Sample records for adp-ribose polymerase inhibitor

  1. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase.

    PubMed Central

    Schraufstatter, I U; Hyslop, P A; Hinshaw, D B; Spragg, R G; Sklar, L A; Cochrane, C G

    1986-01-01

    H2O2, in concentrations achieved in the proximity of stimulated leukocytes, induces injury and lysis of target cells. This may be an important aspect of inflammatory injury of tissues. Cell lysis in two target cells, the murine macrophage-like tumor cell line P388D1 and human peripheral lymphocytes, was found to be associated with activation of poly(ADP-ribose) polymerase (EC 2.4.2.30), a nuclear enzyme. This enzyme is activated under various conditions of DNA damage. Poly(ADP-ribose) polymerase utilizes nicotinamide adenine dinucleotide (NAD) as substrate and has been previously shown to consume NAD during exposure of cells to oxidants that was associated with inhibition of glycolysis, a decrease in cellular ATP, and cell death. In the current studies, inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide, nicotinamide, or theophylline in cells exposed to lethal concentrations of H2O2 prevented the sequence of events that eventually led to cell lysis--i.e., the decrease in NAD, followed by depletion of ATP, influx of extracellular Ca2+, actin polymerization and, finally, cell death. DNA damage, the initial stimulus for poly(ADP-ribose) polymerase activation, occurred despite the inhibition of this enzyme. Cells exposed to oxidant in the presence of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide failed to demonstrate repair of DNA strand breaks. PMID:2941760

  2. Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis.

    PubMed

    Zhang, Jian; Li, Xiaoling; Kwansa, Herman; Kim, Yun Tai; Yi, Liye; Hong, Gina; Andrabi, Shaida A; Dawson, Valina L; Dawson, Ted M; Koehler, Raymond C; Yang, Zeng-Jin

    2017-06-01

    Tissue acidosis is a key component of cerebral ischemic injury, but its influence on cell death signaling pathways is not well defined. One such pathway is parthanatos, in which oxidative damage to DNA results in activation of poly(ADP-ribose) polymerase and generation of poly(ADP-ribose) polymers that trigger release of mitochondrial apoptosis-inducing factor. In primary neuronal cultures, we first investigated whether acidosis per sé is capable of augmenting parthanatos signaling initiated pharmacologically with the DNA alkylating agent, N-methyl- N'-nitro- N-nitrosoguanidine. Exposure of neurons to medium at pH 6.2 for 4 h after N-methyl- N'-nitro- N-nitrosoguanidine washout increased intracellular calcium and augmented the N-methyl- N'-nitro- N-nitrosoguanidine-evoked increase in poly(ADP-ribose) polymers, nuclear apoptosis-inducing factor , and cell death. The augmented nuclear apoptosis-inducing factor and cell death were blocked by the acid-sensitive ion channel-1a inhibitor, psalmotoxin. In vivo, acute hyperglycemia during transient focal cerebral ischemia augmented tissue acidosis, poly(ADP-ribose) polymers formation, and nuclear apoptosis-inducing factor , which was attenuated by a poly(ADP-ribose) polymerase inhibitor. Infarct volume from hyperglycemic ischemia was decreased in poly(ADP-ribose) polymerase 1-null mice. Collectively, these results demonstrate that acidosis can directly amplify neuronal parthanatos in the absence of ischemia through acid-sensitive ion channel-1a . The results further support parthanatos as one of the mechanisms by which ischemia-associated tissue acidosis augments cell death.

  3. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  4. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    PubMed

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  5. Poly(ADP-ribose) polymerase-independent potentiation of nitrosourea cytotoxicity by 3-aminobenzamide in human malignant glioma cells.

    PubMed

    Winter, S; Weller, M

    2000-06-16

    Poly(ADP-ribose) polymerase is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents and is thought to be involved in DNA repair. Here, we examined the effects of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, on the chemosensitivity of human malignant glioma cells. 3-Aminobenzamide selectively potentiated the cytotoxicity of the nitrosoureas, nimustine, carmustine and lomustine in 10 of 12 human malignant glioma cell lines. In contrast, 3-aminobenzamide did not modulate the cytotoxic effects of doxorubicine, teniposide, vincristine, camptothecin or cytarabine. The nitrosoureas did not induce poly(ADP-ribose) polymerase activity in the glioma cells. Ectopic expression of truncated poly(ADP-ribose) polymerase containing the poly(ADP-ribose) polymerase DNA-binding domain, which acts as a dominant-negative mutant, in LN-18 or LN-229 cells did not alter the 3-aminobenzamide effect on nitrosourea-mediated cytotoxicity. Thus, 3-aminobenzamide may target another nicotinamide adenine dinucleotide (NAD)-requiring enzyme, but not poly(ADP-ribose) polymerase, when enhancing nitrosourea cytotoxicity in human malignant glioma cells. Carmustine cytotoxicity was associated with a G2/M arrest. Coexposure to carmustine and 3-aminobenzamide overcame this G2/M arrest in T98G cells, which are sensitized to carmustine by 3-aminobenzamide, but not in U251MG cells, which are refractory to 3-aminobenzamide-mediated sensitization to carmustine. Thus, 3-aminobenzamide-mediated sensitization to carmustine cytotoxicity may result from interference with the stable G2/M arrest response to carmustine in human glioma cells.

  6. Family-wide analysis of poly(ADP-ribose) polymerase activity

    PubMed Central

    Uchima, Lilen; Rood, Jenny; Zaja, Roko; Hay, Ronald T.; Ahel, Ivan; Chang, Paul

    2014-01-01

    The poly(ADP-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD+ as substrate. Based on the composition of three NAD+ coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino acid targets. In addition, we identify cysteine as a novel amino acid target for ADP-ribosylation on PARPs. PMID:25043379

  7. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.

  8. Inhibition of poly(ADP-ribose) polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite.

    PubMed

    Vilchez Larrea, Salomé C; Haikarainen, Teemu; Narwal, Mohit; Schlesinger, Mariana; Venkannagari, Harikanth; Flawiá, Mirtha M; Villamil, Silvia H Fernández; Lehtiö, Lari

    2012-01-01

    Poly(ADP-ribosylation) is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose) polymerases (PARPs). In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose) metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.

  9. The nuclear protein PH5P of the inter-alpha-inhibitor superfamily: a missing link between poly(ADP-ribose)polymerase and the inter-alpha-inhibitor family and a novel actor of DNA repair?

    PubMed

    Jean, L; Risler, J L; Nagase, T; Coulouarn, C; Nomura, N; Salier, J P

    1999-03-05

    Poly(ADP-ribose)polymerase is a nuclear NAD-dependent enzyme and an essential nick sensor involved in cellular processes where nicking and rejoining of DNA strands are required. The inter-alpha-inhibitor family is comprized of several plasma proteins that all harbor one or more so-called heavy chains designated H1-H4. The latter originate from precursor polypeptides H1P-H4P whose upper two thirds are highly homologous. We now describe a novel protein that includes (i) a so-called BRCT domain found in many proteins involved in DNA repair, (ii) an area that is homologous to the NAD-dependent catalytic domain of poly(ADP-ribose)polymerase, (iii) an area that is homologous to the upper two thirds of precursor polypeptides H1P-H4P and (iv) a proline-rich region with a potential nuclear localization signal. This protein now designated PH5P points to as yet unsuspected links between poly(ADP-ribose)polymerase and the inter-alpha-inhibitor family and is likely to be involved in DNA repair.

  10. Functions of the poly(ADP-ribose) polymerase superfamily in plants.

    PubMed

    Lamb, Rebecca S; Citarelli, Matteo; Teotia, Sachin

    2012-01-01

    Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.

  11. Poly(ADP-ribose) Contributes to an Association between Poly(ADP-ribose) Polymerase-1 and Xeroderma Pigmentosum Complementation Group A in Nucleotide Excision Repair*

    PubMed Central

    King, Brenee S.; Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G.

    2012-01-01

    Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts. PMID:23038248

  12. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  13. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  14. Signaling Mechanism of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Inflammatory Diseases

    PubMed Central

    Ba, Xueqing; Garg, Nisha Jain

    2011-01-01

    Poly(ADP-ribosyl)ation, attaching the ADP-ribose polymer chain to the receptor protein, is a unique posttranslational modification. Poly(ADP-ribose) polymerase-1 (PARP-1) is a well-characterized member of the PARP family. In this review, we provide a general update on molecular structure and structure-based activity of this enzyme. However, we mainly focus on the roles of PARP-1 in inflammatory diseases. Specifically, we discuss the signaling pathway context that PARP-1 is involved in to regulate the pathogenesis of inflammation. PARP-1 facilitates diverse inflammatory responses by promoting inflammation-relevant gene expression, such as cytokines, oxidation-reduction–related enzymes, and adhesion molecules. Excessive activation of PARP-1 induces mitochondria-associated cell death in injured tissues and constitutes another mechanism for exacerbating inflammation. PMID:21356345

  15. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    PubMed

    Ta, Lauren E; Schmelzer, James D; Bieber, Allan J; Loprinzi, Charles L; Sieck, Gary C; Brederson, Jill D; Low, Philip A; Windebank, Anthony J

    2013-01-01

    Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose) polymerase (PARP) inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888) would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice. An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p.) injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment. Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  16. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies.

    PubMed

    Lesueur, Paul; Chevalier, François; Austry, Jean-Baptiste; Waissi, Waisse; Burckel, Hélène; Noël, Georges; Habrand, Jean-Louis; Saintigny, Yannick; Joly, Florence

    2017-09-15

    Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.

  17. Administration of poly(ADP-ribose) polymerase inhibitor into bronchial artery attenuates pulmonary pathophysiology after smoke inhalation and burn in an ovine model.

    PubMed

    Hamahata, Atsumori; Enkhbaatar, Perenlei; Lange, Matthias; Yamaki, Takashi; Sakurai, Hiroyuki; Shimoda, Katsumi; Nakazawa, Hiroaki; Traber, Lillian D; Traber, Daniel L

    2012-12-01

    Poly(ADP-ribose) polymerase (PARP) is well known to be an enzyme that repairs damaged DNA and also induces cell death when overactivated. It has been reported that PARP plays a significant role in burn and smoke inhalation injury, and the pathophysiology is thought to be localized in the airway during early stages of activation. Therefore, we hypothesized that local inhibition of PARP in the airway by direct delivery of low dose PJ-34 [poly(ADP-ribose) polymerase inhibitor] into the bronchial artery would attenuate burn and smoke-induced acute lung injury. The bronchial artery in sheep was cannulated in preparation for surgery. After a 5-7 day recovery period, sheep were administered a burn and inhalation injury. Adult female sheep (n=19) were divided into four groups following the injury: (1) PJ-34 group A: 1h post-injury, PJ-34 (0.003mg/kg/h, 2mL/h) was continuously injected into the bronchial artery, n=5; (2) PJ-34 group B: 1h post-injury, PJ-34 (0.03mg/kg/h, 2mL/h) was continuously injected into bronchial artery, n=4; (3) CONTROL GROUP: 1h post-injury, an equivalent amount of saline was injected into the bronchial artery, n=5; (4) Sham group: no injury, no treatment, same operation and anesthesia, n=5. After injury, all animals were placed on a ventilator and fluid resuscitated equally. Pulmonary function as evaluated by measurement of blood gas analysis, pulmonary mechanics, and pulmonary transvascular fluid flux was severely deteriorated in the control group. However, the above changes were markedly attenuated by PJ-34 infusion into the bronchial artery (P/F ratio at 24h: PJ-34 group A 398±40*, PJ-34 group B 438±41*†‡, Control 365±58*, Sham 547±47; * vs. sham [p<0.05], † vs. control [p<0.05], ‡ vs. PJ-34 group A [p<0.05]). Our data strongly suggest that local airway production of poly(ADP-ribose) polymerase contributes to pulmonary dysfunction following smoke inhalation and burn. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes

    PubMed Central

    Pieper, Andrew A.; Brat, Daniel J.; Krug, David K.; Watkins, Crystal C.; Gupta, Alok; Blackshaw, Seth; Verma, Ajay; Wang, Zhao-Qi; Snyder, Solomon H.

    1999-01-01

    Streptozotocin (STZ) selectively destroys insulin-producing beta islet cells of the pancreas providing a model of type I diabetes. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme whose overactivation by DNA strand breaks depletes its substrate NAD+ and then ATP, leading to cellular death from energy depletion. We demonstrate DNA damage and a major activation of PARP in pancreatic islets of STZ-treated mice. These mice display a 500% increase in blood glucose and major pancreatic islet damage. In mice with homozygous targeted deletion of PARP (PARP −/−), blood glucose and pancreatic islet structure are normal, indicating virtually total protection from STZ diabetes. Partial protection occurs in PARP +/− animals. Thus, PARP activation may participate in the pathophysiology of type I diabetes, for which PARP inhibitors might afford therapeutic benefit. PMID:10077636

  19. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2002-08-01

    DNA replication complex (designated the DNA synthesome) from a variety of non-malignant and malignant tumor cells including breast cancer cells. We have shown that poly(ADP-ribose) polymerase PARP is among the components of the DNA synthesome. The transformation of a non-malignant human breast cell to a malignant state was accompanied by a significant alteration in the 2-D PAGE profile of specific protein components of the DNA synthesome (such as PCNA) together with a 6-8 decrease in the replication fidelity of the DNA

  20. Inhibition of poly(ADP-ribose) polymerase prevents allergen-induced asthma-like reaction in sensitized Guinea pigs.

    PubMed

    Suzuki, Ylenia; Masini, Emanuela; Mazzocca, Cosimo; Cuzzocrea, Salvatore; Ciampa, Anna; Suzuki, Hisanori; Bani, Daniele

    2004-12-01

    Poly(ADP-ribose) polymerase (PARP) plays an important role in tissue injury in conditions associated with oxidative stress and inflammation. Because asthma is a chronic inflammatory disorder of the airways, we designed the present experimental study to evaluate the effects of PARP inhibition on allergen-induced asthma-like reaction in ovalbumin-sensitized guinea pigs. Cough and dyspnea in response to ovalbumin aerosol were absent in naive guinea pigs, whereas they became severe in the sensitized animals. In the latter ones, ovalbumin aerosol also induced a rapid increase in PARP activity, bronchiolar constriction, pulmonary air space inflation, mast cell degranulation, poly(ADP-ribose) and nitrotyrosine immunostaining, myeloperoxidase activity, and malondialdehyde in lung tissue, as well as a rise in the amounts of nitrites and tumor necrosis factor-alpha in bronchoalveolar lavage fluid. Pretreatment with the PARP inhibitors 3-aminobenzamide (10 mg/kg b.wt.) or 5-aminoisoquinolinone (0.5 mg/kg b.wt.) given i.p. 3 h before ovalbumin challenge significantly reduced the severity of cough and the occurrence of dyspnea and delayed the onset of respiratory abnormalities. Both PARP inhibitors were also able to prevent the above morphological and biochemical changes of lung tissue or bronchoalveolar lavage fluid induced by ovalbumin challenge. Conversely, p-aminobenzoic acid, the inactive analog of 3-aminobenzamide, had no effects.

  1. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

    PubMed Central

    Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan

    2014-01-01

    SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482

  2. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    NASA Astrophysics Data System (ADS)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  3. The 193-Kd Vault Protein, Vparp, Is a Novel Poly(Adp-Ribose) Polymerase

    PubMed Central

    Kickhoefer, Valerie A.; Siva, Amara C.; Kedersha, Nancy L.; Inman, Elisabeth M.; Ruland, Cristina; Streuli, Michel; Rome, Leonard H.

    1999-01-01

    Mammalian vaults are ribonucleoprotein (RNP) complexes, composed of a small ribonucleic acid and three proteins of 100, 193, and 240 kD in size. The 100-kD major vault protein (MVP) accounts for >70% of the particle mass. We have identified the 193-kD vault protein by its interaction with the MVP in a yeast two-hybrid screen and confirmed its identity by peptide sequence analysis. Analysis of the protein sequence revealed a region of ∼350 amino acids that shares 28% identity with the catalytic domain of poly(ADP-ribose) polymerase (PARP). PARP is a nuclear protein that catalyzes the formation of ADP-ribose polymers in response to DNA damage. The catalytic domain of p193 was expressed and purified from bacterial extracts. Like PARP, this domain is capable of catalyzing a poly(ADP-ribosyl)ation reaction; thus, the 193-kD protein is a new PARP. Purified vaults also contain the poly(ADP-ribosyl)ation activity, indicating that the assembled particle retains enzymatic activity. Furthermore, we show that one substrate for this vault-associated PARP activity is the MVP. Immunofluorescence and biochemical data reveal that p193 protein is not entirely associated with the vault particle, suggesting that it may interact with other protein(s). A portion of p193 is nuclear and localizes to the mitotic spindle. PMID:10477748

  4. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.

    PubMed

    Rabenau, Karen; Hofstatter, Erin

    2016-07-01

    As a result of improved understanding of DNA repair mechanisms, poly(ADP-ribose) polymerase inhibitors (PARPi) are increasingly recognized to play an important therapeutic role in the treatment of cancer. The aim of this article is to provide a review of PARPi function in DNA damage repair and synthetic lethality and to demonstrate how these mechanisms can be exploited to provide new PARPi-based therapies to patients with solid tumors. Literature from a range of sources, including PubMed and MEDLINE, were searched to identify recent reports regarding DNA damage repair and PARPi. DNA damage repair is central to cellular viability. The family of poly(ADP-ribose) polymerase proteins play multiple intracellular roles in DNA repair, but function primarily in the resolution of repair of single-strand DNA breaks. Insights through the discovery of germline BRCA1/2 mutations led to the understanding of synthetic lethality and the potential therapeutic role of PARPi in the treatment of cancer. Further understanding of DNA damage repair and the concept of BRCA-like tumors have catalyzed PARPi clinical investigation in multiple oncologic settings. PARPi hold great promise in the treatment of solid tumors, both as monotherapy and in combination with other cancer therapeutics. Multiple PARPi clinical trials are currently underway. Further understanding of aberrant DNA repair mechanisms in the germline and in the tumor genome will allow clinicians and researchers to apply PARPi most strategically in the era of personalized medicine. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  5. Poly(ADP-ribose) polymerase inhibitors sensitize cancer cells to death receptor-mediated apoptosis by enhancing death receptor expression.

    PubMed

    Meng, X Wei; Koh, Brian D; Zhang, Jin-San; Flatten, Karen S; Schneider, Paula A; Billadeau, Daniel D; Hess, Allan D; Smith, B Douglas; Karp, Judith E; Kaufmann, Scott H

    2014-07-25

    Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.

  6. Poly(ADP-ribose) Polymerase Inhibitors Sensitize Cancer Cells to Death Receptor-mediated Apoptosis by Enhancing Death Receptor Expression*

    PubMed Central

    Meng, X. Wei; Koh, Brian D.; Zhang, Jin-San; Flatten, Karen S.; Schneider, Paula A.; Billadeau, Daniel D.; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Kaufmann, Scott H.

    2014-01-01

    Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation. PMID:24895135

  7. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  8. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  9. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  10. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    PubMed

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  11. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors.

    PubMed

    Eltze, Tobias; Boer, Rainer; Wagner, Thomas; Weinbrenner, Steffen; McDonald, Michelle C; Thiemermann, Christoph; Bürkle, Alexander; Klein, Thomas

    2008-12-01

    We have identified three novel structures for inhibitors of the poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA and implicated in DNA repair, apoptosis, organ dysfunction or necrosis. 2-[4-(5-Methyl-1H-imidazol-4-yl)-piperidin-1-yl]-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK49187), 2-(4-pyridin-2-yl-phenyl)-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK236864), 6-chloro-8-hydroxy-2,3-dimethyl-imidazo-[1,2-alpha]-pyridine (BYK20370), and 4-(1-methyl-1H-pyrrol-2-ylmethylene)-4H-isoquinolin-1,3-dione (BYK204165) inhibited cell-free recombinant human PARP-1 with pIC(50) values of 8.36, 7.81, 6.40, and 7.35 (pK(i) 7.97, 7.43, 5.90, and 7.05), and murine PARP-2 with pIC(50) values of 7.50, 7.55, 5.71, and 5.38, respectively. BYK49187, BYK236864, and BYK20370 displayed no selectivity for PARP-1/2, whereas BYK204165 displayed 100-fold selectivity for PARP-1. The IC(50) values for inhibition of poly(ADP-ribose) synthesis in human lung epithelial A549 and cervical carcinoma C4I cells as well in rat cardiac myoblast H9c2 cells after PARP activation by H(2)O(2) were highly significantly correlated with those at cell-free PARP-1 (r(2) = 0.89-0.96, P < 0.001) but less with those at PARP-2 (r(2) = 0.78-0.84, P < 0.01). The infarct size caused by coronary artery occlusion and reperfusion in the anesthetized rat was reduced by 22% (P < 0.05) by treatment with BYK49187 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. during 2-h reperfusion), whereas the weaker PARP inhibitors, BYK236864 and BYK20370, were not cardioprotective. In conclusion, the imidazoquinolinone BYK49187 is a potent inhibitor of human PARP-1 activity in cell-free and cellular assays in vitro and reduces myocardial infarct size in vivo. The isoquinolindione BYK204165 was found to be 100-fold more selective for PARP-1. Thus, both compounds might be novel and valuable tools for investigating PARP-1-mediated effects.

  12. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases.

    PubMed

    Hassa, Paul O; Hottiger, Michael O

    2008-01-01

    Poly-ADP-ribose metabolism plays a mayor role in a wide range of biological processes, such as maintenance of genomic stability, transcriptional regulation, energy metabolism and cell death. Poly-ADP-ribose polymerases (PARPs) are an ancient family of enzymes, as evidenced by the poly-ADP-ribosylating activities reported in dinoflagellates and archaebacteria and by the identification of Parp-like genes in eubacterial and archaeabacterial genomes. Six genes encoding "bona fide" PARP enzymes have been identified in mammalians: PARP1, PARP2, PARP3, PARP4/vPARP, PARP5/Tankyrases-1 and PARP6/Tankyrases-2. The best studied of these enzymes PARP1 plays a primary role in the process of poly-ADP-ribosylation. PARP1-mediated poly-ADP-ribosylation has been implicated in the pathogenesis of cancer, inflammatory and neurodegenerative disorders. This review will summarize the novel findings and concepts for PARP enzymes and their poly-ADP-ribosylation activity in the regulation of physiological and pathophysiological processes. A special focus is placed on the proposed molecular mechanisms involved in these processes, such as signaling, regulation of telomere dynamics, remodeling of chromatin structure and transcriptional regulation. A potential functional cross talk between PARP family members and other NAD+-consuming enzymes is discussed.

  13. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    PubMed

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  14. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose K m and unchanged k cat of F37A-ADPRibase-Mn, while the K m values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  15. Nicotinamide megadosing increases hepatic poly(ADP-ribose) levels in choline-deficient rats.

    PubMed

    ApSimon, M M; Rawling, J M; Kirkland, J B

    1995-07-01

    Previous work in our laboratory has shown that dietary megadoses of nicotinamide, used in the prevention of diabetes, cause increases in hepatic poly(ADP-ribose). Poly(ADP-ribose) is synthesized from NAD+ by a nuclear enzyme, poly(ADP-ribose)polymerase, which is activated by DNA strand breaks. The nicotinamide-induced increase in poly(ADP-ribose) could result from an increase in substrate, NAD+, or the induction of strand breaks in DNA. Strand breaks may result from the depletion of single carbon groups, through the excretion of methylated derivatives of nicotinamide. To differentiate between these mechanisms, a 3 x 3 factorial experiment was conducted in which rats were fed diets containing various supplements of choline bitartrate (0, 2, 20 g/kg diet) and nicotinamide (0, 1, 2 g/kg diet). At the conclusion of treatments, blood NAD+ and liver lipid, NAD+ and poly(ADP-ribose) levels were determined. Choline deficiency caused the characteristic accumulation of fat in the liver at all levels of nicotinamide. In choline deficient rats, nicotinamide supplements further increased liver lipid concentration. Blood and liver NAD+ concentrations were increased by nicotinamide supplementation, irrespective of choline status. In contrast, liver poly(ADP-ribose) levels were increased by nicotinamide supplementation only in choline deficient rats. These results show that nicotinamide-induced increases in poly(ADP-ribose) levels appear to be dependent on decreased methyl donor status and suggest that adequate choline status is important for preventing some deleterious effects of nicotinamide treatment.

  16. Analysis of Poly(ADP-Ribose) Polymerases in Arabidopsis Telomere Biology

    PubMed Central

    Townley, Jennifer M.; Shippen, Dorothy E.

    2014-01-01

    Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one. PMID:24551184

  17. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  18. Ethanol-induced changes in Poly (ADP ribose) Polymerase and neuronal developmental gene expression

    PubMed Central

    Gavin, David P.; Kusumo, Handojo; Sharma, Rajiv P.; Guizzetti, Marina

    2016-01-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that elevated PARP enzymatic activity reduced PPARγ promoter binding, and this corresponded to decreased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. PMID:27497606

  19. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com; Gardberg, Anna S.; Yip, Bryan K.

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers.more » In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.« less

  20. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

    PubMed

    Karlberg, Tobias; Klepsch, Mirjam; Thorsell, Ann-Gerd; Andersson, C David; Linusson, Anna; Schüler, Herwig

    2015-03-20

    The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Novel poly (ADP-ribose) polymerase inhibitor, AZD2281, enhances radiosensitivity of both normoxic and hypoxic esophageal squamous cancer cells.

    PubMed

    Zhan, L; Qin, Q; Lu, J; Liu, J; Zhu, H; Yang, X; Zhang, C; Xu, L; Liu, Z; Cai, J; Ma, J; Dai, S; Tao, G; Cheng, H; Sun, X

    2016-04-01

    Radiotherapy plays an important role in the treatment of esophageal squamous cell carcinoma (ESCC). However, the outcome of radiotherapy in ESCC remains unsatisfactory because esophageal squamous cancer cells, particularly those under hypoxic condition, exhibit radioresistance. The aim of this study was to determine whether or not AZD2281, a potent poly (ADP-ribose) polymerase (PARP) inhibitor, could enhance the radiation sensitivity of two ESCC cell lines, namely ECA109 and TE13. The radiosensitizing effect of AZD2281 was evaluated on the basis of cell death, clonogenic survival and tumor xenograft progression. AZD2281 alone was slightly toxic to ESCC cell lines. Apoptosis was increased and clonogenic survival was decreased in both cell lines when AZD2281 was combined with ionizing radiation (IR) under normoxic condition. AZD2281 enhanced IR-induced apoptosis to a more significant level under chronic hypoxic condition (0.2% O(2), 48 hour) than under normoxic condition. AZD2281 also slightly enhanced clonogenic cell death under chronic hypoxic condition compared with that under normoxic condition. This result could be associated with increased radiation-induced DNA double-strand breaks (DSB), decreased DSB repair and increased apoptosis of ESCC cells. Furthermore, homologous recombination (HR) protein Rad51 expression and focus formation were decreased in ESCC cells exposed to moderate chronic hypoxic condition (0.2% O(2), 48 hour); this result indicated that chronic hypoxic ESCC cells were HR deficient, possibly causing contextual synthetic lethality with PARP inhibitor in radiation sensitization. AZD2281 was also a radiation sensitizer in ESCC tumor xenograft models. Hence, in vitro and in vivo findings provide evidence that AZD2281 potently sensitizes ESCC cells to X-ray irradiation. The selective cell killing of HR-defective hypoxic cells contributes to radiosensitization by PARP inhibitor in ESCC cells under hypoxic condition. © 2015 International Society for

  2. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression.

    PubMed

    Gavin, David P; Kusumo, Handojo; Sharma, Rajiv P; Guizzetti, Marina

    2016-11-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. Published by Elsevier Ltd.

  3. Poly(ADP-Ribose) Polymerase-1: A Novel Therapeutic Target in Necrotizing Enterocolitis

    PubMed Central

    Giannone, Peter J.; Alcamo, Alicia A.; Schanbacher, Brandon L.; Nankervis, Craig A.; Besner, Gail E.; Bauer, John A.

    2011-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of infancy, afflicting 11% of infants born 22–28 weeks gestational age. Both inflammation and oxidation may be involved in NEC pathogenesis through reactive nitrogen species production, protein oxidation and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme activated to facilitate DNA repair using nicotinamide adenine dinucleotide (NAD+) as a substrate. However, in the presence of severe oxidative stress and DNA damage, PARP-1 over-activation may ensue, depleting cells of NAD+ and ATP, killing them by metabolic catastrophe. Here we tested the hypothesis that NO dysregulation in intestinal epithelial cells during NEC leads to marked PARP-1 expression and that administration of a PARP-1 inhibitor (nicotinamide) attenuates intestinal injury in a newborn rat model of NEC. In this model, 56% of control pups developed NEC (any stage), versus 14% of pups receiving nicotinamide. Forty-four percent of control pups developed high-grade NEC (grades 3–4), whereas only 7% of pups receiving nicotinamide developed high-grade NEC. Nicotinamide treatment protects pups against intestinal injury incurred in the newborn rat NEC model. We speculate that PARP-1 over-activation in NEC may drive mucosal cell death in this disease and that PARP-1 may be a novel therapeutic target in NEC. PMID:21399558

  4. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  5. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    PubMed

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  6. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

    PubMed

    Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M

    2014-07-15

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.

  7. Inhibiting poly(ADP-ribosylation) improves axon regeneration.

    PubMed

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-10-04

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.

  8. Nickel(II) affects poly(ADP-ribose) polymerase-mediated DNA repair in normal and cancer cells.

    PubMed

    Wozniak, Katarzyna; Czechowska, Agnieszka; Blasiak, Janusz

    2006-01-01

    Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.

  9. Disrupted ADP-ribose metabolism with nuclear Poly (ADP-ribose) accumulation leads to different cell death pathways in presence of hydrogen peroxide in procyclic Trypanosoma brucei.

    PubMed

    Schlesinger, Mariana; Vilchez Larrea, Salomé C; Haikarainen, Teemu; Narwal, Mohit; Venkannagari, Harikanth; Flawiá, Mirtha M; Lehtiö, Lari; Fernández Villamil, Silvia H

    2016-03-23

    Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. PAR is synthesized by Poly(ADP-ribose) polymerase (PARP) and hydrolyzed by Poly(ADP-ribose) glycohydrolase (PARG). In contrast to human and other higher eukaryotes, Trypanosoma brucei contains only one PARP and PARG. Up to date, the function of these enzymes has remained elusive in this parasite. The aim of this work is to unravel the role that PAR plays in genotoxic stress response. The optimal conditions for the activity of purified recombinant TbPARP were determined by using a fluorometric activity assay followed by screening of PARP inhibitors. Sensitivity to a genotoxic agent, H2O2, was assessed by counting motile parasites over the total number in a Neubauer chamber, in presence of a potent PARP inhibitor as well as in procyclic transgenic lines which either down-regulate PARP or PARG, or over-express PARP. Triplicates were carried out for each condition tested and data significance was assessed with two-way Anova followed by Bonferroni test. Finally, PAR influence was studied in cell death pathways by flow cytometry. Abolition of a functional PARP either by using potent inhibitors present or in PARP-silenced parasites had no effect on parasite growth in culture; however, PARP-inhibited and PARP down-regulated parasites presented an increased resistance against H2O2 treatment when compared to their wild type counterparts. PARP over-expressing and PARG-silenced parasites displayed polymer accumulation in the nucleus and, as expected, showed diminished resistance when exposed to the same genotoxic stimulus. Indeed, they suffered a necrotic death pathway, while an apoptosis-like mechanism was observed in control cultures. Surprisingly, PARP migrated to the nucleus and synthesized PAR only after a genomic stress in wild type parasites while PARG occurred always in this organelle. PARP over-expressing and

  10. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    PubMed Central

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001 PMID:27697151

  11. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells

    PubMed Central

    2014-01-01

    Background PTEN inactivation is the most frequent genetic aberration in endometrial cancer. One of the phosphatase-independent roles of PTEN is associated with homologous recombination (HR) in nucleus. Poly (ADP-ribose) polymerase (PARP) plays key roles in the repair of DNA single-strand breaks, and a PARP inhibitor induces synthetic lethality in cancer cells with HR deficiency. We examined the anti-tumor activity of olaparib, a PARP inhibitor, and its correlation between the sensitivity and status of PTEN in endometrial cancer cell lines. Methods The response to olaparib was evaluated using a clonogenic assay with SF50 values (concentration to inhibit cell survival to 50%) in 16 endometrial cancer cell lines. The effects of PTEN on the sensitivity to olaparib and ionizing radiation (IR) exposure were compared between parental HEC-6 (PTEN-null) and HEC-6 PTEN + (stably expressing wild-type PTEN) cells by clonogenic assay, foci formation of RAD51 and γH2AX, and induction of cleaved PARP. The effects of siRNA to PTEN were analyzed in cells with wild-type PTEN. Results The SF50 values were 100 nM or less in four (25%: sensitive) cell lines; whereas, SF50 values were 1,000 nM or more in four (25%: resistant) cell lines. PTEN mutations were not associated with sensitivity to olaparib (Mutant [n = 12]: 746 ± 838 nM; Wild-type [n = 4]: 215 ± 85 nM, p = 0.26 by Student’s t test). RAD51 expression was observed broadly and was not associated with PTEN status in the 16 cell lines. The number of colonies in the clonogenic assay, the foci formation of RAD51 and γH2AX, and the induction of apoptosis were not affected by PTEN introduction in the HEC-6 PTEN + cells. The expression level of nuclear PTEN was not elevated within 24 h following IR in the HEC-6-PTEN + cells. In addition, knocking down PTEN by siRNA did not alter the sensitivity to olaparib in 2 cell lines with wild-type PTEN. Conclusions Our results suggest that olaparib, a PARP

  12. Poly(ADP-ribose) polymerase-1 (Parp-1)-deficient mice demonstrate abnormal antibody responses

    PubMed Central

    Ambrose, Helen E; Willimott, Shaun; Beswick, Richard W; Dantzer, Françoise; de Murcia, Josiane Ménissier; Yelamos, José; Wagner, Simon D

    2009-01-01

    Poly(ADP-ribosylation) of acceptor proteins is an epigenetic modification involved in DNA strand break repair, recombination and transcription. Here we provide evidence for the involvement of poly(ADP-ribose) polymerase-1 (Parp-1) in antibody responses. Parp-1−/− mice had increased numbers of T cells and normal numbers of total B cells. Marginal zone B cells were mildly reduced in number, and numbers of follicular B cells were preserved. There were abnormal levels of basal immunoglobulins, with reduced levels of immunoglobulin G2a (IgG2a) and increased levels of IgA and IgG2b. Analysis of specific antibody responses showed that T cell-independent responses were normal but T cell-dependent responses were markedly reduced. Germinal centres were normal in size and number. In vitro purified B cells from Parp-1−/− mice proliferated normally and showed normal IgM secretion, decreased switching to IgG2a but increased IgA secretion. Collectively our results demonstrate that Parp-1 has essential roles in normal T cell-dependent antibody responses and the regulation of isotype expression. We speculate that Parp-1 forms a component of the protein complex involved in resolving the DNA double-strand breaks that occur during class switch recombination. PMID:18778284

  13. MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor.

    PubMed

    Takahashi, Masanobu; Koi, Minoru; Balaguer, Francesc; Boland, C Richard; Goel, Ajay

    2011-04-08

    The MSH3 gene is one of the DNA mismatch repair (MMR) genes that has undergone somatic mutation frequently in MMR-deficient cancers. MSH3, together with MSH2, forms the MutSβ heteroduplex, which interacts with interstrand cross-links (ICLs) induced by drugs such as cisplatin and psoralen. However, the precise role of MSH3 in mediating the cytotoxic effects of ICL-inducing agents remains poorly understood. In this study, we first examined the effects of MSH3 deficiency on cytotoxicity caused by cisplatin and oxaliplatin, another ICL-inducing platinum drug. Using isogenic HCT116-derived clones in which MSH3 expression is controlled by shRNA expression in a Tet-off system, we discovered that MSH3 deficiency sensitized cells to both cisplatin and oxaliplatin at clinically relevant doses. Interestingly, siRNA-induced down-regulation of the MLH1 protein did not affect MSH3-dependent toxicity of these drugs, indicating that this process does not require participation of the canonical MMR pathway. Furthermore, MSH3-deficient cells maintained higher levels of phosphorylated histone H2AX and 53BP1 after oxaliplatin treatment in comparison with MSH3-proficient cells, suggesting that MSH3 plays an important role in repairing DNA double strand breaks (DSBs). This role of MSH3 was further supported by our findings that MSH3-deficient cells were sensitive to olaparib, a poly(ADP-ribose) polymerase inhibitor. Moreover, the combination of oxaliplatin and olaparib exhibited a synergistic effect compared with either treatment individually. Collectively, our results provide novel evidence that MSH3 deficiency contributes to the cytotoxicity of platinum drugs through deficient DSB repair. These data lay the foundation for the development of effective prediction and treatments for cancers with MSH3 deficiency.

  14. MSH3 Mediates Sensitization of Colorectal Cancer Cells to Cisplatin, Oxaliplatin, and a Poly(ADP-ribose) Polymerase Inhibitor*

    PubMed Central

    Takahashi, Masanobu; Koi, Minoru; Balaguer, Francesc; Boland, C. Richard; Goel, Ajay

    2011-01-01

    The MSH3 gene is one of the DNA mismatch repair (MMR) genes that has undergone somatic mutation frequently in MMR-deficient cancers. MSH3, together with MSH2, forms the MutSβ heteroduplex, which interacts with interstrand cross-links (ICLs) induced by drugs such as cisplatin and psoralen. However, the precise role of MSH3 in mediating the cytotoxic effects of ICL-inducing agents remains poorly understood. In this study, we first examined the effects of MSH3 deficiency on cytotoxicity caused by cisplatin and oxaliplatin, another ICL-inducing platinum drug. Using isogenic HCT116-derived clones in which MSH3 expression is controlled by shRNA expression in a Tet-off system, we discovered that MSH3 deficiency sensitized cells to both cisplatin and oxaliplatin at clinically relevant doses. Interestingly, siRNA-induced down-regulation of the MLH1 protein did not affect MSH3-dependent toxicity of these drugs, indicating that this process does not require participation of the canonical MMR pathway. Furthermore, MSH3-deficient cells maintained higher levels of phosphorylated histone H2AX and 53BP1 after oxaliplatin treatment in comparison with MSH3-proficient cells, suggesting that MSH3 plays an important role in repairing DNA double strand breaks (DSBs). This role of MSH3 was further supported by our findings that MSH3-deficient cells were sensitive to olaparib, a poly(ADP-ribose) polymerase inhibitor. Moreover, the combination of oxaliplatin and olaparib exhibited a synergistic effect compared with either treatment individually. Collectively, our results provide novel evidence that MSH3 deficiency contributes to the cytotoxicity of platinum drugs through deficient DSB repair. These data lay the foundation for the development of effective prediction and treatments for cancers with MSH3 deficiency. PMID:21285347

  15. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work.

    PubMed

    Brunyanszki, Attila; Szczesny, Bartosz; Virág, László; Szabo, Csaba

    2016-11-01

    Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Langelier; J Planck; S Roy

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less

  17. Poly ADP-Ribose Polymerase Inhibition Ameliorates Hind Limb Ischemia Reperfusion Injury in a Murine Model of Type 2 Diabetes

    PubMed Central

    Long, Chandler A.; Boloum, Valy; Albadawi, Hassan; Tsai, Shirling; Yoo, Hyung-Jin; Oklu, Rahmi; Goldman, Mitchell H.; Watkins, Michael T.

    2013-01-01

    Introduction Diabetes is known to increase poly-ADP-ribose-polymerase (PARP) activity and posttranslational poly-ADP-ribosylation of several regulatory proteins involved in inflammation and energy metabolism. These experiments test the hypothesis that PARP inhibition will modulate hind limb ischemia reperfusion (IR) in a mouse model of type-II diabetes; ameliorate the ribosylation and the activity/transnuclear localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Methods db/db mice underwent 1.5hrs of hind limb ischemia followed by 1, 7, or 24hrs reperfusion. The treatment group received the PARP inhibitor PJ34 (PJ34) over a 24hrs period; the untreated group received Lactated ringer’s (LR) at the same time points. IR muscles were analyzed for indices of PARP activity, fiber injury, metabolic activity, inflammation, GAPDH activity /intracellular localization and poly-ADP-ribosylation of GAPDH. Results PARP activity was significantly lower in the PJ34 treated groups compared to the LR group at 7 and 24 hours reperfusion. There was significantly less muscle fiber injury in the PJ34 treated group compared to LR treated mice at 24 hrs reperfusion. PJ34 lowered levels of select proinflammatory molecules at 7hrs and 24hrs IR. There were significant increases in metabolic activity only at 24 hours IR in the PJ34 group, which temporally correlated with increase in GAPDH activity, decreased GAPDH poly ADP-ribosylation and nuclear translocation of GAPDH. Conclusions PJ34 reduced PARP activity, GAPDH ribosylation, GAPDH translocation, ameliorated muscle fiber injury, and increased metabolic activity following hind limb IR injury in a murine model of type-II diabetes. PARP inhibition might be a therapeutic strategy following IR in diabetic humans. PMID:23549425

  18. Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood-brain barrier after traumatic brain injury in mice.

    PubMed

    Tao, X; Chen, X; Hao, S; Hou, Z; Lu, T; Sun, M; Liu, B

    2015-04-16

    Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. After 6 h and 24 h of CCI, the permeability of the cortical BBB was determined after Evans Blue administration. The water content of the brain was also measured. Treatment with PJ34 markedly attenuated the permeability of the BBB and decreased the brain edema at 6 h and 24 h after CCI. Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response

    PubMed Central

    Kozaki, Tatsuya; Komano, Jun; Kanbayashi, Daiki; Takahama, Michihiro; Misawa, Takuma; Satoh, Takashi; Takeuchi, Osamu; Kawai, Taro; Shimizu, Shigeomi; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-01-01

    The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage. PMID:28213497

  20. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Sachiko; Tanaka, Masakazu; Sato, Teruaki

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h andmore » 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to

  1. Activity-based assay for human mono-ADP-ribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors.

    PubMed

    Venkannagari, Harikanth; Fallarero, Adyary; Feijs, Karla L H; Lüscher, Bernhard; Lehtiö, Lari

    2013-05-13

    Poly(ADP-ribose) polymerases (PARPs) or diphtheria toxin like ADP-ribosyl transferases (ARTDs) are enzymes that catalyze the covalent modification of proteins by attachment of ADP-ribose units to the target amino acid residues or to the growing chain of ADP-ribose. A subclass of the ARTD superfamily consists of mono-ADP-ribosyl transferases that are thought to modify themselves and other substrate proteins by covalently adding only a single ADP-ribose moiety to the target. Many of the ARTD enzymes are either established or potential drug targets and a functional activity assay for them will be a valuable tool to identify selective inhibitors for each enzyme. Existing assays are not directly applicable for screening of inhibitors due to the different nature of the reaction and different target molecules. We modified and applied a fluorescence-based assay previously described for PARP1/ARTD1 and tankyrase/ARTD5 for screening of PARP10/ARTD10 and PARP15/ARTD7 inhibitors. The assay measures the amount of NAD(+) present after chemically converting it to a fluorescent analog. We demonstrate that by using an excess of a recombinant acceptor protein the performance of the activity-based assay is excellent for screening of compound libraries. The assay is homogenous and cost effective, making it possible to test relatively large compound libraries. This method can be used to screen inhibitors of mono-ARTDs and profile inhibitors of the enzyme class. The assay was optimized for ARTD10 and ARTD7, but it can be directly applied to other mono-ARTDs of the ARTD superfamily. Profiling of known ARTD inhibitors against ARTD10 and ARTD7 in a validatory screening identified the best inhibitors with submicromolar potencies. Only few of the tested ARTD inhibitors were potent, implicating that there is a need to screen new compound scaffolds. This is needed to create small molecules that could serve as biological probes and potential starting points for drug discovery projects against

  2. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide.

    PubMed Central

    Schraufstatter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1986-01-01

    To determine the biochemical basis of the oxidant-induced injury of cells, we have studied early changes after exposure of P388D1 murine macrophages to hydrogen peroxide. Total intracellular NAD+ levels in P388D1 cells decreased with H2O2 concentrations of 40 microM or higher. Doses of H2O2 between 0.1 and 2.5 mM led to an 80% depletion of NAD within 20 min. With doses of H2O2 of 250 microM or lower, the fall in NAD and, as shown previously, ATP, was reversible. Higher doses of H2O2 that cause ultimate lysis of the cells, induced an irreversible depletion of NAD and ATP. Poly-ADP-ribose polymerase, a nuclear enzyme associated with DNA damage and repair, which catalyzes conversion of NAD to nicotinamide and protein-bound poly-ADP-ribose, was activated by exposure of the cells to concentrations of 40 microM H2O2 or higher. Activation of poly-ADP-ribose polymerase was also observed in peripheral lymphocytes incubated in the presence of phorbol myristate acetate-stimulated polymorphonuclear neutrophils. Examination of the possibility that DNA alteration was involved was performed by measurement of thymidine incorporation and determination of DNA single-strand breaks (SSB) in cells exposed to H2O2. H2O2 at 40 microM or higher inhibited DNA synthesis, and induced SSB within less than 30 s. These results suggest that DNA damage induced within seconds after addition of oxidant may lead to stimulation of poly-ADP-ribose polymerase, and a consequent fall in NAD. Excessive stimulation of poly-ADP-ribose polymerase leads to a fall in NAD sufficient to interfere with ATP synthesis. PMID:2937805

  3. Discovery and Structure–Activity Relationship of Novel 2,3-Dihydrobenzofuran-7-carboxamide and 2,3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives as Poly(ADP-ribose)polymerase-1 Inhibitors

    PubMed Central

    2015-01-01

    Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 μM). To facilitate synthetically feasible derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide (36, IC50 = 16.2 μM). The electrophilic 2-position of this scaffold was accessible for extended modifications. Substituted benzylidene derivatives at the 2-position were found to be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino of the benzylidene moiety resulted in significant improvement in inhibition of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed selective cytotoxicity in BRCA2-deficient DT40 cells. Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to a multidomain PARP-1 structure were obtained, providing insights into further development of these inhibitors. PMID:24922587

  4. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassé, Maggie H.; Muthurajan, Uma M.; Clark, Nicholas J.

    Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for highmore » throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.« less

  5. Differential Role of Poly(ADP-ribose) polymerase in D. discoideum growth and development

    PubMed Central

    2011-01-01

    Background Poly(ADP-ribose) polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP. PMID:21385463

  6. Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    PubMed Central

    Boamah, Ernest K.; Kotova, Elena; Garabedian, Mikael; Jarnik, Michael; Tulin, Alexei V.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis. PMID:22242017

  7. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less

  8. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  9. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics. Copyright 2000 Academic Press.

  11. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    PubMed

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Discovery of potent 2,4-difluoro-linker poly(ADP-ribose) polymerase 1 inhibitors with enhanced water solubility and in vivo anticancer efficacy.

    PubMed

    Chen, Wen-Hua; Song, Shan-Shan; Qi, Ming-Hui; Huan, Xia-Juan; Wang, Ying-Qing; Jiang, Hualiang; Ding, Jian; Ren, Guo-Bin; Miao, Ze-Hong; Li, Jian

    2017-11-01

    Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially in breast and ovarian cancers; tumor cells that are deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, we identified a series of 2,4-difluorophenyl-linker analogs (15-55) derived from olaparib as novel PARP1 inhibitors. Four potent analogs 17, 43, 47, and 50 (IC 50 =2.2-4.4 nmol/L) effectively inhibited the proliferation of Chinese hamster lung fibroblast V-C8 cells (IC 50 =3.2-37.6 nmol/L) in vitro, and showed specificity toward BRCA-deficient cells (SI=40-510). The corresponding hydrochloride salts 56 and 57 (based on 43 and 47) were highly water soluble in pH=1.0 buffered salt solutions (1628.2 μg/mL, 2652.5 μg/mL). In a BRCA1-mutated xenograft model, oral administration of compound 56 (30 mg·kg -1 ·d -1 , for 21 d) exhibited more prominent tumor growth inhibition (96.6%) compared with the same dose of olaparib (56.3%); in a BRCA2-mutated xenograft model, oral administration of analog 43 (10 mg·kg -1 ·d -1 , for 28 d) significantly inhibited tumor growth (69.0%) and had no negative effects on the body weights. Additionally, compound 56 exhibited good oral bioavailability (F=32.2%), similar to that of olaparib (F=45.4%). Furthermore, the free base 43 of the hydrochloride salt 56 exhibited minimal hERG inhibition activity (IC 50 =6.64 μmol/L). Collectively, these data demonstrate that compound 56 may be an excellent drug candidate for the treatment of cancer, particularly BRCA-deficient tumors.

  13. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence ofmore » this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.« less

  14. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  15. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    PubMed

    O'Valle, Francisco; Del Moral, Raimundo G M; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J; Del Moral, Raimundo G

    2009-09-28

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  17. Poly(ADP-ribose) Polymerase 1, PARP1, modifies EZH2 and inhibits EZH2 histone methyltransferase activity after DNA damage

    PubMed Central

    Lauretti, Elisabetta; Hulse, Michael; Siciliano, Micheal; Lupey-Green, Lena N.; Abraham, Aaron; Skorski, Tomasz; Tempera, Italo

    2018-01-01

    The enzyme Poly(ADP-ribose) polymerase 1 (PARP1) plays a very important role in the DNA damage response, but its role in numerous aspects is not fully understood. We recently showed that in the absence of DNA damage, PARP1 regulates the expression of the chromatin-modifying enzyme EZH2. Work from other groups has shown that EZH2 participates in the DNA damage response. These combined data suggest that EZH2 could be a target of PARP1 in both untreated and genotoxic agent-treated conditions. In this work we tested the hypothesis that, in response to DNA damage, PARP1 regulates EZH2 activity. Here we report that PARP1 regulates EZH2 activity after DNA damage. In particular, we find that EZH2 is a direct target of PARP1 upon induction of alkylating and UV-induced DNA damage in cells and in vitro. PARylation of EZH2 inhibits EZH2 histone methyltransferase (H3K27me) enzymatic activity. We observed in cells that the induction of PARP1 activity by DNA alkylating agents decreases the association of EZH2 with chromatin, and PARylation of histone H3 reduces EZH2 affinity for its target histone H3. Our findings establish that PARP1 and PARylation are important regulators of EZH2 function and link EZH2-mediated heterochromatin formation, DNA damage and PARylation. These findings may also have clinical implications, as they suggest that inhibitors of EZH2 can improve anti-tumor effects of PARP1 inhibitors in BRCA1/2-deficient cancers. PMID:29535829

  18. Ets-1 interacts through a similar binding interface with Ku70 and Poly (ADP-Ribose) Polymerase-1.

    PubMed

    Choul-Li, Souhaila; Legrand, Arnaud J; Vicogne, Dorothée; Villeret, Vincent; Aumercier, Marc

    2018-06-18

    The Ets-1 transcription factor plays an important role in various physiological and pathological processes. These diverse roles of Ets-1 are likely to depend on its interaction proteins. We have previously showed that Ets-1 interacted with DNA-dependent protein kinase (DNA-PK) complex including its regulatory subunits, Ku70 and Ku86 and with poly (ADP-ribose) polymerase-1 (PARP-1). In this study, the binding domains for the interaction between Ets-1 and these proteins were reported. We demonstrated that the interaction of Ets-1 with DNA-PK was mediated through the Ku70 subunit and was mapped to the C-terminal region of Ets-1 and the C-terminal part of Ku70 including SAP domain. The interactive domains between Ets-1 and PARP-1 have been mapped to the C-terminal region of Ets-1 and the BRCA1 carboxy-terminal (BRCT) domain of PARP-1. The results presented in this study may advance our understanding of the functional link between Ets-1 and its interaction partners, DNA-PK and PARP-1.

  19. Modulation of the poly (ADP-ribose) polymerase inhibitor response and DNA recombination in breast cancer cells by drugs affecting endogenous wild-type p53.

    PubMed

    Ireno, Ivanildce Cristiane; Wiehe, Rahel Stephanie; Stahl, Andreea Iulia; Hampp, Stephanie; Aydin, Sevtap; Troester, Melissa A; Selivanova, Galina; Wiesmüller, Lisa

    2014-10-01

    Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Inhibition of poly(ADP-ribose) polymerase 1 protects against acute myeloid leukemia by suppressing the myeloproliferative leukemia virus oncogene

    PubMed Central

    Wang, Lingbo; Cai, Weili; Zhang, Wei; Chen, Xueying; Dong, Wenqian; Tang, Dongqi; Zhang, Yun; Ji, Chunyan; Zhang, Mingxiang

    2015-01-01

    An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment. PMID:26314963

  1. Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation

    PubMed Central

    O'Valle, Francisco; Del Moral, Raimundo G. M.; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J.; Del Moral, Raimundo G.

    2009-01-01

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Materials and Methods Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. Results PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function. PMID:19784367

  2. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation

    NASA Astrophysics Data System (ADS)

    Min, Wookee; Bruhn, Christopher; Grigaravicius, Paulius; Zhou, Zhong-Wei; Li, Fu; Krüger, Anja; Siddeek, Bénazir; Greulich, Karl-Otto; Popp, Oliver; Meisezahl, Chris; Calkhoven, Cornelis F.; Bürkle, Alexander; Xu, Xingzhi; Wang, Zhao-Qi

    2013-12-01

    Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.

  3. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.

    PubMed

    Hottiger, Michael O; Hassa, Paul O; Lüscher, Bernhard; Schüler, Herwig; Koch-Nolte, Friedrich

    2010-04-01

    ADP-ribosylation is a post-translational modification of proteins catalyzed by ADP-ribosyltransferases. It comprises the transfer of the ADP-ribose moiety from NAD+ to specific amino acid residues on substrate proteins or to ADP-ribose itself. Currently, 22 human genes encoding proteins that possess an ADP-ribosyltransferase catalytic domain are known. Recent structural and enzymological evidence of poly(ADP-ribose)polymerase (PARP) family members demonstrate that earlier proposed names and classifications of these proteins are no longer accurate. Here we summarize these new findings and propose a new consensus nomenclature for all ADP-ribosyltransferases (ARTs) based on the catalyzed reaction and on structural features. A unified nomenclature would facilitate communication between researchers both inside and outside the ADP-ribosylation field. 2009 Elsevier Ltd. All rights reserved.

  4. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity.

    PubMed

    McMullin, Ryan P; Wittner, Ben S; Yang, Chuanwei; Denton-Schneider, Benjamin R; Hicks, Daniel; Singavarapu, Raj; Moulis, Sharon; Lee, Jeongeun; Akbari, Mohammad R; Narod, Steven A; Aldape, Kenneth D; Steeg, Patricia S; Ramaswamy, Sridhar; Sgroi, Dennis C

    2014-03-14

    There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer

  5. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity

    PubMed Central

    2014-01-01

    Introduction There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. Methods We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. Results In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of

  6. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  7. Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity.

    PubMed

    Mehrabadi, Abbas Rezaeian; Korolainen, Minna A; Odero, Gary; Miller, Donald W; Kauppinen, Tiina M

    2017-09-01

    Alzheimer's disease pathology includes, beside neuronal damage, reactive gliosis and reduced blood-brain barrier (BBB) integrity. Microglia are intimately associated with the BBB and upon AD pathology, pro-inflammatory responses of microglia could contribute to BBB damage. To study whether microglia can directly affect BBB integrity, the effects of amyloid beta (Aβ) -stimulated primary murine microglia on co-cultured mouse brain endothelial cells (bEnd3) and murine astrocyte cultures were assessed. We also assessed whether microglial phenotype modulation via poly(ADP-ribose) polymerase-1 (PARP-1) inhibition/ablation can reverse microglial impact on these BBB forming cells. Unstimulated microglia promoted expression of tight junction proteins (TJPs), zonula ocluden-1 (ZO-1) and occludin in co-cultured endothelia cells, whereas Aβ-stimulated microglia reduced endothelial expression of ZO-1 and occludin. Astrocytes co-cultured with microglia showed elevated glial fibrillary acidic protein (GFAP) expression, which was further increased if microglia had been stimulated with Aβ. Aβ induced microglial release of nitric oxide (NO) and tumour necrosis factor alpha (TNFα), which resulted in reduced endothelial expression of TJPs and increased paracellular permeability. Microglial PARP-1 inhibition attenuated these Aβ-induced events. These findings demonstrate that PARP-1 mediated microglial responses (NO and TNFα) can directly reduce BBB integrity by promoting TJP degradation, increasing endothelial cell permeability and inducing astrogliosis. PARP-1 as a modulator of microglial phenotype can prevent microglial BBB damaging events, and thus is a potential therapeutic target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells.

    PubMed

    Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao

    2016-02-01

    PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer.

    PubMed

    Liu, Joyce F; Tolaney, Sara M; Birrer, Michael; Fleming, Gini F; Buss, Mary K; Dahlberg, Suzanne E; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A

    2013-09-01

    Poly(ADP-ribose) polymerase (PARP)-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of vascular endothelial growth factor receptor (VEGFR)-1/2/3 and olaparib, a PARP-inhibitor (NCT01116648). Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 or met Gynecologic Cancer InterGroup (GCIG) CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 dose limiting toxicities (DLTs) (1 grade 4 neutropenia ≥ 4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30 mg daily; olaparib 400 mg twice daily [BID]). The RP2D was cediranib 30 mg daily and olaparib 200 mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus stable disease (SD) > 24 weeks) of 61%. None of the seven evaluable breast cancer patients achieved clinical response; two patients had stable disease for > 24 weeks. The combination of cediranib and olaparib has haematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Carsten J.; Kosse, Jens; Radovits, Tamas

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or withmore » combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.« less

  11. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types

    PubMed Central

    Ossovskaya, Valeria; Koo, Ingrid Chou; Kaldjian, Eric P.; Alvares, Christopher; Sherman, Barry M.

    2010-01-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair and is implicated in pathways of tumorigenesis. PARP inhibitors have gained recent attention as rationally designed therapeutics for the treatment of several malignancies, particularly those associated with dysfunctional DNA repair pathways, including triple-negative breast cancer (TNBC). We investigated the PARP1 gene expression profile in surgical samples from more than 8,000 primary malignant and normal human tissues. PARP1 expression was found to be significantly increased in several malignant tissues, including those isolated from patients with breast, uterine, lung, ovarian, and skin cancers, and non-Hodgkin’s lymphoma. Within breast infiltrating ductal carcinoma (IDC) samples tested, mean PARP1 expression was significantly higher relative to normal breast tissue, with over 30% of IDC samples demonstrating upregulation of PARP1, compared with 2.9% of normal tissues. Because of known DNA repair defects, including BRCA1 dysfunction, associated with TNBC, exploration of PARP1 expression in breast cancers related to expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) led to the observation that negative expression of any of the 3 receptors was associated with upregulation of PARP1 expression, compared with receptor-positive tissues. To validate these observations, an independent set of breast adenocarcinomas was evaluated and demonstrated >2-fold upregulation of PARP1 in approximately 70% of primary breast adenocarcinomas, including TNBC, compared with syngeneic nonmalignant breast tissues. Immunohistochemistry (IHC) showed that upregulation of the PARP1 gene was consistent with increased protein expression in TNBC. These analyses suggest a potential biological role for PARP1 in several distinct malignancies, including TNBC. Further investigation of PARP1 as a biomarker for the therapeutic activity of PARP inhibitor

  12. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling

    PubMed Central

    Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653

  13. Small interfering RNA mediated Poly (ADP-ribose) Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line

    PubMed Central

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70) is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA) mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression). These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1), the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation). PMID:21345219

  14. The KRAS Promoter Responds to Myc-associated Zinc Finger and Poly(ADP-ribose) Polymerase 1 Proteins, Which Recognize a Critical Quadruplex-forming GA-element*

    PubMed Central

    Cogoi, Susanna; Paramasivam, Manikandan; Membrino, Alexandro; Yokoyama, Kazunari K.; Xodo, Luigi E.

    2010-01-01

    The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G → T or G → A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element. PMID:20457603

  15. Identification of Poly(ADP-Ribose) Polymerase as a Transcriptional Coactivator of the Human T-Cell Leukemia Virus Type 1 Tax Protein

    PubMed Central

    Anderson, Mark G.; Scoggin, Kirsten E. S.; Simbulan-Rosenthal, Cynthia M.; Steadman, Jennifer A.

    2000-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose activity is believed to contribute significantly to cellular transformation. Tax stimulates transcription from the proviral promoter as well as from promoters for a variety of cellular genes. The mechanism through which Tax communicates to the general transcription factors and RNA polymerase II has not been completely determined. We investigated whether Tax could function directly through the general transcription factors and RNA polymerase II or if other intermediary factors or coactivators were required. Our results show that a system consisting of purified recombinant TFIIA, TFIIB, TFIIE, TFIIF, CREB, and Tax, along with highly purified RNA polymerase II, affinity-purified epitope-tagged TFIID, and semipurified TFIIH, supports basal transcription of the HTLV-1 promoter but is not responsive to Tax. Two additional activities were required for Tax to stimulate transcription. We demonstrate that one of these activities is poly(ADP-ribose) polymerase (PARP), a molecule that has been previously identified to be the transcriptional coactivator PC1. PARP functions as a coactivator in our assays at molar concentrations approximately equal to those of the DNA and equal to or less than those of the transcription factors in the assay. We further demonstrate that PARP stimulates Tax-activated transcription in vivo, demonstrating that this biochemical approach has functionally identified a novel target for the retroviral transcriptional activator Tax. PMID:10666246

  16. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  17. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism.

    PubMed

    Matsumura, N; Tanuma, S

    1998-12-18

    The NAD+ glycohydrolase homogeneously purified from bovine brain cytosol was found to catalyze the synthesis and hydrolysis of cyclic ADP-ribose (cADPR). Although the formation of cADPR from NAD+ does not exceed about 2% of the reaction products, the cyclase activity is clearly evidenced by its conversion of NGD+ to cyclic GDP-ribose (cGDPR), which cannot be hydrolyzed to GDPR. Importantly, a steep increase in cADPR hydrolytic activity was observed at cADPR concentrations above 60 microM, which could be reproduced on a Hill curve with a Hill coefficient of 2. Thus, the allosteric binding of cADPR to the NAD+ glycohydrolase (E) molecule promotes the hydrolysis of cADPR. These results suggest that NAD+ hydrolysis to ADPR and nicotinamide catalyzed by the NAD+ glycohydrolase occurs through the formation of a cADPR. E. cADP-ribosyl complex. The low production of cADPR by NAD+ glycohydrolase compared with invertebrate ADP-ribosyl cyclase is believed to be attributable to the fast hydrolysis of cADPR by the allosteric effect of cADPR bound to the same enzyme that produces it. Copyright 1998 Academic Press.

  18. MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination.

    PubMed

    Tentori, Lucio; Muzi, Alessia; Dorio, Annalisa Susanna; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity. MSH3-deficient/MLH1-proficient colon cancer HCT116(MLH1) cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(-) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle. MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin. Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.

  19. Combining poly(ADP-ribose) polymerase 1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage

    PubMed Central

    Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.

    2013-01-01

    Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622

  20. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells

    PubMed Central

    Bhute, Vijesh J.; Palecek, Sean P.

    2015-01-01

    Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723

  1. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism.

    PubMed

    Rotin, Lianne E; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L; Minden, Mark D; Slassi, Malik; Schimmer, Aaron D

    2016-01-19

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.

  2. Identifying Determinants of PARP Inhibitor Sensitivity in Ovarian Cancer

    DTIC Science & Technology

    2015-10-01

    such as those lacking functional BRCA1 are highly sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. Ovarian cancer patients that harbored...Principal Investigator (Last, first, middle): Johnson, Neil  Dr. Johnson’s mentor, Dr. Jeffrey Boyd, left Fox Chase for Florida International

  3. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    PubMed

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P < .05 was considered statistically significant. A significant increase in PARP activity was observed under ischemic and diabetic conditions that correlated with delayed wound healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P < .05) by day 7 with the addition of PJ34. PARP inhibition promoted angiogenesis at the ischemic and diabetic wound beds as evidenced by significantly higher levels of endothelial cell markers (vascular endothelial growth factor receptor 2 [VEGFR2] and endothelial nitric oxide synthase) in mice treated with PJ34 compared with controls. Flow cytometry

  4. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53.

    PubMed

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-11-02

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.

  5. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  6. Tankyrase 2 Poly(ADP-Ribose) Polymerase Domain-Deleted Mice Exhibit Growth Defects but Have Normal Telomere Length and Capping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Susan J; Poitras, Marc; Cook, Brandoch

    Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardationmore » phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement foTnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together these results suggest that Tnkjs2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.« less

  7. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    PubMed

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  9. Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide

    PubMed Central

    2014-01-01

    Background Chemoresistance of glioblastoma multiforme (GBM) has been attributed to the presence within the tumor of cancer stem cells (GSCs). The standard therapy for GBM consists of surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ). However, TMZ efficacy is limited by O6-methylguanine-DNA-methyltransferase (MGMT) and Mismatch Repair (MMR) functions. Strategies to counteract TMZ resistance include its combination with poly(ADP-ribose) polymerase inhibitors (PARPi), which hamper the repair of N-methylpurines. PARPi are also investigated as monotherapy for tumors with deficiency of homologous recombination (HR). We have investigated whether PARPi may restore GSC sensitivity to TMZ or may be effective as monotherapy. Methods Ten human GSC lines were assayed for MMR proteins, MGMT and PARP-1 expression/activity, MGMT promoter methylation and sensitivity to TMZ or PARPi, alone and in combination. Since PTEN defects are frequently detected in GBM and may cause HR dysfunction, PTEN expression was also analyzed. The statistical analysis of the differences in drug sensitivity among the cell lines was performed using the ANOVA and Bonferroni’s post-test or the non-parametric Kruskal-Wallis analysis and Dunn’s post-test for multiple comparisons. Synergism between TMZ and PARPi was analyzed by the median-effect method of Chou and Talalay. Correlation analyses were done using the Spearman’s rank test. Results All GSCs were MMR-proficient and resistance to TMZ was mainly associated with high MGMT activity or low proliferation rate. MGMT promoter hypermethylation of GSCs correlated both with low MGMT activity/expression (Spearman’s test, P = 0.004 and P = 0.01) and with longer overall survival of GBM patients (P = 0.02). Sensitivity of each GSC line to PARPi as single agent did not correlate with PARP-1 or PTEN expression. Notably, PARPi and TMZ combination exerted synergistic antitumor effects in eight out of ten GSC lines and

  10. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism

    PubMed Central

    Rotin, Lianne E.; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L.; Minden, Mark D.; Slassi, Malik; Schimmer, Aaron D.

    2016-01-01

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease. PMID:26624983

  11. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  12. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    PubMed

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  13. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J., E-mail: n.j.curtin@ncl.ac.u

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kineticsmore » assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.« less

  14. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair

    PubMed Central

    Robu, Mihaela; Shah, Rashmi G.; Purohit, Nupur K.; Zhou, Pengbo; Naegeli, Hanspeter

    2017-01-01

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV–DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1–XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV–DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins. PMID:28760956

  15. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    PubMed

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  16. Minocycline blocks asthma-associated inflammation in part by interfering with the T cell receptor-nuclear factor κB-GATA-3-IL-4 axis without a prominent effect on poly(ADP-ribose) polymerase.

    PubMed

    Naura, Amarjit S; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C; Jordan, Joaquin; Catling, Andrew D; Rezk, Bashir M; Abd Elmageed, Zakaria Y; Pyakurel, Kusma; Tarhuni, Abdelmetalab F; Abughazleh, Mohammad Q; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C; Boulares, A Hamid

    2013-01-18

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.

  17. Minocycline Blocks Asthma-associated Inflammation in Part by Interfering with the T Cell Receptor-Nuclear Factor κB-GATA-3-IL-4 Axis without a Prominent Effect on Poly(ADP-ribose) Polymerase*

    PubMed Central

    Naura, Amarjit S.; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C.; Jordan, Joaquin; Catling, Andrew D.; Rezk, Bashir M.; Elmageed, Zakaria Y. Abd; Pyakurel, Kusma; Tarhuni, Abdelmetalab F.; Abughazleh, Mohammad Q.; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C.; Boulares, A. Hamid

    2013-01-01

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N′-nitro-N-nitroso-guanidine-treated mice or H2O2-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production. PMID:23184953

  18. Minocycline attenuates streptomycin-induced cochlear hair cell death by inhibiting protein nitration and poly (ADP-ribose) polymerase activation.

    PubMed

    Wang, Ping; Li, Haonan; Yu, Shuyuan; Jin, Peng; Hassan, Abdurahman; Du, Bo

    2017-08-24

    This study aimed to elucidate the protective effect of minocycline against streptomycin-induced damage of cochlear hair cells and its mechanism. Cochlear membranes were isolated from newborn Wistar rats and randomly divided into control, 500μmol/L streptomycin, 100μmol/L minocycline, and streptomycin and minocycline treatment groups. Hair cell survival was analyzed by detecting the expression of 3-nitrotyrosine (3-NT) in cochlear hair cells by immunofluorescence and an enzyme-linked immunosorbent assay. Expression of 3-NT and inducible nitric oxide synthase (iNOS), and poly (ADP-Ribose) polymerase (PARP) and caspase-3 activation were evaluated by western blotting. The results demonstrated hair cell loss at 24h after streptomycin treatment. No change was found in supporting cells of the cochleae. Minocycline pretreatment improved hair cell survival and significantly reduced the expression of iNOS and 3-NT in cochlear tissues compared with the streptomycin treatment group. PARP and caspase-3 activation was increased in the streptomycin treatment group compared with the control group, and pretreatment with minocycline decreased cleaved PARP and activated caspase-3 expression. Minocycline protected cochlear hair cells from injury caused by streptomycin in vitro. The mechanism underlying the protective effect may be associated with the inhibition of excessive formation of nitric oxide, reduction of the nitration stress reaction, and inhibition of PARP and caspase-3 activation in cochlear hair cells. Combined minocycline therapy can be applied to patients requiring streptomycin treatment. Copyright © 2017. Published by Elsevier B.V.

  19. The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    PubMed

    Jiang, Hong-Yan; Yang, Yang; Zhang, Yuan-Yuan; Xie, Zhen; Zhao, Xue-Yan; Sun, Yu; Kong, Wei-Jia

    2018-04-01

    Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimulated by oxidative stress, but the role of autophagy and its relationship with parthanatos underlying this activation in the inner ear remains unknown. In this study, we established an oxidative stress model in vitro by glucose oxidase/glucose (GO/G), which could continuously generate low concentrations of H 2 O 2 to mimic continuous exposure to H 2 O 2 in physiological conditions, for investigation of oxidative stress-induced cell death mechanisms and the regulatory role of PARP-1 in this process. We observed that GO/G induced stria marginal cells (MCs) death via upregulation of PARP-1 expression, accumulation of polyADP-ribose (PAR) polymers, decline of mitochondrial membrane potential (MMP) and nuclear translocation of apoptosis-inducing factor (AIF), which all are biochemical features of parthanatos. PARP-1 knockdown rescued GO/G-induced MCs death, as well as abrogated downstream molecular events of PARP-1 activation. In addition, we demonstrated that GO/G stimulated autophagy and PARP-1 knockdown suppressed GO/G-induced autophagy in MCs. Interestingly, autophagy suppression by 3-Methyladenine (3-MA) accelerated GO/G-induced parthanatos, indicating a pro-survival function of autophagy in GO/G-induced MCs death. Taken together, these data suggested that PARP-1 played dual roles by modulating parthanatos and autophagy in oxidative stress-induced MCs death, which may be considered as a promising therapeutic target for ameliorating oxidative stress-related hearing disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in severalmore » cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.« less

  1. The Poly(ADP-ribose) Polymerase Enzyme Tankyrase Antagonizes Activity of the β-Catenin Destruction Complex through ADP-ribosylation of Axin and APC2.

    PubMed

    Croy, Heather E; Fuller, Caitlyn N; Giannotti, Jemma; Robinson, Paige; Foley, Andrew V A; Yamulla, Robert J; Cosgriff, Sean; Greaves, Bradford D; von Kleeck, Ryan A; An, Hyun Hyung; Powers, Catherine M; Tran, Julie K; Tocker, Aaron M; Jacob, Kimberly D; Davis, Beckley K; Roberts, David M

    2016-06-10

    Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein β-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the β-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate β-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases β-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    PubMed

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2014-12-01

    Zou L Molecular Cell. 2014 Jan   23;53(2):235-­‐46.  PMID: 24332808     Inventions, Patents, and Licenses: Nothing to report Reportable... Carmichael , J. (2010). Oral poly(ADP-ribose) polymerase inhibitor olaparib in   11   patients with BRCA1 or BRCA2 mutations and advanced breast cancer

  4. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b

    PubMed Central

    Dash, Sabyasachi; Balasubramaniam, Muthukumar; Godino, Arthur; Villalta, Fernando; Calipari, Erin S.; Dash, Chandravanu

    2017-01-01

    Abstract Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA “miR-125b” plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3’-untranslated region (3’UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3’UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b’s regulatory effect on PARP-1 3’UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action. PMID:28828398

  5. Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders.

    PubMed

    Czapski, Grzegorz A; Cieślik, Magdalena; Wencel, Przemysław L; Wójtowicz, Sylwia; Strosznajder, Robert P; Strosznajder, Joanna B

    2018-02-01

    Alzheimer's disease (AD) is characterized by the release of amyloid beta peptides (Aβ) in the form of monomers/oligomers which may lead to oxidative stress, mitochondria dysfunction, synaptic loss, neuroinflammation and, in consequence, to overactivation of poly(ADP-ribose) polymerase-1 (PARP-1). However, Aβ peptides are also released in the brain ischemia, traumatic injury and in inflammatory response. PARP-1 is suggested to be a promising target in therapy of neurodegenerative disorders. We investigated the impact of PARP-1 inhibition on transcription of mitochondria-related genes in PC12 cells. Moreover, the effect of PARP-1 inhibitor (PJ34) on cells subjected to Aβ oligomers (AβO) - evoked stress was analyzed. Our data demonstrated that inhibition of PARP-1 in PC12 cells enhanced the transcription of genes for antioxidative enzymes (Sod1, Gpx1, Gpx4), activated genes regulating mitochondrial fission/fusion (Mfn1, Mfn2, Dnm1l, Opa1, Fis1), subunits of ETC complexes (mt-Nd1, Sdha, mt-Cytb) and modulated expression of several TFs, enhanced Foxo1 and decreased Nrf1, Stat6, Nfkb1. AβO elevated free radicals concentration, decreased mitochondria membrane potential (MMP) and cell viability after 24h. Gene transcription was not affected by AβO after 24h, but was significantly downregulated after 96h. In AβO stress, PJ34 exerted stimulatory effect on expression of several genes (Gpx1, Gpx4, Opa1, Mfn2, Fis1 and Sdha), decreased transcription of numerous TFs (Nrf1, Tfam, Stat3, Stat6, Trp53, Nfkb1) and prevented oxidative stress. Our results indicated that PARP-1 inhibition significantly enhanced transcription of genes involved in antioxidative defense and in regulation of mitochondria function, but was not able to ameliorate cells viability affected by Aβ. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle.

    PubMed

    Franco, L; Bruzzone, S; Song, P; Guida, L; Zocchi, E; Walseth, T F; Crimi, E; Usai, C; De Flora, A; Brusasco, V

    2001-01-01

    Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.

  7. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation

    PubMed Central

    Mueller-Dieckmann, Christoph; Kernstock, Stefan; Lisurek, Michael; von Kries, Jens Peter; Haag, Friedrich; Weiss, Manfred S.; Koch-Nolte, Friedrich

    2006-01-01

    Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human proteins, causing diseases such as whooping cough, cholera, and diphtheria. Whereas the 3D structures of numerous ADP-ribosylating toxins and related mammalian enzymes have been elucidated, virtually nothing is known about the structure of protein de-ADP-ribosylating enzymes. Here, we report the 3Dstructure of human ADP-ribosylhydrolase 3 (hARH3). The molecular architecture of hARH3 constitutes the archetype of an all-α-helical protein fold and provides insights into the reversibility of protein ADP-ribosylation. Two magnesium ions flanked by highly conserved amino acids pinpoint the active-site crevice. Recombinant hARH3 binds free ADP-ribose with micromolar affinity and efficiently de-ADP-ribosylates poly- but not monoADP-ribosylated proteins. Docking experiments indicate a possible binding mode for ADP-ribose polymers and suggest a reaction mechanism. Our results underscore the importance of endogenous ADP-ribosylation cycles and provide a basis for structure-based design of ADP-ribosylhydrolase inhibitors. PMID:17015823

  8. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  9. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function.

    PubMed

    Kiss, Levente; Chen, Min; Gero, Domokos; Módis, Katalin; Lacza, Zsombor; Szabó, Csaba

    2006-12-01

    Oxidative and nitrosative stress play an important role in the development of endothelial vascular dysfunction during early atherosclerosis. Oxidative stress activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in endothelial cells. In patients with atherosclerosis the level of oxidized LDL in the plasma is elevated. In oxidized LDL various oxysterols have been identified, such as 7-ketocholesterol (7K). 7K has been shown to induce PARP activation in microglial cells. The aim of the current study was to clarify the effects of 7K on the activity of endothelial PARP and on the endothelium-dependent relaxant function of blood vessels. We treated human umbilical vein endothelial (HUVEC) cells with 2-16 microg/ml 7K as well as vascular rings harvested from BALB/c mouse thoracic aorta with 90 microg/ml 7K for 2 h. A group of mice was treated with 7K subcutaneously for 1 week (10 mg/kg/day). We also conducted in vitro and in vivo experiments using pretreatment with buthionine sulphoximine (BSO), a glutathione-lowering agent. The activity of PARP was calculated by measurement of tritiated NAD incorporation. The activity of PARP increased significantly in 7K-treated HUVEC cells. After BSO pretreatment, this increase was higher. Isolated vascular rings demonstrated no change in endothelium-dependent relaxant function after 2 h of incubation with 7K, even after BSO pretreatment. In vivo treatment with 7K for 1 week had no effect on the relaxant function. Our experimental results suggest that although 7-ketocholesterol can activate PARP enzyme in endothelial cells, it is not sufficient on its own to cause impairment in the endothelium-dependent vascular reactivity.

  10. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells.

    PubMed

    Nielsen, C H; Albertsen, L; Bendtzen, K; Baslund, B

    2007-05-01

    The mechanism of action of methotrexate (MTX) in autoimmune diseases (AID) is unclear. A pro-apoptotic effect has been demonstrated in mitogen-stimulated peripheral blood mononuclear cells (PBMC), but studies employing conventional antigens have disputed a pro-apoptotic effect. CD4+ T helper (Th) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th cells took up MTX, nearly all the dividing Th cells did, and this abrogated further cell division. Among dividing Th cells, MTX induced an approximately sixfold increase over baseline levels in the proportion of apoptotic cells. This proportion could be reverted to baseline by the addition of folic acid. Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative of stimulation with self-antigens in AID, and that a pro-apoptotic effect of MTX on self-antigen-stimulated Th cells contributes to the effect of MTX in the treatment of AID.

  11. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  12. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Approche morphologique de la fragmentation de l'ADN radio-induite par immunomarquage anti-poly (ADP-ribose) polymérase (PARP) : étude de cultures d'oligodendrogliomes

    NASA Astrophysics Data System (ADS)

    Varlet, P.; Beuvon, F.; Cervera, P.; Averbeck, D.; Daumas-Duport, C.

    1998-04-01

    Poly (ADP-ribose) polymerase (PARP) is a nuclear enzyme encompassing two zinc finger motifs which specifically binds to radiation induced DNA strand breaks. We develop a new immuno-labelling of poly ADP-ribose which coupled together with the immunodetection of cells in cycle with MIB1, permits to detect and quantify the DNA fragmentation induced by radiations (Cesium137). This method, applied to organotypical cultures of human oligodendroglioma, submitted to radiation, a dose dependant nuclear signal. This one increased significantly in the presence of a radiosensitizer like iododeoxyuridine (IUDR 5 g/ml). This poly ADP-ribose immunodetection can be useful, to detect furtherly the individual radiosensitivity of human glioma. Les protéases “ICE-like" ou caspases, sont les homologues humaines du produit du gène ced-3 du ver Caenorhabditis elegans et sont activées lors des étapes précoces de l'apoptose. L'objectif de ce travail vise à déterminer dans quelle mesure l'inhibition de l'une d'entre elles, la caspase-3 est susceptible de modifier la sensibilité des cellules vis-à-vis de l'apoptose radioinduite. Des lymphocytes spléniques murins irradiés en présence de Ac-DVED-CHO un inhibiteur spécifique de la caspase-3 présentent un taux de particules hypodiploïdes radioinduites bien inférieur à celui des contrôles et une diminution drastique de la fragmentation internucléosomale de l'ADN. Toutefois, ni l'externalisation des phospholipides anioniques, autre marqueur spécifique de l'apoptose, ni la viabilité ne sont affectées.

  14. Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases.

    PubMed

    Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D

    1989-01-01

    Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins.

  15. Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases.

    PubMed Central

    Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D

    1989-01-01

    Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins. Images PMID:2521214

  16. Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-ribose) Polymerase Inhibition with ABT-888.

    PubMed

    Tuli, Richard; Surmak, Andrew J; Reyes, Juvenal; Armour, Michael; Hacker-Prietz, Amy; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2014-05-13

    To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. Pancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25mg/kg), radiation (5Gy), both, or no treatment. Mice were monitored with bioluminescence imaging. In vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8days (P < .01). Co-treatment with 5Gy and 1, 10 or 100μmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 μmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39days, and survival at 60days of 0%, 0% and 40%, respectively. ABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Septic Shock-associated IL-10 -1082 A>G Polymorphism Mediates Allele-specific Transcription via Poly ADP-ribose Polymerase 1 in Macrophages Engulfing Apoptotic Cells

    PubMed Central

    Kang, Xiaoyan; Kim, Ha-Jeong; Ramirez, Michelle; Salameh, Sarah; Ma, Xiaojing

    2013-01-01

    The biallelic Interleukin-10 single nucleotide polymorphism (SNP) at -1082 of the promoter region linked to individual variation in cytokine inducibility has been strongly implicated in several pathological conditions including the development of, and outcomes in, septic shock during pneumococcal infection, acute respiratory distress syndrome, and cardiac dysfunction. However, the molecular basis of the SNP-mediated variable IL-10 production levels has not been explored. Here we report that the -1082G>A alleles in the promoter region of the human IL-10 gene physically interact with a nuclear protein in an allele-specific manner that results in different levels of IL-10 transcription. This protein has been identified as poly ADP-ribose polymerase 1 (PARP-1). We show that PARP-1 acts as a transcription repressor, and its DNA-binding activity is strongly regulated in macrophages that engulf apoptotic cells but not stimulated with lippopolysaccharides. These findings unveil a novel role of PARP-1 in the regulation of IL-10 production in an allele-dependent way, which determines individual susceptibility to sepsis-induced inflammatory pathology and the immunological sequelae in a physiological process where clearance of infection-induced apoptotic cells by professional phagocytes triggers the cytokine synthesis. PMID:20181890

  18. Positive transcriptional regulation of the human micro opioid receptor gene by poly(ADP-ribose) polymerase-1 and increase of its DNA binding affinity based on polymorphism of G-172 -> T.

    PubMed

    Ono, Takeshi; Kaneda, Toshio; Muto, Akihiro; Yoshida, Tadashi

    2009-07-24

    Micro opioid receptor (MOR) agonists such as morphine are applied widely in clinical practice as pain therapy. The effects of morphine through MOR, such as analgesia and development of tolerance and dependence, are influenced by individual specificity. Recently, we analyzed single nucleotide polymorphisms on the human MOR gene to investigate the factors that contribute to individual specificity. In process of single nucleotide polymorphisms analysis, we found that specific nuclear proteins bound to G(-172) --> T region in exon 1 in MOR gene, and its affinity to DNA was increased by base substitution from G(-172) to T(-172). The isolated protein was identified by mass spectrometry and was confirmed by Western blotting to be poly(ADP-ribose) polymerase-1 (PARP-1). The overexpressed PARP-1 bound to G(-172) --> T and enhanced the transcription of reporter vectors containing G(-172) and T(-172). Furthermore, PARP-1 inhibitor (benzamide) decreased PARP-1 binding to G(-172) --> T without affecting mRNA or protein expression level of PARP-1 and down-regulated the subsequent MOR gene expression in SH-SY5Y cells. Moreover, we found that tumor necrosis factor-alpha enhanced MOR gene expression as well as increased PARP-1 binding to the G(-172) --> T region and G(-172) --> T-dependent transcription in SH-SY5Y cells. These effects were also inhibited by benzamide. In this study, our data suggest that PARP-1 positively regulates MOR gene transcription via G(-172) --> T, which might influence individual specificity in therapeutic opioid effects.

  19. [Role of hydrogen gas in regulating of poly (ADP-ribose) polymerase-1 dependent cell death in rat Schwann cells].

    PubMed

    Yu, Yang; Jiao, Yang; Li, Bo; Ma, Xiaoye; Yang, Tao; Xie, Keliang; Yu, Yonghao

    2016-08-01

    To investigate the protective effects and underlying molecular mechanisms of hydrogen (H2) on high glucose-induced poly (ADP-ribose) polymerase-1 (PARP-1) dependent cell death (PARthanatos) in primary rat Schwann cells. Cultured primary rat Schwann cells were randomly divided into five groups: blank control group (C group), H2 control group (H2 group), high osmotic control group (M group), high glucose treatment group (HG group), and H2 treatment group (HG+H2 group). The cells in H2 group and HG+H2 group were cultured with saturated hydrogen-rich medium containing 0.6 mmol/L of H2, and those in three control groups were cultured with low sugar DMEM medium containing 5.6 mmol/L of sugar, and the cells in HG and HG+H2 groups were given 44.4 mmol/L of glucose in addition (the medium containing 50 mmol/L of glucose), the cells in C group and H2 group were given the same volume of normal saline, and the cells in M group were given the same volume of mannitol. Cytotoxicity was evaluated using lactate dehydrogenase (LDH) release rate assays after treatment for 48 hours in each group. The contents of peroxynitrite (ONOO(-)) and 8-hydroxy-2-deoxyguanosine (8-OHdG) reflecting oxidative stress injury and DNA damage were detected by enzyme linked immunosorbent assay (ELISA). Poly (ADP-ribose) (PAR) protein expression was analyzed by Western Blot, and immunofluorescence staining was used to determine the nuclear translocation of the apoptosis-inducing factor (AIF). The cytotoxicity in HG and HG+H2 groups was significantly increased as compared with that of C group [LDH release rate: (61.40±2.89)%, (42.80±2.32)% vs. (9.92±0.38)%, both P < 0.01], the levels of ONOO(-) and 8-OHdG were markedly elevated [ONOO(-) (ng/L): 853.58±51.00, 553.11±38.66 vs. 113.56±14.22; 8-OHdG (ng/L): 1?177.37±60.97, 732.06±54.29 vs. 419.67±28.77, all P < 0.01], and the PAR protein expression was up-regulated (A value: 0.603±0.028, 0.441±0.010 vs. 0.324±0.021, both P < 0.01). The cytotoxicity

  20. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds.

    PubMed

    Li, Lingjun; Li, Qianqian; Ding, Shengqiang; Xin, Pengyang; Zhang, Yuqin; Huang, Shenlong; Zhang, Guisheng

    2017-08-14

    Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N₃ was designed and synthesized for the first time. With ADP-ribosyl-N₃ as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties.

  1. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxiainducible factor-1alpha expression via Poly(ADP-ribose) polymerase -1

    PubMed Central

    Pan, Rong; Chen, Chen; Liu, Wenlan; Liu, Ke Jian

    2013-01-01

    Aim Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study testes the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Methods Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-hour hypoxic treatment. Results Although 3-hr hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc concentration dependent manner. Exposure of astrocytes to hypoxia for 3-hr remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Conclusions Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. PMID:23582235

  2. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    PubMed

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  3. Inhibition of poly (ADP-ribose) Synthetase Attenuates Neutrophil Recruitment and Exerts Antiinflammatory Effects

    PubMed Central

    Szabó, Csaba; Lim, Lina H.K.; Cuzzocrea, Salvatore; Getting, Stephen J.; Zingarelli, Basilia; Flower, Roderick J.; Salzman, Andrew L.; Perretti, Mauro

    1997-01-01

    A cytotoxic cycle triggered by DNA single-strand breakage and poly (ADP-ribose) synthetase activation has been shown to contribute to the cellular injury during various forms of oxidant stress in vitro. The aim of this study was to investigate the role of poly (ADP-ribose) synthetase (PARS) in the process of neutrophil recruitment and in development of local and systemic inflammation. In pharmacological studies, PARS was inhibited by 3-aminobenzamide (10–20 mg/kg) in rats and mice. In other sets of studies, inflammatory responses in PARS−/− mice were compared with the responses in corresponding wild-type controls. Inhibition of PARS reduced neutrophil recruitment and reduced the extent of edema in zymosan- and carrageenan-triggered models of local inflammation. Moreover, inhibition of PARS prevented neutrophil recruitment, and reduced organ injury in rodent models of inflammation and multiple organ failure elicited by intraperitoneal injection of zymosan. Inhibition of PARS also reduced the extent of neutrophil emigration across murine mesenteric postcapillary venules. This reduction was due to an increased rate of adherent neutrophil detachment from the endothelium, promoting their reentry into the circulation. Taken together, our results demonstrate that PARS inhibition reduces local and systemic inflammation. Part of the antiinflammatory effects of PARS inhibition is due to reduced neutrophil recruitment, which may be related to maintained endothelial integrity. PMID:9314553

  4. Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors

    PubMed Central

    Bruzzone, Santina; Kunerth, Svenja; Zocchi, Elena; De Flora, Antonio; Guse, Andreas H.

    2003-01-01

    The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38− cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 ± 5.2 and 50.5 ± 8.0 pmol/mg protein). P2Y receptor stimulation of CD38− cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave. PMID:14623867

  5. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelali, Ala

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  6. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yan; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; Li, Guodong

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in micemore » leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.« less

  7. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose.

    PubMed

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V L; Shuto, Satoshi

    2014-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3 ), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1 ), a Ca 2+ -mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer ( 7α ) and the β-anomer ( 7β ) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca 2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca 2+ -mobilizing pathways.

  8. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion

    PubMed Central

    Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto

    2006-01-01

    There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. β-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic β-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673

  9. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Schuber, F

    2000-01-01

    Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism. PMID:10861229

  10. Discovery of a Novel Series of Tankyrase Inhibitors by a Hybridization Approach.

    PubMed

    Anumala, Upendra Rao; Waaler, Jo; Nkizinkiko, Yves; Ignatev, Alexander; Lazarow, Katina; Lindemann, Peter; Olsen, Petter Angell; Murthy, Sudarshan; Obaji, Ezeogo; Majouga, Alexander G; Leonov, Sergey; von Kries, Jens Peter; Lehtiö, Lari; Krauss, Stefan; Nazaré, Marc

    2017-12-28

    A structure-guided hybridization approach using two privileged substructures gave instant access to a new series of tankyrase inhibitors. The identified inhibitor 16 displays high target affinity on tankyrase 1 and 2 with biochemical and cellular IC 50 values of 29 nM, 6.3 nM and 19 nM, respectively, and high selectivity toward other poly (ADP-ribose) polymerase enzymes. The identified inhibitor shows a favorable in vitro ADME profile as well as good oral bioavailability in mice, rats, and dogs. Critical for the approach was the utilization of an appropriate linker between 1,2,4-triazole and benzimidazolone moieties, whereby a cyclobutyl linker displayed superior affinity compared to a cyclohexane and phenyl linker.

  11. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes

    PubMed Central

    Gupte, Rebecca; Liu, Ziying; Kraus, W. Lee

    2017-01-01

    The discovery of poly(ADP-ribose) >50 years ago opened a new field, leading the way for the discovery of the poly(ADP-ribose) polymerase (PARP) family of enzymes and the ADP-ribosylation reactions that they catalyze. Although the field was initially focused primarily on the biochemistry and molecular biology of PARP-1 in DNA damage detection and repair, the mechanistic and functional understanding of the role of PARPs in different biological processes has grown considerably of late. This has been accompanied by a shift of focus from enzymology to a search for substrates as well as the first attempts to determine the functional consequences of site-specific ADP-ribosylation on those substrates. Supporting these advances is a host of methodological approaches from chemical biology, proteomics, genomics, cell biology, and genetics that have propelled new discoveries in the field. New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. These studies have begun to reveal the promising ways in which PARPs may be targeted therapeutically for the treatment of disease. In this review, we discuss these topics and relate them to the future directions of the field. PMID:28202539

  12. NIH study uncovers new mechanism of action for class of chemotherapy drugs

    Cancer.gov

    NIH researchers have discovered a significant new mechanism of action for a class of chemotherapy drugs known as poly (ADP-ribose) polymerase inhibitors, or PARP inhibitors. They have also identified differences in the toxic capabilities of three drugs in

  13. New PARP targets for cancer therapy

    PubMed Central

    Vyas, Sejal; Chang, Paul

    2015-01-01

    Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD+ as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5a, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, the majority of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer relevant functions for these PARPs, indicating that we need to understand more about these PARPs in order to target them effectively. PMID:24898058

  14. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  15. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity.

    PubMed

    Rom, Slava; Reichenbach, Nancy L; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60-80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.

  16. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Oppenheimer, N; Schuber, F

    2001-01-01

    CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J

  17. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    PubMed

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  18. Rucaparib

    MedlinePlus

    ... Rucaparib is in a class of medications called poly (ADP-ribose) polymerase (PARP) inhibitors. It works by ... not go away: nausea vomiting constipation diarrhea stomach pain loss of appetite bad taste in the mouth ...

  19. Niraparib

    MedlinePlus

    ... Niraparib is in a class of medications called poly (ADP-ribose) polymerase (PARP) inhibitors. It works by ... sores in the mouth loss of appetite back pain headache dizziness changes in taste difficulty falling asleep ...

  20. A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors.

    PubMed

    Singh, Sardar Shamshair; Sarma, Jagarlapudi A R P; Narasu, Lakshmi; Dayam, Raveendra; Xu, Shili; Neamati, Nouri

    2014-01-01

    A tremendous research on Poly (ADP-ribose) polymerase (PARP) pertaining to cancer and ischemia is in very rapid progress. PARP's are a specific class of enzymes that repairs the damaged DNA. Recent findings suggest also that PARP-1 is the most abundantly expressed nuclear enzyme which involves in various therapeutic areas like inflammation, stroke, cardiac ischemia, cancer and diabetes. The current review describes the overview on clinical candidates of PARP1 and its current status in clinical trials. This paper also covers identification of potent PARP1 inhibitors using structure and ligand based pharmacophore models. Finally 36 potential hits were identified from the virtual screening of pharmacophore models and screened for PARP1 activity. 15 actives were identified as potent PARP1 inhibitors and further optimization of these analogues are in progress.

  1. Structure-function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa.

    PubMed

    Yates, Susan P; Taylor, Patricia L; Jørgensen, René; Ferraris, Dana; Zhang, Jie; Andersen, Gregers R; Merrill, A Rod

    2005-02-01

    The mono-ADPRT (mono-ADP-ribosyltransferase), Pseudomonas aeruginosa ETA (exotoxin A), catalyses the transfer of ADP-ribose from NAD+ to its protein substrate. A series of water-soluble compounds that structurally mimic the nicotinamide moiety of NAD+ was investigated for their inhibition of the catalytic domain of ETA. The importance of an amide locked into a hetero-ring structure and a core hetero-ring system that is planar was a trend evident by the IC50 values. Also, the weaker inhibitors have core ring structures that are less planar and thus more flexible. One of the most potent inhibitors, PJ34, was further characterized and shown to exhibit competitive inhibition with an inhibition constant K(i) of 140 nM. We also report the crystal structure of the catalytic domain of ETA in complex with PJ34, the first example of a mono-ADPRT in complex with an inhibitor. The 2.1 A (1 A=0.1 nm) resolution structure revealed that PJ34 is bound within the nicotinamide-binding pocket and forms stabilizing hydrogen bonds with the main chain of Gly-441 and to the side-chain oxygen of Gln-485, a member of a proposed catalytic loop. Structural comparison of this inhibitor complex with diphtheria toxin (a mono-ADPRT) and with PARPs [poly(ADP-ribose) polymerases] shows similarity of the catalytic residues; however, a loop similar to that found in ETA is present in diphtheria toxin but not in PARP. The present study provides insight into the important features required for inhibitors that mimic NAD+ and their binding to the mono-ADPRT family of toxins.

  2. Combinatorial Study of a Novel Poly (ADP-ribose) Polymerase Inhibitor and an HDAC Inhibitor, SAHA, in Leukemic Cell Lines.

    PubMed

    Hegde, Mahesh; Mantelingu, Kempegowda; Pandey, Monica; Pavankumar, Chottanahalli S; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2016-10-01

    Cancer is a multifactorial disease, which makes it difficult to cure. Since more than one defective cellular component is often involved during oncogenesis, combination therapy is gaining prominence in the field of cancer therapeutics. The purpose of this study was to investigate the combinatorial effects of a novel PARP inhibitor, P10, and HDAC inhibitor, SAHA, in leukemic cells. Combinatorial effects of P10 and SAHA were tested using propidium iodide staining in different leukemic cells. Further, flowcytometry-based assays such as calcein-AM/ethidium homodimer staining, annexin-FITC/PI staining, and JC-1 staining were carried out to elucidate the mechanism of cell death. In addition, cell-cycle analysis, immunocytochemistry studies, and western blotting analysis were conducted to check the combinatorial effect in Nalm6 cells. Propidium iodide staining showed that P10 in combination with SAHA induced cell death in Nalm6 cells, in which PARP expression and activity is high with a combination index of <0.2. Annexin-FITC/PI staining, JC-1 staining, and other biochemical assays revealed that P10 in combination with SAHA induced apoptosis by causing a change in mitochondrial membrane potential in >65 % cells. Importantly, combinatorial treatment induced S phase arrest in 40-45 % cells due to DNA damage and plausible replicative stress. Finally, we demonstrated that treatment with P10 led to DNA strand breaks, which were further potentiated by SAHA (p < 0.01), leading to activation of apoptosis and increased cell death in PARP-positive leukemic cells. Our study reveals that coadministration of PARP inhibitor with SAHA could be used as a combination therapy against leukemic cells that possess high levels of intrinsic PARP activity.

  3. [Design, synthesis and biological evaluation of novel para-substituted 1-benzyl-quinazoline-2, 4 (1H, 3H)-diones as human PARP-1 inhibitors].

    PubMed

    Yao, Hai-Ping; Zhu, Zhi-Xiang; Ji, Ming; Chen, Xiao-Guang; Xu, Bai-Ling

    2014-04-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising anticancer drug target due to its key role in the DNA repair process. It can polymerize ADP-ribose units on its substrate proteins which are involved in the regulation of DNA repair. In this work, a novel series of para-substituted 1-benzyl-quinazoline-2, 4 (1H, 3H)-diones was designed and synthesized, and the inhibitory activities against PARP-1 of compounds 7a-7e, 8a-8f, 9a-9c and 10a-10c were evaluated. Of all the tested compounds, nine compounds displayed inhibitory activities with IC50 values ranging from 4.6 to 39.2 micromol x L(-1). In order to predict the binding modes of the potent molecules, molecular docking was performed using CDOCKER algorithm, and that will facilitate to further develop more potent PARP-1 inhibitors with a quinazolinedione scaffold.

  4. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    PubMed

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins. (c) 2008 Wiley-Liss, Inc.

  5. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.

    PubMed

    Kowieski, Terri M; Lee, Susan; Denu, John M

    2008-02-29

    Sirtuins are a highly conserved family of proteins implicated in diverse cellular processes such as gene silencing, aging, and metabolic regulation. Although many sirtuins catalyze a well characterized protein/histone deacetylation reaction, there are a number of reports that suggest protein ADP-ribosyltransferase activity. Here we explored the mechanisms of ADP-ribosylation using the Trypanosoma brucei Sir2 homologue TbSIR2rp1 as a model for sirtuins that reportedly display both activities. Steady-state kinetic analysis revealed a highly active histone deacetylase (k cat = 0.1 s(-1), with Km values of 42 microm and for NAD+ and 65 microm for acetylated substrate). A series of biochemical assays revealed that TbSIR2rp1 ADP-ribosylation of protein/histone requires an acetylated substrate. The data are consistent with two distinct ADP-ribosylation pathways that involve an acetylated substrate, NAD+ and TbSIR2rp1 as follows: 1) a noncatalytic reaction between the deacetylation product O-acetyl-ADP-ribose (or its hydrolysis product ADP-ribose) and histones, and 2) a more efficient mechanism involving interception of an ADP-ribose-acetylpeptide-enzyme intermediate by a side-chain nucleophile from bound histone. However, the sum of both ADP-ribosylation reactions was approximately 5 orders of magnitude slower than histone deacetylation under identical conditions. The biological implications of these results are discussed.

  6. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription.

    PubMed

    Bütepage, Mareike; Preisinger, Christian; von Kriegsheim, Alexander; Scheufen, Anja; Lausberg, Eva; Li, Jinyu; Kappes, Ferdinand; Feederle, Regina; Ernst, Sabrina; Eckei, Laura; Krieg, Sarah; Müller-Newen, Gerhard; Rossetti, Giulia; Feijs, Karla L H; Verheugd, Patricia; Lüscher, Bernhard

    2018-04-30

    Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.

  7. Poly (ADP-ribose) polymerase inhibitor CEP-8983 synergizes with bendamustine in chronic lymphocytic leukemia cells in vitro

    PubMed Central

    Dilley, Robert L.; Poh, Weijie; Gladstone, Douglas E.; Herman, James G.; Showel, Margaret M.; Karp, Judith E.; McDevitt, Michael A.; Pratz, Keith W.

    2014-01-01

    DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. PMID:24439051

  8. Serine is the major residue for ADP-ribosylation upon DNA damage

    PubMed Central

    Dauben, Helen

    2018-01-01

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that synthesise ADP-ribosylation (ADPr), a reversible modification of proteins that regulates many different cellular processes. Several mammalian PARPs are known to regulate the DNA damage response, but it is not clear which amino acids in proteins are the primary ADPr targets. Previously, we reported that ARH3 reverses the newly discovered type of ADPr (ADPr on serine residues; Ser-ADPr) and developed tools to analyse this modification (Fontana et al., 2017). Here, we show that Ser-ADPr represents the major fraction of ADPr synthesised after DNA damage in mammalian cells and that globally Ser-ADPr is dependent on HPF1, PARP1 and ARH3. In the absence of HPF1, glutamate/aspartate becomes the main target residues for ADPr. Furthermore, we describe a method for site-specific validation of serine ADP-ribosylated substrates in cells. Our study establishes serine as the primary form of ADPr in DNA damage signalling. PMID:29480802

  9. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    PubMed

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  10. Poly(ADP-ribose) polymerase inhibitor CEP-8983 synergizes with bendamustine in chronic lymphocytic leukemia cells in vitro.

    PubMed

    Dilley, Robert L; Poh, Weijie; Gladstone, Douglas E; Herman, James G; Showel, Margaret M; Karp, Judith E; McDevitt, Michael A; Pratz, Keith W

    2014-03-01

    DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    PubMed Central

    Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.

    2016-01-01

    ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838

  12. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    PubMed

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  13. Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury.

    PubMed

    D'Orsi, Beatrice; Engel, Tobias; Pfeiffer, Shona; Nandi, Saheli; Kaufmann, Thomas; Henshall, David C; Prehn, Jochen H M

    2016-04-20

    Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok

  14. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  15. Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality*

    PubMed Central

    Ahmed, Shaimaa; Bott, Debbie; Gomez, Alvin; Tamblyn, Laura; Rasheed, Adil; Cho, Tiffany; MacPherson, Laura; Sugamori, Kim S.; Yang, Yang; Grant, Denis M.; Cummins, Carolyn L.; Matthews, Jason

    2015-01-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin. PMID:25975270

  16. Protein tyrosine phosphatase 1B is a mediator of cyclic ADP ribose-induced Ca2+ signaling in ventricular myocytes.

    PubMed

    Park, Seon-Ah; Hong, Bing-Zhe; Ha, Ki-Chan; Kim, Uh-Hyun; Han, Myung-Kwan; Kwak, Yong-Geun

    2017-06-02

    Cyclic ADP-ribose (cADPR) releases Ca 2+ from ryanodine receptor (RyR)-sensitive calcium pools in various cell types. In cardiac myocytes, the physiological levels of cADPR transiently increase the amplitude and frequency of Ca 2+ (that is, a rapid increase and decrease of calcium within one second) during the cardiac action potential. In this study, we demonstrated that cADPR levels higher than physiological levels induce a slow and gradual increase in the resting intracellular Ca 2+ ([Ca 2+ ] i ) level over 10 min by inhibiting the sarcoendoplasmic reticulum Ca 2+ ATPase (SERCA). Higher cADPR levels mediate the tyrosine-dephosphorylation of α-actin by protein tyrosine phosphatase 1B (PTP1B) present in the endoplasmic reticulum. The tyrosine dephosphorylation of α-actin dissociates phospholamban, the key regulator of SERCA, from α-actin and results in SERCA inhibition. The disruption of the integrity of α-actin by cytochalasin B and the inhibition of α-actin tyrosine dephosphorylation by a PTP1B inhibitor block cADPR-mediated Ca 2+ increase. Our results suggest that levels of cADPR that are relatively higher than normal physiological levels modify calcium homeostasis through the dephosphorylation of α-actin by PTB1B and the subsequent inhibition of SERCA in cardiac myocytes.

  17. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  18. [The severity of gestational diabetes mellitus affects microvascular dysfunction measured three years after pregnancy that may be related to increased oxidative stress].

    PubMed

    Horváth, Eszter Mária; Mágenheim, Rita; Domján, Beatrix Annamária; Ferencz, Viktória; Tänczer, Tímea; Szabó, Eszter; Benkő, Rita; Szabó, Csaba; Tabák, Ádám; Somogyi, Anikó

    2015-11-22

    Oxidative-nitrative stress and poly(ADP-ribose) polymerase activation observed in gestational diabetes may play role in the increased cardiovascular risk in later life. The present study aimed to examine the influence of the severity of previous gestational diabetes (insulin need) on vascular function three years after delivery. Furthermore, the authors investigated the relation of vascular function with oxidative-nitrative stress and poly(ADP-ribose) polymerase activation. Macrovascular function was measured by applanation tonometry; microvascular reactivity was assessed by provocation tests during Laser-Doppler flowmetry in 40 women who had gestational diabetes 3 years before the study. Oxidative-nitrative stress and poly(ADP-ribose) polymerase activity in blood components were determined by colorimetry and immunohistochemistry. Three years after insulin treated gestational diabetes impaired microvascular function and increased oxidative stress was observed compared to mild cases. The severity of previous gestational diabetes affects microvascular dysfunction that is accompanied by elevated oxidative stress. Nitrative stress and poly(ADP-ribose) polymerase activity correlates with certain vascular factors not related to the severity of the disease.

  19. Electrophoretic characterization of the Mammalian nuclear matrix proteome, nuclear envelope, nucleoli and covalently bound ADP-ribose polymers: potential applications to cancer.

    PubMed

    Aranda, Xavier G; Racho, Ronald G; Pacheco-Rodríguez, Gustavo; Alvarez-González, Rafael

    2014-01-01

    Nucleic acid metabolism is biochemically compartmentalized to the nucleus. Thus, it is necessary to define the proteome of the various macromolecular structures within this organelle. We isolated the nuclear matrix (NM) fraction from rat liver by sequential centrifugation steps at 13,000 rpm, staggered between endogenous nuclease treatment for 2 h at 37°C, followed by high-salt (H.S.; 2.0 M NaCl) and non-ionic detergent extractions (0.1%- or 1.0% Triton X-100) to eliminate the bulk of chromosomal DNA/RNA, histone proteins and the nuclear envelope (NE). Integrity of the NM and NE structures was confirmed by electron microscopy. Next, we analyzed the NM proteome on a 20% polyacrylamide gel using the PhastSystem. We observed the absence of histone proteins and the characteristic presence of the lamins by Coomassie blue staining. By contrast, upon silver staining, following electrophoretic separation with a Tris-Borate-EDTA buffer, we observed the NM-associated nucleic RNA and protein-free ADP-ribose polymers. While polymers are found in much lower concentration than RNA in NM, they were purified by affinity chromatography on boronate resin prior to electrophoresis. We observed the electrophoretic resolution of free ADP-ribose chains (5-25 units) by silver staining. The significance of our observations to cancer studies and carcinogenesis is discussed. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  20. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strandmore » breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which

  1. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    DOE PAGES

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; ...

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less

  2. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.

    PubMed

    Gariani, Karim; Ryu, Dongryeol; Menzies, Keir J; Yi, Hyon-Seung; Stein, Sokrates; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Katsyuba, Elena; Jha, Pooja; Vijgen, Sandrine; Rubbia-Brandt, Laura; Kim, Yong Kyung; Kim, Jung Tae; Kim, Koon Soon; Shong, Minho; Schoonjans, Kristina; Auwerx, Johan

    2017-01-01

    To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD. As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD + ), we hypothesized that overactivation of PARPs drives NAD + depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD + and activate NAD + -dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD. The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD + levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD + , increasing mitochondrial biogenesis and β-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1 hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent. Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies. Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse

  3. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  4. Studying Catabolism of Protein ADP-Ribosylation.

    PubMed

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  5. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    PubMed Central

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  6. Consumer beware: a systematic assessment of potential bias in the lay electronic media to examine the portrayal of "PARP" inhibitors for cancer treatment.

    PubMed

    Coleman, Shawnta; Peethambaram, Prema P; Jatoi, Aminah

    2011-09-01

    This study examined how the lay electronic media covers poly-ADP-ribose polymerase, or "PARP," inhibitors, a class of cancer agents currently under clinical investigation. Of 771 internet links, 51 targeted the lay public. Independent review by two investigators yielded the following categorizations: 36 (71%) were "overly positive", 15 (29%) "neutral", and none "overly negative". "Overly positive" articles used: (l) overstated benefit, (2) included quotations from enthusiastic scientists, and (3) discussed single or small patient subsets. They used such phrases as "the holy grail of cancer research", "the most exciting development in cancer research in a decade or more…. it could save thousands of lives", and "we were surprised and delighted…. it's the kind of thing you don't really think will happen". Healthcare providers should be aware of the foregoing when discussing PARP inhibitors-and perhaps other novel therapies-with cancer patients.

  7. BRCA2 Mutation as a Possible Cause of Poor Response to 177Lu-PSMA Therapy.

    PubMed

    Ahmadzadehfar, Hojjat; Gaertner, Florian; Lossin, Philipp S; Schwarz, Bettina; Essler, Markus

    2018-05-14

    We present the case of a 66-year-old man with castration-resistant prostate cancer, with an increasing prostate-specific antigen level, and a progressive disease during Lu-PSMA radionuclide therapy. Because the patient had a BRCA2 mutation, poly-ADP ribose polymerase inhibitor therapy was started. The patient showed a dramatic subjective and biological response to this therapy with a progression-free survival of 5 months.

  8. PARP inhibition: PARP1 and beyond

    PubMed Central

    Rouleau, Michèle; Patel, Anand; Hendzel, Michael J.; Kaufmann, Scott H.; Poirier, Guy G.

    2010-01-01

    Recent findings have thrust poly(ADP-ribose) polymerases (PARPs) into the limelight as potential chemotherapeutic targets. To provide a framework for understanding these recent observations, we review what is known about the structures and functions of the family of PARP enzymes, and then outline a series of questions that should be addressed to guide the rational development of PARP inhibitors as anticancer agents. PMID:20200537

  9. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    PubMed Central

    Rulten, Stuart L.; Rotheray, Amy; Green, Ryan L.; Grundy, Gabrielle J.; Moore, Duncan A. Q.; Gómez-Herreros, Fernando; Hafezparast, Majid; Caldecott, Keith W

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS. PMID:24049082

  10. Sulforaphane inhibits damage-induced poly (ADP-ribosyl)ation via direct interaction of its cellular metabolites with PARP-1.

    PubMed

    Piberger, Ann Liza; Keil, Claudia; Platz, Stefanie; Rohn, Sascha; Hartwig, Andrea

    2015-11-01

    The isothiocyanate sulforaphane, a major breakdown product of the broccoli glucosinolate glucoraphanin, has frequently been proposed to exert anticarcinogenic properties. Potential underlying mechanisms include a zinc release from Kelch-like ECH-associated protein 1 followed by the induction of detoxifying enzymes. This suggests that sulforaphane may also interfere with other zinc-binding proteins, e.g. those essential for DNA repair. Therefore, we explored the impact of sulforaphane on poly (ADP-ribose)polymerase-1 (PARP-1), poly (ADP-ribosyl)ation (PARylation), and DNA single-strand break repair (SSBR) in cell culture. Immunofluorescence analyses showed that sulforaphane diminished H2 O2 -induced PARylation in HeLa S3 cells starting from 15 μM despite increased lesion induction under these conditions. Subcellular experiments quantifying the damage-induced incorporation of (32) P-ADP-ribose by PARP-1 displayed no direct impact of sulforaphane itself, but cellular metabolites, namely the glutathione conjugates of sulforaphane and its interconversion product erucin, reduced PARP-1 activity concentration dependently. Interestingly, this sulforaphane metabolite-induced PARP-1 inhibition was prevented by thiol compounds. PARP-1 is a stimulating factor for DNA SSBR-rate and we further demonstrated that 25 μM sulforaphane also delayed the rejoining of H2 O2 -induced DNA strand breaks, although this might be partly due to increased lesion frequencies. Sulforaphane interferes with damage-induced PARylation and SSBR, which implies a sulforaphane-dependent impairment of genomic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaife, R.M.; Wilson, L.; Purich, D.L.

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extentmore » of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.« less

  12. Design, Synthesis and Evaluation of Ribose-modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang

    2017-11-01

    The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.

  13. ADP-ribosylation of proteins: Enzymology and biological significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probingmore » of proteins involved in signal transduction and protein biosynthesis.« less

  14. MITF suppression improves the sensitivity of melanoma cells to a BRAF inhibitor.

    PubMed

    Aida, Satoshi; Sonobe, Yukiko; Tanimura, Hiromi; Oikawa, Nobuhiro; Yuhki, Munehiro; Sakamoto, Hiroshi; Mizuno, Takakazu

    2017-11-28

    Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The road to survival goes through PARG.

    PubMed

    Koh, David W; Dawson, Valina L; Dawson, Ted M

    2005-03-01

    Unlike poly(ADP-ribose) polymerase-1 (PARP-1), poly(ADP-ribose) glycohydrolase (PARG) has long been a difficult protein to study. However, the complete absence of PARG activity was recently characterized in mice via disruption of the murine PARG gene. As expected, PARG is critical for the maintenance of steady-state poly(ADP-ribose) levels. But surprisingly, the disruption of PARG led to embryonic lethality and increased susceptibility to mild cell stress. Therefore, the protective role of PARG and its involvement in development indicate that these roads to viability go through PARG.

  16. Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay.

    PubMed

    Bachran, Christopher; Sutherland, Mark; Bachran, Diana; Fuchs, Hendrik

    2007-09-01

    Because of reduced vaccination programs, the number of diphtheria infections has increased in the last decade. Diphtheria toxin (DT) is expressed by Corynebacterium diphtheriae and is responsible for the lethality of diphtheria. DT inhibits cellular protein synthesis by ADP-ribosylation of the eukaryotic elongation factor 2 (eEF2). No in vitro system for the quantification of DT enzymatic activity exists. We developed a solid-phase assay for the specific detection of ADP-ribosylation by DT. Solid phase-bound his-tag eEF2 is ADP-ribosylated by toxins using biotinylated NAD(+) as substrate, and the transferred biotinylated ADP-ribose is detected by streptavidin-peroxidase. DT enzymatic activity correlated with absorbance. We measured the amount of ADP-ribosylated eEF2 after precipitation with streptavidin-Sepharose. Quantification was done after Western blotting and detection with anti-his-tag antibody using an LAS-1000 System. The assay detected enzymatically active DT at 30 ng/L, equivalent to 5 mU/L ADP-ribosylating activity. Pseudomonas exotoxin A (PE) activity was also detected at 100 ng/L. We verified the assay with chimeric toxins composed of the catalytic domain of DT or PE and a tumor-specific ligand. These chimeric toxins revealed increased signals at 1000 ng/L. Heat-inactivated DT and cholera toxin that ADP-ribosylates G-proteins did not show any signal increase. The assay may be the basis for the development of a routine diagnostic assay for the detection of DT activity and highly specific inhibitors of DT.

  17. Automodification of PARP and fatty acid-based membrane lipidome as a promising integrated biomarker panel in molecular medicine.

    PubMed

    Bianchi, Anna Rita; Ferreri, Carla; Ruggiero, Simona; Deplano, Simone; Sunda, Valentina; Galloro, Giuseppe; Formisano, Cesare; Mennella, Maria Rosaria Faraone

    2016-01-01

    Establishing by statistical analyses whether the analyses of auto-modified poly(ADP-ribose)polymerase and erythrocyte membrane fatty acid composition (Fat Profile(®)), separately or in tandem, help monitoring the physio-pathology of the cell, and correlate with diseases, if present. Ninety five subjects were interviewed and analyzed blindly. Blood lymphocytes and erythrocytes were prepared to assay poly(ADP-ribose)polymerase automodification and fatty acid based membrane lipidome, respectively. Poly(ADP-ribose)polymerase automodification levels confirmed their correlation with DNA damage extent, and allowed monitoring disease activity, upon surgical/therapeutic treatment. Membrane lipidome profiles showed lipid unbalance mainly linked to inflammatory states. Statistically both tests were separately significant, and correlated each other within some pathologies. In the laboratory routine, both tests, separately or in tandem, might be a preliminary and helpful step to investigate the occurrence of a given disease. Their combination represents a promising integrated panel for sensible, noninvasive and routine health monitoring.

  18. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation.

    PubMed

    Smith, Rebecca; Sellou, Hafida; Chapuis, Catherine; Huet, Sébastien; Timinszky, Gyula

    2018-05-04

    One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.

  19. Synergistic Cytotoxicity of Bendamustine and the BTK Inhibitor in a Mantle Cell Lymphoma Cell Line.

    PubMed

    Hagiwara, Kazumi; Tokunaga, Takashi; Iida, Hiroatsu; Nagai, Hirokazu

    2015-12-01

    Bendamustine is effective in B-cell malignancies, including mantle cell lymphoma (MCL), alone and in combination with other agents. This study investigated the combination effect of bendamustine and the Bruton tyrosine kinase (BTK) inhibitor PCI-32765 on MCL cell death and the underlying mechanisms. Cytotoxicity was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MIT) assay. Apoptosis was assessed by annexin V/propidium iodide staining and protein expression was analyzed by western blotting. When combined with bendamustine, PCI-32765 showed a synergistic effect on growth inhibition of the MCL cell line Jeko-1. Cleavage of caspase-3 and poly-(ADP-ribose) polymerase was increased, indicating enhanced apoptosis induction. In addition, this combination decreased the protein expression of cyclin D1. Phosphorylated v-akt murine thymoma viral oncogene homolog 1 (AKT) (Ser473) was also down-regulated, suggesting a suppression of the phosphatidylinositol 3-kinase/AKT signaling pathway. Combination treatment with bendamustine and a BTK inhibitor may be effective in MCL therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Cediranib, a pan-VEGFR inhibitor, and olaparib, a PARP inhibitor, in combination therapy for high grade serous ovarian cancer.

    PubMed

    Ivy, S Percy; Liu, Joyce F; Lee, Jung-Min; Matulonis, Ursula A; Kohn, Elise C

    2016-01-01

    An estimated 22,000 women are diagnosed annually with ovarian cancer in the United States. Initially chemo-sensitive, recurrent disease ultimately becomes chemoresistant and may kill ~14,000 women annually. Molecularly targeted therapy with cediranib (AZD2171), a vascular endothelial growth factor receptor (VEGFR)-1, 2, and 3 signaling blocker, and olaparib (AZD2281), a poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitor, administered orally in combination has shown anti-tumor activity in the treatment of high grade serous ovarian cancer (HGSOC). This combination has the potential to change the treatment of HGSOC. Preclinical and clinical studies of single agent cediranib and olaparib or their combination are reviewed. Data are presented from peer-reviewed published manuscripts, completed and ongoing early phase clinical trials registered in ClinicalTrials.gov, National Cancer Institute-sponsored clinical trials, and related recent abstracts. Advances in the treatment of HGSOC that improve progression-free and overall survival have proven elusive despite examination of molecularly targeted therapy. HGSOC patients with deleterious germline or somatic mutations in BRCA1 or BRCA2 (BRCAm) are most responsive to PARP inhibitors (PARPi). PARPi combined with angiogenesis inhibition improved anti-cancer response and duration in both BRCAm and BRCA wild type HGSOC patients, compared to olaparib single agent treatment, demonstrating therapeutic chemical and contextual synthetic lethality.

  1. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    PubMed

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion.

    PubMed

    Kovacs, Krisztina; Toth, Ambrus; Deres, Peter; Kalai, Tamas; Hideg, Kalman; Gallyas, Ferenc; Sumegi, Balazs

    2006-02-14

    Poly(ADP-ribose) polymerase (PARP) inhibitors protect hearts from ischemia-reperfusion (IR)-induced damages by limiting nicotinamide adenine dinucleotide (NAD+) and ATP depletion, and by other, not yet elucidated mechanisms. Our preliminary data suggested that PARP catalyzed ADP-ribosylations may affect signaling pathways in cardiomyocytes. To clarify this possibility, we studied the effect of a well-characterized (4-hydroxyquinazoline) and a novel (carboxaminobenzimidazol-derivative) PARP inhibitor on the activation of phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in Langendorff-perfused hearts. PARP inhibitors promoted the restoration of myocardial energy metabolism (assessed by 31P nuclear magnetic resonance spectroscopy) and cardiac function compared to untreated hearts. PARP inhibitors also attenuated the infarct size and reduced the IR-induced lipid peroxidation, protein oxidation and total peroxide concentration. Moreover, PARP inhibitors facilitated Akt phosphorylation and activation, as well as the phosphorylation of its downstream target glycogen synthase kinase-3beta (GSK-3beta) in normoxia and, more robustly, during IR. Blocking PI3-kinase by wortmannin or LY294002 reduced the PARP inhibitor-elicited robust Akt and GSK-3beta phosphorylation upon ischemia-reperfusion, and significantly diminished the recovery of ATP and creatine phosphate showing the importance of Akt activation in the recovery of energy metabolism. In addition, inhibition of PI3-kinase/Akt pathway decreased the protective effect of PARP inhibitors on infarct size and the recovery of heart functions. All these data suggest that contrary to the original view, which considered preservation of NAD+ and consequently ATP pools as the exclusive underlying mechanism for the cytoprotective effect of PARP inhibitors, the activation of PI3-kinase/Akt pathway and related processes are at least equally important in the cardioprotective effects of PARP inhibitors during ischemia-reperfusion.

  3. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  4. Long-lasting neuroprotection and neurological improvement in stroke models with new, potent and brain permeable inhibitors of poly(ADP-ribose) polymerase

    PubMed Central

    Moroni, F; Cozzi, A; Chiarugi, A; Formentini, L; Camaioni, E; Pellegrini-Giampietro, DE; Chen, Y; Liang, S; Zaleska, MM; Gonzales, C; Wood, A; Pellicciari, R

    2012-01-01

    BACKGROUND AND PURPOSES Thienyl-isoquinolone (TIQ-A) is a relatively potent PARP inhibitor able to reduce post-ischaemic neuronal death in vitro. Here we have studied, in different stroke models in vivo, the neuroprotective properties of DAMTIQ and HYDAMTIQ, two TIQ-A derivatives able to reach the brain and to inhibit PARP-1 and PARP-2. EXPERIMENTAL APPROACH Studies were carried out in (i) transient (2 h) middle cerebral artery occlusion (tMCAO), (ii) permanent MCAO (pMCAO) and (iii) electrocoagulation of the distal portion of MCA in conjunction with transient (90 min) bilateral carotid occlusion (focal cortical ischaemia). KEY RESULTS In male rats with tMCAO, HYDAMTIQ (0.1–10 mg·kg−1) injected i.p. three times, starting 4 h after MCAO, reduced infarct volumes by up to 70%, reduced the loss of body weight by up to 60% and attenuated the neurological impairment by up to 40%. In age-matched female rats, HYDAMTIQ also reduced brain damage. Protection, however, was less pronounced than in the male rats. In animals with pMCAO, HYDAMTIQ administered 30 min after MCAO reduced infarct volumes by approximately 40%. In animals with focal cortical ischaemia, HYDAMTIQ treatment decreased post-ischaemic accumulation of PAR (the product of PARP activity) and the presence of OX42-positive inflammatory cells in the ischaemic cortex. It also reduced sensorimotor deficits for up to 90 days after MCAO. CONCLUSION AND IMPLICATIONS Our results show that HYDAMTIQ is a potent PARP inhibitor that conferred robust neuroprotection and long-lasting improvement of post-stroke neurological deficits. PMID:21913897

  5. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.

    PubMed

    Cho, Sung Hoon; Ahn, Annie K; Bhargava, Prerna; Lee, Chih-Hao; Eischen, Christine M; McGuinness, Owen; Boothby, Mark

    2011-09-20

    Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.

  6. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells

    PubMed Central

    Ha, Kyungsoo; Bhaskara, Srividya; Cerchietti, Leandro; Devaraj, Santhana G. T.; Shah, Bhavin; Sharma, Sunil; Chang, Jenny C.; Melnick, Ari M.; Hiebert, Scott; Bhalla, Kapil N.

    2014-01-01

    There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces ‘BRCAness’ and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1. PMID:25026298

  7. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Wang, Gang; Lim, Siew Pheng; Chen, Yen-Liang; Hunziker, Jürg; Rao, Ranga; Gu, Feng; Seh, Cheah Chen; Ghafar, Nahdiyah Abdul; Xu, Haoying; Chan, Katherine; Lin, Xiaodong; Saunders, Oliver L; Fenaux, Martijn; Zhong, Weidong; Shi, Pei-Yong; Yokokawa, Fumiaki

    2018-05-03

    To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Born to run: control of transcription elongation by RNA polymerase II.

    PubMed

    Chen, Fei Xavier; Smith, Edwin R; Shilatifard, Ali

    2018-05-08

    The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.

  9. PARP Inhibitors Sensitize Ewing Sarcoma Cells to Temozolomide-Induced Apoptosis via the Mitochondrial Pathway.

    PubMed

    Engert, Florian; Schneider, Cornelius; Weiβ, Lilly Magdalena; Probst, Marie; Fulda, Simone

    2015-12-01

    Ewing sarcoma has recently been reported to be sensitive to poly(ADP)-ribose polymerase (PARP) inhibitors. Searching for synergistic drug combinations, we tested several PARP inhibitors (talazoparib, niraparib, olaparib, veliparib) together with chemotherapeutics. Here, we report that PARP inhibitors synergize with temozolomide (TMZ) or SN-38 to induce apoptosis and also somewhat enhance the cytotoxicity of doxorubicin, etoposide, or ifosfamide, whereas actinomycin D and vincristine show little synergism. Furthermore, triple therapy of olaparib, TMZ, and SN-38 is significantly more effective compared with double or monotherapy. Mechanistic studies revealed that the mitochondrial pathway of apoptosis plays a critical role in mediating the synergy of PARP inhibition and TMZ. We show that subsequent to DNA damage-imposed checkpoint activation and G2 cell-cycle arrest, olaparib/TMZ cotreatment causes downregulation of the antiapoptotic protein MCL-1, followed by activation of the proapoptotic proteins BAX and BAK, mitochondrial outer membrane permeabilization (MOMP), activation of caspases, and caspase-dependent cell death. Overexpression of a nondegradable MCL-1 mutant or BCL-2, knockdown of NOXA or BAX and BAK, or the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) all significantly reduce olaparib/TMZ-mediated apoptosis. These findings emphasize the role of PARP inhibitors for chemosensitization of Ewing sarcoma with important implications for further (pre)clinical studies. ©2015 American Association for Cancer Research.

  10. Novel bacterial ADP-ribosylating toxins: structure and function

    PubMed Central

    Simon, Nathan C.; Aktories, Klaus; Barbieri, Joseph T.

    2018-01-01

    Preface Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this review we use prototype bARTTs, such as diphtheria and pertussis toxins, as references for the characterization of several new bARTTs from human, insect, and plant pathogens, which were identified recently through bioinformatic analyses. Several of these toxins, including Cholix toxin from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae, and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and possess unique organizations, which distinguish them from the reference toxins. The characterization of these toxins extends our appreciation for the variety of structure-function properties possessed by bARTTs and their roles in bacterial pathogenesis. PMID:25023120

  11. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity againstmore » ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.« less

  12. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target.

    PubMed

    Plummer, Ruth

    2010-09-15

    Inhibitors of various elements of the DNA repair pathways have entered clinical development or are in late preclinical stages of drug development. It was initially considered that agents targeting DNA repair would act to overcome tumor resistance to chemotherapy and radiotherapy. More recent data have shown that targeting DNA repair pathways can be effective in selected tumors via a synthetically lethal route, with single agent activity having been shown with poly-ADP ribose polymerase (PARP) inhibitors. An increased understanding of the biology and interaction of the DNA repair pathways also means that rational combination of DNA repair inhibitors may also give great benefit in the clinic. ©2010 AACR.

  13. High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors

    PubMed Central

    Campagnola, Grace; Gong, Peng; Peersen, Olve B.

    2011-01-01

    Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674

  14. Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs

    NASA Astrophysics Data System (ADS)

    Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun

    2018-03-01

    Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.

  15. ADP-ribosylation of membrane components by pertussis and cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/submore » s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.« less

  16. Beyond Breast and Ovarian Cancers: PARP Inhibitors for BRCA Mutation-Associated and BRCA-Like Solid Tumors

    PubMed Central

    O’Sullivan, Ciara C.; Moon, Dominic H.; Kohn, Elise C.; Lee, Jung-Min

    2014-01-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm)-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single-agents and/or combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers are critical to expanding the scope of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here, we briefly review the preclinical data and clinical development of PARPi, and discuss its future development in solid tumors beyond gBRCAm-associated breast and ovarian cancers. PMID:24616882

  17. Inhibition of NAD glycohydrolase and ADP-ribosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide.

    PubMed

    Slama, J T; Simmons, A M

    1989-09-19

    Analogues of oxidized nicotinamide adenine dinucleotide (NAD+) in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ have recently been synthesized [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183]. Carbocyclic NAD+ analogues have been shown to inhibit NAD glycohydrolases and ADP-ribosyl transferases such as cholera toxin A subunit. In this study, the diastereomeric mixture of dinucleotides was separated, and the inhibitory capacity of each of the purified diastereomers was defined. The NAD+ analogue in which the D-dihydroxycyclopentane is substituted for the D-ribose is designated carba-NAD and was demonstrated to be a poor inhibitor of the Bungarus fasciatus venom NAD glycohydrolase. The diastereomeric dinucleotide pseudo-carbocyclic-NAD (psi-carba-NAD), containing L-dihydroxycyclopentane in place of the D-ribose of NAD+, was shown, however, to be a potent competitive inhibitor of the venom NAD glycohydrolase with an inhibitor dissociation constant (Ki) of 35 microM. This was surprising since psi-carba-NAD contains the carbocyclic analogue of the unnatural L-ribotide and was therefore expected to be a biologically inactive diastereomer. psi-Carba-NAD also competitively inhibited the insoluble brain NAD glycohydrolase from cow (Ki = 6.7 microM) and sheep (Ki = 31 microM) enzyme against which carba-NAD is ineffective. Sensitivity to psi-carba-NAD was found to parallel sensitivity to inhibition by isonicotinic acid hydrazide, another NADase inhibitor. psi-Carba-NAD is neither a substrate for nor an inhibitor of alcohol dehydrogenase, whereas carba-NAD is an efficient dehydrogenase substrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de; Wagner, Silvia; Buerkle, Alexander

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin didmore » not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.« less

  19. Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2017-02-01

    Neuropathic pain, a debilitating pain condition and the underlying pathogenic mechanisms are complex and interwoven amongst each other and still there is scant information available regarding therapies which promise to treat the condition. Evidence indicate that oxidative/nitrosative stress induced poly (ADP-ribose) polymerase (PARP) overactivation initiate neuroinflammation and bioenergetic crisis culminating into neurodegenerative changes following nerve injury. Hence, we investigated the therapeutic effect of combining an antioxidant, quercetin and a PARP inhibitor, 4-amino 1, 8-naphthalimide (4-ANI) on the hallmark deficits induced by chronic constriction injury (CCI) of sciatic nerve in rats. Quercetin (25 mg/kg, p.o.) and 4-ANI (3 mg/kg, p.o.) were administered either alone or in combination for 14 days to examine sciatic functional index, allodynia and hyperalgesia using walking track analysis, Von Frey, acetone spray and hot plate tests respectively. Malondialdehyde, nitrite and glutathione levels were estimated to detect oxidative/nitrosative stress; mitochondrial membrane potential and cytochrome c oxidase activity to assess mitochondrial function; NAD & ATP levels to examine the bioenergetic status and levels of inflammatory markers were evaluated in ipsilateral sciatic nerve. Quercetin and 4-ANI alone improved the pain behaviour and biochemical alterations but the combination therapy demonstrated an appreciable reversal of CCI-induced changes. Nitrotyrosine and Poly ADP-Ribose (PAR) immunopositivity was decreased and nuclear factor erythroid 2-related factor (Nrf-2) levels were increased significantly in micro-sections of the sciatic nerve and dorsal root ganglion (DRG) of treatment group. These results suggest that simultaneous inhibition of oxidative stress-PARP activation cascade may potentially be useful strategies for management of trauma induced neuropathic pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PARPs and ADP-Ribosylation: 50 Years … and Counting.

    PubMed

    Kraus, W Lee

    2015-06-18

    Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 53BP1 depletion causes PARP inhibitor resistance in ATM-deficient breast cancer cells.

    PubMed

    Hong, Ruoxi; Ma, Fei; Zhang, Weimin; Yu, Xiying; Li, Qing; Luo, Yang; Zhu, Changjun; Jiang, Wei; Xu, Binghe

    2016-09-09

    Mutations in DNA damage response factors BRCA1 and BRCA2 confer sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors in breast and ovarian cancers. BRCA1/BRCA2-defective tumors can exhibit resistance to PARP inhibitors via multiple mechanisms, one of which involves loss of 53BP1. Deficiency in the DNA damage response factor ataxia-telangiectasia mutated (ATM) can also sensitize tumors to PARP inhibitors, raising the question of whether the presence or absence of 53BP1 can predict sensitivity of ATM-deficient breast cancer to these inhibitors. Cytotoxicity of PARP inhibitor and ATM inhibitor in breast cancer cell lines was assessed by MTS, colony formation and apoptosis assays. ShRNA lentiviral vectors were used to knockdown 53BP1 expression in breast cancer cell lines. Phospho-ATM and 53BP1 protein expressions were determined in human breast cancer tissues by immunohistochemistry (IHC). We show that inhibiting ATM increased cytotoxicity of PARP inhibitor in triple-negative and non-triple-negative breast cancer cell lines, and depleting the cells of 53BP1 reduced this cytotoxicity. Inhibiting ATM abrogated homologous recombination induced by PARP inhibitor, and down-regulating 53BP1 partially reversed this effect. Further, overall survival was significantly better in triple-negative breast cancer patients with lower levels of phospho-ATM and tended to be better in patients with negative 53BP1. These results suggest that 53BP1 may be a predictor of PARP inhibitor resistance in patients with ATM-deficient tumors.

  2. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma.

    PubMed

    Gill, Sonja J; Travers, Jon; Pshenichnaya, Irina; Kogera, Fiona A; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H; Stratton, Michael R; McDermott, Ultan; Jackson, Stephen P; Garnett, Mathew J

    2015-01-01

    Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors.

  3. Redesign of Schistosoma mansoni NAD+ catabolizing enzyme : the active site H103W mutation restores ADP-ribosyl cyclase activity†

    PubMed Central

    Kuhn, Isabelle; Kellenberger, Esther; Rognan, Didier; Lund, Frances E.; Muller-Steffner, Hélène; Schuber, Francis

    2008-01-01

    Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes which are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products, i.e., a value larger than observed for other members of this family such as CD38. Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provide new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge however in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR. PMID:17002287

  4. Identification and mechanism of action analysis of the new PARP-1 inhibitor 2″-hydroxygenkwanol A.

    PubMed

    Dal Piaz, Fabrizio; Ferro, Piera; Vassallo, Antonio; Vasaturo, Michele; Forte, Giovanni; Chini, Maria Giovanna; Bifulco, Giuseppe; Tosco, Alessandra; De Tommasi, Nunziatina

    2015-09-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) activity has been implicated in the pathogenesis of numerous diseases as cancer, inflammation, diabetes and neurodegenerative disorders, therefore the research for new PARP-1 inhibitors is still an active area. To identify new potential PARP-1 inhibitors, we performed a screening of a small-molecule library consisting of polyphenols isolated from plants used in the traditional medicine, by Surface Plasmon Resonance (SPR). Biochemical and cellular assays were performed to confirm SPR results and select the promising candidate(s). Finally, limited proteolysis and ligand docking analyses allowed defining the protein region involved in the interaction with the putative inhibitor(s). The dimeric spiro-flavonoid 2″-hydroxygenkwanol A, member of a relatively recently discovered class of flavonoids containing a spirane C-atom, has been identified as possible PARP-1 inhibitor. This compound showed a high affinity for the polymerase (KD: 0.32±0.05μM); moreover PARP-1 activity in the presence of 2″-hydroxygenkwanol A was significantly affected both when using the recombinant protein and when measuring the cellular effects. Finally, our study suggests this compound to efficiently interact with the protein catalytic domain, into the nicotine binding pocket. 2″-hydroxygenkwanol A efficiently binds and inhibits PARP-1 at submicromolar concentrations, thus representing a promising lead for the design of a new class of PARP-1 modulators, useful as therapeutic agents and/or biochemical tools. Our study has identified an additional class of plant molecules, the spiro-biflavonoids, with known beneficial pharmacological properties but with an unknown mechanism of action, as a possible novel class of PARP-1 activity inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Recent advances in targeting DNA repair pathways for the treatment of ovarian cancer and their clinical relevance.

    PubMed

    Oda, Katsutoshi; Tanikawa, Michihiro; Sone, Kenbun; Mori-Uchino, Mayuyo; Osuga, Yutaka; Fujii, Tomoyuki

    2017-08-01

    Poly (ADP-ribose) polymerase (PARP) inhibitors have attracted much attention as one of the major molecular-targeted therapeutics for inhibiting DNA damage response. The PARP inhibitor, olaparib, has been clinically applied for treating certain recurrent ovarian cancer patients with BRCA1/2 mutations in Europe and the United States. It was also designated on 24 March 2017 as an orphan drug in Japan for similar clinical indications. In this review, we discuss (i) the prevalence of BRCA1/2 mutations in ovarian cancer, (ii) clinical trials of PARP inhibitors in ovarian cancer, (iii) genetic counseling for hereditary breast and ovarian cancer patients, and (iv) non-BRCA genes that may be associated with homologous recombination deficiency.

  6. The PARP inhibitor ABT-888 potentiates dacarbazine-induced cell death in carcinoids.

    PubMed

    Somnay, Y; Lubner, S; Gill, H; Matsumura, J B; Chen, H

    2016-10-01

    Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy, ASCL1 and chromogranin A, as shown by western analysis. Ataxia telangiectasia mitogen factor phosphorylation and p21 Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies.

  7. Poly(ADP-ribosylation) is present in murine sciatic nerve fibers and is altered in a Charcot-Marie-Tooth-1E neurodegenerative model

    PubMed Central

    Romeo Cardeillac, Carlos J.; Cal Castillo, Karina B.; Vilchez Larrea, Salomé C.; Sotelo Sosa, José R.; Folle Ungo, Gustavo A.; Fernández Villamil, Silvia H.

    2017-01-01

    Background Poly-ADP-ribose (PAR) is a polymer synthesized by poly-ADP-ribose polymerases (PARPs) as a postranslational protein modification and catabolized mainly by poly-ADP-ribose glycohydrolase (PARG). In spite of the existence of cytoplasmic PARPs and PARG, research has been focused on nuclear PARPs and PAR, demonstrating roles in the maintenance of chromatin architecture and the participation in DNA damage responses and transcriptional regulation. We have recently detected non-nuclear PAR structurally and functionally associated to the E-cadherin rich zonula adherens and the actin cytoskeleton of VERO epithelial cells. Myelinating Schwann cells (SC) are stabilized by E-cadherin rich autotypic adherens junctions (AJ). We wondered whether PAR would map to these regions. Besides, we have demonstrated an altered microfilament pattern in peripheral nerves of Trembler-J (Tr-J) model of CMT1-E. We hypothesized that cytoplasmic PAR would accompany such modified F-actin pattern. Methods Wild-type (WT) and Tr-J mice sciatic nerves cryosections were subjected to immunohistofluorescence with anti-PAR antibodies (including antibody validation), F-actin detection with a phalloidin probe and DAPI/DNA counterstaining. Confocal image stacks were subjected to a colocalization highlighter and to semi-quantitative image analysis. Results We have shown for the first time the presence of PAR in sciatic nerves. Cytoplasmic PAR colocalized with F-actin at non-compact myelin regions in WT nerves. Moreover, in Tr-J, cytoplasmic PAR was augmented in close correlation with actin. In addition, nuclear PAR was detected in WT SC and was moderately increased in Tr-J SC. Discussion The presence of PAR associated to non-compact myelin regions (which constitute E-cadherin rich autotypic AJ/actin anchorage regions) and the co-alterations experienced by PAR and the actin cytoskeleton in epithelium and nerves, suggest that PAR may be a constitutive component of AJ/actin anchorage regions. Is PAR

  8. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaalishvili, Giorgi, E-mail: giozaal@gmail.com; Margiani, Dina; Kutalia, Ketevan

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  9. Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells.

    PubMed

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haupt, Ygal; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A; Solomon, Benjamin

    2014-02-01

    To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination. Copyright © 2014. Published by Elsevier Inc.

  10. Nucleosides and nucleotides. 192. Toward the total synthesis of cyclic ADP-carbocyclic-ribose. Formation of the intramolecular pyrophosphate linkage by a conformation-restriction strategy in a syn-form using a halogen substitution at the 8-position of the adenine ring.

    PubMed

    Sumita, Y; Shirato, M; Ueno, Y; Matsuda, A; Shuto, S

    2000-01-01

    The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N6-trichloroacetyl-2',3'-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5'-5"-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5',5"-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.

  11. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core hasmore » been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within

  12. [The effect of 3-aminobenzamide on the mitotic cycle of Chinese hamster cells cultured on a medium with 5-bromodeoxyuridine following ionizing radiation action].

    PubMed

    Kirillova, T V; Rozanov, Iu M; Spivak, I M

    1992-01-01

    A specific inhibitor of poly(ADP-ribose)polymerase-3-aminobenzamide (6 mM) has been shown to: 1) reduce survival of non-irradiated CHO-K1 cells, cultivated in medium containing 5-bromodeoxyuridine (10 mkM, BDU cells), and increase their radiosensitivity; 2) induce G2 delay in BDU cells while progressing through the cell cycle as analysed by the DNA flow cytometry; 3) increase to a great degree G2 delay in X-irradiated BDU cells. 3-Aminobenzamide is primarily effective when it is present during the first or two first cell cycles after the initial addition of BDU. The above data confirm the involvement, presumably an indirect one, of ADP-ribosylation in the DNA repair through affecting the chromatin structure.

  13. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA

  14. Studies of the Interaction of Influenza Virus RNA Polymerase PAN with Endonuclease Inhibitors.

    PubMed

    Dong, Li-Hua; Cao, Xiao-Rong

    2018-06-01

    Influenza virus is a major causative agent of respiratory viral infections, and RNA polymerase catalyzes its replication and transcription activities in infected cell nuclei. Since it is highly conserved in all virus strains, RNA polymerase becomes a key target of anti-influenza virus agents. Although experimental studies have revealed the good inhibitory activity of endonuclease inhibitors to RNA polymerase, the mechanism is still unclear. In this study, the docking and molecular dynamics simulations have been performed to explore the interaction of three kinds of endonuclease inhibitors with the subunit (PA N ) of RNA polymerase. Our calculations indicate that all these endonuclease inhibitors can bind to the binding pocket of PA N , in which the electronegative oxygen atoms of the inhibitors form a chelated structure with the two Mn 2+ cations of the active center. The most important interaction between these inhibitors and PA N is electrostatic interaction. The electron density of the chelate oxygen atoms determines the magnitude of the electrostatic energy, and the chelated structure and orientation of inhibitors depend largely on the distance between the chelate oxygen atoms.

  15. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology

    PubMed Central

    Vyas, Sejal; Chesarone-Cataldo, Melissa; Todorova, Tanya; Huang, Yun-Han; Chang, Paul

    2013-01-01

    The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology. PMID:23917125

  16. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently ofmore » its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.« less

  17. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negi, Geeta; Kumar, Ashutosh; Sharma, Shyam S., E-mail: sssharma@niper.ac.in

    2010-01-01

    Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidativemore » stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).« less

  18. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Pshenichnaya, Irina; Kogera, Fiona A.; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H.; Stratton, Michael R.; McDermott, Ultan; Jackson, Stephen P.; Garnett, Mathew J.

    2015-01-01

    Ewing’s sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing’s sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing’s sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing’s sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing’s sarcoma patients with PARP inhibitors. PMID:26505995

  19. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.

    PubMed Central

    Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo

    2003-01-01

    CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID

  20. Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts

    PubMed Central

    Khurana, Ashwani; Jung-Beom, Deok; He, Xiaoping; Kim, Sung-Hoon; Busby, Robert C.; Lorenzon, Laura; Villa, Massimo; Baldi, Alfonso; Molina, Julian; Goetz, Matthew P.; Shridhar, Viji

    2013-01-01

    Sulfatase 2 (Sulf-2) has been previously shown to be upregulated in breast cancer. Sulf-2 removes sulfate moieties on heparan sulfate proteoglycans which in turn modulate heparin binding growth factor signaling. Here we report that matrix detachment resulted in decreased Sulf-2 expression in breast cancer cells and increased cleavage of poly ADP-ribose polymerase. Silencing of Sulf-2 promotes matrix detachment induced cell death in MCF10DCIS cells. In an attempt to identify Sulf-2 specific inhibitor, we found that proteasomal inhibitors such as MG132, Lactacystin and Bortezomib treatment abolished Sulf-2 expression in multiple breast cancer cell lines. Additionally, we show that Bortezomib treatment of MCF10DCIS cell xenografts in mouse mammary fat pads significantly reduced tumor size, caused massive apoptosis and more importantly reduced Sulf-2 levels in vivo. Finally, our immunohistochemistry analysis of Sulf-2 expression in cohort of patient derived breast tumors indicates that Sulf-2 is significantly upregulated in autologous metastatic lesions compared to primary tumors (p < 0.037, Pearson correlation, Chi-Square analysis). In all, our data suggest that Sulf-2 might play an important role in breast cancer progression from ductal carcinoma in situ into an invasive ductal carcinoma potentially by resisting cell death. PMID:23412907

  1. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyashiro, Julie; Woods, Keith W.; Park, Chang H.

    2010-09-03

    Based on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core. The synthesis and structure-activity relationship studies are presented.

  2. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    PubMed

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  3. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia

    PubMed Central

    Herriott, Ashleigh; Tudhope, Susan J.; Junge, Gesa; Rodrigues, Natalie; Patterson, Miranda J.; Woodhouse, Laura; Lunec, John; Hunter, Jill E.; Mulligan, Evan A.; Cole, Michael; Allinson, Lisa M.; Wallis, Jonathan P.; Marshall, Scott; Wang, Evelyn; Curtin, Nicola J.; Willmore, Elaine

    2015-01-01

    In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors. We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 – 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 – 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2′-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function. PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib. PMID:26539646

  4. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  5. Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression

    PubMed Central

    Leu, N. Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D.; Zalenskaya, Irina A.; Schultz, Richard M.; Meyer, Ralph G.

    2014-01-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. PMID:24810616

  6. Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone

    PubMed Central

    Kühn, Frank; Kühn, Cornelia; Lückhoff, Andreas

    2017-01-01

    A decisive element in the human cation channel TRPM2 is a region in its cytosolic C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a pyrophosphatase degrading ADP-ribose (ADPR). In hTRPM2, however, the NUDT9H domain has lost its enzymatic activity but serves as a binding domain for ADPR. As consequence of binding, gating of the channel is initiated. Since ADPR is produced after oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress which may lead to cell death. In the genome of the sea anemone Nematostella vectensis (nv), a preferred model organism for the evolution of key bilaterian features, a TRPM2 ortholog has been identified that contains a NUDT9H domain as well. Heterologous expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well as the role of NUDT9H are strikingly different in the two species. Whereas already subtle changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR binding site seems to be present but has not yet been characterized. The ADP-ribose pyrophosphatase (ADPRase) function of nvNUDT9H has been preserved but can be abolished by numerous genetic manipulations. All these manipulations create channels that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR, thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the respective NUDT9H domains, either binding of ADPR and mediating channel activity

  7. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa.

    PubMed

    Okon, Elza; Dethlefsen, Sarah; Pelnikevich, Anna; Barneveld, Andrea van; Munder, Antje; Tümmler, Burkhard

    2017-01-01

    NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Upregulation of PEDF expression by PARP inhibition contributes to the decrease in hyperglycemia-induced apoptosis in HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Haibing; Department of Ophthalmology, Anhui Provincial Hospital, Hefei; Jia Weiping

    2008-05-02

    Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might representmore » a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.« less

  9. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model.

    PubMed

    Kuenzler, Michael B; Nuss, Katja; Karol, Agnieszka; Schär, Michael O; Hottiger, Michael; Raniga, Sumit; Kenkel, David; von Rechenberg, Brigitte; Zumstein, Matthias A

    2017-05-01

    Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.

    PubMed

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-11-15

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors.

  11. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  12. Targeting the unmet medical need: the Abbott Laboratories oncology approach.

    PubMed

    Carlson, Dawn M; Steinberg, Joyce L; Gordon, Gary

    2005-09-01

    While significant advances in the treatment of cancer occured during the last half of the twentieth century, parallel decreases in overall cancer death rates were not observed. Cancer therapy remains an area of significant unmet medical need. Abbott's oncology research programs are focused on pioneering trageted, less toxic therapies, aimed at different aspects of tumor growth and development. Oncology drugs in development at Abbott target several mechanisms of cancer progression by interfering with multiple processes necessary for tumor growth: recruitment of a blood supply, cell proliferation, and the development of metastases. They include a selective endothelin A-receptor antagonist (atrasentan/Xinlay), 3 angiogenesis inhibitors (ABT 510, a thrombospondin mimetic: ABT-869, a multitargeted receptor tyrosine kinase inhibitor; and ABT 828, recombinant human plasminogen kringle 5), a cell proliferation inhibitor (ABT-751, an antimitotic agent), an apoptosis inducer (ABT 737, a Bcl-2 family inhibitor), and a poly(ADP-ribose)polymerase inhibitor.

  13. Possible involvement of 12-lipoxygenase activation in glucose-deprivation/reload-treated neurons.

    PubMed

    Nagasawa, Kazuki; Kakuda, Taichi; Higashi, Youichirou; Fujimoto, Sadaki

    2007-12-18

    The aim of this study was to clarify whether 12-lipoxygenase (12-LOX) activation was involved in reactive oxygen species (ROS) generation, extensive poly(ADP-ribose) polymerase (PARP) activation and neuronal death induced by glucose-deprivation, followed by glucose-reload (GD/R). The decrease of neuronal viability and accumulation of poly(ADP-ribose) induced by GD/R were prevented 3-aminobenzamide, a representative PARP inhibitor, demonstrating this treatment protocol caused the same oxidative stress with the previously reported one. The PARP activation, ROS generation and decrease of neuron viability induced by GD/R treatment were almost completely abolished by an extracellular zinc chelator, CaEDTA. p47(phox), a cytosolic component of NADPH oxidase was translocated the membrane fraction by GD/R, indicating its activation, but it did not generate detectable ROS. Surprisingly, pharmacological inhibition of NADPH oxidase with apocynin and AEBSF further decreased the decreased neuron viability induced by GD/R. On the other hand, AA861, a 12-LOX inhibitor, prevented ROS generation and decrease of neuron viability caused by GD/R. Interestingly, an antioxidant, N-acetyl-l-cysteine rescued the neurons from GD/R-induced oxidative stress, implying effectiveness of antioxidant administration. These findings suggested that activation of 12-LOX, but not NADPH oxidase, following to zinc release might play an important role in ROS generation and decrease of viability in GD/R-treated neurons.

  14. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    DOE PAGES

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less

  15. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma.

    PubMed

    Nio, Kouki; Yamashita, Taro; Okada, Hikari; Kondo, Mitsumasa; Hayashi, Takehiro; Hara, Yasumasa; Nomura, Yoshimoto; Zeng, Sha Sha; Yoshida, Mariko; Hayashi, Tomoyuki; Sunagozaka, Hajime; Oishi, Naoki; Honda, Masao; Kaneko, Shuichi

    2015-11-01

    Hepatocellular carcinoma is composed of a subset of cells with enhanced tumorigenicity and chemoresistance that are called cancer stem (or stem-like) cells. We explored the role of chromodomain-helicase-DNA-binding protein 4, which is encoded by the CHD4 gene and is known to epigenetically control gene regulation and DNA damage responses in EpCAM(+) liver cancer stem cells. Gene and protein expression profiles were determined by microarray and immunohistochemistry in 245 and 144 hepatocellular carcinoma patients, respectively. The relationship between gene/protein expression and prognosis was examined. The functional role of CHD4 was evaluated in primary hepatocellular carcinoma cells and in cell lines in vitro and in vivo. CHD4 was abundantly expressed in EpCAM(+) hepatocellular carcinoma with expression of hepatic stem cell markers and poor prognosis in two independent cohorts. In cell lines, CHD4 knockdown increased chemosensitivity and CHD4 overexpression induced epirubicin chemoresistance. To inhibit the functions of CHD4 that are mediated through histone deacetylase and poly (ADP-ribose) polymerase, we evaluated the effect of the histone deacetylase inhibitor suberohydroxamic acid and the poly (ADP-ribose) polymerase inhibitor AG-014699. Treatment with either suberohydroxamic acid or AG-014699 reduced the number of EpCAM(+) liver cancer stem cells in vitro, and suberohydroxamic acid and AG-014699 in combination successfully inhibited tumor growth in a mouse xenograft model. CHD4 plays a pivotal role in chemoresistance and the maintenance of stemness in liver cancer stem cells and is therefore a good target for the eradication of hepatocellular carcinoma. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    polyethylene glycol precipitation, ion exchange chromatography, and density gradient sedimentation (Malkas et al., 1990; Applegren et al., 1995; Coll et...jtl of 25 mM NH4HCO 3/50% acetonitrile were added and the tubes were mixed for 35-40 min on a low setting using a microtube mixer. The pale blue...these isoforms. Proteins identified in these spots are shown in table 1: Spot #* Predominant Protein MCF-10A 1 Heat Shock Protein 90 cc (hsp-90 ct) 2

  17. Structural Implications for Selective Targeting of PARPs.

    PubMed

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  18. Structural Implications for Selective Targeting of PARPs

    PubMed Central

    Steffen, Jamin D.; Brody, Jonathan R.; Armen, Roger S.; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD+ as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed “synthetic lethality.” In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients. PMID:24392349

  19. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes*

    PubMed Central

    Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.

    2015-01-01

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465

  20. PARP Inhibitors in Reproductive System Cancers: Current Use and Developments.

    PubMed

    O'Sullivan Coyne, Geraldine; Chen, Alice P; Meehan, Robert; Doroshow, James H

    2017-02-01

    The repair of DNA damage is a critical cellular process governed by multiple biochemical pathways that are often found to be defective in cancer cells. The poly(ADP-ribose) polymerase (PARP) family of proteins controls response to single-strand DNA breaks by detecting these damaged sites and recruiting the proper factors for repair. Blocking this pathway forces cells to utilize complementary mechanisms to repair DNA damage. While PARP inhibition may not, in itself, be sufficient to cause tumor cell death, inhibition of DNA repair with PARP inhibitors is an effective cytotoxic strategy when it is used in patients who carry other defective DNA-repair mechanisms, such as mutations in the genes BRCA 1 and 2. This discovery has supported the development of PARP inhibitors (PARPi), agents that have proven effective against various types of tumors that carry BRCA mutations. With the application of next-generation sequencing of tumors, there is increased interest in looking beyond BRCA mutations to identify genetic and epigenetic aberrations that might lead to similar defects in DNA repair, conferring susceptibility to PARP inhibition. Identification of these genetic lesions and the development of screening assays for their detection may allow for the selection of patients most likely to respond to this class of anticancer agents. This article provides an overview of clinical trial results obtained with PARPi and describes the companion diagnostic assays being established for patient selection. In addition, we review known mechanisms for resistance to PARPi and potential strategies for combining these agents with other types of therapy.

  1. Specific inhibitors of mammalian DNA polymerase species.

    PubMed

    Mizushina, Yoshiyuki

    2009-06-01

    In screening of selective inhibitors of eukaryotic DNA polymerases (pols) for 15 years, more than 100 inhibitors have been discovered from natural and chemical sources. Some compounds selectively inhibit the activities of mammalian pols, and in particular, dehydroaltenusin and curcumin derivatives, such as monoacetyl-curcumin, were found to be specific inhibitors of pol alpha and pol lambda, respectively. Dehydroaltenusin was isolated from a fungus (Alternaria tennuis), and this compound inhibited cell proliferation of human cancer cell lines by arresting the cells at the S-phase, and was effective in suppressing the growth on nude mice of solid tumors of human cervical cancer cell line HeLa. Curcumin derivatives had anti-12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory activity with the same tendency as pol lambda inhibitory activity. These compounds might be useful not only as "molecular probes" for pol research, but also as biomedical and chemotherapeutic drugs for anti-cancer or anti-inflammation.

  2. Therapeutic Applications of PARP Inhibitors: Anticancer Therapy and Beyond

    PubMed Central

    Curtin, Nicola; Szabo, Csaba

    2013-01-01

    The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination (HRR) repair is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology

  3. Removal of inhibitor(s) of the polymerase chain reaction from formalin fixed, paraffin wax embedded tissues.

    PubMed

    An, S F; Fleming, K A

    1991-11-01

    A problem associated with use of the polymerase chain reaction to amplify specific DNA fragments from formalin fixed, paraffin wax embedded tissues is the not infrequent failure of amplification. One possible reason for this could be the presence of inhibitor(s), which interfere with the activity of the reaction. It has been shown that such inhibitor(s) exist when amplifying the human beta globin gene (which exists in human genomic DNA as a single copy gene) from routine clinical samples. A variety of methods to remove such inhibitor(s) were investigated. The results indicate that inhibitor(s) are removed by proteinase K digestion, followed by purification with phenol/chloroform, and centrifugation through a Centricon-30 membrane (30,000 molecular weight cut off). Other factors, including the length and concentration of the DNA sequence to be amplified, can also affect amplification.

  4. Trial watch – inhibiting PARP enzymes for anticancer therapy

    PubMed Central

    Sistigu, Antonella; Manic, Gwenola; Obrist, Florine; Vitale, Ilio

    2016-01-01

    ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients. PMID:27308587

  5. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Niyomrattanakit, Pornwaratt; Abas, Siti Nurdiana; Lim, Chin Chin; Beer, David; Shi, Pei-Yong; Chen, Yen-Liang

    2011-02-01

    The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase-coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2'-[2-benzothiazoyl]-6'-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3'UTR-U(30) RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBT(PPi), which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3'dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC(50) values of 0.13 µM and 0.01 µM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 µM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3'UTR-C(30) RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.

  6. Comparison of the acid-base properties of ribose and 2'-deoxyribose nucleotides.

    PubMed

    Mucha, Ariel; Knobloch, Bernd; Jezowska-Bojczuk, Małgorzata; Kozłowski, Henryk; Sigel, Roland K O

    2008-01-01

    The extent to which the replacement of a ribose unit by a 2'-deoxyribose unit influences the acid-base properties of nucleotides has not hitherto been determined in detail. In this study, by potentiometric pH titrations in aqueous solution, we have measured the acidity constants of the 5'-di- and 5'-triphosphates of 2'-deoxyguanosine [i.e., of H(2)(dGDP)(-) and H(2)(dGTP)(2-)] as well as of the 5'-mono-, 5'-di-, and 5'-triphosphates of 2'-deoxyadenosine [i.e., of H(2)(dAMP)(+/-), H(2)(dADP)(-), and H(2)(dATP)(2-)]. These 12 acidity constants (of the 56 that are listed) are compared with those of the corresponding ribose derivatives (published data) measured under the same experimental conditions. The results show that all protonation sites in the 2'-deoxynucleotides are more basic than those in their ribose counterparts. The influence of the 2'-OH group is dependent on the number of 5'-phosphate groups as well as on the nature of the purine nucleobase. The basicity of N7 in guanine nucleotides is most significantly enhanced (by about 0.2 pK units), while the effect on the phosphate groups and the N1H or N1H(+) sites is less pronounced but clearly present. In addition, (1)H NMR chemical shift change studies in dependence on pD in D(2)O have been carried out for the dAMP, dADP, and dATP systems, which confirmed the results from the potentiometric pH titrations and showed the nucleotides to be in their anti conformations. Overall, our results are not only of relevance for metal ion binding to nucleotides or nucleic acids, but also constitute an exact basis for the calculation, determination, and understanding of perturbed pK(a) values in DNAzymes and ribozymes, as needed for the delineation of acid-base mechanisms in catalysis.

  7. Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    PubMed Central

    Swanton, Charles; Szallasi, Zoltan; Brenton, James D; Downward, Julian

    2008-01-01

    The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts. PMID:18986507

  8. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119,more » WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.« less

  9. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    PubMed

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  10. Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer

    PubMed Central

    Kawahara, Naoki; Ogawa, Kenji; Nagayasu, Mika; Kimura, Mai; Sasaki, Yoshikazu; Kobayashi, Hiroshi

    2017-01-01

    Inhibitors of poly(ADP-ribose) polymerase (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 mutations. Ovarian clear cell cancer (CCC), a subset of ovarian cancer, often appears as low-stage disease with a higher incidence among Japanese. Advanced CCC is highly aggressive with poor patient outcome. The aim of the present study was to determine the potential synthetic lethality gene pairs for PARP inhibitions in patients with CCC through virtual and biological screenings as well as clinical studies. We conducted a literature review for putative PARP sensitivity genes that are associated with the CCC pathophysiology. Previous studies identified a variety of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle checkpoint signaling, BRCA-associated complex and Fanconi's anemia susceptibility genes that could be used as biomarkers or therapeutic targets for PARP inhibition. BRCA1/2, ATM, ATR, BARD1, CCNE1, CHEK1, CKS1B, DNMT1, ERBB2, FGFR2, MRE11A, MYC, NOTCH1 and PTEN were considered as candidate genes for synthetic lethality gene partners for PARP interactions. When considering the biological background underlying PARP inhibition, we hypothesized that PARP inhibitors would be a novel synthetic lethal therapeutic approach for CCC tumors harboring homologous recombination deficiency and activating oncogene mutations. The results showed that the majority of CCC tumors appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of CCC. PMID:29109859

  11. Molecular mechanism of the short-term cardiotoxicity caused by 2',3'-dideoxycytidine (ddC): modulation of reactive oxygen species levels and ADP-ribosylation reactions.

    PubMed

    Skuta, G; Fischer, G M; Janaky, T; Kele, Z; Szabo, P; Tozser, J; Sumegi, B

    1999-12-15

    The short-term cardiac side effects of 2',3'-dideoxycytidine (ddC, zalcitabine) were studied in rats in order to understand the biochemical events contributing to the development of ddC-induced cardiomyopathy. In developing animals, ddC treatment provoked a surprisingly rapid appearance of cardiac malfunctions characterized by prolonged RR, PR, and QT intervals and J point depression. The energy metabolism in the heart was compromised, characterized by a decreased creatine phosphate/creatine ratio (from 2.05 normal value to 0.75) and a decreased free ATP/ADP ratio (from 332 normal value to 121). The activity of respiratory complexes (NADH: cytochrome c oxidoreductase and cytochrome oxidase) also decreased significantly. Southern blot and polymerase chain reaction analysis did not show deletions or a decrease in the quantity of mitochondrial DNA (mtDNA) deriving from ddC-treated rat hearts, indicating that under our experimental conditions, ddC-induced heart abnormalities were not the direct consequence of mtDNA-related damage. The ddC treatment of rats significantly increased the formation of reactive oxygen species (ROS) in heart and skeletal muscle as determined by the oxidation of non-fluorescent dihydrorhodamine123 to fluorescent rhodamine123 and the oxidation of cellular proteins determined from protein carbonyl content. An activation of the nuclear poly-(ADP-ribose) polymerase (EC 2.4.2.30) and an increase in the mono-ADP-ribosylation of glucose-regulated protein and desmin were observed in the cardiac tissue from ddC-treated animals. A decrease in the quantity of heat shock protein (HSP)70s was also detected, while the level of HSP25 and HSP60 remained unchanged. Surprisingly, ddC treatment induced a skeletal muscle-specific decrease in the quantity of three proteins, one of which was identified by N-terminal sequencing as myoglobin, and another by tandem mass spectrometer sequencing as triosephosphate isomerase (EC 5.3.1.1). These data show that the short

  12. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach

    PubMed Central

    Galiano, Vicente; Garcia-Valtanen, Pablo; Micol, Vicente; Encinar, José Antonio

    2016-01-01

    The dengue virus (DENV) nonstructural protein 5 (NS5) contains both an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain. Polymerase activity is responsible for viral RNA synthesis by a de novo initiation mechanism and represents an attractive target for antiviral therapy. The incidence of DENV has grown rapidly and it is now estimated that half of the human population is at risk of becoming infected with this virus. Despite this, there are no effective drugs to treat DENV infections. The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV. We used a chemical library comprising 372,792 nonnucleotide compounds (around 325,319 natural compounds) to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase. Compounds with high negative free energy variation (ΔG <−10.5 kcal/mol) were selected as putative inhibitors. Additional filters for favorable druggability and good absorption, distribution, metabolism, excretion, and toxicity were applied. Finally, after the screening process was completed, we identified 39 compounds as lead DENV polymerase inhibitor candidates. Potentially, these compounds could act as efficient DENV polymerase inhibitors in vitro and in vivo. PMID:27784988

  13. In vitro targeted photodynamic therapy with a pyropheophorbide--a conjugated inhibitor of prostate-specific membrane antigen.

    PubMed

    Liu, Tiancheng; Wu, Lisa Y; Choi, Joseph K; Berkman, Clifford E

    2009-05-01

    The lack of specific delivery of photosensitizers (PSs), represents a significant limitation of photodynamic therapy (PDT) of cancer. The biomarker prostate-specific membrane antigen (PSMA) has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. Although recent efforts have been made to conjugate inhibitors of PSMA with imaging agents, there have been no reports on PS-conjugated PSMA inhibitors for targeted PDT of prostate cancer. The present study focuses on the use of a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2) for targeted PDT to achieve apoptosis in PSMA+ LNCaP cells. Confocal laser scanning microscopy with a combination of nuclear staining and immunofluorescence methods were employed to monitor the specific imaging and PDT-mediated apoptotic effects on PSMA-positive LNCaP and PSMA-negative (PC-3) cells. Our results demonstrated that PDT-mediated effects by Ppa-conjugate 2 were specific to LNCaP cells, but not PC-3 cells. Cell permeability was detected as early as 2 hr by HOE33342/PI double staining, becoming more intense by 4 hr. Evidence for the apoptotic caspase cascade being activated was based on the appearance of poly-ADP-ribose polymerase (PARP) p85 fragment. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay detected DNA fragmentation 16 hr post-PDT, confirming apoptotic events. Cell permeability by HOE33342/PI double staining as well as PARP p85 fragment and TUNEL assays confirm cellular apoptosis in PSMA+ cells when treated with PS-inhibitor conjugate 2 and subsequently irradiated. It is expected that the PSMA targeting small-molecule of this conjugate can serve as a delivery vehicle for PDT and other therapeutic applications for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  14. Repair of DNA Strand Breaks in a Minichromosome In Vivo: Kinetics, Modeling, and Effects of Inhibitors

    PubMed Central

    Kumala, Slawomir; Fujarewicz, Krzysztof; Jayaraju, Dheekollu; Rzeszowska-Wolny, Joanna; Hancock, Ronald

    2013-01-01

    To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ∼170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with γ photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD. Repair of double strand breaks was slowed by 20–30% when homologous recombination was supressed by KU55933, caffeine, or siRNA-mediated depletion of Rad51 but was completely arrested by the inhibitors of nonhomologous end-joining wortmannin or NU7441, responses interpreted as reflecting competition between these repair pathways similar to that seen in genomic DNA. The reformation of supercoiled DNA was unaffected when topoisomerases I or II, whose participation in repair of strand breaks has been controversial, were inhibited by the catalytic inhibitors ICRF-193 or F11782. Modeling of the kinetics of repair provided rate constants and showed that repair of single strand breaks in minichromosome DNA proceeded independently of repair of double strand breaks. The simplicity of quantitating strand breaks in this minichromosome provides a usefull system for testing the efficiency of new inhibitors of their repair, and since the sequence and structural features of its DNA and its transcription pattern have been studied extensively it offers a good model for examining other aspects of DNA breakage and repair. PMID:23382828

  15. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    PubMed

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  16. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells

    PubMed Central

    Choi, Y; Lim, SY; Jeong, HS; Koo, KA; Sung, SH; Kim, YC

    2009-01-01

    Background and purpose: We conducted a genome wide gene expression analysis to explore the biological aspects of 15-methoxypinusolidic acid (15-MPA) isolated from Biota orientalis and tried to confirm the suitability of 15-MPA as a therapeutic candidate for CNS injuries focusing on microglia. Experimental approach: Murine microglial BV2 cells were treated with 15-MPA, and their transcriptome was analysed by using oligonucleotide microarrays. Genes differentially expressed upon 15-MPA treatment were selected for RT-PCR (reverse transcription-polymerase chain reaction) analysis to confirm the gene expression. Inhibition of cell proliferation and induction of apoptosis by 15-MPA were examined by bromodeoxyuridine assay, Western blot analysis of poly-ADP-ribose polymerase and flow cytometry. Key results: A total of 514 genes were differentially expressed by 15-MPA treatment. Biological pathway analysis revealed that 15-MPA induced significant changes in expression of genes in the cell cycle pathway. Genes involved in growth arrest and DNA damage [gadd45α, gadd45γ and ddit3 (DNA damage-inducible transcript 3)] and cyclin-dependent kinase inhibitor (cdkn2b) were up-regulated, whereas genes involved in cell cycle progression (ccnd1, ccnd3 and ccne1), DNA replication (mcm4, orc1l and cdc6) and cell proliferation (fos and jun) were down-regulated. RT-PCR analysis for representative genes confirmed the expression levels. 15-MPA significantly reduced bromodeoxyuridine incorporation, increased poly-ADP-ribose polymerase cleavage and the number of apoptotic cells, indicating that 15-MPA induces apoptosis in BV2 cells. Conclusion and implications: 15-MPA induced apoptosis in murine microglial cells, presumably via inhibition of the cell cycle progression. As microglial activation is detrimental in CNS injuries, these data suggest a strong therapeutic potential of 15-MPA. PMID:19466985

  18. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    PubMed Central

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  19. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma.

    PubMed

    Munugalavadla, V; Mariathasan, S; Slaga, D; Du, C; Berry, L; Del Rosario, G; Yan, Y; Boe, M; Sun, L; Friedman, L S; Chesi, M; Leif Bergsagel, P; Ebens, A

    2014-01-16

    The phosphatidylinositol 3'-kinase (PI3K) pathway is dysregulated in multiple myeloma (MM); we therefore tested a highly selective class I PI3K inhibitor, GDC-0941, for anti-myeloma activity. Functional and mechanistic studies were first performed in MM cell lines, then extended to primary MM patient samples cultured in vitro. GDC-0941 was then assessed as a single agent and in various combinations in myeloma tumor xenograft models. We show p110 α and β are the predominant PI3K catalytic subunits in MM and that a highly selective class I PI3K inhibitor, GDC-0941, has robust activity as a single agent to induce cell cycle arrest and apoptosis of both MM cell lines and patient myeloma cells. Mechanistic studies revealed an induction of cell cycle arrest at G0/G1, with decreased phospho-FoxO1/3a levels, decreased cyclin D1 and c-myc expression, and an increase in the cell cycle inhibitor, p27kip. Induction of apoptosis correlated with increased expression of the pro-apoptotic BH3-only protein BIM, cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP). In vitro, GDC-0941 synergized with dexamethasone (Dex) and lenalidomide (combination index values of 0.3-0.4 and 0.4-0.8, respectively); in vivo GDC-0941 has anti-myeloma activity and significantly increases the activity of the standard of care agents in several murine xenograft tumor models (additional tumor growth inhibition of 37-53% (Dex) and 22-72% (lenalidomide)). These data provide a clear therapeutic hypothesis for the inhibition of PI3K and provide a rationale for clinical development of GDC-0941 in myeloma.

  20. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells.

    PubMed

    Skvarova Kramarzova, Karolina; Osborn, Mark J; Webber, Beau R; DeFeo, Anthony P; McElroy, Amber N; Kim, Chong Jai; Tolar, Jakub

    2017-06-14

    Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 ( FANCD1 ) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase). FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.

  1. Transcriptional Control by PARP-1: Chromatin Modulation, Enhancer-binding, Coregulation, and Insulation

    PubMed Central

    Kraus, W. Lee

    2008-01-01

    Summary The regulation of gene expression requires a wide array of protein factors that can modulate chromatin structure, act at enhancers, function as transcriptional coregulators, or regulate insulator function. Poly(ADP-ribose) polymerase-1 (PARP-1), an abundant and ubiquitous nuclear enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been implicated in all of these functions. Recent biochemical, genomic, proteomic, and cell-based studies have highlighted the role of PARP-1 in each of these processes and provided new insights about the molecular mechanisms governing PARP-1-dependent regulation of gene expression. In addition, these studies have demonstrated how PARP-1 functions as an integral part of cellular signaling pathways that culminate in gene regulatory outcomes. PMID:18450439

  2. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    PubMed

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    NAD + is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD + is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD + concentrations and possibly remove and/or reuse undesirable degradation products of NAD + Here we confirmed that at 85°C, thermal degradation of NAD + results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD + in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD + breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD + is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal

  3. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress.

    PubMed

    Ahn, Joungjwa; Lee, Jong Suk; Yang, Kyung Mi

    2014-06-01

    Small-sized particles are more suitable for targeted delivery and are therapeutically more effective than large-sized particles. In this study, we investigated the anticancer effects of ultrafine particles of Ulmus davidiana var. japonica (ufUJ) on human gastric cancer cell lines SNU-1, SNU-216, and SNU-484. ufUJ induced apoptosis by the proteolytic activation of caspase-9, caspase-6, and caspase-3 and cleavage of poly (ADP-ribose) polymerase. The expression levels of the endoplasmic reticulum stress-related protein BiP markedly increased after ufUJ treatment. BiP knockdown decreased ufUJ-induced cell death. ufUJ-induced apoptosis was inhibited by the caspase-3 inhibitor z-DEVD-fmk, caspase-6 inhibitor z-VEID-fmk, and caspase-9 inhibitor z-LEHD-fmk, and by siRNAs against caspases 3, 6, and 9. Gastric cancer cells did not show anchorage-independent growth in the presence of ufUJ. However, cells treated with caspase inhibitors showed an enhanced colony-forming ability. These findings may be helpful in the prevention of gastric cancer and in the development of functional foods.

  4. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells.

    PubMed

    Wang, Penglong; Yuan, Xuan; Wang, Yan; Zhao, Hong; Sun, Xiling; Zheng, Qiusheng

    2015-11-01

    The current study investigated the mechanisms by which licochalcone C induces apoptosis of T24 human malignant bladder cancer cells. Cell viability was evaluated using an MTT assay. Apoptosis was investigated using a morphological assay, flow cytometry and a caspase‑3 activity assay. Alterations in the gene expression levels of Bcl‑2 family members were measured by semi‑quantitative reverse transcription‑polymerase chain reaction assays. The protein levels of pro‑caspase‑3 and cleaved poly(ADP ribose) polymerase were measured using western blotting. The results indicated that licochalcone C induced T24 cell apoptosis in a concentration‑dependent manner. Licochalcone C treatment reduced the levels of the anti‑apoptotic mRNAs (Bcl‑2, Bcl‑w and Bcl‑XL) and increased expression of the pro‑apoptotic mRNAs (Bax and Bim). The Bcl‑2 family inhibitor (ABT‑737) reduced apoptosis induced by licochalcone C in T24 cells. The current study demonstrated that licochalcone C may be a potential adjuvant therapeutic agent for bladder cancer.

  5. Structural basis for the D-stereoselectivity of human DNA polymerase β

    PubMed Central

    Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.

    2017-01-01

    Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499

  6. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.

    PubMed

    Brown, Jessica A; Fiala, Kevin A; Fowler, Jason D; Sherrer, Shanen M; Newmister, Sean A; Duym, Wade W; Suo, Zucai

    2010-01-15

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2'-hydroxyl group and the bulky side chain of an active-site residue. In this study, we demonstrated that human DNA polymerase lambda used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2'-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2'-position. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Triple-negative breast cancer--current status and future directions.

    PubMed

    Gluz, O; Liedtke, C; Gottschalk, N; Pusztai, L; Nitz, U; Harbeck, N

    2009-12-01

    Triple-negative breast cancer (TNBC) is defined by a lack of expression of both estrogen and progesterone receptor as well as human epidermal growth factor receptor 2. It is characterized by distinct molecular, histological and clinical features including a particularly unfavorable prognosis despite increased sensitivity to standard cytotoxic chemotherapy regimens. TNBC is highly though not completely concordant with various definitions of basal-like breast cancer (BLBC) defined by high-throughput gene expression analyses. The lack in complete concordance may in part be explained by both BLBC and TNBC comprising entities that in themselves are heterogeneous. Numerous efforts are currently being undertaken to improve prognosis for patients with TNBC. They comprise both optimization of choice and scheduling of common cytotoxic agents (i.e. addition of platinum salts or dose intensification strategies) and introduction of novel agents (i.e. poly-ADP-ribose-polymerase-1 inhibitors, agents targeting the epidermal growth factor receptor, multityrosine kinase inhibitors or antiangiogenic agents).

  8. Chk1 inhibition potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric cancer

    PubMed Central

    Yin, Yuping; Shen, Qian; Zhang, Peng; Tao, Ruikang; Chang, Weilong; Li, Ruidong; Xie, Gengchen; Liu, Weizhen; Zhang, Lihong; Kapoor, Prabodh; Song, Shumei; Ajani, Jaffer; Mills, Gordon B; Chen, Jianying; Tao, Kaixiong; Peng, Guang

    2017-01-01

    Globally, gastric cancer is the second leading cause of cancer deaths because of the lack of effective treatments for patients with advanced tumors when curative surgery is not possible. Thus, there is an urgent need to identify molecular targets in gastric cancer that can be used for developing novel therapies and prolonging patient survival. Checkpoint kinase 1 (Chk1) is a crucial regulator of cell cycle transition in DNA damage response (DDR). In our study, we report that Chk1 plays an important role in promoting gastric cancer cell survival and growth, which serves as an effective therapeutic target in gastric cancer. First, Chk1 ablation by small interfering RNA could significantly inhibit cell proliferation and sensitize the effects of ionizing radiation (IR) treatment in both p53 wild type gastric cancer cell line AGS, and p53 mutant cell line MKN1. Secondly, we tested the anticancer effects of Chk1 chemical inhibitor LY2606368, which is a novel Chk1/2 targeted drug undergoing clinical trials in many malignant diseases. We found that LY2606368 can induce DNA damage, and remarkably suppress cancer proliferation and induce apoptosis in AGS and MKN1 cells. Moreover, we identified that LY2606368 can significantly inhibit homologous recombination (HR) mediated DNA repair and thus showed marked synergistic anticancer effect in combination with poly (ADP-ribose) polymerase 1 (PARP1) inhibitor BMN673 in both in vitro studies and in vivo experiments using a gastric cancer PDx model. The synergy between LY2606368 and PARP1 was likely caused by impaired the G2M checkpoint due to LY2606368 treatment, which forced mitotic entry and cell death in the presence of BMN673. In conclusion, we propose that Chk1 is a valued target for gastric cancer treatment, especially Chk1 inhibitor combined with PARP inhibitor may be a more effective therapeutic strategy in gastric cancer. PMID:28401005

  9. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    PubMed

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. DAT-230, a Novel Microtubule Inhibitor, Induced Aberrant Mitosis and Apoptosis in SGC-7901 Cells.

    PubMed

    Qiao, Foxiao; Zuo, Daiying; Wang, Haifeng; Li, Zengqiang; Qi, Huan; Zhang, Weige; Wu, Yingliang

    2013-01-01

    2-Methoxy-5-(2-(3,4,5-trimethoxyphenyl)thiophen-3-yl) aniline (DAT-230) is a novel synthesized compound of combretastatin-A-4 derivative with more stability. The present study is to investigate its anti-tumor activity and molecular mechanisms in human gastric adenocarcinoma SGC-7901 cells. DAT-230 inhibited SGC-7901 cells growth. The treatment of DAT-230 resulted in microtubule de-polymerization and G2/M phase arrest. Besides the accumulation and translocation of Cyclin B1, reduction of p-14/15-cdc2 and mitosis delay denoted the Cyclin B1-cdc2 complex active and M phase arrest in SGC-7901 cells treated with DAT-230. Mitochondria pathway participated in apoptosis after G2/M arrest in SGC-7901 cells treated with DAT-230, which was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP), activation of caspase-3 and caspase-9, changes of Bcl-2 and Bax expression, decrease of mitochondrial membrane potential and release of cytochrome c from mitochondria. In vivo, DAT-230 delayed tumor growth in BALB/c nude mice with human gastric adenocarcinoma xenografts. Besides apoptosis was detected with terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay in tumor tissue. In conclusion, DAT-230 is a promising microtubule inhibitor with great anti-tumor activity to SGC-7901, in vitro and in vivo. Its potential to be a candidate of anti-cancer agent is worth of being further investigated.

  11. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  12. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    PubMed Central

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  13. Role of poly-(ADP-ribose) synthetase in lipopolysaccharide-induced vascular failure and acute lung injury in pigs.

    PubMed

    Albertini, M; Clement, M G; Lafortuna, C L; Caniatti, M; Magder, S; Abdulmalek, K; Hussain, S N

    2000-06-01

    To assess the contribution of poly (adenosine 5'-diphosphate ribose) synthetase (PARS) to the development of bacterial lipopolysaccharide (LPS)-induced acute lung injury and vascular failure in pigs. Four groups of anesthetized, paralyzed, and mechanically ventilated domestic white pigs. Group 1 served as control, whereas Escherichia coli LPS (20 microg/kg/h) was continuously infused in group 2. Group 3 received 20 mg/kg injection of 3-aminobenzamide (a selective inhibitor of PARS activity) 15 minutes before LPS infusion. Only 3-aminobenzamide and not LPS was injected in group 4. All animals were examined for 180 minutes. Systemic and pulmonary hemodynamics and lung mechanics were measured during the experimental period. Lung wet/dry ratio, bronchoalveolar lavage (BAL) protein levels and cell counts and lung nitrotyrosine (footprint of peroxynitrite) immunostaining were also measured in a few animals. LPS infusion evoked a progressive decline in systemic arterial pressure, a small increase in cardiac output, and biphasic elevation of pulmonary arterial pressure. Lung compliance declined progressively, whereas lung and total respiratory resistance rose significantly after LPS infusion. Prominent nitrotyrosine immunostaining was detected around small airways and pulmonary endothelium of LPS-infused animals. No significant changes in lung wet/dry ratio and BAL protein levels and cell counts were produced by LPS infusion. Pretreatment with 3-aminobenzamide did not alter the systemic and pulmonary hemodynamic responses to LPS infusion but eliminated the rise in pulmonary and total respiratory resistance. We concluded that PARS activation plays an important role in the changes of lung mechanics associated with LPS-induced acute lung injury but had no role in vascular failure.

  14. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression.

    PubMed

    Augustin, Angélique; Spenlehauer, Catherine; Dumond, Hélène; Ménissier-De Murcia, Josiane; Piel, Matthieu; Schmit, Anne-Catherine; Apiou, Françoise; Vonesch, Jean-Luc; Kock, Michael; Bornens, Michel; De Murcia, Gilbert

    2003-04-15

    A novel member of the poly(ADP-ribose) polymerase (PARP) family, hPARP-3, is identified here as a core component of the centrosome. hPARP-3 is preferentially localized to the daughter centriole throughout the cell cycle. The N-terminal domain (54 amino acids) of hPARP-3 is responsible for its centrosomal localization. Full-length hPAPR-3 (540 amino acids, with an apparent mass of 67 kDa) synthesizes ADP-ribose polymers during its automodification. Overexpression of hPARP-3 or its N-terminal domain does not influence centrosomal duplication or amplification but interferes with the G1/S cell cycle progression. PARP-1 also resides for part of the cell cycle in the centrosome and interacts with hPARP-3. The presence of both PARP-1 and PARP-3 at the centrosome may link the DNA damage surveillance network to the mitotic fidelity checkpoint.

  15. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotar

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa Bmore » kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.« less

  16. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  17. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  18. Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation.

    PubMed

    Anusuya, Shanmugam; Gromiha, M Michael

    2017-10-01

    Dengue is an important public health problem in tropical and subtropical regions of the world. Neither vaccine nor an antiviral medication is available to treat dengue. This insists the need of drug discovery for dengue. In order to find a potent lead molecule, RNA-dependent RNA polymerase which is essential for dengue viral replication is chosen as a drug target. As Quercetin showed antiviral activity against several viruses, quercetin derivatives developed by combinatorial library synthesis and mined from PubChem databases were screened for a potent anti-dengue viral agent. Our study predicted Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a dengue polymerase inhibitor. The results were validated by molecular dynamics simulation studies which reveal water bridges and hydrogen bonds as major contributors for the stability of the polymerase-lead complex. Interactions formed by this compound with residues Trp795, Arg792 and Glu351 are found to be essential for the stability of the polymerase-lead complex. Our study demonstrates Quercetin 3-(6″-(E)-p-coumaroylsophoroside)-7-rhamnoside as a potent non-nucleoside inhibitor for dengue polymerase.

  19. DNA Polymerase III Star Requires ATP to Start Synthesis on a Primed DNA†

    PubMed Central

    Wickner, William; Kornberg, Arthur

    1973-01-01

    DNA polymerase III star replicates a ϕX174 single-stranded, circular DNA primed with a fragment of RNA. This reaction proceeds in two stages. In stage I, a complex is formed requiring DNA polymerase III star, ATP, spermidine, copolymerase III*, and RNA-primed ϕX174 single-stranded, circular DNA. The complex, isolated by gel filtration, contains ADP and inorganic phosphate (the products of a specific ATP cleavage) as well as spermidine, polymerase III star, and copolymerase III star. In stage II, the chain grows upon addition of deoxynucleoside triphosphates; ADP and inorganic phosphate are discharged and chain elongation is resistant to antibody to copolymerase III star. Thus ATP and copolymerase III star are required to initiate chain growth but not to sustain it. Images PMID:4519657

  20. Identifying initiation and elongation inhibitors of dengue virus RNA polymerase in a high-throughput lead-finding campaign.

    PubMed

    Smith, Thomas M; Lim, Siew Pheng; Yue, Kimberley; Busby, Scott A; Arora, Rishi; Seh, Cheah Chen; Wright, S Kirk; Nutiu, Razvan; Niyomrattanakit, Pornwaratt; Wan, Kah Fei; Beer, David; Shi, Pei-Yong; Benson, Timothy E

    2015-01-01

    Dengue virus (DENV) is the most significant mosquito-borne viral pathogen in the world and is the cause of dengue fever. The DENV RNA-dependent RNA polymerase (RdRp) is conserved among the four viral serotypes and is an attractive target for antiviral drug development. During initiation of viral RNA synthesis, the polymerase switches from a "closed" to "open" conformation to accommodate the viral RNA template. Inhibitors that lock the "closed" or block the "open" conformation would prevent viral RNA synthesis. Herein, we describe a screening campaign that employed two biochemical assays to identify inhibitors of RdRp initiation and elongation. Using a DENV subgenomic RNA template that promotes RdRp de novo initiation, the first assay measures cytosine nucleotide analogue (Atto-CTP) incorporation. Liberated Atto fluorophore allows for quantification of RdRp activity via fluorescence. The second assay uses the same RNA template but is label free and directly detects RdRp-mediated liberation of pyrophosphates of native ribonucleotides via liquid chromatography-mass spectrometry. The ability of inhibitors to bind and stabilize a "closed" conformation of the DENV RdRp was further assessed in a differential scanning fluorimetry assay. Last, active compounds were evaluated in a renilla luciferase-based DENV replicon cell-based assay to monitor cellular efficacy. All assays described herein are medium to high throughput, are robust and reproducible, and allow identification of inhibitors of the open and closed forms of DENV RNA polymerase. © 2014 Society for Laboratory Automation and Screening.

  1. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    PubMed

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  2. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    PubMed

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-08-01

    Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.

  4. Activation of Poly(ADP-Ribose) Polymerase by Sulfur Mustard in Hela Cell Cultures

    DTIC Science & Technology

    1993-05-13

    i O : DUTiC-TID INTRODUCTION Sulfur mustard ( 2,2’-dichlorodiethyl sulfide or HD) is a bifunctional alkylating agent which reacts with a wide variety...of biological molecules. It is a strong alkylating agent of purine bases in DNA (Kohn 1983). Early studies strongly implicate DNA as a principal...cells have previously demonstrated stimulation of PADPRP activity following exposure to a monofunctional alkylating agent , methylnitrosourea (MNU

  5. Deciphering the Role of Alternative nonhomologous End Joining (Alt NHEJ) DNA Repair in Breast Cancer

    DTIC Science & Technology

    2016-10-01

    carrying mutations in homology-directed repair genes. Here we report that PolQ inhibition can be used to increase the efficiency of CRISPR targeting...Telomeres. • Poly-ADP-ribose polymerase 1, PARP1. • Chromosomal translocation. • Chromosomal aberrancies. • Chromosomal fusions. • CRISPR ...showed that PolQ promotes A-NHEJ while suppresses HR and I have analyzed the impact of PolQ on CRISPR targeting when HR is required to

  6. Discovery of novel bacterial RNA polymerase inhibitors: pharmacophore-based virtual screening and hit optimization.

    PubMed

    Hinsberger, Stefan; Hüsecken, Kristina; Groh, Matthias; Negri, Matthias; Haupenthal, Jörg; Hartmann, Rolf W

    2013-11-14

    The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.

  7. Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase.

    PubMed

    Abdurakhmanov, Eldar; Øie Solbak, Sara; Danielson, U Helena

    2017-06-16

    Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.

  8. Biochemical Effect of Resistance Mutations against Synergistic Inhibitors of RSV RNA Polymerase

    PubMed Central

    Fung, Amy; Stevens, Sarah K.; Jordan, Paul C.; Gromova, Tatiana; Taylor, Joshua S.; Hong, Jin; Meng, Jia; Wang, Guangyi; Dyatkina, Natalia; Prhavc, Marija; Symons, Julian A.; Beigelman, Leo

    2016-01-01

    ALS-8112 is the parent molecule of ALS-8176, a first-in-class nucleoside analog prodrug effective in the clinic against respiratory syncytial virus (RSV) infection. The antiviral activity of ALS-8112 is mediated by its 5'-triphosphate metabolite (ALS-8112-TP, or 2'F-4'ClCH2-cytidine triphosphate) inhibiting the RNA polymerase activity of the RSV L-P protein complex through RNA chain termination. Four amino acid mutations in the RNA-dependent RNA polymerase (RdRp) domain of L (QUAD: M628L, A789V, L795I, and I796V) confer in vitro resistance to ALS-8112-TP by increasing its discrimination relative to natural CTP. In this study, we show that the QUAD mutations specifically recognize the ClCH2 group of ALS-8112-TP. Among the four mutations, A789V conferred the greatest resistance phenotype, which was consistent with its putative position in the active site of the RdRp domain. AZ-27, a non-nucleoside inhibitor of RSV, also inhibited the RdRp activity, with decreased inhibition potency in the presence of the Y1631H mutation. The QUAD mutations had no effect on the antiviral activity of AZ-27, and the Y1631H mutation did not significantly increase the discrimination of ALS-8112-TP. Combining ALS-8112 with AZ-27 in vitro resulted in significant synergistic inhibition of RSV replication. Overall, this is the first mechanistic study showing a lack of cross-resistance between mutations selected by different classes of RSV polymerase inhibitors acting in synergy, opening the door to future potential combination therapies targeting different regions of the L protein. PMID:27163448

  9. Biological Characterization of Novel Inhibitors of the Gram-Positive DNA Polymerase IIIC Enzyme

    PubMed Central

    Kuhl, Alexander; Svenstrup, Niels; Ladel, Christoph; Otteneder, Michael; Binas, Annegret; Schiffer, Guido; Brands, Michael; Lampe, Thomas; Ziegelbauer, Karl; Rübsamen-Waigmann, Helga; Haebich, Dieter; Ehlert, Kerstin

    2005-01-01

    Novel N-3-alkylated 6-anilinouracils have been identified as potent and selective inhibitors of bacterial DNA polymerase IIIC, the enzyme essential for the replication of chromosomal DNA in gram-positive bacteria. A nonradioactive assay measuring the enzymatic activity of the DNA polymerase IIIC in gram-positive bacteria has been assembled. The 6-anilinouracils described inhibited the polymerase IIIC enzyme at concentrations in the nanomolar range in this assay and displayed good in vitro activity (according to their MICs) against staphylococci, streptococci, and enterococci. The MICs of the most potent derivatives were about 4 μg/ml for this panel of bacteria. The 50% effective dose of the best compound (6-[(3-ethyl-4-methylphenyl)amino]-3-{[1-(isoxazol-5-ylcarbonyl)piperidin-4-yl]methyl}uracil) was 10 mg/kg of body weight after intravenous application in a staphylococcal sepsis model in mice, from which in vivo pharmacokinetic data were also acquired. PMID:15728893

  10. Understanding D-Ribose and Mitochondrial Function.

    PubMed

    Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D

    2018-01-01

    Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  11. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  12. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    PubMed

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  13. Antioxidant and Anti-Inflammatory Effects in RAW264.7 Macrophages of Malvidin, a Major Red Wine Polyphenol

    PubMed Central

    Bognar, Eszter; Sarszegi, Zsolt; Szabo, Aliz; Debreceni, Balazs; Kalman, Nikoletta; Tucsek, Zsuzsanna; Sumegi, Balazs; Gallyas, Ferenc

    2013-01-01

    Background Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways. Methods & Findings The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation. Conclusions These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease. PMID:23755222

  14. Parthanatos, a messenger of death

    PubMed Central

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2015-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s multiple roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include, but are not limited to DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its active role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 over activation underlies cell death in experimental models of stroke, diabetes, inflammation and neurodegeneration. Since interfering with PARP-1 mediated cell death will be clinically beneficial, great effort has been invested into designing PARP-1 inhibitors and understanding mechanisms downstream of PARP-1 over activation. PARP-1 overactivation may kill by depleting cellular energy through nicotinamide adenine dinucleotide (NAD+) consumption, and by releasing the cell death effector apoptosis-inducing factor (AIF). Unexpectedly, recent evidence shows that poly-ADP ribose (PAR) polymer itself, and not the consumption of NAD+ is the source of cytotoxicity. Thus, PAR polymer acts as a cell death effector downstream of PARP-1-mediated cell death signaling. We coined the term parthanatos after Thanatos, the personification of death in Greek mythology, to refer to PAR-mediated cell death. In this review, we will summarize the proposed mechanisms by which PARP-1 overactivation kills. We will present evidence for parthanatos, and the questions raised by these recent findings. It is evident that further understanding of parthanatos opens up new avenues for therapy in ameliorating diseases related to PARP-1 over activation. PMID:19273119

  15. Apoptotic cell death through inhibition of protein kinase CKII activity by 3,4-dihydroxybenzaldehyde purified from Xanthium strumarium.

    PubMed

    Lee, Bang Hyo; Yoon, Soo-Hyun; Kim, Yun-Sook; Kim, Sang Kook; Moon, Byong Jo; Bae, Young-Seuk

    2008-01-01

    The CKII inhibitory compound was purified from the fruit of Xanthium strumarium by organic solvent extraction and silica gel chromatography. The inhibitory compound was identified as 3,4-dihydroxybenzaldehyde by analysis with FT-IR, FAB-Mass, EI-Mass, (1)H-NMR and (13)C-NMR. 3,4-dihydroxybenzaldehyde inhibited the phosphotransferase activity of CKII with IC(50) of about 783 microM. Steady-state studies revealed that the inhibitor acts as a competitive inhibitor with respect to the substrate ATP. A value of 138.6 microM was obtained for the apparent K(i). Concentration of 300 microM 3,4-dihydroxybenzaldehyde caused 50% growth inhibition of human cancer cell U937. 3,4-dihydroxybenzaldehyde-induced cell death was characterised with the cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, the inhibitor induced the fragmentation of DNA into multiples of 180 bp, indicating that it triggered apoptosis. This induction of apoptosis by 3,4-dihydroxybenzaldehyde was also confirmed by using flow cytometry analysis. Since CKII is involved in cell proliferation and oncogenesis, these results suggest that 3,4-dihydroxybenzaldehyde may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity.

  16. Mechanistic Links between PARP, NAD, and Brain Inflammation after TBI

    DTIC Science & Technology

    2014-10-01

    metabolite which we have in prior studies shown to also suppress poly(ADP-ribose) polymerase activity and inflammatory responses) and ketogenic diet . CtBP1/2...knockout mice will be generated to test a specific mechanisms by which ketogenic diet can have anti-inflammatory effects. For all studies, outcome...inflammatory responses. (3) Ketogenic diet , begun 12 hours after TBI. CtBP1/2 knockout mice will be generated to test a specific mechanisms by which

  17. Regulatory role of calpain in neuronal death

    PubMed Central

    Cheng, Si-ying; Wang, Shu-chao; Lei, Ming; Wang, Zhen; Xiong, Kun

    2018-01-01

    Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases. PMID:29623944

  18. [Hereditary breast and ovarian cancers].

    PubMed

    Gevensleben, H; Serçe, N; Büttner, R

    2010-10-01

    Hereditary factors are responsible for 5-10% of all breast cancers and 10% of all ovarian cancer cases and are predominantly caused by mutations in the high risk genes BRCA1 and BRCA2 (BRCA: breast cancer). Additional moderate and low penetrance gene variants are currently being analyzed via whole genome association studies. Interdisciplinary counseling, quality managed genetic testing and intensified prevention efforts in specialized medical centres are essential for members of high risk families considering the high prevalence of malignant tumors and the early age of onset. Furthermore, the identification of BRCA-deficient carcinomas is of particular clinical interest, especially regarding new specific therapeutic options, e.g. treatment with poly (ADP-ribose) polymerase (PARP) inhibitors. There are presently no valid surrogate markers verifying the association of BRCA1/BRC2 in tumors. However, breast cancers harboring pathogenic BRCA1 mutations in particular display specific histopathological features.

  19. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  20. Identification of dengue viral RNA-dependent RNA polymerase inhibitor using computational fragment-based approaches and molecular dynamics study.

    PubMed

    Anusuya, Shanmugam; Velmurugan, Devadasan; Gromiha, M Michael

    2016-07-01

    Dengue is a major public health concern in tropical and subtropical countries of the world. There are no specific drugs available to treat dengue. Even though several candidates targeted both viral and host proteins to overcome dengue infection, they have not yet entered into the later stages of clinical trials. In order to design a drug for dengue fever, newly emerged fragment-based drug designing technique was applied. RNA-dependent RNA polymerase, which is essential for dengue viral replication is chosen as a drug target for dengue drug discovery. A cascade of methods, fragment screening, fragment growing, and fragment linking revealed the compound [2-(4-carbamoylpiperidin-1-yl)-2-oxoethyl]8-(1,3-benzothiazol-2-yl)naphthalene-1-carboxylate as a potent dengue viral polymerase inhibitor. Both strain energy and binding free energy calculations predicted that this could be a better inhibitor than the existing ones. Molecular dynamics simulation studies showed that the dengue polymerase-lead complex is stable and their interactions are consistent throughout the simulation. The hydrogen-bonded interactions formed by the residues Arg792, Thr794, Ser796, and Asn405 are the primary contributors for the stability and the rigidity of the polymerase-lead complex. This might keep the polymerase in closed conformation and thus inhibits viral replication. Hence, this might be a promising lead molecule for dengue drug designing. Further optimization of this lead molecule would result in a potent drug for dengue.

  1. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    PubMed

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Ribose in the heart.

    PubMed

    Herrick, James; St Cyr, John

    2008-01-01

    Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.

  3. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responsesmore » to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at

  4. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  5. DDB2 promotes chromatin decondensation at UV-induced DNA damage

    PubMed Central

    Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.

    2012-01-01

    Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724

  6. Zinc release contributes to hypoglycemia-induced neuronal death.

    PubMed

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  7. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures.

    PubMed

    Elfiky, A A; Ismail, A M

    2018-05-01

    A new Zika virus (ZIKV) outbreak started in 2015. According to the World Health Organization, 84 countries confirmed ZIKV infection. RNA-dependent RNA polymerase (RdRp) was an appealing target for drug designers during the last two decades. Through molecular docking, we screened 16 nucleotide/side inhibitors against ZIKV RdRp. While the mode of interaction with ZIKV is different from that in the hepatitis C virus (HCV), nucleotide/side inhibitors in this study (mostly anti-HCV) showed promising binding affinities (-6.2 to -9.7 kcal/mol calculated by AutoDock Vina) to ZIKV RdRp. Setrobuvir, YAK and, to a lesser extent, IDX-184 reveal promising results compared to other inhibitors in terms of binding ZIKV RdRp. These candidates would be powerful anti-ZIKV drugs.

  8. MCC950, the Selective Inhibitor of Nucleotide Oligomerization Domain-Like Receptor Protein-3 Inflammasome, Protects Mice against Traumatic Brain Injury.

    PubMed

    Ismael, Saifudeen; Nasoohi, Sanaz; Ishrat, Tauheed

    2018-06-01

    Nucleotide oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome may intimately contribute to sustaining damage after traumatic brain injury (TBI). This study aims to examine whether specific modulation of NLPR3 inflammasome by MCC950, a novel selective NLRP3 inhibitor, confers protection after experimental TBI. Unilateral cortical impact injury was induced in young adult C57BL/6 mice. MCC950 (50 mg/kg, intraperitoneally) or saline was administration at 1 and 3 h post-TBI. Animals were tested for neurological function and then sacrificed at 24 or 72 h post-TBI. Immunoblotting and histological analysis were performed to identify markers of NLRP3 inflammasome and proapoptotic activity in pericontusional areas of the brains at 24 or 72 h post-TBI. MCC950 treatment provided a significant improvement in neurological function and reduced cerebral edema in TBI animals. TBI upregulated NLRP3, apoptosis-associated speck-like adapter protein (ASC), cleaved caspase-1, and interlukein-1β (IL-1β) in the perilesional area. MCC950 efficiently repressed caspase-1 and IL-1β with a transient effect on ASC and NLRP3 post-TBI. MCC950 treatment also provided protection against proapoptotic activation of poly (ADP-ribose) polymerase and caspase-3 associated with TBI. A concurrent inhibition of inflammasome priming was also detectable at the nuclear factor kappa B/p65 and caspase-1 level. Our findings support the implication of NLRP3 inflammasome in the pathogenesis of TBI and further suggests the therapeutic potential of MCC950.

  9. [Free radicals and hepatic ischemia-reperfusion].

    PubMed

    Szijártó, Attila

    2015-11-22

    The critical importance of the ischemic-reperfusive injury is well documented with regards to numerous organs and clinical conditions. Oxygen free radicals play a central role in the mediation of the injury, which dominantly influences the prevalence of postoperative complications, (long term) organ damage, and the potential manifestation of systemic reactions. The both anatomically and pathophysiologically unique ischemic-reperfusive injury of the liver, which is expressively vulnerable to free radicals, is of utmost importance in liver surgery. Several techniques (adaptive maneuvers, chemical agents) are known to ameliorate the reperfusive injury. Based on the prior research of the workgroup of the author, the aim of the current article is to overview the set of measures capable of attenuating ischemic-reperfusive injury (ischemic preconditioning, -perconditioning, administration of adenosine, -inosine, -levosimendan, and -poly-ADP-ribose-polymerase inhibitor), with special attention to the ischemic-reperfusive injury of the liver, as well as the special pathophysiological role of free radicals in mediating hepatic damage.

  10. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    PubMed Central

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  11. Development and validation of a high-performance liquid chromatography method for the quantification of talazoparib in rat plasma: Application to plasma protein binding studies.

    PubMed

    Hidau, Mahendra Kumar; Kolluru, Srikanth; Palakurthi, Srinath

    2018-02-01

    A sensitive and selective RP-HPLC method has been developed and validated for the quantification of a highly potent poly ADP ribose polymerase inhibitor talazoparib (TZP) in rat plasma. Chromatographic separation was performed with isocratic elution method. Absorbance for TZP was measured with a UV detector (SPD-20A UV-vis) at a λ max of 227 nm. Protein precipitation was used to extract the drug from plasma samples using methanol-acetonitrile (65:35) as the precipitating solvent. The method proved to be sensitive and reproducible over a 100-2000 ng/mL linearity range with a lower limit of quantification (LLQC) of 100 ng/mL. TZP recovery was found to be >85%. Following analytical method development and validation, it was successfully employed to determine the plasma protein binding of TZP. TZP has a high level of protein binding in rat plasma (95.76 ± 0.38%) as determined by dialysis method. Copyright © 2017 John Wiley & Sons, Ltd.

  12. The Treatment of BRCA1/2 Hereditary BRCA1/2 and Sporadic Breast Cancer with Poly(ADP-Ribose) Polymerase Inhibitors and Chemotherapy

    DTIC Science & Technology

    2009-09-01

    experiments utilizing chemistry, toxicology , pharmacology, and molecular 14 Year Position title/Institution/Duty Station/Location Scope of...molecular biology, toxicology , chemotherapy, statistical applications, antimicrobials, and endocrinology to doctoral students and professional...Association of Academic  Minority Physicians Proceedings, Washington D.C., Oct 2001 Volume:12(4):154.     De Soto JA, Cronce DT, Famini GR Wilson L.  QSAR

  13. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    PubMed Central

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John; Neyts, Johan; Sakowicz, Roman; Zhong, Weidong; Tang, Hengli; Schmitz, Uli

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase. PMID:22720059

  14. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor.

    PubMed

    Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Soloveva, Veronica; Venkatesan, Aranapakam; Dehnhardt, Christoph; Delos Santos, Efren; Chen, Zecheng; Dos Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Gibbons, Jay

    2010-04-01

    PKI-402 is a selective, reversible, ATP-competitive, equipotent inhibitor of class I phosphatidylinositol 3-kinases (PI3K), including PI3K-alpha mutants, and mammalian target of rapamycin (mTOR; IC(50) versus PI3K-alpha = 2 nmol/L). PKI-402 inhibited growth of human tumor cell lines derived from breast, brain (glioma), pancreas, and non-small cell lung cancer tissue and suppressed phosphorylation of PI3K and mTOR effector proteins (e.g., Akt at T308) at concentrations that matched those that inhibited cell growth. In MDA-MB-361 [breast: Her2(+) and PIK3CA mutant (E545K)], 30 nmol/L PKI-402 induced cleaved poly(ADP-ribose) polymerase (PARP), a marker for apoptosis. In vivo, PKI-402 inhibited tumor growth in MDA-MB-361, glioma (U87MG), and lung (A549) xenograft models. In MDA-MB-361, PKI-402 at 100 mg/kg (daily for 5 days, one round) reduced initial tumor volume of 260 mm(3) to 129 mm(3) and prevented tumor regrowth for 70 days. In MDA-MB-361 tumors, PKI-402 (100 mg/kg, single dose) suppressed Akt phosphorylation (at T308) and induced cleaved PARP. Suppression of phosphorylated Akt (p-Akt) was complete at 8 hours and still evident at 24 hours. Cleaved PARP was evident at 8 and 24 hours. In normal tissue (heart and lung), PKI-402 (100 mg/kg) had minimal effect on p-Akt, with no detectable cleaved PARP. Preferential accumulation of PKI-402 in tumor tissue was observed. Complete, sustained suppression of Akt phosphorylation may cause tumor regression in MDA-MB-361 and other xenograft models. We are testing whether dual PI3K/mTOR inhibitors can durably suppress p-Akt, induce cleaved PARP, and cause tumor regression in a diverse set of human tumor xenograft models. Mol Cancer Ther; 9(4); 976-84. (c)2010 AACR.

  15. Combining immunotherapies for the treatment of prostate cancer.

    PubMed

    Redman, Jason M; Gulley, James L; Madan, Ravi A

    2017-12-01

    Sipuleucel-T, a therapeutic dendritic-cell vaccine, was Food and Drug Administration-approved for prostate cancer in 2010. No new immunotherapies for prostate cancer have been approved since. However, novel agents and combination approaches offer great promise for improving outcomes for prostate cancer patients. Here we review the latest developments in immunotherapy for prostate cancer. Sipuleucel-T has demonstrated a survival advantage of 4.1 months in metastatic castration-resistant prostate cancer. PSA-TRICOM (PROSTVAC), a prostate-specific antigen-targeted vaccine platform, showed evidence of clinical and immunologic efficacy in early-phase clinical trials, and results from a phase III trial in advanced disease are pending. While immune checkpoint inhibitors appear to have modest activity as monotherapy, preclinical and clinical data suggest that they may synergize with vaccines, poly [ADP-ribose] polymerase inhibitors, and other agents. Several clinical studies that combine these therapies are underway. Combining prostate cancer vaccines with immune checkpoint inhibitors has great potential for improving clinical outcomes in prostate cancer. Such combination approaches may create and then recruit tumor-specific T cells to tumor while also increasing their effector function. Other emerging agents may also enhance immune-mediated tumor destruction. Copyright © 2017. Published by Elsevier Inc.

  16. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases.

    PubMed

    Shah, Neal; Mohammad, Afroz S; Saralkar, Pushkar; Sprowls, Samuel A; Vickers, Schuyler D; John, Devin; Tallman, Rachel M; Lucke-Wold, Brandon P; Jarrell, Katherine E; Pinti, Mark; Nolan, Richard L; Lockman, Paul R

    2018-03-28

    In women, breast cancer is the most common cancer diagnosis and second most common cause of cancer death. More than half of breast cancer patients will develop metastases to the bone, liver, lung, or brain. Breast cancer brain metastases (BCBM) confers a poor prognosis, as current therapeutic options of surgery, radiation, and chemotherapy rarely significantly extend life and are considered palliative. Within the realm of chemotherapy, the last decade has seen an explosion of novel chemotherapeutics involving targeting agents and unique dosage forms. We provide a historical overview of BCBM chemotherapy, review the mechanisms of new agents such as poly-ADP ribose polymerase inhibitors, cyclin-dependent kinase 4/6 inhibitors, phosphatidyl inositol 3-kinaseinhibitors, estrogen pathway antagonists for hormone-receptor positive BCBM; tyrosine kinase inhibitors, antibodies, and conjugates for HER2 + BCBM; repurposed cytotoxic chemotherapy for triple negative BCBM; and the utilization of these new agents and formulations in ongoing clinical trials. The mechanisms of novel dosage formulations such as nanoparticles, liposomes, pegylation, the concepts of enhanced permeation and retention, and drugs utilizing these concepts involved in clinical trials are also discussed. These new treatments provide a promising outlook in the treatment of BCBM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lipopolysaccharides-stimulated macrophage products enhance Withaferin A-induced apoptosis via activation of caspases and inhibition of NF-κB pathway in human cancer cells.

    PubMed

    Piao, Liang; Canguo, Zhao; Wenjie, Lu; Xiaoli, Cheng; Wenli, Shi; Li, Lu

    2017-01-01

    Macrophages, as a major cellular component in tumor microenvironment, play an important role in tumor progression. However, their roles in modulation of cytotoxic chemotherapy are still not fully understood. Here, we investigated the influence of Lipoplysaccharides (LPS)-stimulated macrophage products (LSMP) on Withaferin A (WA), a natural compound that derived from the medicinal plant Withania somnifera, as an antitumor agent in human breast cancer cells MDA-MB-231 and prostate cancer cells PC-3. Our results revealed that LSMP may enhance WA-induced apoptosis in both cell lines, the underlying mechanisms of which are closely associated with activation of caspase-8, -9 and -3, cleavage of poly ADP-ribose polymerase (PARP), as well as specifically inhibiting the translocation of nuclear factor-κB (NF-κB) and down-regulation of anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP) and inhibitor of apoptosis protein (cIAP1/2). These findings demonstrate that macrophages in tumor microenvironment can modulate tumor responses to chemotoxic agents, providing an effective strategy that targets macrophages to enhance the antitumor efficacy of cytotoxic chemotherapy. Copyright © 2016. Published by Elsevier Ltd.

  18. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  19. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy.

    PubMed

    Chen, Wenhua; Guo, Ne; Qi, Minghui; Dai, Haiying; Hong, Minghuang; Guan, Longfei; Huan, Xiajuan; Song, Shanshan; He, Jinxue; Wang, Yingqing; Xi, Yong; Yang, Xinying; Shen, Yanyan; Su, Yi; Sun, Yiming; Gao, Yinglei; Chen, Yi; Ding, Jian; Tang, Yun; Ren, Guobin; Miao, Zehong; Li, Jian

    2017-09-29

    Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially breast and ovarian cancers, and tumor cell lines deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, with the help of molecular docking, we identified a novel series of 2,3-difluorophenyl-linker analogues (15-54) derived from olaparib (1) as PARP1 inhibitors. Lead optimization led to the identification of 47, which showed high selectivity and high potency against PARP1 enzyme (IC 50  = 1.3 nM), V-C8 cells (IC 50  = 0.003 nM), Capan-1 cells (IC 50  = 7.1 nM) and MDA-MB-436 cells (IC 50  = 0.2 nM). Compound 47 had more potent PARP1-DNA trapping and double-strand breaks (DSBs)-induction activities than 1 and induced G2/M arrest and caspase-dependent apoptosis. Compound 47 (50 mg/kg, 94.2%) had a more beneficial effect on tumor growth inhibition than 1 (100 mg/kg, 65.0%) in a BRCA1-mutated xenograft model and significantly inhibited tumor growth (40 mg/kg, 48.1%) in a BRCA2-mutated xenograft model, with no negative influence on the body weight of the mice. Collectively, these data demonstrated that 47 might be an excellent drug candidate for the treatment of cancer, especially for BRCA-deficient tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin

    PubMed Central

    2013-01-01

    Background There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Methods Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. Results PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. Conclusions We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53

  1. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx

    PubMed Central

    Suárez, Gabriel A.; Renda, Brian A.; Dasgupta, Aurko

    2017-01-01

    ABSTRACT The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (dinP) and a DNA damage response regulator (umuDAb [the umuD gene of A. baylyi]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  2. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.

    PubMed

    Suárez, Gabriel A; Renda, Brian A; Dasgupta, Aurko; Barrick, Jeffrey E

    2017-09-01

    The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS 1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS 1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS 1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase ( dinP ) and a DNA damage response regulator ( umuD Ab [the umuD gene of A. baylyi ]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  3. Mediator of RNA polymerase II transcription subunit 19 promotes osteosarcoma growth and metastasis and associates with prognosis.

    PubMed

    Yu, Wenxi; Zhang, Zhichang; Min, Daliu; Yang, Qingcheng; Du, Xuefei; Tang, Lina; Lin, Feng; Sun, Yuanjue; Zhao, Hui; Zheng, Shuier; He, Aina; Li, Hongtao; Yao, Yang; Shen, Zan

    2014-04-01

    Osteosarcoma (OS) is the most common primary malignant tumour of bone. Nearly 30-40% of OS patients have a poor prognosis despite multimodal treatments. Because the carcinogenesis of OS remains unclear, the identification of new oncogenes that control the tumourigenesis and progression of OS is crucial for developing new therapies. Here, we found that the expression of Mediator of RNA polymerase II transcription subunit 19 (Med19) was increased in OS samples from patients compared to normal bone tissues. Cyclin D1 and cyclin B1 are upregulated in Med19 positive OS tissues. Importantly, among 97 OS patients of Enneking stage IIB or IIIB, Med19 expression was correlated with metastasis (P<0.05) and poor prognosis (P<0.01). Med19 knockdown significantly induced growth inhibition, reduced colony-forming ability and suppressed migration in the OS cell lines Saos-2 and U2OS, along with the downregulated expression of cyclin D1 and cyclin B1. Med19 knockdown also induced apoptosis in Saos-2 cells via induction of caspase-3 and poly ADP-ribose polymerase (PARP). In addition, Med19 knockdown significantly suppressed tumour growth in an OS xenograft nude mouse model via suppression of cyclin D1 and cyclin B1. Simultaneously, Med19 downregulation decreased the expression of Ki67 and proliferating cell nuclear antigen (PCNA) in tumour samples from OS xenograft nude mice. Med19 depletion remarkably reduced tumour metastasis in a model of OS metastatic spreading. Taken together, our data suggest that Med19 acts as an oncogene in OS via a possible cyclin D1/cyclin B1 modulation pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells.

    PubMed

    Barth, Holger; Stiles, Bradley G

    2008-01-01

    Binary bacterial toxins are unique AB-type toxins, composed of two non-linked proteins that act as a binding/translocation component and an enzyme component. All known actin-ADP-ribosylating toxins from clostridia possess this binary structure. This toxin family is comprised of the prototypical Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium difficile CDT, and Clostridium spiroforme toxin. Once in the cytosol of host cells, these toxins transfer an ADP-ribose moiety from nicotinamide-adenosine-dinucleotide onto G-actin that then leads to depolymerization of actin filaments. In recent years much progress has been made towards understanding the cellular uptake mechanism of binary actin-ADP-ribosylating toxins, and in particular that of C2 toxin. Both components act in a precisely concerted manner to intoxicate eukaryotic cells. The binding/translocation (B-) component forms a complex with the enzyme (A-) component and mediates toxin binding to a cell-surface receptor. Following receptor-mediated endocytosis, the enzyme component escapes from acidic endosomes into the cytosol. Acidification of endosomes triggers pore formation by the binding/translocation component in endosomal membranes and the enzyme component subsequently translocates through the pore. This step requires a host cell chaperone, Hsp90. Due to their unique structure, binary toxins are naturally "tailor made" for transporting foreign proteins into the cytosol of host cells. Several highly specific and cell-permeable recombinant fusion proteins have been designed and successfully used in experimental cell research. This review will focus on the recent progress in studying binary actin ADP-ribosylating toxins as highly effective virulence factors and innovative tools for cell physiology as well as pharmacology.

  5. 2D and 3D similarity landscape analysis identifies PARP as a novel off-target for the drug Vatalanib.

    PubMed

    Gohlke, Bjoern-Oliver; Overkamp, Tim; Richter, Anja; Richter, Antje; Daniel, Peter T; Gillissen, Bernd; Preissner, Robert

    2015-09-24

    Searching for two-dimensional (2D) structural similarities is a useful tool to identify new active compounds in drug-discovery programs. However, as 2D similarity measures neglect important structural and functional features, similarity by 2D might be underestimated. In the present study, we used combined 2D and three-dimensional (3D) similarity comparisons to reveal possible new functions and/or side-effects of known bioactive compounds. We utilised more than 10,000 compounds from the SuperTarget database with known inhibition values for twelve different anti-cancer targets. We performed all-against-all comparisons resulting in 2D similarity landscapes. Among the regions with low 2D similarity scores are inhibitors of vascular endothelial growth factor receptor (VEGFR) and inhibitors of poly ADP-ribose polymerase (PARP). To demonstrate that 3D landscape comparison can identify similarities, which are untraceable in 2D similarity comparisons, we analysed this region in more detail. This 3D analysis showed the unexpected structural similarity between inhibitors of VEGFR and inhibitors of PARP. Among the VEGFR inhibitors that show similarities to PARP inhibitors was Vatalanib, an oral "multi-targeted" small molecule protein kinase inhibitor being studied in phase-III clinical trials in cancer therapy. An in silico docking simulation and an in vitro HT universal colorimetric PARP assay confirmed that the VEGFR inhibitor Vatalanib exhibits off-target activity as a PARP inhibitor, broadening its mode of action. In contrast to the 2D-similarity search, the 3D-similarity landscape comparison identifies new functions and side effects of the known VEGFR inhibitor Vatalanib.

  6. Spotlight on olaparib in the treatment of BRCA-mutated ovarian cancer: design, development and place in therapy.

    PubMed

    Lorusso, Domenica; Tripodi, Elisa; Maltese, Giuseppa; Lepori, Stefano; Sabatucci, Ilaria; Bogani, Giorgio; Raspagliesi, Francesco

    2018-01-01

    Epithelial ovarian cancer is the sixth most common cancer among women worldwide and the first cause of death among gynecological malignancies. Most of the patients present recurrent disease and unfortunately cannot be cured. The unsatisfactory results obtained with salvage chemotherapy have elicited investigators to search for novel biological agents capable of achieving a better control of the disease. In the setting of homologous recombination deficiency, the DNA errors that occur cannot be accurately repaired, and the treatment with poly(ADP-ribose) polymerase (PARP) inhibition results in definitive cell death in a process called synthetic lethality. As a result of two positive clinical trials, Olaparib was approved in 2014 by U.S. Food and Drug Administration and European Medicines Agency as the first-in-class PARP inhibitor. Olaparib is effective and well tolerated in homologous recombination deficient patients. Several studies with Olaparib have been conducted in the recurrent setting either as maintenance in platinum-responsive patients or as a single agent. Ongoing trials are focused on the use of olaparib as maintenance in the first-line ovarian cancer setting alone or in combination with antiangiogenic agents. Future perspectives will probably investigate the association of olaparib with novel agents as check-point inhibitors and PI3K-AKT inhibitors. The PARP inhibitor era is just at the beginning.

  7. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

    PubMed Central

    Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S

    2003-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216

  8. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    PubMed

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effect of main urine inhibitors on the activity of different DNA polymerases in loop-mediated isothermal amplification.

    PubMed

    Jevtuševskaja, Jekaterina; Krõlov, Katrin; Tulp, Indrek; Langel, Ülo

    2017-04-01

    The use of rapid amplification methods to detect pathogens in biological samples is mainly limited by the amount of pathogens present in the sample and the presence of inhibiting substances. Inhibitors can affect the amplification efficiency by either binding to the polymerase, interacting with the DNA, or interacting with the polymerase during primer extension. Amplification is performed using DNA polymerase enzymes and even small changes in their activity can influence the sensitivity and robustness of molecular assays Methods: The main purpose of this research was to examine which compounds present in urine inhibit polymerases with strand displacement activity. To quantify the inhibition, we employed quantitative loop-mediated isothermal amplification Results: The authors found that the presence of BSA, Mg 2+, and urea at physiologically relevant concentrations, as well as acidic or alkaline conditions did not affect the activity of any of the tested polymerases. However, addition of salt significantly affected the activity of the tested polymerases. These findings may aid in the development of more sensitive, robust, cost effective isothermal amplification based molecular assays suitable for both point-of-care testing and on-site screening of pathogens directly from unprocessed urine which avoid the need for long and tedious DNA purification steps prior to amplification.

  10. Photoaffinity labeling of the TF1-ATPase from the thermophilic bacterium PS3 with 3'-O-(4-benzoyl)benzoyl ADP.

    PubMed

    Bar-Zvi, D; Yoshida, M; Shavit, N

    1985-05-31

    3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.

  11. Parthanatos, a messenger of death.

    PubMed

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2009-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 overactivation underlies cell death in models of stroke, diabetes, inflammation and neurodegeneration. Since interfering with PARP-1 mediated cell death will be clinically beneficial, great effort has been invested into understanding mechanisms downstream of PARP-1 overactivation. Recent evidence shows that poly-ADP ribose (PAR) polymer itself can act as a cell death effector downstream of PARP-1. We coined the term parthanatos after Thanatos, the personification of death in Greek mythology, to refer to PAR-mediated cell death. In this review, we will present evidence and questions raised by these recent findings, and summarize the proposed mechanisms by which PARP-1 overactivation kills. It is evident that further understanding of parthanatos opens up new avenues for therapy in ameliorating diseases related to PARP-1 overactivation.

  12. Efficacy of PARP inhibitor rucaparib in orthotopic glioblastoma xenografts is limited by ineffective drug penetration into the central nervous system

    PubMed Central

    Parrish, Karen E.; Cen, Ling; Murray, James; Calligaris, David; Kizilbash, Sani; Mittapalli, Rajendar K.; Carlson, Brett L.; Schroeder, Mark A.; Sludden, Julieann; Boddy, Alan V.; Agar, Nathalie Y.R.; Curtin, Nicola J.; Elmquist, William F.; Sarkaria, Jann N.

    2015-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibition can enhance the efficacy of temozolomide (TMZ) and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with TMZ and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with TMZ was highly effective in vitro in short-term explant cultures derived from GBM12, and similarly, the combination of rucaparib and TMZ (dosed for 5 days every 28 days × 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of TMZ in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b−/−Bcrp1−/− knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared to normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with TMZ in GBM. PMID:26438157

  13. Rates of Decomposition of Ribose and other Sugars: Implications for Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Larralde, Rosa; Robertson, Michael P.; Miller, Stanley L.

    1995-01-01

    The existence of the RNA world, in which RNA acted as a catalyst as well as an informational macromolecule, assumes a large prebiotic source of ribose or the existence of pre-RNA molecules with backbones different from ribose-phosphate. The generally accepted prebiotic synthesis of ribose, the formose reaction, yields numerous sugars without any selectivity. Even if there were a selective synthesis of ribose, there is still the problem of stability. Sugars are known to be unstable in strong acid or base, but there are few data for neutral solutions. Therefore, we have measured the rate of decomposition of ribose between pH 4 and pH 8 from 40 C to 120 C. The ribose half-lives are very short (73 min at pH 7.0 and 100 C and 44 years at pH 7.0 and 0 C). The other aldopentoses and aldohexoses have half-lives within an order of magnitude of these values, as do 2-deoxyribose, ribose 5-phosphate, and ribose 2,4bisphosphate. These results suggest that the backbone of the first genetic material could not have contained ribose or other sugars because of their instability.

  14. Proteomic Analysis of the Downstream Signaling Network of PARP1.

    PubMed

    Zhen, Yuanli; Yu, Yonghao

    2018-01-30

    Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.

  15. C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae.

    PubMed

    Krska, Daniel; Ravulapalli, Ravikiran; Fieldhouse, Robert J; Lugo, Miguel R; Merrill, A Rod

    2015-01-16

    C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD(+) (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics.

    PubMed

    Engert, Florian; Kovac, Michal; Baumhoer, Daniel; Nathrath, Michaela; Fulda, Simone

    2017-07-25

    We recently discovered mutation signatures reminiscent of BRCA deficiency in the vast majority of a set of primary osteosarcomas (OS). In the current study, we therefore investigated the sensitivity of a panel of OS cell lines to the poly(ADP)-ribose polymerase (PARP) inhibitor talazoparib alone and in combination with several chemotherapeutic drugs (i.e. temozolomide (TMZ), SN-38, doxorubicin, cisplatin, methotrexate (MTX), etoposide/carboplatin). Here, we identified an association between homologous recombination (HR) repair deficiency and the response of OS cell lines to talazoparib. All OS cell lines with molecular features characteristic of BRCA1/2 mutant tumors (so-called "BRCAness"), such as disruptive gains in PTEN or FANCD2 and/or losses of ATM, BAP1, BARD1 or CHEK2, were susceptible to talazoparib-induced reduction of cell viability (i.e. MG63, ZK-58,, SaOS-2 and MNNG-HOS). Consistent with their high sensitivity to talazoparib, MG63 and ZK-58 cells scored positive in a DNA-based measure of genomic instability (i.e. homologous recombination deficiency (HRD)-loss of heterozygosity (LOH) score). In contrast, U2OS cells that carry a heterozygous BRCA2 mutation and therefore most likely have one intact BRCA2 allele left proved to be resistant to talazoparib. Furthermore, we identified TMZ as the most potent chemotherapeutic drug together with talazoparib to synergistically reduce cell viability, as confirmed by calculation of combination index (CI) values, and to suppress long-term clonogenic survival. Mechanistically, talazoparib and TMZ cooperated to induce apoptotic cell death, as demonstrated by activation of BAX and BAK, loss of mitochondrial membrane potential (MMP), caspase activation, DNA fragmentation and caspase-dependent cell death. Genetic silencing of BAX and BAK or pharmacological inhibition of caspases by zVAD.fmk significantly rescued OS cells from talazoparib/TMZ-induced apoptosis. These findings have important implications for the development

  17. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtainedmore » at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.« less

  18. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status

    PubMed Central

    Huntoon, Catherine J.; Flatten, Karen S.; Wahner Hendrickson, Andrea E.; Huehls, Amelia M.; Sutor, Shari L.; Kaufmann, Scott H.; Karnitz, Larry M.

    2013-01-01

    Replication stress and DNA damage activate the ATR-CHK1 checkpoint signaling pathway that licenses repair and cell survival processes. In this study, we examined the respective roles of the ATR and CHK1 kinases in ovarian cancer cells using genetic and pharmacological inhibitors of in combination with cisplatin, topotecan, gemcitabine and the poly(ADP-ribose)-polymerase (PARP) inhibitor veliparib (ABT-888), four agents with clinical activity in ovarian cancer. RNAi-mediated depletion or inhibition of ATR sensitized ovarian cancer cells to all four agents. In contrast, while cisplatin, topotecan and gemcitabine each activated CHK1, RNAi-mediated depletion or inhibition of this kinase in cells sensitized them only to gemcitabine. Unexpectedly, we found that neither the ATR kinase inhibitor VE-821 or the CHK1 inhibitor MK-8776 blocked ATR-mediated CHK1 phosphorylation or autophosphorylation, two commonly used readouts for inhibition of the ATR-CHK1 pathway. Instead, their ability to sensitize cells correlated with enhanced CDC25A levels. Additionally, we also found that VE-821 could further sensitize BRCA1-depleted cells to cisplatin, topotecan and veliparib beyond the potent sensitization already caused by their deficiency in homologous recombination. Taken together, our results established that ATR and CHK1 inhibitors differentially sensitize ovarian cancer cells to commonly used chemotherapy agents, and that CHK1 phosphorylation status may not offer a reliable marker for inhibition of the ATR-CHK1 pathway. A key implication of our work is the clinical rationale it provides to evaluate ATR inhibitors in combination with PARP inhibitors in BRCA1/2-deficient cells. PMID:23548269

  19. Mitochondrial Free [Ca2+] Increases during ATP/ADP Antiport and ADP Phosphorylation: Exploration of Mechanisms

    PubMed Central

    Haumann, Johan; Dash, Ranjan K.; Stowe, David F.; Boelens, Age D.; Beard, Daniel A.; Camara, Amadou K.S.

    2010-01-01

    ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+]m) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+]m is affected by H2PO4− (Pi), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+]m, membrane potential, redox state, matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2+]m after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+]e); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+]m up to twofold. The ADP effect on increasing [Ca2+]m could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or Pi. Oligomycin largely reduced the increase in [Ca2+]m by ADP compared to control, and [Ca2+]m did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+]m largely due to the interaction of matrix Ca2+ with ATP, ADP, Pi, and cation buffering proteins in the matrix. PMID:20712982

  20. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    PubMed

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  1. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma

    PubMed Central

    Weaver, Alice N.; Cooper, Tiffiny S.; Rodriguez, Marcela; Trummell, Hoa Q.; Bonner, James A.; Rosenthal, Eben L.; Yang, Eddy S.

    2015-01-01

    Patients with human papillomavirus-positive (HPV+) head and neck squamous cell carcinomas (HNSCCs) have increased response to radio- and chemotherapy and improved overall survival, possibly due to an impaired DNA damage response. Here, we investigated the correlation between HPV status and repair of DNA damage in HNSCC cell lines. We also assessed in vitro and in vivo sensitivity to the PARP inhibitor veliparib (ABT-888) in HNSCC cell lines and an HPV+ patient xenograft. Repair of DNA double strand breaks (DSBs) was significantly delayed in HPV+ compared to HPV− HNSCCs, resulting in persistence of γH2AX foci. Although DNA repair activators 53BP1 and BRCA1 were functional in all HNSCCs, HPV+ cells showed downstream defects in both non-homologous end joining and homologous recombination repair. Specifically, HPV+ cells were deficient in protein recruitment and protein expression of DNA-Pk and BRCA2, key factors for non-homologous end joining and homologous recombination respectively. Importantly, the apparent DNA repair defect in HPV+ HNSCCs was associated with increased sensitivity to the PARP inhibitor veliparib, resulting in decreased cell survival in vitro and a 10–14 day tumor growth delay in vivo. These results support the testing of PARP inhibition in combination with DNA damaging agents as a novel therapeutic strategy for HPV+ HNSCC. PMID:26336991

  2. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks.

    PubMed

    Leland, Bryan A; Chen, Angela C; Zhao, Amy Y; Wharton, Robert C; King, Megan C

    2018-04-26

    Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of either 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single-cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance. © 2018, Leland et al.

  3. Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells

    PubMed Central

    Ma, Jian; Gao, Shan-Shan; Yang, Hai-Jie; Wang, Mian; Cheng, Bin-Feng; Feng, Zhi-Wei; Wang, Lei

    2018-01-01

    Proanthocyanidins (PA) are natural flavonoids widely present in many vegetables, fruits, nuts and seeds, and especially in grape seed. In the present study, we examined the neuroprotective effects of PA and the underlying molecular mechanism in rotenone model of Parkinson's disease (PD). We found that pretreatment with PA significantly reduced rotenone-induced oxidative stress in human neuroblastoma SH-SY5Y dopaminergic cells. In addition, PA markedly enhanced cell viability against rotenone neurotoxicity and considerably blocked rotenone-induced activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP), biochemical features of apoptosis. Further study demonstrated that the anti-apoptotic effect of PA was mediated by suppressing p38, JNK, and ERK signaling, and inhibitors of these three signaling pathways reproduced the protective effect of PA separately. In summary, our results demonstrated that PA mitigated rotenone-induced ROS generation and antagonized apoptosis in SH-SY5Y cells by inhibiting p38, JNK, and ERK signaling pathways, and it may provide a new insight of PA in PD therapy. PMID:29904339

  4. A polysaccharide from the fruiting bodies of Agaricus blazei Murill induces caspase-dependent apoptosis in human leukemia HL-60 cells.

    PubMed

    Li, Xiaohui; Zhao, Xin; Wang, Hongmin; Han, Junqing; Liu, Li

    2014-09-01

    Polysaccharides are the major active ingredients of fungus Agaricus blazei for treating and preventing cancer. However, there are no reports showing anti-tumor activity of A. blazei polysaccharides (ABP) on human leukemia (HL)-60 cells in vitro and in vivo. In this study, we demonstrated that ABP efficiently inhibited proliferation of cultured HL-60 cells, which was associated with the induction of apoptosis. The increase in ABP-induced apoptosis was accompanied by loss of mitochondria membrane potential (∆Ψm), cytochrome c release from the mitochondria, activation of caspase-3, degradation of poly(ADP-ribose) polymerase (PARP), and the elevated ratio of Bcl-2-associated X (Bax)/B-cell lymphoma 2 (Bcl-2). Moreover, z-DEVD-fmk, a caspase-3 inhibitor, reversed the cytotoxic effects and apoptotic characteristics induced by ABP in HL-60 cells. Furthermore, we confirmed that ABP could obviously inhibit the solid cancer growth of leukemia HL-60 in tumor xenograft model. These data demonstrated that ABP effectively induced the apoptosis of HL-60 cells via a signaling cascade of mitochondrial caspase-3-dependent pathway.

  5. Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Ma, Jian; Gao, Shan-Shan; Yang, Hai-Jie; Wang, Mian; Cheng, Bin-Feng; Feng, Zhi-Wei; Wang, Lei

    2018-01-01

    Proanthocyanidins (PA) are natural flavonoids widely present in many vegetables, fruits, nuts and seeds, and especially in grape seed. In the present study, we examined the neuroprotective effects of PA and the underlying molecular mechanism in rotenone model of Parkinson's disease (PD). We found that pretreatment with PA significantly reduced rotenone-induced oxidative stress in human neuroblastoma SH-SY5Y dopaminergic cells. In addition, PA markedly enhanced cell viability against rotenone neurotoxicity and considerably blocked rotenone-induced activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP), biochemical features of apoptosis. Further study demonstrated that the anti-apoptotic effect of PA was mediated by suppressing p38, JNK, and ERK signaling, and inhibitors of these three signaling pathways reproduced the protective effect of PA separately. In summary, our results demonstrated that PA mitigated rotenone-induced ROS generation and antagonized apoptosis in SH-SY5Y cells by inhibiting p38, JNK, and ERK signaling pathways, and it may provide a new insight of PA in PD therapy.

  6. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  7. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway.

    PubMed

    Chen, Chang-Tai; Chen, Yi-Tzu; Hsieh, Yi-Hsien; Weng, Chia-Jui; Yeh, Jung-Chun; Yang, Shun-Fa; Lin, Chiao-Wen; Yang, Jia-Sin

    2018-06-01

    Glabridin, a flavonoid extracted from licorice (Glycyrrhiza glabra), possesses various biological properties, including anticancer activities. However, the effect of glabridin on oral cancer cell apoptosis and the underlying molecular mechanisms has not been elucidated. In this study, we demonstrated that glabridin treatment significantly inhibits cell proliferation in human oral cancer SCC-9 and SAS cell lines. Flow cytometric assays demonstrated that glabridin induced several features of apoptosis, such as sub-G1 phase cell increase and phosphatidylserine externalization. Furthermore, glabridin induced apoptosis dose-dependently in SCC-9 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. Moreover, glabridin increased the phosphorylation of the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK) pathways in a dose-dependent manner. Moreover, the inhibition of the JNK1/2 inhibitor significantly reversed the glabridin-induced activation of the caspase pathway. In conclusion, our findings suggest that glabridin induces oral cancer cell apoptosis through the JNK1/2 pathway and is a potential therapeutic agent for oral cancer. © 2018 Wiley Periodicals, Inc.

  8. Targeted exome sequencing of Korean triple-negative breast cancer reveals homozygous deletions associated with poor prognosis of adjuvant chemotherapy-treated patients

    PubMed Central

    Jeong, Hae Min; Kim, Ryong Nam; Kwon, Mi Jeong; Oh, Ensel; Han, Jinil; Lee, Se Kyung; Choi, Jong-Sun; Park, Sara; Nam, Seok Jin; Gong, Gyung Yup; Nam, Jin Wu; Choi, Doo Ho; Lee, Hannah; Nam, Byung-Ho; Choi, Yoon-La; Shin, Young Kee

    2017-01-01

    Triple-negative breast cancer is characterized by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is associated with a poorer outcome than other subtypes of breast cancer. Moreover, there are no accurate prognostic genes or effective therapeutic targets, thereby necessitating continued intensive investigation. This study analyzed the genetic mutation landscape in 70 patients with triple-negative breast cancer by targeted exome sequencing of tumor and matched normal samples. Sequencing showed that more than 50% of these patients had deleterious mutations and homozygous deletions of DNA repair genes, such as ATM, BRCA1, BRCA2, WRN, and CHEK2. These findings suggested that a large number of patients with triple-negative breast cancer have impaired DNA repair function and that therefore a poly ADP-ribose polymerase inhibitor may be an effective drug in the treatment of this disease. Notably, homozygous deletion of three genes, EPHA5, MITF, and ACSL3, was significantly associated with an increased risk of recurrence or distant metastasis in adjuvant chemotherapy-treated patients. PMID:28977883

  9. Trivalent chromium activates Rac-1 and Src and induces switch in the cell death mode in human dermal fibroblasts.

    PubMed

    Rudolf, Emil; Cervinka, Miroslav

    2009-08-10

    In this study we examined interactions between human dermal fibroblasts and chromium acetate hydroxide originating from environmental waste sediments. We show that initially exposure of fibroblasts to Cr (III) induced membrane-dependent signaling including activation of Rac1 GTPase, Src and apoptosis signal-regulating kinase 1 (ASK-1) kinases leading to increased activities of p38 and particularly Jun N-terminal kinase (JNK) and subsequent activation of caspase-3. At later treatment intervals (48-96 h), caspase-3 activity became suppressed and markedly increased lactate dehydrogenase (LDH) release was observed. Further experiments demonstrated that LDH release occurred in the presence of increased oxidative stress, extensive DNA damage, overactivation of poly(ADP-ribose)polymerase-1 (PARP-1) and depletion of ATP. Using specific inhibitors it was demonstrated that oxidative stress along with PARP-1 activity are responsible for cell death mode switch and upon their inhibition caspase-3 activity could be restored. In conclusion, Cr (III) seems to induce a biphasic response in dermal fibroblasts, with initial apoptosis switched to necrosis via increased DNA damage and resulting PARP-1 activity.

  10. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors

    PubMed Central

    Pflug, Alexander; Gaudon, Stephanie; Resa-Infante, Patricia; Lethier, Mathilde; Reich, Stefan; Schulze, Wiebke M

    2018-01-01

    Abstract Influenza polymerase uses short capped primers snatched from nascent Pol II transcripts to initiate transcription of viral mRNAs. Here we describe crystal structures of influenza A and B polymerase bound to a capped primer in a configuration consistent with transcription initiation (’priming state’) and show by functional assays that conserved residues from both the PB2 midlink and cap-binding domains are important for positioning the capped RNA. In particular, mutation of PB2 Arg264, which interacts with the triphosphate linkage in the cap, significantly and specifically decreases cap-dependent transcription. We also compare the configuration of the midlink and cap-binding domains in the priming state with their very different relative arrangement (called the ‘apo’ state) in structures where the potent cap-binding inhibitor VX-787, or a close analogue, is bound. In the ‘apo’ state the inhibitor makes additional interactions to the midlink domain that increases its affinity beyond that to the cap-binding domain alone. The comparison suggests that the mechanism of resistance of certain mutations that allow virus to escape from VX-787, notably PB2 N510T, can only be rationalized if VX-787 has a dual mode of action, direct inhibition of capped RNA binding as well as stabilization of the transcriptionally inactive ‘apo’ state. PMID:29202182

  11. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  12. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri.

    PubMed

    Song, K-J; Jang, Y S; Lee, Y A; Kim, K A; Lee, S K; Shin, M H

    2011-07-01

    Naegleria fowleri, a free-living amoeba, is the causative pathogen of primary amoebic meningoencephalitis in humans and experimental mice. N. fowleri is capable of destroying tissues and host cells through lytic necrosis. However, the mechanism by which N. fowleri induces host cell death is unknown. Electron microscopy indicated that incubation of Jurkat T cells with N. fowleri trophozoites induced necrotic morphology of the Jurkat T cells. N. fowleri also induced cytoskeletal protein cleavage, extensive poly (ADP-ribose) polymerase hydrolysis and lactate dehydrogenase (LDH) release. Although no activation of caspase-3 was observed in Jurkat T cells co-incubated with amoebae, intracellular reactive oxygen species (ROS) were strongly generated by NADPH oxidase (NOX). Pretreating cells with necroptosis inhibitor necrostatin-1 or NOX inhibitor diphenyleneiodonium chloride (DPI) strongly inhibited amoeba-induced ROS generation and Jurkat cell death, whereas pan-caspase inhibitor z-VAD-fmk did not. N. fowleri-derived secretory products (NfSP) strongly induced intracellular ROS generation and cell death. Necroptotic effects of NfSP were effectively inhibited by pretreating NfSP with proteinase K. Moreover, NfSP-induced LDH release and intracellular ROS accumulation were inhibited by pretreating Jurkat T cells with DPI or necrostatin-1. These results suggest that N. fowleri induces ROS-dependent necroptosis in Jurkat T cells. © 2011 Blackwell Publishing Ltd.

  13. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use; (C) Software and data security; (D) Telecommunications security; (E) Personnel security; (F... Federal review. (f) ADP System Security Requirements and Review Process—(1) ADP System Security Requirement. State agencies are responsible for the security of all ADP projects under development, and...

  15. In Vitro and In Vivo Enhancement of Chemoradiation Using the Oral PARP Inhibitor ABT-888 in Colorectal Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, Joseph W., E-mail: jwshelt@emory.edu; Waxweiler, Timothy V.; Landry, Jerome

    2013-07-01

    Purpose: Poly(ADP-ribose) polymerase plays a critical role in the recognition and repair of DNA single-strand breaks and double-strand breaks (DSBs). ABT-888 is an orally available inhibitor of this enzyme. This study seeks to evaluate the use of ABT-888 combined with chemotherapy and radiation therapy (RT) in colorectal carcinoma models. Methods and Materials: RT clonogenic assays were performed on HCT116 and HT29 cells treated with 5-fluorouracil, irinotecan, or oxaliplatin with or without ABT. The surviving fraction at 2 Gy and dose-modifying factor at 10% survival were analyzed. Synergism was assessed by isobologram analysis for combination therapies. γH2AX and neutral comet assaysmore » were performed to assess the effect of therapy on DSB formation/repair. In vivo assessments were made by use of HCT116 cells in a xenograft mouse model. Tumor growth delay was measured at a volume of 500 mm{sup 3}. Results: Both lines were radiosensitized by ABT alone, and ABT further increased chemotherapy dose-modifying factors to the 1.6 to 1.8 range. All combinations were synergistic (combination indices <0.9). ABT treatment significantly increased DSB after RT (γH2AX, 69% vs 43%; P=.017) and delayed repair. We found tumor growth delays of 7.22 days for RT; 11.90 days for RT and ABT; 13.5 days for oxaliplatin, RT, and ABT; 14.17 days for 5-fluorouracil, RT, and ABT; and 23.81 days for irinotecan, RT, and ABT. Conclusion: ABT-888 radiosensitizes at similar or higher levels compared with classic chemotherapies and acts synergistically with these chemotherapies to enhance RT effects. In vivo confirmation of these results indicates a potential role for combining its use with existing chemoradiation regimens.« less

  16. Detection of functional protein domains by unbiased genome-wide forward genetic screening.

    PubMed

    Herzog, Mareike; Puddu, Fabio; Coates, Julia; Geisler, Nicola; Forment, Josep V; Jackson, Stephen P

    2018-04-18

    Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.

  17. β,β-Dimethylacrylshikonin Induces Mitochondria Dependent Apoptosis through ERK Pathway in Human Gastric Cancer SGC-7901 Cells

    PubMed Central

    Ma, Xiao-Qiong; Chen, Jiang-Hua

    2012-01-01

    β,β-Dimethylacrylshikonin, one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we discussed the molecular mechanisms of β,β-dimethylacrylshikonin in the apoptosis of SGC-7901 cells. β,β-Dimethylacrylshikonin reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner and induced cell apoptosis. β,β-Dimethylacrylshikonin treatment in SGC-7901 cells down-regulated the expression of XIAP, cIAP-2, and Bcl-2 and up-regulated the expression of Bak and Bax and caused the loss of mitochondrial membrane potential and release of cytochrome c. Additionally, β,β-dimethylacrylshikonin treatment led to activation of caspases-9, 8 and 3, and cleavage of poly (ADP-ribose) polymerase (PARP), which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. β,β-Dimethylacrylshikonin induced phosphorylation of extracellular signal-regulated kinase (ERK) in SGC-7901 cells. U0126, a specific MEK inhibitor, blocked the ERK activation by β,β-dimethylacrylshikonin and abrogated β,β-dimethylacrylshikonin -induced apoptosis. Our results demonstrated that β,β-dimethylacrylshikonin inhibited growth of gastric cancer SGC-7901 cells by inducing ERK signaling pathway, and provided a clue for preclinical and clinical evaluation of β,β-dimethylacrylshikonin for gastric cancer therapy. PMID:22848597

  18. Withaferin A induces apoptosis through the generation of thiol oxidation in human head and neck cancer cells.

    PubMed

    Park, Jong Won; Min, Kyoung-Jin; Kim, Dong Eun; Kwon, Taeg Kyu

    2015-01-01

    Withaferin A is a steroidal lactone purified from the Indian medicinal plant, Withania somnifera. Withaferin A has been shown to inhibit the proliferation, metastasis, invasion and angiogenesis of cancer cells. In the present study, we investigated whether withaferin A induces apoptosis in the human head and neck cancer cells, AMC-HN4. Withaferin A markedly increased the sub-G1 cell population and the cleavage of poly(ADP-ribose) polymerase (PARP), which are markers of apoptosis. Pan-caspase inhibitor, z-VAD-fmk (z-VAD), markedly inhibited the withaferin A-induced apoptosis. However, the withaferin A-induced increase in the expression of COX-2 was not affected by treatment with z-VAD. Furthermore, withaferin A upregulated cyclooxygenase-2 (COX-2) expression. The COX-2 inhibitor, NS-398, reduced the withaferin A-induced production of prostaglandin E2. However, treatment with NS-398 did not affect the sub-G1 population and the cleavage of PARP. In addition, the withaferin A-induced apoptosis was independent of reactive oxygen species production. Thiol donors [N-acetylcysteine (NAC) and dithiothreitol (DTT)] reversed withaferin A-induced apoptosis. Therefore, our data suggest that withaferin A induces apoptosis through the mechanism of thiol oxidation in head and neck carcinoma cells.

  19. Metronomic cyclophosphamide-induced long-term remission after recurrent high-grade serous ovarian cancer: A case study

    PubMed Central

    de Boo, Leonora Wijnandina; Vulink, Annelie Johanna Elisabeth; Bos, Monique Elisabeth Martina Maria

    2017-01-01

    Metronomic oral cyclophosphamide has gained increasing interest in recent years as a promising maintenance therapy in advanced, platinum-sensitive, high-grade serous ovarian cancer (HGSOC). Metronomic treatment with cyclophosphamide refers to the frequent, usually daily, administration of a low (oral) dose of cyclophosphamide with no prolonged drug-free breaks. Main advantages of this treatment are the effective reduction of tumour activity, oral administration in an outpatient setting, low cost and the low toxicity profile. Metronomic oral cyclophosphamide can benefit patients suffering from types of cancer known to be sensitive to alkylating agents, such as platinum-sensitive HGSOC. In recent years, several publications have underlined the advantage of this regimen and possible explanations were explored. We here present a patient with multiple recurrences of metastasized HGSOC, platinum-sensitive, with an on-going complete response to monotherapy with oral cyclophosphamide. This observation supports that patients with relapsing HGSOC who responded to platinum-based chemotherapy and cannot continue platinum-based chemotherapy because of toxicity, can be offered a course of metronomic cyclophosphamide. This case may serve as a reminder that old drugs can be used successfully even in the age of new upcoming therapy such as anti-angiogenic agents (VEGF inhibitors) and poly-ADP-ribose polymerase (PARP) inhibitors. PMID:29285388

  20. Metronomic cyclophosphamide-induced long-term remission after recurrent high-grade serous ovarian cancer: A case study.

    PubMed

    de Boo, Leonora Wijnandina; Vulink, Annelie Johanna Elisabeth; Bos, Monique Elisabeth Martina Maria

    2017-12-01

    Metronomic oral cyclophosphamide has gained increasing interest in recent years as a promising maintenance therapy in advanced, platinum-sensitive, high-grade serous ovarian cancer (HGSOC). Metronomic treatment with cyclophosphamide refers to the frequent, usually daily, administration of a low (oral) dose of cyclophosphamide with no prolonged drug-free breaks. Main advantages of this treatment are the effective reduction of tumour activity, oral administration in an outpatient setting, low cost and the low toxicity profile. Metronomic oral cyclophosphamide can benefit patients suffering from types of cancer known to be sensitive to alkylating agents, such as platinum-sensitive HGSOC. In recent years, several publications have underlined the advantage of this regimen and possible explanations were explored. We here present a patient with multiple recurrences of metastasized HGSOC, platinum-sensitive, with an on-going complete response to monotherapy with oral cyclophosphamide. This observation supports that patients with relapsing HGSOC who responded to platinum-based chemotherapy and cannot continue platinum-based chemotherapy because of toxicity, can be offered a course of metronomic cyclophosphamide. This case may serve as a reminder that old drugs can be used successfully even in the age of new upcoming therapy such as anti-angiogenic agents (VEGF inhibitors) and poly-ADP-ribose polymerase (PARP) inhibitors.

  1. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    PubMed Central

    Yan, Shunfei; Frank, Daniel; Son, Jinbae; Hannan, Katherine M.; Hannan, Ross D.; Chan, Keefe T.; Pearson, Richard B.; Sanij, Elaine

    2017-01-01

    Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC. PMID:28117679

  2. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  3. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Zongwu; Bald, Ilko; Illenberger, Eugen

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N{sup +}) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N{sup +} ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-{sup 13}C D-ribose and 1-D D-ribose) partlymore » reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN{sup -} anion at energies down to {approx}5 eV. N{sup +} ions also abstract hydrogen from hydroxyl groups of the molecules to form NH{sup -} and NH{sub 2}{sup -} anions. A fraction of O/O{sup -} fragments abstract hydrogen to form OH{sup -}. The formation of H{sub 3}O{sup +} ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.« less

  4. Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking

    PubMed Central

    Wei, Yu; Li, Jinlong; Qing, Jie; Huang, Mingjie; Wu, Ming; Gao, Fenghua; Li, Dongmei; Hong, Zhangyong; Kong, Lingbao; Huang, Weiqiang; Lin, Jianping

    2016-01-01

    The NS5B polymerase is one of the most attractive targets for developing new drugs to block Hepatitis C virus (HCV) infection. We describe the discovery of novel potent HCV NS5B polymerase inhibitors by employing a virtual screening (VS) approach, which is based on random forest (RB-VS), e-pharmacophore (PB-VS), and docking (DB-VS) methods. In the RB-VS stage, after feature selection, a model with 16 descriptors was used. In the PB-VS stage, six energy-based pharmacophore (e-pharmacophore) models from different crystal structures of the NS5B polymerase with ligands binding at the palm I, thumb I and thumb II regions were used. In the DB-VS stage, the Glide SP and XP docking protocols with default parameters were employed. In the virtual screening approach, the RB-VS, PB-VS and DB-VS methods were applied in increasing order of complexity to screen the InterBioScreen database. From the final hits, we selected 5 compounds for further anti-HCV activity and cellular cytotoxicity assay. All 5 compounds were found to inhibit NS5B polymerase with IC50 values of 2.01–23.84 μM and displayed anti-HCV activities with EC50 values ranging from 1.61 to 21.88 μM, and all compounds displayed no cellular cytotoxicity (CC50 > 100 μM) except compound N2, which displayed weak cytotoxicity with a CC50 value of 51.3 μM. The hit compound N2 had the best antiviral activity against HCV, with a selective index of 32.1. The 5 hit compounds with new scaffolds could potentially serve as NS5B polymerase inhibitors through further optimization and development. PMID:26845440

  5. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement satisfies the ADP...

  6. A critical role for topoisomerase IIb and DNA double strand breaks in transcription

    PubMed Central

    Calderwood, Stuart K.

    2016-01-01

    ABSTRACT Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb. PMID:27100743

  7. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    PubMed

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  8. High-throughput docking for the identification of new influenza A virus polymerase inhibitors targeting the PA-PB1 protein-protein interaction.

    PubMed

    Tintori, Cristina; Laurenzana, Ilaria; Fallacara, Anna Lucia; Kessler, Ulrich; Pilger, Beatrice; Stergiou, Lilli; Botta, Maurizio

    2014-01-01

    A high-throughput molecular docking approach was successfully applied for the selection of potential inhibitors of the Influenza RNA-polymerase which act by targeting the PA-PB1 protein-protein interaction. Commercially available compounds were purchased and biologically evaluated in vitro using an ELISA-based assay. As a result, some compounds possessing a 3-cyano-4,6-diphenyl-pyridine nucleus emerged as effective inhibitors with the best ones showing IC50 values in the micromolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin.

    PubMed

    Makitrynskyy, Roman; Ostash, Bohdan; Tsypik, Olga; Rebets, Yuriy; Doud, Emma; Meredith, Timothy; Luzhetskyy, Andriy; Bechthold, Andreas; Walker, Suzanne; Fedorenko, Victor

    2013-10-23

    Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.

  10. Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: evidence for increased tumor cell apoptosis in vivo.

    PubMed

    Hans, M A; Müller, M; Meyer-Ficca, M; Bürkle, A; Küpper, J H

    1999-11-25

    Poly(ADP-ribose) polymerase (PARP4) catalyzes the formation of ADP-ribose polymers covalently attached to proteins by using NAD+ as substrate. PARP is strongly activated by DNA single- or double-strand breaks and is thought to be involved in cellular responses to DNA damage. We characterized a dominant negative PARP mutant, i.e. the DNA-binding domain of this enzyme, whose overexpression in cells leads to increased genetic instability following DNA damage. In order to study whether PARP activity is also implicated in the process of tumorigenesis, we generated stably transfected HeLa cell clones with constitutive overexpression of dominant negative PARP and investigated tumor formation of these clones in nude mice. We found that inhibition of PARP activity dramatically reduces tumor forming ability of HeLa cells. Moreover, we provide strong evidence that the observed reduction in tumor forming ability is due to increased tumor cell apoptosis in vivo. Viewed together, our data and those from other groups show that inhibition of PARP enzyme activity interferes with DNA base excision repair and leads to increased genetic instability and recombination but, on the other hand, can sensitize cells to apoptotic stimuli and by this mechanism may prevent tumor formation.

  11. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significancemore » or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.« less

  12. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    PubMed

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  13. [Novel hybrid inhibitors of the phage T7 RNA polymerase: synthesis, docking and screening in vitro].

    PubMed

    Kostina, V H; Pal'chykovs'ka, L H; Platonov, M O; Vasyl'chenko, O V; Lysenko, N A; Alekseeva, I V

    2012-01-01

    A number of new hybrid heteroaromatic compounds, consisting of tricyclic fragments (acridone, thioxanthone and phenazine) and bicyclic fragments (benzimidazole, benzothiazole and benzoxazole) were synthesized using the method, developed by the authors. As a result of screening against the transcription model system of the phage T7 DNA-dependent RNA polymerase three effective inhibitors of the RNA syntheses with the IC50 value of 8.9, 5.7 and 19.8 microM were detected. To cast light on the mode of interaction between the synthesized compounds and the target, the molecular docking was applied to the model pocket of the phage T7 RNA polymerase transcription complex. It was established that these ligands form networks of H-bonds with residues of the pocket conservative amino acids and pi-interaction with the Mg2+ ion. A planar geometry of the hybrid molecules, realized due to the intramolecular H-bonds, proved to be an important structural feature, which correlates with an efficacious inhibitory activity.

  14. p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells.

    PubMed

    Chowchaikong, Nittiya; Nilwarangkoon, Sirinun; Laphookhieo, Surat; Tanunyutthawongse, Chantra; Watanapokasin, Ramida

    2018-06-01

    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided

  15. A kinetic study on the chemical cleavage of nucleoside diphosphate sugars.

    PubMed

    Huhta, Eija; Parjanen, Atte; Mikkola, Satu

    2010-03-30

    Nucleoside diphosphate sugars serve in essential roles in metabolic processes. They have, therefore, been used in mechanistic studies on glycosylation reactions, and their analogues have been synthesised as enzyme and receptor inhibitors. Despite extensive biochemical research, little is known about their chemical reactions. In the present work the chemical cleavage of two different types of nucleoside diphosphate sugars has been studied. UDP-Glc is phosphorylated at the anomeric carbon, whereas in ADP-Rib C-1 is unsubstituted, allowing hence the equilibrium between cyclic hemiacetal and acyclic carbonyl forms. Due to the structural difference, these substrates react via different pathways under slightly alkaline conditions: while UDP-Glc reacts exclusively by a nucleophilic attack of a glucose hydroxyl group on the diphosphate moiety, ADP-Rib undergoes a complex reaction sequence that involves isomerisation processes of the acyclic ribose sugar and results in a release of ADP. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  17. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  18. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.

    PubMed

    Cohen-Armon, Malka; Visochek, Leonid; Rozensal, Dana; Kalal, Adi; Geistrikh, Ilona; Klein, Rodika; Bendetz-Nezer, Sarit; Yao, Zhong; Seger, Rony

    2007-01-26

    PolyADP-ribose polymerases (PARPs) catalyze a posttranslational modification of nuclear proteins by polyADP-ribosylation. The catalytic activity of the abundant nuclear protein PARP-1 is stimulated by DNA strand breaks, and PARP-1 activation is required for initiation of DNA repair. Here we show that PARP-1 also acts within extracellular signal-regulated kinase (ERK) signaling cascade that mediates growth and differentiation. The findings reveal an alternative mode of PARP-1 activation, which does not involve binding to DNA or DNA damage. In a cell-free system, recombinant PARP-1 was intensively activated and thereby polyADP-ribosylated by a direct interaction with phosphorylated ERK2, and the activated PARP-1 dramatically increased ERK2-catalyzed phosphorylation of the transcription factor Elk1. In cortical neurons treated with nerve growth factors and in stimulated cardiomyocytes, PARP-1 activation enhanced ERK-induced Elk1-phosphorylation, core histone acetylation, and transcription of the Elk1-target gene c-fos. These findings constitute evidence for PARP-1 activity within the ERK signal-transduction pathway.

  19. Inhibitors of the Hepatitis C Virus Polymerase; Mode of Action and Resistance.

    PubMed

    Eltahla, Auda A; Luciani, Fabio; White, Peter A; Lloyd, Andrew R; Bull, Rowena A

    2015-09-29

    The hepatitis C virus (HCV) is a pandemic human pathogen posing a substantial health and economic burden in both developing and developed countries. Controlling the spread of HCV through behavioural prevention strategies has met with limited success and vaccine development remains slow. The development of antiviral therapeutic agents has also been challenging, primarily due to the lack of efficient cell culture and animal models for all HCV genotypes, as well as the large genetic diversity between HCV strains. On the other hand, the use of interferon-α-based treatments in combination with the guanosine analogue, ribavirin, achieved limited success, and widespread use of these therapies has been hampered by prevalent side effects. For more than a decade, the HCV RNA-dependent RNA polymerase (RdRp) has been targeted for antiviral development, and direct-acting antivirals (DAA) have been identified which bind to one of at least six RdRp inhibitor-binding sites, and are now becoming a mainstay of highly effective and well tolerated antiviral treatment for HCV infection. Here we review the different classes of RdRp inhibitors and their mode of action against HCV. Furthermore, the mechanism of antiviral resistance to each class is described, including naturally occurring resistance-associated variants (RAVs) in different viral strains and genotypes. Finally, we review the impact of these RAVs on treatment outcomes with the newly developed regimens.

  20. Selective derivatization and sequestration of ribose from a prebiotic mix.

    PubMed

    Springsteen, Greg; Joyce, Gerald F

    2004-08-11

    Observations regarding the catalytic potential of RNA and the role of RNA in biology have formed the basis for the "RNA world" hypothesis, which suggests that a genetic system based on self-replicating polyribonucleotides preceded modern biology. However, attempts to devise a realistic prebiotic synthesis of nucleic acids from simple starting materials have been plagued by problems of poor chemical selectivity, lack of stereo- and regiospecificity, and similar rates of formation and degradation of some of the key intermediates. For example, ribose would have been only a small component of a highly complex mix of sugars resulting from the condensation of formaldehyde in a prebiotic world. In addition, ribose is more reactive and degrades more rapidly compared with most other monosaccharides. This study demonstrates an approach for the preferential sequestration of ribose relative to other sugars that takes advantage of its greater reactivity. Cyanamide reacts especially rapidly with ribose to form a stable bicyclic adduct. This product crystallizes spontaneously in aqueous solution, whereas the corresponding products derived from threose, galactose, glucose, mannose, and each of the other pentoses do not. Furthermore, when employing a racemic mixture of d- and l-ribose, enantiomerically twinned crystals are formed that contain discrete homochiral domains.

  1. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  2. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines

    PubMed Central

    Kim, Jong In; Lee, Chang Min; Park, Eok-Sung; Kim, Ki Nyun; Kim, Hyung Chul; Lee, Hae Young

    2012-01-01

    Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer. PMID:22363901

  3. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement...

  4. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement...

  5. ADP--A Must in the Secondary School

    ERIC Educational Resources Information Center

    Majernik, John A.

    1974-01-01

    The rationale for including automated data processing (ADP) in secondary schools is given. ADP instruction: prepares students for data processing employment and for advanced ADP study, aids all students preparing for business careers, aids students in choosing a career, provides consumer information, and adds realism to other classroom…

  6. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy

    PubMed Central

    Sultanov, Daniel C.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Maluchenko, Natalya V.; Kotova, Elena Y.; Langelier, Marie-France; Pascal, John M.; Kirpichnikov, Mikhail P.; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    DNA accessibility to various protein complexes is essential for various processes in the cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose)polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, partial uncoiling of the entire nucleosomal DNA. PMID:28804761

  7. Targeting the DNA damage response in oncology: past, present and future perspectives.

    PubMed

    Basu, Bristi; Yap, Timothy A; Molife, L Rhoda; de Bono, Johann S

    2012-05-01

    The success of poly(ADP-ribose) polymerase inhibition in BRCA1 or BRCA2 deficient tumors as an anticancer strategy provided proof-of-concept for a synthetic lethality approach in oncology. There is therefore now active interest in expanding this approach to include other agents targeting the DNA damage response (DDR). We review lessons learnt from the development of inhibitors against DNA damage response mechanisms and envision the future of DNA repair inhibition in oncology. Preclinical synthetic lethality screens may potentially identify the best combinations of DNA-damaging drugs with inhibitors of DNA repair and the DDR or two agents acting within the DDR. Efforts are currently being made to establish robust and cost-effective assays that may be implemented within appropriate time-scales in parallel with future clinical studies. Detection of relevant mutations in a high-throughput manner, such as with next-generation sequencing for genes implicated in homologous recombination, including BRCA1, BRCA2, and ataxia telangiectasia mutated is anticipated. Novel approaches targeting the DDR are currently being evaluated and inhibitors of ATM, RAD51 and DNA-dependent protein kinase are now in early drug discovery and development. There remains great enthusiasm in oncology practice for pursuing the strategy of synthetic lethality. The future development of antitumor agents targeting the DDR should include detailed correlative biomarker work within early phase clinical studies wherever possible, with clear attempts to identify doses at which robust target modulation is observed.

  8. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation

    PubMed Central

    Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B

    2013-01-01

    Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845

  9. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    NASA Astrophysics Data System (ADS)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  10. The apoptotic effect of somatostatin analogue SMS 201-995 on human lymphocytes.

    PubMed

    Lattuada, D; Casnici, C; Venuto, A; Marelli, O

    2002-12-01

    The antiproliferative effect of a synthetic octapeptide, somatostatin analogue SMS 201-995 (SMS), and its capacity to bind were evaluated on human peripheral blood lymphocytes (PBL) activated by phytohemoagglutinin (PHA). We then addressed our work to investigate if SMS inhibits PHA activation of PBL by a cytostatic rather than a cytotoxic mechanism. Consequently, we studied the cell cycle distribution and the activation of caspase-3, measuring the presence of the cleavage product of poly(ADP-ribose) polymerases (PARP), and we evaluated the presence of apoptotic DNA by using a monoclonal antibody specific for the single-stranded regions of DNA. All our results indicate that SMS induces apoptosis in activated lymphocytes.

  11. PARP inhibition causes premature loss of cohesion in cancer cells

    PubMed Central

    Kukolj, Eva; Kaufmann, Tanja; Dick, Amalie E.; Zeillinger, Robert; Gerlich, Daniel W.; Slade, Dea

    2017-01-01

    Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation. PMID:29262611

  12. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia

    PubMed Central

    Zhang, Meili; Mathews Griner, Lesley A.; Ju, Wei; Duveau, Damien Y.; Guha, Rajarshi; Petrus, Michael N.; Wen, Bernard; Maeda, Michiyuki; Shinn, Paul; Ferrer, Marc; Conlon, Kevin D.; Bamford, Richard N.; O’Shea, John J.; Thomas, Craig J.; Waldmann, Thomas A.

    2015-01-01

    Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1–encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients’ PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL. PMID:26396258

  13. Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Zhu, Xueping; Jin, Wei

    Intrinsic apoptotic pathway is considered to be responsible for cell death induced by platinum anticancer drugs. While in this study, we found that, necrosis is an indispensable pathway besides apoptosis in oxaliplatin-treated gastric cancer SGC-7901 cells. Upon exposure to oxaliplatin, both apoptotic and necrotic features were observed. The majority of dead cells were double positive for Annexin V and propidium iodide (PI). Moreover, mitochondrial membrane potential collapsed and caspase cascades were activated. However, ultrastructural changes under transmission electron microscope, coupled with the release of cellular contents, demonstrated the rupture of the plasma membrane. Oxaliplatin administration did not stimulate reactive oxygenmore » species (ROS) production and autophagy, but elevated the protein level of Bmf. In addition, receptor interacting protein 1 (RIP1), but not receptor interacting protein 3 (RIP3) and its downstream components participated in this death process. Necrostatin-1 (Nec-1) blocked oxaliplatin-induced cell death nearly completely, whereas z-VAD-fmk could partially suppress cell death. Oxaliplatin treatment resulted in poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, as indicated by the increase of poly(ADP-ribose) (PAR), which led to NAD{sup +} and ATP depletion. PARP-1 inhibitor, olaparib, could significantly block oxaliplatin-induced cell death, thus confirming that PARP-1 activation is mainly responsible for the cytotoxicity of oxaliplatin. Phosphorylation of H2AX at Ser139 and translocalization of apoptosis-inducing factor (AIF) are critical for this death process. Taken together, these results indicate that oxaliplatin can bypass canonical cell death pathways to kill gastric cancer cells, which may be of therapeutic advantage in the treatment of gastric cancer. - Highlights: • Oxaliplatin induces apoptotic and necrotic cell death. • Nec-1 can inhibit oxaliplatin-induced cell death nearly completely. • RIP3 and its

  14. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons.

    PubMed

    Jeong, Jong Hee; Noh, Min-Young; Choi, Jae-Hyeok; Lee, Haiwon; Kim, Seung Hyun

    2016-04-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H 2 O 2 )-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H 2 O 2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H 2 O 2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c , apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H 2 O 2 , and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H 2 O 2

  15. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage

    PubMed Central

    Yang, Lu; Sun, Luxi; Teng, Yaqun; Chen, Hao; Gao, Ying; Levine, Arthur S.; Nakajima, Satoshi

    2017-01-01

    Abstract Oxidative DNA damage triggers telomere erosion and cellular senescence. However, how repair is initiated at telomeres is largely unknown. Here, we found unlike PARP1-mediated Poly-ADP-Ribosylation (PARylation) at genomic damage sites, PARylation at telomeres is mainly dependent on tankyrase1 (TNKS1). TNKS1 is recruited to damaged telomeres via its interaction with TRF1, which subsequently facilitates the PARylation of TRF1 after damage. TNKS inhibition abolishes the recruitment of the repair proteins XRCC1 and polymerase β at damaged telomeres, while the PARP1/2 inhibitor only has such an effect at non-telomeric damage sites. The ANK domain of TNKS1 is essential for the telomeric damage response and TRF1 interaction. Mutation of the tankyrase-binding motif (TBM) on TRF1 (13R/18G to AA) disrupts its interaction with TNKS1 concomitant recruitment of TNKS1 and repair proteins after damage. Either TNKS1 inhibition or TBM mutated TRF1 expression markedly sensitizes cells to telomere oxidative damage as well as XRCC1 inhibition. Together, our data reveal a novel role of TNKS1 in facilitating SSBR at damaged telomeres through PARylation of TRF1, thereby protecting genome stability and cell viability. PMID:28160604

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colantonio, Patrizia; Leboffe, Loris; Bolli, Alessandro

    Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with K{sub i}{sup 0} = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 andmore » 25 deg. C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P{sub 2} position.« less

  17. Missed therapeutic and prevention opportunities in women with BRCA-mutated epithelial ovarian cancer and their families due to low referral rates for genetic counseling and BRCA testing: A review of the literature.

    PubMed

    Hoskins, Paul J; Gotlieb, Walter H

    2017-11-01

    Answer questions and earn CME/CNE Fifteen percent of women with epithelial ovarian cancer have inherited mutations in the BRCA breast cancer susceptibility genes. Knowledge of her BRCA status has value both for the woman and for her family. A therapeutic benefit exists for the woman with cancer, because a new family of oral drugs, the poly ADP-ribose polymerase (PARP) inhibitors, has recently been approved, and these drugs have the greatest efficacy in women who carry the mutation. For her family, there is the potential to prevent ovarian cancer in those carrying the mutation by using risk-reducing surgery. Such surgery significantly reduces the chance of developing this, for the most part, incurable cancer. Despite these potential benefits, referral rates for genetic counseling and subsequent BRCA testing are low, ranging from 10% to 30%, indicating that these therapeutic and prevention opportunities are being missed. The authors have reviewed the relevant available literature. Topics discussed are BRCA and its relation to ovarian cancer, the rates of referral for genetic counseling/BRCA testing, reasons for these low rates, potential strategies to improve on those rates, lack of effectiveness of current screening strategies, the pros and cons of risk-reducing surgery, other prevention options, and the role and value of PARP inhibitors. CA Cancer J Clin 2017;67:493-506. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    PubMed

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.

  19. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity

    PubMed Central

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M.; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M.; Dawson, Valina L.

    2017-01-01

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells (ESCs) or inducible pluripotent stem cells (iPSCs) that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid (RA) to FOXG1 neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuron cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and the poly (ADP-ribose) polymerase (PARP)-dependent cell death, a cell death pathway designated parthanatos to separate it from apoptosis, necroptosis and other forms of cell death. Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons. PMID:27053772

  20. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation.

    PubMed

    Baldassarro, Vito A; Marchesini, Alessandra; Giardino, Luciana; Calzà, Laura

    2017-07-01

    Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells

    PubMed Central

    Adams, Bret R.; Hawkins, Amy J.; Povirk, Lawrence F.; Valerie, Kristoffer

    2010-01-01

    We recently demonstrated that human embryonic stem cells (hESCs) utilize homologous recombination repair (HRR) as primary means of double-strand break (DSB) repair. We now show that hESCs also use nonhomologous end joining (NHEJ). NHEJ kinetics were several-fold slower in hESCs and neural progenitors (NPs) than in astrocytes derived from hESCs. ATM and DNA-PKcs inhibitors were ineffective or partially effective, respectively, at inhibiting NHEJ in hESCs, whereas progressively more inhibition was seen in NPs and astrocytes. The lack of any major involvement of DNA-PKcs in NHEJ in hESCs was supported by siRNA-mediated DNA-PKcs knockdown. Expression of a truncated XRCC4 decoy or XRCC4 knock-down reduced NHEJ by more than half suggesting that repair is primarily canonical NHEJ. Poly(ADP-ribose) polymerase (PARP) was dispensable for NHEJ suggesting that repair is largely independent of backup NHEJ. Furthermore, as hESCs differentiated a progressive decrease in the accuracy of NHEJ was observed. Altogether, we conclude that NHEJ in hESCs is largely independent of ATM, DNA-PKcs, and PARP but dependent on XRCC4 with repair fidelity several-fold greater than in astrocytes. PMID:20844317

  2. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis.

    PubMed

    Harish Kumar, G; Vidya Priyadarsini, R; Vinothini, G; Vidjaya Letchoumy, P; Nagini, S

    2010-08-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention for their cytotoxicity against human cancer cell lines. However, the antiproliferative and apoptosis inducing effects of neem limonoids have not been tested in animal tumour models. The present study was therefore designed to evaluate the relative chemopreventive potential of the neem limonoids azadirachtin and nimbolide in the hamster buccal pouch (HBP) carcinogenesis model by analyzing the expression of proliferating cell nuclear antigen (PCNA), p21(waf1), cyclin D1, glutathione S-transferase pi (GST-P), NF-kappaB, inhibitor of kappaB (IkappaB), p53, Fas, Bcl-2, Bax, Bid, Apaf-1, cytochrome C, survivin, caspases-3, -6, -8 and -9, and poly(ADP-ribose) polymerase (PARP) by RT-PCR, immunohistochemical, and Western blot analyses. The results provide compelling evidence that azadirachtin and nimbolide mediate their antiproliferative effects by downregulating proteins involved in cell cycle progression and transduce apoptosis by both the intrinsic and extrinsic pathways. On a comparative basis, nimbolide was found to be a more potent antiproliferative and apoptosis inducing agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.

  3. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models

    PubMed Central

    Zhang, Enfan; Zi, Fuming; Chen, Jing; Chen, Qingxiao; Lin, Xuanru; Yang, Li; Li, Yi; Wu, Wenjun; Yang, Yang; He, Jingsong; Cai, Zhen

    2016-01-01

    Quercetin, a kind of dietary flavonoid, has shown its anticancer activity in many kinds of cancers including hematological malignancies (acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and MM) in vitro and in vivo. However, its effects on MM need further investigation. In this study, MM cell lines were treated with quercetin alone or in combination with dexamethasone. In order to observe the effects in vivo, a xenograft model of human myeloma was established. Quercetin inhibited proliferation of MM cells (RPMI8226, ARP-1, and MM.1R) by inducing cell cycle arrest in the G2/M phase and apoptosis. Western blot showed that quercetin downregulated c-myc expression and upregulated p21 expression. Quercetin also activated caspase-3, caspase-9, and poly(ADP-ribose)polymerase 1. Caspase inhibitors partially blocked apoptosis induced by quercetin. Furthermore, quercetin combined with dexamethasone significantly increased MM cell apoptosis. In vivo xenograft models, quercetin obviously inhibited tumor growth. Caspase-3 was activated to a greater extent when quercetin was combined with dexamethasone. In conclusion, quercetin alone or in combination with dexamethasone may be an effective therapy for MM. PMID:27329589

  4. Effect of Notch and PARP Pathways' Inhibition in Leukemic Cells.

    PubMed

    Horvat, Luka; Antica, Mariastefania; Matulić, Maja

    2018-06-14

    Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after γ-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

  5. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery

    PubMed Central

    Murphy, Anar K.; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I.; Chowdhury, Dipanjan; Schildkraut, Carl L.

    2014-01-01

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. PMID:25113031

  6. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.

    PubMed

    Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A

    2014-08-18

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.

  7. Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent.

    PubMed

    Kossatz, Susanne; Weber, Wolfgang; Reiner, Thomas

    2017-01-01

    More sensitive and specific methods for early detection are imperative to improve survival rates in oral cancer. However, oral cancer detection is still largely based on visual examination and histopathology of biopsy material, offering no molecular selectivity or spatial resolution. Intuitively, the addition of optical contrast could improve oral cancer detection and delineation, but so far no molecularly targeted approach has been translated. Our fluorescently labeled small-molecule inhibitor PARPi-FL binds to the DNA repair enzyme poly(ADP-ribose)polymerase 1 (PARP1) and is a potential diagnostic aid for oral cancer delineation. Based on our preclinical work, a clinical phase I/II trial opened in March 2017 to evaluate PARPi-FL as a contrast agent for oral cancer imaging. In this commentary, we discuss why we chose PARP1 as a biomarker for tumor detection and which particular characteristics make PARPi-FL an excellent candidate to image PARP1 in optically guided applications. We also comment on the potential benefits of our molecularly targeted PARPi-FL-guided imaging approach in comparison to existing oral cancer screening adjuncts and mention the adaptability of PARPi-FL imaging to other environments and tumor types.

  8. Cancer dormancy and cell signaling: Induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells

    PubMed Central

    Marches, Radu; Hsueh, Robert; Uhr, Jonathan W.

    1999-01-01

    The p21WAF1 (p21) cyclin-dependent kinase inhibitor plays a major role in regulating cell cycle arrest. It was recently reported that the p53-independent elevation of p21 protein levels is essential in mediating the G1 arrest resulting from signal transduction events initiated by the crosslinking of membrane IgM on Daudi Burkitt lymphoma cells. Although the role of p21 in cell cycle regulation is well documented, there is little information concerning its role in antibody-mediated apoptosis. In the present study, we examined the involvement of p21 in the regulation of apoptosis by suppressing its induction in anti-IgM-treated Daudi cells through a p21 antisense expression construct approach. Reduction in induced p21 protein levels resulted in diminished G1 arrest and increased apoptosis. The increased susceptibility to anti-IgM-mediated apoptosis was associated with increased caspase-3-like activity and poly-(ADP)ribose polymerase cleavage. These data suggest that p21 may directly interfere with the caspase cascade, thus playing a dual role in regulating both cell cycle progression and apoptosis. PMID:10411940

  9. ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair.

    PubMed

    Tsuda, Masataka; Cho, Kosai; Ooka, Masato; Shimizu, Naoto; Watanabe, Reiko; Yasui, Akira; Nakazawa, Yuka; Ogi, Tomoo; Harada, Hiroshi; Agama, Keli; Nakamura, Jun; Asada, Ryuta; Fujiike, Haruna; Sakuma, Tetsushi; Yamamoto, Takashi; Murai, Junko; Hiraoka, Masahiro; Koike, Kaoru; Pommier, Yves; Takeda, Shunichi; Hirota, Kouji

    2017-01-01

    ALC1/CHD1L is a member of the SNF2 superfamily of ATPases carrying a macrodomain that binds poly(ADP-ribose). Poly(ADP-ribose) polymerase (PARP) 1 and 2 synthesize poly(ADP-ribose) at DNA-strand cleavage sites, promoting base excision repair (BER). Although depletion of ALC1 causes increased sensitivity to various DNA-damaging agents (H2O2, UV, and phleomycin), the role played by ALC1 in BER has not yet been established. To explore this role, as well as the role of ALC1's ATPase activity in BER, we disrupted the ALC1 gene and inserted the ATPase-dead (E165Q) mutation into the ALC1 gene in chicken DT40 cells, which do not express PARP2. The resulting ALC1-/- and ALC1-/E165Q cells displayed an indistinguishable hypersensitivity to methylmethane sulfonate (MMS), an alkylating agent, and to H2O2, indicating that ATPase plays an essential role in the DNA-damage response. PARP1-/- and ALC1-/-/PARP1-/- cells exhibited a very similar sensitivity to MMS, suggesting that ALC1 and PARP1 collaborate in BER. Following pulse-exposure to H2O2, PARP1-/- and ALC1-/-/PARP1-/- cells showed similarly delayed kinetics in the repair of single-strand breaks, which arise as BER intermediates. To ascertain ALC1's role in BER in mammalian cells, we disrupted the ALC1 gene in human TK6 cells. Following exposure to MMS and to H2O2, the ALC1-/- TK6 cell line showed a delay in single-strand-break repair. We therefore conclude that ALC1 plays a role in BER. Following exposure to H2O2, ALC1-/- cells showed compromised chromatin relaxation. We thus propose that ALC1 is a unique BER factor that functions in a chromatin context, most likely as a chromatin-remodeling enzyme.

  10. Analytical method development for directed enzyme evolution research: a high throughput high-performance liquid chromatography method for analysis of ribose and ribitol and a capillary electrophoresis method for the separation of ribose enantiomers.

    PubMed

    Sun, Baoguo; Miller, Gregory; Lee, Wan Yee; Ho, Kelvin; Crowe, Michael A; Partridge, Leslie

    2013-01-04

    Analytical methods were developed for a directed enzyme evolution research programme, which pursued high performance enzymes to produce high quality L-ribose using large scale biocatalytic reaction. A high throughput HPLC method with evaporative light-scattering detection was developed to test ribose and ribitol in the enzymatic reaction, a β-cyclobond 2000 analytical column separated ribose and ribitol in 2.3 min, a C(18) guard column was used as an on-line filter to clean up the enzyme sample matrix and a short gradient was applied to wash the column, the enzymatic reaction solution can be directly injected after quenching. Total run time of each sample was approx. 4 min which provided capability of screening 4×96-well plates/day/instrument. Meanwhile, a capillary electrophoresis method was developed for the separation of ribose enantiomers, while 7-aminonaphthalene-1,3-disulfonic acid was used as derivatisation reagent and 25 mM tetraborate with 5 mM β-cyclodextrin was used as electrolyte. 0.35%of D-ribose in L-ribose can be detected which can be translated into 99.3% ee of L-ribose. Derivatisation reagent and sample matrix did not interfere with the measurement. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose.

    PubMed

    Mirahmadi, Fereshteh; Koolstra, Jan Harm; Lobbezoo, Frank; van Lenthe, G Harry; Ghazanfari, Samaneh; Snabel, Jessica; Stoop, Reinout; Everts, Vincent

    2018-03-01

    Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway.

    PubMed

    Pramanik, Kartick C; Kudugunti, Shashi K; Fofaria, Neel M; Moridani, Majid Y; Srivastava, Sanjay K

    2013-09-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  13. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway

    PubMed Central

    Srivastava, Sanjay K.

    2013-01-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  14. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    PubMed

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    PubMed Central

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  16. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  17. 26 CFR 1.401(k)-2 - ADP test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual...(k)(3)(F), the ADP test is performed under the plan (determined without regard to disaggregation...

  18. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    PubMed

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  19. NAD+ and vitamin B3: from metabolism to therapies.

    PubMed

    Sauve, Anthony A

    2008-03-01

    The role of NAD(+) metabolism in health and disease is of increased interest as the use of niacin (nicotinic acid) has emerged as a major therapy for treatment of hyperlipidemias and with the recognition that nicotinamide can protect tissues and NAD(+) metabolism in a variety of disease states, including ischemia/reperfusion. In addition, a growing body of evidence supports the view that NAD(+) metabolism regulates important biological effects, including lifespan. NAD(+) exerts potent effects through the poly(ADP-ribose) polymerases, mono-ADP-ribosyltransferases, and the recently characterized sirtuin enzymes. These enzymes catalyze protein modifications, such as ADP-ribosylation and deacetylation, leading to changes in protein function. These enzymes regulate apoptosis, DNA repair, stress resistance, metabolism, and endocrine signaling, suggesting that these enzymes and/or NAD(+) metabolism could be targeted for therapeutic benefit. This review considers current knowledge of NAD(+) metabolism in humans and microbes, including new insights into mechanisms that regulate NAD(+) biosynthetic pathways, current use of nicotinamide and nicotinic acid as pharmacological agents, and opportunities for drug design that are directed at modulation of NAD(+) biosynthesis for treatment of human disorders and infections.

  20. Identification of a Pyridoxine-Derived Small-Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase.

    PubMed

    Xu, Hong-Tao; Colby-Germinario, Susan P; Hassounah, Said; Quashie, Peter K; Han, Yingshan; Oliveira, Maureen; Stranix, Brent R; Wainberg, Mark A

    2016-01-01

    The viral RNA-dependent RNA polymerase (RdRp) activity of the dengue virus (DENV) NS5 protein is an attractive target for drug design. Here, we report the identification of a novel class of inhibitor (i.e., an active-site metal ion chelator) that acts against DENV RdRp activity. DENV RdRp utilizes a two-metal-ion mechanism of catalysis; therefore, we constructed a small library of compounds, through mechanism-based drug design, aimed at chelating divalent metal ions in the catalytic site of DENV RdRp. We now describe a pyridoxine-derived small-molecule inhibitor that targets DENV RdRp and show that 5-benzenesulfonylmethyl-3-hydroxy-4-hydroxymethyl-pyridine-2-carboxylic acid hydroxyamide (termed DMB220) inhibited the RdRp activity of DENV serotypes 1 to 4 at low micromolar 50% inhibitory concentrations (IC50s of 5 to 6.7 μM) in an enzymatic assay. The antiviral activity of DMB220 against DENV infection was also verified in a cell-based assay and showed a 50% effective concentration (EC50) of <3 μM. Enzyme assays proved that DMB220 was competitive with nucleotide incorporation. DMB220 did not inhibit the enzymatic activity of recombinant HIV-1 reverse transcriptase and showed only weak inhibition of HIV-1 integrase strand transfer activity, indicating high specificity for DENV RdRp. S600T substitution in the DENV RdRp, which was previously shown to confer resistance to nucleoside analogue inhibitors (NI), conferred 3-fold hypersusceptibility to DMB220, and enzymatic analyses showed that this hypersusceptibility may arise from the decreased binding/incorporation efficiency of the natural NTP substrate without significantly impacting inhibitor binding. Thus, metal ion chelation at the active site of DENV RdRp represents a viable anti-DENV strategy, and DMB220 is the first of a new class of DENV inhibitor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Methods for the determination of intracellular levels of ribose phosphates.

    PubMed

    Camici, Marcella; Tozzi, Maria Grazia; Ipata, Piero Luigi

    2006-10-31

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway or stem from the phosphorolytic cleavage of the N-glycosidic bond of ribonucleosides. The two major pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, can be readily interconverted by phosphopentomutase. Ribose-5-phosphate is also the direct precursor of 5-phosphoribosyl-1-pyrophosphate, which is used for both de novo and salvage synthesis of nucleotides. On the other hand, the phosphorolysis of deoxyribonucleosides is the major source of deoxyribose phosphates. While the destiny of the nucleobase stemming from nucleoside phosphorolysis has been extensively investigated, the fate of the sugar moiety has been somehow neglected. However, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. Nevertheless, many aspects of pentose phosphate metabolism, and the possible involvement of these compounds in a number of cellular processes still remain obscure. The comprehension of the role played by pentose phosphates may be greatly facilitated by the knowledge of their steady-state intracellular levels and of their changes in response to variations of intra- and extracellular signals.

  2. 45 CFR 95.621 - ADP reviews.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false ADP reviews. 95.621 Section 95.621 Public Welfare....621 ADP reviews. The Department will conduct periodic onsite surveys and reviews of State and local... the Department and State or local agencies prior to conducting such surveys or reviews, which may...

  3. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling

    PubMed Central

    Lim, Siew Pheng; Noble, Christian Guy; Seh, Cheah Chen; Soh, Tingjin Sherryl; El Sahili, Abbas; Chan, Grace Kar Yarn; Lescar, Julien; Arora, Rishi; Benson, Timothy; Nilar, Shahul; Manjunatha, Ujjini; Wan, Kah Fei; Dong, Hongping; Xie, Xuping; Yokokawa, Fumiaki

    2016-01-01

    Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a “de novo” initiation mechanism. Crystal structures of the flavivirus RdRp revealed a “closed” conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the “GDD” active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed “N pocket”). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1–2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses. PMID:27500641

  4. The benefits of ribose in cardiovascular disease.

    PubMed

    Pauly, D F; Johnson, C; St Cyr, J A

    2003-02-01

    Cardiovascular disease still ranks as the leading cause of death in men and women. Adults have tried to lower their risk of cardiovascular disease by improving their diet, quitting smoking, controlling blood pressure and exercising regularly. Additionally, many adults have turned to nutriceutical or natural products. Myocardial ischemia, produces a depression in myocardial tissue levels of high energy compounds, along with a compromise in myocardial function. Ribose, a naturally occurring sugar, has been extensively investigated, both in animal and clinical studies, as an agent to enhance the recovery of these depressed energy compounds. Results of these studies have been promising in enhancing the recovery of these energy molecules along with an improvement in myocardial function. Therefore, ribose should be considered as a potential agent in the treatment of ischemic cardiovascular disease.

  5. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  6. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase.

    PubMed

    Schein, Catherine H; Rowold, Diane; Choi, Kyung H

    2016-02-15

    Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Inhibition of RNA-Dependent DNA Polymerase of Avian Myeloblastosis Virus by Pyran Copolymer

    PubMed Central

    Papas, Takis S.; Pry, Thomas W.; Chirigos, Michael A.

    1974-01-01

    Pyran copolymer, a known immunostimulator, was found to be a potent inhibitor of purified DNA polymerase (deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) isolated from avian myeloblastosis virus. Unlike other inhibitors, pyran showed unique features of inhibition. It interacts with the polymerase at a region other than the template site. The inhibitory effect was overcome only by excess enzyme and not affected by excess template. The degree of inhibition was not template specific for the templates tested: 70S RNA from avian myeloblastosis virus, synthetic hybrid poly(rA)·oligo(dT)10, synthetic copolymer poly(dA-dT), and activated calf-thymus DNA. The observed rate of inhibition by pyran was shown to vary with the different polymerases tested. Inhibition was shown with all oncornaviral polymerases and, to a lesser extent, with mammalian polymerases. However, two of the three bacterial polymerases, by contrast, showed a marked activation. PMID:4131275

  8. D-ribose--an additive with caffeine.

    PubMed

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  9. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity.

    PubMed

    Sulkowski, Parker L; Corso, Christopher D; Robinson, Nathaniel D; Scanlon, Susan E; Purshouse, Karin R; Bai, Hanwen; Liu, Yanfeng; Sundaram, Ranjini K; Hegan, Denise C; Fons, Nathan R; Breuer, Gregory A; Song, Yuanbin; Mishra-Gorur, Ketu; De Feyter, Henk M; de Graaf, Robin A; Surovtseva, Yulia V; Kachman, Maureen; Halene, Stephanie; Günel, Murat; Glazer, Peter M; Bindra, Ranjit S

    2017-02-01

    2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors. This "BRCAness" phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability. Copyright © 2017, American Association for the Advancement of Science.

  10. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.

    PubMed Central

    Jeruzalmi, D; Steitz, T A

    1998-01-01

    The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025

  11. Effects of oral administration of caffeine and D-ribose on mental fatigue.

    PubMed

    Ataka, Suzuka; Tanaka, Masaaki; Nozaki, Satoshi; Mizuma, Hiroshi; Mizuno, Kei; Tahara, Tsuyoshi; Sugino, Tomohiro; Shirai, Tomoko; Kajimoto, Yoshitaka; Kuratsune, Hirohiko; Kajimoto, Osami; Watanabe, Yasuyoshi

    2008-03-01

    We examined the effects of administering two different candidate antifatigue substances, caffeine and D-ribose, on mental fatigue. In a double-blinded, placebo-controlled, three-way crossover design, 17 healthy volunteers were randomized to oral caffeine (200 mg/d), D-ribose (2000 mg/d), or placebo for 8 d. As fatigue-inducing mental tasks, subjects performed a 30-min Uchida-Kraepelin psychodiagnostic test and a 30-min advanced trail-making test on four occasions. During the tasks, the task performance of the caffeine group was better than that of the placebo group. However, after the fatigue-inducing tasks, although subjective perception of fatigue, motivation, or sleepiness was not significantly different, plasma branched-chain amino acid levels in the caffeine group were lower than those of the placebo group. Administration of D-ribose had no effect. Because plasma branched-chain amino acid levels are decreased by mental fatigue, these results suggest that administration of caffeine improved task performance through the enhancement of central nervous system activity without increasing the sensation of fatigue. However, further decreases in branched-chain amino acid levels indicate that caffeine might promote deeper fatigue than placebo. Unfortunately, research subsequent to our study design has shown that D-ribose dosing higher than we used is needed to see a clinical effect and therefore no conclusions can be made from this study as to the efficacy of D-ribose.

  12. Preclinical Activity of VX-787, a First-in-Class, Orally Bioavailable Inhibitor of the Influenza Virus Polymerase PB2 Subunit

    PubMed Central

    Byrn, Randal A.; Jones, Steven M.; Bennett, Hamilton B.; Bral, Chris; Clark, Michael P.; Jacobs, Marc D.; Kwong, Ann D.; Ledeboer, Mark W.; Leeman, Joshua R.; McNeil, Colleen F.; Murcko, Mark A.; Nezami, Azin; Perola, Emanuele; Rijnbrand, Rene; Saxena, Kumkum; Tsai, Alice W.; Zhou, Yi

    2014-01-01

    VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m7GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection. PMID:25547360

  13. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit.

    PubMed

    Byrn, Randal A; Jones, Steven M; Bennett, Hamilton B; Bral, Chris; Clark, Michael P; Jacobs, Marc D; Kwong, Ann D; Ledeboer, Mark W; Leeman, Joshua R; McNeil, Colleen F; Murcko, Mark A; Nezami, Azin; Perola, Emanuele; Rijnbrand, Rene; Saxena, Kumkum; Tsai, Alice W; Zhou, Yi; Charifson, Paul S

    2015-03-01

    VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism.

    PubMed

    Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun

    2015-03-18

    Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.

  15. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.

    PubMed

    Yamakawa, Kazuya; Matsuo, Junji; Okubo, Torahiko; Nakamura, Shinji; Yamaguchi, Hiroyuki

    2018-02-01

    Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. Capsaicin, a component of chili pepper, which can stimulate actin remodeling via capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) and anti-inflammatory effects via PPARγ (peroxisome proliferator-activated receptor-γ) and LXRα (liver X receptor α), is a potential candidate to control chlamydial growth in host cells. We examined whether capsaicin could inhibit C. trachomatis growth in immortal human epithelial HeLa cells. Inclusion forming unit and quantitative PCR assays showed that capsaicin significantly inhibited bacterial growth in cells in a dose-dependent manner, even in the presence of cycloheximide, a eukaryotic protein synthesis inhibitor. Confocal microscopic and transmission electron microscopic observations revealed an obvious decrease in bacterial numbers to inclusions bodies formed in the cells. Although capsaicin can stimulate the apoptosis of cells, no increase in cleaved PARP (poly (ADP-ribose) polymerase), an apoptotic indicator, was observed at a working concentration. All of the drugs tested (capsazepine, a TRPV1 antagonist; 5CPPSS-50, an LXRα inhibitor; and T0070907, a PPARγ inhibitor) had no effect on chlamydial inhibition in the presence of capsaicin. In addition, we also confirmed that capsaicin inhibited Chlamydia pneumoniae growth, indicating a phenomena not specific to C. trachomatis. Thus, we conclude that capsaicin can block chlamydial growth without the requirement of host cell protein synthesis, but by another, yet to be defined, mechanism. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Ewing’s Sarcoma: Overcoming the Therapeutic Plateau

    PubMed Central

    Subbiah, Vivek; Kurzrock, Razelle

    2013-01-01

    The hallmark of Ewing’s sarcoma (EWS) is a translocation -- t(11;22)(q24;q12) -- that most frequently results in the EWS/FLI1 aberrant chimeric gene. Because EWS afflicts young patients, it stands out among the diverse sarcoma subtypes. The frontline, standard-of-care cytotoxic chemotherapy regimens produce minimal benefit in patients with metastases at presentation or those with relapsed disease. While the outcomes of chemorefractory EWS patients are poor, recent developments have led to the promising use of targeted therapy. Specifically, inhibition of insulin-like growth factor 1 receptor (IGF1R) signaling and the mammalian target of rapamycin (mTOR) pathways has emerged as a targeted therapy in EWS, with select patients experiencing dramatic therapeutic responses. However, targeted therapies in general, and these responders in particular, are faced with the ultimate conundrum of eventual resistance. To optimize response, combining IGF1R and mTOR inhibitor-based regimens with chemotherapy in the upfront setting in newly diagnosed high-risk EWS may clarify the true benefit of IGF1R inhibitors in these patients. Another option is to explore novel targeted multikinase inhibitors and poly(ADP-ribose) polymerase (PARP) inhibitors, which have experienced a surge in supporting preclinical data. Drugs inhibiting the downstream targets of EWS/FLI1 are also in preclinical development. However, ultimately, the underlying biomarker correlates of resistance and response must be delineated along with ways to overcome them. Novel agents, together with integration of advances in multimodal approaches (including surgery and radiation), as well as offering targeted therapies early in the disease course represent new strategies for confronting the challenges of EWS. PMID:22742646

  17. Telbivudine, a nucleoside analog inhibitor of HBV polymerase, has a different in vitro cross-resistance profile than the nucleotide analog inhibitors adefovir and tenofovir.

    PubMed

    Seifer, Maria; Patty, April; Serra, Ilaria; Li, Bin; Standring, David N

    2009-02-01

    Telbivudine, a nucleoside analog inhibitor of the viral polymerase of hepatitis B virus (HBV), has been approved for the treatment of chronic HBV infection, along with the nucleoside inhibitors lamivudine and entecavir, and the nucleotide inhibitors adefovir and tenofovir. The resistance profiles of these agents were investigated via drug treatment of HepG2 cells stably transfected with wild-type or mutant HBV genomes bearing known resistance mutations. Telbivudine was not active against HBV strains bearing lamivudine mutations L180M/M204V/I but remained active against the M204V single mutant in vitro, potentially explaining the difference in resistance profiles between telbivudine and lamivudine. Against HBV genomes with known telbivudine-resistance mutations, M204I and L80I/M204I, telbivudine, lamivudine and entecavir lost 353- to >1000-fold activity whereas adefovir and tenofovir exhibited no more than 3-5-fold change. Conversely, against HBV cell lines expressing adefovir resistance mutations N236T and A181V, or the A194T mutant associated with resistance to tenofovir, telbivudine remained active as shown by respective fold-changes of 0.5 (N236T) and 1.0 (A181V and A194T). These in vitro results indicate that nucleoside and nucleotide drugs have different cross-resistance profiles. The addition of telbivudine to ongoing adefovir therapy could provide effective antiviral therapy to patients who develop adefovir resistance.

  18. Identification of a receptor for ADP on blood platelets by photoaffinity labelling.

    PubMed Central

    Cristalli, G; Mills, D C

    1993-01-01

    The synthesis of a new analogue of ADP, 2-(p-azidophenyl)-ethythioadenosine 5'-diphosphate (AzPET-ADP), is described. This compound contains a photolabile phenylazide group attached to the ADP molecule by a thioether link at the purine 2 position. It has been prepared in radioactive form with 32P in the beta-phosphate at a specific radioactivity of 100 mCi/mumol. The reagent activated platelets, causing shape change and aggregation, with somewhat lower affinity than ADP. On photolysis the affinity was increased. The reagent also inhibited platelet adenylate cyclase stimulation by prostaglandin E1, with considerably higher affinity than ADP. On photolysis the affinity was decreased. AzPET-ADP competitively inhibited the binding of 2-methylthio[beta-32P]ADP, a ligand for the receptor by which ADP causes inhibition of adenylate cyclase. In the dark, AzPET-[beta-32P]ADP bound reversibly and with high affinity to a single population of sites similar in number to the sites that bind 2-methylthio[beta-32P]ADP. Binding was inhibited by ADP and by ATP and by p-chloromercuribenzenesulphonic acid (pCMBS). On exposure to u.v. light in the presence of platelets, AzPET-[beta-32P]ADP was incorporated covalently but non-specifically into several platelet proteins, although prominent intracellular proteins were not labelled. Specific labelling was confined to a single region of SDS/polyacrylamide gels, overlying but not comigrating with actin. Incorporation of radioactivity into this region was inhibited by ADP and by ATP as well as by ADP beta S, ATP alpha S and pCMBS, but not by adenosine, GDP or AMP. Inhibition of AzPET-[beta-32P]ADP incorporation was closely correlated with inhibition of equilibrium binding of 2-methylthio[beta-32P]ADP. These results suggests that the labelled protein, which migrates with an apparent molecular mass of 43 kDa in reduced gels, is the receptor through which ADP inhibits adenylate cyclase. Images Figure 5 PMID:8387782

  19. Cross-Genotypic Examination of Hepatitis C Virus Polymerase Inhibitors Reveals a Novel Mechanism of Action for Thumb Binders

    PubMed Central

    Eltahla, Auda A.; Tay, Enoch; Douglas, Mark W.

    2014-01-01

    Direct-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well as in vitro transcription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but not de novo activity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced the de novo activity at concentrations of ≥100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement of de novo activity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies. PMID:25246395

  20. The in silico screening and X-ray structure analysis of the inhibitor complex of Plasmodium falciparum orotidine 5'-monophosphate decarboxylase.

    PubMed

    Takashima, Yasuhide; Mizohata, Eiichi; Krungkrai, Sudaratana R; Fukunishi, Yoshifumi; Kinoshita, Takayoshi; Sakata, Tsuneaki; Matsumura, Hiroyoshi; Krungkrai, Jerapan; Horii, Toshihiro; Inoue, Tsuyoshi

    2012-08-01

    Orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum (PfOMPDC) catalyses the final step in the de novo synthesis of uridine 5'-monophosphate (UMP) from orotidine 5'-monophosphate (OMP). A defective PfOMPDC enzyme is lethal to the parasite. Novel in silico screening methods were performed to select 14 inhibitors against PfOMPDC, with a high hit rate of 9%. X-ray structure analysis of PfOMPDC in complex with one of the inhibitors, 4-(2-hydroxy-4-methoxyphenyl)-4-oxobutanoic acid, was carried out to at 2.1 Å resolution. The crystal structure revealed that the inhibitor molecule occupied a part of the active site that overlaps with the phosphate-binding region in the OMP- or UMP-bound complexes. Space occupied by the pyrimidine and ribose rings of OMP or UMP was not occupied by this inhibitor. The carboxyl group of the inhibitor caused a dramatic movement of the L1 and L2 loops that play a role in the recognition of the substrate and product molecules. Combining part of the inhibitor molecule with moieties of the pyrimidine and ribose rings of OMP and UMP represents a suitable avenue for further development of anti-malarial drugs.

  1. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS.

    PubMed

    Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J

    2017-09-01

    Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ( 1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD + ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD + levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD + levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD + levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD + depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD + levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD + would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Amifostine, a reactive oxigen species scavenger with radiation- and chemo-protective properties, inhibits in vitro platelet activation induced by ADP, collagen or PAF.

    PubMed

    Porta, C; Maiolo, A; Tua, A; Grignani, G

    2000-08-01

    Reactive oxygen species (ROS) generation has been suggested to represent an important regulatory mechanism of platelet reactivity in both physiologic and pathologic conditions; consistent with this hypothesis is the observation that free-radical scavengers may inhibit platelet activation, thus contributing to the regulation of their reactivity. The purpose of the present study is to study the in vitro effects of amifostine (WR-2721, ethyol ), a selective cytoprotective agent for normal tissues against the toxicities of chemotherapy and radiation, on platelet activation induced by the physiologic agonists ADP, collagen and PAF. The effect of amifostine, added to the experimental system at final concentrations ranging from 10(-7) M to 10(-5) M, was studied on platelet aggregation induced by the following physiologic agonists at the given concentrations: ADP (1 microM), collagen (2 microg/mL), and PAF (0.1 microg/mL). Platelet aggregation was investigated using a platelet ionized calcium aggregometer and was expressed as the percentage change in light transmission. Furthermore, thromboxane B((2)) (TxB((2))) levels and nitric oxide (NO) production were determined by radioimmunoassay and by evaluating the total nitrite/nitrate concentration using a commercially available colorimetric kit, respectively, both in the control system and after the addition of amifostine. Amifostine inhibited both platelet aggregation and TxB((2)) production induced by ADP, collagen and PAF, in a dose-dependent manner. Amifostine proved to be an effective inhibitor of platelet function and the effect was more pronounced if platelets were stimulated with ADP, intermediate when collagen was the chosen agonist, and less evident, though present, when PAF was used. Platelets stimulated with ADP, collagen or PAF produced significant amounts of NO over the baseline. When amifostine was added at a final concentration of 5 microM, it significantly increased ADP, collagen and PAF-induced NO production

  3. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana.

    PubMed

    Jia, Qi; den Dulk-Ras, Amke; Shen, Hexi; Hooykaas, Paul J J; de Pater, Sylvia

    2013-07-01

    Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis. To this end Arabidopsis parp1, parp2 and parp1parp2 (p1p2) mutants were isolated and functionally characterized. The p1p2 double mutant was crossed with the C-NHEJ ku80 mutant resulting in the parp1parp2ku80 (p1p2k80) triple mutant. As expected, because of their role in single strand break repair (SSBR) and base excision repair (BER), the p1p2 and p1p2k80 mutants were shown to be sensitive to treatment with the DNA damaging agent MMS. End-joining assays in cell-free leaf protein extracts of the different mutants using linear DNA substrates with different ends reflecting a variety of double strand breaks were performed. The results showed that compatible 5'-overhangs were accurately joined in all mutants, that KU80 protected the ends preventing the formation of large deletions and that PARP proteins were involved in microhomology mediated end joining (MMEJ), one of the characteristics of B-NHEJ.

  4. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  5. Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells

    PubMed Central

    Dunai, Zsuzsanna A.; Imre, Gergely; Barna, Gabor; Korcsmaros, Tamas; Petak, Istvan; Bauer, Pal I.; Mihalik, Rudolf

    2012-01-01

    For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme. PMID:22860037

  6. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation.

    PubMed

    Wride, M A; Parker, E; Sanders, E J

    1999-09-01

    The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis. Copyright 1999 Academic Press.

  7. Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells

    PubMed Central

    Prabhu, Kirti S.; Siveen, Kodappully S.; Kuttikrishnan, Shilpa; Iskandarani, Ahmad; Tsakou, Magdalini; Achkar, Iman W.; Therachiyil, Lubna; Krishnankutty, Roopesh; Parray, Aijaz; Kulinski, Michal; Merhi, Maysaloun; Dermime, Said; Mohammad, Ramzi M.

    2017-01-01

    The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5’-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway. PMID:28704451

  8. Current challenges in the management of breast cancer brain metastases.

    PubMed

    O'Sullivan, Ciara C; Davarpanah, Nicole N; Abraham, Jame; Bates, Susan E

    2017-04-01

    Approximately 50% of patients with advanced human epidermal growth factor 2 (HER2)-positive breast cancer and triple-negative breast cancer (TNBC) ultimately develop breast cancer brain metastases (BCBM), which are associated with significant morbidity and mortality. The advent of HER2-directed therapy resulted in greatly improved survival outcomes, but unfortunately at the price of an increased cumulative incidence of BCBM. We review challenges in the management of BCBM, and potential treatment strategies, including novel agents such as poly-adenosine diphosphate (ADP) ribose polymerase (PARP) inhibitors (olaparib, veliparib), cyclin-dependent kinase 4/6 (CDK4/6) inhibitors (palbociclib, abemaciclib), and taxane derivatives (eg, ANG1005 and TPI-287). The utility of human epidermal growth factor 2 (HER2)-directed therapies-lapatinib, ado-trastuzumab emtansine (T-DM1), neratinib and tucatinib-is also being studied in this setting. We address the need for improved imaging techniques and innovation in clinical trial design. For example, the current practice is to initially administer whole-brain radiotherapy (WBRT) as treatment for patients with multiple BCBM. However, in selected circumstances, first-line systemic treatment may be more appropriate in order to avoid neurocognitive toxicities, and potential options should be evaluated in window of opportunity trials. Other strategies that may aid development of more effective clinical trials and expedite the development of promising agents include the use of different clinical endpoints and different imaging tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Validity of SW982 synovial cell line for studying the drugs against rheumatoid arthritis in fluvastatin-induced apoptosis signaling model

    PubMed Central

    Chang, Jae-Ho; Lee, Kyu-Jae; Kim, Soo-Ki; Yoo, Dae-Hyun; Kang, Tae-Young

    2014-01-01

    Background & objectives: To study effects of drugs against rheumatoid arthritis (RA) synoviocytes or fibroblast like synoviocytes (FLS) are used. To overcome the drawbacks of using FLS, this study was conducted to show the validity of SW982 synovial cell line in RA study. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Annexin V propidium iodide (PI) staining, mitochondrial membrane potential assay, Triton X-114 Phase partitioning, and immunolot for apoptosis signaling in SW982 human synovial cell line were performed. Results: Fluvastatin induced apoptosis in a dose- and time-dependent manner in TNFα -stimulated SW982 human synovial cells. A geranylgeranylpyrophosphate (GGPP) inhibitor, but not a farnesylpyrophosphate (FPP) inhibitor, induced apoptosis, and fluvastatin-induced apoptosis was associated with the translocation of isoprenylated RhoA and Rac1 proteins from the cell membrane to the cytosol. Fluvastatin-induced downstream apoptotic signals were associated with inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Accordingly, 89 kDa apoptotic cleavage fragment of poly (ADP-ribose) polymerase (PARP) was detected. Interpretation & conclusions: Collectively, our data indicate that fluvastatin induces apoptotic cell death in TNFα-stimulated SW982 human synovial cells through the inactivation of the geranylgerenylated membrane fraction of RhoA and Rac1 proteins and the subsequent inhibition of the PI3K/Akt signaling pathway. This finding shows the validity of SW982 cell line for RA study. PMID:24604047

  10. Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis.

    PubMed

    Endo, Satoshi; Hoshi, Manami; Matsunaga, Toshiyuki; Inoue, Takahiro; Ichihara, Kenji; Ikari, Akira

    2018-02-26

    Propolis, a resinous substance produced by honeybees, possesses various biological actions including anticancer activity towards tumor cells. Recently, the ethanol extract of Brazilian green propolis has been shown to induce autophagy, which is known to be induced in treatment of cancer cells with anticancer drugs, leading to cancer cell survival and decreased sensitivity to anticancer agents. In this study, we aimed to identify autophagy-inducing components of the propolis and elucidated the reciprocal relationship between anticancer cytotoxicity and protective autophagy in prostate cancer CWR22Rv1 cells. Among eight cinnamic acid derivatives [chlorogenic acid, p-coumaric acid, caffeic acid, 3,4-caffeoylquinic acid, artepillin C (ArtC), baccharin, drupanin and caffeic acid phenethyl ester] in propolis, only ArtC showed high autophagy-inducing activity accompanying LC3-II upregulation. ArtC was also induced apoptosis as revealed by DNA fragmentation and increases in cleaved caspase-3 and poly ADP-ribose polymerase. The apoptosis induced by ArtC was exacerbated by cotreatment with autophagy inhibitors (chloroquine, wortmannin and U0126). The cotreatment further induced necroptosis accompanying increased expression of receptor-interacting serine/threonine protein kinases 1 and 3. These data indicate that cytotoxicity of ArtC to the prostate cancer cells is dampened by induced autophagy, but is markedly augmented by inhibition of autophagy. Therefore, the combination of ArtC and autophagy inhibitors may be a novel complementary-alternative treatment for prostate cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  12. Structural Analysis of ADP-Glucose Pyrophosphorylase From the Bacterium Agrobacterium Tumefaciens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupp-Vickery, J.R.; Igarashi, R.Y.; Perez, M.

    2009-05-14

    ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 {angstrom}, b = 93.79 {angstrom}, and c = 140.29 {angstrom} ({alpha} = {beta} = {gamma} = 90{sup o}) and space group I{sub 222}. Themore » A. tumefaciens ADPGlc PPase model was refined to 2.1 {angstrom} with an R{sub factor} = 22% and R{sub free} = 26.6%. The model consists of two domains: an N-terminal {alpha}{beta}{alpha} sandwich and a C-terminal parallel {beta}-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.« less

  13. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could

  14. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    PubMed

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  15. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.

    PubMed

    Oza, Amit M; Tinker, Anna V; Oaknin, Ana; Shapira-Frommer, Ronnie; McNeish, Iain A; Swisher, Elizabeth M; Ray-Coquard, Isabelle; Bell-McGuinn, Katherine; Coleman, Robert L; O'Malley, David M; Leary, Alexandra; Chen, Lee-May; Provencher, Diane; Ma, Ling; Brenton, James D; Konecny, Gottfried E; Castro, Cesar M; Giordano, Heidi; Maloney, Lara; Goble, Sandra; Lin, Kevin K; Sun, James; Raponi, Mitch; Rolfe, Lindsey; Kristeleit, Rebecca S

    2017-11-01

    An integrated analysis was undertaken to characterize the antitumor activity and safety profile of the oral poly(ADP-ribose) polymerase inhibitor rucaparib in patients with relapsed high-grade ovarian carcinoma (HGOC). Eligible patients from Study 10 (NCT01482715) and ARIEL2 (NCT01891344) who received a starting dose of oral rucaparib 600mg twice daily (BID) with or without food were included in these analyses. The integrated efficacy population included patients with HGOC and a deleterious germline or somatic BRCA1 or BRCA2 (BRCA1/2) mutation who received at least two prior chemotherapies and were sensitive, resistant, or refractory to platinum-based chemotherapy. The primary endpoint was investigator-assessed confirmed objective response rate (ORR). Secondary endpoints included duration of response (DOR) and progression-free survival (PFS). The integrated safety population included patients with HGOC who received at least one dose of rucaparib 600mg BID, irrespective of BRCA1/2 mutation status and prior treatments. In the efficacy population (n=106), ORR was 53.8% (95% confidence interval [CI], 43.8-63.5); 8.5% and 45.3% of patients achieved complete and partial responses, respectively. Median DOR was 9.2months (95% CI, 6.6-11.6). In the safety population (n=377), the most frequent treatment-emergent adverse events (AEs) were nausea, asthenia/fatigue, vomiting, and anemia/hemoglobin decreased. The most common grade ≥3 treatment-emergent AE was anemia/hemoglobin decreased. Treatment-emergent AEs led to treatment interruption, dose reduction, and treatment discontinuation in 58.6%, 45.9%, and 9.8% of patients, respectively. No treatment-related deaths occurred. Rucaparib has antitumor activity in advanced BRCA1/2-mutated HGOC and a manageable safety profile. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor

    PubMed Central

    Asención Diez, Matías D.; Peirú, Salvador; Demonte, Ana M.; Gramajo, Hugo

    2012-01-01

    Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high Vmax in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (Vmax of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium. PMID:22210767

  17. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry

    PubMed Central

    Brewster, Abenaa M; Chavez-MacGregor, Mariana; Brown, Powel

    2015-01-01

    Breast cancer incidence is increasing worldwide, and breast cancer-related mortality is highest in women of African ancestry, who are more likely to have basal-like or triple-negative breast cancer (TNBC) than are women of European ancestry. Identification of cultural, epidemiological, and genetic risk factors that predispose women of African ancestry to TNBC is an active area of research. Despite the aggressive behaviour of TNBC, achievement of a pathological complete response with chemotherapy is associated with good long-term survival outcomes, and sensitivity to chemotherapy does not seem to differ according to ethnic origin. Discovery of the molecular signalling molecules that define TNBC heterogeneity has led to the development of targeted agents such as inhibitors of poly (ADP-ribose) polymerase-1 and mTOR and immunomodulatory drugs that are in the early stages of clinical testing. First, we summarise the existing published work on the differences reported on the epidemiology, biology, and response to systemic treatment of TNBC between women of African ancestry and white women, and identify some gaps in knowledge. Second, we review the opportunities for development of new therapeutic agents in view of the potential high clinical relevance for patients with TNBC irrespective of race or ethnic origin. PMID:25456381

  18. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function.

    PubMed

    Drané, Pascal; Brault, Marie-Eve; Cui, Gaofeng; Meghani, Khyati; Chaubey, Shweta; Detappe, Alexandre; Parnandi, Nishita; He, Yizhou; Zheng, Xiao-Feng; Botuyan, Maria Victoria; Kalousi, Alkmini; Yewdell, William T; Münch, Christian; Harper, J Wade; Chaudhuri, Jayanta; Soutoglou, Evi; Mer, Georges; Chowdhury, Dipanjan

    2017-03-09

    P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.

  19. The role of BRCA1 in homologous recombination repair in response to replication stress: significance in tumorigenesis and cancer therapy

    PubMed Central

    2013-01-01

    Germ line mutations in breast cancer gene 1 (BRCA1) predispose women to breast and ovarian cancers. Although BRCA1 is involved in many important biological processes, the function of BRCA1 in homologous recombination (HR) mediated repair is considered one of the major mechanisms contributing to its tumor suppression activity, and the cause of hypersensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors when BRCA1 is defective. Mounting evidence suggests that the mechanism of repairing DNA double strand breaks (DSBs) by HR is different than the mechanism operating when DNA replication is blocked. Although BRCA1 has been recognized as a central component in HR, the precise role of BRCA1 in HR, particularly under replication stress, has remained largely unknown. Given the fact that DNA lesions caused by replication blockages are the primary substrates for HR in mitotic cells, functional analysis of BRCA1 in HR repair in the context of replication stress should benefit our understanding of the molecular mechanisms underlying tumorigenesis associated with BRCA1 deficiencies, as well as the development of therapeutic approaches for cancer patients carrying BRCA1 mutations or reduced BRCA1 expression. This review focuses on the current advances in this setting and also discusses the significance in tumorigenesis and cancer therapy. PMID:23388117

  20. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways.

    PubMed

    Su, Zheng-Yuan; Tung, Yen-Chen; Hwang, Lucy Sun; Sheen, Lee-Yan

    2011-05-11

    Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.

  1. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.

    PubMed

    Park, Cheol; Moon, Dong-Oh; Choi, Il-Whan; Choi, Byung Tae; Nam, Taek-Jeong; Rhu, Chung-Ho; Kwon, Taeg Kyu; Lee, Won Ho; Kim, Gi-Young; Choi, Yung Hyun

    2007-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of Curcuma longa, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E(2) synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

  2. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Charlene; Zhang, Junran, E-mail: Junran.zhang@case.edu

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repairmore » leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.« less

  3. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells

    PubMed Central

    Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.

    2017-01-01

    Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221

  4. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review.

    PubMed

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Di Franco, Rossella; La Mantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; De Giorgi, Ugo; Facchini, Gaetano

    2016-12-20

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) "unique" in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell "fate". Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy.

  5. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review

    PubMed Central

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Franco, Rossella Di; Mantia, Elvira La; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; Falco, Francesco De; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Giorgi, Ugo De; Facchini, Gaetano

    2016-01-01

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) “unique” in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell “fate”. Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy. PMID:27821802

  6. Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue

    2016-01-01

    Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097

  7. Development of targeted therapy and immunotherapy for treatment of small cell lung cancer.

    PubMed

    Saito, Motonobu; Shiraishi, Kouya; Goto, Akiteru; Suzuki, Hiroyuki; Kohno, Takashi; Kono, Koji

    2018-05-14

    Targeted therapy against druggable genetic aberrations has shown a significantly positive response rate and longer survival in various cancers, including lung cancer. In lung adenocarcinoma (LADC), specific thyroxin kinase inhibitors against EGFR mutations and ALK fusions are used as a standard treatment regimen and show significant positive efficacy. On the other hand, targeted therapy against driver gene aberrations has not been adapted yet in small cell lung cancer (SCLC). This is because driver genes and druggable aberrations are rarely identified by next generation sequencing in SCLC. Recent advances in the understanding of molecular biology have revealed several candidate therapeutic targets. To date, poly [ADP-ribose] polymerase (PARP), enhancer of zeste homologue 2 (EZH2) or delta-like canonical Notch ligand 3 (DLL3) are considered to be druggable targets in SCLC. In addition, another candidate of personalized therapy for SCLC is immune blockade therapy of programmed death-1 (PD-1) and its ligand, PD-L1. PD-1/PD-L1 blockade therapy is not a standard therapy for SCLC, so many clinical trials have been performed to investigate its efficacy. Herein, we review gene aberrations exploring the utility of targeted therapy and discuss blockade of immune checkpoints therapy in SCLC.

  8. Investigational drugs for the treatment of cervical cancer.

    PubMed

    Barra, Fabio; Lorusso, Domenica; Leone Roberti Maggiore, Umberto; Ditto, Antonino; Bogani, Giorgio; Raspagliesi, Francesco; Ferrero, Simone

    2017-04-01

    Cervical cancer (CC) is currently the fourth most common malignant disease of women worldwide. Although the incidence and the mortality rates have been decreasing with screening detection and new treatment strategies, a significant number of metastatic or recurrent disease is still diagnosed. For those patients not amenable to curative treatments, such as surgery and radiation, palliative chemotherapy remains the standard of care. As chemotherapy regimens have limited activity, research is focalized on investigating novel pharmacologic strategies. Areas covered: This paper aims to give a complete and updated overview on investigated therapies for the treatment of CC. The authors review the results of clinical studies and highlight the ongoing trials. Expert opinion: Agents targeting various molecular pathways including epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), poly ADP-ribose polymerase (PARP), epigenetics and other biological mechanisms represent interesting investigational opportunities. Amongst such drugs, bevacizumab, an anti-VEGF monoclonal antibody, was the first targeted drug recently approved by the FDA for the treatment of patients with metastatic, recurrent, or persistent CC. Another interesting experimental approach is represented by immunotherapy, which is leading to promising results with to the development of therapeutic vaccines and immune checkpoints inhibitors.

  9. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  10. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    PubMed

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  11. Increased frequency of DNA deletions in pink-eyed unstable mice carrying a mutation in the Werner syndrome gene homologue.

    PubMed

    Lebel, Michel

    2002-01-01

    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.

  12. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale

    PubMed Central

    Elkady, Ayman I.; Abuzinadah, Osama A.; Baeshen, Nabih A.; Rahmy, Tarek R.

    2012-01-01

    The present study aimed to examine the antiproliferative potentiality of an extract derived from the medicinal plant ginger (Zingiber officinale) on growth of breast cancer cells. Ginger treatment suppressed the proliferation and colony formation in breast cancer cell lines, MCF-7 and MDA-MB-231. Meanwhile, it did not significantly affect viability of nontumorigenic normal mammary epithelial cell line (MCF-10A). Treatment of MCF-7 and MDA-MB-231 with ginger resulted in sequences of events marked by apoptosis, accompanied by loss of cell viability, chromatin condensation, DNA fragmentation, activation of caspase 3, and cleavage of poly(ADP-ribose) polymerase. At the molecular level, the apoptotic cell death mediated by ginger could be attributed in part to upregulation of Bax and downregulation of Bcl-2 proteins. Ginger treatment downregulated expression of prosurvival genes, such as NF-κB, Bcl-X, Mcl-1, and Survivin, and cell cycle-regulating proteins, including cyclin D1 and cyclin-dependent kinase-4 (CDK-4). On the other hand, it increased expression of CDK inhibitor, p21. It also inhibited the expression of the two prominent molecular targets of cancer, c-Myc and the human telomerase reverse transcriptase (hTERT). These findings suggested that the ginger may be a promising candidate for the treatment of breast carcinomas. PMID:22969274

  13. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  14. The Effect of Nucleotides and Inhibitors on Respiration in Isolated Wheat Mitochondria 1

    PubMed Central

    Pomeroy, M. Keith

    1975-01-01

    The effect of mono-, di-, and trinucleoside phosphates and respiratory inhibitors on respiration in winter wheat (Triticum aestivum L. cv. Rideau) mitochondria has been examined. When added during state 4 respiration, subsequent to addition of ADP, all of the dinucleotides stimulated oxidation and induced respiratory control with all substrates examined. Similar results were obtained with AMP, but other mononucleotides and all trinucleotides did not affect the rate of oxidation. Nucleoside diphosphates did not stimulate respiration when added prior to the addition of ADP, but subsequent addition of AMP, ADP, or ATP re-established coupled respiration in the presence of the dinucleotides. The duration of 2, 4-dinitrophenol stimulated respiration during oxidation of α-ketoglutarate was found to be dependent on the amount of AMP, ADP, or ATP added, either prior, or subsequent to, addition of the uncoupler. The addition of oligomycin during 2, 4-dinitrophenol stimulated respiration reestablished coupled respiration with low ADP/O ratios, when added after addition of ATP or conditions which allow formation of ATP from added ADP. The nucleoside diphosphates, other than ADP, did not stimulate oxidation of α-ketoglutarate in the presence of 2, 4-dinitrophenol until a small amount of adenine nucleotide was added to the system. The results suggest that dinucleotides other than ADP, are able to participate in the energy conversion processs of the mitochondria, probably via transphosphorylation reactions. Images PMID:16659027

  15. Characterization of Novel Cytoplasmic PARP in the Brain of Octopus vulgaris

    PubMed Central

    DE LISA, EMILIA; DE MAIO, ANNA; MOROZ, LEONID L.; MOCCIA, FRANCESCO; MENNELLA, MARIA ROSARIA FARAONE; DI COSMO, ANNA

    2014-01-01

    Recent investigation has focused on the participation of the poly (ADP-ribose) polymerase (PARP) reaction in the invertebrate central nervous system (CNS) during the process of long-term memory (LTM). In this paper, we characterize, localize, and assign a possible role to a cytoplasmic PARP in the brain of Octopus vulgaris. PARP activity was assayed in optic lobes, supraesophageal mass, and optic nerves. The highest levels of enzyme were found in the cytoplasmic fraction. Hyper-activation of the enzyme was detected in Octopus brain after visual discrimination training. Finally, cytoplasmic PARP was found to inhibit Octopus vulgaris actin polymerization. We propose that the cytoplasmic PARP plays a role in vivo to induce the cytoskeletonal reorganization that occurs during learning-induced neuronal plasticity. PMID:22815366

  16. The dynamic regulation of NAD metabolism in mitochondria

    PubMed Central

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  17. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Breaker, R. R.; Joyce, G. F.; Deamer, D. W.

    1994-01-01

    Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.

  18. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry.

    PubMed

    Akouche, Mariame; Jaber, Maguy; Zins, Emilie-Laure; Maurel, Marie-Christine; Lambert, Jean-Francois; Georgelin, Thomas

    2016-10-24

    Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl 2 , CaCl 2 , SrCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , ZnCl 2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn 2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    PubMed

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    PubMed Central

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315