lanthanum nitrate (molecular weight, 433) in the terminal ileal TJs in zymosan-treated iNOSWT mice compared with

  19. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    PubMed Central

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  20. A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Shull, Neil P.; Spinelli, Sherry L.; Phizicky, Eric M.

    2005-01-01

    One molecule of ADP-ribose 1″,2″-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events per Saccharomyces cerevisiae generation. The metabolism of Appr>p remains poorly defined. A cyclic phosphodiesterase (Cpd1p) has been shown to convert Appr>p to ADP-ribose-1″-phosphate (Appr1p). We used a biochemical genomics approach to identify two yeast phosphatases that can convert Appr1p to ADP-ribose: the product of ORF YBR022w (now Poa1p), which is completely unrelated to other known phosphatases; and Hal2p, a known 3′-phosphatase of 5′,3′-pAp. Poa1p is highly specific for Appr1p, and thus likely acts on this molecule in vivo. Poa1 has a relatively low KM for Appr1p (2.8 μM) and a modest kcat (1.7 min−1), but no detectable activity on several other substrates. Furthermore, Poa1p is strongly inhibited by ADP-ribose (KI, 17 μM), modestly inhibited by other nucleotides containing an ADP-ribose moiety and not inhibited at all by other tested molecules. In contrast, Hal2p is much more active on pAp than on Appr1p, and several other tested molecules were Hal2p substrates or inhibitors. poa1-Δ mutants have no obvious growth defect at different temperatures in rich media, and analysis of yeast extracts suggests that ∼90% of Appr1p processing activity originates from Poa1p. PMID:15684411

  1. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line.

    PubMed

    Franco, Luisa; Bodrato, Nicoletta; Moreschi, Iliana; Usai, Cesare; Bruzzone, Santina; Scarf ì, Sonia; Zocchi, Elena; De Flora, Antonio

    2006-10-01

    Lipopolysaccharide, the main component of the cell wall of Gram-negative bacteria, is known to activate microglial cells following its interaction with the CD14/Toll-like receptor complex (TLR-4). The activation pathway triggered by lipopolysaccharide in microglia involves enhanced basal levels of intracellular calcium ([Ca2+]i) and terminates with increased generation of cytokines/chemokines and nitric oxide. Here we demonstrate that in lipopolysaccharide-stimulated murine N9 microglial cells, cyclic ADP-ribose, a universal and potent Ca2+ mobiliser generated from NAD+ by ADP-ribosyl cyclases (ADPRC), behaves as a second messenger in the cell activation pathway. Lipopolysaccharide induced phosphorylation, mediated by multiple protein kinases, of the mammalian ADPRC CD38, which resulted in significantly enhanced ADPRC activity and in a 1.7-fold increase in the concentration of intracellular cyclic ADP-ribose. This event was paralleled by doubling of the basal [Ca2+]i levels, which was largely prevented by the cyclic ADP-ribose antagonists 8-Br-cyclic ADP-ribose and ryanodine (by 75% and 88%, respectively). Both antagonists inhibited, although incompletely, functional events downstream of the lipopolysaccharide-induced microglia-activating pathway, i.e. expression of inducible nitric oxide synthase, overproduction and release of nitric oxide and of tumor necrosis factor alpha. The identification of cyclic ADP-ribose as a key signal metabolite in the complex cascade of events triggered by lipopolysaccharide and eventually leading to enhanced generation of pro-inflammatory molecules may suggest a new therapeutic target for treatment of neurodegenerative diseases related to microglia activation.

  2. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.

    PubMed

    Furuike, Yoshihiko; Akita, Yuka; Miyahara, Ikuko; Kamiya, Nobuo

    2016-03-29

    Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases.

  3. Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose.

    PubMed

    Bodrato, Nicoletta; Franco, Luisa; Fresia, Chiara; Guida, Lucrezia; Usai, Cesare; Salis, Annalisa; Moreschi, Iliana; Ferraris, Chiara; Verderio, Claudia; Basile, Giovanna; Bruzzone, Santina; Scarfì, Sonia; De Flora, Antonio; Zocchi, Elena

    2009-05-29

    Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.

  4. Concentrative uptake of cyclic ADP-ribose generated by BST-1+ stroma stimulates proliferation of human hematopoietic progenitors.

    PubMed

    Podestà, Marina; Benvenuto, Federica; Pitto, Anna; Figari, Osvaldo; Bacigalupo, Andrea; Bruzzone, Santina; Guida, Lucrezia; Franco, Luisa; Paleari, Laura; Bodrato, Nicoletta; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2005-02-18

    Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.

  5. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity

    PubMed Central

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI: http://dx.doi.org/10.7554/eLife.17600.001 PMID:27383051

  6. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa.

    PubMed

    Okon, Elza; Dethlefsen, Sarah; Pelnikevich, Anna; Barneveld, Andrea van; Munder, Antje; Tümmler, Burkhard

    2017-01-01

    NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control.

  7. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  8. Molecular Toxicology of Chromatin: The Role of Poly(ADP-Ribose) in Gene Control.

    DTIC Science & Technology

    1985-02-01

    portions (100 ug/mg nuclear protein) and incubation for 2 x 20 min. at 37*. In (A) adducts were hydrolyzed by 1 M NaOH by incubation at 55 ° for two hours...indicate NAD-glycohydrolase activities that are probably unrelated to the polymerase reaction. When polymer- I" . protein adducts are hydrolyzed by...cells, were dispensed in Falcon Petri dishes (60-100 mm diameter) precoated with collagen , previously sterilized by UV radiation. Collagen was isolated

  9. Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries.

    PubMed

    Zhang, Guo; Teggatz, Eric G; Zhang, Andrew Y; Koeberl, Matthew J; Yi, Fan; Chen, Li; Li, Pin-Lan

    2006-03-01

    The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.

  10. Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity

    PubMed Central

    Dong, Suomeng; Yin, Weixiao; Kong, Guanghui; Yang, Xinyu; Qutob, Dinah; Chen, Qinghe; Kale, Shiv D.; Sui, Yangyang; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Gijzen, Mark; M. Tyler, Brett; Wang, Yuanchao

    2011-01-01

    Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity. PMID:22102810

  11. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  12. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1.

    PubMed

    Zhang, Haoyue; Xiong, Zheng-Mei; Cao, Kan

    2014-06-03

    Hutchinson-Gilford progeria syndrome (HGPS) is a severe human premature aging disorder caused by a lamin A mutant named progerin. Death occurs at a mean age of 13 y from cardiovascular problems. Previous studies revealed loss of vascular smooth muscle cells (SMCs) in the media of large arteries in a patient with HGPS and two mouse models, suggesting a causal connection between the SMC loss and cardiovascular malfunction. However, the mechanisms of how progerin leads to massive SMC loss are unknown. In this study, using SMCs differentiated from HGPS induced pluripotent stem cells, we show that HGPS SMCs exhibit a profound proliferative defect, which is primarily caused by caspase-independent cell death. Importantly, progerin accumulation stimulates a powerful suppression of PARP1 and consequently triggers an activation of the error-prone nonhomologous end joining response. As a result, most HGPS SMCs exhibit prolonged mitosis and die of mitotic catastrophe. This study demonstrates a critical role of PARP1 in mediating SMC loss in patients with HGPS and elucidates a molecular pathway underlying the progressive SMC loss in progeria.

  13. Inhibition of DNA Binding by the Phosphorylation of Poly ADP-Ribose Polymerase Protein Catalyzed by Protein Kinase C

    DTIC Science & Technology

    1993-04-21

    drying and authentic Ser-P and Thr-P were added as standards followed by paper electrophoresis (27). The paper strips were ninhydrin -stained, dried and... tested with the specific oligopeptide substrate of PKC (26) and therefore the inhibition by DNA is due to a ADPRT-DNA interaction (Fig 3...correctness of this conclusion was tested also by "opposite" labeling, i.e. radioiodination of the major chymotryptic polypeptides of ADPRT (i.e. the 56 and 64

  14. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    PubMed

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  15. HIV-1 Vpu Accessory Protein Induces Caspase-mediated Cleavage of IRF3 Transcription Factor*

    PubMed Central

    Park, Sang Yoon; Waheed, Abdul A.; Zhang, Zai-Rong; Freed, Eric O.; Bonifacino, Juan S.

    2014-01-01

    Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis. PMID:25352594

  16. Characterization of Danio rerio Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase, the Structural Prototype of the ADPRibase-Mn-Like Protein Family

    PubMed Central

    Rodrigues, Joaquim Rui; Fernández, Ascensión; Canales, José; Cabezas, Alicia; Ribeiro, João Meireles; Costas, María Jesús; Cameselle, José Carlos

    2012-01-01

    The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily. PMID:22848751

  17. Synthetic study on carbocyclic analogs of cyclic ADP-ribose, a novel second messenger: an efficient synthesis of cyclic IDP-carbocyclic-ribose.

    PubMed

    Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A

    1999-01-01

    An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).

  18. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD.

    PubMed Central

    Heiner, Inka; Eisfeld, Jörg; Halaszovich, Christian R; Wehage, Edith; Jüngling, Eberhard; Zitt, Christof; Lückhoff, Andreas

    2003-01-01

    An early key event in the activation of neutrophil granulocytes is Ca(2+) influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase-PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca(2+) channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD(+). Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na(+) and Ca(2+), which is regulated by ADP-ribose and the redox state. PMID:12564954

  19. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations.

    PubMed

    Rungrotmongkol, Thanyada; Nunthaboot, Nadtanet; Malaisree, Maturos; Kaiyawet, Nopporn; Yotmanee, Pathumwadee; Meeprasert, Arthitaya; Hannongbua, Supot

    2010-11-01

    The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.

  20. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis.

    PubMed

    Masuda, W; Takenaka, S; Inageda, K; Nishina, H; Takahashi, K; Katada, T; Tsuyama, S; Inui, H; Miyatake, K; Nakano, Y

    1997-03-17

    In Euglena gracilis, the activity of ADP-ribosyl cyclase, which produces cyclic ADP-ribose, oscillated during the cell cycle in a synchronous culture induced by a light-dark cycle, and a marked increase in the activity was observed in the G2 phase. Similarly, the ADP-ribosyl cyclase activity rose extremely immediately before cell division started, when synchronous cell division was induced by adding cobalamin (which is an essential growth factor and participates in DNA synthesis in this organism) to its deficient culture. Further, cADPR in these cells showed a maximum level immediately before cell division started. A dose-dependent Ca2+ release was observed when microsomes were incubated with cADPR.

  1. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  2. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    PubMed Central

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  3. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases.

    PubMed

    Miropolskaya, Nataliya; Esyunina, Daria; Kulbachinskiy, Andrey

    2017-02-27

    RNA cleavage by RNA polymerase (RNAP) is the central step in co-transcriptional RNA proofreading. Bacterial RNAPs were proposed to rely on the same mobile element of the active site, the trigger loop (TL), for both nucleotide addition and RNA cleavage. RNA cleavage can also be stimulated by universal Gre factors, which should replace the TL to get access to the RNAP active site. The contributions of the TL and Gre factors to RNA cleavage reportedly vary between RNAPs from different bacterial species and, probably, different types of transcription complexes. Here, by comparing RNAPs from Escherichia coli (Eco), Deinococcus radiodurans (Dra) and Thermus aquaticus (Taq) we show that the functions of the TL and Gre factors in RNA cleavage are conserved in various species, with important variations which may be related to extremophilic adaptation. Deletions of the TL strongly impair intrinsic RNA cleavage by all three RNAPs and eliminate the inter-species differences in the reaction rates. GreA factors activate RNA cleavage by wild-type RNAPs to similar levels. The rates of GreA-dependent cleavage are lower for ΔTL RNAP variants, suggesting that the TL contributes to the Gre function. Finally, neither the TL nor GreA can efficiently activate RNA cleavage in certain types of backtracked transcription complexes suggesting that these complexes adopt a catalytically inactive conformation probably important for transcription regulation.

  4. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism.

    PubMed

    Nguyen, Giang Thi Tuyet; Schaefer, Susanne; Gertz, Melanie; Weyand, Michael; Steegborn, Clemens

    2013-08-01

    Sirtuins are NAD(+)-dependent protein deacetylases that regulate metabolism and aging processes and are considered to be attractive therapeutic targets. Most available sirtuin modulators are little understood mechanistically, hindering their improvement. SRT1720 was initially described as an activator of human Sirt1, but it also potently inhibits human Sirt3. Here, the molecular mechanism of the inhibition of Sirt3 by SRT1720 is described. A crystal structure of Sirt3 in complex with SRT1720 and an NAD(+) analogue reveals that the compound partially occupies the acetyl-Lys binding site, thus explaining the reported competition with the peptide substrate. The compound packs against a hydrophobic protein patch and binds with its opposite surface to the NAD(+)  nicotinamide, resulting in an exceptionally tight sandwich-like interaction. The observed arrangement rationalizes the uncompetitive inhibition with NAD(+), and binding measurements confirm that the nicotinamide moiety of NAD(+) supports inhibitor binding. Consistently, no inhibitor is bound in a second crystal structure of Sirt3 that was solved complexed with ADP-ribose and crystallized in the presence of SRT1720. These results reveal a novel sirtuin inhibitor binding site and mechanism, and provide a structural basis for compound improvement.

  5. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems.

    PubMed Central

    Chini, E N; Liang, M; Dousa, T P

    1998-01-01

    We investigated the pH dependence and the effects of thimerosal and dithiothreitol (DTT) upon the Ca2+ release induced by cADP-ribose (cADPR) and nicotinate-adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenates. Both Ca2+ release triggered by cADPR and the binding of [3H]cADPR to sea urchin egg homogenates were decreased by alkalization of the assay media from pH 7.2 to 8.9. In contrast, NAADP-triggered Ca2+ release was not influenced by changes in pH. The Ca2+ release induced by cADPR was potentiated by thimerosal and inhibited by DTT, but neither thimerosal nor DTT had any effect upon the Ca2+ release induced by NAADP. We conclude that cADPR-sensitive Ca2+-release mechanisms are dependent on pH of the assay media and are sensitive to thiol group modification. On the other hand, these functional properties are not shared by NAADP-regulated Ca2+ channels. PMID:9794787

  6. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.

  7. Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum.

    PubMed

    Higashida, Haruhiro; Kamimura, Shin-Ya; Inoue, Takeshi; Hori, Osamu; Islam, Mohammad Saharul; Lopatina, Olga; Tsuji, Chiharu

    2016-12-26

    The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.

  8. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.

    PubMed Central

    Rudd, M D; Izban, M G; Luse, D S

    1994-01-01

    RNA polymerase II may become arrested during transcript elongation, in which case the ternary complex remains intact but further RNA synthesis is blocked. To relieve arrest, the nascent transcript must be cleaved from the 3' end. RNAs of 7-17 nt are liberated and transcription continues from the newly exposed 3' end. Factor SII increases elongation efficiency by strongly stimulating the transcript cleavage reaction. We show here that arrest relief can also occur by the addition of pyrophosphate. This generates the same set of cleavage products as factor SII, but the fragments produced with pyrophosphate have 5'-triphosphate termini. Thus, the active site of RNA polymerase II, in the presence of pyrophosphate, appears to be capable of cleaving phosphodiester linkages as far as 17 nt upstream of the original site of polymerization, leaving the ternary complex intact and transcriptionally active. Images PMID:8058756

  9. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice

    PubMed Central

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i) that seems to trigger OT release can be elevated by β-NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than those

  10. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice.

    PubMed

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca(2+)]i) that seems to trigger OT release can be elevated by β-NAD(+), cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD(+) metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca(2+)]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than

  11. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    DTIC Science & Technology

    2004-11-16

    agents including sulfur mustard (SM). We observed concurrent activation of PARP and DNA ligase in SM-exposed human epidermal keratinocytes (HEK...Previous reports from other laboratories suggested that DNA ligase activation could be due to its modification by PARP. In humans, there are three distinct...DNA ligases, I, II and IV of which DNA ligase I participates in DNA replication and repair. By metabolically labeling HEK using 3H-adenosine

  12. The Effect of Poly(ADP-ribose) Polymerase-1 Gene 3'Untranslated Region Polymorphism in Colorectal Cancer Risk among Saudi Cohort.

    PubMed

    Alhadheq, Abdullah M; Purusottapatnam Shaik, Jilani; Alamri, Abdullah; Aljebreen, Abdulrahman M; Alharbi, Othman; Almadi, Majid A; Alhadeq, Faten; Azzam, Nahla A; Semlali, Abdelhabib; Alanazi, Mohammad; Bazzi, Mohammad D; Reddy Parine, Narasimha

    2016-01-01

    Background. DNA repair systems are essential for each cell to repair and maintain the genome integrity. Base excision repair pathway is one of the crucial pathways to maintain genome integrity and PARP-1 plays a key role in BER pathway. The purpose of this study is to evaluate the association between polymorphisms in PARP-1 3'untranslated region (3'UTR) SNP rs8679 and its expression in colorectal cancer. Methods. Genotyping and gene expression were performed using TaqMan assays. The effects of age, gender, and tumor location were evaluated in cases and controls regarding the genotyping results. Resulting data was analyzed using SPSS software. Results and Conclusions. Genotyping analysis for SNP rs8679 showed decreased susceptibility to colorectal cancer at heterozygous TC allele and at minor allele C. Further this protective association was also observed in younger age patients (≤57), in female patients, and also in patients with tumors located at colon and rectum. PARP-1 expression levels are significantly different in colorectal cancer compared to matched normal tissue. Our findings proved that the upregulation of PARP-1 is associated with tumor progression and poor prognosis in Saudi patients with colorectal cancer, suggesting that PARP-1 can be novel and valuable signatures for predicting the clinical outcome of patients with colorectal cancer.

  13. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.

    PubMed

    Ghosh, Rajib; Roy, Sanchita; Kamyab, Johan; Dantzer, Francoise; Franco, Sonia

    2016-09-01

    In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.

  14. Poly (ADP-Ribose) Polymerase (PARP) is Essential for Sulfur Mustard-Induced DNA Damage Repair, But Has No Role in DNA Ligase Activation

    DTIC Science & Technology

    2006-01-01

    ligase activation could be due to its modification by PARP. Using HEK, intracellular "H-labeled NAD÷ (H-adenine) was metabolically generated and then... acetic acid methyl ester) (Bhat et al., 1998). These observations indicate a Stock HEK from adult skin of a single donor at passage need for a better...0.76 HEK were used in which NAD’ was metabolically 3H- Z-VAD-FMK (4 pm) 0.55CDO5 antibodly (2 pag ml )/(.( labeled at adenine (Malanga and Althaus

  15. Targeting Homology-Directed Recombinational Repair (HDR) of Chromosomal Breaks to Sensitize Prostate Cancer Cells to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

    DTIC Science & Technology

    2013-08-01

    Treatment % G FP p os iti ve Figure 7. Leptomycin B abolishes the HR deficit induced by HR. additionally, it may enhance HR. 4 Task 2. To transiently...Stanley, J , and Yang, ES*. PARP-1: Friend or foe of DNA damage and repair in tumorigenesis? Cancers 2013. 5(3), 943-958. *Corresponding author 7...University School of Medicine, Nashville, TN ABR Holman Research Scholar Nucletron Prostate HDR Training Course 2009 Chief Resident 2009-2010 2005

  16. The Treatment of BRCA1/2 Hereditary BRCA1/2 and Sporadic Breast Cancer with Poly(ADP-Ribose) Polymerase Inhibitors and Chemotherapy

    DTIC Science & Technology

    2009-09-01

    increased antineoplastic activity  and bone marrow protection. Cell Mol Biol. 2007 May 15;53(3):18‐26.    De Soto JA, Mandatory  HPV   vaccination ? , J. Fam...about MRSA? The Journal  29 Oct, 2007. pgs C1‐ 2.    De Soto JA, Should your daughter be  vaccinated  for  HPV ? The Journal Sept. 24,  2007. pgs C1‐2...The Journal, Oct 31, 2005, pgs C1‐2.        Other publications (including web pages)    De Soto JA,  HPV   Vaccine , http://en.wikipedia.org/wiki

  17. Targeting Homology-Directed Recombinational Repair (HDR) of Chromosomal Breaks to Sensitize Prostate Cancer Cells to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

    DTIC Science & Technology

    2012-08-01

    abolishes synthetic lethality between IR and PARP inhibition. - + 0 1 2 3 4 5 Control LMB 4Gy Radiation Treatment % G FP p os iti ve Figure 7...formation ability (Months 21-24) Progress on Task 2. We have had trouble generat ing stable cell lines expressing both the DRGF P repair substrate as...4. Knight- Krajewski , S, Welsh, CF, Liu, YQ, Lyons, L, Faysal, J, Yang, ES, and Burnstein, KL. Deregulation of the Rho GTPase, Rac1, suppresses

  18. Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in Poly (ADP-ribose) polymerase (Parp-1) null oocytes

    PubMed Central

    Yang, Feikun; Baumann, Claudia; De La Fuente, Rabindranath

    2009-01-01

    In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1 (−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1 (−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains. PMID:19463809

  19. The Effect of Poly(ADP-ribose) Polymerase-1 Gene 3′Untranslated Region Polymorphism in Colorectal Cancer Risk among Saudi Cohort

    PubMed Central

    Alhadheq, Abdullah M.; Purusottapatnam Shaik, Jilani; Alamri, Abdullah; Aljebreen, Abdulrahman M.; Alharbi, Othman; Almadi, Majid A.; Alhadeq, Faten; Azzam, Nahla A.; Alanazi, Mohammad; Bazzi, Mohammad D.

    2016-01-01

    Background. DNA repair systems are essential for each cell to repair and maintain the genome integrity. Base excision repair pathway is one of the crucial pathways to maintain genome integrity and PARP-1 plays a key role in BER pathway. The purpose of this study is to evaluate the association between polymorphisms in PARP-1 3′untranslated region (3′UTR) SNP rs8679 and its expression in colorectal cancer. Methods. Genotyping and gene expression were performed using TaqMan assays. The effects of age, gender, and tumor location were evaluated in cases and controls regarding the genotyping results. Resulting data was analyzed using SPSS software. Results and Conclusions. Genotyping analysis for SNP rs8679 showed decreased susceptibility to colorectal cancer at heterozygous TC allele and at minor allele C. Further this protective association was also observed in younger age patients (≤57), in female patients, and also in patients with tumors located at colon and rectum. PARP-1 expression levels are significantly different in colorectal cancer compared to matched normal tissue. Our findings proved that the upregulation of PARP-1 is associated with tumor progression and poor prognosis in Saudi patients with colorectal cancer, suggesting that PARP-1 can be novel and valuable signatures for predicting the clinical outcome of patients with colorectal cancer. PMID:27746584

  20. Detection and quantification of poly-ADP-ribosylated cellular proteins of spleen and liver tissues of mice in vivo by slot and Western blot immunoprobing using polyclonal antibody against mouse ADP-ribose polymer.

    PubMed

    Sharan, R N; Devi, B Jaylata; Humtsoe, J O; Saikia, Jyoti R; Kma, L

    2005-10-01

    Poly-ADP-ribosylation (PAR) of cellular proteins has been shown to have decisive roles in diverse cellular functions including carcinogenesis. There are indications that metabolic level of poly-ADP-ribosylated cellular proteins might indicate carcinogenesis and, therefore, could be potentially used in cancer screening program. Keeping in mind the limitations of currently available assays of cellular PAR, a new assay is being reported that measures the metabolic level of poly-ADP-ribosylated cellular proteins. The ELISA based slot and Western blot immunoassay used polyclonal antibody against natural, heterogeneous ADP-ribose polymers. It could be successfully employed to qualitatively and quantitatively assay metabolic levels of poly-ADP-ribosylated proteins of spleen and liver tissues of normal mice or mice exposed to dimethylnitrosamine for up to 8 weeks; potentially PAR of cellular proteins could be assayed in any tissue or biopsy. Implications of the results in cancer screening program have been discussed.

  1. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex.

    PubMed Central

    Altmann, C R; Solow-Cordero, D E; Chamberlin, M J

    1994-01-01

    In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the sigma factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA.RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. Images PMID:7513426

  2. Geraniin-mediated apoptosis by cleavage of focal adhesion kinase through up-regulation of Fas ligand expression in human melanoma cells.

    PubMed

    Lee, Jang-Chang; Tsai, Chih-Yen; Kao, Jung-Yie; Kao, Ming-Ching; Tsai, Shih-Chang; Chang, Chih-Shiang; Huang, Li-Jiau; Kuo, Sheng-Chu; Lin, Jen-Kun; Way, Tzong-Der

    2008-06-01

    Geraniin, a form of tannin separated from geranium, causes cell death through induction of apoptosis; however, cell death characteristics for geraniin have not yet been elucidated. Here, we investigated the mechanism of geraniin-induced apoptosis in human melanoma cells and demonstrated that geraniin was able to induce cell apoptosis in a concentration- and time-dependent manner. We also examined the signaling pathway related to geraniin-induced apoptosis. To clarify the relationship between focal adhesion kinase (FAK) and geraniin-induced apoptosis, we treated human melanoma cells with geraniin and found that this resulted dose- and time-dependent degradation in FAK. However, FAK cleavage was significantly inhibited when cells were pretreated with a selective inhibitor of caspase-3 (Ac-Asp-Glu-Val-Asp-CHO). Here, we demonstrated for the first time that geraniin triggered cell death by caspase-3-mediated cleavage of FAK. There were two possible mechanisms for activating caspase-3, mitochondria-mediated and receptor-mediated apoptosis. To confirm the geraniin-relevant signaling pathway, using immunoblot analysis we found that geraniin-induced apoptosis was associated with the up-regulation of Fas ligand expression, the activation of caspase-8, the cleavage of Bid, and the induction of cytochrome c release from mitochondria to the cytosol. Treatment with geraniin caused induction of caspase-3 activity in a dose- and time-dependent manner followed by proteolytic cleavage of poly-(ADP-ribose) polymerase, and DNA fragmentation factor 45. The geraniin-induced apoptosis may provide a pivotal mechanism for its cancer-chemopreventive action.

  3. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.

    PubMed

    Spruijt, Cornelia G; Luijsterburg, Martijn S; Menafra, Roberta; Lindeboom, Rik G H; Jansen, Pascal W T C; Edupuganti, Raghu Ram; Baltissen, Marijke P; Wiegant, Wouter W; Voelker-Albert, Moritz C; Matarese, Filomena; Mensinga, Anneloes; Poser, Ina; Vos, Harmjan R; Stunnenberg, Hendrik G; van Attikum, Haico; Vermeulen, Michiel

    2016-10-11

    NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.

  4. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    PubMed

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  5. Molecular biology basis for the response of poly(ADP-rib) polymerase and NAD metabolism to dna damage caused by mustard alkylating agents. Final report, 30 April 1990-30 July 1994

    SciTech Connect

    Smulson, M.E.

    1994-08-30

    During the course of this contract, we have performed a variety of experiments whose intent has been to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) in cultured keratinocytes. During this study, human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA by dexamethasone in cultured cells selectively lowered levels of PADPRP in RNA, protein, and enzyme activity. Induction of antisense RNA led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to an alkylating agent. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a sulfur mustard to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well.

  6. Suppression of dexamethasone-stimulated DNA synthesis in an oncogene construct containing rat cell line by a DNA site-oriented ligand of poly-ADP-ribose polymerase: 6-amino-1,2-benzopyrone

    SciTech Connect

    Kirsten, E.; Bauer, P.I.; Kun, E. San Francisco State Univ., CA )

    1991-03-01

    The cellular inhibitory effects of 6-amino-1,2-benzopyrone (6-ABP), a DNA site-specific ligand of adenosine diphosphoribosyl transferase (ADPRT), were determined in a dexamethasone-sensitive EJ-ras gene construct containing cell line (14C cells). Dexamethansone in vitro transforms these cells to a tumorigenic phenotype and also stimulates cell replication. AT a nontoxic concentration 6-ABP treatment of intact cells for 4 days inhibits the dexamethasone-stimulated increment of cellular DNA content, depresses replicative DNA synthesis as assayed by thymidine incorporation to the level of cells that were not exposed to dexamethasone, and in permeabilized cells reduces the dexamethasone-stimulated increase of deoxyribonucleotide incorporation into DNA to the level of untreated cells. In situ pulse labeling of cells pretreated with 6-ABP indicated an inhibition of DNA synthesis at a stage prior to the formation of the 10-kb intermediate species. Neither dexamethasone nor the drug influenced the cellular quantity of ADPRT molecules, tested immunochemically.

  7. An efficient synthesis of cyclic IDP- and cyclic 8-bromo-IDP-carbocyclic-riboses using a modified Hata condensation method to form an intramolecular pyrophosphate linkage as a key step. An entry to a general method for the chemical synthesis of cyclic ADP-ribose analogues

    PubMed

    Fukuoka; Shuto; Minakawa; Ueno; Matsuda

    2000-08-25

    An efficient synthesis of cyclic IDP-carbocyclic-ribose (3) and its 8-bromo derivative 6, as stable mimics of cyclic ADP-ribose, was achieved, and a condensation reaction with phenylthiophosphate-type substrate 15 or 16 to form an intramolecular pyrophosphate linkage was a key step. N-1-Carbocyclic-ribosylinosine derivative 28 and the corresponding 8-bromo congener 24 were prepared via condensation between N-1-(2,4-dinitrophenyl)inosine derivative 17 and a known optically active carbocyclic amine 18. Compounds 24 and 28 were then converted to the corresponding 5"-phosphoryl-5'-phenylthiophosphate derivatives 15 and 16, respectively, which were substrates for the condensation reaction to form an intramolecular pyrophosphate linkage. Treatment of 8-bromo substrate 15 with I2 or AgNO3 in the presence of molecular sieves 3A (MS 3A) in pyridine at room temperature gave the desired cyclic product 12 quantitatively, while the yield was quite low without MS. The similar reaction of 8-unsubstituted substrate 16 gave the corresponding cyclized product 32 in 81% yield. Acidic treatment of these cyclic pyrophosphates 12 and 32 readily gave the targets 6 and 3, respectively. This result suggests that the construction of N-1-substituted hypoxanthine nucleoside structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation by activation of the phenylthiophosphate group with I2 or AgNO3/MS 3A combine to provide a very efficient route for the synthesis of analogues of cyclic ADP-ribose such as 3 and 6. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.

  8. Binding of BAL 31 RNA polymerase to PM2 DNA as determined by electron microscopy and protection against restriction endonuclease cleavage.

    PubMed Central

    Bull, P; Susaeta, M; González, B; Yudelevich, A

    1988-01-01

    Specific binding sites of BAL 31 RNA polymerase on PM2 DNA have been mapped by protection against HincII and HindIII cleavage and by observation of enzyme-DNA complexes by electron microscopy. Nine specific binding sites were observed at map units 0.19, 0.20, 0.28, 0.54, 0.63, 0.65, 0.71, 0.72, and 0.75 by the first method. All these sites were confirmed by electron microscopy which, in addition, revealed another site at 0.05 map unit. Published nucleotide sequences of the region surrounding sites at 0.71 and 0.75 map units show the presence of consensus sequences for procaryotic promoters. Images PMID:2843687

  9. Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors.

    PubMed

    Amina, S; Hashii, M; Ma, W-J; Yokoyama, S; Lopatina, O; Liu, H-X; Islam, M S; Higashida, H

    2010-05-01

    ADP-ribosyl cyclase and/or CD38 are activated after oxytocin receptor stimulation in the hypothalamus and pituitary in adult mice, leading to facilitation of oxytocin secretion. Although cyclic adenosine 5'-diphosphoribose (cADPR) primarily acts as an intracellular second messenger, it has been suggested that extracellular cADPR stimulates intracellular ryanodine receptors after internalisation via the nucleotide-transporting capacity of CD38 in fibroblasts and astrocytes. However, little is known about whether extracellular cADPR activates neurones. To address this question, we used a model neuronal cell line, NG108-15 mouse neuroblastoma x rat glioma hybrid cells possessing CD38 but not oxytocin receptors, and measured cytosolic free calcium concentrations ([Ca(2+)](i)). Extracellular application of cADPR to NG108-15 cells elevated [Ca(2+)](i) at 35 degrees C. The elevation was significantly enhanced when measured at 40 degrees C. The cADPR and heat-induced [Ca(2+)](i) increase were blocked under extracellular Ca(2+)-free conditions and by 2-aminoethoxydiphenyl borate, an antagonist of melastatin-related transient receptor potential channel 2 (TRPM2) cation channels. Reverse transcriptation-polymerase chain reaction analyses indicated that TRPM2 channels were expressed in NG108-15 cells. Application of oxytocin elevated [Ca(2+)](i) in NG108-15 cells transformed to transiently express cloned human oxytocin receptors. The oxytocin-induced [Ca(2+)](i) response was also enhanced by heat. These results indicate that the extracellular application of cADPR, together with heat, activates cation influx downstream of oxytocin receptor signalling in NG108-15 neuronal cells, and suggest the possible involvement of TRPM2 channels in oxytocin release in the mammalian brain.

  10. Caspase 3 activation and PARP cleavage in lymphocytes from newborn babies of diabetic mothers with unbalanced glycaemic control.

    PubMed

    Tarquini, F; Tiribuzi, R; Crispoltoni, L; Porcellati, S; Del Pino, A M; Orlacchio, A; Coata, G; Arnone, S; Torlone, E; Cappuccini, B; Di Renzo, G C; Orlacchio, A

    2014-01-01

    Several epidemiological studies showed that gestational diabetes mellitus is the most frequent metabolic disorder of pregnancy, the pathogenesis of which has yet to be completely clarified. The aim of this study was to investigate the presence and processing of caspase 3 (Casp3) and poly(ADP-ribose) polymerase 1 (PARP1) in cord blood lymphocytes as markers of apoptosis in relation to glycaemic control during intrauterine life. Our results showed a specific positive correlation between the levels of active Casp3 (17-19 kDa) and the inactive form of PARP1 (89 kDa) in lymphocytes isolated from newborn babies of diabetic women with unbalanced glycaemic control, with a direct correlation between the activation of casp3 and the inactivation of PARP1, that makes lymphocytes unresponsive towards lipopolysaccharide stimulation, highlighting an altered functional response. Besides more studies are required to fully correlate the activation of the apoptotic process during the intrauterine life with the foetal health later in life, our study indicates that a cord blood lymphocyte, an easily accessible source, is informative about the activation of apoptotic stimuli in circulating cells of newborn babies in relation to the glycaemic control reached by the mother during pregnancy.

  11. Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D

    PubMed Central

    MABLEY, JON G.; WALLACE, REBECCA; PACHER, PÁL; MURPHY, KANNEGANTI; SZABÓ, CSABA

    2008-01-01

    Vitamin D is well characterized for its role in mineral homeostasis and maintenance of normal skeletal architecture. Vitamin D has been demonstrated to exert anti-inflammatory effects in a variety of disease states including diabetes, arthritis and inflammatory bowel disease. In these diseases poly[adenosine diphosphate (ADP)-ribose] polymerase (PARP) inhibitors have also proved effective as anti-inflammatory agents. Here we present data demonstrating that the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3, is a PARP inhibitor. UV irradiation-mediated PARP activation in human keratinocytes can be inhibited by treatment with vitamin D, 7-dehydrocholesterol or 1α,25-dihydroxyvitamin D3. Inhibition of cytochrome P450 reversed the PARP inhibitory action of vitamin D and 7-dehydrocholesterol, indicating that conversion to 1α,25-dihydroxyvitamin D3 mediates their PARP inhibitory action. Vitamin D may protect keratinocytes against over-activation of PARP resulting from exposure to sunlight. PARP inhibition may contribute to the pharmacological and anti-inflammatory effects of vitamin D. PMID:17487428

  12. DNA polymerase β-dependent cell survival independent of XRCC1 expression

    PubMed Central

    Horton, Julie K.; Gassman, Natalie R.; Dunigan, Brittany B.; Stefanick, Donna F.; Wilson, Samuel H.

    2014-01-01

    Base excision repair (BER) is a primary mechanism for repair of base lesions in DNA such as those formed by exposure to the DNA methylating agent methyl methanesulfonate (MMS). Both DNA polymerase β (pol β)- and XRCC1-deficient mouse fibroblasts are hypersensitive to MMS. This is linked to a repair deficiency as measured by accumulation of strand breaks and poly(ADP-ribose) (PAR). The interaction between pol β and XRCC1 is important for recruitment of pol β to sites of DNA damage. Endogenous DNA damage can substitute for MMS-induced damage such that BER deficiency as a result of either pol β- or XRCC1-deletion is associated with sensitivity to PARP inhibitors. Pol β shRNA was used to knock down pol β in Xrcc1+/+ and Xrcc1−/− mouse fibroblasts. We determined whether pol β-mediated cellular resistance to MMS and PARP inhibitors resulted entirely from coordination with XRCC1 within the same BER sub-pathway. We find evidence for pol β- dependent cell survival independent of XRCC1 expression for both types of agents. The results suggest a role for pol β-dependent, XRCC1-independent repair. PAR immunofluorescence data are consistent with the hypothesis of a decrease in repair in both pol β knock down cell variants. PMID:25541391

  13. Evaluation of apoptosis induction using PARP cleavage on gastric adenocarcinoma and fibroblast cell lines by different strains of Helicobacter pylori.

    PubMed

    Mojtahedi, Ali; Salehi, Rasoul; Navabakbar, Farahtaj; Tamizifar, Hasan; Tavakkoli, Hamid; Duronio, Vincent

    2007-11-15

    Helicobacter pylori is one of the most common pathogens affecting humans and is the major environmental factor in the development of gastric cancer increasing from 4 to 6 folds the risk of its development. Variations in cancer risk among H. pylori infected individuals may correlate to difference in H. pylori strains, variable host characteristics and specific interactions between host and microbial determinants. To determine the effect of different strains of H. pylori on cellular apoptosis this study was designed an in vitro model using AGS and HEF cell lines. After specified time intervals total cell proteins was extracted and subjected to SDS-PAGE and immunoblotting using anti poly ADP-ribose polymerase (PARP) antibody. Decrease in densitometric value of PARP was indicative of higher level of apoptosis. The ability of apoptosis induction in AGS and HEF cell lines by wild type (cagA+/vacA+), cagA-/vacA+, vacA-/cagA+ and double negative (cagA-/vacA-) strains were significantly different. The assessed apoptosis in AGS cell line co-cultured with wild type strain was 3.22 +/- 0.2 in 24 h, 2.8 +/- 0.1 in 48 and 2.1 +/- 0.09 in 72 h of incubation time. Similar assessment with cagA-/vacA+ strains in AGS cells was 4.17 +/- 1.49 in 24 h, 3.32 +/- 0.45 in 48 h and 2.32 +/- 0.61 in 72 h incubation. A variation in apoptotic potential between the H. pylori strains on two cells (AGS and HEF) was observed. Based on present results, it is concluded that H. pylori strains as well as target cell types are important in pathogenesis and induction of apoptosis during a specified time interval.

  14. Molecular biological basis for the response of poly(ADP-rib) polymerase and NAD metabolism to DNA damage caused by mustard alkylating agents. Midterm report

    SciTech Connect

    Smulson, M.E.

    1996-07-01

    During the course of this contract, we have performed a variety of experiments to provide a strategy to modulate the nuclear enzyme poly(ADP-ribose) polymerase (PARP), in cultured keratinocytes. This enzyme modifies a variety of nuclear proteins utilizing NAD. DNA is required for the catalytic activity of the enzyme and the activity is dependent upon the presence of strand breaks in this DNA. It has been hypothesized that human skin exposed to mustards may develop blisters due to a generalized lowering of NAD in exposed skin cells. During the contract period, we have established a stably transfected human keratinocyte cell line which expresses antisense transcripts to PARP mRNA when these keratinocyte were grafted onto nude mice they formed histologically normal human skin. Accordingly, a model system has been developed in which the levels of PARP can be selectively manipulated in human keratinocytes in reconstituted epidermis as well. We also showed that PARP was proteolytically cleaved at the onset of spontaneous apoptosis following proteolytic conversion of CPP32b to its active form, termed `apopain`. Having characterized the events associated with apoptosis, we determined, during the last period, whether any or all of these features could be observed following exposure of keratinocytes to SM.

  15. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  16. Isolation, structure elucidation, total synthesis, and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Rivera, Augusto; Torres, Fernando; Rubio, Sara; Quintana, José; Estévez, Francisco; Bermejo, Jaime

    2006-09-21

    Two new long-chain ceramides, trametenamides A (1) and B (2), were isolated from the methanolic extract of the fruiting body of the fungus Trametes menziesii. The structures were elucidated by spectroscopic analyses and chemical transformations, and the absolute stereochemistry of trametenamide B (2) was determined by stereoselective total synthesis of four possible diastereomers. The acetyl derivative of the natural ceramide (1a) and synthetic ceramides (24-27) showed cytotoxicity on the human melanoma cell line SK-MEL-1, which was caused by induction of apoptosis as determined by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and procaspase-9 and -8 processing.

  17. NIH study uncovers new mechanism of action for class of chemotherapy drugs

    Cancer.gov

    NIH researchers have discovered a significant new mechanism of action for a class of chemotherapy drugs known as poly (ADP-ribose) polymerase inhibitors, or PARP inhibitors. They have also identified differences in the toxic capabilities of three drugs in

  18. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  19. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. The pioneering spirit of Takashi Sugimura: his studies of the biochemistry of poly(ADP-ribosylation) and of cancer.

    PubMed

    Masutani, Mitsuko

    2012-03-01

    Takashi Sugimura has accomplished many scientific achievements in the field of biochemistry and in cancer research. Sugimura's group identified the novel polymer poly(ADP-ribose) in parallel to P. Mandel's and O. Hayaishi's groups and demonstrated the presence of the enzyme poly(ADP-ribose) polymerase (PARP). He also discovered the cognate catabolic enzyme, poly(ADP-ribose) glycohydrolase (PARG) and further elucidated the biology of poly(ADP-ribose). The astonishing discovery of pierisin, an apoptogenic peptide that ADP-ribosyaltes DNA, profoundly illuminates his scientific character and curiosity as well. Sugimura's work in cancer research shows an extraordinarily wide range, which includes the establishment of new methods in chemical carcinogenesis, the identification of various environmental mutagens/carcinogens and new tumour promoters. He also established the concept that cancer is a disease of DNA and contributed to the development of the concept of the multi-step model of carcinogenesis.

  2. Repair of Topoisomerase I-Mediated DNA Damage

    PubMed Central

    Pommier, Yves; Barcelo, Juana; Rao, V. Ashutosh; Sordet, Olivier; Jobson, Andrew G.; Thibaut, Laurent; Miao, Zheyong; Seiler, Jennifer; Zhang, Hongliang; Marchand, Christophe; Agama, Keli; Redon, Christophe

    2008-01-01

    Topoisomerase I (Top1) is an abundant and essential enzyme. Top1 is the selective target of camptothecins, which are effective anticancer agents. Top1-DNA cleavage complexes can also be trapped by various endogenous and exogenous DNA lesions including mismatches, abasic sites and carcinogenic adducts. Tyrosyl-DNA phosphodiesterase (Tdp1) is one of the repair enzymes for Top1-DNA covalent complexes. Tdp1 forms a multiprotein complex that includes poly(ADP) ribose polymerase (PARP). PARP-deficient cells are hypersensitive to camptothecins and functionally deficient for Tdp1. We will review recent developments in several pathways involved in the repair of Top1 cleavage complexes and the role of Chk1 and Chk2 checkpoint kinases in the cellular responses to Top1 inhibitors. The genes conferring camptothecin hypersensitivity are compiled for humans, budding yeast and fission yeast. PMID:16891172

  3. Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose)

    PubMed Central

    Eustermann, Sebastian; Brockmann, Christoph; Mehrotra, Pawan Vinod; Yang, Ji-Chun; Loakes, David; West, Stephen C.; Ahel, Ivan; Neuhaus, David

    2010-01-01

    Poly(ADP-ribosyl)ation represents an important post-translational modification in higher eukaryotes. Several DNA repair/checkpoint proteins possess specific PAR-Binding Zinc finger (PBZ) modules critical for function. Here, we present solution structures of the two PBZ modules of APLF (Aprataxin and PNK-like factor), revealing a novel type of zinc finger. By combining in vivo PAR-binding data with NMR interaction data using PAR fragments, we suggest a structural basis for PBZ-PAR recognition. PMID:20098424

  4. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

    PubMed Central

    D'Amours, D; Desnoyers, S; D'Silva, I; Poirier, G G

    1999-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism. PMID:10455009

  5. Ca2+, Mg2+-dependent endonuclease and ADP-ribosylation.

    PubMed

    Yoshihara, K; Tanaka, Y; Kamiya, T

    1983-01-01

    The molecular mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease by ADP-ribosylation was studied by using purified bull seminal plasma Ca2+, Mg2+-dependent endonuclease, endonuclease-stimulating proteins, and poly-(ADP-ribose) polymerase. The activity of an essentially homogeneous preparation of the endonuclease was markedly suppressed by its preincubation with NAD+, poly-(ADP-ribose) polymerase, DNA, and Mg2+. These four components of the incubation mixture were all essential for the suppression of the activity. Analyses of the initial and the chased reaction product by Sephadex G-100 column chromatography and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that Ca2+, Mg2+-dependent endonuclease was ADP-ribosylated during the incubation and its activity was markedly inhibited by the elongation of the ADP-ribose polymer covalently attached to the endonuclease. When the suppressed enzymes were mildly treated with an alkaline pH of 10.0, the activity was restored almost to the level of the unmodified control sample. These facts indicate that the linkage between the enzyme and poly(ADP-ribose) is hydrolyzed at this pH, and that the liberated polymer itself does not appreciably affect the endonuclease activity. These results also suggest that an electric repulsion between negative charges on DNA and poly(ADP-ribose) attached to Ca2+, Mg2+-dependent endonuclease is the basis for the observed suppression of the enzyme by ADP-ribosylation. Though histone H2B and H1 are shown to be as good endonuclease-stimulators (1) as they are good acceptors of ADP-ribose in poly(ADP-ribose) polymerase reaction (2), ADP-ribosylation of these two proteins did not affect their endonuclease-stimulating ability appreciably, at least under the conditions used.

  6. Lantana camara Induces Apoptosis by Bcl-2 Family and Caspases Activation.

    PubMed

    Han, Eun Byeol; Chang, Bo Yoon; Jung, Young Suk; Kim, Sung Yeon

    2015-04-01

    Breast cancer is one of the most common cancers worldwide, and the second most fatal cancer in women after lung cancer. Because there are instances of cancer resistance to existing therapies, studies focused on the identification of novel therapeutic drugs are very important. In this study, we identified a natural anticancer agent from Lantana camara, a flowering plant species of the genus Verbena. The extract obtained from the L. camara exhibited cell death properties in the human breast cancer cell line, MCF-7. We found that the apoptosis induced by treatment with the L. camara extract was regulated by the Bcl-2 family. Bid and Bax was increased and Bcl-2 was decreased by L. camara extract. L. camara extract modulated cleavage of caspase-8, and caspase-9, as well as poly (ADP-ribose) polymerase (PARP). Our results support the potential use of the L. camara extract as an anti-breast cancer drug.

  7. Apoptosis-inducing effect of a palladium(II) saccharinate complex of terpyridine on human breast cancer cells in vitro and in vivo.

    PubMed

    Ari, Ferda; Cevatemre, Buse; Armutak, Elif Ilkay Ikitimur; Aztopal, Nazlihan; Yilmaz, Veysel T; Ulukaya, Engin

    2014-09-01

    The anti-growth effect of a palladium(II) complex-[PdCl(terpy)](sac)·2H2O] (sac=saccharinate, and terpy=2,2':6',2″-terpyridine)-was tested against human breast cancer cell lines, MCF-7 and MDA-MB-231. Anti-growth effect was assayed by the MTT and ATP viability assays in vitro and then confirmed on Balb/c mice in vivo. The mode of cell death was determined by both histological and biochemical methods. The Pd(II) complex had anti-growth effect on a dose dependent manner in vitro and in vivo. The cells died by apoptosis as evidenced by the pyknotic nucleus, cleavage of poly-(ADP-ribose) polymerase (PARP) and induction of active caspase-3. These results suggest that the palladium(II) saccharinate complex of terpyridine represents a potentially active novel complex for the breast cancer treatment, thus warrants further studies.

  8. Bak is a key molecule in apoptosis induced by methanol extracts of Codonopsis lanceolata and Tricholoma matsutake in HSC-2 human oral cancer cells

    PubMed Central

    SHIN, JI-AE; KIM, JUN SUNG; HONG, IN-SUN; CHO, SUNG-DAE

    2012-01-01

    Since the 5-year survival rate of oral cancer remains low, more effective and non-toxic therapeutic and preventive strategies are required. Certain natural products possess anti-cancer properties. The present study investigated the effects of the methanol extracts of Codonopsis lanceolata (MECI) and Tricholoma matsutake (METM) and identified the molecular target in HSC-2 human oral cancer cells. The results revealed that MECI and METM inhibited growth and induced apoptosis, as demonstrated by poly (ADP-ribose) polymerase (PARP) cleavage and nuclear condensation and fragmentation. The compounds also increased Bak protein expression, while Bax, Bcl-XL and Mcl-1 were not affected. The results of the present study show that MECI and METM induce apoptosis to inhibit tumor growth of HSC-2 cells by modulating the Bak protein and suggest that Codonopsis lanceolata and Tricholoma matsutake are potential anticancer drug candidates for oral cancer. PMID:23205139

  9. Poliovirus protease 3C(pro) kills cells by apoptosis.

    PubMed

    Barco, A; Feduchi, E; Carrasco, L

    2000-01-20

    The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation.

  10. Activation of caspase-3 in permanent and transient brain ischaemia in man.

    PubMed

    Love, S; Barber, R; Srinivasan, A; Wilcock, G K

    2000-08-03

    Animal studies have shown brain ischaemia to cause oxidative damage to DNA and activation of caspase-3, leading to apoptosis. These changes may be exacerbated by reperfusion. To assess caspase-3 activation after transient and permanent brain ischaemia in man, we examined brain tissue from patients who had experienced a cardiac arrest with resuscitation or an atherothrombotic brain infarct, and died 12 h to 9 days later. Sections were immunostained for activated caspase-3 or the 89 kDa caspase-3-mediated cleavage product of poly(ADP-ribose) polymerase. Brain ischaemia caused activation of caspase-3 in macrophages/microglia. Some neurons showed delayed activation of caspase-3 after cardiac arrest, but very few in atherothrombotic infarcts. In man, activation of caspase-3 plays little part in neuronal death in atherothrombotic infarcts but may contribute to delayed death of neurons after cardiac arrest.

  11. Proteasomes play an essential role in thymocyte apoptosis.

    PubMed Central

    Grimm, L M; Goldberg, A L; Poirier, G G; Schwartz, L M; Osborne, B A

    1996-01-01

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death. Images PMID:8670888

  12. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.

    PubMed Central

    Wirblich, C; Sibilia, M; Boniotti, M B; Rossi, C; Thiel, H J; Meyers, G

    1995-01-01

    Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size. PMID:7474137

  13. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  14. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  15. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    PubMed

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  16. Stochastic resetting in backtrack recovery by RNA polymerases

    NASA Astrophysics Data System (ADS)

    Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.

    2016-06-01

    Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.

  17. Directed Polymerase Evolution

    PubMed Central

    Chen, Tingjian; Romesberg, Floyd E.

    2014-01-01

    Polymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose. These systems draw on different methods of creating a pool of randomly mutated polymerases and are differentiated by the process used to isolate the most fit members. A variety of polymerases have been evolved, providing new or improved functionality, as well as interesting new insight into the factors governing activity. PMID:24211837

  18. Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro

    PubMed Central

    Jablonski, Joseph; Clementz, Mark; Ryan, Kevin; Valente, Susana T.

    2014-01-01

    The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs. PMID:24835792

  19. NAD+ metabolism in health and disease.

    PubMed

    Belenky, Peter; Bogan, Katrina L; Brenner, Charles

    2007-01-01

    Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida glabrata infection. In addition, the contribution that NAD(+) metabolism makes to lifespan extension in model systems indicates that therapies to boost NAD(+) might promote some of the beneficial effects of calorie restriction. Nicotinamide riboside, the recently discovered nucleoside precursor of NAD(+) in eukaryotic systems, might have advantages as a therapy to elevate NAD(+) without inhibiting sirtuins, which is associated with high-dose nicotinamide, or incurring the unpleasant side-effects of high-dose nicotinic acid.

  20. [Synthesis and activity evaluation of PARP-1 inhibitors with azaindole skeleton].

    PubMed

    Zhou, Jie; Zhu, Zhi-Xiang; Chen, Xiao-Guang; Xu, Bai-Ling

    2013-12-01

    PARP [poly(ADP-ribose)polymerase] represents a novel potential target in cancer therapy. It is involved in a DNA repair process by catalyzing the transfer of ADP-ribose units from NAD to a number of its substrate proteins. In this work, a series of novel azaindole derivatives was designed and synthesized. Moreover, 16 target molecules were screened and 8 compounds displayed inhibitory activity against PARP-1. It has been demonstrated that these azaindoles bearing cycloamine substituents at 2-position were active to both PARP-1 and PARP-2.

  1. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    SciTech Connect

    Zaalishvili, Giorgi; Margiani, Dina; Kutalia, Ketevan; Suladze, Saba; Zaalishvili, Tengiz

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  2. The expanding polymerase universe.

    PubMed

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  3. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  4. Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems.

    PubMed

    Li, Lei; Roy, Ken; Katyal, Sachin; Sun, Xuejun; Bléoo, Stacey; Godbout, Roseline

    2006-03-01

    DDX1 bodies, cleavage bodies, Cajal bodies (CBs), and gems are nuclear suborganelles that contain factors involved in RNA transcription and/or processing. Although all four nuclear bodies can exist as distinct entities, they often colocalize or overlap with each other. To better understand the relationship between these four nuclear bodies, we examined their spatial distribution as a function of the cell cycle. Here, we report that whereas DDX1 bodies, CBs and gems are present throughout interphase, CPSF-100-containing cleavage bodies are predominantly found during S and G2 phases, whereas CstF-64-containing cleavage bodies are primarily observed during S phase. All four nuclear bodies associate with each other during S phase, with cleavage bodies colocalizing with DDX1 bodies, and cleavage bodies/DDX1 bodies residing adjacent to gems and CBs. Although inhibitors of RNA transcription had no effect on DDX1 bodies or cleavage bodies, inhibitors of DNA replication resulted in loss of CstF-64-containing cleavage bodies. A striking effect on nuclear structures was observed with latrunculin B, an inhibitor of actin polymerization, resulting in the formation of needlelike nuclear spicules made up of CstF-64, CPSF-100, RNA, and RNA polymerase II. Our results suggest that cleavage body components are highly dynamic in nature.

  5. Dynamic Nature of Cleavage Bodies and Their Spatial Relationship to DDX1 Bodies, Cajal Bodies, and Gems

    PubMed Central

    Li, Lei; Roy, Ken; Katyal, Sachin; Sun, Xuejun; Bléoo, Stacey; Godbout, Roseline

    2006-01-01

    DDX1 bodies, cleavage bodies, Cajal bodies (CBs), and gems are nuclear suborganelles that contain factors involved in RNA transcription and/or processing. Although all four nuclear bodies can exist as distinct entities, they often colocalize or overlap with each other. To better understand the relationship between these four nuclear bodies, we examined their spatial distribution as a function of the cell cycle. Here, we report that whereas DDX1 bodies, CBs and gems are present throughout interphase, CPSF-100-containing cleavage bodies are predominantly found during S and G2 phases, whereas CstF-64-containing cleavage bodies are primarily observed during S phase. All four nuclear bodies associate with each other during S phase, with cleavage bodies colocalizing with DDX1 bodies, and cleavage bodies/DDX1 bodies residing adjacent to gems and CBs. Although inhibitors of RNA transcription had no effect on DDX1 bodies or cleavage bodies, inhibitors of DNA replication resulted in loss of CstF-64-containing cleavage bodies. A striking effect on nuclear structures was observed with latrunculin B, an inhibitor of actin polymerization, resulting in the formation of needlelike nuclear spicules made up of CstF-64, CPSF-100, RNA, and RNA polymerase II. Our results suggest that cleavage body components are highly dynamic in nature. PMID:16371507

  6. p63 in Development and Maintenance of the Prostate Epithelium

    DTIC Science & Technology

    2010-03-01

    by performing genetic lineage tracing experiments. We plan to generate mice expressing inducible Cre recombinase (Cre-ERT2) under the control of...caspase 3 levels and a concomitant decrease in the expression total caspase 3. Accordingly, cleaved poly (ADP-ribose) polymerase (PARP) protein

  7. p63 in Development and Maintenance of the Prostate Epithelium

    DTIC Science & Technology

    2009-03-01

    genetic lineage tracing experiments. We plan to generate mice expressing inducible Cre recombinase (Cre-ERT2) under the control of the p63...shown are representative of three independent experiments. 12 (ADP-ribose) polymerase (PARP) protein levels were increased after p63

  8. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action.

    PubMed

    Pommier, Yves; O'Connor, Mark J; de Bono, Johann

    2016-10-26

    Poly(ADP-ribose) polymerase (PARP) inhibitors are the first DNA damage response targeted agents approved for cancer therapy. Here, we focus on their molecular mechanism of action by PARP "trapping" and what this means for both clinical monotherapy and combination with chemotherapeutic agents.

  9. The development of PARP inhibitors in ovarian cancer: from bench to bedside

    PubMed Central

    Drew, Yvette

    2015-01-01

    The nuclear enzyme poly (ADP-ribose) polymerase (PARP) represents an important novel target in the treatment of ovarian cancer. This article charts over 50 years of research from the discovery of the first PARP enzyme in 1963, to the approval and licensing in 2015 of the first PARP inhibitor, olaparib (Lynparza), in the treatment of BRCA-mutated ovarian cancer. PMID:26669452

  10. The polymerase chain reaction.

    PubMed

    Welch, Hazel M

    2012-01-01

    The polymerase chain reaction (PCR) has had a significant impact on all aspects of the molecular biosciences, from cancer research to forensic science. The sensitivity and specificity inherent in the technique allow minute quantities of genetic material to be detected while the unique properties of thermostable DNA polymerase ensure that abundant copies are reliably reproduced to levels that can be visualized and/or used for further applications. This chapter describes applications of PCR and PCR-RT to investigate primary cancer and metastatic disease at both the DNA and mRNA expression levels.

  11. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  12. Microstructure and cleavage in lath martensitic steels.

    PubMed

    Morris, John W; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  13. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  14. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  15. Improving the prospects of cleavage-based nanopore sequencing engines.

    PubMed

    Brady, Kyle T; Reiner, Joseph E

    2015-08-21

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio D(bulk)/D(pore) by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  16. Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer.

    PubMed

    Qiu, Wei-Gang; Polotskaia, Alla; Xiao, Gu; Di, Lia; Zhao, Yuhan; Hu, Wenwei; Philip, John; Hendrickson, Ronald C; Bargonetti, Jill

    2017-01-01

    Over 80% of triple negative breast cancers express mutant p53. Mutant p53 often gains oncogenic function suggesting that triple negative breast cancers may be driven by p53 protein type. To determine the chromatin targets of this gain-of-function mutant p53 we used inducible knockdown of endogenous gain-of-function mtp53 in MDA-MB-468 cells in conjunction with stable isotope labeling with amino acids in cell culture and subcellular fractionation. We sequenced over 70,000 total peptides for each corresponding reciprocal data set and were able to identify 3010 unique cytoplasmic fraction proteins and 3403 unique chromatin fraction proteins. The present proteomics experiment corroborated our previous experiment-based results that poly ADP-ribose polymerase has a positive association with mutant p53 on the chromatin. Here, for the first time we report that the heterohexomeric minichromosome maintenance complex that participates in DNA replication initiation ranked as a high mutant p53-chromatin associated pathway. Enrichment analysis identified the minichromosome maintenance members 2-7. To validate this mutant p53- poly ADP-ribose polymerase-minichromosome maintenance functional axis, we experimentally depleted R273H mutant p53 and found a large reduction of the amount of minichromosome maintenance complex proteins on the chromatin. Furthermore a mutant p53-minichromosome maintenance 2 direct interaction was detected. Overexpressed mutant p53, but not wild type p53, showed a protein-protein interaction with minichromosome maintenance 2 and minichromosome maintenance 4. To target the mutant p53- poly ADP-ribose polymerase-minichromosome maintenance axis we treated cells with the poly ADP-ribose polymerase inhibitor talazoparib and the alkylating agent temozolomide and detected synergistic activation of apoptosis only in the presence of mutant p53. Furthermore when minichromosome maintenance 2-7 activity was inhibited the synergistic activation of apoptosis was blocked

  17. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    PubMed Central

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  18. The Treatment of BRCA1/2 Hereditary Breast Cancer and Sporadic Breast Cancer with Poly(ADP-ribose) PARP-1 Inhibitors and Chemotherapy

    DTIC Science & Technology

    2008-09-01

    American population d) D) Obesity, and breast cancer J. of Nursing and Bariatric Surgery . 2008 submitting. This paper uses in part mechanisms worked...National Med. Society. 2008 submitting D) Obesity, and breast cancer J. of Nursing and Bariatric Surgery . 2008 submitting Abstracts: A) De Soto JA...submitting De Soto JA. Obesity, breast cancer and bariatric surgery . J. of Nursing and Bariatric Surgery . 2008 submitting Davis JH, De Soto JA

  19. Cleavage plane determination in amphibian eggs.

    PubMed

    Sawai, T; Yomota, A

    1990-01-01

    In the present study using eggs of Cynops pyrrhogaster and Xenopus laevis, we examined (1) structural changes in the cytoplasm before the appearance of the cleavage furrow using a cytochemical method, (2) the time of cleavage plane determination depending on the mitotic apparatus (MA), by changing the shape of the eggs, and (3) the time of arrival of the "cleavage stimulus" at the cortex, by injecting colchicine solution or removing cytoplasm. Results were as follows: (1) In amphibian eggs the diastema was formed after development of the MA, appearing between the two asters after the MA had begun to degenerate. (2) The cleavage plane was preliminarily determined by the MA in the meta- to anaphase of karyokinesis. At this time, however, the egg cortex had not yet received the "cleavage stimulus" indispensable for furrow formation. (3) The egg cortex was really prepared to establish the furrow just after the edge of the diastema arrived at the cortex, when the MA had already degenerated. These results imply that the cleavage plane of the amphibian eggs is determined in two steps: the first, depending on the MA, is the determination of the direction of the growth of the diastema, and the second is the arrival of the "cleavage stimulus" at the cortex in association with the diastema.

  20. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats

    PubMed Central

    Eros, Krisztian; Magyar, Klara; Deres, Laszlo; Skazel, Arpad; Riba, Adam; Vamos, Zoltan; Kalai, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Toth, Kalman

    2017-01-01

    Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative

  1. Cleavage at Arg-1689 influences heavy chain cleavages during thrombin-catalyzed activation of factor VIII.

    PubMed

    Newell, Jennifer L; Fay, Philip J

    2009-04-24

    The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were approximately 50 and approximately 10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an approximately 340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed approximately 4- and 11-fold reductions in A2 subunit generation and approximately 3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.

  2. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin

    PubMed Central

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K.; Nichol, Stuart T.; Albariño, César G.; Spiropoulou, Christina F.

    2015-01-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV’s high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor’s maturation to GP38, and Gn precursor’s maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  3. The Key Involvement of Poly (ADP-Ribosylation) in Defense against Toxic Agents in Molecular Biology Studies

    DTIC Science & Technology

    1989-11-15

    polymerase increased very early and remained high for up to 48 after which it decreased to pre-induced levels. Polymerase transcript levels did not change...the Ub- PADPRP junction. HUMAN POLY(ADP-RIBOSE) POLYMERASE IS FUNCTIONAL IN SCHr2OSACCHAROMYCES POMBE (MS IN PREP.) The full length cDNA for human...PADPRP has been introduced into the yeast Schizosaccharomyces pombe under the transcriptional control of the SV40 early promoter. A number of haploid

  4. The Key Involvement of Poly(ADP-Ribosylation) in Defense Against Toxic Agents in Molecular Biology Studies

    DTIC Science & Technology

    1991-12-17

    for the polymerase increased very early and remained high for up to 48 after which it decreased to pre-induced levels. Polymerase transcript levels...cleave the Ub-PADPRP Junction. HUMAN POLY(ADP-RIBOSE) POLYMERASE IS FUNCTIONAL IN SC.=OSACCHAROMYCES POMBE (MS IN PREP.) The full length cDNA for human...PADPRP has been introduced into the yeast Schizosaccharomyces pombe under the transcriptional control of the SV40 early promoter. A number of haploid

  5. The role of mitochondria-mediated intrinsic death pathway in gingerdione derivative I6-induced neuronal apoptosis.

    PubMed

    Lin, Chia-Ho; Chen, Po-See; Kuo, Sheng-Chu; Huang, Li-Jiau; Gean, Po-Wu; Chiu, Ted-H

    2012-03-01

    Neuronal death induced by I6 displayed apoptotic characteristics but the precise mechanism has not been fully elucidated. In the present studies, I6 at 24 h after intraperitoneal administration significantly decreased the density of surviving neurons and increased caspase-3 activity in frontal cortex, suggesting that peripherally administered I6 may cross BBB to induce CNS toxicity. In rat embryonic primary cortical cells, I6-induced reduction of mitochondrial viability and neuronal apoptosis was inhibited by vitamin E. In addition, I6-induced reactive oxygen species (ROS) caused the disruption of mitochondria membrane potential (MMP), the release of cytochrome c, the activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase (PARP), resulting in activation of mitochondrial-mediated intrinsic death pathway. Pre-treatment with antioxidant vitamin E or N-acetylcysteine (NAC) completely abolished the I6-induced generation of ROS, loss of MMP, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of PARP. Carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial uncoupler, significantly reduced I6-induced neuronal death as well as caspase-3 activation and PARP cleavage. These results suggest that I6 induces neuronal death by promoting intracellular ROS production to cause a loss of MMP that result in release of cytochrome c and activation of mitochondria-mediated intrinsic death pathway.

  6. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGES

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore » rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  7. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  8. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  9. Structural basis of cohesin cleavage by separase

    PubMed Central

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-01-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man1,2. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin3–6, and by phosphorylation of both the enzyme and substrates7–12. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here, we report crystal structures of the separase protease domain from Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study13, mutating two securin residues in a conserved motif that partially matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  10. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    SciTech Connect

    Coseno,M.; Martin, G.; Berger, C.; Gilmartin, G.; Keller, W.; Doublie, S.

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.

  11. Nanomechanical cleavage of molybdenum disulphide atomic layers.

    PubMed

    Tang, Dai-Ming; Kvashnin, Dmitry G; Najmaei, Sina; Bando, Yoshio; Kimoto, Koji; Koskinen, Pekka; Ajayan, Pulickel M; Yakobson, Boris I; Sorokin, Pavel B; Lou, Jun; Golberg, Dmitri

    2014-04-03

    The discovery of two-dimensional materials became possible due to the mechanical cleavage technique. Despite its simplicity, the as-cleaved materials demonstrated surprising macro-continuity, high crystalline quality and extraordinary mechanical and electrical properties that triggered global research interest. Here such cleavage processes and associated mechanical behaviours are investigated by a direct in situ transmission electron microscopy probing technique, using atomically thin molybdenum disulphide layers as a model material. Our technique demonstrates layer number selective cleavage, from a monolayer to double layer and up to 23 atomic layers. In situ observations combined with molecular dynamics simulations reveal unique layer-dependent bending behaviours, from spontaneous rippling (<5 atomic layers) to homogeneous curving (~ 10 layers) and finally to kinking (20 or more layers), depending on the competition of strain energy and interfacial energy.

  12. Nanomechanical cleavage of molybdenum disulphide atomic layers

    NASA Astrophysics Data System (ADS)

    Tang, Dai-Ming; Kvashnin, Dmitry G.; Najmaei, Sina; Bando, Yoshio; Kimoto, Koji; Koskinen, Pekka; Ajayan, Pulickel M.; Yakobson, Boris I.; Sorokin, Pavel B.; Lou, Jun; Golberg, Dmitri

    2014-04-01

    The discovery of two-dimensional materials became possible due to the mechanical cleavage technique. Despite its simplicity, the as-cleaved materials demonstrated surprising macro-continuity, high crystalline quality and extraordinary mechanical and electrical properties that triggered global research interest. Here such cleavage processes and associated mechanical behaviours are investigated by a direct in situ transmission electron microscopy probing technique, using atomically thin molybdenum disulphide layers as a model material. Our technique demonstrates layer number selective cleavage, from a monolayer to double layer and up to 23 atomic layers. In situ observations combined with molecular dynamics simulations reveal unique layer-dependent bending behaviours, from spontaneous rippling (<5 atomic layers) to homogeneous curving (~ 10 layers) and finally to kinking (20 or more layers), depending on the competition of strain energy and interfacial energy.

  13. Cleavage fracture in bainitic and martensitic microstructures

    SciTech Connect

    Zhang, X.Z.; Knott, J.F.

    1999-09-29

    This paper addresses the mechanisms of cleavage fracture in the pressure-vessel steel A533B. Microstructures of single bainite microstructures exhibit a higher propensity for brittle cleavage fracture than do those of auto-tempered martensites. The K{sub 1c} values of mixed microstructures are determined by the statistical distribution of the two phases and the range of the values is bounded by limits set by those for the single-phase microstructures. The results are explained in terms of the RKR model, which involves a local cleavage stress {sigma}*{sub F} and a distance ahead of the macrocrack tip, X, as two critical parameters. It is found that the carbides or carbide colonies act as critical microcrack nuclei, and hence play a key role in determining the fracture toughness, although packet boundaries in bainite may give rise to pop-in arrests in displacement-controlled tests.

  14. Limited caspase cleavage of human BAP31.

    PubMed

    Määttä, J; Hallikas, O; Welti, S; Hildén, P; Schröder, J; Kuismanen, E

    2000-11-10

    Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.

  15. Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites.

    PubMed

    Thole, V; Hull, R

    1998-07-20

    Rice tungro spherical virus encodes a large polyprotein containing motifs with sequence similarity to viral serine-like proteases and RNA polymerases. Polyclonal antisera raised against domains of the putative protease and polymerase in fusion with glutathione S-transferase detected a protein of about 35 kDa and, in very low amounts, a protein of about 70 kDa, respectively, in extracts from infected plants. In in vitro transcription/translation systems and in Escherichia coli we demonstrated a proteolytic activity in the C-terminal region of the polyprotein. This protease rapidly cleaved its polyprotein precursors in vitro. Mutating a potential cleavage site located N-terminal to the protease domain, Gln2526-Asp2527, diminished processing. The transversion mutation at the putative C-terminal cleavage site of the protease, at Gln2852-Ala2853, led to a delayed and partial processing.

  16. Exploiting polymerase promiscuity: A simple colorimetric RNA polymerase assay.

    PubMed

    Vassiliou, W; Epp, J B; Wang, B B; Del Vecchio, A M; Widlanski, T; Kao, C C

    2000-09-01

    We developed a convenient colorimetric assay for monitoring RNA synthesis from DNA-dependent RNA polymerases (DdRp) and viral RNA-dependent RNA polymerases (RdRp). ATP and GTP with a p-nitrophenyl moiety attached to the gamma-phosphate were synthesized (PNP-NTPs). These PNP-NTPs can be used for RNA synthesis by several RNA polymerases, including the RdRps from brome mosaic virus and bovine viral diarrhea virus and the DdRps from bacteriophage T7 and SP6. When the polymerase reactions were performed in the presence of alkaline phosphatase, which digests the p-nitrophenylpyrophosphate side-product of phosphoryl transfer to the chromogenic p-nitrophenylate, an increase in absorbence at 405 nm was observed. These nucleotide analogues were used in continuous colorimetric monitoring of polymerase activity. Furthermore, the PNP-NTPs were found to be stable and utilized by RNA polymerases in the presence of human plasma. This simple colorimetric polymerase assay can be performed in a standard laboratory spectrophotometer and will be useful in screens for inhibitors of viral RNA synthesis.

  17. Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription.

    PubMed Central

    Lemm, J A; Rice, C M

    1993-01-01

    Using vaccinia virus to express Sindbis virus (SIN) nonstructural proteins (nsPs) and template RNAs, we showed previously that synthesis of all three viral RNAs occurred only during expression of either the entire nonstructural coding region or the polyprotein precursors P123 and P34. In this report, the vaccinia virus system was used to express cleavage-defective polyproteins and nsP4 proteins containing various N-terminal extensions to directly examine the roles of the P123 and P34 polyproteins in RNA replication. Replication and subgenomic mRNA transcription occurred during coexpression of P34 and P123 polyproteins in which cleavage was blocked at either or both of the 1/2 and 2/3 sites. For all cleavage-defective P123 polyproteins, however, the ratio of subgenomic to genomic RNA was decreased, suggesting that both the 1/2 and 2/3 cleavages are required for efficient subgenomic RNA transcription. These studies indicate that the uncleaved P123 polyprotein can function as a component of the viral replicase capable of synthesizing both plus- and minus-strand RNAs. In contrast, cleavage-defective P34 was unable to function in RNA replication, even in complementation experiments in which minus-strand RNAs were provided by nsP4. A P34 polyprotein whose cleavage site was not altered could only function in RNA replication in the presence of an active nsP2 protease. Although nsP4, the putative RNA polymerase, was capable of synthesizing only minus-strand RNAs during coexpression with P123, the addition of only 22 upstream residues to nsP4 allowed both replication and transcription of subgenomic RNA to occur. These data show that the conserved domains of both nsP3 and the nsP4 polymerase do not need to be present in a P34 polyprotein to form a functional plus-strand replicase-transcriptase and suggest that the presence of an active nsP2 protease and a cleavable 3/4 site correlates with synthesis of all virus-specific RNA species. Images PMID:8445717

  18. Conserved Endonuclease Function of Hantavirus L Polymerase

    PubMed Central

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U.; Kunz, Stefan; Engler, Olivier

    2016-01-01

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic “capping activity”. Hantaviruses therefore employ a “cap snatching” strategy acquiring short 5′ RNA sequences bearing 5′cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure–function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses. PMID:27144576

  19. Transcriptional proofreading in dense RNA polymerase traffic

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2011-12-01

    The correction of errors during transcription involves the diffusive backward translocation (backtracking) of RNA polymerases (RNAPs) on the DNA. A trailing RNAP on the same template can interfere with backtracking as it progressively restricts the space that is available for backward translocation and thereby ratchets the backtracked RNAP forward. We analyze the resulting negative impact on proofreading theoretically using a driven lattice gas model of transcription under conditions of dense RNAP traffic. The fraction of errors that are corrected is calculated exactly for the case of a single RNAP; for multi-RNAP transcription, we use simulations and an analytical approximation and find a decrease with increasing traffic density. Moreover, we ask how the parameters of the system have to be set to keep down the impact of the interference of a trailing RNAP. Our analysis uncovers a surprisingly simple picture of the design of the error correction system: its efficiency is essentially determined by the rate for the initial backtracking step, while the value of the cleavage rate ensures that the correction mechanism remains efficient at high transcription rates. Finally, we argue that our analysis can also be applied to cases with transcription-translation coupling where the leading ribosome on the transcript assumes the role of the trailing RNAP.

  20. Function of ZFAND3 in the DNA Damage Response

    DTIC Science & Technology

    2011-06-01

    replication fork, such as polymerase epsilon. Therefore, iPOND provides improved sensitivity of detection for replisome components compared to the...enrichment of DSB repair proteins Mre11, KU70/80 and the recombinase Rad51 at stalled forks. Our data suggest that persistently stalled forks collapse...approach: Poly(ADP) Ribose Polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26(22

  1. Enhancing the specificity of the enterokinase cleavage reaction to promote efficient cleavage of a fusion tag.

    PubMed

    Shahravan, S Hesam; Qu, Xuanlu; Chan, I-San; Shin, Jumi A

    2008-06-01

    In our work with designed minimalist proteins based on the bZIP motif, we have found our His-tagged proteins to be prone to inclusion body formation and aggregation; we suspect this problem is largely due to the His tag, known to promote aggregation. Using AhR6-C/EBP, a hybrid of the AhR basic region and C/EBP leucine zipper, as representative of our bZIP-like protein family, we attempted removal of the His tag with enterokinase (EK) but obtained the desired cleavage product in very small yield. EK is known for proteolysis at noncanonical sites, and most cleavage occurred at unintended sites. We manipulated experimental conditions to improve specificity of proteolysis and analyzed the cleavage products; no effect was observed after changing pH, temperature, or the amount of EK. We then suspected the accessibility of the EK site was impeded due to protein aggregation. We found that the easily implemented strategy of addition of urea (1-4 M) greatly improved EK cleavage specificity at the canonical site and reduced adventitious cleavage. We believe that this enhancement in specificity is due to a more "open" protein structure, in which the now accessible canonical target can compete effectively with adventitious cleavage sites of related sequence.

  2. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  3. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis.

    PubMed

    Bournival, Julie; Francoeur, Marc-André; Renaud, Justine; Martinoli, Maria-Grazia

    2012-06-01

    Complications of diabetes are now well-known to affect sensory, motor, and autonomic nerves. Diabetes is also thought to be involved in neurodegenerative processes characteristic of several neurodegenerative diseases. Indeed, it has been acknowledged recently that hyperglycemia-induced oxidative stress contributes to numerous cellular reactions typical of central nervous system deterioration. The goal of the present study was to evaluate the effects of the polyphenol quercetin and the lignan sesamin on high-glucose (HG)-induced oxidative damage in an in vitro model of dopaminergic neurons, neuronal PC12 cells. When incubated with HG (13.5 mg/mL), neuronal PC12 cells showed a significant increase of cellular death. Our results revealed that quercetin and sesamin defend neuronal PC12 cells from HG-induced cellular demise. An elevated level of reactive oxygen and nitrogen species is a consequence of improved oxidative stress after HG administration, and we demonstrated that this production diminishes with quercetin and sesamin treatment. We also found that quercetin and sesamin elicited an increment of superoxide dismutase activity. DNA fragmentation, Bax/Bcl-2 ratio, nuclear translocation of apoptosis-inducing factor, as well as poly(adenosine diphosphate [ADP]-ribose) polymerase cleavage were significantly reduced by quercetin and sesamin administration, affirming their antiapoptotic features. Also, HG treatment impacted caspase-3 cleavage, supporting caspase-3-dependent pathways as mechanisms of apoptotic death. Our results indicate a powerful role for these natural dietary compounds and emphasize preventive or complementary nutritional strategies for diabetes control.

  4. Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa.

    PubMed

    Kim, Eun Ji; Lim, Soon Sung; Park, So Young; Shin, Hyun-Kyung; Kim, Jong-Sang; Park, Jung Han Yoon

    2008-12-01

    Saussurea lappa (SL) is a plant regularly utilized in traditional herbal medicine, and in vitro cell culture studies have demonstrated that SL has anti-ulcer, anti-inflammatory, and anti-tumor properties. In order to explore the possibility that SL exerts chemopreventive effects in androgen-independent prostate cancer, we attempted to determine whether the hexane extract of SL (HESL) induces apoptosis of DU145 cells, as well as the mechanisms underlying this effect. HESL substantially reduced the number of viable cells and induced apoptosis in DU145 cells in a dose-dependent manner. HESL-induced the cleavage of poly (ADP-ribose) polymerase (PARP) and caspases 8, 9, 7, and 3. HESL increased the protein levels of Bax, Bak, Bok, Bik, truncated Bid (t-Bid), and Bmf with a concomitant increase in the permeability of the mitochondrial membrane and in the release of cytochrome c from the mitochondria. The active fraction of HESL was isolated by column chromatography and the structure of the active compound dehydrocostus lactone (DHCL) was identified via (1)H NMR and (13)C NMR. DHCL promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that HESL and its active principle, DHCL, inhibit cell growth and induce apoptosis in DU145 cells.

  5. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase.

    PubMed

    Du, J; Suzuki, H; Nagase, F; Akhand, A A; Yokoyama, T; Miyata, T; Kurokawa, K; Nakashima, I

    2000-03-01

    Methylglyoxal (MG) is a physiological metabolite, but it is known to be toxic, inducing stress in cells and causing apoptosis. This study examines molecular mechanisms in the MG-induced signal transduction leading to apoptosis, focusing particularly on the role of JNK activation. We first confirmed that MG caused apoptosis in Jurkat cells and that it was cell type dependent because it failed to induce apoptosis in MOLT-4, HeLa, or COS-7 cells. A caspase inhibitor, Z-DEVD-fmk, completely blocked MG-induced poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis, showing the critical role of caspase activation. Inhibition of JNK activity by a JNK inhibitor, curcumin, remarkably reduced MG-induced caspase-3 activation, PARP cleavage, and apoptosis. Stable expression of the dominant negative mutant of JNK also protected cells against apoptosis notably, although not completely. Correspondingly, loss of the mitochondrial membrane potential induced by MG was decreased by the dominant negative JNK. These results confirmed a crucial role of JNK working upstream of caspases, as well as an involvement of JNK in affecting the mitochondrial membrane potential.

  6. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    PubMed Central

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M.; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  7. Definition and redesign of the extended substrate specificity of granzyme B.

    PubMed

    Harris, J L; Peterson, E P; Hudig, D; Thornberry, N A; Craik, C S

    1998-10-16

    Granzyme B is a protease involved in the induction of rapid target cell death by cytotoxic lymphocytes. Definition of the substrate specificity of granzyme B allows for the identification of in vivo substrates in this process. By using the combinatorial methods of synthetic substrate libraries and substrate-phage display, an optimal substrate for granzyme B that spans over six subsites was determined to be Ile-Glu-Xaa-(Asp downward arrowXaa)-Gly, with cleavage of the Asp downward arrowXaa peptide bond. Granzyme B proteolysis was shown to be highly dependent on the length and sequence of the substrate, supporting the role of granzyme B as a regulatory protease. Arginine 192 was identified as a determinant of P3-Glu and P1-Asp substrate specificity. Mutagenesis of arginine 192 to glutamate reversed the preference for negatively charged amino acids at P3 to positively charged amino acids. The preferred substrate sequence matches the activation sites of caspase 3 and caspase 7 and thus is consistent with the role of granzyme B in activation of these proteases during apoptosis. The caspase substrate poly(ADP)-ribose polymerase is cleaved by granzyme B in a cell-free assay at two sites that resemble the granzyme B specificity determined by the combinatorial methods. Many caspase substrates contain granzyme B cleavage sites and are proposed as potential granzyme B targets, suggesting a redundant function with certain caspases.

  8. Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain

    PubMed Central

    Naseer, Muhammad Imran; Ullah, Ikram; Suh, Joo Won; Kim, Myeong Ok

    2011-01-01

    Background Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain. Methodology/Principal Findings Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment. Conclusion Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants. PMID:22164206

  9. Activation of group IVC phospholipase A2 by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells

    PubMed Central

    Richards, Sean M.; Elgayyar, Mona A.; Menn, Fu-Minn; Vulava, Vijay M.; McKay, Larry; Sanseverino, John; Sayler, Gary; Tucker, Dawn E.; Leslie, Christina C.; Lu, Kim P.; Ramos, Kenneth S.

    2016-01-01

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A2 (PLA2) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA2 in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA2 inhibited both 3H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA2. Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA2. PMID:21132278

  10. Human caspase-3 inhibition by Z-tLeu-Asp-H: tLeu(P{sub 2}) counterbalances Asp(P{sub 4}) and Glu(P{sub 3}) specific inhibitor truncation

    SciTech Connect

    Colantonio, Patrizia; Leboffe, Loris; Bolli, Alessandro; Marino, Maria; Ascenzi, Paolo; Luisi, Grazia

    2008-12-19

    Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with K{sub i}{sup 0} = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 and 25 deg. C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P{sub 2} position.

  11. Anti-leukemia effects of the novel synthetic 1-benzylindole derivative 21-900 in vitro and in vivo

    PubMed Central

    HuangFu, Wei-Chun; Chao, Min-Wu; Cheng, Chun-Chun; Wei, Yu-Chieh; Wu, Yi-Wen; Liou, Jing-Ping; Hsiao, George; Lee, Yu-Ching; Yang, Chia-Ron

    2017-01-01

    Cancers are the major cause of death worldwide. Chemotherapy using cytotoxic drugs and targeted therapy is required when surgery is difficult, ineffective, or impossible. We previously synthesized the novel synthetic 1-benzylindole derivative 21-900 and found that it inhibits histone deacetylase (HDAC) activities and tubulin assembly. Here we tested its effects on the human leukaemia cell lines HL-60 and MOLT-4 in vitro and in vivo. We found that its potent cytotoxic effects were mediated through cell cycle arrest at the G2/M phase, which increased the population of sub-G1 cells, leading to apoptosis. Further, tubulin was depolymerized by 21-900 in a manner similar to that of vincristine, leading to disruption of microtubule dynamics and increased levels of the mitotic marker MPM-2. Further, 21-900 increased the expression of cleavage form of poly (ADP-ribose) polymerase (PARP), caspase 3, 7 (cleavage form), and pro-apoptotic protein BAK and decreased the expression of pro-survival BCL-2-family proteins BCL-2, MCL-1, and BID pro-form, leading to the induction of apoptosis. The growth of tumours in nude mice formed by xenografts of HL-60 and MOLT-4 cells was significantly inhibited by 21-900 without causing the mice to lose body weight. These findings indicate that 21-900 may serve as a potent anti-leukaemia drug. PMID:28181578

  12. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway.

    PubMed

    Pan, Lydia; Becker, Hans; Gerhäuser, Clarissa

    2005-09-01

    Xanthohumol (XN) is one of the major prenylflavonoids found in hop cones (Humulus lupulus L.). In this study, we investigated the cell growth inhibitory potential of XN on cultured human colon cancer cells. Cell proliferation was measured by sulforhodamine B staining. Poly(ADP-ribose)polymerase (PARP) cleavage, activation of caspases-3, -7, -8, and -9, and Bcl-2 family protein expression were detected by Western blot analyses. XN significantly reduced proliferation of the HCT 116-derived colon cancer cell line 40--16. Half-maximal inhibitory concentrations decreased from 4.1 microM after 24 h treatment to 3.6 and 2.6 microM after 48 and 72 h incubation, respectively. Treatment with 15 microM XN for 48 h and with 5 microM for 72 h led to the detection of the cleaved 89 kDa fragment of 116 kDa PARP as an indication of apoptosis induction. Concomitantly, we observed activation and cleavage of the effector caspases-3 and -7, induced by activation of the initiator caspases -8 and -9. Expression of anti-apoptotic Bcl-2 was down regulated when the cells were treated with XN for 48--72 h. We conclude that induction of apoptosis by downregulation of Bcl-2 and activation of the caspase cascade may contribute to the chemopreventive or therapeutic potential of XN.

  13. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK.

    PubMed

    Karahashi, Hisae; Michelsen, Kathrin S; Arditi, Moshe

    2009-06-01

    Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.

  14. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-{beta}-hydroxybutyrate intervention

    SciTech Connect

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando; Miranda, Manuel; Narayan, Mahesh

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.

  15. Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells.

    PubMed

    Belichenko, I; Morishima, N; Separovic, D

    2001-06-01

    Oxidative stress, such as photodynamic therapy, is an apoptosis inducer. Apoptosis, as well as photosensitization, have been associated with disruption of the cytoskeletal network. The purpose of the present study was to assess the role of vimentin, a major cytoskeletal protein, in apoptosis after photodynamic treatment (PDT) with the silicon phthalocyanine Pc 4 in human Jurkat T cells. Here we show for the first time that photosensitization with Pc 4 initiates vimentin cleavage and that this event precedes poly(ADP-ribose) polymerase (PARP) degradation. Similar findings were obtained in the presence of C2-ceramide, an inducer of oxidative stress and apoptosis. In the presence of benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fluoromethylketone, a pan-caspase inhibitor, Pc 4-PDT-induced vimentin and PARP cleavage were abolished. In Jurkat cells transfected with a caspase-resistant vimentin apoptosis was partly suppressed and delayed post-Pc 4-PDT. We suggest that the full-length vimentin confers resistance to nuclear apoptosis after PDT with Pc 4.

  16. Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes versus mitochondria.

    PubMed

    Rodriguez, Myriam E; Zhang, Ping; Azizuddin, Kashif; Delos Santos, Grace B; Chiu, Song-mao; Xue, Liang-yan; Berlin, Jeffery C; Peng, Xinzhan; Wu, Hongqiao; Lam, Minh; Nieminen, Anna-Liisa; Kenney, Malcolm E; Oleinick, Nancy L

    2009-01-01

    The phthalocyanine photosensitizer Pc 4 has been shown to bind preferentially to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components, especially Bcl-2, are photodamaged and apoptosis, as indicated by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, is triggered. A series of analogs of Pc 4 were synthesized, and the results demonstrate that Pcs with the aminopropylsiloxy ligand of Pc 4 or a similar one on one side of the Pc ring and a second large axial ligand on the other side of the ring have unexpected properties, including enhanced cell uptake, greater monomerization resulting in greater intracellular fluorescence and three-fold higher affinity constants for liposomes. The hydroxyl-bearing axial ligands tend to reduce aggregation of the Pc and direct it to lysosomes, resulting in four to six times more killing of cells, as defined by loss of clonogenicity, than with Pc 4. Whereas Pc 4-PDT photodamages Bcl-2 and Bcl-xL, Pc 181-PDT causes much less photodamage to Bcl-2 over the same dose-response range relative to cell killing, with earlier cleavage of Bid and slower caspase-3-dependent apoptosis. Therefore, within this series of photosensitizers, these hydroxyl-bearing axial ligands are less aggregated than is Pc 4, tend to localize to lysosomes and are more effective in overall cell killing than is Pc 4, but induce apoptosis more slowly and by a modified pathway.

  17. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    PubMed

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC.

  18. Unexpected Trypsin Cleavage at Ubiquitinated Lysines

    PubMed Central

    2015-01-01

    Unexpected tryptic cleavage has been characterized at modified K48 residues in polyubiquitins. In particular, the tryptic products of all seven of the lysine-linked dimers of ubiquitin and of three trimers—linear Ub–48Ub–48Ub, linear Ub–63Ub–63Ub, and the branched trimer [Ub]2–6,48Ub—have been analyzed. In addition to the peptide products expected under commonly used tryptic conditions, we observe that peptides are formed with an unexpected ε-glycinylglycinyl-Lys carboxyl terminus when the site of linkage is Lys48. Trypsin from three different commercial sources exhibited this aberration. Initial cleavage at R74 is proposed in a distal ubiquitin to produce a glycinylglycinyl-lysine residue which is bound by trypsin. PMID:26182167

  19. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    DTIC Science & Technology

    2015-10-01

    strand breaks Recruitment of polymer binding proteins PARP1 PARP1 NHEJ: DNA-PK HR: BRCA1/2 RAD51 FA proteins Znl ZnII Catalytic domain Automodification...cleavage of NAD and addition of ADP- ribose units to various proteins, including its own automodification domain. Result- ing pADPr polymers (depicted...additional proteins that bind to polymer noncovalently.30,31 (C-F) Mod- els proposed to explain observed syn- thetic lethality between homologous

  20. Alpha and omega of carotenoid cleavage.

    PubMed

    Lakshman, M R

    2004-01-01

    In early 1900s, based on indirect evidence, Steenbock and Morton independently predicted that beta-carotene could be the biological precursor of vitamin A, although this notion was contested by others. In the 1930s, Thomas Moore showed the in vivo formation of vitamin A from beta-carotene. But it was not until Jim Olson and DeWitt Goodman independently showed in 1965 the formation of retinal, the aldehyde form of vitamin A from beta-carotene in cell-free extracts of liver and intestine, that this vital pathway of beta-carotene was recognized. Despite compelling evidence in several experimental systems for the central cleavage of beta-carotene to retinal by many investigators, there were some careful independent studies by Glover et al., Ganguly et al., Hansen and Meret and Krinsky et al. showing the eccentric cleavage of beta-carotene resulting in the formation of apocarotenoids both in vivo and in vitro. In an attempt to resolve this controversial issue, we revisited this problem in 1989 and showed beyond doubt the formation of retinal as the sole enzymatic product of a cytosolic enzyme from rabbit and rat intestinal mucosa by mass spectrometry and tracer analysis of the crystallized product. This was confirmed in 1996 by Nagao using the pig intestinal extract. Yeum et al. confirmed in 2000 that retinal is the sole product of beta-carotene cleavage in the presence of alpha-tocopherol, and that the observed formation of apocarotenoids occurs only in the absence of an antioxidant like alpha-tocopherol. In the same year, Barua and Olson also concluded from their in vivo studies in rats that central cleavage is by far the major pathway for the formation of vitamin A from beta-carotene. Beta, beta-carotene 15,15'-dioxygenase (EC 1.13.11.21) is the key enzyme that cleaves beta-carotene into two molecules of retinal. It is a cytosolic enzyme primarily localized in the duodenal mucosa although it has been found in liver. It is a 66 kDa sulfhydryl protein, requires

  1. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage.

    PubMed

    Minteer, Christopher J; Siegart, Nicolle M; Colelli, Kathryn M; Liu, Xinyue; Linhardt, Robert J; Wang, Chunyu; Gomez, Alvin V; Reitter, Julie N; Mills, Kenneth V

    2017-02-28

    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.

  2. Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3.

    PubMed

    Guergnon, Julien; Dessauge, Frédéric; Langsley, Gordon; Garcia, Alphonse

    2003-08-01

    The intracellular parasite Theileria parva (T. parva) can infect bovine B and T-lymphocytes. T. parva-infected cells become transformed, and they survive and proliferate independently of exogenous growth factors. In vivo the uncontrolled cellular proliferation associated with lymphocyte transformation underlies the pathogenesis of the disease called East Coast Fever. The transformed state of parasitised cells can be reversed upon elimination of the parasite by specific theilericide drugs. In this study we found that elimination of the parasite by buparvaquone induces apoptosis of transformed B and CD8(+) T-lymphocytes. Apoptosis is accompanied by the activation of caspase 9 and caspase 3 and processing of poly(ADP ribose) polymerase and is inhibited by Z-VAD a general caspase inhibitor. Based on these observations, we propose that the lack of activation of a caspase 9 > caspase 3 > poly(ADP ribose) polymerase pathway is important and protects T. parva-transformed cells from spontaneous apoptosis.

  3. A randomized Phase II study of veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in BRCA1/2 metastatic breast cancer: design and rationale.

    PubMed

    Isakoff, Steven J; Puhalla, Shannon; Domchek, Susan M; Friedlander, Michael; Kaufman, Bella; Robson, Mark; Telli, Melinda L; Diéras, Véronique; Han, Hyo Sook; Garber, Judy E; Johnson, Eric F; Maag, David; Qin, Qin; Giranda, Vincent L; Shepherd, Stacie P

    2017-02-01

    Veliparib is an orally administered poly(ADP-ribose) polymerase inhibitor that is being studied in Phase I-III clinical trials, including Phase III studies in non-small-cell lung cancer, ovarian cancer and breast cancer. Tumor cells with deleterious BRCA1 or BRCA2 mutations are deficient in homologous recombination DNA repair and are intrinsically sensitive to platinum therapy and poly(ADP-ribose) polymerase inhibitors. We describe herein the design and rationale of a Phase II trial investigating whether the addition of veliparib to temozolomide or carboplatin/paclitaxel provides clinical benefit over carboplatin/paclitaxel with placebo in patients with locally recurrent or metastatic breast cancer harboring a deleterious BRCA1 or BRCA2 germline mutation (Trial registration: EudraCT 2011-002913-12, NCT01506609).

  4. Activity dependent CAM cleavage and neurotransmission

    PubMed Central

    Conant, Katherine; Allen, Megan; Lim, Seung T.

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  5. Potent induction of apoptosis by beta-lapachone in human multiple myeloma cell lines and patient cells.

    PubMed Central

    Li, Y.; Li, C. J.; Yu, D.; Pardee, A. B.

    2000-01-01

    BACKGROUND: Human multiple myeloma (MM) remains an incurable hematological malignancy. We have reported that beta-lapachone, a pure compound derived from a plant, can induce cell death in a variety of human carcinoma cells, including ovary, colon, lung, prostate, pancreas, and breast, suggesting a wide spectrum of anticancer activity. MATERIALS AND METHODS: We first studied antisurvival effects of beta-lapachone in human MM cells by colony formation assay. To determine whether the differential inhibition of colony formation occurs through antiproliferative activity, we performed MTT assays. The cytotoxicity of beta-lapachone on human peripheral blood mononuclear cells was also measured by MTT assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the propidium iodide staining procedure to determine the sub-GI fraction, Annexin-V staining for externalization of phosphatidylserine, and fragmentation of cellular genomic DNA subjected to gel electrophoresis. To investigate the mechanism of anti-MM activity, we examined Bcl-2 expression, cytochrome C release, and poly (ADP ribose) polymerase cleavage by Western blot assay. RESULTS: We found that beta-lapachone (less than 4 microM) inhibits cell survival and proliferation by triggering cell death with characteristics of apoptosis in ARH-77, HS Sultan, and MM.1S cell lines, in freshly derived patient MM cells (MM.As), MM cell lines resistant to dexamethasone (MM.1R), doxorubicin (DOX.40), mitoxantrone (MR.20), and mephalan (LR5). Importantly, after treatment with beta-lapachone, we observed no apoptosis in peripheral blood mononuclear cells in either quiescent or proliferative states, freshly isolated from healthy donors. In beta-lapachone treated ARH-77, cytochrome C was released from mitochondria to cytosol, and poly (ADP ribose) polymerase was cleaved, signature events of apoptosis. Finally, the apoptosis induced by beta-lapachone in MM cells was not blocked

  6. Pathogen-mediated proteolysis of the cell death regulator RIPK1 and the host defense modulator RIPK2 in human aortic endothelial cells.

    PubMed

    Madrigal, Andrés G; Barth, Kenneth; Papadopoulos, George; Genco, Caroline Attardo

    2012-01-01

    Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders.

  7. MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells

    PubMed Central

    Xu, Kai; Lin, Jing; Zandi, Roza; Roth, Jack A.; Ji, Lin

    2016-01-01

    MicroRNAs (miRNAs) play an important role in targeted gene silencing by facilitating posttranscriptional and translational repression. However, the precise mechanism of mammalian miRNA-mediated gene silencing remains to be elucidated. Here, we used a stem-loop array reverse-transcription polymerase chain reaction assay to analyse miRNA-induced mRNA recognition, cleavage, posttranscriptional modification, and degradation. We detected endogenous let-7 miRNA-induced and Argonaute-catalysed endonucleolytic cleavage on target mRNAs at various sites within partially paired miRNA:mRNA sequences. Most of the cleaved mRNA 5′-fragments were 3′-oligouridylated by activities of terminal uridylyl transferases (TUTases) in miRNA-induced silencing complexes and temporarily accumulated in the cytosol for 5′-3′ degradation or other molecular fates. Some 3′-5′ decayed mRNA fragments could also be captured by the miRNA-induced silencing complex stationed at the specific miRNA:mRNA target site and oligouridylated by other TUTases at its proximity without involving Argonaute-mediated RNA cleavage. Our findings provide new insights into the molecular mechanics of mammalian miRNA-mediated gene silencing by coordinated target mRNA recognition, cleavage, uridylation and degradation. PMID:27440378

  8. [On the Features of Embryonic Cleavage in Diverse Fish Species].

    PubMed

    Desnitskiy, A G

    2015-01-01

    Literature on the earliest steps of fish embryogenesis (including a number of "non-model" species) has been considered. The main attention has been paid to the loss of cleavage division synchrony and the first latitudinal cleavage furrow. In teleostean embryos, the features of their meroblastic cleavage are not rigidly associated with egg size. The midblastula transition (in a form clearly enough) occurs in some chondrostean and teleostean fishes, but it has not been detected in the representatives of sarcopterygian and chondrichthyan fishes.

  9. Early cleavage in Phoronis muelleri (Phoronida) displays spiral features.

    PubMed

    Pennerstorfer, Markus; Scholtz, Gerhard

    2012-01-01

    The view that early cleavage in Phoronida follows a radial pattern is widely accepted. However, data supporting this characterization are ambiguous. Studies have been repeatedly reporting variation between individual embryos, and the occurrence of embryos exhibiting oblique divisions or nonradial cell arrangements. Such embryos were often considered to represent variation within radial cleavage, or artificial appearances. Cleavage in Phoronis muelleri was previously characterized as "derived radial," but also oblique spindles and cell elongations, and shifted cell arrangements were observed. We studied the early cleavage in P. muelleri applying 4D microscopy, fluorescent staining, and confocal laser scanning microscopy. To deal with the problem of variation we provide statistical evaluations of our data. These show that oblique divisions do not represent variational abnormalities. In fact, they reveal that most cells divide obliquely from the third cleavage onwards. What is more, in almost all cells the axis of the third cleavage is inclined dextrally. The fourth cleavage is even stronger sinistrally pronounced. Subsequently, the pattern of alternating cleavage orientation is largely restricted to animal and vegetal blastomeres. As a result of the obliqueness of divisions, four cells encircle the poles in most embryos. Cross furrows are occasionally present. We found no indications for radial cleavage in P. muelleri. In contrast, the observed cleavage displays several characters consistent with the pattern of spiral cleavage. A close relation of phoronid and spiralian cleavage is also suggested by molecular phylogenies, allying both groups in the Lophotrochozoa. We suggest our findings to represent morphological support for this lophotrochozoan/spiralian affinity of Phoronida.

  10. Position-dependent inhibition of the cleavage step of pre-mRNA 3'-end processing by U1 snRNP.

    PubMed

    Vagner, S; Rüegsegger, U; Gunderson, S I; Keller, W; Mattaj, I W

    2000-02-01

    The 3' ends of most eukaryotic pre-mRNAs are generated by 3' endonucleolytic cleavage and subsequent polyadenylation. 3'-end formation can be influenced positively or negatively by various factors. In particular, U1 snRNP acts as an inhibitor when bound to a 5' splice site located either upstream of the 3'-end formation signals of bovine papilloma virus (BPV) late transcripts or downstream of the 3'-end processing signals in the 5' LTR of the HIV-1 provirus. Previous work showed that in BPV it is not the first step, 3' cleavage, that is affected by U1 snRNP, but rather the second step, polyadenylation, that is inhibited. Since in HIV-1 the biological requirement is to produce transcripts that read through the 5' LTR cleavage site rather than being cleaved there, this mechanism seemed unlikely to apply. The obvious difference between the two examples was the relative orientation of the 3'-end formation signals and the U1 snRNP-binding site. In vitro assays were therefore used to assess the effect of U1 snRNP bound at various locations relative to a cleavage/polyadenylation site on the 3' cleavage reaction. U1 snRNP was found to inhibit cleavage when bound to a 5' splice site downstream of the cleavage/polyadenylation site, as in the HIV-1 LTR. U1 snRNP binding at this location was shown not to affect the recruitment of multiple cleavage/polyadenylation factors to the cleavage substrate, indicating that inhibition is unlikely to be due to steric hindrance. Interactions between U1A, U1 70K, and poly(A) polymerase, which mediate the effect of U1 snRNP on polyadenylation of other pre-mRNAs, were shown not to be required for cleavage inhibition. Therefore, U1 snRNP bound to a 5' splice site can inhibit cleavage and polyadenylation in two mechanistically different ways depending on whether the 5' splice site is located upstream or downstream of the cleavage site.

  11. Synthesis and biological activities of novel furo[2,3,4-jk][2]benzazepin-4(3H)-one derivatives.

    PubMed

    Ando, Kumiko; Akai, Yukiko; Kunitomo, Jun-Ichi; Yokomizo, Takehiko; Nakajima, Hidemitsu; Takeuchi, Tadayoshi; Yamashita, Masayuki; Ohta, Shunsaku; Ohishi, Takahiro; Ohishi, Yoshitaka

    2007-02-21

    A novel seven-membered lactam formation method has been established by intramolecular ring closure reaction of 4-bromo-(E)-3-[(2-alkylvinyl)carbonylamino]benzo[b]furans under Heck coupling conditions. A number of furo[2,3,4-jk][2]benzazepin-4(3H)-ones, tricyclicbenzo[b]furans, have been prepared by this method and evaluated for their leukotriene B(4) (LTB(4)) receptor and poly(ADP-ribose)polymerase-1 (PARP-1) inhibitory activities.

  12. Nicotinamide and the skin.

    PubMed

    Chen, Andrew C; Damian, Diona L

    2014-08-01

    Nicotinamide, an amide form of vitamin B3, boosts cellular energy and regulates poly-ADP-ribose-polymerase 1, an enzyme with important roles in DNA repair and the expression of inflammatory cytokines. Nicotinamide shows promise for the treatment of a wide range of dermatological conditions, including autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis. In particular, recent studies have also shown it to be a potential agent for reducing actinic keratoses and preventing skin cancers.

  13. Oxidative Stress Increases the Blood Brain Barrier Permeability Resulting in Increased Incidence of Brain Metastasis in BRCA Mutation Carriers

    DTIC Science & Technology

    2012-02-01

    inhibitors and/or selenium in preventing BBB-induced damage by oxidative stress, and in inhibiting breast cancer metastasis to the brain. Further...since selenium has anti- cancer properties that are linked with protection against oxidative stress and Poly (ADP-ribose) polymerase (PARP) inhibitors...BRCA1 in breast cancer cells resulted in an increase in cell proliferation, anchorage-independent growth, cell migration, invasion and a loss of p21

  14. Effect of Her-2/neu Signaling on Sensitivity to TRAIL in Prostate Cancer

    DTIC Science & Technology

    2005-06-01

    understand the of free glucose [1], a high concentration of lactic acid [2, 3], role of tumor microenvironment in the biochemical functions low-oxygen...be sensitized first to become responsive to TRAIL. In this study, we observed that pretreatment of acetyl salicylic acid (ASA) augmented TRAIL...ASA followed by TRAIL treatment activated caspases (8, 9, and 3) and cleaved PARP ( poly (ADP-ribose) polymerase), the hallmark feature of apoptosis

  15. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    DTIC Science & Technology

    2014-10-01

    recombination (HR) pathway of DNA repair. Previous work had shown that cancer cells with deleterious FA/HR pathway mutations are hypersensitive to poly...homologous recombination , nonhomologous end-joining (NHEJ), immunohistochemistry, poly(ADP-ribose) polymerase, Ku70, Ku80, PARP1, 53BP1, DNA -PK, Artemis...regulates five different DNA repair pathways (1, 2). Building on preclinical observations that defects in homologous recombination (HR) repair, which

  16. Efficient cleavage of p220 by poliovirus 2Apro expression in mammalian cells: effects on vaccinia virus.

    PubMed

    Aldabe, R; Feduchi, E; Novoa, I; Carrasco, L

    1995-10-24

    Poliovirus protease 2A cleaves p220, a component of initiation factor eIF-4F. Polyclonal antibodies that recognize p220 and the cleaved products from different species have been raised. Transfection of several cell lines with poliovirus 2Apro cloned in different plasmids leads to efficient cleavage of p220 upon infection with VT7, a recombinant vaccinia virus that expresses the T7 RNA polymerase. Under these conditions vaccinia virus protein synthesis is severely inhibited, while expression of poliovirus protein 2C from a similar plasmid has no effect. These results show by the first time the effects of p220 cleavage on vaccinia virus translation in the infected cells.

  17. Brittle to ductile transition in cleavage fracture

    SciTech Connect

    Argon, A.S.; Berg, Q.

    1992-09-30

    The problem of interpretation of fracture transition from brittle to ductile or vice versa is the subject of study. An instrumented tapered double cantilever beam (TDCB) has been developed as a definitive tool in the study of the intrinsic mechanism in single crystalline samples. In this experiment, the crack velocity is directly proportional to actuator velocity. In experiments performed on TDCB shaped Si single crystals, oriented for cleavage on either [l brace]111[r brace] or [l brace]110[r brace] planes, a number of troubling features of jerky carck extension were encountered. Evidence suggests that nucleation of dislocation loops from crack tip is easier than moving these dislocations away from crack tip. 14 refs, 1 fig.

  18. OH cleavage from tyrosine: debunking a myth

    PubMed Central

    Bury, Charles S.; Carmichael, Ian; Garman, Elspeth F

    2017-01-01

    During macromolecular X-ray crystallography experiments, protein crystals held at 100 K have been widely reported to exhibit reproducible bond scission events at doses on the order of several MGy. With the objective to mitigate the impact of radiation damage events on valid structure determination, it is essential to correctly understand the radiation chemistry mechanisms at play. OH-cleavage from tyrosine residues is regularly cited as amongst the most available damage pathways in protein crystals at 100 K, despite a lack of widespread reports of this phenomenon in protein crystal radiation damage studies. Furthermore, no clear mechanism for phenolic C—O bond cleavage in tyrosine has been reported, with the tyrosyl radical known to be relatively robust and long-lived in both aqueous solutions and the solid state. Here, the initial findings of Tyr –OH group damage in a myrosinase protein crystal have been reviewed. Consistent with that study, at increasing doses, clear electron density loss was detectable local to Tyr –OH groups. A systematic investigation performed on a range of protein crystal damage series deposited in the Protein Data Bank has established that Tyr –OH electron density loss is not generally a dominant damage pathway in protein crystals at 100 K. Full Tyr aromatic ring displacement is here proposed to account for instances of observable Tyr –OH electron density loss, with the original myrosinase data shown to be consistent with such a damage model. Systematic analysis of the effects of other environmental factors, including solvent accessibility and proximity to di­sulfide bonds or hydrogen bond interactions, is also presented. Residues in known active sites showed enhanced sensitivity to radiation-induced disordering, as has previously been reported. PMID:28009542

  19. Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line.

    PubMed

    Wang, Xiao Xia; Liu, Rong; Jin, Shun Qian; Fan, Fei Yue; Zhan, Qi Min

    2006-04-01

    Aurora-A kinase, a serine/threonine protein kinase, is a potential oncogene. Amplification and overexpression of Aurora-A have been found in several types of human tumors, including esophageal squamous cell carcinoma (ESCC). It has been demonstrated that cells overexpressing Aurora-A are more resistant to cisplatin-induced apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. In this report, we showed that overexpression of Aurora-A through stable transfection of pEGFP-Aurora-A in human ESCC KYSE150 cells significantly promoted cell proliferation and inhibited cisplatin- or UV irradiation-induced apoptosis. Cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP) in Aurora-A overexpressing cells were substantially reduced after cisplatin or UV treatment. Furthermore, we found that silencing of endogenous Aurora-A kinase with siRNA substantially enhanced sensitivity to cisplatin- or UV-induced apoptosis in human ESCC EC9706 cells. In parallel, overexpression of Aurora-A potently upregulated the expression of Bcl-2. Moreover, the knockdown of Bcl-2 by siRNA abrogated the Aurora-A's effect on inhibiting apoptosis. Taken together, these data provide evidence that Aurora-A overexpression promoting cell proliferation and inhibiting apoptosis, suggesting a novel mechanism that is closely related to malignant phenotype and anti-cancer drugs resistance of ESCC cells.

  20. Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells.

    PubMed

    Kim, Ji Young; Kim, Kyoung Mi; Nan, Ji-Xing; Zhao, Yu Zhe; Park, Pil-Hoon; Lee, Sang Jun; Sohn, Dong Hwan

    2003-04-01

    Hepatic stellate cells play central roles in hepatic fibrosis. The therapeutic goal in hepatic fibrosis is to halt or reverse fibrosis. Apoptosis is suggested to eliminate activated hepatic stellate cells in fibrosis. Salvia miltiorrhiza is a traditional medicine used to improve blood circulation and treat chronic hepatitis and hepatic fibrosis. We investigated the effect of tanshinone I, an ingredient of Salvia miltiorrhiza, on the apoptotic death of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated stellate cells. Treatment of T-HSC/Cl-6 cells with tanshinone I resulted in the induction of typical DNA fragmentation and DNA ladder formation in a concentration- and time-dependent manner. The induction of apoptosis was confirmed by flow cytometric analysis. Treatment of T-HSC/Cl-6 cells with tanshinone I caused activation of caspase-3 and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Tanshinone I induced mitochondrial membrane dipolarization and the release of cytochrome c from mitochondria into the cytosol. In conclusion, our results demonstrate that tanshinone I induces apoptosis of T-HSC/Cl-6 cells and that tanshinone I-induced apoptosis involves caspase activation through cytochrome c release and loss of mitochondrial membrane potential.

  1. The PARP inhibitor ABT-888 potentiates darbazine-induced cell death in carcinoids

    PubMed Central

    Somnay, Yash; Lubner, Sam; Gill, Harpreet; Matsumura, Jon Blake; Chen, Herbert

    2016-01-01

    Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy ASCL1 and CgA, shown by Western analysis. ATM phosphorylation and p21Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies. PMID:27632933

  2. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    PubMed

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.

  3. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis

    PubMed Central

    Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing

    2016-01-01

    Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465

  4. Apoptosis in Heart Failure: Release of Cytochrome c from Mitochondria and Activation of Caspase-3 in Human Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Narula, Jagat; Pandey, Pramod; Arbustini, Eloisa; Haider, Nezam; Narula, Navneet; Kolodgie, Frank D.; dal Bello, Barbara; Semigran, Marc J.; Bielsa-Masdeu, Anna; Dec, G. William; Israels, Sara; Ballester, Manel; Virmani, Renu; Saxena, Satya; Kharbanda, Surender

    1999-07-01

    Apoptosis has been shown to contribute to loss of cardiomyocytes in cardiomyopathy, progressive decline in left ventricular function, and congestive heart failure. Because the molecular mechanisms involved in apoptosis of cardiocytes are not completely understood, we studied the biochemical and ultrastructural characteristics of upstream regulators of apoptosis in hearts explanted from patients undergoing transplantation. Sixteen explanted hearts from patients undergoing heart transplantation were studied by electron microscopy or immunoblotting to detect release of mitochondrial cytochrome c and activation of caspase-3. The hearts explanted from five victims of motor vehicle accidents or myocardial ventricular tissues from three donor hearts were used as controls. Evidence of apoptosis was observed only in endstage cardiomyopathy. There was significant accumulation of cytochrome c in the cytosol, over myofibrils, and near intercalated discs of cardiomyocytes in failing hearts. The release of mitochondrial cytochrome c was associated with activation of caspase-3 and cleavage of its substrate protein kinase C δ but not poly(ADP-ribose) polymerase. By contrast, there was no apparent accumulation of cytosolic cytochrome c or caspase-3 activation in the hearts used as controls. The present study provides in vivo evidence of cytochrome c-dependent activation of cysteine proteases in human cardiomyopathy. Activation of proteases supports the phenomenon of apoptosis in myopathic process. Because loss of myocytes contributes to myocardial dysfunction and is a predictor of adverse outcomes in the patients with congestive heart failure, the present demonstration of an activated apoptotic cascade in cardiomyopathy could provide the basis for novel interventional strategies.

  5. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  6. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells.

    PubMed

    Chan, Wen-Hsiung; Wu, Hsin-Jung; Hsuuw, Yan-Der

    2005-05-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Elevated MG levels in diabetes patients are believed to contribute to diabetic complications. MG is cytotoxic through induction of apoptosis. Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties. In the present study, we investigated the effect of curcumin on MG-induced apoptotic events in human hepatoma G2 cells. We report that curcumin prevented MG-induced cell death and apoptotic biochemical changes such as mitochondrial release of cytochrome c, caspase-3 activation, and cleavage of PARP (poly [ADP-ribose] polymerase). Using the cell permeable dye 2',7'-dichlorofluorescein diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation, we found that curcumin abolished MG-stimulated intracellular oxidative stress. The results demonstrate that curcumin significantly attenuates MG-induced ROS formation, and suggest that ROS triggers cytochrome c release, caspase activation, and subsequent apoptotic biochemical changes.

  7. Induction of apoptosis by ethanolic extract of Corchorus olitorius leaf in human hepatocellular carcinoma (HepG2) cells via a mitochondria-dependent pathway.

    PubMed

    Li, Chia-Jung; Huang, Shang-Yu; Wu, Meng-Yu; Chen, Yu-Ching; Tsang, Shih-Fang; Chyuan, Jong-Ho; Hsu, Hsue-Yin

    2012-08-03

    Corchorus olitorius L.,is a culinary and medicinal herb, widely used as a vegetable in several countries in Asia. Many studies have shown that C. olitorius contains several antioxidants and exhibits anti-inflammatory and anti-proliferative activities in various in vitro and in vivo settings. Recently, C. olitorius has been approved for its antitumor activity; however, the underlying molecular mechanisms remain unclear. The goal of this study was to investigate the effects of ethanol extract of C. olitorius (ECO) on the growth of human hepatocellular carcinoma (HepG2) cells and gain some insights into the underlying mechanisms of its action. We found that HepG2 cells, treated with ECO for 24 h at a concentration higher than 12.5 μg/mL, displayed a strong reduction in cell viability, whereas normal FL83B hepatocytes were not affected. DNA fragmentation and nuclear condensation were evidenced by the increased subG1 population of ECO-treated HepG2 cells. ECO triggered the activation of procaspases-3 and -9 and caused the cleavage of downstream substrate, poly ADP-ribose polymerase (PARP), followed by down-regulation of the inhibitor of caspase-activated DNase (ICAD) signaling. Moreover, the increased release of cytochrome c from mitochondria with decreased membrane potential demonstrated the apoptosis induced through the caspases cascade. Our findings indicated that ECO might be effective against hepatocellular carcinoma through induction of apoptosis via mitochondria-dependent pathway.

  8. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721

    PubMed Central

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104

  9. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Tsuneki, Hiroshi; Sekizaki, Naoto; Suzuki, Takashi; Kobayashi, Shinjiro; Wada, Tsutomu; Okamoto, Tadashi; Kimura, Ikuko; Sasaoka, Toshiyasu

    2007-07-02

    Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of vascular complications in diabetes. Although some clinical evidences suggest the use of an antioxidant reagent coenzyme Q10 in diabetes with hypertension, the direct effect of coenzyme Q10 on the endothelial functions has not been examined. In the present study, we therefore investigated the protective effect of coenzyme Q10 against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC). HUVEC exposed to high glucose (30 mM) exhibited abnormal properties, including the morphological and biochemical features of apoptosis, overproduction of reactive oxygen species, activation of protein kinase Cbeta2, and increase in endothelial nitric oxide synthase expression. Treatment with coenzyme Q10 strongly inhibited these changes in HUVEC under high glucose condition. In addition, coenzyme Q10 inhibited high glucose-induced cleavage of poly(ADP-ribose) polymerase, an endogenous caspase-3 substrate. These results suggest that coenzyme Q10 prevents reactive oxygen species-induced apoptosis through inhibition of the mitochondria-dependent caspase-3 pathway. Moreover, consistent with previous reports, high glucose caused upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and promoted the adhesion of U937 monocytic cells. Coenzyme Q10 displayed potent inhibitory effects against these endothelial abnormalities. Thus, we provide the first evidence that coenzyme Q10 has a beneficial effect in protecting against the endothelial dysfunction by high glucose-induced oxidative stress in vitro.

  10. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.

    PubMed

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.

  11. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    PubMed

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01). Moreover, arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01) induced G1/G0 cell-cycle arrest. Our data provide evidence that arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC.

  12. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  13. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    PubMed Central

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  14. JNK inhibitor SP600125 promotes the formation of polymerized tubulin, leading to G2/M phase arrest, endoreduplication, and delayed apoptosis.

    PubMed

    Moon, Dong Oh; Kim, Mun Ock; Kang, Chang Hee; Lee, Jae Dong; Choi, Yung Hyun; Kim, Gi Young

    2009-09-30

    The JNK inhibitor SP600125 strongly inhibits cell proliferation in many human cancer cells by blocking cell-cycle progression and inducing apoptosis. Despite extensive study, the mechanism by which SP600125 inhibits mitosis-related effects in human leukemia cells remains unclear. We investigated the effects of SP600125 on the inhibition of cell proliferation and the cell cycle, and on microtubule dynamics in vivo and in vitro. Treatment of synchronized leukemia cells with varying concentrations of SP600125 results in significant G2/M cell cycle arrest with elevated p21 levels, phosphorylation of histone H3 within 24 h, and endoreduplication with elevated Cdk2 protein levels after 48 h. SP600125 also induces significant abnormal microtubule dynamics in vivo. High concentrations of SP600125 (200 microM) were required to disorganize microtubule polymerization in vitro. Additionally, SP600125- induced delayed apoptosis and cell death was accompanied by significant poly ADP-ribose polymerase (PARP) cleavage and caspase-3 activity in the late phase (at 72 h). Endoreduplication showed a greater increase in ectopic Bcl-2-expressing U937 cells at 72 h than in wild-type U937 cells without delayed apoptosis. These results indicate that Bcl-2 suppresses apoptosis and SP600125-induced G2/M arrest and endoreduplication. Therefore, we suggest that SP600125 induces mitotic arrest by inducing abnormal spindle microtubule dynamics.

  15. Unfolded Protein Response Promotes Doxorubicin-Induced Nonsmall Cell Lung Cancer Cells Apoptosis via the mTOR Pathway Inhibition.

    PubMed

    Zhao, Xiaofang; Yang, Yan; Yao, Fuli; Xiao, Bin; Cheng, Ying; Feng, Chunhong; Duan, Chunyan; Zhang, Chunyan; Liu, Youping; Li, Hong; Xiao, Bo; Dai, Rongyang

    2016-12-01

    Drug resistance is extremely common in nonsmall cell lung cancer (NSCLC) and is one of the major problems in NSCLC chemotherapy. However, the detailed mechanisms remain largely unknown. Unfolded protein response (UPR) is involved in the tumorigenesis of NSCLC. Here, the authors demonstrated that the UPR promotes poly (ADP-ribose) polymerase activation (PARP) cleavage in NSCLC cells on doxorubicin treatment, which is a hallmark of apoptosis and caspase activation. In NSCLC cells, doxorubicin treatment triggers the UPR activation, which subsequently promotes doxorubicin-mediated apoptosis. Importantly, mild endoplasmic reticulum stress precondition enhances the sensitivity of NSCLC cells to doxorubicin-initiated apoptosis. Furthermore, the eukaryotic translation initiation factor 2α (eIF2α) branch of the UPR is involved in the synergistic role of the UPR in NSCLC cell apoptosis on doxorubicin treatment. They also demonstrated that the mTOR pathway plays an essential role in synergistic induction of apoptosis by the UPR and doxorubicin in NSCLC cells. Taken together, these results provide a potential mechanism that the UPR promotes doxorubicin-induced apoptosis in NSCLC cells, at least in part, by eIF2α-mediated mTOR signal inactivation.

  16. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  17. Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Liu, Shouting; Li, Xiaofen; Yang, Changshan; Dou, Q Ping; Liu, Jinbao

    2014-04-01

    Verapamil (Ver), an inhibitor of the multidrug resistance gene product, has been proved to be a promising combination partner with other anti-cancer agents including proteasome inhibitor bortezomib. Gambogic acid (GA) has been approved for Phase II clinical trials in cancer therapy in China. We have most recently reported that GA is a potent proteasome inhibitor, with anticancer efficiency comparable to bortezomib but much less toxicity. In the current study we investigated whether Ver can enhance the cytotoxicity of GA. We report that (i) the combination of Ver and GA results in synergistic cytotoxic effect and cell death induction in HepG2 and K562 cancer cell lines; (ii) a combinational treatment with Ver and GA induces caspase activation, endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production; (iii) caspase inhibitor z-VAD blocks GA+Ver-induced apoptosis but not proteasome inhibition; (iv) cysteine-containing compound N-acetylcysteine (NAC) prevents GA+Ver-induced poly(ADP-ribose) polymerase cleavage and proteasome inhibition. These results demonstrate that Ver accelerates GA-induced cytotoxicity via enhancing proteasome inhibition and ROS production. These findings indicate that the natural product GA is a valuable candidate that can be used in combination with Ver, thus representing a compelling anticancer strategy.

  18. Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelmintic activities against Anisakis simplex and Hymenolepis nana of yakuchinone A from Alpinia oxyphylla

    PubMed Central

    2013-01-01

    Background Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. Methods Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. Results Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. Conclusions In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana. PMID:24070160

  19. Anticancer activity of BIM-46174, a new inhibitor of the heterotrimeric Galpha/Gbetagamma protein complex.

    PubMed

    Prévost, Grégoire P; Lonchampt, Marie O; Holbeck, Susan; Attoub, Samir; Zaharevitz, Daniel; Alley, Mike; Wright, John; Brezak, Marie C; Coulomb, Hélène; Savola, Ann; Huchet, Marion; Chaumeron, Sophie; Nguyen, Quang-Dé; Forgez, Patricia; Bruyneel, Erik; Bracke, Mark; Ferrandis, Eric; Roubert, Pierre; Demarquay, Danièle; Gespach, Christian; Kasprzyk, Philip G

    2006-09-15

    A large number of hormones and local agonists activating guanine-binding protein-coupled receptors (GPCR) play a major role in cancer progression. Here, we characterize the new imidazo-pyrazine derivative BIM-46174, which acts as a selective inhibitor of heterotrimeric G-protein complex. BIM-46174 prevents the heterotrimeric G-protein signaling linked to several GPCRs mediating (a) cyclic AMP generation (Galphas), (b) calcium release (Galphaq), and (c) cancer cell invasion by Wnt-2 frizzled receptors and high-affinity neurotensin receptors (Galphao/i and Galphaq). BIM-46174 inhibits the growth of a large panel of human cancer cell lines, including anticancer drug-resistant cells. Exposure of cancer cells to BIM-46174 leads to caspase-3-dependent apoptosis and poly(ADP-ribose) polymerase cleavage. National Cancer Institute COMPARE analysis for BIM-46174 supports its novel pharmacologic profile compared with 12,000 anticancer agents. The growth rate of human tumor xenografts in athymic mice is significantly reduced after administration of BIM-46174 combined with either cisplatin, farnesyltransferase inhibitor, or topoisomerase inhibitors. Our data validate the feasibility of targeting heterotrimeric G-protein functions downstream the GPCRs to improve anticancer chemotherapy.

  20. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract.

    PubMed

    Wu, Jin-Ji; Cui, Yanji; Yang, Yoon-Sil; Jung, Sung-Cherl; Hyun, Jin Won; Maeng, Young-Hee; Park, Deok-Bae; Lee, Sun-Ryung; Kim, Se-Jae; Eun, Su-Yong

    2013-04-01

    Mitochondrial membrane potential (∆Ψm ) contributes to determining a driving force for calcium to enter the mitochondria. It has been demonstrated that even a small mitochondrial depolarization is sufficient to prevent mitochondrial calcium overload and the subsequent apoptosis. Therefore, mild mitochondrial depolarization has been recently evaluated as a novel mechanism of neuroprotection via inhibiting neurotoxic mitochondrial calcium overload during neuronal insults. In the present study, using both real-time recording and flow cytometric analyses of ∆Ψm , we demonstrated that ethanolic peel extract of Citrus sunki Hort. ex Tanaka (CPE) and its active compounds are capable of inducing a mild mitochondrial depolarization. Polymethoxylated flavones such as nobiletin and tangeretin were found as the active compounds responsible for CPE effects on ∆Ψm . Neuronal viability was significantly increased in a dose-dependent manner by CPE treatment in H2 O2 -stimulated HT-22 cells as an in vitro neuronal insult model. CPE treatment significantly inhibited H2 O2 -induced apoptotic processes such as chromatin condensation, caspase 3 activation and anti-poly (ADP-ribose) polymerase (PARP) cleavage. CPE treatment significantly blocked mitochondrial calcium overload in H2 O2 -stimulated HT-22 neurons as indicated by rhod-2 acetoxymethyl ester. Taken together, our findings suggest that CPE and its active compounds may be considered as promising neuroprotective agents via inducing a mild mitochondrial depolarization.

  1. The anti-apoptotic and anti-oxidant effect of eriodictyol on UV-induced apoptosis in keratinocytes.

    PubMed

    Lee, Eung-Ryoung; Kim, Jung-Hyun; Kang, Yong-Jin; Cho, Ssang-Goo

    2007-01-01

    Recently, considerable scientific and therapeutic interest has focused on the structure and functions of the flavonoids. In a previous study, we suggested that hydroxyl (OH) substitutions on specific carbons in the skeleton of the flavonoids might significantly affect their apoptosis-modulating properties. Here, to investigate the effect of various OH substitutions on their diphenylpropane (C6C3C6) skeleton carbons, we selected 10 different flavonoids and assessed their role on UV-induced apoptosis of human keratinocytes, the principal cell type of epidermis. The results showed that 5,7,3',4'-tetrahydroxylflavanone (eriodictyol) and 3,4'-dihydroxy flavone (3,4'-DHF) had a positive effect on cell proliferation of human HaCaT keratinocytes. Treatment with eriodictyol in particular resulted in significant suppression of cell death induced by ultraviolet (UV) light, a major skin-damaging agent. We found that eriodictyol treatment apparently reduced the percentage of apoptotic cells and the cleavage of poly(ADP-ribose) polymerase, concomitant with the repression of caspase-3 activation and reactive oxygen species (ROS) generation. The anti-apoptotic and anti-oxidant effects of eriodictyol were also confirmed in UV-induced cell death of normal human epidermal keratinocyte (NHEK) cells. Taken together, these findings suggest that eriodictyol can be used to protect keratinocytes from UV-induced damage, implying the presence of a complex structure-activity relationship (SAR) in the differential apoptosis-modulating activities of various flavonoids.

  2. Inhibition of proteasome activity by various fruits and vegetables is associated with cancer cell death.

    PubMed

    Chen, Marina S; Chen, Di; Dou, Q Ping

    2004-01-01

    There is a large amount of scientific evidence showing that fruits and vegetables lower the risk of cancer. However, the responsible molecular mechanisms remain poorly understood. Our previous studies have demonstrated that inhibition of proteasomal chymotrypsin-like activity is associated with cancer cell apoptosis, which may also be the major mechanism responsible for the anticancer effects of green tea polyphenols. In the current study, we tested the hypothesis that some fruits and vegetables inhibit tumor cell proteasome activity and that this inhibition contributes to their cancer-preventative activities. We report that the extracts of apple and grape are more potent than onion, tomato and celery in: (i) inhibiting the proteasomal chymotrypsin-like activity in leukemia Jurkat T cell extract; (ii) accumulating the polyubiquitinated proteins in intact Jurkat T cells; (iii) inducing activation of caspase-3/-7 and cleavage of poly(ADP-ribose) polymerase in intact Jurkat T cells; and (iv) inducing the appearance of spherical cells preferentially in prostate cancer PC-3 over the normal NIH 3T3 cell line. We also found that strawberry extract had some effect on Jurkat T cell extract and the prostate PC-3 cell line but not on intact Jurkat T cells. Our findings suggest that the proteasome is a cancer-related molecular target for, at least, the extracts of apple, grape and onion, and that the inhibition of proteasome activity by these fruits or vegetable may contribute to their cancer-preventative effects, although other molecular mechanisms may also be involved.

  3. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells.

    PubMed

    Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-09-16

    Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.

  4. Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway.

    PubMed

    Ye, Shefang; Jiang, Yuanqin; Zhang, Honggang; Wang, Yifang; Wu, Yihui; Hou, Zhenqing; Zhang, Qiqing

    2012-03-01

    Carbon nanotubes (CNTs) have attracted great interest with respect to biomaterials, particularly for use as an implant material in bone-tissue engineering. Accordingly, the bone-tissue compatibility of CNTs and their influence on new bone formation are important issues. In the present study, we examined the effects of multi-wall carbon nanotubes (MWCNTs) on the receptor activator of nuclear factor kappaB ligand (RANKL)-supported osteoclastogenesis using a murine monocytic cell line RAW 264.7. MWCNTs significantly suppressed the differentiation of RAW 264.7 cells into osteoclasts. Treatment with MWCNTs induced apoptosis in osteoclasts as characterized by nuclear condensation, DNA fragmentation, caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, but did not decrease the cell viability of the osteoblast-like cell line MC3T3-E1. MWCNTs also induced loss of the mitochondrial membrane potential (deltapsim) by regulating expression of Bcl-2 family proteins and caused release of cytochrome c from mitochondria to cytosol. MWCNTs-induced apoptosis in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. The present study suggests that MWCNTs suppresse osteoclastogenesis via the inhibition of osteoclast differentiation and the induction of apoptosis in osteoclasts, rendering them promising candidate for the treatment of osteoclast-related diseases.

  5. Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox.

    PubMed

    Okouchi, Masahiro; Okayama, Naotsuka; Aw, Tak Yee

    2005-01-01

    Neuropathologies have been associated with neuronal de-differentiation and oxidative susceptibility. To address whether cellular states determines their oxidative vulnerability, we have challenged naive (undifferentiated) and nerve growth factor-induced differentiated pheochromocytoma (PC12) with methylglyoxal (MG), a model of carbonyl stress. MG dose-dependently induced greater apoptosis (24 h) in naive (nPC12) than differentiated (dPC12) cells. This enhanced nPC12 susceptibility was correlated with a high basal oxidized cellular glutathione-to-glutathione disulfide (GSH/GSSG) redox and an MG-induced GSH-to-Disulfide (GSSG plus protein-bound SSG) imbalance. The loss of redox balance occurred at 30 min post-MG exposure, and was prevented by N-acetylcysteine (NAC) that was unrelated to de novo GSH synthesis. NAC was ineffective when added at 1h post-MG, consistent with an early window of redox signaling. This redox shift was kinetically linked to decreased BcL-2, increased Bax, and release of mitochondrial cytochrome c which preceded caspase-9 and -3 activation and poly ADP-ribose polymerase (PARP) cleavage (1-2 h), consistent with mitochondrial apoptotic signaling. The blockade of apoptosis by cyclosporine A supported an involvement of the mitochondrial permeability transition pore. The enhanced vulnerability of nPC12 cells to MG and its relationship to cellular redox shifts will have important implications for understanding differential oxidative vulnerability in various cell types and their transition states.

  6. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    PubMed

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-09-08

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells.

  7. Cytotoxic activity of novel palladium-based compounds on leukemia cell lines.

    PubMed

    Antunovic, Maja; Kriznik, Bojana; Ulukaya, Engin; Yilmaz, Veysel T; Mihalic, Katarina C; Madunic, Josip; Marijanovic, Inga

    2015-02-01

    Effective treatment methods for human leukemia are under development, but so far none of them have been found to be completely satisfactory. It was recently reported that palladium complexes have significant anticancer activity as well as lower toxicity compared with some clinically used chemotherapeutics. The anticancer activities of two novel palladium(II) complexes, [Pd(sac)(terpy)](sac)·4H2O and [PdCl(terpy)](sac)·2H2O, were tested against three human leukemia cell lines, Jurkat, MOLT-4, and THP-1, in comparison with cisplatin and adriamycin. The cytotoxic effect of the drugs was determined using the MTT assay. Cell death was assessed using fluorescein isothiocyanate-annexin/propidium iodide staining for flow cytometry. Furthermore, p53 phosphorylation, poly(ADP-ribose) polymerase cleavage, and Bax and Bcl-2 mRNA levels were examined to elucidate the mechanism of cell death induction. Both complexes exhibited a significant dose-dependent antigrowth effect in vitro. The complexes predominately induced apoptosis, but necrosis was also observed. In-vitro results have shown that palladium(II) complexes may be regarded as potential anticancer agents for treating human leukemia. Therefore, further analysis to determine the putative mechanism of action and in-vivo studies on animal models are warranted.

  8. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    PubMed Central

    Szymanski, Pawel T.; Kuppast, Bhimanna; Ahmed, Safwat A.; Khalifa, Sherief; Fahmy, Hesham

    2011-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells. PMID:22363217

  9. Pedicularioside A from Buddleia lindleyana inhibits cell death induced by 1-methyl-4-phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons.

    PubMed

    Li, Yan-Yun; Lu, Jiang-Hai; Li, Quan; Zhao, Yu-Ying; Pu, Xiao-Ping

    2008-01-28

    Parkinson's disease is characterized by the progressive degeneration of midbrain dopaminergic neurons. Buddleia lindleyana is a traditional Chinese herb, commonly called Zui Yu Cao. The purification and identification of pedicularioside A and other phenylethanoid glycosides from this plant have been reported. However, their neuroprotective effects on the 1-methyl-4-phenylpyridinium ion (MPP(+))-induced death of rat mesencephalic neuron primary cultures and the precise mechanism of this protection remains unclear. We used the 3-(4, 5-dimethylthiozol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay for cellular growth to examine the effects of five phenylethanoid glycosides isolated from B. lindleyana, including pedicularioside A, leucosceptoside A, isoacteoside, acteoside, and arenariside, on the viability of mesencephalic neurons treated with MPP(+). Of the compounds tested, pedicularioside A exhibited the greatest degree of protection from MPP(+)-induced cell death. We also observed a marked increase in the number of tyrosine hydroxylase immunoreactive neurons. Pedicularioside A inhibited expression of the caspase-3 gene and cleavage of poly (ADP-ribose) polymerase (PARP) in cultures exposed to MPP(+). Our results suggest that pedicularioside A has a neuroprotective effect to improve the survival of mesencephalic neurons (dopaminergic neurons and non-dopaminergic neurons). The mode of action appears to be the inhibition of caspase-3 gene expression, thereby protecting mesencephalic neurons from MPP(+)-induced cell death.

  10. NPM-RAR binding to TRADD selectively inhibits caspase activation, while allowing activation of NFκB and JNK.

    PubMed

    Chattopadhyay, Anuja; Abecassis, Irina; Redner, Robert L

    2015-01-01

    The t(5;17) variant of acute promeylocytic leukemia (APL) expresses a fusion of nucleophosmin (NPM) with the retinoic acid receptor alpha (RARA). We have previously shown that NPM-RAR is a binding partner of the tumor necrosis factor (TNF) receptor type-I-associated DEATH domain protein, TRADD. Binding of TNF to its receptor, TNF-R, induces recruitment of TRADD, and subsequent recruitment of a cascade of proteins that ultimate activate caspase 3, nuclear factor κB (NFκB) and c-Jun N-terminal kinase (JNK). We have previously shown that NPM-RAR interaction with TRADD blocks TNF activation of caspase 3, caspase 8, poly(ADP-ribose) polymerase (PARP) cleavage and, ultimately, apoptosis. We now report that NPM-RAR expression is permissive for TNF activation of NFκB and JNK. We propose that inhibition of TNF activation of apoptosis, while preserving TNF activation of NFκB and JNK pathways that stimulate cell growth and survival, represents a novel mechanism through which NPM-RAR contributes to development of the leukemic phenotype.

  11. Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics?

    PubMed

    Banaganapalli, Babajan; Mulakayala, Chaitanya; Pulaganti, Madhusudana; Mulakayala, Naveen; Anuradha, C M; Suresh Kumar, Chitta; Shaik, Noor Ahmad; Yousuf Al-Aama, Jumana; Gudla, Dhananjaya

    2013-11-01

    Nature has been a provenance of medicinal agents for thousands of years. Resveratrol (RESL) is a naturally occurring polyphenolic compound in food stuffs such as peanuts, seeds, berries, grapes, and beverages (red wine). RESL has received significant attention due to a plethora of in vitro and in vivo reports on its cancer chemopreventive and therapeutic properties. In the present study, diacetate RESL derivative (RESL43) was synthesized. The RESL43 displayed potent cytotoxicity and triggered apoptosis in U937 cells as evidenced by poly (ADP-ribose) polymerase (PARP) cleavage, DNA fragmentation, morphological changes, and activation of FasR and FasL genes. The electrophoretic mobility shift assay revealed the suppression NFkB activity in U937 cells after treatment with RESL43 in corroboration with the deactivation of NFkB dependent genes such as IL-8, TNFR, and TNFα. Furthermore, molecular docking and dynamics studies have shown that RESL and RESL43 might exert their inhibitory activity on NFkB by altering the intramolecular binding abilities between DNA and NFkB. Taken together, RESL43 can have greater putative activity than parental RESL in a context of cancer chemoprevention and therapeutics. We suggest that the diacetate resveratrol derivative RESL43 warrants further evaluation in preclinical and clinical bridging studies in the near future.

  12. Targeting MKK3 as a novel anticancer strategy: molecular mechanisms and therapeutical implications

    PubMed Central

    Baldari, S; Ubertini, V; Garufi, A; D'Orazi, G; Bossi, G

    2015-01-01

    Mitogen-activated protein kinase kinase 3 (MAP2K3, MKK3) is a member of the dual specificity protein kinase group that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic or stress-inducing stimuli and participates in the MAP kinase-mediated signaling cascade, leading to cell proliferation and survival. Several studies highlighted a critical role for MKK3 in tumor progression and invasion, and we previously identified MKK3 as transcriptional target of mutant (mut) p53 to sustain cell proliferation and survival, thus rendering MKK3 a promising target for anticancer therapies. Here, we found that targeting MKK3 with RNA interference, in both wild-type (wt) and mutp53-carrying cells, induced endoplasmic reticulum stress and autophagy that, respectively, contributed to stabilize wtp53 and degrade mutp53. MKK3 depletion reduced cancer cell proliferation and viability, whereas no significant effects were observed in normal cellular context. Noteworthy, MKK3 depletion in combination with chemotherapeutic agents increased tumor cell response to the drugs, in both wtp53 and mutp53 cancer cells, as demonstrated by enhanced poly (ADP-ribose) polymerase cleavage and reduced clonogenic ability in vitro. In addition, MKK3 depletion reduced tumor growth and improved biological response to chemotherapeutic in vivo. The overall results indicate MKK3 as a novel promising molecular target for the development of more efficient anticancer treatments in both wtp53- and mutp53-carrying tumors. PMID:25633290

  13. PTPL1 and PKCδ contribute to proapoptotic signalling in prostate cancer cells.

    PubMed

    Castilla, C; Chinchón, D; Medina, R; Torrubia, F J; Japón, M A; Sáez, C

    2013-04-04

    PTPL1 is a non-receptor protein tyrosine phosphatase involved in apoptosis regulation, although controversial findings have been reported in different cancer types. We report here a proapoptotic role for PTPL1 in PC3 and LNCaP prostate cancer cells, as its absence induces apoptosis resistance upon treatment with different drugs. In PC3 cells, PTPL1 silencing by small interfering RNA influences the expression levels of Bcl-xL and Mcl-1(S) proteins as well as final events in the apoptotic process such as activation of caspases and caspase-mediated cleavage of proteins like Mcl-1 or poly (ADP-ribose) polymerase. We have identified PKCδ as an intermediary of PTPL1-mediated apoptotic signalling and that phosphorylation status of NF-κB and IκBα is influenced by PTPL1 and PKCδ. Furthermore, the loss of PTPL1 and PKCδ expression in poorly differentiated, more aggressive human prostate cancers also indicate that their absence could be related to apoptosis resistance and tumour progression.

  14. Mitochondrial Protein Targets of Thiol-Reactive Electrophiles

    PubMed Central

    Wong, Hansen L.; Liebler, Daniel C.

    2013-01-01

    Mitochondria serve a pivotal role in the regulation of apoptosis or programmed cell death. Recent studies have demonstrated that reactive electrophiles induce mitochondrion-dependent apoptosis. We hypothesize that covalent modification of specific mitochondrial proteins by reactive electrophiles serves as a trigger leading to the initiation of apoptosis. In this study, we identified protein targets of the model biotin-tagged electrophile probes N-iodoacetyl-N-biotinylhexylene-diamine (IAB) and 1-biotinamido-4-(4′-[maleimidoethylcyclohexane]carboxamido)butane (BMCC) in HEK293 cell mitochondrial fractions by liquid chromatography-tandem mass spectrometry (LC-MS-MS). These electrophiles reproducibly adducted a total of 1693 cysteine residues that mapped to 809 proteins. Protein modifications were selective in that only 438 cysteine sites in 1255 cysteinyl peptide adducts (35%) and 362 of the 809 identified protein targets (45%) were adducted by both electrophiles. Of these, approximately one-third were annotated to the mitochondria following protein database analysis. IAB initiated apoptotic events including cytochrome c release, caspase-3 activation, and poly(ADP-ribose)polymerase (PARP) cleavage, whereas BMCC did not. Of the identified targets of IAB and BMCC, 44 were apoptosis-related proteins, and adduction site specificity on these targets differed between the two probes. Differences in sites of modification between these two electrophiles may reveal alkylation sites whose modification triggers apoptosis. PMID:18324786

  15. Lysosome vs. mitochondrion as photosensitizer binding site: how does the tortoise overtake the hare?

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Azizuddin, Kashif; Chiu, Song-mao; Joseph, Sheeba; Rodriguez, Myriam E.; Xue, Liang-yan; Zhang, Ping; Kenney, Malcolm E.; Lam, Minh; Nieminen, Anna-Liisa

    2008-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals Case Medical Center, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components, especially the anti-apoptotic protein Bcl-2, are photodamaged. Apoptosis, as indicated by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, is triggered by the initial photodamage. A series of analogues of Pc 4 has been synthesized containing two axial ligands, one identical to the single ligand of Pc 4 and the other either the same as the Pc 4 ligand or bearing one or more hydroxyl groups. The hydroxyl-bearing axial ligands reduce the aggregation of the Pc in polar environments and direct the Pc's to lysosomes. Photoirradiation of cells that have taken up these Pc's into their lysosomes is 4-6 times more efficient at killing cells, as defined by loss of clonogenicity, than with Pc 4. Whereas PDT with Pc 4 photodamages Bcl-2 and Bcl-xL over the same dose response range as for cell killing, PDT with Pc 181 or the other lysosome-localizing Pc's causes much less photodamage to Bcl-2 relative to cell killing. Furthermore, in the case of the lysosome-bound Pc's, little or no caspase-3-dependent apoptosis is observed.

  16. Toxic profile of bergamot essential oil on survival and proliferation of SH-SY5Y neuroblastoma cells.

    PubMed

    Berliocchi, Laura; Ciociaro, Antonella; Russo, Rossella; Cassiano, Maria Gilda Valentina; Blandini, Fabio; Rotiroti, Domenicantonio; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana

    2011-11-01

    Cosmetic, pharmaceutical, food and confectionary industries make increasing use of plant extracts in their products. Despite the widespread use of products containing plant extracts, the mechanisms of their effects are not fully characterized. Bergamot essential oil (BEO; Citrus bergamia, Risso) is a well-known plant extract used in aromatherapy and it has analgesic, anxiolytic and neuroprotective effects in rodents. To elicit neuroprotection, BEO recruits Akt prosurvival pathways. However, Akt stimulates cell proliferation, which may also pose risks for health in case of prolonged use. To study the potential effects of BEO on survival and proliferation of dividing cells, we selected human SH-SY5Y neuroblastoma cells. BEO triggered concentration-dependent mitochondrial dysfunction, cytoskeletal reorganization, cell shrinkage, DNA fragmentation and both caspase-dependent and independent cell death. Analysis of cleavage products of poly-(ADP-ribose) polymerase (PARP) revealed caspase-3 activation, but also activation of additional protease families. As result of increased proteolytic activity, Akt protein levels decreased in BEO-treated cells. Our data show that BEO can be lethal for dividing cells by activating multiple pathways. While this may reduce the risk of unwanted cell proliferation after prolonged use, it does suggest a cautionary approach to the use of inappropriate dilutions of the oil that may cause cell death.

  17. Period-2: a tumor suppressor gene in breast cancer

    PubMed Central

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels. PMID:18334030

  18. Period-2: a tumor suppressor gene in breast cancer.

    PubMed

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-03-11

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels.

  19. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells.

    PubMed

    Tee, Thiam Tsui; Cheah, Yew Hoong; Hawariah, Lope Pihie Azimahtol

    2007-01-01

    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.

  20. Platelet-derived growth factor-C (PDGF-C) induces anti-apoptotic effects on macrophages through Akt and Bad phosphorylation.

    PubMed

    Son, Dain; Na, Yi Rang; Hwang, Eung-Soo; Seok, Seung Hyeok

    2014-02-28

    PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.

  1. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth.

    PubMed

    Chen, Lixia; Xia, Guiyang; Qiu, Feng; Wu, Chunli; Denmon, Andria P; Zi, Xiaolin

    2016-09-01

    We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as "hairy groundcherry" in English and "Deng-Long-Cao" in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation.

  2. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    PubMed

    Zhang, Zhong Rong; Al Zaharna, Mazen; Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  3. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis.

    PubMed

    Boivin, Dominique; Gendron, Sébastien; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2002-08-01

    Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytochrome c from mitochondria to the cytoplasm. Neovastat-induced apoptosis appears to be specific to endothelial cells because treatment of other cell types such as U-87, COS-7, NIH-3T3, and SW1353 did not result in increased caspase-3 activity. These results demonstrate that Neovastat contains a proapoptotic factor that specifically induces the activation of caspases in endothelial cells and the resulting apoptosis of these cells.

  4. Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway.

    PubMed

    Lian, Li-Hua; Park, Eun-Jeon; Piao, Hui-Shan; Zhao, Yu-Zhe; Sohn, Dong Hwan

    2005-06-01

    The aim of our study was to clarify the apoptosis pathway induced by aloe emodin, an hydroxyanthraquinone present in aloe vera leaves, in rat hepatic stellate cells transformed by simian virus 40 (t-HSC/Cl-6), which retain the features of activated rat stellate cells. Apoptosis was determined by DNA fragmentation, caspase activity assay and western blotting analysis. Treatment of t-HSC/Cl-6 cells with 12.5, 25, or 50 microM aloe emodin inhibited t-HSC/Cl-6 cell viability in a dose- and time-dependent manner. The induction of apoptosis by aloe emodin was confirmed by typical DNA ladder formation and annexin v-propidium iodide flow-cytometric analysis. Aloe emodin treatment of t-HSC/Cl-6 cells caused activation of caspase-3 and caspase-9, detected with a caspase activity assay, although no change was observed in caspase-8 activity. Western blotting showed caspase-3 and caspase-9 active forms and the subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Aloe emodin induced mitochondrial membrane depolarization. Our data also show that cytochrome c increased in the cytosol but decreased in the mitochondria in a time-dependent manner. Increased Bax and unchanged Bcl-2 levels resulted in an increased Bax/Bcl-2 ratio. Thus, our research provides evidence that aloe emodin-induced apoptosis involves a mitochondria-associated apoptosis pathway.

  5. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  6. Salinomycin simultaneously induces apoptosis and autophagy through generation of reactive oxygen species in osteosarcoma U2OS cells.

    PubMed

    Kim, Sang-Hun; Choi, Young-Jun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Noh, Kyung-Tae; Suh, Jeung-Tak; Ahn, Soon-Cheol

    2016-04-29

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore. It was reported to anticancer activity on various cancer cell lines. In this study, salinomycin was examined on apoptosis and autophagy through generation of reactive oxygen species (ROS) in osteosarcoma U2OS cells. Apoptosis, autophagy, mitochondrial membrane potential (MMP) and ROS were analyzed using flow cytometry. Also, expressions of apoptosis- and autophagy-related proteins were determined by western blotting. As a result, salinomycin triggered apoptosis of U2OS cells, which was accompanied by change of MMP and cleavage of caspases-3 and poly (ADP-ribose) polymerase. And salinomycin increased the expression of autophagy-related protein and accumulation of acidic vesicular organelles (AVO). Salinomycin-induced ROS production promotes both apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-l-cysteine (NAC), a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of autophagy by 3-methyladenine (3 MA) enhanced the salinoymcin-induced apoptosis. Taken together, these results suggested that salinomycin-induced autophagy, as a survival mechanism, might be a potential strategy through ROS regulation in cancer therapy.

  7. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition.

    PubMed

    Nateewattana, Jintapat; Dutta, Suman; Reabroi, Somrudee; Saeeng, Rungnapha; Kasemsook, Sakkasem; Chairoungdua, Arthit; Weerachayaphorn, Jittima; Wongkham, Sopit; Piyachaturawat, Pawinee

    2014-01-15

    Cholangiocarcinoma (CCA), the common primary malignant tumor of bile duct epithelial cells, is unresponsive to most chemotherapeutic drugs. Diagnosis with CCA has a poor prognosis, and therefore urgently requires effective therapeutic agents. In the present study we investigated anti-cancer effects of andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) and its mechanism in human CCA cell line KKU-M213 derived from a Thai CCA patient. By 24h after exposure, the analogue 3A.1 exhibited a potent cytotoxic effect on KKU-M213 cells with an inhibition concentration 50 (IC50) of approximately 8.0µM. Analogue 3A.1 suppressed DNA topoisomerase II α (Topo II α) protein expression, arrested the cell cycle at sub G0/G1 phase, induced cleavage of DNA repair protein poly (ADP-ribose) polymerases-1 (PARP-1), and enhanced expression of tumor suppressor protein p53 and pro-apoptotic protein Bax. In addition, analogue 3A.1 induced caspase 3 activity and inhibited cyclin D1, CDK6, and COX-2 protein expression. These results suggest that andrographolide analogue 3A.1, a novel topo II inhibitor, has significant potential to be developed as a new anticancer agent for the treatment of CCA.

  8. Natural pyrethrins induces apoptosis in human hepatocyte cells via Bax- and Bcl-2-mediated mitochondrial pathway.

    PubMed

    Yang, Yun; Zong, Mimi; Xu, Wenping; Zhang, Yang; Wang, Bo; Yang, Mingjun; Tao, Liming

    2017-01-25

    Natural pyrethrins have been widely used for pest control in organic farming and for residential indoor pest managements. Although the specific mechanisms underlying their activity are incompletely understood, natural pesticides are considered the safest based on their target specificity and rapid degradation in the environment. Here, we used in vitro bioassays to characterize the cytotoxic effects of natural pyrethrins and attempted to delineate the cellular and molecular mechanisms of their cytotoxicity against human hepatocytes. The results demonstrate that natural pyrethrins reduce cell viability and enhance apoptosis in HepG2 cells. In addition, the current data indicate that natural pyrethrins cause a reduction in the mitochondrial membrane potential (Δψm), increase reactive oxygen species production, and up-regulate the Bax/Bcl-2 expression, leading to the release of cytochrome-c into the cytosol, activation of caspase-9 and caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP). Taken together, the results indicate that natural pyrethrins has potentially exert adverse effects on human health by inducing caspase-dependent apoptosis in hepatocytes through Bax- and Bcl-2-mediated mitochondrial pathway.

  9. Trichostatin A induces apoptosis of p815 mastocytoma cells in histone acetylation- and mitochondria-dependent fashion.

    PubMed

    Yee, Su-Bog; Kim, Myung Soo; Baek, Soo Jin; Kim, Gyoo Cheon; Yoo, Ki Soo; Yoo, Young Hyun; Park, Bong Soo

    2004-11-01

    Although inhibition of histone deacetylase has been demonstrated to induce apoptosis of various cancer cells, there is no report on its effect on mast cell demise to date. Here we studied whether a histone deacetylase inhibitor Trichostatin A (TSA) produces apoptosis in p815 mastocytoma cells. TSA prominently increased the amount of acetylated histones, H3, H4, H2A and H2B, in p815 mastocytoma cells. TSA reduced the viability of p815 mastocytoma cells, and many apoptotic manifestations such as generation of DNA fragmentation, activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and increase of DNA hypoploidy proved that the reduction of viability resulted from apoptosis. Whereas TSA treatment increased the expression level of Bad, it decreased the level of Bcl-2, Bcl-xL, and X-linked inhibitor of apoptosis protein. The reduction of mitochondrial membrane potential, the release of cytochrome c and Smac/DIABLO to cytosol, and mitochondrial localization of Bad were also shown. Taken together, TSA induces apoptosis on p815 mastocytoma cells in histone acetylation- and mitochondria-dependent fashion. Our data therefore provide the possibility that TSA could be considered as a novel therapeutic strategy for mastocytoma from its apoptosis-inducing activity.

  10. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer.

    PubMed

    Zhang, Lisa; Boufraqech, Myriem; Lake, Ross; Kebebew, Electron

    2016-03-29

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells. The combination of carfilzomib and CUDC-101 synergistically inhibited cellular proliferation and caused cell death in multiple ATC cell lines harboring various driver mutations observed in human ATC tumors. This increased anti-ATC effect was associated with a synergistically enhanced G2/M cell cycle arrest and increased caspase 3/7 activity induced by the drug combination. Mechanistically, treatment with carfilzomib and CUDC-101 increased p21 expression and poly (ADP-ribose) polymerase protein cleavage. Our results suggest that combining carfilzomib and CUDC-101 would offer an effective therapeutic strategy to treat ATC.

  11. The novel compound STK405759 is a microtubule-targeting agent with potent and selective cytotoxicity against multiple myeloma in vitro and in vivo

    PubMed Central

    Rozic, Gabriela; Paukov, Lena; Jakubikova, Jana; Ben-Shushan, Dikla; Duek, Adrian; Leiba, Adi; Avigdor, Abraham; Nagler, Arnon; Leiba, Merav

    2016-01-01

    Despite advances in treatment, multiple myeloma (MM) remains incurable. Here we propose the use of STK405759, a novel microtubule targeting agent (MTA) and member of the furan metotica family for MM therapy. STK405759 inhibited tubulin polymerization in a cell-free system and in myeloma cells. This molecule had potent cytotoxic activity against several MM cell lines and patient-derived MM cells. Moreover, STK405759 demonstrated cytotoxicity against drug-resistant myeloma cells that overexpressed the P-glycoprotein drug-efflux pump. STK405759 was not cytotoxic to peripheral blood mononuclear cells, including activated B and T lymphocytes. This compound caused mitotic arrest and apoptosis of myeloma cells characterized by cleavage of poly (ADP-ribose) polymerase-1 and caspase-8, as well as decreased protein expression of mcl-1. The combination of STK405759 with bortezomib, lenalidomide or dexamethasone had synergistic cytotoxic activity. In in vivo studies, STK405759-treated mice had significantly decreased MM tumor burden and prolonged survival compared to vehicle treated- mice. These results provide a rationale for further evaluation of STK405759 as monotherapy or part of combination therapy for treating patients with MM. PMID:27613836

  12. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    PubMed

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  13. Induction of G2/M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells.

    PubMed

    Nicolini, Fabio; Burmistrova, Olga; Marrero, María Teresa; Torres, Fernando; Hernández, Cristina; Quintana, José; Estévez, Francisco

    2014-12-01

    Flavonoids are naturally occurring polyphenolic compounds which display a vast array of biological activities. In this study, we investigated the effects of tamarixetin on viability of human tumor cell lines and found that it was cytotoxic against leukemia cells and in particular P-glycoprotein-overexpressing K562/ADR cells. This compound inhibited proliferation in a concentration- and time-dependent manner, induced apoptosis and blocked cell cycle progression at G2 -M phase. This was associated with the accumulation of cyclin B1, Bub1 and p21(Cip1/Waf-1), changes in the phosphorylation status of cyclin B1, Cdk1, Cdc25C and MPM-2, and inhibition of tubulin polymerization. Moreover, cell death was found to be associated with cytochrome c release and cleavage of caspases and of poly(ADP-ribose) polymerase, and completely abrogated by the free-radical scavenger N-acetyl-L-cysteine. The sensitivity of leukemic cells to tamarixetin suggests that it should be considered for further preclinical and in vivo testing.

  14. Apoptosis is not the major death mechanism induced by celecoxib on rheumatoid arthritis synovial fibroblasts.

    PubMed

    Audo, Rachel; Deschamps, Véronique; Hahne, Michael; Combe, Bernard; Morel, Jacques

    2007-01-01

    Synovial hyperplasia in rheumatoid arthritis (RA) has been associated with apoptosis deficiency of RA fibroblast-like synoviocytes (FLSs). Celecoxib is a non-steroidal anti-inflammatory drug that has been demonstrated to induce apoptosis in some cellular systems. We have therefore examined the dose- and time-dependent effects of celecoxib on RA FLS viability. Treatment of RA FLSs with celecoxib for 24 hours reduced their viability in a dose-dependent manner. Analysis of celecoxib-treated RA FLSs for their content of apoptotic and necrotic cells by Annexin V staining and TO-PRO-3 uptake displayed only few apoptotic cells. Caspase 3, a key mediator of apoptosis, was not activated in celecoxib-treated RA FLSs, and the presence of specific caspase 3 or pan-caspase inhibitors did not affect celecoxib-induced cell death. Moreover, we could not detect other signs of apoptosis, such as cleavage of poly(ADP-ribose) polymerase, caspase 8 or 9, or DNA fragmentation. We therefore conclude that apoptosis is not the major death pathway in celecoxib-treated RA FLSs.

  15. Protective Effect of Tropical Highland Blackberry Juice (Rubus adenotrichos Schltdl.) Against UVB-Mediated Damage in Human Epidermal Keratinocytes and in a Reconstituted Skin Equivalent Model

    PubMed Central

    Calvo-Castro, Laura; Syed, Deeba N.; Chamcheu, Jean C.; Vilela, Fernanda M. P.; Pérez, Ana M.; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica’s tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm−2)-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. PMID:23711186

  16. Protective effect of tropical highland blackberry juice (Rubus adenotrichos Schltdl.) against UVB-mediated damage in human epidermal keratinocytes and in a reconstituted skin equivalent model.

    PubMed

    Calvo-Castro, Laura; Syed, Deeba N; Chamcheu, Jean C; Vilela, Fernanda M P; Pérez, Ana M; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2013-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280-320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm(-2))-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage.

  17. Pepsin-digested bovine lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells.

    PubMed

    Sakai, Takayuki; Banno, Yoshiko; Kato, Yukihiro; Nozawa, Yoshinori; Kawaguchi, Mitsuru

    2005-05-01

    Lactoferrin, a member of the transferrin family, is iron-binding and a strongly cationic 76 kDa glycoprotein. In breast milk it is secreted in high concentrations from glandular epithelia and is also present in other exocrine fluids including saliva. In the present study, we examined the biological mechanisms of apoptosis induced by pepsin-digested-lactoferrin peptide (Lfn-p) in the human oral squamous cell carcinoma cell line SAS. We found that treatment with Lfn-p induced cell death with apoptotic nuclear changes, preceded by the cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP) in the apoptotic cells. Treatment with Lfn-p induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), a member of the MAP kinase family, at early stages of apoptosis. Another MAP kinase, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), was also phosphorylated by treatment with Lfn-p. Pretreatment of SAS cells with SP600125, a JNK/SAPK inhibitor, diminished Lfn-induced apoptosis, as assessed by determining released lactate dehydrogenase activity. On the other hand, the MEK1 inhibitors PD98059 or U0126 showed no effect on repression of cell death, but rather an increase. These results suggest that JNK/SAPK activation may play an important role in Lfn-p-induced apoptotic cell death of human oral squamous cell carcinoma cells.

  18. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor.

    PubMed

    Hamidullah; Kumar, Rajeev; Saini, Karan Singh; Kumar, Amit; Kumar, Sudhir; Ramakrishna, E; Maurya, Rakesh; Konwar, Rituraj; Chattopadhyay, Naibedya

    2015-12-01

    Pre-clinical studies suggest mitigating effect of dietary flavonoid quercetin against cancer and other diseases. However, quercetin suffers from poor metabolic stability, which appears to offset its pharmacological efficacy. Recently, we isolated quercetin-6-C-β-D-glucopyranoside (QCG) from Ulmus wallichiana planchon that has greater stability profile over quercetin. In the present study, the cytotoxic and apoptotic effects of QCG on prostate cancer cells were assessed. QCG inhibited prostate cancer cell proliferation by arresting cells at G0/G1 phase of cell cycle and induces apoptosis as evident from cytochrome c release, cleavage of caspase 3 and poly (ADP-ribose) polymerase. Mechanistic studies revealed that QCG inhibited reactive oxygen species (ROS) generation and Akt/mTOR cell survival pathways. Aryl hydrocarbon receptor (AhR) was a critical mediator of QCG action as knockdown of AhR attenuated QCG-induced cell cycle arrest, apoptosis and inhibition of Akt/mTOR pathway in prostate cancer cells. Taken together, our results suggest that QCG exhibits anti-cancer activity against prostate cancer cells via AhR-mediated down regulation of Akt/mTOR pathway in PC-3 cells.

  19. Activation of caspase-3 in HL-60 cells treated with pyrithione and zinc.

    PubMed

    Kondoh, Masuo; Tasaki, Emi; Takiguchi, Masufumi; Higashimoto, Minoru; Watanabe, Yoshiteru; Sato, Masao

    2005-04-01

    The transition metal zinc (Zn) is an endogenous regulator of apoptosis. The ability of Zn to modulate apoptosis is believed to be mediated by the regulation of caspase activity. Previously, we reported that an acute influx of labile Zn induced apoptosis via activation of caspase in human leukemia HL-60 cells treated with a Zn ionophore (Py, pyrithione) and Zn at 1 and 25 microM, respectively. In the present study, we investigated the involvement of caspase-3 in Py (1 microM)/Zn (25 microM)-induced apoptosis in HL-60 cells. Pro-caspase-3 is an inactive form of caspase-3. The processing of pro-caspase-3, a sign of caspase-3 activation, occurred 6 h after treatment with Py/Zn. Proteolysis of poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3, was also observed 6 h after treatment with Py/Zn. We also confirmed the elevation of caspase-3 activity as an index of the cleavage of amino acid sequences recognized by activated caspase-3. An inhibitor of caspase-3 attenuated the appearance of the DNA ladder. Taken together, these results indicate that the activation of caspase-3 is partly responsible for the induction of apoptosis in Py/Zn-treated HL-60 cells.

  20. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  1. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.

    PubMed

    Yeh, Chi-Tai; Rao, Yerra Koteswara; Yao, Chih-Jung; Yeh, Chuan-Feng; Li, Chi-Han; Chuang, Shuang-En; Luong, John H T; Lai, Gi-Ming; Tzeng, Yew-Min

    2009-11-18

    Five lanostane (2, 3, 4, 6 and 8) and three ergostane-type (1, 5 and 7) triterpenes isolated from the fruiting bodies of Antrodia camphorata were evaluated for their in vitro cytotoxic data against various cancer cell types. The three zhankuic acids, 1, 5 and 7 displayed the most potent cytotoxic effect with an IC(50) value of 22.3-75.0microM. The compound 3 was selectively cytotoxic in three colon cancer cell lines (HT-29, HCT-116 and SW-480) and a breast cancer model (MDA-MB-231), whereas 8 only showed its cytotoxicity against MDA-MB-231. None of these isolates was toxic to mammary epithelial (MCF10A) and primary foreskin fibroblast (HS68) cells, two human normal cell lines. The compounds 1, 5 and 7 were also demonstrated to induce apoptosis in HT-29 and SW-480 cells, as confirmed by sub-G1 cell cycle arrest. In HT-29 cells, the expression of apoptosis-associated proteins poly-(ADP-ribose) polymerase cleavage, Bcl-2 and procaspase-3 were suppressed by compounds 1, 5 and 7. A mixture containing 4microM each of compounds 1, 5 and 7 also showed a synergistic cytotoxic effect in HT-29 cells.

  2. Identification of antrocin from Antrodia camphorata as a selective and novel class of small molecule inhibitor of Akt/mTOR signaling in metastatic breast cancer MDA-MB-231 cells.

    PubMed

    Rao, Yerra Koteswara; Wu, Alexander T H; Geethangili, Madamanchi; Huang, Ming-Te; Chao, Wan-Ju; Wu, Chih-Hsiung; Deng, Win-Ping; Yeh, Chi-Tai; Tzeng, Yew-Min

    2011-02-18

    The PI3K/Akt/mTOR pathway is considered to be an attractive target for the development of novel anticancer molecules. This paper reports for the first time that a small molecule, antrocin (MW = 234), from Antrodia camphorata was a potent antagonist in various cancer types, being highest in metastatic breast cancer MDA-MB-231 cells (MMCs) with an IC(50) value of 0.6 μM. Antrocin was a superior antiproliferator in MMCs as compared with doxorubicin and cisplatin, prevents colony formation, and was nontoxic to nontumorgenic MCF10A and HS-68 cells. Antrocin induced dose-dependent apoptosis in MMCs and caused cleavage of caspase-3 and poly(ADP-ribose) polymerase. Antrocin also caused a time-dependent decrease in protein expression of anti-apoptotic Bcl-2, Bcl-xL, survivin, and their mRNA, with concomitant increase in pro-apoptotic Bax and cytosolic cytochrome c. In a mechanistic study, antrocin suppressed the phosphorylation of Akt and its downstream effectors mTOR, GSK-3β, and NF-κB. Furthermore, down-regulation of Akt by small interfering RNA prior to antrocin treatment resulted in enhanced cell growth inhibition and apoptosis. Thus, antrocin as an Akt/mTOR dual inhibitor has broad applicability in the development of a clinical trial candidate for the treatment of metastatic breast cancer.

  3. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1,3-β-D-glucan derived from the fruiting body of Antrodia camphorata.

    PubMed

    Lee, Chu-I; Wu, Chih-Chung; Hsieh, Shu-Ling; Lee, Chun-Lin; Chang, Yueh-Ping; Chang, Chih-Chuan; Wang, Yi-Zhen; Wang, Jyh-Jye

    2014-12-01

    Antrodia camphorata is a fungus native to Taiwan, and it is considered a precious medicinal agent. We analyzed triterpenoids, polysaccharides and 1,3-β-D-glucan, three major effective components in A. camphorata extracts (ACE). ACE exhibited a selective cytotoxic effect on BxPC-3 human pancreatic cancer cells. ACE markedly inhibited the migration ability of BxPC-3 cells. Treatment of BxPC-3 cells with ACE resulted in the increase of cells in the sub-G1 phase and G2/M phase arrest. Apoptosis was confirmed by validating phosphatidylserine externalization, the observation of characteristic chromatin condensation, and nuclear DNA fragmentation. ACE induced apoptosis in BxPC-3 cells through a mitochondria-dependent pathway by triggering an appropriate balance of bax/bcl-2, cytochrome c release, activation of caspase-9 and -3, and poly(ADP-ribose) polymerase cleavage. ACE shows great therapeutic potential due to its cytotoxic effects against BxPC-3 cells which include inhibiting cell migration and inducing mitochondria-mediated apoptosis.

  4. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  5. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection.

    PubMed

    Hsu, Mei-Ju; Wu, Ching-Yi; Chiang, Hsiao-Han; Lai, Yu-Lin; Hung, Shan-Ling

    2010-10-01

    Phosphatidylinositol 3-kinases (PI3Ks) function in the anti-apoptotic pathway, and are commonly exploited by various viruses to accomplish the viral life cycle. This study examined the role of the PI3K pathway in human oral epithelial cells following herpes simplex virus type 1 (HSV-1) infection. The results showed that HSV-1 induced the phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3). Phosphorylation of Akt, but not GSK-3, induced by HSV-1 was PI3K-dependent. The expression of HSV-1 immediate-early genes may be involved in the initial phosphorylation of Akt and GSK-3. Inhibition of HSV-1-induced PI3K activity increased DNA fragmentation and cleavage of poly ADP-ribose polymerase (PARP), caspase 3 and caspase 7 compared with infected alone. Inhibition of PI3K attenuated the expression of HSV-1-infected cell protein 0 (ICP0), but not thymidine kinase (TK) and viral replication. Collectively, these data suggested that, in oral epithelial cells, the HSV-1-induced PI3K/Akt activation was involved in the regulation of apoptosis blockage and viral gene expression.

  6. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.

    PubMed

    Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

    2014-01-01

    Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.

  7. Strategy to Suppress Oxidative Damage-Induced Neurotoxicity in PC12 Cells by Curcumin: the Role of ROS-Mediated DNA Damage and the MAPK and AKT Pathways.

    PubMed

    Fu, Xiao-yan; Yang, Ming-feng; Cao, Ming-zhi; Li, Da-wei; Yang, Xiao-yi; Sun, Jing-yi; Zhang, Zong-yong; Mao, Lei-lei; Zhang, Shuai; Wang, Feng-ze; Zhang, Feng; Fan, Cun-dong; Sun, Bao-liang

    2016-01-01

    Oxidative damage plays a key role in causation and progression of neurodegenerative diseases. Inhibition of oxidative stress represents one of the most effective ways in treating human neurologic diseases. Herein, we evaluated the protective effect of curcumin on PC12 cells against H2O2-induced neurotoxicity and investigated its underlying mechanism. The results indicated that curcumin pre-treatment significantly suppressed H2O2-induced cytotoxicity, inhibited the loss of mitochondrial membrane potential (Δψm) through regulation of Bcl-2 family expression, and ultimately reversed H2O2-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage, DNA damage, and accumulation of reactive oxygen species (ROS) all confirmed its protective effects. Moreover, curcumin markedly alleviated the dysregulation of the MAPK and AKT pathways induced by H2O2. Taken together, our findings suggest that the strategy of using curcumin could be a highly effective way in combating oxidative damage-mediated human neurodegenerative diseases.

  8. Pheophorbide a mediated photodynamic therapy against human epidermoid carcinoma cells (A431)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Li, Wen-Tyng

    2011-02-01

    The objective of this study was to characterize the death mechanism of human epidermoid carcinoma cells (A431) triggered by photodynamic therapy (PDT) with pheophorbide a. First of all, significant inhibition on the survival of A431 cells (< 20 %) was observed when an irradiation dose of 5.1 J/cm2 combined with 125 ng/ml of pheophorbide a was applied. Survival rate of human keratinocyte cells was over 70 % under the same PDT parameters, suggesting that pheophorbide a killed cancer cells selectively. Mitochondria were the main target sites where pheophorbide a accumulated. Formation of reactive oxygen species (ROS) was detected after PDT. Addition of antioxidant N-Acetyl cysteine prevented ROS production and increased cell survival thereafter. The decrease in cellular ATP level was also observed at 6 hrs after PDT. Typical apoptotic cellular morphology and a collapse of mitochondrial membrane potential occurred after PDT. The loss of mitochondrial membrane potential led to the release of cytochrome c from the mitochondria to the cytosol, followed by activation of caspase-9 and caspase-3. The activation of caspase-3 resulted in poly(ADP-ribose) polymerase (PARP) cleavage in A431 cells, followed by DNA fragmentation. In conclusion, the results demonstrated that pheophorbide a possessed photodynamic action against A431 cells, mainly through apoptosis mediated by mitochondrial intrinsic pathway triggered by ROS.

  9. Identification of agents that reduce renal hypoxia-reoxygenation injury using cell-based screening: purine nucleosides are alternative energy sources in LLC-PK1 cells during hypoxia.

    PubMed

    Szoleczky, Petra; Módis, Katalin; Nagy, Nóra; Dóri Tóth, Zoltán; DeWitt, Douglas; Szabó, Csaba; Gero, Domokos

    2012-01-01

    Acute tubular necrosis is a clinical problem that lacks specific therapy and is characterized by high mortality rate. The ischemic renal injury affects the proximal tubule cells causing dysfunction and cell death after severe hypoperfusion. We utilized a cell-based screening approach in a hypoxia-reoxygenation model of tubular injury to search for cytoprotective action using a library of pharmacologically active compounds. Oxygen-glucose deprivation (OGD) induced ATP depletion, suppressed aerobic and anaerobic metabolism, increased the permeability of the monolayer, caused poly(ADP-ribose) polymerase cleavage and caspase-dependent cell death. The only compound that proved cytoprotective either applied prior to the hypoxia induction or during the reoxygenation was adenosine. The protective effect of adenosine required the coordinated actions of adenosine deaminase and adenosine kinase, but did not requisite the purine receptors. Adenosine and inosine better preserved the cellular ATP content during ischemia than equimolar amount of glucose, and accelerated the restoration of the cellular ATP pool following the OGD. Our results suggest that radical changes occur in the cellular metabolism to respond to the energy demand during and following hypoxia, which include the use of nucleosides as an essential energy source. Thus purine nucleoside supplementation holds promise in the treatment of acute renal failure.

  10. Hyperthermia-enhanced TRAIL- and mapatumumab-induced apoptotic death is mediated through mitochondria in human colon cancer cells.

    PubMed

    Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J

    2012-05-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately tenfold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization, and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases, and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases.

  11. BL-038, a Benzofuran Derivative, Induces Cell Apoptosis in Human Chondrosarcoma Cells through Reactive Oxygen Species/Mitochondrial Dysfunction and the Caspases Dependent Pathway.

    PubMed

    Liu, Ju-Fang; Chen, Chien-Yu; Chen, Hsien-Te; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-09-07

    Chondrosarcoma is a highly malignant cartilage-forming bone tumor that has the capacity to invade locally and cause distant metastasis. Moreover, chondrosarcoma is intrinsically resistant to conventional chemotherapy or radiotherapy. The novel benzofuran derivative, BL-038 (2-amino-3-(2,6-dichlorophenyl)-6-(4-methoxyphenyl)benzofuran-4-yl acetate), has been evaluated for its anticancer effects in human chondrosarcoma cells. BL-038 caused cell apoptosis in two human chondrosarcoma cell lines, JJ012 and SW1353, but not in primary chondrocytes. Treatment of chondrosarcoma with BL-038 also induced reactive oxygen species (ROS) production. Furthermore, BL-038 decreased mitochondrial membrane potential (MMP) and changed mitochondrial-related apoptosis, by downregulating the anti-apoptotic activity members (Bcl-2, Bcl-xL) and upregulating pro-apoptotic members (Bax, Bak) of the B-cell lymphoma 2 (Bcl-2) family of proteins, key regulators of the apoptotic machinery in cells. These results demonstrate that in human chondrosarcoma cells, the apoptotic and cytotoxic effects of BL-038 are mediated by the intrinsic mitochondria-mediated apoptotic pathway, which in turn causes the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), to elicit apoptosis response. Our results show that the benzofuran derivative BL-038 induces apoptosis in chondrosarcoma cells.

  12. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Anand, Pinki; Kuang, Anxiu; Akhtar, Feroz; Scofield, Virginia L.

    2016-01-01

    Ubiquitin proteasome system (UPS) dysfunction has been implicated in the development of many neuronal disorders, including Parkinson's disease (PD). Previous studies focused on individual neuroprotective agents and their respective abilities to prevent neurotoxicity following a variety of toxic insults. However, the effects of the antioxidant N-acetylcysteine (NAC) on proteasome impairment-induced apoptosis have not been well characterized in human neuronal cells. The aim of this study was to determine whether cotreatment of NAC and insulin-like growth factor-1 (IGF-1) efficiently protected against proteasome inhibitor-induced cytotoxicity in SH-SY5Y cells. Our results demonstrate that the proteasome inhibitor, MG132, initiates poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 activation, and nuclear condensation and fragmentation. In addition, MG132 treatment leads to endoplasmic reticulum (ER) stress and autophagy-mediated cell death. All of these events can be attenuated without obvious reduction of MG132 induced protein ubiquitination by first treating the cells with NAC and IGF-1 separately or simultaneously prior to exposure to MG132. Moreover, our data demonstrated that the combination of the two proved to be significantly more effective for neuronal protection. Therefore, we conclude that the simultaneous use of growth/neurotrophic factors and a free radical scavenger may increase overall protection against UPS dysfunction-mediated cytotoxicity and neurodegeneration. PMID:27774335

  13. The cytotoxic synergy of nanosecond electric pulses and low temperature leads to apoptosis

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Gianulis, Elena C.; Jensen, Sarah Damsbo; Pakhomova, Olga N.

    2016-01-01

    Electroporation by nanosecond electric pulses (nsEP) is an emerging modality for tumor ablation. Here we show the efficient induction of apoptosis even by a non-toxic nsEP exposure when it is followed by a 30-min chilling on ice. This chilling itself had no impact on the survival of U-937 or HPAF-II cells, but caused more than 75% lethality in nsEP-treated cells (300 ns, 1.8-7 kV/cm, 50-700 pulses). The cell death was largely delayed by 5-23 hr and was accompanied by a 5-fold activation of caspase 3/7 (compared to nsEP without chilling) and more than 60% cleavage of poly-ADP ribose polymerase (compared to less than 5% in controls or after nsEP or chilling applied separately). When nsEP caused a transient permeabilization of 83% of cells to propidium iodide, cells placed at 37 °C resealed in 10 min, whereas 60% of cells placed on ice remained propidium-permeable even in 30 min. The delayed membrane resealing caused cell swelling, which could be blocked by an isosmotic addition of a pore-impermeable solute (sucrose). However, the block of swelling did not prevent the delayed cell death by apoptosis. The potent enhancement of nsEP cytotoxicity by subsequent non-damaging chilling may find applications in tumor ablation therapies. PMID:27833151

  14. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri.

    PubMed

    Song, K-J; Jang, Y S; Lee, Y A; Kim, K A; Lee, S K; Shin, M H

    2011-07-01

    Naegleria fowleri, a free-living amoeba, is the causative pathogen of primary amoebic meningoencephalitis in humans and experimental mice. N. fowleri is capable of destroying tissues and host cells through lytic necrosis. However, the mechanism by which N. fowleri induces host cell death is unknown. Electron microscopy indicated that incubation of Jurkat T cells with N. fowleri trophozoites induced necrotic morphology of the Jurkat T cells. N. fowleri also induced cytoskeletal protein cleavage, extensive poly (ADP-ribose) polymerase hydrolysis and lactate dehydrogenase (LDH) release. Although no activation of caspase-3 was observed in Jurkat T cells co-incubated with amoebae, intracellular reactive oxygen species (ROS) were strongly generated by NADPH oxidase (NOX). Pretreating cells with necroptosis inhibitor necrostatin-1 or NOX inhibitor diphenyleneiodonium chloride (DPI) strongly inhibited amoeba-induced ROS generation and Jurkat cell death, whereas pan-caspase inhibitor z-VAD-fmk did not. N. fowleri-derived secretory products (NfSP) strongly induced intracellular ROS generation and cell death. Necroptotic effects of NfSP were effectively inhibited by pretreating NfSP with proteinase K. Moreover, NfSP-induced LDH release and intracellular ROS accumulation were inhibited by pretreating Jurkat T cells with DPI or necrostatin-1. These results suggest that N. fowleri induces ROS-dependent necroptosis in Jurkat T cells.

  15. Cucurbitacin-I, a natural cell-permeable triterpenoid isolated from Cucurbitaceae, exerts potent anticancer effect in colon cancer.

    PubMed

    Kim, Hyeon Jin; Park, Jung Han Yoon; Kim, Jin-Kyung

    2014-08-05

    Cucurbitacin-I is a triterpenoids found in medicinal plants and have diverse pharmacological and biological activities. In this study, the antitumor effects of cucurbitacin-I on colon cancer and possible roles in apoptosis and cell cycle arrest were investigated. Treatment of SW480 cells, a human colon cancer cells, with cucurbitacin-I decreased cell viability and cell proliferation in a concentration-dependent manner. Also, cucurbitacin-I induced G2/M phase cell cycle arrest in SW480 cells with a decreased expression of cell cycle proteins including cyclin B1, cyclin A, CDK1, and CDC25C. Moreover, cucurbitacin-I induced increased cleavage of caspase-3, -7, -8, -9, and poly ADP ribose polymerase. When we examined the inhibitory effect of cucurbitacin-I on tumor growth in vivo, cucurbitacin-I effectively inhibited the tumorigenicity and growth of CT-26 cells in syngenic BALB/c mice. In summary, the present study showed that cucurbitacin-I reduced colon cancer cell proliferation by enhancing apoptosis and causing cell cycle arrest at the G2/M phase.

  16. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK.

    PubMed

    Chen, Zhi-Hua; Na, Hye-Kyung; Hurh, Yeon-Jin; Surh, Young-Joon

    2005-10-01

    Catechol estrogens, the hydroxylated metabolites of 17beta-estradiol (E2), have been considered to be implicated in estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE2), an oxidized metabolite of E2 formed preferentially by cytochrome P450 1B1, reacts with DNA to form depurinating adducts thereby exerting genotoxicity and carcinogenicity. 4-OHE2 undergoes 2-electron oxidation to quinone via semiquinone, and during this process, reactive oxygen species (ROS) can be generated to cause DNA damage and cell death. In the present study, 4-OHE2 was found to elicit cytotoxicity in cultured human mammary epithelial (MCF-10A) cells, which was blocked by the antioxidant trolox. MCF-10A cells treated with 4-OHE2 exhibited increased intracellular ROS accumulation and 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, and underwent apoptosis as determined by poly(ADP-ribose)polymerase cleavage and disruption of mitochondrial transmembrane potential. The redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) was transiently activated by 4-OHE2 treatment. Cotreatment of MCF-10A cells with the NF-kappaB inhibitor, L-1-tosylamido-2-phenylethyl chloromethyl ketone, exacerbated 4-OHE2-induced cell death. 4-OHE2 also caused transient activation of extracellular signal-regulated protein kinases (ERK) involved in transmitting cell survival or death signals. A pharmacological inhibitor of ERK aggravated the 4-OHE2-induced cytotoxicity, supporting the pivotal role of ERK in protecting against catechol estrogen-induced oxidative cell death.

  17. Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats.

    PubMed

    Grigorov, Ilijana; Bogojević, Desanka; Jovanović, Sofija; Petrović, Anja; Ivanović-Matić, Svetlana; Zolotarevski, Lidija; Poznanović, Goran; Martinović, Vesna

    2014-06-01

    Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P < 0.05), alkaline phosphatase, and alanine and aspartate aminotransferases. Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P < 0.05), and hepatocellular necrosis. The improvement was due to containment of the pronecrotic oxygen radical load, observed as inhibition (P < 0.05) of the diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury.

  18. Evaluation of genotoxic and apoptotic potential of Hypericum adenotrichum Spach. in vitro.

    PubMed

    Sarimahmut, Mehmet; Balikci, Necmiye; Celikler, Serap; Ari, Ferda; Ulukaya, Engin; Guleryuz, Gurcan; Ozel, Mustafa Zafer

    2016-02-01

    Hypericum adenotrichum Spach. is an endemic plant from Turkey that is also used in folk medicine. In this study, following analyses of its chemical composition, the genotoxic/antigenotoxic effects of the methanol extract of H. adenotrichum in human lymphocyte culture were investigated using in vitro sister chromatid exchange, micronucleus and comet assays. In addition, the anti-growth effect of the extract was investigated in human breast cancer cell lines (MCF-7 and MDA-MB-231) using MTT and ATP viability assays. The mode of cell death was determined using fluorescence microscopy and biochemical methods. We found that the H. adenotrichum extract demonstrated cytotoxic and genotoxic effects in a cell type-dependent manner. At selected doses (125-500 μg/ml), the H. adenotrichum extract exhibited significant genotoxic activity in human lymphocytes, whereas it showed anti-growth effects on cancer cell lines between 0.2 and 100 μg/ml concentrations. The mode of cell death in cancer cells was shown to be apoptosis due to the presence of pyknotic nuclei, the cleavage of poly-(ADP-ribose) polymerase (PARP) and/or the activation of caspase-3. These results suggest that H. adenotrichum might show both cytotoxic and genotoxic effects depending on the cell type. This should be taken into account in its use for therapeutic purposes.

  19. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    PubMed

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  20. Ovarian cancer G protein-coupled receptor 1 is involved in acid-induced apoptosis of endplate chondrocytes in intervertebral discs.

    PubMed

    Yuan, Feng-Lai; Wang, Hui-Ren; Zhao, Ming-Dong; Yuan, Wei; Cao, Lu; Duan, Ping-Guo; Jiang, Yun-Qi; Li, Xi-Lei; Dong, Jian

    2014-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a receptor for protons. We investigated the role of proton-sensing G protein-coupled receptors in the apoptosis of endplate chondrocytes induced by extracellular acid. The expression of proton-sensing G protein-coupled receptors was examined in rat lumbar endplate chondrocytes. Knockdown of OGR1 was achieved by transfecting chondrocytes with specific short hairpin RNA (shRNA) for OGR1. Apoptotic changes were evaluated by DNA fragmentation ELISA, electron microscopy, and flow cytometry. Intracellular calcium ([Ca(2+) ]i) was analyzed with laser scanning confocal microscopy. The mechanism of OGR1 in acid-induced apoptosis of endplate chondrocytes was also investigated. We found that OGR1 was predominantly expressed in rat endplate chondrocytes, and its expression was highly upregulated in response to acidosis. Knocking down OGR1 with shRNAs effectively attenuated acid-induced apoptosis of endplate chondrocytes and increased [Ca(2+) ]i. Blocking OGR1-mediated [Ca(2+) ]i elevation inhibited acid-induced calcium-sensitive proteases such as calpain and calcineurin, and also inhibited the activation of Bid, Bad, and Caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). OGR1-mediated [Ca(2+) ]i elevation has a crucial role in apoptosis of endplate chondrocytes by regulating activation of calcium-sensitive proteases and their downstream signaling.

  1. Knockdown of GPR137 by RNAi inhibits pancreatic cancer cell growth and induces apoptosis.

    PubMed

    Cui, Xianping; Liu, Yanguo; Wang, Bo; Xian, Guozhe; Liu, Xin; Tian, Xingsong; Qin, Chengkun

    2015-01-01

    G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in a number of biological and pathological processes, have recently emerged as key players in carcinogenesis and cancer progression. Orphan G protein-coupled receptors (oGPCRs) are a group of proteins lacking endogenous ligands. GPR137, one of the novel oGPCR genes, was discovered by homology screening. However, the biological role of GPR137 in cancers has not yet been discussed and is of great therapeutic interest. In this study, we knocked down GPR137 via a lentivirus system in two human pancreatic cancer cell lines BXPC-3 and PANC-1. Knockdown of GPR137 strongly inhibited cell proliferation and colony formation. Flow cytometry showed that cell cycle was arrested in the sub-G1 phase and apoptotic cells were significantly increased after GPR137 knockdown. Western blotting confirmed that GPR137 silencing induced apoptosis due to cleavage of PARP (poly ADP-ribose polymerase) and upregulation of caspase 3. Furthermore, lentivirus-mediated overexpression of GPR137 promoted the proliferation of PANC-1 cells, suggesting GPR137 as a potential oncogene in pancreatic cancer cells. Taken together, our results prove the importance of GPR137 as a crucial regulator in controlling cancer cell growth and apoptosis.

  2. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.

    PubMed

    Kunimasa, Kazuhiro; Ahn, Mok-Ryeon; Kobayashi, Tomomi; Eguchi, Ryoji; Kumazawa, Shigenori; Fujimori, Yoshihiro; Nakano, Takashi; Nakayama, Tsutomu; Kaji, Kazuhiko; Ohta, Toshiro

    2011-01-01

    We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.

  3. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability.

    PubMed

    Perlman, H; Georganas, C; Pagliari, L J; Koch, A E; Haines, K; Pope, R M

    2000-05-15

    The regulation of proliferation and cell death is vital for homeostasis, but the mechanism that coordinately balances these events in rheumatoid arthritis (RA) remains largely unknown. In RA, the synovial lining thickens in part through increased proliferation and/or decreased synovial fibroblast cell death. Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population. To determine the importance of endogenous Bcl-2, an adenoviral vector expressing a hammerhead ribozyme to Bcl-2 (Ad-Rbz-Bcl-2) mRNA was employed. Ad-Rbz-Bcl-2 infection resulted in reduced Bcl-2 expression and cell viability in synovial fibroblasts isolated from RA and osteoarthritis synovial tissues. In addition, Ad-Rbz-Bcl-2-induced mitochondrial permeability transition, cytochrome c release, activation of caspases 9 and 3, and DNA fragmentation. The general caspase inhibitor zVAD.fmk blocked caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA fragmentation, but not loss of transmembrane potential or viability, indicating that cell death was independent of caspase activation. Ectopically expressed Bcl-xL inhibited Ad-Rbz-Bcl-2-induced mitochondrial permeability transition and apoptosis in Ad-Rbz-Bcl-2-transduced cells. Thus, forced down-regulation of Bcl-2 does not induce a compensatory mechanism to prevent loss of mitochondrial integrity and cell death in human fibroblasts.

  4. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    PubMed

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  5. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth

    PubMed Central

    Chen, Lixia; Xia, Guiyang; Qiu, Feng; Wu, Chunli; Denmon, Andria P.; Zi, Xiaolin

    2016-01-01

    We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as “hairy groundcherry” in English and “Deng-Long-Cao” in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation. PMID:27581364

  6. Polyphenol-Rich Fraction from Larrea divaricata and its Main Flavonoid Quercetin-3-Methyl Ether Induce Apoptosis in Lymphoma Cells Through Nitrosative Stress.

    PubMed

    Martino, Renzo; Arcos, María Laura Barreiro; Alonso, Rosario; Sülsen, Valeria; Cremaschi, Graciela; Anesini, Claudia

    2016-07-01

    Larrea divaricata is a plant with antiproliferative principles. We have previously identified the flavonoid quercetin-3-methyl ether (Q-3-ME) in an ethyl acetate fraction (EA). Both the extract and Q-3-ME were found to be effective against the EL-4 T lymphoma cell line. However, the mechanism underlying the inhibition of tumor cell proliferation remains to be elucidated. In this work, we analyzed the role of nitric oxide (NO) in the induction of apoptosis mediated by Q-3-ME and EA. Both treatments were able to induce apoptosis in a concentration-dependent and time-dependent manner. The western blot analysis revealed a sequential activation of caspases-9 and 3, followed by poly-(ADP-ribose)-polymerase cleavage. EA and Q-3-ME lowered the mitochondrial membrane potential, showing the activation of the intrinsic pathway of apoptosis. Q-3-ME and EA increased NO production and inducible NO synthase expression in tumor cells. The involvement of NO in cell death was confirmed by the nitric oxide synthases inhibitor L-NAME. In addition, EA and Q-3-ME induced a cell cycle arrest in G0/G1 phase. These drugs did not affect normal cell viability. This data suggested that EA and Q-3-ME induce an increase in NO production that would lead to the cell cycle arrest and the activation of the intrinsic pathway of apoptosis. Copyright © 2016 John Wiley & Sons, Ltd.

  7. The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

    PubMed Central

    Han, Min Ho; Park, Cheol; Kwon, Taek Kyu; Kim, Gi-Young; Kim, Wun-Jae; Hong, Sang Hoon; Yoo, Young Hyun; Choi, Yung Hyun

    2015-01-01

    Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-FLIPL-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways. PMID:25593641

  8. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P.

    PubMed

    Kim, Deuk Ae; Jeon, Young Keul; Nam, Myeong Jin

    2012-03-01

    Galangin has been shown to have anti-cancer property against several types of cancer cells. Many studies have described the anti-oxidant and apoptotic effects of galangin. However, the mechanism of galangin-induced apoptosis has not yet been studied for human gastric cancer cells. We investigated galangin-induced apoptosis of human gastric cancer SNU-484 cells. Galangin inhibited proliferation of SNU-484 cells in a dose- and time-dependent manner. The results showed that galangin significantly decreased the viability of SNU-484 cells at 50-200 μM for 24 h and 48 h. Galangin-induced cell death was characterized with the changes in cell morphology, DNA fragmentation, cell cycle, activation of caspase-3/-9, poly (ADP-ribose) polymerase (PARP) cleavage, and expression of MAP kinase such as ERK1/2 and JNK. For identification of proteins potentially involved in apoptosis, a two-dimensional electrophoresis was employed. Proteomic analysis showed that several proteins were associated with anti-cancer properties of galangin. Of particular interest, these proteins included ubiquitin carboxy-terminal hydrolase isozyme L1 (Uch-L1) and glutathione S-transferase P (GSTP), which are involved in apoptosis of SNU-484 cells. Western blot analysis confirmed up-regulation of Uch-L1 and down-regulation of GSTP following galangin treatment. Our results suggest that Uch-L1 and GSTP be involved in galangin-induced apoptosis in human gastric cancer SNU-484 cells.

  9. Jaceosidin Induces Apoptosis in Human Ovary Cancer Cells through Mitochondrial Pathway

    PubMed Central

    Lv, Wen; Sheng, Xia; Chen, Ting; Xu, Qiang; Xie, Xing

    2008-01-01

    We examined the antiproliferation effect of Jaceosidin (4′, 5, 7-trihydroxy-3′, 6-dimethoxyflavone) isolated from the herb of Artemisia vestita Wall on several human cancer cell lines. Jaceosidin significantly reduced the proliferation of CAOV-3, SKOV-3, HeLa, and PC3 cells in a concentration-dependent manner. A time-dependent inhibition was also observed in CAOV-3 cells by Jaceosidin. By flow cytometric analysis, we found that Jaceosidin treatment resulted in an increased apoptosis in CAOV-3 cells. The cells treated with Jaceosidin exhibited a decreased mitochondrial membrane potential. Jaceosidin also increased the level of cleaved caspase-9 and induced the cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP), while caspase-3 inhibitor Z-DEVD-FMK significantly reversed the proapoptotic effect of Jaceosidin in CAOV-3 cells. Moreover, Jaceosidin elevated the level of cytochrome c in cytosol. These findings suggest that the anticancer effect of Jaceosidin may be contributed by an induction of apoptosis involving cytochrome c release from mitochondria to cytosol. PMID:18769496

  10. Application of eupatilin in the treatment of osteosarcoma

    PubMed Central

    LI, YAN-YAN; WU, HAO; DONG, YI-GUO; LIN, BO; XU, GANG; MA, YU-BO

    2015-01-01

    5,7-dihydroxy-3′,4′,6-trimethoxyflavone, commonly known as eupatilin, is a traditional Asian medicinal plant, which is mainly used for the treatment of gastritis, as well as its use as an anti-inflammatory agent. Eupatilin is a bioactive compound; however, its effects on osteosarcoma (OS) have remained to be elucidated. Therefore, the present study aimed to investigate the effects of eupatilin on this malignant bone tumor, using the U-2 OS cell line. The experimental results revealed that eupatilin inhibited U-2 OS cell growth in a concentration-dependent manner and induced G2/M phase cell cycle arrest and apoptosis. Additionally, western blot analysis indicated that eupatilin was able to trigger the mitochondrial apoptotic pathway, demonstrated by the enhanced Bax/B cell lymphoma-2 ratio, decrease in mitochondrial membrane potential, release of cytochrome c, caspase-3 and -9 activation and poly(ADP-ribose)polymerase cleavage detected in the U-2 OS cells. These results indicated that eupatilin was able to inhibit U-2 OS cancer cell proliferation by the induction of apoptosis via the mitochondrial intrinsic pathway. Eupatilin may therefore represent a novel anticancer drug for use in the treatment of osteosarcoma. PMID:26622880

  11. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  12. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  13. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells.

    PubMed

    Heidari, Nastaran; Goliaei, Bahram; Moghaddam, Parvaneh Rahimi; Rahbar-Roshandel, Nahid; Mahmoudian, Massoud

    2007-11-01

    It has been shown that noscapine, an opium-derived phthalideisoquinoline alkaloid that is currently being used as an oral antitussive drug, induces apoptosis in myeloid leukemia cells. The molecular mechanism responsible for the anticancer effects of noscapine is poorly understood. In the current study, the apoptotic effects of noscapine on two myeloid cell lines, apoptosis-proficient HL60 cells and apoptosis-resistant K562 cells, were analyzed. An increase in the activity of caspase-2, -3, -6, -8 and -9, poly(ADP ribose) polymerase cleavage, detection of phosphatidylserine on the outer layer of the cell membrane, nucleation of chromatin, and DNA fragmentation suggested the induction of apoptosis. Noscapine increased the Bax/Bcl-2 ratio with a significant decrease of Bcl-2 expression accompanied with Bcl-2 phosphorylation. Using an inhibitory approach, the activation of the caspase cascade involved in the noscapine-induced apoptosis was analyzed. We observed no inhibitory effect of the caspase-8 inhibitor on caspase-9 activity. In view of these results and taking into consideration that K562 cells are Fas-null, we suggested that caspase-8 is activated in a Fas-independent manner downstream of caspase-9. In conclusion, noscapine can induce apoptosis in both apoptosis-proficient and apoptosis-resistant leukemic cells, and it can be a novel candidate in the treatment of hematological malignancies.

  14. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    PubMed

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  15. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells.

    PubMed

    Branco, Cátia dos Santos; de Lima, Émilin Dreher; Rodrigues, Tiago Selau; Scheffel, Thamiris Becker; Scola, Gustavo; Laurino, Claudia Cilene Fernandes Correia; Moura, Sidnei; Salvador, Mirian

    2015-04-25

    Natural products are among one of the most promising fields in finding new molecular targets in cancer therapy. Laryngeal carcinoma is one of the most common cancers affecting the head and neck regions, and is associated with high morbidity rate if left untreated. The aim of this study was to examine the antiproliferative effect of Araucaria angustifolia on laryngeal carcinoma HEp-2 cells. The results showed that A. angustifolia extract (AAE) induced a significant cytotoxicity in HEp-2 cells compared to the non-tumor human epithelial (HEK-293) cells, indicating a selective activity of AAE for the cancer cells. A. angustifolia extract was able to increase oxidative damage to lipids and proteins, and the production of nitric oxide, along with the depletion of enzymatic antioxidant defenses (superoxide dismutase and catalase) in the tumor cell line. Moreover, AAE was able to induce DNA damage, nuclear fragmentation and chromatin condensation. A significant increase in the Apoptosis Inducing Factor (AIF), Bax, poly-(ADP-ribose) polymerase (PARP) and caspase-3 cleavage expression were also found. These effects could be related to the ability of AAE to increase the production of reactive oxygen species through inhibition of the mitochondrial electron transport chain complex I activity and ATP production by the tumor cells. The phytochemical analysis of A. angustifolia, performed using High Resolution Mass Spectrometry (HRMS) in MS and MS/MS mode, showed the presence of dodecanoic and hexadecanoic acids, and phenolic compounds, which may be associated with the chemotherapeutic effect observed in this study.

  16. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    PubMed Central

    Im, Chang-Nim; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-01-01

    Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment. PMID:28241425

  17. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride.

    PubMed

    Tan, Chu-Bing; Gao, Mei; Xu, Wei-Ren; Yang, Xiu-Ying; Zhu, Xiao-Ming; Du, Guan-Hua

    2009-08-01

    Salidroside is a major constituent of Rhodiola rosea L. that elicits beneficial effects for ischemic cardiovascular diseases. The aim of this study was to investigate the protective effects of salidroside on endothelial cells apoptosis induced by the hypoxia mimicking agent, cobalt chloride. After challenge with cobalt chloride for 24 h, loss of cell viability and excessive apoptotic cell death were observed in EA.hy926 endothelial cells, and the level of intracellular reactive oxygen species (ROS) increased concentration-dependently. However, the endothelial cell apoptosis and excessive ROS generation were attenuated markedly by salidroside pretreatment. In addition, salidroside inhibited activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by cobalt chloride, decreased expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. These findings suggest that salidroside protects endothelial cells from cobalt chloride-induced apoptosis as an antioxidant and by regulating Bcl-2 family. Salidroside may represent a novel therapeutic agent for the treatment and prevention of hypoxia and oxidative stress-related diseases.

  18. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  19. A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells.

    PubMed

    Pathania, Anup Singh; Guru, Santosh Kumar; Ul Ashraf, Nissar; Riyaz-Ul-Hassan, Syed; Ali, Asif; Abdullah Tasduq, Sheikh; Malik, Fayaz; Bhushan, Shashi

    2015-10-15

    The present study describes the anti-leukemic potential of a novel stereo bioactive secondary metabolite, (R)-5-hydroxy-2-methylchroman-4-one (HMC) isolated from a novel endophytic fungus source (Cryptosporiopsis sp. H2-1, NFCCI-2856), associated with Clidemia hirta. HMC inhibited cell proliferation of different cancer cell lines with IC50 values in the range of 8-55 µg/ml. The cytotoxicity window of HMC was 6-12 times lower in normal cells as compared to susceptible leukemic HL-60, MOLT-4 and K-562 cells. It persuades apoptosis through both intrinsic and extrinsic pathways in above leukemic cell lines, which was evident through Hoechst staining, Annexin-V binding, cell cycle analysis, loss of mitochondrial membrane potential (Δψm), release of cytochrome c, Bax, Bid, over-expression of apical death receptors, activation of caspase-3,-8,-9 and PARP (poly ADP ribose polymerase) cleavage. HMC induced caspase dependent apoptosis and robustly attenuate transcription factor, p-STAT-3 in myeloid and lymphoid leukemia cells. The mechanism of HMC arbitrated inhibition of p-STAT-3 was due to the activation of ubiquitin dependent degradation of p-STAT-3. Therefore, our study not only describes the anti-leukemic potential of HMC but also provides insights into how endophytes can be useful in discovery and development of novel anticancer therapeutics.

  20. Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells.

    PubMed

    Jeong, Miran; Kim, Hye Mi; Kim, Hyun Ji; Choi, Jung-Hye; Jang, Dae Sik

    2017-04-01

    A phytochemical study on the fruits of Schisandra chinensis led to the isolation and characterization of nineteen compounds. The structures of the isolates were determined to be schizandrin, deoxyschizandrin, angeloylgomisin H, gomisin A, gomisin J, (-)-gomisin L1, (-)-gomisin L2, wuweizisu C, gomisin N, meso-dihydroguaiaretic acid, kadsuphilactone B, α-ylangenol, α-ylangenyl acetate, β-chamigrenal, β-chamigrenic acid, 4-hydroxybenzoic acid, protocatechuic acid, p-methylcarvacrol, and indole-3-acetic acid. Of these, some lignans and a nortriterpene showed cytotoxic activity in human ovarian and endometrial cancer cells. In particular, a nortriterpenoid kadsuphilactone B exhibited significant cytotoxic activity with IC50 values below 25 μM in both A2780 and Ishikawa cells. Kadsuphilactone B induced apoptotic cell death and stimulated the activation of caspase-3, -8, and -9 and the cleavages of poly (ADP-ribose) polymerase. Caspase inhibitors attenuated the pro-apoptotic activity of kudsuphilactone B. In addition, kadsuphilactone B altered the expression levels of B cell lymphoma 2 (Bcl-2) family proteins. Moreover, activation of MAPKs was modulated by kadsuphilactone B in a dose-dependent manner. Taken together, these results show that kadsuphilactone B induces caspase-dependent apoptosis in human cancer cells via the regulation of Bcl-2 family protein and MAPK signaling.

  1. Antineoplastic and apoptotic potential of traditional medicines thymoquinone and diosgenin in squamous cell carcinoma.

    PubMed

    Das, Subhasis; Dey, Kaushik Kumar; Dey, Goutam; Pal, Ipsita; Majumder, Abhijit; MaitiChoudhury, Sujata; kundu, Subhas C; Mandal, Mahitosh

    2012-01-01

    Thymoquinone (TQ) and diosgenin (DG), the active ingredients obtained from black cumin (Nigella sativa) and fenugreek (Trigonella foenum graecum), respectively, exert potent bioactivity, including anticancer effects. This study investigated the antineoplastic activity of these agents against squamous cell carcinoma in vitro and sarcoma 180-induced tumors in vivo. TQ and DG inhibited cell proliferation and induced cytotoxicity in A431 and Hep2 cells. These agents induced apoptosis by increasing the sub-G(1) population, LIVE/DEAD cytotoxicity, chromatin condensation, DNA laddering and TUNEL-positive cells significantly (P<0.05). Increased Bax/Bcl-2 ratio, activation of caspases and cleavage of poly ADP ribose polymerase were observed in treated cells. These drugs inhibited Akt and JNK phosphorylations, thus inhibiting cell proliferation while inducing apoptosis. In combination, TQ and DG had synergistic effects, resulting in cell viability as low as 10%. In a mouse xenograft model, a combination of TQ and DG significantly (P<0.05) reduced tumor volume, mass and increased apoptosis. TQ and DG, alone and in combination, inhibit cell proliferation and induce apoptosis in squamous cell carcinoma. The combination of TQ and DG is a potential antineoplastic therapy in this common skin cancer.

  2. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells

    PubMed Central

    Landis-Piwowar, Kristin R.; Milacic, Vesna; Dou, Q. Ping

    2008-01-01

    Flavonoids are polyphenolic compounds widely distributed in the plant kingdom. Compelling research indicates that flavonoids have important roles in cancer chemoprevention and chemotherapy possibly due to biological activities that include action through anti-inflammation, free radical scavenging, modulation of survival/proliferation pathways, and inhibition of the ubiquitin-proteasome pathway. Plant polyphenols including the green tea polyphenol, (-)-epigallocatechin gallate or (-)-EGCG, and the flavonoids apigenin, luteolin, quercetin, and chrysin have been shown to inhibit proteasome activity and induce apoptosis in human leukemia cells. However, biotransformation reactions to the reactive hydroxyl groups on polyphenols could reduce their biological activities. Although methylated polyphenols have been suggested to be metabolically more stable than unmethylated polyphenols, the practical use of methylated polyphenols as a cancer preventative agent warrants further investigation. In the current study, methylated and unmethylated flavonoids were studied for their proteasome-inhibitory and apoptosis-inducing abilities in human leukemia HL60 cells. Methylated flavonoids displayed sustained bioavailability and inhibited cellular proliferation by arresting cells in the G1 phase. However, they did not act as proteasome inhibitors in either an in vitro system or an in silico model and only weakly induced apoptosis. In contrast, unmethylated flavonoids exhibited inhibition of the proteasomal activity in intact HL60 cells, accumulating proteasome target proteins and inducing caspase activation and poly (ADP-ribose) polymerase cleavage. We conclude that methylated flavonoids lack potent cytotoxicity against human leukemia cells and most likely have limited ability as chemopreventive agents. PMID:18636546

  3. Antiproliferative and proapoptotic effects of a pyrrole containing arylthioindole in human Jurkat leukemia cell line and multidrug-resistant Jurkat/A4 cells

    PubMed Central

    Philchenkov, Alex A; Zavelevich, Michael P; Tryndyak, Volodymyr P; Kuiava, Ludmila M; Blokhin, Dmitry Yu; Miura, Koh; Silvestri, Romano; Pogribny, Igor P

    2015-01-01

    Recently, a series of novel arylthioindole compounds, potent inhibitors of tubulin polymerization and cancer cell growth, were synthesized. In the present study the effects of 2-(1H-pyrrol-3-yl)-3-((3,4,5-trimethoxyphenyl)thio)-1H-indole (ATI5 compound) on cell proliferation, cell cycle progression, and induction of apoptosis in human T-cell acute leukemia Jurkat cells and their multidrug resistant Jurkat/A4 subline were investigated. Treatment of the Jurkat cells with the ATI5 compound for 48 hrs resulted in a strong G2/M cell cycle arrest and p53-independent apoptotic cell death accompanied by the induction of the active form of caspase-3 and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage. ATI5 treatment also caused non-cell death related mitotic arrest in multidrug resistant Jurkat/A4 cells after 48 hrs of treatment suggesting promising opportunities for the further design of pyrrole-containing ATI compounds as anticancer agents. Cell death resistance of Jurkat/A4 cells to ATI5 compound was associated with alterations in the expression of pro-survival and anti-apoptotic protein-coding and microRNA genes. More importantly, findings showing that ATI5 treatment induced p53-independent apoptosis are of great importance from a therapeutic point of view since p53 mutations are common genetic alterations in human neoplasms. PMID:26785947

  4. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  5. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    SciTech Connect

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  6. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells

    PubMed Central

    Ammerpohl, O; Trauzold, A; Schniewind, B; Griep, U; Pilarsky, C; Grutzmann, R; Saeger, H-D; Janssen, O; Sipos, B; Kloppel, G; Kalthoff, H

    2006-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study. PMID:17164759

  7. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  8. Cimicifuga foetida extract inhibits proliferation of hepatocellular cells via induction of cell cycle arrest and apoptosis.

    PubMed

    Tian, Ze; Pan, Ruile; Chang, Qi; Si, Jianyong; Xiao, Peigen; Wu, Erxi

    2007-11-01

    The purpose of this study is to determine whether the ethyl acetate fraction (EAF) from the aerial part of Cimicifuga foetida Linnaeus possesses the anti-tumor action on hepatoma, and therefore, provide evidence for the traditional use of the plant as a detoxification agent. EAF was extracted and its cytotoxicity was evaluated on a panel of Hepatocytes by MTT assay. The IC(50) values of EAF on HepG2, R-HepG2 and primary cultured normal mouse hepatocytes were 21, 43 and 80 microg/mL, respectively. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of EAF. EAF induced G(0)/G(1)cell cycle arrest at lower concentration (25 microg/mL), and triggered G(2)/M arrest and apoptosis at higher concentrations (50 and 100 microg/mL, respectively). An increase in the ratio of Bax/Bcl-2, activation of downstream effector Caspase 3, and cleavage of poly-ADP-ribose polymerase (PARP) were implicated in EAF-induced apoptosis. In addition, EAF inhibited the growth of the implanted mouse H(22) tumor in a dose-dependent manner with the growth inhibitory rate of 63.32% at 200 mg/kg. In conclusion, EAF may potentially find use as a new therapy for the treatment of hepatoma.

  9. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Xiao, Haifang; Wang, Jing; Yuan, Li; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2013-02-20

    Chicoric acid has been reported to possess various bioactivities. However, the antiobesity effects of chicoric acid remain poorly understood. In this study, we investigated the effects of chicoric acid on 3T3-L1 preadipocytes and its molecular mechanisms of apoptosis. Chicoric acid inhibited cell viability and induced apoptosis in 3T3-L1 preadipocytes which was characterized by chromatin condensation and poly ADP-ribose-polymerase (PARP) cleavage. Mitochondrial membrane potential (MMP) loss, Bax/Bcl-2 dysregulation, cytochrome c release, and caspase-3 activation were observed, indicating mitochondria-dependent apoptosis induced by chicoric acid. Furthermore, PI3K/Akt and MAPK (p38 MAPK, JNK, and ERK1/2) signaling pathways were involved in chicoric acid-induced apoptosis. The employment of protein kinase inhibitors LY294002, SB203580, SP600125, and U0126 revealed that PI3K/Akt signaling pathway interplayed with MAPK signaling pathways. Moreover, chicoric acid induced reactive oxygen species (ROS) generation. Pretreatment with the antioxidant N-acetylcysteine (NAC) significantly blocked cell death and changes of Akt and MAPK signalings induced by chicoric acid. In addition, chicoric acid down regulated HO-1 and COX-2 via the PI3K/Akt pathway.

  10. Nedaplatin enhanced apoptotic effects of ABT-737 in human cancer cells via Mcl-1 inhibition

    PubMed Central

    Zhang, Chong; Li, Yang-Ling; Weng, Xu; Li, Li-Yan; Zhou, Ming-Xian; Zhang, Da-Yong; Lin, Neng-Ming

    2016-01-01

    Platinum compounds, such as cisplatin, carboplatin, oxaliplatin and nedaplatin, are widely used to treat a number of solid malignancies. Nedaplatin is a second-generation platinum complex, based on its pronounced anti-cancer activities against several solid tumors being equivalent to that of cisplatin, but with lower nephrotoxicity. In this context, the present study aimed to investigate the potential anti-cancer effect by combining nedaplatin with ABT-737. It was found that nedaplatin greatly increased ABT-737-mediated apoptosis in A549 and 95-D cells, accompanied by enhanced cleavage of poly(ADP-ribose) polymerase and caspase-3. In addition, this enhancement was also paralleled by cytochrome c release and dissipation of mitochondrial membrane potential. Additional mechanistic investigations revealed that nedaplatin plus ABT-737 exerted a synergistic effect on cancer cells through their ability to accelerate the degradation of Mcl-1. The present study has revealed nedaplatin as a pertinent sensitizer to ABT-737, which opens up new avenues for this promising BH3-mimetic molecule in the clinic. PMID:27895791

  11. A new synthetic Cu(II) compound, [Cu3(p-3-bmb)2Cl4·(CH3OH)2]n, inhibits tumor growth in vivo and in vitro.

    PubMed

    Li, Ruili; Cui, Binglin; Li, Yuwen; Zhao, Chao; Jia, Na; Wang, Chao; Wu, Yin; Wen, Aidong

    2014-02-05

    Copper(II) mixed-ligand complex, [Cu3(p-3-bmb)2Cl4 (CH3OH)2]n (Cu(II) compound), where p-3-bmb=1((2-(pyridine-3-yl)-1H-benzoimidazol-1-yl) methyl)-1Hbenzotriazole, has been recently found to possess potent anti-tumor activities both in vivo and in vitro. In this study, we demonstrated that Cu(II) compound significantly inhibited tumor growth in mice that inoculated with S180 cells. Meanwhile, the viabilities of HeLa and SGC-7901 cells were inhibited by Cu(II) compound with IC50 values in the range of 5-30 μM. Further mechanistic studies revealed that Cu(II) compound treatment induced cell cycle arrested at G1 phase through p53, p21, cyclinD1, cdk4, pRb and E2F1. Cu(II) compound treatment also induced apoptosis of HeLa and SGC-7901 cells which were accompanied with decrease in mitochondrial membrane potential, increase in reactive oxygen species production, release of cytochrome C, cleavage of caspase-9, caspase-3 and poly ADP-ribose polymerase (PARP) as well as activations of bcl-2 and bax. These results indicate that Cu(II) compound has a promising potential to become a novel anti-cancer agent.

  12. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells.

    PubMed

    Chen, Yi-Chuan; Chang, Heng-Yuan; Deng, Jeng-Shyan; Chen, Jian-Jung; Huang, Shyh-Shyun; Lin, I-Hsin; Kuo, Wan-Lin; Chao, Wei; Huang, Guan-Jhong

    2013-01-01

    Hispolon (a phenolic compound isolated from Phellinus linteus) has been shown to possess strong antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. In this study, we investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma NB4 cells using the MTT assay, DNA fragmentation, DAPI (4, 6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analysis. Hispolon inhibited the cellular growth of NB4 cells in a dose-dependent manner through the induction of cell cycle arrest at G0/G1 phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of NB4 cells to hispolon-induced apoptosis-related protein expressions, such as the cleavage form of caspase 3, caspase 8, caspase 9, poly (ADP ribose) polymerase, and the proapoptotic Bax protein. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas and FasL), intrinsic related proteins (cytochrome c), and the ratio of Bax/Bcl-2 were increased in NB4 cells after hispolon treatment. Hispolon-induced G0/G1-phase arrest was associated with a marked decrease in the protein expression of p53, cyclins D1, and cyclins E, and cyclin-dependent kinases (CDKs) 2, and 4, with concomitant induction of p21waf1/Cip1 and p27Kip1. We conclude that hispolon induces both of extrinsic and intrinsic apoptotic pathways in NB4 human leukemia cells in vitro.

  13. Ouabain downregulates Mcl-1 and sensitizes lung cancer cells to TRAIL-induced apoptosis.

    PubMed

    Chanvorachote, Pithi; Pongrakhananon, Varisa

    2013-02-01

    Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a prerequisite for cancer progression, and TRAIL resistance is prevalent in lung cancer. Ouabain, a recently identified human hormone, has shown therapeutic promise by potentiating the apoptotic response of metastatic lung cancer cells to TRAIL. Nontoxic concentrations of ouabain are shown to increase caspase-3 activation, poly(ADP-ribose) polymerase (PARP) cleavage, and apoptosis of H292 cells in response to TRAIL. While ouabain had a minimal effect on c-FLIP, Bcl-2, and Bax levels, we show that it possesses an ability to downregulate the antiapoptotic Mcl-1 protein. The present study also reveals that the sensitizing effect of ouabain is associated with its ability to generate reactive oxygen species (ROS), and hydrogen peroxide is identified as the principle ROS triggering proteasomal Mcl-1 degradation. In summary, our results indicate a novel function for ouabain in TRAIL-mediated cancer cell death through Mcl-1 downregulation, thereby providing new insight into a potential lung cancer treatment as well as a better understanding of the physiological activity of ouabain.

  14. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function.

    PubMed

    Hu, Li-Fang; Lu, Ming; Wu, Zhi-Yuan; Wong, Peter T-H; Bian, Jin-Song

    2009-01-01

    Hydrogen sulfide (H(2)S) has bee