Science.gov

Sample records for adp-ribose polymerase-1 parp-1

  1. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.

    PubMed

    Erener, Süheda; Hesse, Mareike; Kostadinova, Radina; Hottiger, Michael O

    2012-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a chromatin-associated enzyme that was described to affect chromatin compaction. Previous reports suggested a dynamic modulation of the chromatin landscape during adipocyte differentiation. We thus hypothesized that PARP1 plays an important transcriptional role in adipogenesis and metabolism and therefore used adipocyte development and function as a model to elucidate the molecular action of PARP1 in obesity-related diseases. Our results show that PARP1-dependent ADP-ribose polymer (PAR) formation increases during adipocyte development and, at late time points of adipogenesis, is involved in the sustained expression of PPARγ2 and of PPARγ2 target genes. During adipogenesis, PARP1 was recruited to PPARγ2 target genes such as CD36 or aP2 in a PAR-dependent manner. Our results also reveal a PAR-dependent decrease in repressory histone marks (e.g. H3K9me3) and an increase in stimulatory marks (e.g. H3K4me3) at the PPARγ2 promoter, suggesting that PARP1 may exert its regulatory function during adipogenesis by altering histone marks. Interestingly, activation of PARP1 enzymatic activity was prevented with a topoisomerase II inhibitor. These data hint at topoisomerase II-dependent, transient, site-specific double-strand DNA breaks as the cause for poly(ADP)-ribose formation, adipogenic gene expression, and adipocyte function. Together, our study identifies PARP1 as a critical regulator of PPARγ2-dependent gene expression with implications in adipocyte function and obesity-related disease models.

  2. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.

    PubMed

    Wang, Ying-Qing; Wang, Ping-Yuan; Wang, Yu-Ting; Yang, Guang-Fu; Zhang, Ao; Miao, Ze-Hong

    2016-11-10

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.

  3. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    SciTech Connect

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  4. Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1).

    PubMed

    Khodyreva, S N; Prasad, R; Ilina, E S; Sukhanova, M V; Kutuzov, M M; Liu, Y; Hou, E W; Wilson, S H; Lavrik, O I

    2010-12-21

    The capacity of human poly(ADP-ribose) polymerase-1 (PARP-1) to interact with intact apurinic/apyrimidinic (AP) sites in DNA has been demonstrated. In cell extracts, sodium borohydride reduction of the PARP-1/AP site DNA complex resulted in covalent cross-linking of PARP-1 to DNA; the identity of cross-linked PARP-1 was confirmed by mass spectrometry. Using purified human PARP-1, the specificity of PARP-1 binding to AP site-containing DNA was confirmed in competition binding experiments. PARP-1 was only weakly activated to conduct poly(ADP-ribose) synthesis upon binding to AP site-containing DNA, but was strongly activated for poly(ADP-ribose) synthesis upon strand incision by AP endonuclease 1 (APE1). By virtue of its binding to AP sites, PARP-1 could be poised for its role in base excision repair, pending DNA strand incision by APE1 or the 5'-dRP/AP lyase activity in PARP-1.

  5. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  6. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.

    PubMed

    Guzyk, Mykhailo M; Tykhomyrov, Artem A; Nedzvetsky, Victor S; Prischepa, Irina V; Grinenko, Tatiana V; Yanitska, Lesya V; Kuchmerovska, Tamara M

    2016-10-01

    Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR

  7. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors(†).

    PubMed

    Patel, Maulik R; Pandya, Kashyap G; Lau-Cam, Cesar A; Singh, Satyakam; Pino, Maria A; Billack, Blase; Degenhardt, Kurt; Talele, Tanaji T

    2012-04-01

    A group of novel N-1-substituted indazole-3-carboxamide derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy was applied to a weakly active unsubstituted 1H-indazole-3-carboxamide 2, by introducing a three carbon linker between 1H-indazole-3-carboxamide and different heterocycles, and led to compounds 4 [1-(3-(piperidine-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) =36μm] and 5 [1-(3-(2,3-dioxoindolin-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) = 6.8μm]. Compound 5 was evaluated in rats for its protective action against diabetes induced by a treatment with streptozotocin, a known diabetogenic agent. In addition to preserving the ability of the pancreas to secrete insulin, compound 5 was also able to attenuate the ensuing hyperglycemic response to a significant extent.

  8. The 3′–5′ DNA Exonuclease TREX1 Directly Interacts with Poly(ADP-ribose) Polymerase-1 (PARP1) during the DNA Damage Response*

    PubMed Central

    Miyazaki, Takuya; Kim, Yong-Soo; Yoon, Jeongheon; Wang, Hongsheng; Suzuki, Teruhiko; Morse, Herbert C.

    2014-01-01

    The main function of the 3′–5′ DNA exonuclease TREX1 is to digest cytosolic single-stranded DNA to prevent activation of cell-intrinsic responses to immunostimulatory DNA. TREX1 translocates to the nucleus following DNA damage with its nuclear activities being less well defined. Although mutations in human TREX1 have been linked to autoimmune/inflammatory diseases, the mechanisms contributing to the pathogenesis of these diseases remain incompletely understood. Here, using mass spectrometry and co-immunoprecipitation assays and in vivo overexpression models, we show that TREX1 interacts with poly(ADP-ribose) polymerase-1 (PARP1), a nuclear enzyme involved in the DNA damage response. Two zinc finger domains at the amino terminus of PARP1 were required for the interaction with TREX1 that occurs after nuclear translocation of TREX1 in response to DNA damage. Functional studies suggested that TREX1 may contribute to stabilization of PARP1 levels in the DNA damage response and its activity. These results provide new insights into the mechanisms of single-stranded DNA repair following DNA damage and alterations induced by gene mutations. PMID:25278026

  9. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    PubMed

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  10. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo

    PubMed Central

    Liu, Feng; Jiang, Ning; Xiao, Zhi-yong; Cheng, Jun-ping; Mei, Yi-zhou; Zheng, Pan; Wang, Li; Zhang, Xiao-rui; Zhou, Xin-bo

    2016-01-01

    Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD+/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage. PMID:27077006

  11. Chromosomal damage and micronucleus induction by MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor: Evidence for a non-DNA-reactive mode of action.

    PubMed

    Yamamura, Eiji; Muto, Shigeharu; Yamada, Katsuya; Sato, Yuko; Iwase, Yumiko; Uno, Yoshifumi

    2015-04-01

    MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that competes with the binding of the PARP substrate nicotinamide adenine dinucleotide (NAD), is being developed as a neuroprotective agent against acute ischemic stroke. MP-124 increased structural chromosomal aberration in CHL/IU cells, but showed negative results in the bacterial reverse mutation test, and the rat bone marrow micronucleus (MN) and the rat liver unscheduled DNA synthesis tests after the intravenous bolus injection. Thus, MP-124 did not appear to be direct-acting mutagen. Since, PARP-1 is a key enzyme in DNA repair, the effect of continuous PARP-1 inhibition by MP-124 was further examined in the rat MN test under 24-h intravenous infusion, and an increase in micronucleated immature erythrocytes (MNIE) was observed. The increase was clearly reduced by co-treatment with nicotinic acid, which resulted in increased intracellular NAD levels. This is consistent with the established activity of MP-124 as a competitive inhibitor of PARP and provides strong evidence that the DNA-damaging effect that leads to the increase in MNIE is a secondary effect of PARP-1 inhibition. This mechanism is expected to result in a threshold for the induction of MNIE by MP-124, and allows for the establishment of a safe margin of exposure for the therapeutic use of MP-124.

  12. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    PubMed

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  13. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1

    PubMed Central

    Luo, Xin; Kraus, W. Lee

    2012-01-01

    Cellular stress responses are mediated through a series of regulatory processes that occur at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These responses require a complex network of sensors and effectors from multiple signaling pathways, including the abundant and ubiquitous nuclear enzyme poly(ADP-ribose) (PAR) polymerase-1 (PARP-1). PARP-1 functions at the center of cellular stress responses, where it processes diverse signals and, in response, directs cells to specific fates (e.g., DNA repair vs. cell death) based on the type and strength of the stress stimulus. Many of PARP-1's functions in stress response pathways are mediated by its regulated synthesis of PAR, a negatively charged polymer, using NAD+ as a donor of ADP-ribose units. Thus, PARP-1's functions are intimately tied to nuclear NAD+ metabolism and the broader metabolic profile of the cell. Recent studies in cell and animal models have highlighted the roles of PARP-1 and PAR in the response to a wide variety of extrinsic and intrinsic stress signals, including those initiated by oxidative, nitrosative, genotoxic, oncogenic, thermal, inflammatory, and metabolic stresses. These responses underlie pathological conditions, including cancer, inflammation-related diseases, and metabolic dysregulation. The development of PARP inhibitors is being pursued as a therapeutic approach to these conditions. In this review, we highlight the newest findings about PARP-1's role in stress responses in the context of the historical data. PMID:22391446

  14. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging

    PubMed Central

    Altmeyer, Matthias; Hottiger, Michael O.

    2009-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein, which functions as molecular stress sensor. Reactive oxygen species, responsible for the most plausible and currently acceptable global mechanism to explain the aging process, strongly activate the enzymatic activity of PARP1 and the formation of poly(ADP-ribose) (PAR) from NAD+. Consumption of NAD+ links PARP1 to energy metabolism and to a large number of NAD+-dependent enzymes, such as the sirtuins. As transcriptional cofactor for NF-κB-dependent gene expression, PARP1 is also connected to the immune response, which is implicated in almost all age-related or associated diseases. Accordingly, numerous experimental studies have demonstrated the beneficial effects of PARP inhibition for several age-related diseases. This review summarizes recent findings on PARP1 and puts them in the context of metabolic stress and inflammation in aging. PMID:20157531

  15. PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres

    SciTech Connect

    Liu, Yie; Wu, Jun; Schreiber, Valerie; Dunlap, John; Dantzer, Francoise; Wang, Yisong

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  16. Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines

    PubMed Central

    Zaremba, T; Ketzer, P; Cole, M; Coulthard, S; Plummer, E R; Curtin, N J

    2009-01-01

    Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the catalytic domain that reduces PARP-1 activity. Methods: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in a panel of 19 solid and haematological, adult and paediatric human cancer cell lines. Results: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV=103%), with the lowest and the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV=32%) was observed in PARP-1 protein expression with the lowest expression being 2.0 ng μg−1 (HS-5 cells) and the highest being 7.1 ng μg−1 (ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the PARP-1 protein levels were 23-fold higher. Conclusions: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated polymorphisms, T2444C and CA. PMID:19568233

  17. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.

    PubMed

    Frizzell, Kristine M; Gamble, Matthew J; Berrocal, Jhoanna G; Zhang, Tong; Krishnakumar, Raga; Cen, Yana; Sauve, Anthony A; Kraus, W Lee

    2009-12-04

    Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.

  18. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1).

    PubMed

    Said, Riham Soliman; El-Demerdash, Ebtehal; Nada, Ahmed Shafik; Kamal, Mohamed M

    2016-03-01

    This study hypothesized that resveratrol, a silencing information regulator 1 (SIRT1) activator, would counteract the inflammatory signaling associated with radiotherapy-induced premature ovarian failure (POF). Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation to induce POF and treated with resveratrol (25mg/kg) once daily for two weeks before and three days post irradiation. Resveratrol preserves the entire ovarian follicle pool manifested by increasing serum anti-Müllerian hormone (AMH) levels. Radiation triggered inflammatory process in the ovary through enhanced NF-κB and poly(ADP-ribose) polymerase (PARP)-1 expression which convinced the expression of inflammatory markers including IL-6, IL-8, and visfatin mRNA levels, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression with a concomitant reduction in IL-10 mRNA levels. Resveratrol significantly counteracted the effect of radiation and upregulated the gene expression of peroxisome proliferator-activated receptor γ (PPAR-γ) and SIRT1. Resveratrol-activated SIRT1 expression was associated with inhibition of PARP-1 and NF-κB expression-mediated inflammatory cytokines. Our findings suggest that resveratrol restored ovarian function through increasing AMH levels, and diminishing ovarian inflammation, predominantly via upregulation of PPAR-γ and SIRT1 expression leading to inhibition of NF-κB provoked inflammatory cytokines.

  19. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    SciTech Connect

    Gebhard, Catherine; Staehli, Barbara E.; Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine; Matter, Christian M.; Hassa, Paul O.; Hottiger, Michael O.; Malinski, Tadeusz; Luescher, Thomas F.; and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  20. Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration

    PubMed Central

    Brochier, Camille; Jones, James I.; Willis, Dianna E.; Langley, Brett

    2015-01-01

    Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules—such as myelin-derived Nogo and myelin-associated glycoprotein—or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration. PMID:26598704

  1. Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca(2+) Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?

    PubMed

    Gerace, Elisabetta; Pellegrini-Giampietro, Domenico E; Moroni, Flavio; Mannaioni, Guido

    2015-01-01

    A significant number of laboratories observed that poly (ADP-ribose) polymerase (PARP) inhibitors, administered a few hours after ischemic or traumatic brain injury, may drastically reduce the subsequent neurological damage. It has also been shown that PARP inhibitors, administered for 24 hours to rats with permanent middle cerebral artery occlusion (MCAO), may reduce the number of dying neurons for a long period after surgery, thus suggesting that these agents could reduce the delayed brain damage and the neurological and cognitive impairment (dementia) frequently observed a few months after a stroke. In organotypic hippocampal slices exposed to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), an alkylating agent able to activate PARP, a selective and delayed degeneration of the CA1 pyramidal cells which was anatomically similar to that observed after a short period of oxygen and glucose deprivation (OGD) has been described. Biochemical and electrophysiological approaches showed that MNNG exposure caused an increased expression and function of the calcium permeable α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in the CA1 but not in the CA3 hippocampal region. PARP inhibitors prevented this increase and reduced CA1 cell death. The AMPA receptor antagonist 2,3-dihydroxy-6- nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione or the selective Ca(2+) permeable AMPA channel blocker 1-Naphthyl acetyl spermine (NASPM), also reduced the MNNG-induced CA1 pyramidal cell death. Since activation of PARP-1 facilitate the expression of Ca(2+) permeable channels and the subsequent delayed cell death, PARP inhibitors administered a few hours after a stroke may not only reduce the early post-ischemic brain damage but also the late neuronal death frequently occurring after severe stroke.

  2. Poly (ADP-ribose) Polymerase 1 Protein Expression in Normal and Neoplastic Prostatic Tissue

    PubMed Central

    Salemi, M.; Galia, A.; Fraggetta, F.; La Corte, C.; Pepe, P.; La Vignera, S.; Improta, G.; Bosco, P.; Calogero, A.E.

    2013-01-01

    A genetic background has been implicated in the development of prostate cancer. Protein microarrays have enabled the identification of proteins, some of which associated with apoptosis, that may play a role in the development of such a tumor. Inhibition of apoptosis is a co-factor that contributes to the onset and progression of prostate cancer, though the molecular mechanisms are not entirely understood. Poly (ADP-ribose) polymerase 1 (PARP-1) gene is required for translocation of the apoptosis-inducing factor (AIF) from the mitochondria to the nucleus. Hence, it is involved in programmed cell death. Different PARP-1 gene expression has been observed in various tumors such as glioblastoma, lung, ovarian, endometrial, and skin cancers. We evaluated the expression of PARP-1 protein in prostatic cancer and normal prostate tissues by immunohistochemistry in 40 men with prostate cancer and in 37 normal men. Positive nuclear PARP-1 staining was found in all samples (normal prostate and prostate cancer tissues). No cytoplasmic staining was observed in any sample. PARP-1-positive cells resulted significantly higher in patients with prostate carcinoma compared with controls (P<0.001). PARP-1 over-expression in prostate cancer tissue compared with normal prostate suggests a greater activity of PARP-1 in these tumors. These findings suggest that PARP-1 expression in prostate cancer is an attempt to trigger apoptosis in this type of tumor similarly to what reported in other cancers. PMID:23807292

  3. Transcriptional regulation by Poly(ADP-ribose) polymerase-1 during T cell activation

    PubMed Central

    Saenz, Luis; Lozano, Juan J; Valdor, Rut; Baroja-Mazo, Alberto; Ramirez, Pablo; Parrilla, Pascual; Aparicio, Pedro; Sumoy, Lauro; Yélamos, José

    2008-01-01

    Background Accumulating evidence suggests an important role for the enzyme poly(ADP-ribose) polymerase-1 (PARP-1) as an integral part of the gene expression regulatory machinery during development and in response to specific cellular signals. PARP-1 might modulate gene expression through its catalytic activity leading to poly(ADP-ribosyl)ation of nuclear proteins or by its physical association with relevant proteins. Recently, we have shown that PARP-1 is activated during T cell activation. However, the proposed role of PARP-1 in reprogramming T cell gene expression upon activation remains largely unexplored. Results In the present study we use oligonucleotide microarray analysis to gain more insight into the role played by PARP-1 during the gene expression reprogramming that takes place in T cells upon activation with anti-CD3 stimulation alone, or in combination with anti-CD28 co-stimulation. We have identified several groups of genes with expression modulated by PARP-1. The expression of 129 early-response genes to anti-CD3 seems to be regulated by PARP-1 either in a positive (45 genes) or in a negative manner (84 genes). Likewise, in the presence of co-stimulation (anti-CD3 + anti-CD28 stimulation), the expression of 203 genes is also regulated by PARP-1 either up (173 genes) or down (30 genes). Interestingly, PARP-1 deficiency significantly alters expression of genes associated with the immune response such as chemokines and genes involved in the Th1/Th2 balance. Conclusion This study provides new insights into changes in gene expression mediated by PARP-1 upon T cell activation. Pathway analysis of PARP-1 as a nuclear signalling molecule in T cells would be of relevance for the future development of new therapeutic approaches targeting PARP-1 in the acquired immune response. PMID:18412984

  4. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

    PubMed Central

    Khadka, Prabhat; Hsu, Joseph K.; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A.; Mangerich, Aswin; Croteau, Deborah L.

    2015-01-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response. PMID:26391948

  5. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1.

    PubMed

    Ullrich, O; Diestel, A; Eyüpoglu, I Y; Nitsch, R

    2001-12-01

    Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.

  6. Postnatal Age Influences Hypoglycemia-induced Poly(ADP-ribose) Polymerase-1 Activation in the Brain Regions of Rats

    PubMed Central

    Rao, Raghavendra; Sperr, Dustin; Ennis, Kathleen; Tran, Phu

    2009-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) overactivation plays a significant role in hypoglycemia-induced brain injury in adult rats. To determine the influence of postnatal age on PARP-1 activation, developing and adult male rats were subjected to acute hypoglycemia of equivalent severity and duration. The expression of PARP-1 and its downstream effectors, apoptosis inducing factor (Aifm1), caspase 3 (Casp3), NF-κB (Nfkb1) and bcl-2 (Bcl2), and cellular poly(ADP-ribose) (PAR) polymer expression was assessed in the cerebral cortex, hippocampus, striatum and hypothalamus at 0 h and 24 h post-hypoglycemia. Compared with the control group, PARP-1 expression increased in the cerebral cortex of adult rats 24 h post-hypoglycemia, but not at 0 h, and was accompanied by increased number of PAR-positive cells. The expression was not altered in other brain regions. Aifm1, Nfkb1, Casp3, and Bcl2 expression also increased in the cerebral cortex of adult rats 24 h post-hypoglycemia. Conversely, hypoglycemia did not alter PARP-1 expression and its downstream effectors in any brain region in developing rats. These data parallel the previously demonstrated pattern of hypoglycemia-induced brain injury and suggest that PARP-1 overactivation may determine age- and region-specific vulnerability during hypoglycemia. PMID:19687776

  7. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1

    PubMed Central

    Wang, Yingfei; An, Ran; Umanah, George K.; Park, Hyejin; Nambiar, Kalyani; Eacker, Stephen M.; Kim, BongWoo; Bao, Lei; Harraz, Maged M.; Chang, Calvin; Chen, Rong; Wang, Jennifer E.; Kam, Tae-In; Jeong, Jun Seop; Xie, Zhi; Neifert, Stewart; Qian, Jiang; Andrabi, Shaida A.; Blackshaw, Seth; Zhu, Heng; Song, Hongjun; Ming, Guo-li; Dawson, Valina L.; Dawson, Ted M.

    2016-01-01

    Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation. PMID:27846469

  8. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery

    PubMed Central

    Noël, Georges; Giocanti, Nicole; Fernet, Marie; Mégnin-Chanet, Frédérique; Favaudon, Vincent

    2003-01-01

    Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose) synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose) synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks. PMID:12866953

  9. Alternative mechanisms of inhibiting activity of poly (ADP-ribose) polymerase-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Bezbaruah, Babul Kumar; V, Athira K; Sykam, Shivaji

    2016-01-01

    Poly ADP-ribose polymerase (PARP-1), a DNA nick-sensor enzyme, is an abundant nuclear protein. Upon sensing DNA breaks, PARP-1 gets activated and cleaves NAD into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP-1 itself. Poly(ADP-ribosylation) mainly contributes to DNA repairing mechanism. However, oxidative stress-induced over-activation of PARP-1 consumes excess of NAD and consequently ATP, culminating into cell necrosis. This cellular suicide pathway has been implicated in several conditions such as stroke, myocardial ischemia, diabetes. Thus, it can be a rationale approach to inhibit the activity of PARP-1 for reducing detrimental effects associated with oxidative stress-induced over-activation of PARP-1. Several preclinical as well as clinical studies of PARP-1 inhibitors have been used in conditions such as cancer, stroke and traumatic brain injury. Conventionally, there are many studies which employed the concept of direct inhibition of PARP-1 by competing with NAD. Here, in the present review, we highlight several prospective alternative approaches for the inhibition of PARP-1 activity.

  10. Targeting Human Poly(ADP-Ribose) Polymerase-1 with Natural Medicines and Its Potential Applications in Ovarian Cancer Therapeutics.

    PubMed

    Song, Min; Li, Jun-Lan; Li, Xiao-Ping; Kan, Shi-Feng

    2015-09-07

    Targeting poly(ADP-ribose) polymerase-1 (PARP-1) has been established as an efficient therapeutics for advanced ovarian cancer. In this study, we describe an integrated procedure that combines virtual computer screening and an experimental enzyme assay to discover novel potent PARP-1 inhibitors from more than 130000 commercially available natural products. The protocol employed a stepwise strategy to fast exclude typical PARP-1 non-binders and then performing rigorous prediction to identify promising candidates with high potency against PARP-1. Consequently, eight natural products were hit and tested to determine their inhibitory activities against the PARP-1 catalytic domain. From these, four compounds, i.e., puerarin, phloretin, chlorogenic acid, and biochanin A, were found to have high or moderate potencies with inhibitory IC50 values of 6, 470, 25, and 86 nM, respectively. The values are comparable to that (IC50  = 1.94 nM) of the FDA-approved agent olaparib. Structural and energetic analyses of the modeled structures of the PARP-1 catalytic domain complexed with the newly identified inhibitors revealed a common binding mode in the complexes: the active site of PARP-1 is composed of a thin polar helix and a flat non-polar pocket; the inhibitors can form a number of hydrogen bonds and electrostatic forces with the helix, while tightly packing against the pocket to define chemical interactions.

  11. 3-aminobenzamide, one of poly(ADP-ribose)polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury.

    PubMed

    Meng, Xianqing; Song, Wenqi; Deng, Bin; Xing, Ziling; Zhang, Weihong

    2015-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is anubiquitous, DNA repair-associated enzyme, which participates in gene expression, cell death, central nerve system (CNS) disorders and oxidative stress. According to the previous studies, PARP-1 over-activation may lead to over-consumption of ATP and even cell apoptosis. Spinal cord injury (SCI) is an inducement towards PARP-1 over-activation due to its massive damage to DNA. 3-aminobenzamide (3-AB) is a kind of PARP-1 inhibitors. The relationship among PARP-1, 3-AB, SCI and apoptosis has not been fully understood. Hence, in the present study, we focused on the effects of 3-AB on cell apoptosis after SCI. Accordingly, SCI model was constructed artificially, and 3-AB was injected intrathecally into the Sprague-Dawley (SD) rats. The results demonstrated an increase in cell apoptosis after SCI. Furthermore, PARP-1 was over-activated after SCI but inhibited by 3-AB injection. In addition, apoptosis-inducing factor (AIF) was inhibited but B-cell lymphoma-2 (Bcl-2) was up-regulated by 3-AB. Interestingly, caspase-3 was not significantly altered with or without 3-AB. In conclusion, our experiments showed that 3-AB, as a PARP-1 inhibitor, could inhibit cell apoptosis after SCI in caspase-independent way, which could provide a better therapeutic target for the treatment of SCI.

  12. Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1.

    PubMed

    Chen, Yong; Bang, Sookhee; Park, Soohyun; Shi, Hanyuan; Kim, Sangwon F

    2015-07-15

    NAD(+) plays essential roles in cellular energy homoeostasis and redox state, functioning as a cofactor along the glycolysis and citric acid cycle pathways. Recent discoveries indicated that, through the NAD(+)-consuming enzymes, this molecule may also be involved in many other cellular and biological outcomes such as chromatin remodelling, gene transcription, genomic integrity, cell division, calcium signalling, circadian clock and pluripotency. Poly(ADP-ribose) polymerase 1 (PARP1) is such an enzyme and dysfunctional PARP1 has been linked with the onset and development of various human diseases, including cancer, aging, traumatic brain injury, atherosclerosis, diabetes and inflammation. In the present study, we showed that overexpressed acyl-CoA-binding domain containing 3 (ACBD3), a Golgi-bound protein, significantly reduced cellular NAD(+) content via enhancing PARP1's polymerase activity and enhancing auto-modification of the enzyme in a DNA damage-independent manner. We identified that extracellular signal-regulated kinase (ERK)1/2 as well as de novo fatty acid biosynthesis pathways are involved in ACBD3-mediated activation of PARP1. Importantly, oxidative stress-induced PARP1 activation is greatly attenuated by knocking down the ACBD3 gene. Taken together, these findings suggest that ACBD3 has prominent impacts on cellular NAD(+) metabolism via regulating PARP1 activation-dependent auto-modification and thus cell metabolism and function.

  13. Poly(ADP-ribose)polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1.

    PubMed

    Lebedeva, Natalia A; Anarbaev, Rashid O; Sukhanova, Maria; Vasil'eva, Inna A; Rechkunova, Nadejda I; Lavrik, Olga I

    2015-06-15

    The influence of poly(ADP-ribose)polymerase 1 (PARP1) on the apurinic/apyrimidinic (AP)-site cleavage activity of tyrosyl-DNA phosphodiesterase 1 (TDP1) and interaction of PARP1 and TDP1 were studied. The efficiency of single or clustered AP-site hydrolysis catalysed by TDP1 was estimated. It was shown that the efficiency of AP-site cleavage increases in the presence of an additional AP-site in the opposite DNA strand depending on its position. PARP1 stimulates TDP1; the stimulation effect was abolished in the presence of NAD(+). The interaction of these two proteins was characterized quantitatively by measuring the dissociation constant for the TDP1-PARP1 complex using fluorescently-labelled proteins. The distance between the N-termini of the proteins within the complex was estimated using FRET. The data obtained suggest that PARP1 and TDP1 bind in an antiparallel orientation; the N-terminus of the former protein interacts with the C-terminal domain of the latter. The functional significance of PARP1 and TDP1 interaction in the process of DNA repair was demonstrated for the first time.

  14. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein.

    PubMed

    von Kobbe, Cayetano; Harrigan, Jeanine A; Schreiber, Valérie; Stiegler, Patrick; Piotrowski, Jason; Dawut, Lale; Bohr, Vilhelm A

    2004-01-01

    Werner syndrome (WS) is a genetic premature aging disorder in which patients appear much older than their chronological age. The gene mutated in WS encodes a nuclear protein (WRN) which possesses 3'-5' exonuclease and ATPase-dependent 3'-5' helicase activities. The genomic instability associated with WS cells and the biochemical characteristics of WRN suggest that WRN plays a role in DNA metabolic pathways such as transcription, replication, recombination and repair. Recently we have identified poly(ADP-ribose) polymerase-1 (PARP-1) as a new WRN interacting protein. In this paper, we further mapped the interacting domains. We found that PARP-1 bound to the N-terminus of WRN and to the C-terminus containing the RecQ-conserved (RQC) domain. WRN bound to the N-terminus of PARP-1 containing DNA binding and BRCA1 C-terminal (BRCT) domains. We show that unmodified PARP-1 inhibited both WRN exonuclease and helicase activities, and to our knowledge is the only known WRN protein partner that inactivates both of the WRN's catalytic activities suggesting a biologically significant regulation. Moreover, this dual inhibition seems to be specific for PARP-1, as PARP-2 did not affect WRN helicase activity and only slightly inhibited WRN exonuclease activity. The differential effect of PARP-1 and PARP-2 on WRN catalytic activity was not due to differences in affinity for WRN or the DNA substrate. Finally, we demonstrate that the inhibition of WRN by PARP-1 was influenced by the poly(ADP-ribosyl)ation state of PARP-1. The biological relevance of the specific modulation of WRN catalytic activities by PARP-1 are discussed in the context of pathways in which these proteins may function together, namely in the repair of DNA strand breaks.

  15. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages.

    PubMed

    Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Yates, John R; Moore, Kathryn J; Fisher, Edward A; Garabedian, Michael J

    2016-05-20

    Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.

  16. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala; Mohan, Pritam; Bezbaruah, Babul Kumar

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) functions at the center of cellular stress and sways the immune system at several key points, thus modulates inflammatory diseases. The antiinflammatory properties of PARP-1 inhibitors have been demonstrated ameliorating effect in various neuroinflammatory disorders. It has been reported that there is a close relationship between the inflammatory processes and major depressive disorder. In the present study, we have elucidated the role of oxidative-nitrosative stress-PARP-1 pathway in lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical alterations in mice. 3-Aminobenzamide (10 and 30mg/kg) and imipramine (10 and 30mg/kg) were administered once daily for 14days. Mice were challenged with LPS (1mg/kg, i.p.) 30min after drug administration on the 14th day. The mRNA expression level of PARP-1 (12h after LPS injection) in the hippocampus was measured through quantitative real-time PCR. All the behavioral and biochemical parameters were assessed at 24h after LPS injection. The expression level of PARP-1mRNA was found significantly up-regulated in the hippocampus at 12h after LPS administration. Results showed that the LPS-challenged mice exhibited an increase in immobility time seen in forced swimming test and tail suspension test. LPS increased the levels of proinflammatory cytokines and oxido-nitrosative stress parameters in the hippocampus. However, pretreatment with 3-aminobenzamide (30mg/kg) significantly reversed the LPS-induced alterations in behavioral parameters, proinflammatory cytokines, oxidative-nitrosative stress and PARP-1 mRNA levels. Imipramine failed to prevent the up-regulation of PARP-1 induced by LPS administration. Our results emphasized that oxidative-nitrosative stress-PARP-1 cascade can play a key role in LPS-induced neurobehavioral and neurochemical anomalies.

  17. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

    PubMed

    Pic, Emilie; Gagné, Jean-Philippe; Poirier, Guy G

    2011-12-01

    PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

  18. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity

    PubMed Central

    Yoon, Sang Pil

    2016-01-01

    Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of PARP1 inhibition on oxidative stress is associated with sirtuin 3 (SIRT3) activation. Exposure to 400 µM cisplatin for 8 hours in cells decreased activity and expression of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPX), and SIRT3, while it increased their lysine acetylation. However, treatment with 1 µM PJ34 hydrochloride, a potent PARP1 inhibitor, restored activity and/or expression in those antioxidant enzymes, decreased lysine acetylation of those enzymes, and improved SIRT3 expression and activity in the cisplatin-injured cells. Using transfection with SIRT3 double nickase plasmids, SIRT3-deficient cells given cisplatin did not show the ameliorable effect of PARP1 inhibition on lysine acetylation and activity of antioxidant enzymes, including MnSOD, catalase and GPX. Furthermore, SIRT3 deficiency in cisplatin-injured cells prevented PARP1 inhibition-induced increase in forkhead box O3a transcriptional activity, and upregulation of MnSOD and catalase. Finally, loss of SIRT3 in cisplatin-exposed cells removed the protective effect of PARP1 inhibition against oxidative stress, represented by the concentration of lipid hydroperoxide and 8-hydroxy-2'-deoxyguanosine; and necrotic cell death represented by a percentage of propidium iodide–positively stained cells. Taken together, these results indicate that PARP1 inhibition protects kidney proximal tubular cells against oxidative stress through SIRT3 activation during cisplatin nephrotoxicity. PMID:27722009

  19. Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADP-ribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells

    PubMed Central

    FENG, XIAOXING; KOH, DAVID W.

    2013-01-01

    The genome-protecting role of poly(ADP-ribose) (PAR) has identified PAR polymerase-1 (PARP-1) and PAR glycohydrolase (PARG), two enzymes responsible for the synthesis and hydrolysis of PAR, as chemotherapeutic targets. Each has been previously individually evaluated in chemotherapy, but the effects of combination PARP-1 and PARG inhibition in cancer cells are not known. Here we determined the effects of the inhibition of PARP-1 and the absence or RNAi knockdown of PARG on PAR synthesis, cell death after chemotherapy and long-term viability. Using three experimental/clinical PARP-1 inhibitors in PARG-null cells, we show decreased levels of PAR and increased short-term and long-term viability with each inhibitor, with the exception of DPQ. Treatment with the experimental chemotherapeutic agent, N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), led to increased cell death in PARG-null cells, but decreased cell death when pretreated with each PARP-1 inhibitor. Similar results were observed in MNNG-treated HeLa cells, where RNAi knockdown of PARG or pretreatment with ABT-888 led to increased HeLa cell death, whereas combination PARG RNAi knockdown + ABT-888 failed to produce increased cell death. The results demonstrate the ability of the PARP-1 inhibitors to decrease PAR levels, maintain viability and decrease PAR-mediated cell death after chemotherapeutic treatment in the absence of PARG. Further, the results demonstrate that the combination of PARP-1 and PARG inhibition in chemotherapy does not produce increased HeLa cell death. Thus, the results indicate that inhibiting both PARP-1 and PARG, which both are chemotherapeutic targets that increase cancer cell death, does not lead to synergistic cell death in HeLa cells. Therefore, strategies that target PAR metabolism for the improved treatment of cancer may be required to target PARP-1 and PARG individually in order to optimize cancer cell death. PMID:23254695

  20. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  1. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  2. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.

  3. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    PubMed Central

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  4. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  5. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity

    PubMed Central

    Duan, Yuntao; Gross, Robert A; Sheu, Shey-Shing

    2007-01-01

    Mitochondrial Ca2+ uptake and poly(ADP-ribose) polymerase-1 (PARP-1) activation are both required for glutamate-induced excitotoxic neuronal death. Since activation of the glutamate receptors can induce increased levels of reactive oxygen species (ROS), we investigated the relationship of mitochondrial Ca2+ uptake and ROS generation, and the possibility that ROS increase is a required signal for PARP-1 activation in cultured striatal neurons. Based on the spatial profile of NMDA-induced ROS generation, we found that only mitochondria showed a significant ROS increase within 30 min after NMDA receptor activation. This ROS increase was inhibited by the mitochondrial complex inhibitors rotenone and oligomycin, but not by the cytosolic phospholipase A2 or xanthine oxidase inhibitors. Mitochondrial ROS generation was also inhibited by both removal of Ca2+ from extracellular medium and blockage of mitochondrial Ca2+ uptake by either a mitochondrial uncoupler or a Ca2+ uniporter inhibitor. Furthermore, both DNA damage and PARP-1 activation induced by NMDA treatment was inhibited by blocking mitochondrial Ca2+ uptake or by antioxidants. Our results demonstrate that ROS production during the early stage of acute excitotoxicity derives primarily from mitochondria and is Ca2+-dependent. More importantly, the increase of mitochondrial ROS serves as a signal for PARP-1 activation, suggesting that concomitant mitochondrial Ca2+ uptake and PARP-1 activation constitute a unified mechanism for excitotoxic neuronal death. PMID:17947304

  6. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    SciTech Connect

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J.

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  7. Poly(ADP-Ribose) Polymerase 1–Sirtuin 1 Functional Interplay Regulates LPS-Mediated High Mobility Group Box 1 Secretion

    PubMed Central

    Walko, Thomas D; Di Caro, Valentina; Piganelli, Jon; Billiar, Timothy R; Clark, Robert SB; Aneja, Rajesh K

    2014-01-01

    Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD+) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD+-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis. PMID:25517228

  8. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    SciTech Connect

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.; Medeiros, Matthew K.; Liu, Ke J.; Lau, Serrine S.; Gandolfi, A.J.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA

  9. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    SciTech Connect

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  10. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.

  11. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    SciTech Connect

    Nagy, Edit; Caidahl, Kenneth; Franco-Cereceda, Anders; Baeck, Magnus

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. Black-Right-Pointing-Pointer We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. Black-Right-Pointing-Pointer Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. Black-Right-Pointing-Pointer The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. Black-Right-Pointing-Pointer Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C{sub 4} (LTC{sub 4}) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = -0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = -0.498; P = 0.0298) only in tricuspid aortic valves

  12. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity.

    PubMed

    Wang, Zhigang; Qian, Hui; Yiu, Shek-Man; Sun, Jianwei; Zhu, Guangyu

    2014-02-01

    Small-molecule inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) have currently drawn much attention as promising chemotherapeutic drug candidates, and there is a need to develop more potent PARP inhibitors with improved bioavailability. Here we report a strategy to improve the cytotoxicity of PARP inhibitors by conjugation with organometallic ruthenium(II)-arene compounds. We also report a systematic study to reveal the mechanism of action of these ruthenium-PARP inhibitor conjugates. The complexes have been synthesized and characterized spectroscopically. The improved antiproliferative activity from the as-prepared complexes in four human cancer cell lines has indicated their potential for further development as antitumor drugs. Cellular uptake study reveals that the most active complex 3 easily entered into cells. Target validation assays show that the complexes inhibited PARP-1 slightly better than the original PARP inhibitors, that complex 3 strongly bound to DNA and inhibited transcription, and that this complex arrested the cell cycle at the G0/G1 stage. This type of information could shed light on the design of the next generation of more active ruthenium-PARP inhibitor conjugates.

  13. p63 involvement in poly(ADP-ribose) polymerase 1 signaling of topoisomerase I-dependent DNA damage in carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Malanga, Maria; Calabrò, Viola; Quesada, Piera

    2013-04-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) inhibitors are thought as breakthrough for cancer treatment in solid tumors such as breast cancer through their effects on PARP's enzymatic activity. Our previous findings showed that the hydrophilic PARP inhibitor PJ34 enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to topotecan, a DNA Topoisomerase I (TOP 1) inhibitor. In the present study, we combine the classical TOP 1 poison camptothecin or its water-soluble derivative topotecan with PJ34 to investigate the potentiation of chemotherapeutic efficiency in MCF7 (p53(WT)), MDA-MB231 (p53(mut)) breast carcinoma cells and SCC022 (p53(null)) squamous carcinoma cells. We show that, following TPT-PJ34 combined treatment, MCF7 cells exhibit apoptotic death while MDA-MB231 and SCC022 cells are more resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 addition reverts TPT-dependent PARP-1 automodification and triggers caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, stimulates p53 expression while in combination with PJ34 increases p53, TAp63α and TAp63γ protein levels with a concomitant reduction of MDM2 protein. The identification of p63 proteins as new players involved in the cancer cell response to TPT-PJ34 is relevant for a better understanding of the PARP1-dependent signaling of DNA damage. Furthermore, our data indicate that, in response to TPT-PJ34 combined chemotherapy, a functional cooperation between p53 and TAp63 proteins may occur and be essential to trigger apoptotic cell death.

  14. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    PubMed

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.

  15. NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1.

    PubMed

    Wang, Shao-Hui; Liao, Xiao-Mei; Liu, Dan; Hu, Juan; Yin, Yang-Yang; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2012-11-01

    Nerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear. In this study we found that NGF administration facilitates the hippocampus-dependent long-term memory and synaptic plasticity by increasing the activity of PARP-1, a polymerase mediating the PolyADP-ribosylation and important for the memory formation. Co-application of 3-Aminobenzamide (3-AB), a specific inhibitor of PARP-1, distinctly blocked the boosting effect of NGF on memory and synaptic plasticity, and the activation of downstream PKA-CREB signal pathway. Our data provide the first evidence that NGF supplement facilitates synaptic plasticity and the memory ability through PARP-1-mediated protein polyADP-ribosylation and activation of PKA-CREB pathway.

  16. Discovery and Structure–Activity Relationship of Novel 2,3-Dihydrobenzofuran-7-carboxamide and 2,3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives as Poly(ADP-ribose)polymerase-1 Inhibitors

    PubMed Central

    2015-01-01

    Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 μM). To facilitate synthetically feasible derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide (36, IC50 = 16.2 μM). The electrophilic 2-position of this scaffold was accessible for extended modifications. Substituted benzylidene derivatives at the 2-position were found to be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino of the benzylidene moiety resulted in significant improvement in inhibition of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed selective cytotoxicity in BRCA2-deficient DT40 cells. Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to a multidomain PARP-1 structure were obtained, providing insights into further development of these inhibitors. PMID:24922587

  17. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    SciTech Connect

    Zhu, Yan; Li, Guodong; Dong, Yafeng; Zhou, Helen H.; Kong, Bo; Aleksunes, Lauren M.; Richardson, Jason R.; Li, Fei; Guo, Grace L.

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.

  18. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1.

    PubMed

    Zhang, Haoyue; Xiong, Zheng-Mei; Cao, Kan

    2014-06-03

    Hutchinson-Gilford progeria syndrome (HGPS) is a severe human premature aging disorder caused by a lamin A mutant named progerin. Death occurs at a mean age of 13 y from cardiovascular problems. Previous studies revealed loss of vascular smooth muscle cells (SMCs) in the media of large arteries in a patient with HGPS and two mouse models, suggesting a causal connection between the SMC loss and cardiovascular malfunction. However, the mechanisms of how progerin leads to massive SMC loss are unknown. In this study, using SMCs differentiated from HGPS induced pluripotent stem cells, we show that HGPS SMCs exhibit a profound proliferative defect, which is primarily caused by caspase-independent cell death. Importantly, progerin accumulation stimulates a powerful suppression of PARP1 and consequently triggers an activation of the error-prone nonhomologous end joining response. As a result, most HGPS SMCs exhibit prolonged mitosis and die of mitotic catastrophe. This study demonstrates a critical role of PARP1 in mediating SMC loss in patients with HGPS and elucidates a molecular pathway underlying the progressive SMC loss in progeria.

  19. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.

    PubMed

    Ghosh, Rajib; Roy, Sanchita; Kamyab, Johan; Dantzer, Francoise; Franco, Sonia

    2016-09-01

    In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.

  20. Poly(ADP-ribose) metabolism in brain and its role in ischemia pathology.

    PubMed

    Strosznajder, Robert Piotr; Czubowicz, Kinga; Jesko, Henryk; Strosznajder, Joanna Benigna

    2010-06-01

    The biological roles of poly(ADP-ribose) polymers (PAR) and poly(ADP-ribosyl)ation of proteins in the central nervous system are diverse. The homeostasis of PAR orchestrated by poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) is crucial for cell physiology and pathology. Both enzymes are ubiquitously distributed in neurons and glia; however, they are segregated at the subcellular level. PARP-1 serves as a "nick sensor" for single- or double-stranded breaks in DNA and is involved in long and short patch base-excision repair, while PARG breaks down PAR. The stimulation of PARP-1 and PAR formation can activate proinflammatory transcription factors, including nuclear factor kappa B. However, hyperactivation of PARP-1 can result in depletion of NAD/ATP, and in PAR-dependent mitochondrial pore formation leading to release of apoptosis inducing factor and cell death. The role of PAR as a death signaling molecule in brain ischemia-reperfusion and inflammation as well as the effect of gender and aging is presented in this review. Modulating the PAR level through pharmacological or genetic intervention on PARP-1/PARG activity and gene expression should be a valuable way for neuroprotective strategy.

  1. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway.

    PubMed

    Xie, F; Sun, S; Xu, A; Zheng, S; Xue, M; Wu, P; Zeng, J H; Bai, L

    2014-01-16

    Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn's disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor

  2. Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in Poly (ADP-ribose) polymerase (Parp-1) null oocytes

    PubMed Central

    Yang, Feikun; Baumann, Claudia; De La Fuente, Rabindranath

    2009-01-01

    In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1 (−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1 (−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains. PMID:19463809

  3. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  4. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells

    PubMed Central

    2014-01-01

    Introduction Breast cancer is a devastating disease that results in approximately 40,000 deaths each year in the USA. Current drug screening and chemopreventatitive methods are suboptimal, due in part to the poor specificity of compounds for cancer cells. Poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi)-mediated therapy is a promising approach for familial breast cancers caused by mutations of breast cancer-associated gene-1 and -2 (BRCA1/2), yet drug resistance frequently occurs during the treatment. Moreover, PARPis exhibit very little effect on cancers that are proficient for DNA repair and clinical efficacy for PARPis as single-agent therapies has yet to be illustrated. Methods Using a quantitative high-throughput screening approach, we screened a library containing 2,816 drugs, most of which are approved for human or animal use by the Food and Drug Administration (FDA) or other countries, to identify compounds that sensitize breast cancer cells to PARPi. After initial screening, we performed further cellular and molecular analysis on lestaurtinib, which is an orally bioavailable multikinase inhibitor and has been used in clinical trials for myeloproliferative disorders and acute myelogenous leukemia. Results Our study indicated that lestaurtinib is highly potent against breast cancers as a mono-treatment agent. It also strongly enhanced the activity of the potent PARPi AG14361 on breast cancer cell growth both in vitro and in vivo conditions. The inhibition of cancer growth is measured by increased apoptosis and reduced cell proliferation. Consistent with this, the treatment results in activation of caspase 3/7, and accumulation of cells in the G2 phase of the cell cycle, irrespective of their BRCA1 status. Finally, we demonstrated that AG14361 inhibits NF-κB signaling, which is further enhanced by lestaurtinib treatment. Conclusions Lestaurtinib amplifies the ability of the PARP1 inhibitor AG14361 to kill BRCA1 mutant and wild-type breast cancer

  5. Automodification of PARP-1 mediates its tight binding to the nuclear matrix

    SciTech Connect

    Zaalishvili, Giorgi; Margiani, Dina; Kutalia, Ketevan; Suladze, Saba; Zaalishvili, Tengiz

    2010-02-26

    Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD{sup +}-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.

  6. The Effect of Poly(ADP-ribose) Polymerase-1 Gene 3'Untranslated Region Polymorphism in Colorectal Cancer Risk among Saudi Cohort.

    PubMed

    Alhadheq, Abdullah M; Purusottapatnam Shaik, Jilani; Alamri, Abdullah; Aljebreen, Abdulrahman M; Alharbi, Othman; Almadi, Majid A; Alhadeq, Faten; Azzam, Nahla A; Semlali, Abdelhabib; Alanazi, Mohammad; Bazzi, Mohammad D; Reddy Parine, Narasimha

    2016-01-01

    Background. DNA repair systems are essential for each cell to repair and maintain the genome integrity. Base excision repair pathway is one of the crucial pathways to maintain genome integrity and PARP-1 plays a key role in BER pathway. The purpose of this study is to evaluate the association between polymorphisms in PARP-1 3'untranslated region (3'UTR) SNP rs8679 and its expression in colorectal cancer. Methods. Genotyping and gene expression were performed using TaqMan assays. The effects of age, gender, and tumor location were evaluated in cases and controls regarding the genotyping results. Resulting data was analyzed using SPSS software. Results and Conclusions. Genotyping analysis for SNP rs8679 showed decreased susceptibility to colorectal cancer at heterozygous TC allele and at minor allele C. Further this protective association was also observed in younger age patients (≤57), in female patients, and also in patients with tumors located at colon and rectum. PARP-1 expression levels are significantly different in colorectal cancer compared to matched normal tissue. Our findings proved that the upregulation of PARP-1 is associated with tumor progression and poor prognosis in Saudi patients with colorectal cancer, suggesting that PARP-1 can be novel and valuable signatures for predicting the clinical outcome of patients with colorectal cancer.

  7. The Effect of Poly(ADP-ribose) Polymerase-1 Gene 3′Untranslated Region Polymorphism in Colorectal Cancer Risk among Saudi Cohort

    PubMed Central

    Alhadheq, Abdullah M.; Purusottapatnam Shaik, Jilani; Alamri, Abdullah; Aljebreen, Abdulrahman M.; Alharbi, Othman; Almadi, Majid A.; Alhadeq, Faten; Azzam, Nahla A.; Alanazi, Mohammad; Bazzi, Mohammad D.

    2016-01-01

    Background. DNA repair systems are essential for each cell to repair and maintain the genome integrity. Base excision repair pathway is one of the crucial pathways to maintain genome integrity and PARP-1 plays a key role in BER pathway. The purpose of this study is to evaluate the association between polymorphisms in PARP-1 3′untranslated region (3′UTR) SNP rs8679 and its expression in colorectal cancer. Methods. Genotyping and gene expression were performed using TaqMan assays. The effects of age, gender, and tumor location were evaluated in cases and controls regarding the genotyping results. Resulting data was analyzed using SPSS software. Results and Conclusions. Genotyping analysis for SNP rs8679 showed decreased susceptibility to colorectal cancer at heterozygous TC allele and at minor allele C. Further this protective association was also observed in younger age patients (≤57), in female patients, and also in patients with tumors located at colon and rectum. PARP-1 expression levels are significantly different in colorectal cancer compared to matched normal tissue. Our findings proved that the upregulation of PARP-1 is associated with tumor progression and poor prognosis in Saudi patients with colorectal cancer, suggesting that PARP-1 can be novel and valuable signatures for predicting the clinical outcome of patients with colorectal cancer. PMID:27746584

  8. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.

    PubMed

    Valdor, Rut; Schreiber, Valérie; Saenz, Luis; Martínez, Teresa; Muñoz-Suano, Alba; Dominguez-Villar, Margarita; Ramírez, Pablo; Parrilla, Pascual; Aguado, Enrique; García-Cózar, Francisco; Yélamos, José

    2008-04-01

    The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.

  9. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

    PubMed

    Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M

    2014-07-15

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.

  10. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    PubMed Central

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  11. The role of poly(ADP-ribose) in the DNA damage signaling network.

    PubMed

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  12. PARP-1 activation requires local unfolding of an autoinhibitory domain

    PubMed Central

    Dawicki-McKenna, Jennine M.; Langelier, Marie-France; DeNizio, Jamie E.; Riccio, Amanda A.; Cao, Connie D.; Karch, Kelly R.; McCauley, Michael; Steffen, Jamin D.; Black, Ben E.; Pascal, John M.

    2015-01-01

    SUMMARY Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD+ to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD+ binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors. PMID:26626480

  13. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.

    PubMed

    Dawicki-McKenna, Jennine M; Langelier, Marie-France; DeNizio, Jamie E; Riccio, Amanda A; Cao, Connie D; Karch, Kelly R; McCauley, Michael; Steffen, Jamin D; Black, Ben E; Pascal, John M

    2015-12-03

    Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.

  14. Transcriptional Control by PARP-1: Chromatin Modulation, Enhancer-binding, Coregulation, and Insulation

    PubMed Central

    Kraus, W. Lee

    2008-01-01

    Summary The regulation of gene expression requires a wide array of protein factors that can modulate chromatin structure, act at enhancers, function as transcriptional coregulators, or regulate insulator function. Poly(ADP-ribose) polymerase-1 (PARP-1), an abundant and ubiquitous nuclear enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been implicated in all of these functions. Recent biochemical, genomic, proteomic, and cell-based studies have highlighted the role of PARP-1 in each of these processes and provided new insights about the molecular mechanisms governing PARP-1-dependent regulation of gene expression. In addition, these studies have demonstrated how PARP-1 functions as an integral part of cellular signaling pathways that culminate in gene regulatory outcomes. PMID:18450439

  15. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress.

    PubMed

    Brunyanszki, Attila; Olah, Gabor; Coletta, Ciro; Szczesny, Bartosz; Szabo, Csaba

    2014-10-01

    We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.

  16. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    SciTech Connect

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  17. The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

    PubMed Central

    Blenn, Christian; Wyrsch, Philippe; Althaus, Felix R.

    2012-01-01

    Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption. PMID:24705085

  18. PARP-1 protein expression in glioblastoma multiforme

    PubMed Central

    Galia, A.; Calogero, A.E.; Condorelli, R.A.; Fraggetta, F.; La Corte, C.; Ridolfo, F.; Bosco, P.; Castiglione, R.; Salemi, M.

    2012-01-01

    One of the most common type of primary brain tumors in adults is the glioblastoma multiforme (GBM) (World Health Organization grade IV astrocytoma). It is the most common malignant and aggressive form of glioma and it is among the most lethal ones. Poly (ADP-ribose) polymerase 1 (PARP-1) gene, located to 1q42, plays an important role for the efficient maintenance of genome integrity. PARP-1 protein is required for the apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. PARP-1 is proteolytically cleaved at the onset of apoptosis by caspase-3. Microarray analysis of PARP-1 gene expression in more than 8000 samples revealed that PARP-1 is more highly expressed in several types of cancer compared with the equivalent normal tissues. Overall, the most differences in PARP-1 gene expression have been observed in breast, ovarian, endometrial, lung, and skin cancers, and non-Hodgkin's lymphoma. We evaluated the expression of PARP-1 protein in normal brain tissues and primary GBM by immunohistochemistry. Positive nuclear PARP-1 staining was found in all samples with GBM, but not in normal neurons from controls (n=4) and GBM patients (n=27). No cytoplasmic staining was observed in any sample. In conclusion, PARP-1 gene is expressed in GBM. This finding may be envisioned as an attempt to trigger apoptosis in this tumor, as well as in many other malignancies. The presence of the protein exclusively at the nucleus further support the function played by this gene in genome integrity maintenance and apoptosis. Finally, PARP-1 staining may be used as GBM cell marker. PMID:22472897

  19. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage

    PubMed Central

    Steffen, Jamin D.; McCauley, Michael M.; Pascal, John M.

    2016-01-01

    Poly(ADP-ribose) (PAR) is a posttranslational modification predominantly synthesized by PAR polymerase-1 (PARP-1) in genome maintenance. PARP-1 detects DNA damage, and damage detection is coupled to a massive increase PAR production, primarily attached to PARP-1 (automodification). Automodified PARP-1 then recruits repair factors to DNA damage sites. PARP-1 automodification eventually leads to release from DNA damage thus turning off catalytic activity, although the effects of PAR on PARP-1 structure are poorly understood. The multiple domains of PARP-1 are organized upon detecting DNA damage, creating a network of domain contacts that imposes a major conformational transition in the catalytic domain that increases PAR production. Presented here are two novel fluorescent sensors that monitor the global and local structural transitions of PARP-1 that are associated with DNA damage detection and catalytic activation. These sensors display real-time monitoring of PARP-1 structural transitions upon DNA damage detection, and their reversal upon PARP-1 automodification. The fluorescent sensors are further used to investigate intramolecular and intermolecular PARP-1 activation, followed by the observation that intramolecular activation of PARP-1 is the predominant response to DNA strand breaks in cells. These results provide a unique perspective on the interplay between PARP-1 DNA damage recognition, allosteric regulation, and catalytic activity. PMID:27530425

  20. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage.

    PubMed

    Steffen, Jamin D; McCauley, Michael M; Pascal, John M

    2016-11-16

    Poly(ADP-ribose) (PAR) is a posttranslational modification predominantly synthesized by PAR polymerase-1 (PARP-1) in genome maintenance. PARP-1 detects DNA damage, and damage detection is coupled to a massive increase PAR production, primarily attached to PARP-1 (automodification). Automodified PARP-1 then recruits repair factors to DNA damage sites. PARP-1 automodification eventually leads to release from DNA damage thus turning off catalytic activity, although the effects of PAR on PARP-1 structure are poorly understood. The multiple domains of PARP-1 are organized upon detecting DNA damage, creating a network of domain contacts that imposes a major conformational transition in the catalytic domain that increases PAR production. Presented here are two novel fluorescent sensors that monitor the global and local structural transitions of PARP-1 that are associated with DNA damage detection and catalytic activation. These sensors display real-time monitoring of PARP-1 structural transitions upon DNA damage detection, and their reversal upon PARP-1 automodification. The fluorescent sensors are further used to investigate intramolecular and intermolecular PARP-1 activation, followed by the observation that intramolecular activation of PARP-1 is the predominant response to DNA strand breaks in cells. These results provide a unique perspective on the interplay between PARP-1 DNA damage recognition, allosteric regulation, and catalytic activity.

  1. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade

    PubMed Central

    Shang, Fenqing; Zhang, Jiao; Li, Zhao; Zhang, Jin; Yin, Yanjun; Wang, Yaqiong; Marin, Traci L.; Gongol, Brendan; Xiao, Han; Zhang, You-yi; Chen, Zhen; Shyy, John Y-J; Lei, Ting

    2016-01-01

    Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction. PMID:26986624

  2. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

    PubMed Central

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-01-01

    Summary Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  3. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1.

    PubMed

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E; Riccio, Amanda A; Pascal, John M; Neuhaus, David

    2015-12-03

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  4. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone.

    PubMed

    Muthurajan, Uma M; Hepler, Maggie R D; Hieb, Aaron R; Clark, Nicholas J; Kramer, Michael; Yao, Tingting; Luger, Karolin

    2014-09-02

    Poly [ADP-ribose] polymerase 1 (PARP-1) is a highly abundant chromatin-associated enzyme. It catalyzes the NAD(+)-dependent polymerization of long chains of poly-ADP ribose (PAR) onto itself in response to DNA damage and other cues. More recently, the enzymatic activity of PARP-1 has also been implicated in the regulation of gene expression. The molecular basis for the functional switch from chromatin architectural protein to transcription factor and DNA damage responder, triggered by PARP-1 automodification, is unknown. Here, we show that unmodified PARP-1 engages in at least two high-affinity binding modes with chromatin, one of which does not involve free DNA ends, consistent with its role as a chromatin architectural protein. Automodification reduces PARP-1 affinity for intact chromatin but not for nucleosomes with exposed DNA ends. Automodified (AM) PARP-1 has the ability to sequester histones (both in vitro and in cells) and to assemble nucleosomes efficiently in vitro. This unanticipated nucleosome assembly activity of AM-PARP-1, coupled with the fast turnover of the modification, suggests a model in which DNA damage or transcription events trigger transient histone chaperone activity.

  5. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    DOE PAGES

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less

  6. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    SciTech Connect

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; Yang, Ji -Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  7. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells.

    PubMed

    Gottipati, Ponnari; Vischioni, Barbara; Schultz, Niklas; Solomons, Joyce; Bryant, Helen E; Djureinovic, Tatjana; Issaeva, Natalia; Sleeth, Kate; Sharma, Ricky A; Helleday, Thomas

    2010-07-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) is activated by DNA single-strand breaks (SSB) or at stalled replication forks to facilitate DNA repair. Inhibitors of PARP efficiently kill breast, ovarian, or prostate tumors in patients carrying hereditary mutations in the homologous recombination (HR) genes BRCA1 or BRCA2 through synthetic lethality. Here, we surprisingly show that PARP1 is hyperactivated in replicating BRCA2-defective cells. PARP1 hyperactivation is explained by the defect in HR as shRNA depletion of RAD54, RAD52, BLM, WRN, and XRCC3 proteins, which we here show are all essential for efficient HR and also caused PARP hyperactivation and correlated with an increased sensitivity to PARP inhibitors. BRCA2-defective cells were not found to have increased levels of SSBs, and PAR polymers formed in HR-defective cells do not colocalize to replication protein A or gammaH2AX, excluding the possibility that PARP hyperactivity is due to increased SSB repair or PARP induced at damaged replication forks. Resistance to PARP inhibitors can occur through genetic reversion in the BRCA2 gene. Here, we report that PARP inhibitor-resistant BRCA2-mutant cells revert back to normal levels of PARP activity. We speculate that the reason for the sensitivity of HR-defective cells to PARP inhibitors is related to the hyperactivated PARP1 in these cells. Furthermore, the presence of PAR polymers can be used to identify HR-defective cells that are sensitive to PARP inhibitors, which may be potential biomarkers.

  8. Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    PubMed Central

    Mégnin-Chanet, Frédérique; Bollet, Marc A.

    2010-01-01

    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated. PMID:20725763

  9. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells

    PubMed Central

    Nüske, Stefan; Scholz, Armin M.; Bogner, Jacqueline; Ruf, Benjamin; Zolghadr, Kourosh; Drexler, Sophie E.; Drexler, Guido A.; Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Romer, Tina; Friedl, Anna A.; Rothbauer, Ulrich

    2016-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair. PMID:26950694

  10. Theophylline prevents NAD{sup +} depletion via PARP-1 inhibition in human pulmonary epithelial cells

    SciTech Connect

    Moonen, Harald J.J. . E-mail: h.moonen@grat.unimaas.nl; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-12-30

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD{sup +}, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD{sup +} pool, and of NAD{sup +}-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD{sup +} levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.

  11. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  12. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  13. PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death.

    PubMed

    Zhang, Fengjiao; Xie, Ruiye; Munoz, Frances M; Lau, Serrine S; Monks, Terrence J

    2014-07-01

    The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell death in human renal proximal tubule epithelial cells (HK-2), to further elucidate the role of PARP-1 in ROS-dependent cell death. TGHQ-induced ROS generation, DNA strand breaks, hyperactivation of PARP-1, rapid depletion of nicotinamide adenine dinucleotide (NAD), elevations in intracellular Ca(2+) concentrations, and subsequent nonapoptotic cell death in both a PARP- and Ca(2+)-dependent manner. Thus, inhibition of PARP-1 with PJ34 completely blocked TGHQ-mediated accumulation of poly(ADP-ribose) polymers and NAD consumption, and delayed HK-2 cell death. In contrast, chelation of intracellular Ca(2+) with BAPTA completely abrogated TGHQ-induced cell death. Ca(2+) chelation also attenuated PARP-1 hyperactivation. Conversely, inhibition of PARP-1 modulated TGHQ-mediated changes in Ca(2+) homeostasis. Interestingly, PARP-1 hyperactivation was not accompanied by the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, a process usually associated with PARP-dependent cell death. Thus, pathways coupling PARP-1 hyperactivation to cell death are likely to be context-dependent, and therapeutic strategies designed to target PARP-1 need to recognize such variability. Our studies provide new insights into PARP-1-mediated nonapoptotic cell death, during which PARP-1 hyperactivation and elevations in intracellular Ca(2+) are reciprocally coupled to amplify ROS-induced nonapoptotic cell death.

  14. PARP-1 may be involved in angiogenesis in epithelial ovarian cancer

    PubMed Central

    Wei, Wei; Li, Yan; Lv, Shuqing; Zhang, Cancan; Tian, Yongjie

    2016-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is involved in DNA repair and has been implicated in chemoresistance. The present study investigated whether PARP-1 promotes angiogenesis in ovarian cancer. PARP-1 and vascular endothelial growth factor A (VEGF-A) expression and CD34+ microvascular density (MVD) were assessed using immunohistochemistry in 60 human epithelial ovarian cancer specimens. PARP-1 was stably knocked-down in SKOV3 cells using a specific small interfering RNA (siRNA); angiogenic capacity was assessed using the human umbilical vein endothelial cell (HUVEC) tubule formation assay; and PARP-1 and VEGF-A expression were examined by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA. PARP-1 was found to be expressed in 73.3% (44/60) of the human epithelial ovarian cancer specimens and was significantly associated with VEGF-A, MVD, tumor size, histological grade and lymphatic metastasis (P<0.05). Compared with cells transfected with a negative control siRNA, knockdown of PARP-1 significantly suppressed the ability of SKOV3 cell-conditioned media to promote HUVEC tubule formation on Matrigel in vitro. Knockdown of PARP-1 in SKOV3 cells also significantly reduced VEGF-A mRNA and protein expression and secretion. In summary, PARP-1 is overexpressed and may enhance angiogenesis in epithelial ovarian cancer by upregulating VEGF-A. PMID:28101214

  15. Poly(ADP-Ribose) Polymerases in Aging - Friend or Foe?

    PubMed

    Vida, András; Abdul-Rahman, Omar; Mikó, Edit; Brunyánszki, Attila; Bai, Peter

    2016-01-01

    Poly(ADP-ribose) polymerases were originally described as DNA repair enzymes. PARP-1, PARP-2 and PARP-3 can be activated by DNA damage and the resulting activation of these enzymes that facilitate DNA repair, seems to be a prerequisite of successful aging. PARP activation helps to maintain genomic integrity through supporting DNA repair systems; however, in parallel these enzymes limit metabolic fitness and make the organism more prone for metabolic diseases. In addition, several other pathways (e.g., proteostasis, nutrient sensing, stem cell proliferation or cellular communication) all contributing to aging, were shown to be PARP mediated. In this review we aim to summarize our current knowledge on the role of PARPs in aging.

  16. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    PubMed

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms.

  17. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    PubMed

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  18. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    SciTech Connect

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  19. Sensitizing thermochemotherapy with a PARP1-inhibitor.

    PubMed

    Oei, Arlene L; Vriend, Lianne E M; van Leeuwen, Caspar M; Rodermond, Hans M; Ten Cate, Rosemarie; Westermann, Anneke M; Stalpers, Lukas J A; Crezee, Johannes; Kanaar, Roland; Kok, H Petra; Krawczyk, Przemek M; Franken, Nicolaas A P

    2016-08-19

    Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects.

  20. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.

    PubMed

    Robert, Carine; Nagaria, Pratik K; Pawar, Nisha; Adewuyi, Adeoluwa; Gojo, Ivana; Meyers, David J; Cole, Philip A; Rassool, Feyruz V

    2016-06-01

    Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP "trapping". Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP "trapping", which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells.

  1. Metabolic roles of poly(ADP-ribose) polymerases.

    PubMed

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  2. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    SciTech Connect

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  3. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription.

    PubMed

    Vidaković, Melita; Gluch, Angela; Qiao, Junhua; Oumard, Andrè; Frisch, Matthias; Poznanović, Goran; Bode, Juergen

    2009-05-15

    This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.

  4. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage

    PubMed Central

    Kang, Ho Chul; Lee, Yun-Il; Shin, Joo-Ho; Andrabi, Shaida A.; Chi, Zhikai; Gagné, Jean-Philippe; Lee, Yunjong; Ko, Han Seok; Lee, Byoung Dae; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase. Iduna’s E3 ligase activity requires PAR binding because point mutations at Y156A and R157A eliminate Iduna’s PAR binding and Iduna’s E3 ligase activity. Iduna’s E3 ligase activity also requires an intact really interesting new gene (RING) domain because Iduna possessing point mutations at either H54A or C60A is devoid of ubiquitination activity. Tandem affinity purification reveals that Iduna binds to a number of proteins that are either PARsylated or bind PAR including PAR polymerase-1, 2 (PARP1, 2), nucleolin, DNA ligase III, KU70, KU86, XRCC1, and histones. PAR binding to Iduna activates its E3 ligase function, and PAR binding is required for Iduna ubiquitination of PARP1, XRCC1, DNA ligase III, and KU70. Iduna’s PAR-dependent ubiquitination of PARP1 targets it for proteasomal degradation. Via PAR binding and ubiquitin E3 ligase activity, Iduna protects against cell death induced by the DNA damaging agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest and promotes cell survival after γ-irradiation. Moreover, Iduna facilitates DNA repair by reducing apurinic/apyrimidinic (AP) sites after MNNG exposure and facilitates DNA repair following γ-irradiation as assessed by the comet assay. These results define Iduna as a PAR-dependent E3 ligase that regulates cell survival and DNA repair. PMID:21825151

  5. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    SciTech Connect

    Wang, Shuai; Wang, Huibo; Davis, Ben C.; Liang, Jiyong; Cui, Rutao; Chen, Sai-Juan; Xu, Zhi-Xiang

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  6. PARP1 regulates the protein stability and proapoptotic function of HIPK2

    PubMed Central

    Choi, Jong-Ryoul; Shin, Ki Soon; Choi, Cheol Yong; Kang, Shin Jung

    2016-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase that functions in DNA damage response and development. In the present study, we propose that the protein stability and proapoptotic function of HIPK2 are regulated by poly(ADP-ribose) polymerase 1 (PARP1). We present evidence indicating that PARP1 promotes the proteasomal degradation of HIPK2. The tryptophan-glycine-arginine (WGR) domain of PARP1 was necessary and sufficient for the promotion of HIPK2 degradation independently of the PARP1 enzymatic activity. The WGR domain mediated the interaction between HIPK2 and C-terminus of HSP70-interacting protein (CHIP) via HSP70. We found that CHIP can function as a ubiquitin ligase for HIPK2. The interaction between PAPR1 and HIPK2 was weakened following DNA damage. Importantly, PARP1 reduced the HIPK2-mediated p53 phosphorylation, proapoptotic transcriptional activity and cell death. These results suggest that PARP1 can modulate the tumor-suppressing function of HIPK2 by regulating the protein stability of HIPK2. PMID:27787517

  7. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  8. PARP-1 inhibition influences the oxidative stress response of the human lens

    PubMed Central

    Smith, Andrew J.O.; Ball, Simon S.R.; Bowater, Richard P.; Wormstone, I. Michael

    2016-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2) was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361). Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects. PMID:26990173

  9. Inhibition of PARP-1 participates in the mechanisms of propofol-induced amnesia in mice and human.

    PubMed

    Jia, Lijie; Wang, Wenyuan; Luo, Yan; Zhang, Fujun; Lu, Han; Xue, Qingsheng; Yu, Buwei

    2016-04-15

    Poly(ADP-ribose) polymerase 1 (PARP-1) has emerged as an important regulator in learning and memory. Propofol leads to amnesia, however, the mechanism remains unclear. The present study was designed to examine whether and how PARP-1 plays a role in propofol-induced amnesia. Mice were injected intraperitoneally with propofol before acquisition training. Cognitive function was evaluated by object recognition test. PARP-1 and PAR expression was determined through Western blot. The protein and mRNA levels of Arc and c-Fos were detected by Western blot and real-time PCR. Thirty volunteers were assigned to three groups according to codon 762 variation of PARP-1 gene (rs1136410). They learned word lists awake and during propofol sedation. Their cognitive traits were evaluated through fMRI. Rodent data demonstrated that propofol inhibited acquisition-induced increase in PARP-1 and PAR, thereby suppressing Arc and c-Fos, which impaired object recognition 24h after learning. Consistent with this, carriers of a low-catalyzing function PARP-1 variant (Val762Ala) exhibited decreased retrieval-induced hippocampal reactivity 24h after learning under propofol-sedative condition. These findings suggested that inhibition of PARP-1 might participate in the mechanism of propofol-induced amnesia in mice and human. More generally, our approach illustrated a potential translational research bridging animal models and human studies.

  10. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    PubMed Central

    Kim, Ji Yang; Ko, Ah-Reum; Kim, Ji-Eun

    2015-01-01

    Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE) in the distinct brain regions. In addition, P2X7 receptor (P2X7R), an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death). Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths. PMID:26388738

  11. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.

    PubMed

    Wang, Shengjun; Yang, Xue; Lin, Youting; Qiu, Xiaoxue; Li, Hui; Zhao, Xiuhe; Cao, Lili; Liu, Xuewu; Pang, Yuejiu; Wang, Xuping; Chi, Zhaofu

    2013-10-16

    Intense poly(ADP-ribose) polymerase-1 (PARP-1) activation was implicated as a major cause of caspase-independent cell death in the hippocampal neuronal culture (HNC) model of acute acquired epilepsy (AE). The molecular mechanisms are quite complicated. The linkage among neuronal death, cellular nicotinamide adenine dinucleotide (NAD) levels, apoptosis-inducing factor (AIF) translocation, SIRT1 expression and activity were investigated here. The results showed that PARP-1 over-activation caused by Mg²⁺-free stimuli led to cellular NAD depletion which could block AIF translocation from mitochondria to nucleus and attenuate neuronal death. Also, SIRT1 deacetylase activity was reduced by Mg²⁺-free treatment, accompanied by elevated ratio of neuronal death, which could be rescued by NAD repletion. These data demonstrated that cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated epileptic neuronal death in the HNC model of acute AE.

  12. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.

  13. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  14. Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition.

    PubMed

    Han, Sumin; Brenner, J Chad; Sabolch, Aaron; Jackson, Will; Speers, Corey; Wilder-Romans, Kari; Knudsen, Karen E; Lawrence, Theodore S; Chinnaiyan, Arul M; Feng, Felix Y

    2013-10-01

    ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose) polymerase 1 (PARP1) in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07) fold (mean ± SEM) and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03) relative to ERG-negative cells (P < .05). Neutral and alkaline COMET assays and immunofluorescence microscopy assessing γ-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers.

  15. CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation.

    PubMed

    Kashima, Lisa; Idogawa, Masashi; Mita, Hiroaki; Shitashige, Miki; Yamada, Tesshi; Ogi, Kazuhiro; Suzuki, Hiromu; Toyota, Minoru; Ariga, Hiroyoshi; Sasaki, Yasushi; Tokino, Takashi

    2012-04-13

    The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.

  16. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    PubMed

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  17. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials.

    PubMed

    Yuan, Bo; Ye, Na; Song, Shan-Shan; Wang, Yu-Ting; Song, Zilan; Chen, Hua-Dong; Chen, Chuan-Huizi; Huan, Xia-Juan; Wang, Ying-Qing; Su, Yi; Shen, Yan-Yan; Sun, Yi-Ming; Yang, Xin-Ying; Chen, Yi; Guo, Shi-Yan; Gan, Yong; Gao, Zhi-Wei; Chen, Xiao-Yan; Ding, Jian; He, Jin-Xue; Zhang, Ao; Miao, Ze-Hong

    2017-02-01

    Poly(ADP-ribose)polymerase (PARP)1/2 inhibitors have been proved to be clinically effective anticancer drugs. Here we report a new PARP1/2 inhibitor, simmiparib, displaying apparently improved preclinical anticancer activities relative to the first approved inhibitor olaparib. Simmiparib inhibited PARP1/2 approximately 2-fold more potently than olaparib, with more than 90-fold selectivity over the other tested PARP family members. Simmiparib and olaparib caused similar cellular PARP1-DNA trapping. Simmiparib selectively induced the accumulation of DNA double-strand breaks, G2/M arrest and apoptosis in homologous recombination repair (HR)-deficient cells. Consistently, simmiparib showed 26- to 235-fold selectivity in its antiproliferative activity against HR-deficient cells over the corresponding isogenic HR-proficient cells. Notably, its antiproliferative activity was 43.8-fold more potent than that of olaparib in 11 HR-deficient cancer cell lines. Simmiparib also potentiated the proliferative inhibition of several conventional anticancer drugs. Simmiparib reduced the poly(ADP-ribose) formation in HR-deficient cancer cells and xenografts. When orally administered to nude mice bearing xenografts, simmiparib revealed excellent pharmacokinetic properties. Simmiparib caused approximately 10-fold greater growth inhibition than olaparib against HR-deficient human cancer cell- or tissue-derived xenografts in nude mice. Collectively, these findings support the undergoing clinical trials of simmiparib.

  18. Exploiting the Achilles heel of cancer: the therapeutic potential of poly(ADP-ribose) polymerase inhibitors in BRCA2-defective cancer.

    PubMed

    Kyle, S; Thomas, H D; Mitchell, J; Curtin, N J

    2008-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates DNA single-strand break-base excision repair to maintain genomic stability. Inhibition or loss of PARP activity leads to a recombinogenic phenotype characterized by increased sister chromatid exchange. Deficiency in homologous recombination (HR) owing to loss of BRCA1 or BRCA2 is associated with hereditary cancers of the breast, ovary, pancreas and prostate. We investigated the therapeutic potential of PARP inhibitors in HR and BRCA2-defective cells. We exposed cells defective in the HR component XRCC3 (irs1SF) and BRCA2 (V-C8) and their parental (AA8, V79) or deficiency corrected (CXR3, V-C8+B2) cells to the PARP inhibitors NU1025 and AG14361. Mice bearing BRCA2-deficient and BRCA2-proficient tumours were treated with AG14361. All HR-defective cells were hypersensitive to normally non-cytotoxic concentrations of PARP inhibitors. Cells lacking BRCA2 were 20 times more sensitive to PARP inhibitor-induced cytotoxicity. Three out of five BRCA2-defective xenografts responded to the potent PARP inhibitor, AG14361, and one tumour regressed completely, compared with non-responses in the BRCA2-proficient tumours treated with AG14361 or any mice treated with vehicle control. Untreated PARP-1(-/-) mouse embryo fibroblasts (MEFs) accumulated more DNA double-strand breaks than did PARP-1(+/+) MEFs. We believe the underlying cytotoxic mechanism is due to PARP inhibitor-mediated suppression of repair of DNA single-strand breaks, which are converted to DNA double-strand breaks at replication. These replication-associated double-strand breaks, which are normally repaired by HR, become cytotoxic in cells defective in HR. Using a DNA repair inhibitor alone to selectively kill a tumour represents an exciting new concept in cancer therapy.

  19. Effect of poly(ADP-ribose)polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Di Girolamo, Daniela; Beneke, Sascha; Calabrò, Viola; Quesada, Piera

    2015-04-01

    Depending on their genetic background (p53(wt) versus p53(null)), carcinoma cells are more or less sensitive to drug-induced cell cycle arrest and/or apoptosis. Among the members of the p53 family, p63 is characterized by two N-terminal isoforms, TAp63 and ΔNp63. TAp63 isoform has p53-like functions, while ΔNp63 acts as a dominant negative inhibitor of p53. We have previously published that TAp63 is involved in poly(ADP-ribose)polymerase-1 (PARP-1) signaling of DNA damage deriving from DNA topoisomerase I (TOP I) inhibition in carcinoma cells. In the present study, we treated MCF7 breast carcinoma cells (p53(+)/ΔNp63(-)) or SCC022 (p53(-)/ΔNp63(+)) squamous carcinoma cells with the TOP I inhibitor topotecan (TPT) and the PJ34 PARP inhibitor, to compare their effects in the two different cell contexts. In MCF7 cells, we found that PJ34 addition reverts TPT-dependent PARP-1 auto-modification and triggers caspase-dependent PARP-1 proteolysis. Moreover, TPT as single agent stimulates p53(ser15) phosphorylation, p53 PARylation and occupancy of the p21WAF promoter by p53 resulting in an increase of p21WAF expression. Interestingly, PJ34 in combination with TPT enhances p53 occupancy at the BAX promoter and is associated with increased BAX protein level. In SCC022 cells, instead, TPT+PJ34 combined treatment reduces the level of the anti-apoptotic ΔNp63α protein without inducing apoptosis. Remarkably, in such cells, either exogenous p53 or TAp63 can rescue the apoptotic program in response to the treatment. All together our results suggest that in cancer cells PARP inhibitor(s) can operate in the choice between growth arrest and apoptosis by modulating p53 family-dependent signal.

  20. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies.

    PubMed

    Ekhteiari Salmas, Ramin; Unlu, Ayhan; Bektaş, Muhammet; Yurtsever, Mine; Mestanoglu, Mert; Durdagi, Serdar

    2016-07-17

    Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target. Structure-based virtual screening was carried out for an available small molecules database. A total of 257,951 ligands from Otava database were screened at the binding pocket of PARP-1 using high-throughput virtual screening techniques. Filtered structures based on predicted binding energy results were then used in more sophisticated molecular docking simulations (i.e. Glide/standard precision, Glide/XP, induced fit docking - IFD, and quantum mechanics polarized ligand docking - QPLD). Potential high binding affinity compounds that are predicted by molecular simulations were then tested by in vitro methods. Computationally proposed compounds as PARP-1 inhibitors (Otava Compound Codes: 7111620047 and 7119980926) were confirmed by in vitro studies. In vitro results showed that compounds 7111620047 and 7119980926 have IC50 values of 0.56 and 63 μM against PARP-1 target, respectively. The molecular mechanism analysis, free energy perturbation calculations using long multiple molecular dynamics simulations for the discovered compounds which showed high binding affinity against PARP-1 enzyme, as well as structure-based pharmacophore development (E-pharmacophore) studies were also studied.

  1. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin.

  2. ATM-deficiency sensitizes Mantle Cell Lymphoma cells to PARP-1 inhibitors

    PubMed Central

    Williamson, Chris T.; Muzik, Huong; Turhan, Ali G.; Zamò, Alberto; O’Connor, Mark J.; Bebb, D. Gwyn; Lees-Miller, Susan P.

    2013-01-01

    Poly-ADP ribose polymerase-1 (PARP-1) inhibition is toxic to cells with mutations in the breast and ovarian cancer susceptibility genes BRCA1 or BRCA2, a concept, termed synthetic lethality. However, whether this approach is applicable to other human cancers with defects in other DNA repair genes has yet to be determined. The Ataxia-Telangiectasia Mutated (ATM) gene is altered in a number of human cancers including Mantle Cell Lymphoma (MCL). Here, we characterize a panel of MCL cell lines for ATM status and function and investigate the potential for synthetic lethality in MCL in the presence of small molecule inhibitors of PARP-1. We show that Granta-519 and UPN2 cells have low levels of ATM protein, are defective in DNA damage-induced ATM-dependent signaling, are radiation sensitive and have cell cycle checkpoint defects: all characteristics of defective ATM function. Significantly, Granta-519 and UPN2 cells were more sensitive to PARP-1 inhibition, than were the ATM-proficient MCL cell lines examined. Furthermore, the PARP-1 inhibitor olaparib (previously known as AZD2281/KU-0059436) significantly decreased tumour growth and increased overall survival in mice bearing subcutaneous xenografts of ATM-deficient Granta-519 cells, while producing only a modest effect on overall survival of mice bearing xenografts of the ATM-proficient cell line, Z138. Thus, PARP inhibitors have therapeutic potential in the treatment of MCL and the concept of synthetic lethality extends to human cancers with ATM alterations. PMID:20124459

  3. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent

    PubMed Central

    Kossatz, Susanne; Brand, Christian; Gutiontov, Stanley; Liu, Jonathan T. C.; Lee, Nancy Y.; Gönen, Mithat; Weber, Wolfgang A.; Reiner, Thomas

    2016-01-01

    Earlier and more accurate detection of oral squamous cell carcinoma (OSCC) is essential to improve the prognosis of patients and to reduce the morbidity of surgical therapy. Here, we demonstrate that the nuclear enzyme Poly(ADP-ribose)Polymerase 1 (PARP1) is a promising target for optical imaging of OSCC with the fluorescent dye PARPi-FL. In patient-derived OSCC specimens, PARP1 expression was increased 7.8 ± 2.6-fold when compared to normal tissue. Intravenous injection of PARPi-FL allowed for high contrast in vivo imaging of human OSCC models in mice with a surgical fluorescence stereoscope and high-resolution imaging systems. The emitted signal was specific for PARP1 expression and, most importantly, PARPi-FL can be used as a topical imaging agent, spatially resolving the orthotopic tongue tumors in vivo. Collectively, our results suggest that PARP1 imaging with PARPi-FL can enhance the detection of oral cancer, serve as a screening tool and help to guide surgical resections. PMID:26900125

  4. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    PubMed

    Marković, Jelena; Grdović, Nevena; Dinić, Svetlana; Karan-Djurašević, Teodora; Uskoković, Aleksandra; Arambašić, Jelena; Mihailović, Mirjana; Pavlović, Sonja; Poznanović, Goran; Vidaković, Melita

    2013-01-01

    Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional

  5. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  6. Glycation and glycoxidation of histones by ADP-ribose.

    PubMed

    Cervantes-Laurean, D; Jacobson, E L; Jacobson, M K

    1996-05-03

    The reaction of long lived proteins with reducing sugars has been implicated in the pathophysiology of aging and age-related diseases. A likely intranuclear source of reducing sugar is ADP-ribose, which is generated following DNA damage from the turnover of ADP-ribose polymers. In this study, ADP-ribose has been shown to be a potent histone glycation and glycoxidation agent in vitro. Incubation of ADP-ribose with histones H1, H2A, H2B, and H4 at pH 7.5 resulted in the formation of ketoamine glycation conjugates. Incubation of histone H1 with ADP-ribose also rapidly resulted in the formation of protein carboxymethyllysine residues, protein-protein cross-links, and highly fluorescent products with properties similar to the advanced glycosylation end product pentosidine. The formation of glycoxidation products was related to the degradation of ketoamine glycation conjugates by two different pathways. One pathway resulted in the formation of protein carboxymethyllysine residues and release of an ADP moiety containing a glyceric acid fragment. A second pathway resulted in the release of ADP, and it is postulated that this pathway is involved in the formation of histone-histone cross-links and fluorescent advanced glycosylation end products.

  7. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R.

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD. PMID:26252217

  8. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas

    PubMed Central

    Navarro, Judith; Gozalbo-López, Beatriz; Méndez, Andrea C.; Dantzer, Françoise; Schreiber, Valérie; Martínez, Carlos; Arana, David M.; Farrés, Jordi; Revilla-Nuin, Beatriz; Bueno, María F.; Ampurdanés, Coral; Galindo-Campos, Miguel A.; Knobel, Philip A.; Segura-Bayona, Sandra; Martin-Caballero, Juan; Stracker, Travis H.; Aparicio, Pedro; Del Val, Margarita; Yélamos, José

    2017-01-01

    The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies. PMID:28181505

  9. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas.

    PubMed

    Navarro, Judith; Gozalbo-López, Beatriz; Méndez, Andrea C; Dantzer, Françoise; Schreiber, Valérie; Martínez, Carlos; Arana, David M; Farrés, Jordi; Revilla-Nuin, Beatriz; Bueno, María F; Ampurdanés, Coral; Galindo-Campos, Miguel A; Knobel, Philip A; Segura-Bayona, Sandra; Martin-Caballero, Juan; Stracker, Travis H; Aparicio, Pedro; Del Val, Margarita; Yélamos, José

    2017-02-09

    The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4(+) and CD8(+) T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.

  10. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans.

    PubMed

    Gagnon, Steve N; Hengartner, Michael O; Desnoyers, Serge

    2002-11-15

    Poly(ADP-ribose) polymerases (PARPs) are an expanding, well-conserved family of enzymes found in many metazoan species, including plants. The enzyme catalyses poly(ADP-ribosyl)ation, a post-translational modification that is important in DNA repair and programmed cell death. In the present study, we report the finding of an endogenous source of poly(ADP-ribosyl)ation in total extracts of the nematode Caenorhabditis elegans. Two cDNAs encoding highly similar proteins to human PARP-1 (huPARP-1) and huPARP-2 are described, and we propose to name the corresponding enzymes poly(ADP-ribose) metabolism enzyme 1 (PME-1) and PME-2 respectively. PME-1 (108 kDa) shares 31% identity with huPARP-1 and has an overall structure similar to other PARP-1 subfamily members. It contains sequences having considerable similarity to zinc-finger motifs I and II, as well as with the catalytic domain of huPARP-1. PME-2 (61 kDa) has structural similarities with the catalytic domain of PARPs in general and shares 24% identity with huPARP-2. Recombinant PME-1 and PME-2 display PARP activity, which may partially account for the similar activity found in the worm. A partial duplication of the pme-1 gene with pseudogene-like features was found in the nematode genome. Messenger RNA for pme-1 are 5'-tagged with splice leader 1, whereas those for pme - 2 are tagged with splice leader 2, suggesting an operon-like expression for pme - 2. The expression pattern of pme-1 and pme-2 is also developmentally regulated. Together, these results show that PARP-1 and -2 are conserved in evolution and must have important functions in multicellular organisms. We propose using C. elegans as a model to understand better the functions of these enzymes.

  11. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I.

    PubMed

    Malanga, Maria; Czubaty, Alicja; Girstun, Agnieszka; Staron, Krzysztof; Althaus, Felix R

    2008-07-18

    Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.

  12. [Synthesis and activity evaluation of PARP-1 inhibitors with azaindole skeleton].

    PubMed

    Zhou, Jie; Zhu, Zhi-Xiang; Chen, Xiao-Guang; Xu, Bai-Ling

    2013-12-01

    PARP [poly(ADP-ribose)polymerase] represents a novel potential target in cancer therapy. It is involved in a DNA repair process by catalyzing the transfer of ADP-ribose units from NAD to a number of its substrate proteins. In this work, a series of novel azaindole derivatives was designed and synthesized. Moreover, 16 target molecules were screened and 8 compounds displayed inhibitory activity against PARP-1. It has been demonstrated that these azaindoles bearing cycloamine substituents at 2-position were active to both PARP-1 and PARP-2.

  13. Novel insights into the neuroendocrine control of inflammation: the role of GR and PARP1

    PubMed Central

    Aprile-Garcia, Fernando; Antunica-Noguerol, María; Budziñski, Maia Ludmila; Liberman, Ana C; Arzt, Eduardo

    2013-01-01

    Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis. PMID:24243533

  14. The Rheumatoid Arthritis Risk Variant CCR6DNP Regulates CCR6 via PARP-1

    PubMed Central

    Li, Gang; Cunin, Pierre; Wu, Di; Diogo, Dorothée; Yang, Yu; Okada, Yukinori; Plenge, Robert M.

    2016-01-01

    Understanding the implications of genome-wide association studies (GWAS) for disease biology requires both identification of causal variants and definition of how these variants alter gene function. The non-coding triallelic dinucleotide polymorphism CCR6DNP is associated with risk for rheumatoid arthritis, and is considered likely causal because allelic variation correlates with expression of the chemokine receptor CCR6. Using transcription activator-like effector nuclease (TALEN) gene editing, we confirmed that CCR6DNP regulates CCR6. To identify the associated transcription factor, we applied a novel assay, Flanking Restriction Enhanced Pulldown (FREP), to identify specific association of poly (ADP-ribose) polymerase 1 (PARP-1) with CCR6DNP consistent with the established allelic risk hierarchy. Correspondingly, manipulation of PARP-1 expression or activity impaired CCR6 expression in several lineages. These findings show that CCR6DNP is a causal variant through which PARP-1 regulates CCR6, and introduce a highly efficient approach to interrogate non-coding genetic polymorphisms associated with human disease. PMID:27626929

  15. The Rheumatoid Arthritis Risk Variant CCR6DNP Regulates CCR6 via PARP-1.

    PubMed

    Li, Gang; Cunin, Pierre; Wu, Di; Diogo, Dorothée; Yang, Yu; Okada, Yukinori; Plenge, Robert M; Nigrovic, Peter A

    2016-09-01

    Understanding the implications of genome-wide association studies (GWAS) for disease biology requires both identification of causal variants and definition of how these variants alter gene function. The non-coding triallelic dinucleotide polymorphism CCR6DNP is associated with risk for rheumatoid arthritis, and is considered likely causal because allelic variation correlates with expression of the chemokine receptor CCR6. Using transcription activator-like effector nuclease (TALEN) gene editing, we confirmed that CCR6DNP regulates CCR6. To identify the associated transcription factor, we applied a novel assay, Flanking Restriction Enhanced Pulldown (FREP), to identify specific association of poly (ADP-ribose) polymerase 1 (PARP-1) with CCR6DNP consistent with the established allelic risk hierarchy. Correspondingly, manipulation of PARP-1 expression or activity impaired CCR6 expression in several lineages. These findings show that CCR6DNP is a causal variant through which PARP-1 regulates CCR6, and introduce a highly efficient approach to interrogate non-coding genetic polymorphisms associated with human disease.

  16. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1

    PubMed Central

    Vrouwe, Mischa G.; Marteijn, Jurgen A.; Typas, Dimitris; Luijsterburg, Martijn S.; Cansoy, Medine; Hensbergen, Paul; Deelder, André; de Groot, Anton; Matsumoto, Syota; Sugasawa, Kaoru; Thoma, Nicolas; Vermeulen, Wim; Vrieling, Harry

    2012-01-01

    The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1. PMID:23045548

  17. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    SciTech Connect

    Whatcott, Clifford J.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Myron K.

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  18. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.

  19. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  20. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    PubMed Central

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, p<0.05) and ChIP-qPCR in patients' myoblasts (65-fold enrichment, p<0.01). Interestingly, the interaction was only observed in FSHD myoblasts but not in the control myoblasts. Upon further treatment of FSHD myoblasts with PARP1 inhibitors, we showed that treatment with a PARP1 inhibitor, 3-aminobenzamide (0.5 mM), for 24 h had a suppression of DUX4 (2.6 fold, p<0.05) and ZSCAN4, a gene previously shown to be upregulated by DUX4, (1.6 fold, p<0.01) in FSHD myoblasts. Treatment with fisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1

  1. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer

    PubMed Central

    Steffen, Jamin D.; Tholey, Renee M.; Langelier, Marie-France; Planck, Jamie L.; Schiewer, Matthew J.; Lal, Shruti; Bildzukewicz, Nikolai A.; Yeo, Charles J.; Knudsen, Karen E.; Brody, Jonathan R.; Pascal, John M.

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs raising important questions concerning long-term off-target effects. Here we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage dependent catalytic activation. Further, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anti-cancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Lastly, the development of a high-throughput (HT) PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors. PMID:24189460

  2. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  3. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells.

    PubMed

    Motta, Carla; D'Angeli, Floriana; Scalia, Marina; Satriano, Cristina; Barbagallo, Davide; Naletova, Irina; Anfuso, Carmelina Daniela; Lupo, Gabriella; Spina-Purrello, Vittoria

    2015-08-15

    Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway.

  4. The alpha-glycosidic bonds of poly(ADP-ribose) are acid-labile.

    PubMed

    Panzeter, P L; Zweifel, B; Althaus, F R

    1992-04-15

    The poly(ADP-ribosyl)ation system of higher eukaryotes produces multiple ADP-ribose polymers of distinct sizes which exhibit different binding affinities for histones. Although precipitation with trichloroacetic acid (TCA) is the standard procedure for isolation of poly(ADP-ribose) from biological material, we show here that poly(ADP-ribose) is not stable under acidic conditions. Storage of poly(ADP-ribose) as TCA pellets results in acid hydrolysis of polymers, the extent of which is dependent on storage time and temperature. The alpha-glycosidic, inter-residue bonds are the preferred sites of attack, thus reducing polymer sizes by integral numbers of ADP-ribose to yield artefactually more and smaller polymers than originally present. Therefore, poly(ADP-ribosyl)ation studies involving TCA precipitation, histone extraction with acids, or acidic incubations of ADP-ribose polymers must account for the impact of acids on resulting polymer populations.

  5. The rise and fall of poly(ADP-ribose): An enzymatic perspective.

    PubMed

    Pascal, John M; Ellenberger, Tom

    2015-08-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.

  6. The Rise and Fall of Poly (ADP-ribose). An Enzymatic Perspective

    PubMed Central

    Pascal, John M.; Ellenberger, Tom

    2015-01-01

    Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered. PMID:25963443

  7. Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1

    PubMed Central

    Joshi, A; Iyengar, R; Joo, J H; Li-Harms, X J; Wright, C; Marino, R; Winborn, B J; Phillips, A; Temirov, J; Sciarretta, S; Kriwacki, R; Peng, J; Shelat, A; Kundu, M

    2016-01-01

    Reactive oxygen species (ROS) may cause cellular damage and oxidative stress-induced cell death. Autophagy, an evolutionarily conserved intracellular catabolic process, is executed by autophagy (ATG) proteins, including the autophagy initiation kinase Unc-51-like kinase (ULK1)/ATG1. Although autophagy has been implicated to have both cytoprotective and cytotoxic roles in the response to ROS, the role of individual ATG proteins, including ULK1, remains poorly characterized. In this study, we demonstrate that ULK1 sensitizes cells to necrotic cell death induced by hydrogen peroxide (H2O2). Moreover, we demonstrate that ULK1 localizes to the nucleus and regulates the activity of the DNA damage repair protein poly (ADP-ribose) polymerase 1 (PARP1) in a kinase-dependent manner. By enhancing PARP1 activity, ULK1 contributes to ATP depletion and death of H2O2-treated cells. Our study provides the first evidence of an autophagy-independent prodeath role for nuclear ULK1 in response to ROS-induced damage. On the basis of our data, we propose that the subcellular distribution of ULK1 has an important role in deciding whether a cell lives or dies on exposure to adverse environmental or intracellular conditions. PMID:26138443

  8. Molecular Bases of Catalysis and ADP-Ribose Preference of Human Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase and Conversion by Mutagenesis to a Preferential Cyclic ADP-Ribose Phosphohydrolase

    PubMed Central

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type. PMID:25692488

  9. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase.

    PubMed

    Cabezas, Alicia; Ribeiro, João Meireles; Rodrigues, Joaquim Rui; López-Villamizar, Iralis; Fernández, Ascensión; Canales, José; Pinto, Rosa María; Costas, María Jesús; Cameselle, José Carlos

    2015-01-01

    Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.

  10. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR

    PubMed Central

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu

    2017-01-01

    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  11. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer.

    PubMed

    Fu, Leilei; Wang, Shuya; Wang, Xuan; Wang, Peiqi; Zheng, Yaxin; Yao, Dahong; Guo, Mingrui; Zhang, Lan; Ouyang, Liang

    2016-12-01

    Poly (ADP-ribose) polymerase-1 (PARP1) is a highly conserved enzyme focused on the self-repair of cellular DNA damage. Until now, numbers of PARP inhibitors have been reported and used for breast cancer therapy in recent years, especially in TNBC. However, developing a new type PARP inhibitor with distinctive skeleton is alternatively promising strategy for TNBC therapy. In this study, based on co-crystallization studies and pharmacophore-docking-based virtual screening, we discovered a series of dihydrodibenzo[b,e]-oxepin compounds as PARP1 inhibitors. Lead optimization result in the identification of compound OL-1 (2-(11-(3-(dimethylamino)propylidene)-6,11- dihydrodibenzo[b,e]oxepin )-2-yl)acetohydrazide), which has a novel chemical scaffold and unique binding interaction with PARP1 protein. OL-1 demonstrated excellent potency (inhibiting PARP1 enzyme activity with IC50 = 0.079 μM), as well as inhibiting PARP-modulated PARylation and cell proliferation in MDA-MB-436 cells (BRAC1 mutation). In addition, OL-1 also inhibited cell migration that closely related to cancer metastasis and displayed remarkable anti-tumor efficacy in MDA-MB-436 xenograft model without apparent toxicities. These findings highlight a new small-molecule PAPR1 inhibitor (OL-1) that has the potential to impact future TNBC therapy.

  12. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  13. Poly (ADP-Ribose) Polymerase Mediates Diabetes-Induced Retinal Neuropathy

    PubMed Central

    Mohammad, Ghulam; Siddiquei, Mohammad Mairaj

    2013-01-01

    Retinal neuropathy is an early event in the development of diabetic retinopathy. One of the potential enzymes that are activated by oxidative stress in the diabetic retina is poly (ADP-ribose) polymerase (PARP). We investigated the effect of the PARP inhibitor 1,5-isoquinolinediol on the expression of the neurodegeneration mediators and markers in the retinas of diabetic rats. After two weeks of streptozotocin-induced diabetes, rats were treated with 1,5-isoquinolinediol (3 mg/kg/day). After 4 weeks of diabetes, the retinas were harvested and the levels of reactive oxygen species (ROS) were determined fluorometrically and the expressions of PARP, phosporylated-ERK1/2, BDNF, synaptophysin, glutamine synthetase (GS), and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, PARP-1/2, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expressions of BDNF synaptophysin and GS were significantly decreased in the retinas of diabetic rats, compared to nondiabetic rats. Administration of 1,5-isoquinolinediol did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of PARP, ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF, synaptophysin, and GS. These findings suggest a beneficial effect of the PARP inhibitor in increasing neurotrophic support and ameliorating early retinal neuropathy induced by diabetes. PMID:24347828

  14. Poly (ADP) ribose polymerase inhibition: A potential treatment of malignant peripheral nerve sheath tumor.

    PubMed

    Kivlin, Christine M; Watson, Kelsey L; Al Sannaa, Ghadah A; Belousov, Roman; Ingram, Davis R; Huang, Kai-Lieh; May, Caitlin D; Bolshakov, Svetlana; Landers, Sharon M; Kalam, Azad Abul; Slopis, John M; McCutcheon, Ian E; Pollock, Raphael E; Lev, Dina; Lazar, Alexander J; Torres, Keila E

    2016-01-01

    Poly (ADP) ribose polymerase (PARP) inhibitors, first evaluated nearly a decade ago, are primarily used in malignancies with known defects in DNA repair genes, such as alterations in breast cancer, early onset 1/2 (BRCA1/2). While no specific mutations in BRCA1/2 have been reported in malignant peripheral nerve sheath tumors (MPNSTs), MPNST cells could be effectively targeted with a PARP inhibitor to drive cells to synthetic lethality due to their complex karyotype and high level of inherent genomic instability. In this study, we assessed the expression levels of PARP1 and PARP2 in MPNST patient tumor samples and correlated these findings with overall survival. We also determined the level of PARP activity in MPNST cell lines. In addition, we evaluated the efficacy of the PARP inhibitor AZD2281 (Olaparib) in MPNST cell lines. We observed decreased MPNST cell proliferation and enhanced apoptosis in vitro at doses similar to, or less than, the doses used in cell lines with established defective DNA repair genes. Furthermore, AZD2281 significantly reduced local growth of MPNST xenografts, decreased the development of macroscopic lung metastases, and increased survival of mice with metastatic disease. Our results suggest that AZD2281 could be an effective therapeutic option in MPNST and should be further investigated for its potential clinical use in this malignancy.

  15. Noncovalent protein interaction with poly(ADP-ribose).

    PubMed

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  16. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    PubMed Central

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  17. Parp1 protects against Aag-dependent alkylation-induced nephrotoxicity in a sex-dependent manner

    PubMed Central

    Fake, Kimberly R.; Muthupalani, Sureshkumar; Corrigan, Joshua J.; Bronson, Roderick T.; Samson, Leona D.

    2016-01-01

    Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney. Cytotoxicity in both wild-type and Aag-transgenic mice (AagTg) was abrogated in the absence of Poly(ADP-ribose) polymerase-1 (Parp1). Here we report that Parp1-deficient mice expressing increased Aag (AagTg/Parp1−/−) develop sex-dependent kidney failure upon exposure to the alkylating agent, methyl methanesulfonate (MMS), and suffer increased whole-animal lethality compared to AagTg and wild-type mice. Macroscopic, histological, electron microscopic and immunohistochemical analyses revealed morphological kidney damage including dilated tubules, proteinaceous casts, vacuolation, collapse of the glomerular tuft, and deterioration of podocyte structure. Moreover, mice exhibited clinical signs of kidney disease indicating functional damage, including elevated blood nitrogen urea and creatinine, hypoproteinemia and proteinuria. Pharmacological Parp inhibition in AagTg mice also resulted in sensitivity to MMS-induced nephrotoxicity. These findings provide in vivo evidence that Parp1 modulates Aag-dependent MMS-induced nephrotoxicity in a sex-dependent manner and highlight the critical roles that Aag-initiated BER and Parp1 may play in determining the side-effects of chemotherapeutic alkylating agents. PMID:27391435

  18. Molecular Toxicology of Chromatin: The Role of Poly (ADP-Ribose) in Gene Control

    DTIC Science & Technology

    1985-12-15

    mechanism is operative from NOD either directly ADY-ribosy- latintr "acceptor" proteins (%.g., hiatone), a reaction presumably catalyzed by the...24 Figures 1through 5. .. ............................. .. .. .. .. .........25-29’ 2. Mechanisms of’Poly(ADP-Ribose) Poiymerase Catalysis...Figures 1 through 3 .. ...................... ...........................46-48 3. Mechanism of inactivation of Poly(ADP-Ribose) Polymerase of Rat Liver

  19. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.

    PubMed

    Cantó, Carles; Sauve, Anthony A; Bai, Peter

    2013-12-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.

  20. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-11-17

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.

  1. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes

    PubMed Central

    Cantó, Carles; Sauve, Anthony A.; Bai, Peter

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological, or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. PMID:23357756

  2. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    PubMed

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  3. An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase.

    PubMed Central

    Thomassin, H; Jacobson, M K; Guay, J; Verreault, A; Aboul-ela, N; Menard, L; Poirier, G G

    1990-01-01

    The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. Images PMID:2395636

  4. Poly(ADP-ribose)polymerase inhibition decreases angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Godlewski, Grzegorz; Batkai, Sandor; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-12-01

    Inhibitors of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme involved in regulating cell death and cellular responses to DNA repair, show considerable promise in the treatment of cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation. We have recently demonstrated that PARP inhibition with 3-aminobenzamide or PJ-34 reduced vascular endothelial growth factor (VEGF)-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Here, we show dose-dependent reduction of VEGF- and basic fibroblast growth factor (bFGF)-induced proliferation, migration, and tube formation of HUVECs in vitro by two potent PARP inhibitors 5-aminoisoquinolinone-hydrochloride (5-AIQ) and 1,5-isoquinolinediol (IQD). Moreover, PARP inhibitors prevented the sprouting of rat aortic ring explants in an ex vivo assay of angiogenesis. These results establish the novel concept that PARP inhibitors have antiangiogenic effects, which may have tremendous clinical implications for the treatment of various cancers, tumor metastases, and certain retinopathies.

  5. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling

    PubMed Central

    Wu, Jiayi; Chang, Paul; Kolber-Simonds, Donna; Ackermann, Karen; Twine, Natalie C.; Shie, Jue-Lon; Miu, Jingzang Tao; Huang, Kuan-Chun; Moniz, George A.; Nomoto, Kenichi

    2015-01-01

    Inhibition of Poly(ADP-ribose) Polymerase1 (PARP1) impairs DNA damage repair, and early generation PARP1/2 inhibitors (olaparib, niraparib, etc.) have demonstrated clinical proof of concept for cancer treatment. Here, we describe the development of the novel PARP inhibitor E7449, a potent PARP1/2 inhibitor that also inhibits PARP5a/5b, otherwise known as tankyrase1 and 2 (TNKS1 and 2), important regulators of canonical Wnt/β-catenin signaling. E7449 inhibits PARP enzymatic activity and additionally traps PARP1 onto damaged DNA; a mechanism previously shown to augment cytotoxicity. Cells deficient in DNA repair pathways beyond homologous recombination were sensitive to E7449 treatment. Chemotherapy was potentiated by E7449 and single agent had significant antitumor activity in BRCA-deficient xenografts. Additionally, E7449 inhibited Wnt/β-catenin signaling in colon cancer cell lines, likely through TNKS inhibition. Consistent with this possibility, E7449 stabilized axin and TNKS proteins resulting in β-catenin de-stabilization and significantly altered expression of Wnt target genes. Notably, hair growth mediated by Wnt signaling was inhibited by E7449. A pharmacodynamic effect of E7449 on Wnt target genes was observed in tumors, although E7449 lacked single agent antitumor activity in vivo, a finding typical for selective TNKS inhibitors. E7449 antitumor activity was increased through combination with MEK inhibition. Particularly noteworthy was the lack of toxicity, most significantly the lack of intestinal toxicity reported for other TNKS inhibitors. E7449 represents a novel dual PARP1/2 and TNKS1/2 inhibitor which has the advantage of targeting Wnt/β-catenin signaling addicted tumors. E7449 is currently in early clinical development. PMID:26513298

  6. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects

    PubMed Central

    KANAI, Yoshiyuki

    2016-01-01

    Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD+ as a substrate in the presence of Mg2+. The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: “Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE”, and “Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)”. On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is “heteroclitic” fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to “heteroclitic” have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of “heteroclitic”. PMID:27477457

  7. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  8. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology.

    PubMed

    Liu, Long; Lear, Zoe; Hughes, David J; Wu, Weining; Zhou, En-min; Whitehouse, Adrian; Chen, Hongying; Hiscox, Julian A

    2015-03-23

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry and food security worldwide. The nucleocapsid (N) protein is a major structural protein of PRRSV. The primary function of this protein is to encapsidate the viral RNA genome, and it is also thought to participate in the modulation of host cell biology and recruitment of cellular factors to facilitate virus infection. In order to the better understand these latter roles the cellular interactome of PRRSV N protein was defined using label free quantitative proteomics. This identified several cellular factors that could interact with the N protein including poly [ADP-ribose] polymerase 1 (PARP-1), a cellular protein, which can add adenosine diphosphate ribose to a protein. Use of the PARP-1 small molecule inhibitor, 3-AB, in PRRSV infected cells demonstrated that PARP-1 was required and acted as an enhancer factor for virus biology. Serial growth of PRRSV in different concentrations of 3-AB did not yield viruses that were able to grow with wild type kinetics, suggesting that by targeting a cellular protein crucial for virus biology, resistant phenotypes did not emerge. This study provides further evidence that cellular proteins, which are critical for virus biology, can also be targeted to ablate virus growth and provide a high barrier for the emergence of drug resistance.

  9. The DNA-Binding Domain of Human PARP-1 Interacts with DNA Single-Strand Breaks as a Monomer through Its Second Zinc Finger

    PubMed Central

    Eustermann, Sebastian; Videler, Hortense; Yang, Ji-Chun; Cole, Paul T.; Gruszka, Dominika; Veprintsev, Dmitry; Neuhaus, David

    2011-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a highly abundant chromatin-associated enzyme present in all higher eukaryotic cell nuclei, where it plays key roles in the maintenance of genomic integrity, chromatin remodeling and transcriptional control. It binds to DNA single- and double-strand breaks through an N-terminal region containing two zinc fingers, F1 and F2, following which its C-terminal catalytic domain becomes activated via an unknown mechanism, causing formation and addition of polyadenosine-ribose (PAR) to acceptor proteins including PARP-1 itself. Here, we report a biophysical and structural characterization of the F1 and F2 fingers of human PARP-1, both as independent fragments and in the context of the 24-kDa DNA-binding domain (F1 + F2). We show that the fingers are structurally independent in the absence of DNA and share a highly similar structural fold and dynamics. The F1 + F2 fragment recognizes DNA single-strand breaks as a monomer and in a single orientation. Using a combination of NMR spectroscopy and other biophysical techniques, we show that recognition is primarily achieved by F2, which binds the DNA in an essentially identical manner whether present in isolation or in the two-finger fragment. F2 interacts much more strongly with nicked or gapped DNA ligands than does F1, and we present a mutational study that suggests origins of this difference. Our data suggest that different DNA lesions are recognized by the DNA-binding domain of PARP-1 in a highly similar conformation, helping to rationalize how the full-length protein participates in multiple steps of DNA single-strand breakage and base excision repair. PMID:21262234

  10. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  11. Investigation of the action of poly(ADP-ribose)-synthesising enzymes on NAD+ analogues

    PubMed Central

    Wallrodt, Sarah; Simpson, Edward L

    2017-01-01

    ADP-ribosyl transferases with diphtheria toxin homology (ARTDs) catalyse the covalent addition of ADP-ribose onto different acceptors forming mono- or poly(ADP-ribos)ylated proteins. Out of the 18 members identified, only four are known to synthesise the complex poly(ADP-ribose) biopolymer. The investigation of this posttranslational modification is important due to its involvement in cancer and other diseases. Lately, metabolic labelling approaches comprising different reporter-modified NAD+ building blocks have stimulated and enriched proteomic studies and imaging applications of ADP-ribosylation processes. Herein, we compare the substrate scope and applicability of different NAD+ analogues for the investigation of the polymer-synthesising enzymes ARTD1, ARTD2, ARTD5 and ARTD6. By varying the site and size of the NAD+ modification, suitable probes were identified for each enzyme. This report provides guidelines for choosing analogues for studying poly(ADP-ribose)-synthesising enzymes. PMID:28382184

  12. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells

    PubMed Central

    Du, Xueliang; Matsumura, Takeshi; Edelstein, Diane; Rossetti, Luciano; Zsengellér, Zsuzsanna; Szabó, Csaba; Brownlee, Michael

    2003-01-01

    In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein–1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1–deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage. PMID:14523042

  13. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  14. [The action of ADP ribose on the mechanical and bioelectrical activity of the frog heart].

    PubMed

    Sosulina, L Iu; Sukhova, G S; Chudnyĭ, M N; Ashmarin, I P

    1999-04-01

    In the frog isolated heart, cyclic perfusion of ADP-ribose induced a dose-dependent decrease in the heart rate and the contraction force, a decrease in the AP duration as well as in the rate of rise in the sinus node. It also shortened the atrial AP and exerted no significant effect upon multicellular ventricular preparations. In conditions of systemic administration in unanesthetised frogs, the ADP-ribose induced a reversible increase in the heart rate due, probably, to a sympathetic effect.

  15. Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

    PubMed Central

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-01-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308

  16. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  17. PARP-1 regulates epithelial–mesenchymal transition (EMT) in prostate tumorigenesis

    PubMed Central

    Pu, Hong; Horbinski, Craig; Hensley, Patrick J.; Matuszak, Emily A.; Atkinson, Timothy; Kyprianou, Natasha

    2014-01-01

    Poly (ADP-ribose) polymerase (PARP) is involved in key cellular processes such as DNA replication and repair, gene transcription, cell proliferation and apoptosis. The role of PARP-1 in prostate cancer development and progression is not fully understood. The present study investigated the function of PARP-1 in prostate growth and tumorigenesis in vivo. Functional inactivation of PARP-1 by gene-targeted deletion led to a significant reduction in the prostate gland size in young PARP-1−/− mice (6 weeks) compared with wild-type (WT) littermates. To determine the effect of PARP-1 functional loss on prostate cancer onset, PARP-1−/− mice were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Pathological assessment of prostate tumors revealed that TRAMP+/−, PARP-1−/− mice exhibited higher grade prostate tumors compared with TRAMP+/− PARP-1+/+ (16–28 weeks) that was associated with a significantly increased proliferative index and decreased apoptosis among the epithelial cells in TRAMP+/− PARP-1−/− prostate tumors. Furthermore tumors harboring PARP-1 loss, exhibited a downregulation of nuclear androgen receptor. Impairing PARP-1 led to increased levels of transforming growth factor-β (TGF-β) and Smads that correlated with induction of epithelial–mesenchymal transition (EMT), as established by loss of E-cadherin and β-catenin and upregulation of N-cadherin and ZEB-1. Our findings suggest that impaired PARP-1 function promotes prostate tumorigenesis in vivo via TGF-β-induced EMT. Defining the EMT control by PARP-1 during prostate cancer progression is of translational significance for optimizing PARP-1 therapeutic targeting and predicting response in metastatic castration-resistant prostate cancer. PMID:25173886

  18. Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    PubMed Central

    Tulin, Alexei; Naumova, Natalia M.; Menon, Ammini K.; Spradling, Allan C.

    2006-01-01

    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins. PMID:16219773

  19. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    PubMed

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  20. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt.

    PubMed

    Lafon-Hughes, Laura; Vilchez Larrea, Salomé C; Kun, Alejandra; Fernández Villamil, Silvia H

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  1. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    PubMed Central

    Vilchez Larrea, Salomé C.; Kun, Alejandra

    2014-01-01

    Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications. PMID:25332845

  2. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation.

    PubMed

    Halder, Amit K; Saha, Achintya; Saha, Krishna Das; Jha, Tarun

    2015-01-01

    Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure-activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi-cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.

  3. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer

    PubMed Central

    Karnak, David; Engelke, Carl G.; Parsels, Leslie A.; Kausar, Tasneem; Wei, Dongping; Robertson, Jordan R.; Marsh, Katherine B.; Davis, Mary A.; Zhao, Lili; Maybaum, Jonathan; Lawrence, Theodore S.; Morgan, Meredith A.

    2014-01-01

    Purpose While the addition of radiation to chemotherapy improves survival in patients with locally advanced pancreatic cancer, more effective therapies are urgently needed. Thus, we investigated the radiosensitizing efficacy of the novel drug combination of Wee1 and PARP1/2 [poly (ADP-ribose) polymerase 1/2] inhibitors (AZD1775 and olaparib, respectively) in pancreatic cancer. Experimental Design Radiosensitization of AsPC-1 or MiaPaCa-2 human pancreatic cancer cells was assessed by clonogenic survival and tumor growth assays. Mechanistically, the effects of AZD1775, olaparib, and radiation on cell cycle, DNA damage (γH2AX) and HRR (homologous recombination repair) were determined. Results Treatment of AsPC-1 and MiaPaCa-2 cells with either AZD1775 or olaparib caused modest radiosensitization while treatment with the combination significantly increased radiosensitization. Radiosensitization by the combination of AZD1775 and olaparib was associated with G2 checkpoint abrogation and persistent DNA damage. In addition, AZD1775 inhibited HRR activity and prevented radiation-induced Rad51 focus formation. Finally, in vivo, in MiaPaCa-2-derived xenografts, olaparib did not radiosensitize, while AZD1775 produced moderate, yet significant, radiosensitization (P<0.05). Importantly, the combination of AZD1775 and olaparib produced highly significant radiosensitization (P<0.0001) evidenced by a 13-day delay in tumor volume doubling (vs radiation alone) and complete eradication of 20% of tumors. Conclusions Taken together, these results demonstrate the efficacy of combined inhibition of Wee1 and PARP inhibitors for radiosensitizing pancreatic cancers and support the model that Wee1 inhibition sensitizes cells to PARP inhibitor-mediated radiosensitization through inhibition of HRR and abrogation of the G2 checkpoint, ultimately resulting in unrepaired, lethal DNA damage and radiosensitization. PMID:25117293

  4. Radiosensitization effect of poly(ADP-ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation.

    PubMed

    Hirai, Takahisa; Shirai, Hidenori; Fujimori, Hiroaki; Okayasu, Ryuichi; Sasai, Keisuke; Masutani, Mitsuko

    2012-06-01

    Poly(ADP-ribose) polymerase (PARP)-1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ-irradiation and X-irradiation. We investigated the impact of PARP inhibition on the responses to γ-irradiation (low liner energy transfer [LET] radiation) and carbon-ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa-2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ-irradiation and carbon-ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ-irradiation and LET 13 and LET 70 carbon-ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ-H2AX were observed both after γ-irradiation and carbon-ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated-p53 (Ser-15) was observed after γ-irradiation but not after carbon-ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ-irradiation and carbon-ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ-irradiation and carbon-ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR.

  5. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives.

    PubMed

    Gagné, Jean-Philippe; Hendzel, Michael J; Droit, Arnaud; Poirier, Guy G

    2006-04-01

    Recent discoveries have resulted in significant breakthroughs in the understanding of PARPs and PARG functions within a broad range of cellular processes. The novel and sometimes unexpected pathways that are regulated by poly(ADP-ribosylation) bring new questions and hypotheses, some of them being contentious. In this review, we highlight current areas of investigation such as the clinical potential of PARP and PARG inhibitors and the important mitotic regulatory functions of poly(ADP-ribose) in cell-cycle progression, a recent discovery that has broadened our knowledge regarding poly(ADP-ribose) functions. A special emphasis is placed on recent advances in relation to PARG that are stimulating new directions in future research. Noticeably, the existence of various PARG isoforms characterized by distinct cellular localizations and nucleocytoplasmic shuttling properties challenges our current comprehension of pADPr metabolism. Observations and suppositions towards functionally important regulatory elements in the N-terminal portion of PARG are also discussed.

  6. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    PubMed Central

    Barkauskaite, Eva; Brassington, Amy; Tan, Edwin S.; Warwicker, Jim; Dunstan, Mark S.; Banos, Benito; Lafite, Pierre; Ahel, Marijan; Mitchison, Timothy J.; Ahel, Ivan; Leys, David

    2013-01-01

    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios. PMID:23917065

  7. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  8. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  9. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  10. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  11. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

    PubMed

    Le May, Nicolas; Iltis, Izarn; Amé, Jean-Christophe; Zhovmer, Alexander; Biard, Denis; Egly, Jean-Marc; Schreiber, Valérie; Coin, Frédéric

    2012-12-14

    Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription. Silencing of PARG or knockout of its enzymatic activity maintains the H3K9me2 mark at the promoter of the RAR-dependent genes, leading to the absence of preinitiation complex formation. In the absence of PARG, we found that the H3K9 demethylase KDM4D/JMJD2D became PARsylated. Mutation of two glutamic acids located in the Jumonji N domain of KDM4D inhibited PARsylation. PARG becomes dispensable for ligand-dependent transcription when either a PARP inhibitor or a non-PARsylable KDM4D/JMJD2D mutant is used. Our results define PARG as a coactivator regulating chromatin remodeling during RA-dependent gene expression.

  12. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats

    PubMed Central

    Eros, Krisztian; Magyar, Klara; Deres, Laszlo; Skazel, Arpad; Riba, Adam; Vamos, Zoltan; Kalai, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Toth, Kalman

    2017-01-01

    Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative

  13. Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress

    PubMed Central

    Módis, Katalin; Gerő, Domokos; Erdélyi, Katalin; Szoleczky, Petra; DeWitt, Douglas; Szabo, Csaba

    2012-01-01

    Purpose The goal of the current studies was to elucidate the role of the principal poly(ADP-ribose)polymerase isoform, PARP1 in the regulation of cellular energetics in endothelial cells under resting conditions and during oxidative stress. Methods We utilized bEnd.3 endothelial cells and A549 human transformed epithelial cells. PARP1 was inhibited either by pharmacological inhibitors or by siRNA silencing. The Seahorse XF24 Extracellular Flux Analyzer was used to measure indices of mitochondrial respiration (oxygen consumption rate) and of glycolysis (extracellular acidification rate). Cell viability, cellular and mitochondrial NAD+ levels and mitochondrial biogenesis were also measured. Results Silencing of PARP1 increased basal cellular parameters of oxidative phosphorylation, providing direct evidence that PARP1 is a regulator of mitochondrial function in resting cells. Pharmacological inhibitors of PARP1 and siRNA silencing of PARP1 protected against the development of mitochondrial dysfunction and elevated the respiratory reserve capacity in endothelial cells exposed to oxidative stress. The observed effects were unrelated to an effect on mitochondrial biogenesis. Isolated mitochondria of A549 human transformed epithelial cells exhibited an improved resting bioenergetic status after stable lentiviral silencing of PARP1; these effects were associated with elevated resting mitochondrial NAD+ levels in PARP1 silenced cells. Conclusions PARP1 is a regulator of basal cellular energetics in resting endothelial and epithelial cells. Furthermore, endothelial cells respond with a decrease in their mitochondrial reserve capacity during low-level oxidative stress, an effect, which is attenuated by PARP1 inhibition. While PARP1 is a regulator of oxidative phosphorylation in resting and oxidatively stressed cells, it only exerts a minor effect on glycolysis. PMID:22198485

  14. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  15. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification In Vivo, with Special Reference to Poly(ADP-ribose) Binding Protein Modules.

    PubMed

    Miwa, Masanao; Ida, Chieri; Yamashita, Sachiko; Tanaka, Masakazu; Fujisawa, Junichi

    2016-01-01

    PolyADP-ribosylation is a unique posttranslational modification of proteins, involved in various cellular functions including stability of chromatin. PolyADP-ribosylation modifies acceptor proteins with a large negatively charged poly(ADP-ribose) (PAR) to greatly change the structure and function of the acceptor proteins. In addition various specific motifs of proteins were recently found to interact non-covalently with PAR thereby changing the spaciotemporal activity of protein-protein interaction in cells. However, the structure of PAR to which specific protein motifs should bind is not fully characterized. The present work will review the structure, physicochemical properties and quantification of PAR in vivo, with special reference to PAR binding protein modules.

  16. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer

    PubMed Central

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation. PMID:27994514

  17. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  18. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  19. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    PubMed Central

    2010-01-01

    Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothesize that a decrease in the concentration of total poly-ADP-ribose adducts of peripheral blood lymphocyte (PBL) proteins strongly correlates with the incidence of human cancer. Results Using a novel immunoprobe assay, we show a statistically significant (P ≤ 0.001) reduction (~ 42 to 49%) in the level of poly-ADP-ribose adducts of PBL proteins of patients with advanced cancers of head & neck (H & N) region (comprising fourteen distinct cancers at different sites), breast and cervix in comparison to healthy controls. Conclusions These findings imply potential utility of the poly-ADP-ribose adducts of PBL proteins as a novel and general biomarker of human cancers with potentials of significant clinical and epidemiological applications. PMID:21034502

  20. Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes.

    PubMed

    Li, Bing; Luo, Chen; Chowdhury, Subrata; Gao, Zu-Hua; Liu, Jun-Li

    2013-09-10

    Poly(ADP-ribose) polymerase (Parp) 1 is a key regulator of cell death, its inhibition prevented streptozotocin-induced diabetes and attenuated caerulein-induced acute pancreatitis. Reg family proteins are significantly induced by Parp1 inhibitor, experimental diabetes and/or acute pancreatitis. We propose that Reg proteins are involved in the protection of pancreatic cells by Parp1 inhibition. To test this possibility, Parp1-/- and wild-type mice were injected with streptozotocin to induce diabetes. Separately, acute pancreatitis was induced with repeated injections of caerulein. Upon streptozotocin administration, Parp1-/- mice displayed much decreased hyperglycemia and preserved serum insulin level. The treatment induced similar levels of Reg1, -2, -3α and -3β genes in the pancreas of both wild-type and Parp1-/- mice, suggesting that the upregulation of Reg family genes during streptozotocin-induced diabetes was independent of Parp1 ablation. In caerulein-induced pancreatitis, unlike being reported, Parp1 knockout caused no relief on the severity of pancreatitis; the upregulation of pancreatic Reg1, -2, -3α and -3β genes upon caerulein was unaffected by Parp1 deletion. Our results reconfirmed the protective effect of Parp1 gene deletion on islet β-cells but questioned its effect on the acinar cells. In either case, the significant induction of Reg family genes seemed independent of Parp1-mediated cell death.

  1. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    PubMed

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.

  2. Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification.

    PubMed

    Eisemann, Travis; McCauley, Michael; Langelier, Marie-France; Gupta, Kushol; Roy, Swati; Van Duyne, Gregory D; Pascal, John M

    2016-10-04

    The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering (SAXS) to investigate solution conformations of the complete ankyrin repeat domain. Mutagenesis and binding studies using the bivalent TNKS binding domain of Axin1 demonstrate that only certain ARC combinations function together. The physical basis for these restrictions is explained by both rigid and flexible ankyrin repeat elements determined in our structural analysis. SAXS analysis is consistent with a dynamic ensemble of TNKS ankyrin repeat conformations modulated by Axin1 interaction. TNKS ankyrin repeat domain is thus an adaptable binding platform with structural features that can explain selectivity toward diverse proteins, and has implications for TNKS positioning of bound targets for poly(ADP-ribose) modification.

  3. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum.

    PubMed Central

    De Flora, A; Guida, L; Franco, L; Zocchi, E; Pestarino, M; Usai, C; Marchetti, C; Fedele, E; Fontana, G; Raiteri, M

    1996-01-01

    CD38, a type II transmembrane glycoprotein predominantly expressed in blood cells, is a bifunctional ectoenzyme directly involved in the metabolism of cADP-ribose (cADPR). This is a potent Ca2+ mobilizer in several types of cells. The relationship between the ectocellular site of cADPR production and its intracellular calcium-related functions is poorly understood. Cultured rat cerebellar granule cells showed both enzymic activities of CD38, ADP-ribosyl cyclase and cADPR hydrolase, at a ratio of 16 to 1 respectively, and were immunostained by the anti-(human CD38) monoclonal antibody IB4. In these cells externally added cADPR and beta-NAD+ (the precursor of cADPR), but not alpha-NAD+ or ADP-ribose, enhanced the peak of the depolarization-induced rise in intracellular Ca2+ concentration. This effect was inhibited by 1 microM ryanodine, suggesting a potentiation of calcium-induced calcium release by cADPR. CD38 ectoenzyme activities, ADP-ribosyl cyclase and cADPR hydrolase, were also demonstrated in vivo by microdialysis of adult rat cerebellum, where IB4 bound to granule neurons selectively. Trace amounts (11.5 +/- 3.8 nM) of NAD+ were detected by microdialysis sampling and sensitive assays in the basal interstitial fluid of the cerebellum. These results provide a link between ectocellular cADPR turnover and intracellular calcium mobilization in cerebellum. PMID:8973582

  4. Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation

    PubMed Central

    Huang, Peiwu; Zhuang, Zhixiong; Liu, Jianjun; Gao, Wei; Liu, Yinpin; Huang, Haiyan

    2016-01-01

    Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer. PMID:27003318

  5. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    PubMed

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  6. Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity

    SciTech Connect

    Meyer, Ralph G. . E-mail: meyerg@vet.upenn.edu; Meyer-Ficca, Mirella L.; Whatcott, Clifford J.; Jacobson, Elaine L.; Jacobson, Myron K.

    2007-08-01

    Poly(ADP-ribose)glycohydrolase (PARG) is the major enzyme capable of rapidly hydrolyzing poly(ADP-ribose) (PAR) formed by the diverse members of the PARP enzyme family. This study presents an alternative splice mechanism by which two novel PARG protein isoforms of 60 kDa and 55 kDa are expressed from the human PARG gene, termed hPARG60 and hPARG55, respectively. Homologous forms were found in the mouse (mPARG63 and mPARG58) supporting the hypothesis that expression of small PARG isoforms is conserved among mammals. A PARG protein of {approx} 60 kDa has been described for decades but with its genetic basis unknown, it was hypothesized to be a product of posttranslational cleavage of larger PARG isoforms. While this is not excluded entirely, isolation and expression of cDNA clones from different sources of RNA indicate that alternative splicing leads to expression of a catalytically active hPARG60 in multiple cell compartments. A second enzyme, hPARG55, that can be expressed through alternative translation initiation from hPARG60 transcripts is strictly targeted to the mitochondria. Functional studies of a mitochondrial targeting signal (MTS) in PARG exon IV suggest that hPARG60 may be capable of shuttling between nucleus and mitochondria, which would be in line with a proposed function of PAR in genotoxic stress-dependent, nuclear-mitochondrial crosstalk.

  7. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

    SciTech Connect

    Penning, Thomas D.; Zhu, Gui-Dong; Gong, Jianchun; Thomas, Sheela; Gandhi, Viraj B.; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F.; Park, Chang H.; Fry, Elizabeth H.; Donawho, Cherrie K.; Frost, David J.; Buchanan, Fritz G.; Bukofzer, Gail T.; Rodriguez, Luis E.; Bontcheva-Diaz, Velitchka; Bouska, Jennifer J.; Osterling, Donald J.; Olson, Amanda M.; Marsh, Kennan C.; Luo, Yan; Giranda, Vincent L.

    2010-06-21

    We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K{sub i} of 1 nM and an EC{sub 50} of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

  8. Synthesis of the novel PARP-1 inhibitor AG-690/11026014 and its protective effects on angiotensin II-induced mouse cardiac remodeling.

    PubMed

    Feng, Guo-Shuai; Zhu, Cui-Ge; Li, Zhuo-Ming; Wang, Pan-Xia; Huang, Yi; Liu, Min; He, Ping; Lou, Lan-Lan; Chen, Shao-Rui; Liu, Pei-Qing

    2017-02-27

    We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg(-1)·d(-1), ig) for 4 weeks. Then two-dimensional echocardiography was performed to assess the cardiac function and structure. Histological changes of the hearts were examined with HE staining and Masson's trichrome staining. The protein expression was evaluated by Western blot, immunohistochemistry and immunofluorescence assays. The activities of sirtuin-1 (SIRT-1) and the content of NAD+ were detected with the corresponding test kits. Treatment with 6014 dose-dependently improved cardiac function, including LVEF, CO and SV and reversed the changes of cardiac structure in Ang II-infused mice: it significantly ameliorated Ang II-induced cardiac hypertrophy evidenced by attenuating the enlargement of cardiomyocytes, decreased HW/BW and LVW/BW, and decreased expression of hypertrophic markers ANF, BNP and β-MHC; it also prevented Ang II-induced cardiac fibrosis, as implied by the decrease in excess accumulation of extracellular matrix (ECM) components collagen I, collagen III and FN. Further studies revealed that treatment with 6014 did not affect the expression levels of PARP-1, but dose-dependently inhibited the activity of PARP-1 and subsequently restored the activity of SIRT-1 in heart tissues due to the decreased consumption of NAD+ and attenuated Poly-ADP-ribosylation (PARylation) of SIRT-1. In conclusion, the novel PARP-1 inhibitor 6014 effectively protects mice against AngII-induced cardiac

  9. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism.

    PubMed

    Mohamed, Junaith S; Wilson, Joseph C; Myers, Matthew J; Sisson, Kayla J; Alway, Stephen E

    2014-10-01

    Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.

  10. Association of sperm morphology and the sperm deformity index (SDI) with poly (ADP-ribose) polymerase (PARP) cleavage inhibition.

    PubMed

    Aziz, Nabil; Sharma, Rakesh K; Mahfouz, Reda; Jha, Rajesh; Agarwal, Ashok

    2011-06-30

    Apoptosis was induced in immature and mature sperm in the presence or absence of poly (ADP-ribose) polymerase (PARP) inhibitor. The association of cleaved (cPARP) with sperm morphology was examined using sperm deformity index (SDI) score. The SDI scores are associated with PARP cleavage as an early marker of apoptosis.

  11. Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells.

    PubMed

    Choi, Young Eun; Park, Eunmi

    2015-12-01

    Poly(ADP-ribose) polymerase (PARP) inhibitor has shown promising responses in homologous recombination (HR) repair-deficient cancer cells. More specifically, targeting HR pathway in combination with PARP inhibitor has been an effective chemotherapy strategy by so far. Curcumin has been recognized as anticancer agents for several types of cancers. Here, we demonstrate that curcumin inhibits a critical step in HR pathway, Rad51 foci formation, and accumulates γ-H2AX levels in MDA-MB-231 breast cancer cells. Curcumin also directly reduces HR and induces cell death with cotreatment of PARP inhibitor in MDA-MB-231 breast cancer cells. Moreover, curcumin, when combined with ABT-888, could effectively delayed breast tumor formation in vivo. Our study indicates that cotreatment of curcumin and PARP inhibitor might be useful for the combination chemotherapy for aggressive breast cancer treatment as a natural bioactive compound.

  12. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release.

    PubMed

    Sitsapesan, R; McGarry, S J; Williams, A J

    1995-11-01

    In a variety of vertebrate and invertebrate tissues the ryanodine-sensitive Ca2+ channel is the pathway for Ca2+ release from intracellular stores. The mechanism for activation of the ryanodine receptor-channel complex appears to depend both on the ryanodine receptor isoform and the cell type. In addition, a complex combination of endogenous intracellular compounds regulates channel gating. In this article, Rebecca Sitsapesan, Stephen McGarry and Alan Williams review the mechanisms involved in cyclic ADP-ribose (cADPR)-induced Ca2+ release and discuss the likelihood that cADPR-activated Ca2+ release is mediated by one of the recognized isoforms of the ryanodine receptor-Ca2+ channel complex.

  13. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer.

    PubMed

    Todorova, Tanya; Bock, Florian J; Chang, Paul

    2015-06-01

    Post-transcriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) polymerase-13 (PARP13), also known as ZC3HAV1 and zinc-finger antiviral protein (ZAP), is an RNA-binding protein that regulates the stability and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally affect miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the prosurvival cytokine receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 4 (TRAILR4) suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target.

  14. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate.

    PubMed Central

    Dargie, P J; Agre, M C; Lee, H C

    1990-01-01

    We have previously shown that a metabolite of NAD+ generated by an enzyme present in sea urchin eggs and mammalian tissues can mobilize intracellular Ca2+ in the eggs. Structural determination established it to be a cyclized ADP-ribose, and the name cyclic ADP-ribose (cADPR) has been proposed. In this study, Ca2+ mobilizations induced by cADPR and inositol trisphosphate (IP3) in sea urchin egg homogenates were monitored with Ca2+ indicators and Ca2(+)-specific electrodes. Both methods showed that cADPR can release Ca2+ from egg homogenates. Evidence indicated that it did not act as a nonspecific Ca2(+)-ionophore or as a blocker of the microsomal Ca2(+)-transport; instead, it was likely to be operating through a specific receptor system. This was supported by its half-maximal effective concentration of 18 nM, which was 7 times lower than that of IP3. The receptor for cADPR appeared to be different from that of IP3 because heparin, an inhibitor of IP3 binding, had no effect on the cADPR action. The Ca2+ releases induced by cADPR and IP3 were not additive and had an inverse relationship, indicating overlapping stores were mobilized. Microinjection of cADPR into intact eggs induced transient intracellular Ca2+ changes and activated the cortical reaction. The in vivo effectiveness of cADPR was directly comparable with IP3 and neither required external Ca2+. In addition, both were effective in activating the eggs to undergo multiple nuclear cycles and DNA synthesis. These results suggest that cADPR could function as a second messenger in sea urchin eggs. Images PMID:2100201

  15. [Influence of ADP-ribose, AMP and adenosine on bioelectric activity of hibernating ground squirrel atrium and papillary muscle].

    PubMed

    Kuz'min, V S; Abramochkin, D V; Sukhova, G S; Rozenshtraukh, L V

    2008-01-01

    The aim of work was to investigate effects of adenosine, AMP and ADP-ribose (1x10(-5)) on bioelectric activity of atrium and papillary muscle of nonhibernating (rat) and hibernating (Yakutian ground squirrel) animals. Action potential (AP) was registered with use of standard microelectrode technique. AP duration (APD) at level of 90% repolarisation in rat atrium in control experiments was 30+/-5 ms, APD at level of 50% repolarisation was 12+/-2 ms. APD at level of 90% repolarisation in rat papillary muscle was 56+/-7 ms, at level of 50% repolarisation was 18+/-2 ms. APD at level of 90% repolarisation in ground squirrel atrium was 77+/-6, APD at level of 50% repolarisation was 38+/-6 ms. APD at level of 90% repolarisation in ground squirrel papillary muscle was 105+/-9 ms, APD at level of 50% repolarisation was 42+/-8 ms. Purine nucleotides and nucleoside, that were tested in work, except ADP-ribose, act as inhibitory factors and decrease APD both in rat and hibernating ground squirrel heart. ADP-ribose decreases APD in papillary muscle of hibernator but did not in its atrium. In ground squirrel atrium AMP and adenosine decrease APD at level of 50% repolarisation by 10+/-3% and 18+/-3% respectively. AMP and adenosine decrease APD at level of 90% repolarisation by 9+/-2% and 11+/-2% respectively. In ground squirrel papillary muscle ADP-ribose, AMP and adenosine decrease APD at level of 50% repolarisation by 26+/-8%, 23+/-8% and 26+/-7%. ADP-ribose, AMP and adenosine decrease APD at level of 90% repolarisation by 12+/-3%, 10+/-3%, 13+/-3%. Thus, decrease of APD in ground squirrel papillary muscle at level of 90% repolarisation during nucleotides and adenosine action was 2-2.5 fold less, than the rat.

  16. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

    PubMed

    Zhao, Kehao; Harshaw, Robyn; Chai, Xiaomei; Marmorstein, Ronen

    2004-06-08

    Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.

  17. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    SciTech Connect

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite ({<=} 2 {mu}M) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 {mu}M arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic.

  18. Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies

    PubMed Central

    Ding, Xia; Chaudhuri, Arnab Ray; Callen, Elsa; Pang, Yan; Biswas, Kajal; Klarmann, Kimberly D.; Martin, Betty K.; Burkett, Sandra; Cleveland, Linda; Stauffer, Stacey; Sullivan, Teresa; Dewan, Aashish; Marks, Hanna; Tubbs, Anthony T.; Wong, Nancy; Buehler, Eugen; Akagi, Keiko; Martin, Scott E.; Keller, Jonathan R.; Nussenzweig, André; Sharan, Shyam K.

    2016-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib has been approved for treatment of advanced ovarian cancer associated with BRCA1 and BRCA2 mutations. BRCA1- and BRCA2-mutated cells, which are homologous recombination (HR) deficient, are hypersensitive to PARPi through the mechanism of synthetic lethality. Here we examine the effect of PARPi on HR-proficient cells. Olaparib pretreatment, PARP1 knockdown or Parp1 heterozygosity of Brca2cko/ko mouse embryonic stem cells (mESCs), carrying a null (ko) and a conditional (cko) allele of Brca2, results in viable Brca2ko/ko cells. PARP1 deficiency does not restore HR in Brca2ko/ko cells, but protects stalled replication forks from MRE11-mediated degradation through its impaired recruitment. The functional consequence of Parp1 heterozygosity on BRCA2 loss is demonstrated by a significant increase in tumorigenesis in Brca2cko/cko mice. Thus, while olaparib efficiently kills BRCA2-deficient cells, we demonstrate that it can also contribute to the synthetic viability if PARP is inhibited before BRCA2 loss. PMID:27498558

  19. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor.

    PubMed

    Cao, Ran

    2016-04-01

    Selective poly (ADP-ribose) polymerase (PARP)-1 inhibitor represents promising therapy against cancers with a good balance between efficacy and safety. Owing to the conserved structure between PARP-1 and PARP-2, most of the clinical and experimental drugs show equivalent inhibition against both targets. Most recently, it's disclosed a highly selective PARP-1 inhibitor (NMS-P118) with promising pharmacokinetic properties. Herein, we combined molecular simulation with free energy calculation to gain insights into the selective mechanism of NMS-P118. Our results suggest the reduction of binding affinity for PARP-2 is attributed to the unfavorable conformational change of protein, which is accompanied by a significant energy penalty. Alanine-scanning mutagenesis study further reveals the important role for a tyrosine residue of donor loop (Tyr889(PARP-1) and Tyr455(PARP-2)) in contributing to the ligand selectivity. Retrospective structural analysis indicates the ligand-induced movement of Tyr455(PARP-2) disrupts the intra-molecule hydrogen bonding network, which partially accounts for the "high-energy" protein conformation in the presence of NMS-P118. Interestingly, such effect isn't observed in other non-selective PARP inhibitors including BMN673 and A861695, which validates the computational prediction. Our work provides energetic insight into the subtle variations in the crystal structures and could facilitate rational design of new selective PARP inhibitor.

  20. Influence of 3-aminobenzamide, an inhibitor of poly(ADP-ribose)polymerase, in the evaluation of the genotoxicity of doxorubicin, cyclophosphamide and zidovudine in female mice.

    PubMed

    Yadav, L; Khan, S; Shekh, K; Jena, G B

    2014-08-01

    Testing new chemical entities for genotoxicity is an integral part of the preclinical drug-development process. Lowering the detection limit and enhancing the sensitivity of genotoxicity assays is required, as the standard test-battery fails to detect some carcinogens (non-genotoxic) and weak genotoxins. One of the mechanisms that affect the detection of weak genotoxins is related with the DNA-repair efficiency of the cell system used. In the present study, 3-aminobenzamide (3-AB, 30 mg/kg body-weight), a poly(ADP-ribose)polymerase inhibitor, was used to evaluate the DNA-damaging potential of zidovudine (AZT, 400 mg/kg bw), doxorubicin (DOX, 5 mg/kg bw) and cyclophosphamide (CP, 50 mg/kg bw, as a positive control) and sucrose (SUC, 3 g/kg bw, as a negative control) in Swiss female mice. The endpoints considered included micronucleus formation, DNA breakage (in peripheral blood lymphocytes, bone marrow and liver; comet assay) and chromosome aberrations, as well as immunohistochemistry of PARP-1 and phosphorylated histone H2AX (γ-H2AX). The results clearly indicate that the genotoxicity of zidovudine (AZT), doxorubicin (DOX) and cyclophosphamide (CP) was significantly increased in the combination treatments (3-AB+AZT, 3-AB+DOX, 3-AB+CP) as compared with the respective controls (treatment with AZT, DOX and CP alone). There was no increase in the genotoxicity per se after treatment with SUC, 3-AB or 3-AB+SUC, compared with the control (saline). Correlation analysis suggests that all genotoxicity parameters are well correlated with each other. The results clearly show that the genotoxicity of weak genotoxins can be enhanced and detected in the presence of 3-AB in mice. Thus, this approach can be used in the pre-clinical genotoxicity screening of weak genotoxins.

  1. Tankyrase Polymerization Is Controlled by Its Sterile Alpha Motif and Poly(ADP-Ribose) Polymerase Domains

    PubMed Central

    De Rycker, Manu; Price, Carolyn M.

    2004-01-01

    Tankyrases are novel poly(ADP-ribose) polymerases that have SAM and ankyrin protein-interaction domains. They are found at telomeres, centrosomes, nuclear pores, and Golgi vesicles and have been shown to participate in telomere length regulation. Their other function(s) are unknown, and it has been difficult to envision a common role at such diverse cellular locations. We have shown that tankyrase 1 polymerizes through its sterile alpha motif (SAM) domain to assemble large protein complexes. In vitro polymerization is reversible and still allows interaction with ankyrin-domain binding proteins. Polymerization can also occur in vivo, with SAM-dependent association of overexpressed tankyrase leading to formation of large tankyrase-containing vesicles, disruption of Golgi structure, and inhibition of apical secretion. Finally, tankyrase polymers are dissociated efficiently by poly(ADP-ribosy)lation. This disassembly is prevented by mutation of the PARP domain. Our findings indicate that tankyrase 1 has the unique capacity to promote both assembly and disassembly of large protein complexes. Thus, tankyrases appear to be master scaffolding proteins that regulate the formation of dynamic protein networks at different cellular locations. This implies a common scaffolding function for tankyrases at each location, with specific tankyrase interaction partners conferring location-specific roles to each network, e.g., telomere compaction or regulation of vesicle trafficking. PMID:15509784

  2. PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation

    PubMed Central

    Andersson, Anneli; Bluwstein, Andrej; Kumar, Nitin; Teloni, Federico; Traenkle, Jens; Baudis, Michael; Altmeyer, Matthias; Hottiger, Michael O.

    2016-01-01

    Harmful oxidation of proteins, lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced, causing ‘oxidative stress’. Nuclear poly-ADP-ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However, what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase protein array (RPPA) and in-depth analysis of key stress signaling components, we observed that PAR formation induced by H2O2 was mediated by the PLC/IP3R/Ca2+/PKCα signaling axis. Mechanistically, H2O2-induced PAR formation correlated with Ca2+-dependent DNA damage, which, however, was PKCα-independent. In contrast, PAR formation was completely lost upon knockdown of PKCα, suggesting that DNA damage alone was not sufficient for inducing PAR formation, but required a PKCα-dependent process. Intriguingly, the loss of PAR formation observed upon PKCα depletion was overcome when the chromatin structure-modifying protein HMGB1 was co-depleted with PKCα, suggesting that activation and nuclear translocation of PKCα releases the inhibitory effect of HMGB1 on PAR formation. Together, these results identify PKCα and HMGB1 as important co-regulators involved in H2O2-induced PAR formation, a finding that may have important relevance for oxidative stress-associated pathophysiological conditions. PMID:27198223

  3. Transition-State Analysis of 2-O-Acetyl-ADP-Ribose Hydrolysis by Human Macrodomain 1

    PubMed Central

    2015-01-01

    Macrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates. Competitive radiolabeled-isotope effects and mass spectrometry were used to obtain KIE data to yield intrinsic KIE values. Intrinsic KIEs were matched to a quantum chemical structure of the TS that includes the active site residues Asp184 and Asn174 and a structural water molecule. Transition-state analysis supports a concerted mechanism with an early TS involving simultaneous nucleophilic water attack and leaving group bond cleavage where the breaking C–O ester bond = 1.60 Å and the C–O bond to the attacking water nucleophile = 2.30 Å. The MacroD1 TS provides mechanistic understanding of the OAADPr esterase chemistry. PMID:25051211

  4. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  5. Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats.

    PubMed

    Martin, D R; Lewington, A J; Hammerman, M R; Padanilam, B J

    2000-11-01

    The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.

  6. Readers of poly(ADP-ribose): designed to be fit for purpose

    PubMed Central

    Teloni, Federico; Altmeyer, Matthias

    2016-01-01

    Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions. PMID:26673700

  7. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    PubMed

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  8. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response

    PubMed Central

    Zhang, Feng; Shi, Jiazhong; Chen, Shih-Hsun; Bian, Chunjing; Yu, Xiaochun

    2015-01-01

    Following DNA double-strand breaks, poly(ADP-ribose) (PAR) is quickly and heavily synthesized to mediate fast and early recruitment of a number of DNA damage response factors to the sites of DNA lesions and facilitates DNA damage repair. Here, we found that EXO1, an exonuclease for DNA damage repair, is quickly recruited to the sites of DNA damage via PAR-binding. With further dissection of the functional domains of EXO1, we report that the PIN domain of EXO1 recognizes PAR both in vitro and in vivo and the interaction between the PIN domain and PAR is sufficient for the recruitment. We also found that the R93G variant of EXO1, generated by a single nucleotide polymorphism, abolishes the interaction and the early recruitment. Moreover, our study suggests that the PAR-mediated fast recruitment of EXO1 facilities early DNA end resection, the first step of homologous recombination repair. We observed that other PIN domains could also recognize DNA damage-induced PAR. Taken together, our study demonstrates a novel class of PAR-binding module that plays an important role in DNA damage response. PMID:26400172

  9. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    PubMed

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  10. The Treatment of BRCA1/2 Hereditary Breast Cancer and Sporadic Breast Cancer with Poly(ADP-ribose) PARP-1 Inhibitors and Chemotherapy

    DTIC Science & Technology

    2008-09-01

    American population d) D) Obesity, and breast cancer J. of Nursing and Bariatric Surgery . 2008 submitting. This paper uses in part mechanisms worked...National Med. Society. 2008 submitting D) Obesity, and breast cancer J. of Nursing and Bariatric Surgery . 2008 submitting Abstracts: A) De Soto JA...submitting De Soto JA. Obesity, breast cancer and bariatric surgery . J. of Nursing and Bariatric Surgery . 2008 submitting Davis JH, De Soto JA

  11. Photoaffinity Labeling of Mouse Fibroblast Enzymes by a Base Excision Repair Intermediate: New Evidence on the Role of PARP-1 in DNA Repair

    SciTech Connect

    Lavrik, Olga I.; Prasad, Rajendra; Sobol, Robert W.; Horton, Julie K.; Ackerman, Eric J. ); Wilson, Samuel H.

    2001-07-06

    To examine mammalian base excision repair (BER) enzymes interacting with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast (MEF) crude extract. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by AP endonuclease creating a nick with 3' hydroxyl and 5' reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was introduced at the 3' hydroxyl group. With near UV-light exposure (312nm) of the extract-probe mixture, only six proteins were strongly labeled, including poly (ADP-ribose) polymerase (PARP-1) and the well-known BER participants flap endonuclease (FEN-1), DNA polymerase b (b-pol), and AP endonuclease (APE). The amount of probe crosslinked to PARP-1 was greater than that crosslinked to the other proteins. The specificity of PARP-1 labeling was examined by competition experiments involving various oligonucleotide competitors; competition of labeling by the probe was much greater for the BER intermediates tested than for normal double-stranded DNA. The specificity of PARP-1 labeling also was examined using DNA probes with alternate structures; PARP-1 labeling was stronger with a DNA oligomer representing a BER intermediate than with a molecule representing a nick in double-stranded DNA. These results identifying interaction of PARP-1 with a BER intermediate are discussed in light of PARP-1's role in mammalian BER.

  12. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  13. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment

    PubMed Central

    Li, Jian; Zhou, Nan; Cai, Peiling; Bao, Jinku

    2016-01-01

    Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8) and amber score (−51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development. PMID:26907257

  14. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    PubMed

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-04

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  15. Phase I, Dose-Escalation, 2-Part Trial of Poly(ADP-Ribose) Polymerase Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers.

    PubMed

    de Bono, Johann; Ramanathan, Ramesh K; Mina, Lida; Chugh, Rashmi; Glaspy, John; Rafii, Saeed; Kaye, Stan; Sachdev, Jasgit; Heymach, John; Smith, David C; Henshaw, Joshua W; Herriott, Ashleigh; Patterson, Miranda; Curtin, Nicola J; Byers, Lauren Averett; Wainberg, Zev A

    2017-02-27

    Talazoparib inhibits poly(ADP-ribose) polymerase (PARP) catalytic activity, trapping PARP1 on damaged DNA and causing cell death in BRCA1/2-mutated cells. We evaluated talazoparib therapy in this 2-part, phase I, first-in-human trial. Antitumor activity, maximum tolerated dose (MTD), pharmacokinetics, and pharmacodynamics of once-daily talazoparib were determined in an open-label, multicenter, dose-escalation study (NCT01286987). The MTD was 1.0 mg/day, with an elimination half-life of 50 hours. Treatment-related adverse events included fatigue (26/71 patients; 37%) and anemia (25/71 patients; 35%). Grade 3 to 4 adverse events included anemia (17/71 patients; 24%) and thrombocytopenia (13/71 patients; 18%). Sustained PARP inhibition was observed at doses ≥0.60 mg/day. At 1.0 mg/day, confirmed responses were observed in 7/14 (50%) and 5/12 (42%) patients with BRCA mutation-associated breast and ovarian cancers, respectively, and in patients with pancreatic and small cell lung cancer. Talazoparib demonstrated single-agent antitumor activity and was well tolerated in patients at the recommended dose of 1.0 mg/day.

  16. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    SciTech Connect

    Nakadate, Yusuke; Kodera, Yasuo; Kitamura, Yuka; Tachibana, Taro; Tamura, Tomohide; Koizumi, Fumiaki

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  17. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    PubMed Central

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI. PMID:17225870

  18. Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype

    SciTech Connect

    McCurry, L.S.; Jacobson, M.K.

    1981-01-25

    Treatment of normal human cells with DNA-damaging agents such as uv light or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stimulates the conversion of NAD to the chromosomal polymer poly(ADP-ribose) which in turn results in a rapid depletion of the cellular NAD pool. The effect of uv light or MNNG on the NAD pools of seven cell lines of human fibroblasts either homozygous or heterozygous for the xeroderma pigmentosum genotype has been studied. Xeroderma pigmentosum cells of genetic complementation groups A, C, and D are deficient in the excision repair of DNA damage caused by uv light. Following uv treatment, the NAD content of these cells was unchanged or only slightly reduced. All of the cell lines are able to excise DNA damage caused by MNNG and all of the cell lines had a greatly reduced content of NAD following MNNG treatment. The results demonstrate a close relationship between the conversion of NAD to poly(ADP-ribose) and DNA excision repair in human cells.

  19. Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases

    PubMed Central

    Morales, Julio C.; Li, Longshan; Fattah, Farjana J.; Dong, Ying; Bey, Erik A.; Patel, Malina; Gao, Jinming; Boothman, David A.

    2016-01-01

    Poly (ADP-ribose) polymerases (PARPs) are a family of related enzymes that share the ability to catalyze the transfer of ADP-ribose to target proteins. PARPs play an important role in various cellular processes, including modulation of chromatin structure, transcription, replication, recombination, and DNA repair. The role of PARP proteins in DNA repair is of particular interest, in view of the finding that certain tumors defective in homologous recombination mechanisms, may rely on PARP-mediated DNA repair for survival, and are sensitive to its inhibition. PARP inhibitors may also increase tumor sensitivity to DNA-damaging agents. Clinical trials of PARP inhibitors are investigating the utility of these approaches in cancer. The hyperactivation of PARP has also been shown to result in a specific programmed cell death pathway involving NAD+/ATP depletion, mu-calpain activation, loss of mitochondrial membrane potential, and the release of apoptosis inducing factor. Hyperactivation of the PARP pathway may be exploited to selectively kill cancer cells. Other PARP forms, including tankyrase 1 (PARP 5a), which plays an important role in enhancing telomere elongation by telomerase, have been found to be potential targets in cancer therapy. The PARP pathway and its inhibition thus offers a number of opportunities for therapeutic intervention in both cancer and other disease states. PMID:24579667

  20. Prevention of tumorigenesis of oncogene-transformed rat fibroblasts with DNA site inhibitors of poly(ADP ribose) polymerase

    SciTech Connect

    Tseng, A. Jr.; Lee, W.M.F.; Kirsten, E.; Hakam, A.; McLick, J.; Buki, K.; Kun, E.

    1987-02-01

    The EJ-ras gene was placed under the transcriptional control of the steroid-inducible mouse mammary tumor virus promoter/enhancer and introduced into Rat-1 fibroblasts, yielding the 14C cell line. When these cells were exposed to dexamethasone in vitro, EJ-ras mRNA was induced 15- to 20-fold, the cells grew in agar, and, after injection of cells into syngenic Fischer 344 rats, they produced lethal fibrosarcomas. Inhibitors of poly(ADP ribose) polymerase, which prevent the activation of the purified enzyme by a synthrtic octadeoxyribonucleotide duplex, inhibited both in vivo tumorigenicity and in vitro growth in soft agar. The enzyme inhibitor 1,2-benzopyrone, which was studied in detail, and other polymerase inhibitors had no effect on EJ-ras mRNA or p21 protein expression. Poly(ADP ribose) polymerase was inhibited by the drug in both untreated and dexamethasone-treated cells both in vitro and in vivo to the same extent, but biological consequences of enzyme inhibition were manifest only when the cells were in the transformed tumorigenic state.

  1. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes.

    PubMed

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2'-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI.

  2. Association of poly(ADP-ribose) polymerase with nuclear subfractions catalyzed with sodium tetrathionate and hydrogene peroxide crosslinks.

    PubMed

    Desnoyers, S; Kirkland, J B; Poirier, G G

    1996-06-21

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which catalyzes the transfer of ADP-ribose units from NAD+ to a variety of nuclear proteins under the stimulation of DNA strand break. To examine its role in DNA repair, we have been studying the interaction of PARP with other nuclear proteins using disulfide cross-linking, initiated by sodium tetrathionate (NaTT). Chinese Hamster Ovary (CHO) cells were extracted sequentially with Nonidet P40 (detergent), nucleases (DNase+RNase), and high salt (1.6 M NaCl) with and without the addition of a sulfhydryl reducing agent. The residual structures are referred to as the nuclear matrix, and are implicated in the organization of DNA repair and replication. Treatment of the cells with NaTT causes the crosslinking of PARP to the nuclear matrix. Activating PARP by pretreating the cells with H2O2 did not increase the cross-linking of PARP with the nuclear matrix, suggesting a lack of additional interaction of the enzyme with the nuclear matrix during DNA repair. Both NaTT and H2O2 induced crosslinks of PARP that were extractable with high salt. To shorten the procedure, these crosslinks were extracted from cells without nucleases and high salt treatment, using phosphate buffer. Using western blotting, these crosslinks appeared as a smear of high molecular weight species including a possible dimer of PARP at 230 kDa, which return to 116 kDa following reduction with beta-mercaptoethanol.

  3. ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of the NUDT9H Domain

    PubMed Central

    Kühn, Frank J. P.; Kühn, Cornelia; Winking, Mathis; Hoffmann, Daniel C.; Lückhoff, Andreas

    2016-01-01

    The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nv

  4. Role of free radicals and poly(ADP-ribose) synthetase in intestinal tight junction permeability.

    PubMed Central

    Cuzzocrea, S.; Mazzon, E.; De Sarro, A.; Caputi, A. P.

    2000-01-01

    BACKGROUND: Small intestine permeability is frequently altered in inflammatory bowel disease and may be caused by the translocation of intestinal toxins through leaky small intestine tight junctions (TJ) and adherence (1,2). The role of hydrogen peroxide (H2O2), and nitric oxide (NO) and PARS in the permeability and structure of small intestine TJ is not clearly understood. MATERIALS AND METHODS: In vitro study, MDCK (Madin-Darby Canine Kidney) cells were exposed to H2O2 (100 microM for 2h), or zymosan (200 microl of stock solution 1 mg/ml for 4h), in the presence or absence of a treatment with poly(ADP-ribose) synthetase (PARS) inhibitor 3-aminobenzamide (3-AB: 3 mM) or with n-acetylcysteine (NAC 10 mM). In vivo study, wild-type mice (WT) and mice lacking (KO) of the inducible (or type 2) nitric oxide synthase (iNOS) were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.). In addition INOSWT mice were treated with 3-AB (10 mg/kg, i.p.) or with NAC (40 mg/kg, i.p.) 1 hour and 6 h after zymosan administration. RESULTS: Exposure of MDCK cells to hydrogen peroxide caused a significant impairment in mitochondrial respiration that was associated with a reduction of cells adherence as well as derangement of the junctional proteins. A significant increase of nitrate and nitrite levels, stable metabolites of nitric oxide (NO), were found in MDCK supernatant after zymosan incubation. NO production was associated with a significant reduction of cell adherence and impairment of occludin protein. Pre-treatment of the cells with 3-AB or with NAC caused a significant prevention of H2O2-mediated occludin junctional damage as well as reduced the NO-induced occludin damage. In addition, H2O2 and NO are able to induce a significant derangement of beta-catenin and Zonula Ocludence-1 (ZO-1). We found an increase of tight junctional permeability to lanthanum nitrate (molecular weight, 433) in the terminal ileal TJs in zymosan-treated iNOSWT mice compared with

  5. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport.

    PubMed

    Peng, Hui; Zhu, Qin-shi; Zhong, Shuping; Levy, Daniel

    2015-01-01

    Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.

  6. Epstein-Barr Virus Oncoprotein LMP1 Mediates Epigenetic Changes in Host Gene Expression through PARP1

    PubMed Central

    Martin, Kayla A.; Lupey, Lena N.

    2016-01-01

    ABSTRACT The latent infection of Epstein-Barr virus (EBV) is associated with 1% of human cancer incidence. Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) that mediate EBV replication during latency. In this study, we detail the mechanisms that drive cellular PARylation during latent EBV infection and the effects of PARylation on host gene expression and cellular function. EBV-infected B cells had higher PAR levels than EBV-negative B cells. Moreover, cellular PAR levels were up to 2-fold greater in type III than type I latently infected EBV B cells. We identified a positive association between expression of the EBV genome-encoded latency membrane protein 1 (LMP1) and PAR levels that was dependent upon PARP1. PARP1 regulates gene expression by numerous mechanisms, including modifying chromatin structure and altering the function of chromatin-modifying enzymes. Since LMP1 is essential in establishing EBV latency and promoting tumorigenesis, we explored the model that disruption in cellular PARylation, driven by LMP1 expression, subsequently promotes epigenetic alterations to elicit changes in host gene expression. PARP1 inhibition resulted in the accumulation of the repressive histone mark H3K27me3 at a subset of LMP1-regulated genes. Inhibition of PARP1, or abrogation of PARP1 expression, also suppressed the expression of LMP1-activated genes and LMP1-mediated cellular transformation, demonstrating an essential role for PARP1 activity in LMP1-induced gene expression and cellular transformation associated with LMP1. In summary, we identified a novel mechanism by which LMP1 drives expression of host tumor-promoting genes by blocking generation of the inhibitory histone modification H3K27me3 through PARP1 activation. IMPORTANCE EBV is causally linked to several malignancies and is responsible for 1% of cancer incidence worldwide. The EBV-encoded protein LMP1 is essential for promoting viral

  7. Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    PubMed

    Tucker, Julie A; Bennett, Neil; Brassington, Claire; Durant, Stephen T; Hassall, Giles; Holdgate, Geoff; McAlister, Mark; Nissink, J Willem M; Truman, Caroline; Watson, Martin

    2012-01-01

    Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  8. PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1

    PubMed Central

    Langelier, Marie-France; Riccio, Amanda A.; Pascal, John M.

    2014-01-01

    PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains—Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5′ phosphate (5′P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways. PMID:24928857

  9. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1.

    PubMed

    Langelier, Marie-France; Riccio, Amanda A; Pascal, John M

    2014-07-01

    PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains-Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5' phosphate (5'P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways.

  10. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  11. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    PubMed Central

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-01-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain. PMID:27904474

  12. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling.

    PubMed

    Ruf, A; de Murcia, G; Schulz, G E

    1998-03-17

    Inhibitors of poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30) are of clinical interest because they have potential for improving radiation therapy and chemotherapy of cancer. The refined binding structures of four such inhibitors are reported together with the refined structure of the unligated catalytic fragment of the enzyme. Following their design, all inhibitors bind at the position of the nicotinamide moiety of the substrate NAD+. The observed binding mode suggests inhibitor improvements that avoid other NAD(+)-binding enzymes. Because the binding pocket of NAD+ has been strongly conserved during evolution, the homology with ADP-ribosylating bacterial toxins could be used to extend the bound nicotinamide, which is marked by the inhibitors, to the full NAD+ molecule.

  13. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span.

    PubMed Central

    Grube, K; Bürkle, A

    1992-01-01

    Poly(ADP-ribosyl)ation is a eukaryotic posttranslational modification of proteins that is strongly induced by the presence of DNA strand breaks and plays a role in DNA repair and the recovery of cells from DNA damage. We compared poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) activities in Percoll gradient-purified, permeabilized mononuclear leukocytes from mammalian species of different maximal life span. Saturating concentrations of a double-stranded octameric oligonucleotide were applied to provide a direct and maximal stimulation of PARP. Our results on 132 individuals from 13 different species yield a strong positive correlation between PARP activity and life span (r = 0.84; P << 0.001), with human cells displaying approximately 5 times the activity of rat cells. Intraspecies comparisons with both rat and human cells from donors of all age groups revealed some decline of PARP activity with advancing age, but it was only weakly correlated. No significant polymer degradation was detectable under our assay conditions, ruling out any interference by poly(ADP-ribose) glycohydrolase activity. By Western blot analysis of mononuclear leukocytes from 11 species, using a crossreactive antiserum directed against the extremely well-conserved NAD-binding domain, no correlation between the amount of PARP protein and the species' life spans was found, suggesting a greater specific enzyme activity in longer-lived species. We propose that a higher poly(ADP-ribosyl)ation capacity in cells from long-lived species might contribute to the efficient maintenance of genome integrity and stability over their longer life span. Images PMID:1465394

  14. A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Shull, Neil P.; Spinelli, Sherry L.; Phizicky, Eric M.

    2005-01-01

    One molecule of ADP-ribose 1″,2″-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events per Saccharomyces cerevisiae generation. The metabolism of Appr>p remains poorly defined. A cyclic phosphodiesterase (Cpd1p) has been shown to convert Appr>p to ADP-ribose-1″-phosphate (Appr1p). We used a biochemical genomics approach to identify two yeast phosphatases that can convert Appr1p to ADP-ribose: the product of ORF YBR022w (now Poa1p), which is completely unrelated to other known phosphatases; and Hal2p, a known 3′-phosphatase of 5′,3′-pAp. Poa1p is highly specific for Appr1p, and thus likely acts on this molecule in vivo. Poa1 has a relatively low KM for Appr1p (2.8 μM) and a modest kcat (1.7 min−1), but no detectable activity on several other substrates. Furthermore, Poa1p is strongly inhibited by ADP-ribose (KI, 17 μM), modestly inhibited by other nucleotides containing an ADP-ribose moiety and not inhibited at all by other tested molecules. In contrast, Hal2p is much more active on pAp than on Appr1p, and several other tested molecules were Hal2p substrates or inhibitors. poa1-Δ mutants have no obvious growth defect at different temperatures in rich media, and analysis of yeast extracts suggests that ∼90% of Appr1p processing activity originates from Poa1p. PMID:15684411

  15. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line.

    PubMed

    Franco, Luisa; Bodrato, Nicoletta; Moreschi, Iliana; Usai, Cesare; Bruzzone, Santina; Scarf ì, Sonia; Zocchi, Elena; De Flora, Antonio

    2006-10-01

    Lipopolysaccharide, the main component of the cell wall of Gram-negative bacteria, is known to activate microglial cells following its interaction with the CD14/Toll-like receptor complex (TLR-4). The activation pathway triggered by lipopolysaccharide in microglia involves enhanced basal levels of intracellular calcium ([Ca2+]i) and terminates with increased generation of cytokines/chemokines and nitric oxide. Here we demonstrate that in lipopolysaccharide-stimulated murine N9 microglial cells, cyclic ADP-ribose, a universal and potent Ca2+ mobiliser generated from NAD+ by ADP-ribosyl cyclases (ADPRC), behaves as a second messenger in the cell activation pathway. Lipopolysaccharide induced phosphorylation, mediated by multiple protein kinases, of the mammalian ADPRC CD38, which resulted in significantly enhanced ADPRC activity and in a 1.7-fold increase in the concentration of intracellular cyclic ADP-ribose. This event was paralleled by doubling of the basal [Ca2+]i levels, which was largely prevented by the cyclic ADP-ribose antagonists 8-Br-cyclic ADP-ribose and ryanodine (by 75% and 88%, respectively). Both antagonists inhibited, although incompletely, functional events downstream of the lipopolysaccharide-induced microglia-activating pathway, i.e. expression of inducible nitric oxide synthase, overproduction and release of nitric oxide and of tumor necrosis factor alpha. The identification of cyclic ADP-ribose as a key signal metabolite in the complex cascade of events triggered by lipopolysaccharide and eventually leading to enhanced generation of pro-inflammatory molecules may suggest a new therapeutic target for treatment of neurodegenerative diseases related to microglia activation.

  16. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers.

    PubMed

    Okazaki, Arimichi; Gameiro, Paulo A; Christodoulou, Danos; Laviollette, Laura; Schneider, Meike; Chaves, Frances; Stemmer-Rachamimov, Anat; Yazinski, Stephanie A; Lee, Richard; Stephanopoulos, Gregory; Zou, Lee; Iliopoulos, Othon

    2017-03-27

    Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel-Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL-/- RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL-/- cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor-induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra-S phase checkpoint, and suppressed the growth of VHL-/- RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL-/- cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.

  17. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.

    PubMed

    Furuike, Yoshihiko; Akita, Yuka; Miyahara, Ikuko; Kamiya, Nobuo

    2016-03-29

    Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases.

  18. Effect of silicon dioxide on expression of poly (ADP-ribose) polymerase mRNA and protein.

    PubMed

    Gao, Ai; Song, Shanshan; Wang, Danlin; Peng, Wei; Tian, Lin

    2009-07-01

    Silicon dioxide induces acute injury and chronic pulmonary fibrosis. International Agency for Research on Cancer (IARC) listed it as a human carcinogen in 1996. However, the molecular mechanisms to induce cancer are not understood yet. The content of poly (ADP-ribose) polymerases (PARP) mRNA and protein in Hela cells treated with concentrations of silicon dioxide up to 400microg/ml was determined by real-time fluorogenetic quantitative PCR (RQ-PCR) and immunofluorescence assay, respectively. MTT assay was used to determine cell viability. The results showed that viability at 400microg/ml silica was significantly decreased but not at lower concentrations. The protein content of gamma-H2AX in silica-treated group was significantly higher than the controls. The PARP mRNA and protein levels were significantly reduced with a dose response manner from the lowest silicon dioxide level. Our findings suggested that silicon dioxide increased the expression of gamma-H2AX and inhibited the expression of PARP mRNA and protein in Hela cells.

  19. Inhibition of Poly(ADP-Ribose) Polymerase Enhances Radiochemosensitivity in Cancers Proficient in DNA Double-Strand Break Repair.

    PubMed

    Shunkwiler, Lauren; Ferris, Gina; Kunos, Charles

    2013-02-08

    Pharmacologic inhibitors of poly(ADP-ribose) polymerase (PARP) putatively enhance radiation toxicity in cancer cells. Although there is considerable information on the molecular interactions of PARP and BRCA1- and BRCA2-deficient cancers, very little is known of the PARP inhibition effect upon cancers proficient in DNA double-strand break repair after ionizing radiation or after stalled replication forks. In this work, we investigate whether PARP inhibition by ABT-888 (veliparib) augments death-provoking effects of ionizing radiation, or of the topoisomerase I poison topotecan, within uterine cervix cancers cells harboring an unfettered, overactive ribonucleotide reductase facilitating DNA double-strand break repair and contrast these findings with ovarian cancer cells whose regulation of ribonucleotide reductase is relatively intact. Cell lethality of a radiation-ABT-888 combination is radiation and drug dose dependent. Data particularly highlight an enhanced topotecan-ABT-888 cytotoxicity, and corresponds to an increased number of unrepaired DNA double-strand breaks. Overall, our findings support enhanced radiochemotherapy toxicity in cancers proficient in DNA double-strand break repair when PARP is inhibited by ABT-888.

  20. Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose.

    PubMed

    Bodrato, Nicoletta; Franco, Luisa; Fresia, Chiara; Guida, Lucrezia; Usai, Cesare; Salis, Annalisa; Moreschi, Iliana; Ferraris, Chiara; Verderio, Claudia; Basile, Giovanna; Bruzzone, Santina; Scarfì, Sonia; De Flora, Antonio; Zocchi, Elena

    2009-05-29

    Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.

  1. Concentrative uptake of cyclic ADP-ribose generated by BST-1+ stroma stimulates proliferation of human hematopoietic progenitors.

    PubMed

    Podestà, Marina; Benvenuto, Federica; Pitto, Anna; Figari, Osvaldo; Bacigalupo, Andrea; Bruzzone, Santina; Guida, Lucrezia; Franco, Luisa; Paleari, Laura; Bodrato, Nicoletta; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2005-02-18

    Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.

  2. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity

    PubMed Central

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI: http://dx.doi.org/10.7554/eLife.17600.001 PMID:27383051

  3. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa.

    PubMed

    Okon, Elza; Dethlefsen, Sarah; Pelnikevich, Anna; Barneveld, Andrea van; Munder, Antje; Tümmler, Burkhard

    2017-01-01

    NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control.

  4. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics.

  5. Neurological and histological consequences induced by in vivo cerebral oxidative stress: evidence for beneficial effects of SRT1720, a sirtuin 1 activator, and sirtuin 1-mediated neuroprotective effects of poly(ADP-ribose) polymerase inhibition.

    PubMed

    Gueguen, Cindy; Palmier, Bruno; Plotkine, Michel; Marchand-Leroux, Catherine; Besson, Valérie C

    2014-01-01

    Poly(ADP-ribose)polymerase and sirtuin 1 are both NAD(+)-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribose)polymerase, decreases NAD(+) level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribose)polymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribose)polymerase inhibition restores NAD(+) level and sirtuin 1 activity in vitro. In vitro sirtuin 1 induction protects neurons from cell loss induced by oxidative stress. In this context, the role of sirtuin 1 and its involvement in beneficial effects of poly(ADP-ribose)polymerase inhibition were evaluated in vivo in a model of cerebral oxidative stress induced by intrastriatal infusion of malonate in rat. Malonate promoted a NAD(+) decrease that was not prevented by 3-aminobenzamide, a poly(ADP-ribose)polymerase inhibitor, at 4 and 24 hours. However, 3-aminobenzamide increased nuclear SIRT1 activity/expression ratio after oxidative stress. Malonate induced a neurological deficit associated with a striatal lesion. Both were reduced by 3-aminobenzamide and SRT1720, a sirtuin 1 activator, showing beneficial effects of poly(ADP-ribose)polymerase inhibition and sirtuin 1 activation on oxidative stress consequences. EX527, a sirtuin 1 inhibitor, given alone, modified neither the score nor the lesion, suggesting that endogenous sirtuin 1 was not activated during cerebral oxidative stress. However, its association with 3-aminobenzamide suppressed the neurological improvement and the lesion reduction induced by 3-aminobenzamide. The association of 3-aminobenzamide with SRT1720, the sirtuin 1 activator, did not lead to a better protection than 3-aminobenzamide alone. The present data represent the first demonstration that the sirtuin 1 activator SRT1720 is neuroprotective during in vivo cerebral oxidative stress. Furthermore sirtuin 1 activation is involved in the beneficial effects of poly(ADP-ribose)polymerase inhibition after in vivo cerebral oxidative stress.

  6. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  7. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity.

    PubMed

    Kiss, Borbála; Szántó, Magdolna; Szklenár, Mónika; Brunyánszki, Attila; Marosvölgyi, Tamás; Sárosi, Eszter; Remenyik, Éva; Gergely, Pál; Virág, László; Decsi, Tamás; Rühl, Ralph; Bai, Peter

    2015-04-01

    Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.

  8. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion

    PubMed Central

    Fouquerel, Elise; Goellner, Eva M.; Yu, Zhongxun; Gagné, Jean-Philippe; de Moura, Michelle Barbi; Feinstein, Tim; Wheeler, David; Redpath, Philip; Li, Jianfeng; Romero, Guillermo; Migaud, Marie; Van Houten, Bennett; Poirier, Guy G.; Sobol, Robert W.

    2014-01-01

    Summary ARTD1 (PARP1) is a key enzyme involved in DNA repair by synthesizing poly(ADP-ribose) (PAR) in response to strand breaks and plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD+ depletion and ATP loss, however the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we directly compared the effects of ARTD1 activation and direct NAD+ depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD+ depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics based PAR-interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing new insight on the importance of nucleus to mitochondria communication via ARTD1 activation. PMID:25220464

  9. Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries.

    PubMed

    Zhang, Guo; Teggatz, Eric G; Zhang, Andrew Y; Koeberl, Matthew J; Yi, Fan; Chen, Li; Li, Pin-Lan

    2006-03-01

    The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.

  10. Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity

    PubMed Central

    Dong, Suomeng; Yin, Weixiao; Kong, Guanghui; Yang, Xinyu; Qutob, Dinah; Chen, Qinghe; Kale, Shiv D.; Sui, Yangyang; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Gijzen, Mark; M. Tyler, Brett; Wang, Yuanchao

    2011-01-01

    Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity. PMID:22102810

  11. Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis.

    PubMed

    Mey, Lilli; Hörmann, Mareike; Schleicher, Nadine; Reuter, Peter; Dönges, Simone; Kinscherf, Ralf; Gassmann, Max; Gerriets, Tibo; Al-Fakhri, Nadia

    2013-11-01

    Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to

  12. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation.

    PubMed Central

    Virág, L; Scott, G S; Cuzzocrea, S; Marmer, D; Salzman, A L; Szabó, C

    1998-01-01

    The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis

  13. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  14. Characterization of Danio rerio Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase, the Structural Prototype of the ADPRibase-Mn-Like Protein Family

    PubMed Central

    Rodrigues, Joaquim Rui; Fernández, Ascensión; Canales, José; Cabezas, Alicia; Ribeiro, João Meireles; Costas, María Jesús; Cameselle, José Carlos

    2012-01-01

    The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily. PMID:22848751

  15. Synthetic study on carbocyclic analogs of cyclic ADP-ribose, a novel second messenger: an efficient synthesis of cyclic IDP-carbocyclic-ribose.

    PubMed

    Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A

    1999-01-01

    An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).

  16. Synthesis and biological evaluation of substituted 2-phenyl-2H-indazole-7-carboxamides as potent poly(ADP-ribose) polymerase (PARP) inhibitors.

    PubMed

    Scarpelli, Rita; Boueres, Julia K; Cerretani, Mauro; Ferrigno, Federica; Ontoria, Jesus M; Rowley, Michael; Schultz-Fademrecht, Carsten; Toniatti, Carlo; Jones, Philip

    2010-01-15

    A potent series of substituted 2-phenyl-2H-indazole-7-carboxamides were synthesized and evaluated as inhibitors of poly (ADP-ribose) polymerase (PARP). This extensive SAR exploration culminated with the identification of substituted 5-fluoro-2-phenyl-2H-indazole-7-carboxamide analog 48 which displayed excellent PARP enzyme inhibition with IC(50)=4nM, inhibited proliferation of cancer cell lines deficient in BRCA-1 with CC(50)=42nM and showed encouraging pharmacokinetic properties in rats compared to the lead 6.

  17. High PARP-1 expression is associated with tumor invasion and poor prognosis in gastric cancer

    PubMed Central

    Liu, Ying; Zhang, Yu; Zhao, Ying; Gao, Dongna; Xing, Jing; Liu, Hui

    2016-01-01

    Poly (adenosine diphosphate-ribose) polymerase 1 (PARP-1) was previously demonstrated to be overexpressed in numerous malignant tumors and associated with invasiveness and poor prognosis. However, the expression of the PARP-1 protein in gastric cancer and its association with clinical outcomes requires further investigation. In the present study, the expression of PARP-1 in 564 gastric cancer tissues and 335 tumor-adjacent control tissues is investigated, using tissue microarray-based immunohistochemistry. PARP-1 expression levels were demonstrated to be significantly higher in gastric cancer tissue samples, as compared with control tissue samples. In gastric cancer, high PARP-1 expression levels were significantly associated with Helicobacter pylori (H. pylori) infection (P=0.032), decreased differentiation (P<0.001), increased depth of invasion (P=0.037), presence of lymphatic invasion (P<0.001), presence of lymph node metastasis (P<0.001), and advanced tumor-node-metastasis (TNM) stage (P=0.015). High PARP-1 expression levels were associated with a significantly shorter overall survival rate (P<0.001) and disease-free survival rate (P=0.001) in patients with gastric cancer, particularly a subset of patients with H. pylori infection or an advanced TNM stage. In addition, univariate analysis indicated that PARP-1 high expression levels were significantly associated with a poor prognosis in gastric cancer. These results suggest that PARP-1 expression may be involved in the progression and prognosis of gastric cancer, particularly H. pylori-positive or advanced-stage gastric cancer. PMID:27895737

  18. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    PubMed

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  19. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD.

    PubMed Central

    Heiner, Inka; Eisfeld, Jörg; Halaszovich, Christian R; Wehage, Edith; Jüngling, Eberhard; Zitt, Christof; Lückhoff, Andreas

    2003-01-01

    An early key event in the activation of neutrophil granulocytes is Ca(2+) influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase-PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca(2+) channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD(+). Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na(+) and Ca(2+), which is regulated by ADP-ribose and the redox state. PMID:12564954

  20. Stable and Reusable Electrochemical Biosensor for Poly(ADP-ribose) Polymerase and Its Inhibitor Based on Enzyme-Initiated Auto-PARylation.

    PubMed

    Xu, Yuanyuan; Liu, Li; Wang, Zhaoyin; Dai, Zhihui

    2016-07-27

    A stable and reusable electrochemical biosensor for the label-free detection of poly(ADP-ribose) polymerase (PARP) is designed in this work. C-kit-1, a thiol-modified G-quadruplex oligonucleotide, is first self-assembled on a gold electrode surface. The G-quadruplex structure of c-kit-1 can specifically tether and activate PARP, resulting in the generation of negatively charged poly(ADP-ribose) polymer (PAR). On the basis of electrostatic attraction, PAR facilitates the surface accumulation of positively charged electrochemical signal molecules. Through the characterization of electrochemical signal molecules, the label-free quantification of PARP is simply implemented. On the basis of the proposed method, selective quantification of PARP can be achieved over the linear range from 0.01 to 1 U with a calculated detection limit of 0.003U. Further studies also demonstrate the applicability of the proposed method to biosamples revealing the broad potential in practical applications. Furthermore, inhibitor of PARP has also been detected with this biosensor. Meanwhile, benefited from self-assembly on solid surface, this biosensor possesses two important features, i.e., reusability and stability, which are desirable in related biosensors.

  1. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations.

    PubMed

    Rungrotmongkol, Thanyada; Nunthaboot, Nadtanet; Malaisree, Maturos; Kaiyawet, Nopporn; Yotmanee, Pathumwadee; Meeprasert, Arthitaya; Hannongbua, Supot

    2010-11-01

    The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.

  2. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    PubMed

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  3. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent.

    PubMed

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Luo, Yan; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F; Frost, David; Donawho, Cherrie; Jarvis, Ken; Bouska, Jennifer; Marsh, Kennan C; Rosenberg, Saul H; Giranda, Vincent L; Penning, Thomas D

    2008-07-15

    Poly(ADP-ribose) polymerases (PARPs) play significant roles in various cellular functions including DNA repair and control of RNA transcription. PARP inhibitors have been demonstrated to potentiate the effect of cytotoxic agents or radiation in a number of animal tumor models. Utilizing a benzimidazole carboxamide scaffold in which the amide forms a key intramolecular hydrogen bond for optimal interaction with the enzyme, we have identified a novel series of PARP inhibitors containing a quaternary methylene-amino substituent at the C-2 position of the benzimidazole. Geminal dimethyl analogs at the methylene-amino substituent were typically more potent than mono-methyl derivatives in both intrinsic and cellular assays. Smaller cycloalkanes such as cyclopropyl or cyclobutyl were tolerated at the quaternary carbon while larger rings were detrimental to potency. In vivo efficacy data in a B16F10 murine flank melanoma model in combination with temozolomide (TMZ) are described for two optimized analogs.

  4. Purification and properties of poly(ADP-ribose)polymerase from Crithidia fasciculata. Automodification and poly(ADP-ribosyl)ation of DNA topoisomerase I.

    PubMed

    Podestá, Dolores; García-Herreros, María I; Cannata, Joaquín J B; Stoppani, Andrés O M; Fernández Villamil, Silvia H

    2004-06-01

    Poly(ADP-ribose)polymerase has been purified more than 160000-fold from Crithidia fasciculata. This is the first PARP isolated to apparent homogeneity from trypanosomatids. The purified enzyme absolutely required DNA for catalytic activity and histones enhanced it 2.5-fold, when the DNA:histone ratio was 1:1.3. The enzyme required no magnesium or any other metal ion cofactor. The apparent molecular mass of 111 kDa, determined by gel filtration would correspond to a dimer of two identical 55-kDa subunits. Activity was inhibited by nicotinamide, 3-aminobenzamide, theophylline, thymidine, xanthine and hypoxanthine but not by adenosine. The enzyme was localized to the cell nucleus. Our findings suggest that covalent poly(ADP-ribosyl)ation of PARP itself or DNA topoisomerase I resulted in the inhibition of their activities and provide an initial biochemical characterization of this covalent post-translational modification in trypanosomatids.

  5. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level.

    PubMed Central

    Yamagoe, S; Kohda, T; Oishi, M

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed. Images PMID:1828533

  6. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis.

    PubMed

    Masuda, W; Takenaka, S; Inageda, K; Nishina, H; Takahashi, K; Katada, T; Tsuyama, S; Inui, H; Miyatake, K; Nakano, Y

    1997-03-17

    In Euglena gracilis, the activity of ADP-ribosyl cyclase, which produces cyclic ADP-ribose, oscillated during the cell cycle in a synchronous culture induced by a light-dark cycle, and a marked increase in the activity was observed in the G2 phase. Similarly, the ADP-ribosyl cyclase activity rose extremely immediately before cell division started, when synchronous cell division was induced by adding cobalamin (which is an essential growth factor and participates in DNA synthesis in this organism) to its deficient culture. Further, cADPR in these cells showed a maximum level immediately before cell division started. A dose-dependent Ca2+ release was observed when microsomes were incubated with cADPR.

  7. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  8. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    PubMed Central

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  9. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression.

    PubMed

    Ooi, Theng Choon; Mohammad, Nur Hafiza; Sharif, Razinah

    2014-12-01

    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.

  10. Reduced estradiol-induced vasodilation and poly-(ADP-ribose) polymerase (PARP) activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS).

    PubMed

    Masszi, Gabriella; Horvath, Eszter Maria; Tarszabo, Robert; Benko, Rita; Novak, Agnes; Buday, Anna; Tokes, Anna-Maria; Nadasy, Gyorgy L; Hamar, Peter; Benyó, Zoltán; Varbiro, Szabolcs

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.

  11. The Angiotensin-converting enzyme inhibitor captopril inhibits poly(adp-ribose) polymerase activation and exerts beneficial effects in an ovine model of burn and smoke injury.

    PubMed

    Asmussen, Sven; Bartha, Eva; Olah, Gabor; Sbrana, Elena; Rehberg, Sebastian W; Yamamoto, Yusuke; Enkhbaatar, Perenlei; Hawkins, Hal K; Ito, Hiroshi; Cox, Robert A; Traber, Lillian D; Traber, Daniel L; Szabo, Csaba

    2011-10-01

    We investigated the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril in a clinically relevant ovine model of smoke and burn injury, with special reference to oxidative stress and activation of poly(ADP-ribose) polymerase, in the lung and in circulating leukocytes. Female, adult sheep (28-40 kg) were divided into three groups. After tracheostomy and under deep anesthesia, both vehicle-control-treated (n = 5) and captopril-treated (20 mg/kg per day, i.v., starting 0.5 h before the injury) (n = 5) groups were subjected to 2 × 20%, third-degree burn injury and were insufflated with 48 breaths of cotton smoke. A sham group not receiving burn/smoke was also studied (n = 5). Animals were mechanically ventilated and fluid resuscitated for 24 h in the awake state. Burn and smoke injury resulted in an upregulation of ACE in the lung, evidenced by immunohistochemical determination and Western blotting. Burn and smoke injury resulted in pulmonary dysfunction, as well as systemic hemodynamic alterations. Captopril treatment of burn and smoke animals improved PaO2/FiO2 ratio and pulmonary shunt fraction and reduced the degree of lung edema. There was a marked increase in PAR levels in circulating leukocytes after burn/smoke injury, which was significantly decreased by captopril. The pulmonary level of ACE and the elevated pulmonary levels of transforming growth factor β in response to burn and smoke injury were significantly decreased by captopril treatment. Our results suggest that the ACE inhibitor captopril exerts beneficial effects on the pulmonary function in burn/smoke injury. The effects of the ACE inhibitor may be related to the prevention of reactive oxygen species-induced poly(ADP-ribose)polymerase overactivation. Angiotensin-converting enzyme inhibition may also exert additional beneficial effects by inhibiting the expression of the profibrotic mediator transforming growth factor β.

  12. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    PubMed

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-03-02

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis.

  13. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism.

    PubMed

    Nguyen, Giang Thi Tuyet; Schaefer, Susanne; Gertz, Melanie; Weyand, Michael; Steegborn, Clemens

    2013-08-01

    Sirtuins are NAD(+)-dependent protein deacetylases that regulate metabolism and aging processes and are considered to be attractive therapeutic targets. Most available sirtuin modulators are little understood mechanistically, hindering their improvement. SRT1720 was initially described as an activator of human Sirt1, but it also potently inhibits human Sirt3. Here, the molecular mechanism of the inhibition of Sirt3 by SRT1720 is described. A crystal structure of Sirt3 in complex with SRT1720 and an NAD(+) analogue reveals that the compound partially occupies the acetyl-Lys binding site, thus explaining the reported competition with the peptide substrate. The compound packs against a hydrophobic protein patch and binds with its opposite surface to the NAD(+)  nicotinamide, resulting in an exceptionally tight sandwich-like interaction. The observed arrangement rationalizes the uncompetitive inhibition with NAD(+), and binding measurements confirm that the nicotinamide moiety of NAD(+) supports inhibitor binding. Consistently, no inhibitor is bound in a second crystal structure of Sirt3 that was solved complexed with ADP-ribose and crystallized in the presence of SRT1720. These results reveal a novel sirtuin inhibitor binding site and mechanism, and provide a structural basis for compound improvement.

  14. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems.

    PubMed Central

    Chini, E N; Liang, M; Dousa, T P

    1998-01-01

    We investigated the pH dependence and the effects of thimerosal and dithiothreitol (DTT) upon the Ca2+ release induced by cADP-ribose (cADPR) and nicotinate-adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenates. Both Ca2+ release triggered by cADPR and the binding of [3H]cADPR to sea urchin egg homogenates were decreased by alkalization of the assay media from pH 7.2 to 8.9. In contrast, NAADP-triggered Ca2+ release was not influenced by changes in pH. The Ca2+ release induced by cADPR was potentiated by thimerosal and inhibited by DTT, but neither thimerosal nor DTT had any effect upon the Ca2+ release induced by NAADP. We conclude that cADPR-sensitive Ca2+-release mechanisms are dependent on pH of the assay media and are sensitive to thiol group modification. On the other hand, these functional properties are not shared by NAADP-regulated Ca2+ channels. PMID:9794787

  15. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo.

    PubMed

    Liu, Yie; Snow, Bryan E; Kickhoefer, Valerie A; Erdmann, Natalie; Zhou, Wen; Wakeham, Andrew; Gomez, Marla; Rome, Leonard H; Harrington, Lea

    2004-06-01

    Vault poly(ADP-ribose) polymerase (VPARP) was originally identified as a minor protein component of the vault ribonucleoprotein particle, which may be involved in molecular assembly or subcellular transport. In addition to the association of VPARP with the cytoplasmic vault particle, subpopulations of VPARP localize to the nucleus and the mitotic spindle, indicating that VPARP may have other cellular functions. We found that VPARP was associated with telomerase activity and interacted with exogenously expressed telomerase-associated protein 1 (TEP1) in human cells. To study the possible role of VPARP in telomerase and vault complexes in vivo, mVparp-deficient mice were generated. Mice deficient in mVparp were viable and fertile for up to five generations, with no apparent changes in telomerase activity or telomere length. Vaults purified from mVparp-deficient mouse liver appeared intact, and no defect in association with other vault components was observed. Mice deficient in mTep1, whose disruption alone does not affect telomere function but does affect the stability of vault RNA, showed no additional telomerase or telomere-related phenotypes when the mTep1 deficiency was combined with an mVparp deficiency. These data suggest that murine mTep1 and mVparp, alone or in combination, are dispensable for normal development, telomerase catalysis, telomere length maintenance, and vault structure in vivo.

  16. Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064.

    PubMed Central

    Bowman, K. J.; White, A.; Golding, B. T.; Griffin, R. J.; Curtin, N. J.

    1998-01-01

    The ability of the potent poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025 (8-hydroxy-2-methyl-quinazolin-4-[3H]one) to potentiate the cytotoxicity of a panel of mechanistically diverse anti-cancer agents was evaluated in L1210 cells. NU1025 enhanced the cytotoxicity of the DNA-methylating agent MTIC, gamma-irradiation and bleomycin 3.5-, 1.4- and 2-fold respectively. The cytotoxicities of the thymidylate synthase inhibitor, nolatrexed, and the cytotoxic nucleoside, gemcitabine, were not increased. Potentiation of MTIC cytotoxicity by a delayed exposure to NU1025 was equally effective as by a simultaneous exposure to NU1025, indicating that the effects of NU1025 were mediated by an inhibition of the cellular recovery. The recovery from potentially lethal gamma-irradiation damage cytotoxicity in plateau-phase cells was also inhibited by NU1025. Investigation of DNA strand breakage and repair in gamma-irradiated cells by alkaline elution demonstrated that NU1025 caused a marked retardation of DNA repair. A structurally different PARP inhibitor, NU1064 (2-methylbenzimidazole-4-carboxamide), also potentiated the cytotoxicity of MTIC, to a similar extent to NU1025. NU1064 potentiated a sublethal concentration of a DNA methylating agent in a concentration-dependent manner. Collectively, these data suggest that the most suitable cytotoxic agents for use in combination with PARP inhibitors are methylating agents, bleomycin and ionizing radiation, but not anti-metabolites. PMID:9823965

  17. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.

  18. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    PubMed

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  19. The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells

    PubMed Central

    Bhute, Vijesh J.; Ma, Yan; Bao, Xiaoping; Palecek, Sean P.

    2016-01-01

    Breast tumors are characterized into subtypes based on their surface marker expression, which affects their prognosis and treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising results in clinical trials, both as single agents and in combination with other chemotherapeutics, in several subtypes of breast cancer patients. Here, we used NMR-based metabolomics to probe cell line-specific effects of the PARP inhibitor Veliparib and radiation on metabolism in three breast cancer cell lines. Our data reveal several cell line-independent metabolic changes upon PARP inhibition. Pathway enrichment and topology analysis identified that nitrogen metabolism, glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism were enriched after PARP inhibition in all three breast cancer cell lines. Many metabolic changes due to radiation and PARP inhibition were cell line-dependent, highlighting the need to understand how these treatments affect cancer cell response via changes in metabolism. Finally, both PARP inhibition and radiation induced a similar metabolic responses in BRCA-mutant HCC1937 cells, but not in MCF7 and MDAMB231 cells, suggesting that radiation and PARP inhibition share similar interactions with metabolic pathways in BRCA mutant cells. Our study emphasizes the importance of differences in metabolic responses to cancer treatments in different subtypes of cancers. PMID:27811964

  20. Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum.

    PubMed

    Higashida, Haruhiro; Kamimura, Shin-Ya; Inoue, Takeshi; Hori, Osamu; Islam, Mohammad Saharul; Lopatina, Olga; Tsuji, Chiharu

    2016-12-26

    The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.

  1. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba.

    PubMed

    Rybaczek, Dorota

    2016-07-01

    Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression.

  2. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1

    PubMed Central

    Li, Rui; Geng, Hai-hua; Xiao, Jie; Qin, Xiao-teng; Wang, Fu; Xing, Jun-hui; Xia, Yan-fei; Mao, Yang; Liang, Jing-wen; Ji, Xiao-ping

    2016-01-01

    miRs (microRNAs, miRNAs) intricately regulate physiological and pathological processes. Although miR-7a/b protects against cardiomyocyte injury in ischemia/reperfusion injury, the function of miR-7a/b in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Here, we sought to investigate the function of miR-7a/b in post-MI remodeling in a mouse model and to determine the underlying mechanisms involved. miR-7a/b overexpression improved cardiac function, attenuated cardiac remodeling and reduced fibrosis and apoptosis, whereas miR-7a/b silencing caused the opposite effects. Furthermore, miR-7a/b overexpression suppressed specific protein 1 (Sp1) and poly (ADP-ribose) polymerase (PARP-1) expression both in vivo and in vitro, and a luciferase reporter activity assay showed that miR-7a/b could directly bind to Sp1. Mithramycin, an inhibitor of the DNA binding activity of Sp1, effectively repressed PARP-1 and caspase-3, whereas knocking down miR-7a/b partially counteracted these beneficial effects. Additionally, an immunoprecipitation assay indicated that hypoxia triggered activation of the binding activity of Sp1 to the promoters of PARP-1 and caspase-3, which is abrogated by miR-7a/b. In summary, these findings identified miR-7a/b as protectors of cardiac remodeling and hypoxia-induced injury in H9c2 cardiomyoblasts involving Sp1 and PARP-1. PMID:27384152

  3. Effect of acute poly(ADP-ribose) polymerase inhibition by 3-AB on blood-brain barrier permeability and edema formation after focal traumatic brain injury in rats.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Palmier, Bruno; Po, Christelle; Beziaud, Tiphaine; Puybasset, Louis; Plotkine, Michel; Gillet, Brigitte; Meric, Philippe; Marchand-Leroux, Catherine

    2010-06-01

    Recent evidence supports a crucial role for matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) disruption and vasogenic edema formation after traumatic brain injury (TBI). Although the exact causes of MMP-9 upregulation after TBI are not fully understood, several arguments suggest a contribution of the enzyme poly(ADP-ribose)polymerase (PARP) in the neuroinflammatory response leading to MMP-9 activation. The objectives of this study were to evaluate the effect of PARP inhibition by 3-aminobenzamide (3-AB) (1) on MMP-9 upregulation and BBB integrity, (2) on edema formation as assessed by magnetic resonance imaging (MRI), (3) on neuron survival as assessed by (1)H magnetic resonance spectroscopy ((1)H-MRS), and (4) on neurological deficits at the acute phase of TBI. Western blots and zymograms showed blunting of MMP-9 upregulation 6 h after TBI. BBB permeability was decreased at the same time point in 3-AB-treated rats compared to vehicle-treated rats. Cerebral MRI showed less "free" water in 3-AB-treated than in vehicle-treated rats 6 h after TBI. MRI findings 24 h after TBI indicated predominant cytotoxic edema, and at this time point no significant differences were found between 3-AB- and vehicle-treated rats with regard to MMP-9 upregulation, BBB permeability, or MRI changes. At both 6 and 24 h, neurological function was better in the 3-AB-treated than in the vehicle-treated rats. These data suggest that PARP inhibition by 3-AB protected the BBB against hyperpermeability induced by MMP-9 upregulation, thereby decreasing vasogenic edema formation 6 h after TBI. Furthermore, our data confirm the neuroprotective effect of 3-AB at the very acute phase of TBI.

  4. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation.

    PubMed

    Bhat, K Ramachandra; Benton, Betty J; Ray, Radharaman

    2006-01-01

    Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.

  5. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy.

    PubMed

    Adaikalakoteswari, Antonysunil; Rema, Mohan; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2007-01-01

    Although oxidative stress and the subsequent DNA damage is one of the obligatory signals for poly(ADP-ribose) polymerase (PARP) activation and nuclear factor-kappa B (NFkappaB) alterations, these molecular aspects have not been collectively examined in epidemiological and clinical settings. Therefore, this study attempts to assess the oxidative DNA damage and its downstream effector signals in peripheral blood lymphocytes from Type 2 diabetes subjects without and with microangiopathy along with age-matched non-diabetic subjects. The basal DNA damage, lipid peroxidation and protein carbonyl content were significantly (p<0.05) higher in patients with and without microangiopathy compared to control subjects. Formamido Pyrimidine Glycosylase (FPG)-sensitive DNA strand breaks which represents reliable indicator of oxidative DNA damage were also significantly (p<0.001) higher in diabetic patients with (19.41+/-2.5) and without microangiopathy (16.53+/-2.0) compared to control subjects (1.38+/-0.85). Oxidative DNA damage was significantly correlated to poor glycemic control. PARP mRNA expression and PARP activity were significantly (p<0.05) increased in cells from diabetic patients with (0.31+/-0.03 densitometry units; 0.22+/-0.02PARPunits/mgprotein, respectively) and without (0.35+/-0.02; 0.42+/-0.05) microangiopathy compared to control (0.19+/-0.02; 0.11+/-0.02) subjects. Diabetic subjects with and without microangiopathy exhibited a significantly (p<0.05) higher (80%) NFkappaB binding activity compared to control subjects. In diabetic patients, FPG-sensitive DNA strand breaks correlated positively with PARP gene expression, PARP activity and NFkappaB binding activity. This study provides a comprehensive molecular evidence for increased oxidative stress and genomic instability in Type 2 diabetic subjects even prior to vascular pathology and hence reveals a window of opportunity for early therapeutic intervention.

  6. Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells.

    PubMed

    Comin-Anduix, Begona; Boros, Laszlo G; Marin, Silvia; Boren, Joan; Callol-Massot, Carles; Centelles, Josep J; Torres, Josep L; Agell, Neus; Bassilian, Sara; Cascante, Marta

    2002-11-29

    The fermented extract of wheat germ, trade name Avemar, is a complex mixture of biologically active molecules with potent anti-metastatic activities in various human malignancies. Here we report the effect of Avemar on Jurkat leukemia cell viability, proliferation, cell cycle distribution, apoptosis, and the activity of key glycolytic/pentose cycle enzymes that control carbon flow for nucleic acid synthesis. The cytotoxic IC(50) concentration of Avemar for Jurkat tumor cells is 0.2 mg/ml, and increasing doses of the crude powder inhibit Jurkat cell proliferation in a dose-dependent fashion. At concentrations higher than 0.2 mg/ml, Avemar inhibits cell growth by more than 50% (72 h of incubation), which is preceded by the appearance of a sub-G(1) peak on flow histograms at 48 h. Laser scanning cytometry of propidium iodide- and annexin V-stained cells indicated that the growth-inhibiting effect of Avemar was consistent with a strong induction of apoptosis. Inhibition by benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone of apoptosis but increased proteolysis of poly(ADP-ribose) indicate caspases mediate the cellular effects of Avemar. Activities of glucose-6-phosphate dehydrogenase and transketolase were inhibited in a dose-dependent fashion, which correlated with decreased (13)C incorporation and pentose cycle substrate flow into RNA ribose. This decrease in pentose cycle enzyme activities and carbon flow toward nucleic acid precursor synthesis provide the mechanistic understanding of the cell growth-controlling and apoptosis-inducing effects of fermented wheat germ. Avemar exhibits about a 50-fold higher IC(50) (10.02 mg/ml) for peripheral blood lymphocytes to induce a biological response, which provides the broad therapeutic window for this supplemental cancer treatment modality with no toxic effects.

  7. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson's disease.

    PubMed

    Wu, Xiao-li; Wang, Ping; Liu, Yun-hui; Xue, Yi-xue

    2014-05-01

    Neuro-inflammation and dysfunction of blood-brain barrier play an important role in the occurrence, development, and neuronal degeneration of Parkinson's disease (PD). Studies have demonstrated that a variety of cytokines such as TNF-α and IL-1β destroy the structure and function of blood-brain barrier. The damage to blood-brain barrier results in death of dopaminergic neurons, while protection of blood-brain barrier slows down the progression of PD. Also, it has been shown that activation of poly (ADP-ribose) polymerase (PARP) plays an important role in causing damage to blood-brain barrier. In addition, the PARP inhibitor 3-AB has been shown to protect blood-brain barrier from damage and has neuroprotective effects. In this study, using a lipopolysaccharide (LPS)-induced PD rat model, we investigated whether 3-AB protects blood-brain barrier and dopaminergic neurons from functional damage. LPS significantly increased Evans blue content in the substantia nigra which peaked at 12 h, while administration of 3-AB significantly inhibited the LPS-induced increase in Evans blue content and also significantly increased the expression of the tight junction-associated proteins claudin-5, occludin and ZO-1. 3-AB also increased the number of tyrosine hydroxylase positive cells and reduced the IL-1β and TNF-α content significantly. According to western blot analysis, 3-AB significantly reduced the p-ERK1/2 expression, while the expression of p-p38MAPK increased. These results suggest that 3-AB protects the blood-brain barrier from functional damage in an LPS-induced PD rat model and dopaminergic neurons are protected from degeneration by upregulation of tight junction-associated proteins. These protective effects of 3-AB may be related to modulation of the ERK1/2 pathway.

  8. The efficiency of Poly(ADP-Ribose) Polymerase (PARP) cleavage on detection of apoptosis in an experimental model of testicular torsion.

    PubMed

    Aslan Koşar, Pınar; Tuncer, Hamdi; Cihangir Uğuz, Abdülhadi; Espino Palma, Javier; Darıcı, Hakan; Onaran, İbrahim; Çiğ, Bilal; Koşar, Alim; Rodriguez Moratinos, Ana Beatriz

    2015-10-01

    The aim of this study was to evaluate the histopathological and apoptotic changes occurring in the rat ipsilateral and contralateral testes, after experimental spermatic cord torsion, and to explore and the role of poly(ADP-ribose) polymerase (PARP) cleavage in testicular torsion-detorsion injury. A total of 37 Wistar albino rats were subjected to 720° unilateral spermatic cord torsion for 1, 2 and 4 h, followed by 4-h reperfusion, or else to a sham operation (control group). Histology of the testicle was evaluated using haematoxylin-eosin (H&E) staining and Johnsen's scoring system. Germ cell apoptosis was evaluated via active caspase-3 immunostaining, and PARP expression levels were evaluated via Western blotting. The mean Johnsen's tubular biopsy scores (JTBS) of the ipsilateral testicles were lower for all torsion groups than for the controls (P < 0.05), but the JTBS of the contralateral testicles were only lower in the 4-h torsion group (P < 0.05). The mean apoptosis score (AS) of the ipsilateral and contralateral testicles was significantly higher in the torsion groups than in the sham group. AS increased correlatively with torsion time, in both testicles. The effect of testicular torsion on PARP cleavage was time dependent, with the highest effect observed after 4 h of testicular torsion (P < 0.05). Testicular torsion caused time-dependent histological changes, apoptosis and increases in PARP cleavage. Our results suggest that testicular torsion-detorsion injury caused cell damage and germ cell apoptosis that apparently involved cleavage of PARP. Increased PARP cleavage could, in turn, lead to enhanced apoptosis.

  9. Mycoplasma fermentans Inhibits the Activity of Cellular DNA Topoisomerase I by Activation of PARP1 and Alters the Efficacy of Its Anti-Cancer Inhibitor

    PubMed Central

    Afriat, Reuven; Horowitz, Shulamith; Priel, Esther

    2013-01-01

    To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists. PMID:24013388

  10. Targeting Homology-Directed Recombinational Repair (HDR) of Chromosomal Breaks to Sensitize Prostate Cancer Cells to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

    DTIC Science & Technology

    2013-08-01

    Treatment % G FP p os iti ve Figure 7. Leptomycin B abolishes the HR deficit induced by HR. additionally, it may enhance HR. 4 Task 2. To transiently...Stanley, J , and Yang, ES*. PARP-1: Friend or foe of DNA damage and repair in tumorigenesis? Cancers 2013. 5(3), 943-958. *Corresponding author 7...University School of Medicine, Nashville, TN ABR Holman Research Scholar Nucletron Prostate HDR Training Course 2009 Chief Resident 2009-2010 2005

  11. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity

    PubMed Central

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-01-01

    Summary We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  12. No Silver Bullet – Canonical Poly(ADP-Ribose) Polymerases (PARPs) Are No Universal Factors of Abiotic and Biotic Stress Resistance of Arabidopsis thaliana

    PubMed Central

    Rissel, Dagmar; Heym, Peter P.; Thor, Kathrin; Brandt, Wolfgang; Wessjohann, Ludger A.; Peiter, Edgar

    2017-01-01

    Abiotic and biotic stress can have a detrimental impact on plant growth and productivity. Hence, there is a substantial demand for key factors of stress responses to improve yield stability of crops. Members of the poly(ADP-ribose)polymerase (PARP) protein family, which post-translationally modify (PARylate) nuclear proteins, have been suggested as such universal determinants of plant stress responses. A role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants. To further elucidate the role of PARP proteins under stress, T-DNA knockout mutants for the three Arabidopsis thaliana PARP genes were subjected to drought, osmotic, salt, and oxidative stress. To exclude a functional redundancy, which was indicated by a transcriptional upregulation of the remaining parp genes, a parp triple mutant was generated. Surprisingly, parp mutant plants did not differ from wild type plants in any of these stress experiments, independent from the number of PARP genes mutated. The parp triple mutant was also analyzed for callose formation in response to the pathogenassociated molecular pattern flg22. Unexpectedly, callose formation was unaltered in the mutant, albeit pharmacological PARP inhibition robustly blocked this immune response, confirming previous reports. Evidently, pharmacological inhibition appears to be more robust than the abolition of all PARP genes, indicating the presence of so-far undescribed proteins with PARP activity. This was supported by the finding that protein PARylation was not absent, but even increased in the parp triple mutant. Candidates for novel PARP-inhibitor targets may be found in the SRO protein family. These proteins harbor a catalytic PARP-like domain and are centrally involved in stress responses. Molecular modeling analyses, employing animal PARPs as templates, indeed indicated a capability of the SRO proteins RCD1 and

  13. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice

    PubMed Central

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i) that seems to trigger OT release can be elevated by β-NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than those

  14. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice.

    PubMed

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca(2+)]i) that seems to trigger OT release can be elevated by β-NAD(+), cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD(+) metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca(2+)]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than

  15. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type.

    PubMed

    Kaufmann, S H; Brunet, G; Talbot, B; Lamarr, D; Dumas, C; Shaper, J H; Poirier, G

    1991-02-01

    The recovery of the enzyme poly(ADP-ribose) polymerase (pADPRp) in the nuclease- and 1.6 M NaCl-resistant nuclear subfraction prepared from a number of different sources was assessed by Western blotting. When rat liver nuclei were treated with DNase I and RNase A followed by 1.6 M NaCl, approximately 10% of the nuclear pADPRp was recovered in the sedimentable fraction. The proportion of pADPRp recovered with the residual fraction decreased to less than 5% of the total nuclear polymerase when nuclei were prepared in the presence of the sulfhydryl blocking reagent iodoacetamide and increased to approximately 50% of the total nuclear pADPRp when nuclei were treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to fractionation. To determine whether this effect of disulfide bond formation was unique to rat liver nuclei, nuclear matrix/cytoskeleton structures were prepared in situ by sequentially treating monolayers of tissue culture cells with Nonidet-P40, DNase I and RNase A, and 1.6 M NaCl (S.H. Kaufmann and J.H. Shaper (1991) Exp. Cell Res. 192, 511-523). When nuclear monolayers were prepared from HTC rat hepatoma cells, CaLu-1 human lung carcinoma cells, and CHO hamster ovary cells in the absence of NaTT, pADPRp was undetectable in the nuclease- and 1.6 M NaCl-resistant fraction. In contrast, when nuclear monolayers were isolated in the presence of NaTT, from 5% (CaLu-1) to 26% (HTC cells) of the total nuclear pADPRp was recovered with the nuclease- and salt-resistant fraction. Examination of these residual structures by SDS-polyacrylamide gel electrophoresis under nonreducing conditions suggested that pADPRp was present as a component of disulfide cross-linked complexes. Further analysis by immunofluorescence revealed that the pADPRp was diffusely distributed throughout the CaLu-1 or CHO nuclear matrix. In addition, when matrices were prepared in the absence of RNase A, pADPRp was also observed in the residual nucleoli. These

  16. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    NASA Astrophysics Data System (ADS)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  17. The N-terminal Region of Chromodomain Helicase DNA-binding Protein 4 (CHD4) Is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose)*

    PubMed Central

    Silva, Ana P. G.; Ryan, Daniel P.; Galanty, Yaron; Low, Jason K. K.; Vandevenne, Marylene; Jackson, Stephen P.; Mackay, Joel P.

    2016-01-01

    Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response. PMID:26565020

  18. Thrombin or Ca(++)-ionophore-mediated fall in endothelial ATP levels independent of poly(ADP-Ribose) polymerase activity and NAD levels--comparison with the effects of hydrogen peroxide.

    PubMed

    Halldórsson, Haraldur; Thors, Brynhildur; Thorgeirsson, Gudmundur

    2015-01-01

    To test the hypothesis that a fall in cellular ATP following stimulation of endothelial cells with thrombin is secondary to a decrease in NAD levels caused by poly(ADP-Ribose)polymerase (PARP), we measured the levels of NAD and ATP in endothelial cells after treatment with thrombin, the Ca(++)-ionophore A23187, or hydrogen peroxide (H2O2), and compared the effects of inhibitors of PARP, NAD synthesis, and ADP-ribose breakdown on these responses. Neither thrombin nor A23187 caused a reduction in endothelial NAD levels and A23187 affected ATP levels independently of NAD levels or PARP activity. H2O2 induced lowering of NAD caused modest lowering of ATP but marked additional ATP-lowering, independent of PARP and NAD, was also demonstrated. We conclude that in endothelial cells ATP levels are largely independent of NAD and PARP, which do not play a role in thrombin or Ca(++)-ionophore-mediated lowering of ATP. H2O2 caused ATP lowering through a similar mechanism as thrombin and A23187 but, additionally, caused a further ATP lowering through its intense stimulation of PARP and marked lowering of NAD.

  19. Detection and quantification of poly-ADP-ribosylated cellular proteins of spleen and liver tissues of mice in vivo by slot and Western blot immunoprobing using polyclonal antibody against mouse ADP-ribose polymer.

    PubMed

    Sharan, R N; Devi, B Jaylata; Humtsoe, J O; Saikia, Jyoti R; Kma, L

    2005-10-01

    Poly-ADP-ribosylation (PAR) of cellular proteins has been shown to have decisive roles in diverse cellular functions including carcinogenesis. There are indications that metabolic level of poly-ADP-ribosylated cellular proteins might indicate carcinogenesis and, therefore, could be potentially used in cancer screening program. Keeping in mind the limitations of currently available assays of cellular PAR, a new assay is being reported that measures the metabolic level of poly-ADP-ribosylated cellular proteins. The ELISA based slot and Western blot immunoassay used polyclonal antibody against natural, heterogeneous ADP-ribose polymers. It could be successfully employed to qualitatively and quantitatively assay metabolic levels of poly-ADP-ribosylated proteins of spleen and liver tissues of normal mice or mice exposed to dimethylnitrosamine for up to 8 weeks; potentially PAR of cellular proteins could be assayed in any tissue or biopsy. Implications of the results in cancer screening program have been discussed.

  20. PARP1 orchestrates epigenetic events setting up chromatin domains.

    PubMed

    Ciccarone, Fabio; Zampieri, Michele; Caiafa, Paola

    2017-03-01

    Epigenetic events include reversible modifications of DNA and histone tails driving chromatin organization and thus transcription. The epigenetic regulation is a highly integrated process underlying the plasticity of the genomic information both in the context of complex physiological and pathological processes. The global regulatory aspects of epigenetic events are largely unknown. PARylation and PARP1 are recently emerging as multi-level regulatory effectors that modulate the topology of chromatin by orchestrating very different processes. This review focuses in particular on the role of PARP1 in epigenetics, trying to build a comprehensive perspective of its involvement in the regulation of epigenetic modifications of histones and DNA, contextualizing it in the global organization of chromatin domains in the nucleus.

  1. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.

    PubMed

    Spruijt, Cornelia G; Luijsterburg, Martijn S; Menafra, Roberta; Lindeboom, Rik G H; Jansen, Pascal W T C; Edupuganti, Raghu Ram; Baltissen, Marijke P; Wiegant, Wouter W; Voelker-Albert, Moritz C; Matarese, Filomena; Mensinga, Anneloes; Poser, Ina; Vos, Harmjan R; Stunnenberg, Hendrik G; van Attikum, Haico; Vermeulen, Michiel

    2016-10-11

    NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.

  2. Novel PARP-1 Inhibitor Scaffolds Disclosed by a Dynamic Structure-Based Pharmacophore Approach

    PubMed Central

    Baptista, Salete J.; Silva, Maria M. C.; Moroni, Elisabetta; Meli, Massimiliano; Colombo, Giorgio; Dinis, Teresa C. P.; Salvador, Jorge A. R.

    2017-01-01

    PARP-1 inhibition has been studied over the last decades for the treatment of various diseases. Despite the fact that several molecules act as PARP-1 inhibitors, a reduced number of compounds are used in clinical practice. To identify new compounds with a discriminatory PARP-1 inhibitory function, explicit-solvent molecular dynamics simulations using different inhibitors bound to the PARP-1 catalytic domain were performed. The representative structures obtained were used to generate structure-based pharmacophores, taking into account the dynamic features of receptor-ligand interactions. Thereafter, a virtual screening of compound databases using the pharmacophore models obtained was performed and the hits retrieved were subjected to molecular docking-based scoring. The drug-like molecules featuring the best ranking were evaluated for their PARP-1 inhibitory activity and IC50 values were calculated for the top scoring docked compounds. Altogether, three new PARP-1 inhibitor chemotypes were identified. PMID:28122037

  3. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

    PubMed Central

    Vaziri, H; West, M D; Allsopp, R C; Davison, T S; Wu, Y S; Arrowsmith, C H; Poirier, G G; Benchimol, S

    1997-01-01

    Telomere loss has been proposed as a mechanism for counting cell divisions during aging in normal somatic cells. How such a mitotic clock initiates the intracellular signalling events that culminate in G1 cell cycle arrest and senescence to restrict the lifespan of normal human cells is not known. We investigated the possibility that critically short telomere length activates a DNA damage response pathway involving p53 and p21(WAF1) in aging cells. We show that the DNA binding and transcriptional activity of p53 protein increases with cell age in the absence of any marked increase in the level of p53 protein, and that p21(WAF1) promoter activity in senescent cells is dependent on both p53 and the transcriptional co-activator p300. Moreover, we detected increased specific activity of p53 protein in AT fibroblasts, which exhibit accelerated telomere loss and undergo premature senescence, compared with normal fibroblasts. We investigated the possibility that poly(ADP-ribose) polymerase is involved in the post-translational activation of p53 protein in aging cells. We show that p53 protein can associate with PARP and inhibition of PARP activity leads to abrogation of p21 and mdm2 expression in response to DNA damage. Moreover, inhibition of PARP activity leads to extension of cellular lifespan. In contrast, hyperoxia, an activator of PARP, is associated with accelerated telomere loss, activation of p53 and premature senescence. We propose that p53 is post-translationally activated not only in response to DNA damage but also in response to the critical shortening of telomeres that occurs during cellular aging. PMID:9312059

  4. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    PubMed

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  5. A PARP1-ERK2 synergism is required for the induction of LTP

    PubMed Central

    Visochek, L.; Grigoryan, G.; Kalal, A.; Milshtein-Parush, H.; Gazit, N.; Slutsky, I.; Yeheskel, A.; Shainberg, A.; Castiel, A.; Seger, R.; Langelier, M. F.; Dantzer, F.; Pascal, J. M.; Segal, M.; Cohen-Armon, M.

    2016-01-01

    Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence. PMID:27121568

  6. A PARP1-ERK2 synergism is required for the induction of LTP.

    PubMed

    Visochek, L; Grigoryan, G; Kalal, A; Milshtein-Parush, H; Gazit, N; Slutsky, I; Yeheskel, A; Shainberg, A; Castiel, A; Seger, R; Langelier, M F; Dantzer, F; Pascal, J M; Segal, M; Cohen-Armon, M

    2016-04-28

    Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.

  7. Synthesis and biological activities of novel furo[2,3,4-jk][2]benzazepin-4(3H)-one derivatives.

    PubMed

    Ando, Kumiko; Akai, Yukiko; Kunitomo, Jun-Ichi; Yokomizo, Takehiko; Nakajima, Hidemitsu; Takeuchi, Tadayoshi; Yamashita, Masayuki; Ohta, Shunsaku; Ohishi, Takahiro; Ohishi, Yoshitaka

    2007-02-21

    A novel seven-membered lactam formation method has been established by intramolecular ring closure reaction of 4-bromo-(E)-3-[(2-alkylvinyl)carbonylamino]benzo[b]furans under Heck coupling conditions. A number of furo[2,3,4-jk][2]benzazepin-4(3H)-ones, tricyclicbenzo[b]furans, have been prepared by this method and evaluated for their leukotriene B(4) (LTB(4)) receptor and poly(ADP-ribose)polymerase-1 (PARP-1) inhibitory activities.

  8. Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

    SciTech Connect

    Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji; Miwa, Masanao; Fukamizu, Akiyoshi

    2009-05-08

    Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependent on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.

  9. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1.

    PubMed

    Dziaman, Tomasz; Ludwiczak, Hubert; Ciesla, Jaroslaw M; Banaszkiewicz, Zbigniew; Winczura, Alicja; Chmielarczyk, Mateusz; Wisniewska, Ewa; Marszalek, Andrzej; Tudek, Barbara; Olinski, Ryszard

    2014-01-01

    The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the Cys326Cys genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the Ser326Cys and Ser326Ser genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.

  10. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  11. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  12. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation.

    PubMed

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-05-24

    Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg(-/-) and poly(ADP-ribose) polymerase-1 deficient (Parp-1(-/-)) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg(-/-) cells were more sensitive to γ-irradiation than Parp-1(-/-) cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg(-/-) cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg(-/-) ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1(-/-) cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg(-/-) ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg(-/-) cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1(-/-) cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24h. The induction level of p53 phophorylation at ser18 was not different between wild-type and Parg(-/-) cells. The augmented level of poly(ADP-ribose) accumulation was noted after carbon-ion irradiation compared to γ-irradiation even in the wild-type cells. An enhanced poly(ADP-ribose) accumulation was further observed in Parg(-/-) cells. Both Parg(-/-) cells and Parp-1(-/-) cells did not show sensitization to Fe-ion irradiation. Parg deficiency sensitizes mouse ES cells to a wide therapeutic range of LET radiation through the effects on

  13. Optical Imaging of PARP1 in Response to Radiation in Oral Squamous Cell Carcinoma

    PubMed Central

    Kossatz, Susanne; Weber, Wolfgang A.; Reiner, Thomas

    2016-01-01

    Targeting and inhibiting DNA repair pathways is a powerful strategy of controlling malignant growth. One such strategy includes the inhibition of PARP1, a central element in the intracellular DNA damage response. To determine and visualize the expression and intercellular distribution of PARP1 in vivo, and to monitor the pharmacokinetics of PARP1 targeted therapeutics, fluorescent small probes were developed. To date, however, it is unclear how these probes behave in a more realistic clinical setting, where DNA damage has been induced through one or more prior lines of therapy. Here, we use one such imaging agent, PARPi-FL, in tissues both with and without prior DNA damage, and investigate its value as a probe for PARP1 imaging. We show that PARP1 expression in oral cancer is high, and that the uptake of PARPi-FL is selective, irrespective of whether cells were exposed to irradiation or not. We also show that PARPi-FL uptake increases in response to DNA damage, and that this increase is reflected in higher enzyme expression. Our findings provide a framework for measuring exposure of cells to external beam radiation, and could help to elucidate the effects of such treatments non-invasively in mouse models of cancer. PMID:26808835

  14. Effect of adriamycin on BRCA1 and PARP-1 expression in MCF-7 breast cancer cells.

    PubMed

    Wang, Hui; Lu, Changqing; Tan, Yan; Xie, Jun; Jiang, Jingting

    2014-01-01

    To study the effects of adriamycin on the expression of BRCA1 and PARP-1 in BRCA1 wild-type MCF-7 cells. We used Western blotting to detect BRCA1 and PARP-1 levels in MCF-7 cells treated with adriamycin, and used flow cytometry to detect apoptotic MCF-7 cells. Results showed that adriamycin can increase PARP-1 activation in a dose- and time-dependent manner. BRCA1 levels were also increased upon treatment with a high dose of adriamycin, but gradually decreased over time. Treatment of MCF-7 cells with 3-ABA inhibited PARP-1 activity, but had no effect on BRCA1 levels. Compared to adriamycin and 3-ABA treatment alone, the co-treatment can increase the apoptosis of MCF-7 cells. Compared to BRCA1-defective HCC1937 cells, adriamycin combined with 3-ABA can further induce apoptosis of MCF-7 cells (P < 0.05). All of these suggested that adriamycin can affect the PARP-1 activation and the expression of BRCA1. Combined with 3-ABA has an additive effect on the rate of apoptosis observed.

  15. An efficient synthesis of cyclic IDP- and cyclic 8-bromo-IDP-carbocyclic-riboses using a modified Hata condensation method to form an intramolecular pyrophosphate linkage as a key step. An entry to a general method for the chemical synthesis of cyclic ADP-ribose analogues

    PubMed

    Fukuoka; Shuto; Minakawa; Ueno; Matsuda

    2000-08-25

    An efficient synthesis of cyclic IDP-carbocyclic-ribose (3) and its 8-bromo derivative 6, as stable mimics of cyclic ADP-ribose, was achieved, and a condensation reaction with phenylthiophosphate-type substrate 15 or 16 to form an intramolecular pyrophosphate linkage was a key step. N-1-Carbocyclic-ribosylinosine derivative 28 and the corresponding 8-bromo congener 24 were prepared via condensation between N-1-(2,4-dinitrophenyl)inosine derivative 17 and a known optically active carbocyclic amine 18. Compounds 24 and 28 were then converted to the corresponding 5"-phosphoryl-5'-phenylthiophosphate derivatives 15 and 16, respectively, which were substrates for the condensation reaction to form an intramolecular pyrophosphate linkage. Treatment of 8-bromo substrate 15 with I2 or AgNO3 in the presence of molecular sieves 3A (MS 3A) in pyridine at room temperature gave the desired cyclic product 12 quantitatively, while the yield was quite low without MS. The similar reaction of 8-unsubstituted substrate 16 gave the corresponding cyclized product 32 in 81% yield. Acidic treatment of these cyclic pyrophosphates 12 and 32 readily gave the targets 6 and 3, respectively. This result suggests that the construction of N-1-substituted hypoxanthine nucleoside structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation by activation of the phenylthiophosphate group with I2 or AgNO3/MS 3A combine to provide a very efficient route for the synthesis of analogues of cyclic ADP-ribose such as 3 and 6. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.

  16. Expanding functions of ADP-ribosylation in the maintenance of genome integrity.

    PubMed

    Martin-Hernandez, K; Rodriguez-Vargas, J-M; Schreiber, V; Dantzer, F

    2017-03-01

    Cell response to genotoxic stress requires a complex network of sensors and effectors from numerous signaling and repair pathways, among them the nuclear poly(ADP-ribose) polymerase 1 (PARP1) plays a central role. PARP1 is catalytically activated in the setting of DNA breaks. It uses NAD(+) as a donor and catalyses the synthesis and subsequent covalent attachment of branched ADP-ribose polymers onto itself and various acceptor proteins to promote repair. Its inhibition is now considered as an efficient therapeutic strategy to potentiate the cytotoxic effect of chemotherapy and radiation or to exploit synthetic lethality in tumours with defective homologous recombination mediated repair. Still, efforts made on understanding the role of PARylation in DNA repair continues to yield novel discoveries. Over the last years, our knowledge in this field has been particularly advanced by the discovery of novel biochemical and functional properties featuring PARP1, by the characterization of the other PARP family members and by the identification of a panel of enzymes capable of erasing poly(ADP-ribose). The aim of this review is to provide an overview of these newest findings and their relevance in genome surveillance.

  17. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    PubMed

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  18. Association between PARP-1 V762A Polymorphism and Breast Cancer Susceptibility in Saudi Population

    PubMed Central

    Pathan, Akbar Ali Khan; Shaik, Jilani P.; Alabdulkarim, Huda A.; Semlali, Abdelhabib; Bazzi, Mohammad D.; Parine, Narasimha Reddy

    2013-01-01

    Genetic aberrations of DNA repair enzymes are known to be common events and to be associated with different cancer entities. Aim of the following study was to analyze the genetic association of rs1136410 (Val762Ala) in PARP1 gene with the risk of breast cancer using genotypic assays and insilico structural predictions. Genotypic analysis of individual locus showed statistically significant association of Val762Ala with increased susceptibility to breast cancer. Protein structural analysis was performed with Val762Ala variant allele and compared with the predicted native protein structure. Protein prediction analysis showed that this nsSNP may cause changes in the protein structure and it is associated with the disease. In addition to the native and mutant 3D structures of PARP1 were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this the first study that confirmed Val762Ala variant has functional effect and structural impact on the PARP1 and may play an important role in breast cancer progression in Saudi population. PMID:24392019

  19. Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population.

    PubMed

    Alanazi, Mohammad; Pathan, Akbar Ali Khan; Abduljaleel, Zainularifeen; Arifeen, Zainul; Shaik, Jilani P; Alabdulkarim, Huda A; Semlali, Abdelhabib; Bazzi, Mohammad D; Parine, Narasimha Reddy

    2013-01-01

    Genetic aberrations of DNA repair enzymes are known to be common events and to be associated with different cancer entities. Aim of the following study was to analyze the genetic association of rs1136410 (Val762Ala) in PARP1 gene with the risk of breast cancer using genotypic assays and insilico structural predictions. Genotypic analysis of individual locus showed statistically significant association of Val762Ala with increased susceptibility to breast cancer. Protein structural analysis was performed with Val762Ala variant allele and compared with the predicted native protein structure. Protein prediction analysis showed that this nsSNP may cause changes in the protein structure and it is associated with the disease. In addition to the native and mutant 3D structures of PARP1 were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this the first study that confirmed Val762Ala variant has functional effect and structural impact on the PARP1 and may play an important role in breast cancer progression in Saudi population.

  20. Reduced nicotinamide adenine dinucleotide fluorescence lifetime detected poly(adenosine-5'-diphosphate-ribose) polymerase-1-mediated cell death and therapeutic effect of pyruvate

    NASA Astrophysics Data System (ADS)

    Guo, Han-Wen; Wei, Yau-Huei; Wang, Hsing-Wen

    2011-06-01

    Noninvasive detection of cell death has the potential for definitive diagnosis and monitoring treatment outcomes in real time. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence intensity has long been used as a noninvasive optical probe of metabolic states. NADH fluorescence lifetime has recently been studied for its potential as an alternative optical probe of cellular metabolic states and cell death. In this study, we investigated the potential using NADH fluorescence intensity and/or lifetime to detect poly(adenosine-5'-diphosphate-ribose) polymerase-1 (PARP-1)-mediated cell death in HeLa cells. We also examined if NADH signals respond to treatment by pyruvate. The mechanism of PARP-1-mediated cell death has been well studied that extensive PARP-1 activation leads to cytosolic nicotinamide adenine dinucleotide depletion resulting in glycolytic inhibition, mitochondrial failure, and death. Pyruvate could restore electron transport chain to prevent energy failure and death. Our results show that NADH fluorescence lifetime, not intensity, responded to PARP-1-mediated cell death and the rescue effect of pyruvate. This lifetime change of NADH fluorescence happened before the collapse of mitochondrial membrane potential and mitochondrial uncoupling. Together with our previous findings in staurosporine-induced cell death, we suggest that NADH fluorescence lifetime increase during cell death is mainly due to increased protein-protein interactions but not the intracellular NADH content.

  1. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  2. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks.

    PubMed

    Krietsch, Jana; Caron, Marie-Christine; Gagné, Jean-Philippe; Ethier, Chantal; Vignard, Julien; Vincent, Michel; Rouleau, Michèle; Hendzel, Michael J; Poirier, Guy G; Masson, Jean-Yves

    2012-11-01

    After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.

  3. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  4. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: differential effects on CXCR2 ligands and Duffy Antigen Receptor for Chemokines.

    PubMed

    Zerfaoui, Mourad; Naura, Amarjit S; Errami, Youssef; Hans, Chetan P; Rezk, Bashir M; Park, Jiwon; Elsegeiny, Waleed; Kim, Hogyoung; Lord, Kevin; Kim, Jong G; Boulares, A Hamid

    2009-12-01

    We reported that PARP-1 exhibits differential roles in expression of inflammatory factors. Here, we show that PARP-1 deletion was associated with a significant reduction in inflammatory cell recruitment to mouse airways upon intratracheal administration of LPS. However, PARP-1 deletion exerted little effect in response to TNF exposure. LPS induced massive neutrophilia and moderate recruitment of macrophages, and TNF induced recruitment of primarily macrophages with smaller numbers of neutrophils in the lungs. Following either exposure, macrophage recruitment was blocked severely in PARP-1(-/-) mice, and this was associated with a marked reduction in MCP-1 and MIP-1alpha. This association was corroborated partly by macrophage recruitment in response to intratracheal administration of MCP-1 in PARP-1(-/-) mice. Surprisingly, although neutrophil recruitment was reduced significantly in LPS-treated PARP-1(-/-) mice, neutrophil numbers increased in TNF-treated mice, suggesting that PARP-1 deletion may promote a macrophagic-to-neutrophilic shift in the inflammatory response upon TNF exposure. Neutrophil-specific chemokines mKC and MIP-2 were reduced significantly in lungs of LPS-treated but only partially reduced in TNF-treated PARP-1(-/-) mice. Furthermore, the MIP-2 antagonist abrogated the shift to a neutrophilic response in TNF-exposed PARP-1(-/-) mice. Although CXCR2 expression increased in response to either stimulus in PARP-1(+/+) mice, the DARC increased only in lungs of TNF-treated PARP-1(+/+) mice; both receptors were reduced to basal levels in treated PARP-1(-/-) mice. Our results show that the balance of pro-neutrophilic or pro-macrophagic stimulatory factors and the differential influence of PARP-1 on these factors are critical determinants for the nature of the airway inflammatory response.

  5. Chemosensitivity of IDH1 mutant gliomas due to an impairment in PARP1-mediated DNA repair.

    PubMed

    Lu, Yanxin; Kwintkiewicz, Jakub; Liu, Yang; Tech, Katherine; Frady, Lauren N; Su, Yu-Ting; Bautista, Wendy; Moon, Seog In; MacDonald, Jeffrey; Edwend, Matthew G; Gilbert, Mark R; Yang, Chunzhang; Wu, Jing

    2017-02-15

    Mutations in isocitrate dehydrogenase (IDH) are the most prevalent genetic abnormalities in lower grade gliomas. The presence of these mutations in glioma is prognostic for better clinical outcomes with longer patient survival. In the present study, we found that defects in oxidative metabolism and 2-HG production confer chemosensitization in IDH1-mutated glioma cells. In addition, temozolomide (TMZ) treatment induced greater DNA damage and apoptotic changes in mutant glioma cells. The PARP1-associated DNA repair pathway was extensively compromised in mutant cells due to decreased NAD+ availability. Targeting the PARP DNA repair pathway extensively sensitized IDH1-mutated glioma cells to TMZ. Our findings demonstrate a novel molecular mechanism that defines chemosensitivity in IDH mutant gliomas. Targeting PARP-associated DNA repair may represent a novel therapeutic strategy for gliomas.

  6. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    SciTech Connect

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R.; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  7. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    PubMed Central

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  8. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  9. Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells

    PubMed Central

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F.; Pang, Qishen

    2016-01-01

    The prominent role of Fanconi anemia (FA) proteins involves homologous recombination (HR) repair. Poly[ADP-ribose] polymerase1 (PARP1) functions in multiple cellular processes including DNA repair and PARP inhibition is an emerging targeted therapy for cancer patients deficient in HR. Here we show that PARP1 activation in hematopoietic stem and progenitor cells (HSPCs) in response to genotoxic or oxidative stress attenuates HSPC exhaustion. Mechanistically, PARP1 controls the balance between HR and non-homologous end joining (NHEJ) in double strand break (DSB) repair by preventing excessive NHEJ. Disruption of the FA core complex skews PARP1 function in DSB repair and led to hyper-active NHEJ in Fanca−/− or Fancc−/− HSPCs. Re-expression of PARP1 rescues the hyper-active NHEJ phenotype in Brca1−/−Parp1−/− but less effective in Fanca−/−Parp1−/− cells. Inhibition of NHEJ prevents myeloid/erythroid pathologies associated with synthetic lethality. Our results suggest that hyper-active NHEJ may select for “synthetic lethality” resistant and pathological HSPCs. PMID:26916217

  10. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.

    PubMed

    Alemasova, Elizaveta E; Pestryakov, Pavel E; Sukhanova, Maria V; Kretov, Dmitry A; Moor, Nina A; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2015-12-01

    Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.

  11. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: New player in tumor progression.

    PubMed

    Barboro, Paola; Ferrari, Nicoletta; Capaia, Matteo; Petretto, Andrea; Salvi, Sandra; Boccardo, Simona; Balbi, Cecilia

    2015-10-01

    Prostate cancer (PCa) displays infrequent point mutations, whereas genomic rearrangements are highly prevalent. In eukaryotes, the genome is compartmentalized into chromatin loop domains by the attachment to the nuclear matrix (NM), and it has been demonstrated that several recombination hot spots are situated at the base of loops. Here, we have characterized the binding between NM proteins and matrix attachment regions (MARs) in PCa. Nontumor and 44 PCa tissues were analyzed. More aggressive tumors were characterized by an increase in the complexity of the NM protein patterns that was synchronous with a decrease in the number of proteins binding the MAR sequences. PARP-1 was the protein that showed the most evident changes. The expression of the PARP-1 associated with NM increased and it was dependent on tumor aggressiveness. Immunohistochemical analysis showed that the protein was significantly overexpressed in tumor cells. To explore the role of PARP-1 in PCa progression, PCa cells were treated with the PARP inhibitor, ABT-888. In androgen-independent PC3 cells, PARP inhibition significantly decreased cell viability, migration, invasion, chromatin loop dimensions and histone acetylation. Collectively, our study provides evidence that MAR-binding proteins are involved in the development and progression of PCa. PARP could play a key role in the compartmentalization of chromatin and in the development of the more aggressive phenotype. Thus, PARP can no longer be viewed only as an enzyme involved in DNA repair, but that its role in chromatin modulation could provide the basis for a new therapeutic approach to the treatment of PCa.

  12. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?

    PubMed

    Ying, Yuan; Padanilam, Babu J

    2016-06-01

    In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.

  13. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  14. Nuclear-cytoplasmic PARP-1 expression as an unfavorable prognostic marker in lymph node‑negative early breast cancer: 15-year follow-up.

    PubMed

    Donizy, Piotr; Pietrzyk, Grazyna; Halon, Agnieszka; Kozyra, Cyprian; Gansukh, Tserenchunt; Lage, Hermann; Surowiak, Pawel; Matkowski, Rafal

    2014-04-01

    PARP-1 plays an important role in DNA damage repair and maintaining genome integrity by repairing DNA single-strand breaks (SSBs) by base excision repair (BER). The aim of the present study was to examine the expression of PARP-1 in breast cancer (BC) patients and to assess the relationship between the subcellular localization of this protein and clinicopathological characteristics. The reactivity of PARP-1 was analyzed by immunohistochemistry in a homogeneous group of 83 stage II ductal BC patients with a 15-year follow-up. Immunostaining of PARP-1 was also evaluated in 4 human BC cell lines and resistance prediction profile for 11 anticancer agents was performed using 3 models of drug-resistant cell lines. Nuclear-cytoplasmic expression (NCE) was associated with shorter overall survival, which was not statistically significant during the 10-year follow-up but became statistically significant after 10 years of observation, during the 15-year follow-up (P=0.015). Analysis performed in subgroups of patients with (N+) and without (N-) nodal metastases showed that NCE was associated with poor clinical outcome in N- patients (P=0.017). Multivariate analysis confirmed a significant impact of NCE on unfavorable prognosis in N- early BC. The presence of PARP-1 NCE may be a new potential unfavorable prognostic factor in lymph node- negative early BC.

  15. Leukemic non-nodal mantle cell lymphomas have a distinct phenotype and are associated with deletion of PARP1 and 13q14.

    PubMed

    Gallo, Mathieu; Cacheux, Valère; Vincent, Laure; Bret, Caroline; Tempier, Ariane; Guittard, Caroline; Macé, Alexandra; Leventoux, Nicolas; Costes, Valérie; Szablewski, Vanessa

    2016-12-01

    Leukemic non-nodal mantle cell lymphoma (lMCL) is a particular subtype of mantle cell lymphoma (MCL), characterized by leukemic non-nodal disease and slow progression. Recognition of this entity is relevant to avoid overtreatment. Despite indolent clinical behaviour, lMCL might transform to a more aggressive disease. The purpose of this study was to compare lMCL with classical MCL (cMCL) and aggressive MCL (aMCL) using immunohistochemistry, interphase fluorescence in situ hybridization (FISH), and array-based comparative genomic hybridization, in order to identify biomarkers for lMCL diagnosis and prognosis. Seven lMCL patients were included. All had bone marrow involvement without lymphadenopathy. An lMCL phenotype was distinct from that of cMCL and aMCL: SOX11-, ATM+, PARP1+/-, and low KI67 (average 2 %). Beyond the t(11;14) translocation, fewer secondary cytogenetic alterations were found in lMCL compared to cMCL and aMCL, including deletion of PARP1 and 13q14. At last follow-up, one patient with lMCL had died of disease and another had progressive disease. These patients were respectively 13q14 deletion- and PARP1-positive. One other case of lMCL harbored a 13q14 deletion associated with PARP1 deletion. This patient had indolent disease. lMCL has a particular phenotype and fewer secondary cytogenetic alterations than cMCL and aMCL. PARP1 protein expression and 13q14 deletion are associated with a progressive clinical course of lMCL and should be included in initial diagnostic studies as predictors of unfavorable outcome. PARP1 deletion is involved in lMCL pathogenesis and might confer advantage.

  16. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor

    SciTech Connect

    Turner, Roberta L.; Wilkinson, John C.; Ornelles, David A.

    2014-05-15

    Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4ORF3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4ORF3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins. - Highlights: • E1B-55K or E4orf3 prevents nuclear fragmentation. • Nuclear fragmentation requires AIF and PARP-1 activity. • Adenovirus DNA replication activates PARP-1. • E1B-55K or E4orf3 proteins alter the distribution of PAR.

  17. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock

    PubMed Central

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1. PMID:28099440

  18. Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells

    SciTech Connect

    Wu, Ping; Zhu, Xueping; Jin, Wei; Hao, Shumei; Liu, Qi; Zhang, Linjie

    2015-05-01

    Intrinsic apoptotic pathway is considered to be responsible for cell death induced by platinum anticancer drugs. While in this study, we found that, necrosis is an indispensable pathway besides apoptosis in oxaliplatin-treated gastric cancer SGC-7901 cells. Upon exposure to oxaliplatin, both apoptotic and necrotic features were observed. The majority of dead cells were double positive for Annexin V and propidium iodide (PI). Moreover, mitochondrial membrane potential collapsed and caspase cascades were activated. However, ultrastructural changes under transmission electron microscope, coupled with the release of cellular contents, demonstrated the rupture of the plasma membrane. Oxaliplatin administration did not stimulate reactive oxygen species (ROS) production and autophagy, but elevated the protein level of Bmf. In addition, receptor interacting protein 1 (RIP1), but not receptor interacting protein 3 (RIP3) and its downstream components participated in this death process. Necrostatin-1 (Nec-1) blocked oxaliplatin-induced cell death nearly completely, whereas z-VAD-fmk could partially suppress cell death. Oxaliplatin treatment resulted in poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, as indicated by the increase of poly(ADP-ribose) (PAR), which led to NAD{sup +} and ATP depletion. PARP-1 inhibitor, olaparib, could significantly block oxaliplatin-induced cell death, thus confirming that PARP-1 activation is mainly responsible for the cytotoxicity of oxaliplatin. Phosphorylation of H2AX at Ser139 and translocalization of apoptosis-inducing factor (AIF) are critical for this death process. Taken together, these results indicate that oxaliplatin can bypass canonical cell death pathways to kill gastric cancer cells, which may be of therapeutic advantage in the treatment of gastric cancer. - Highlights: • Oxaliplatin induces apoptotic and necrotic cell death. • Nec-1 can inhibit oxaliplatin-induced cell death nearly completely. • RIP3 and its

  19. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage.

    PubMed

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M; Lage, Silvia L; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P; Hottiger, Michael O; De Carvalho, Daniel D; Bortoluci, Karina R

    2017-02-02

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.

  20. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage

    PubMed Central

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M.; Lage, Silvia L.; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P.; Hottiger, Michael O.; De Carvalho, Daniel D.; Bortoluci, Karina R.

    2017-01-01

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases. PMID:28150715

  1. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  2. New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-κB inhibitory effects.

    PubMed

    Muñoz Acuña, Ulyana; Carcache, Peter J Blanco; Matthew, Susan; Carcache de Blanco, Esperanza J

    2016-07-01

    The bioassay-guided fractionation of the aril of Myristica fragrans (mace spice) yielded five phenolic compounds, one new acyclic bis phenylpropanoid (1) and four previously known phenolic compounds: compounds (1) (S) 1-(3,4,5-trimethoxyphenyl)-2-(3-methoxy-5-(prop-1-yl) phenyl)-propan-1-ol, (2) benzenemethanol; α-[1-[2,6-dimethoxy-4-(2-propen-1-yl)phenoxy]ethyl]-3,4-dimethoxy-1-acetate, (3) odoratisol A, phenol, 4-[(2S,3S)-2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-propenyl-2-benzofuranyl]-2,6-dimethoxy, (4) 1,3-benzodioxate-5-methanol,α-[1-[2,6-dimethoxy-4-(2-propenyl)phenoxy]ethyl]-acetate, (5) licarin C; benzofuran,2,3-dihydro-7-methoxy-3-methyl-5-(1E)-1-yl-2-(3,4,5-trimethoxyphenyl). An NMR tube Mosher ester reaction was used in an approach to characterize and determine the assignment of the absolute configuration of the new isolated chiral alcohol (1). The PARP-1 inhibitory activity was evaluated for compound (1) (IC50=3.04μM), compound (2) (IC50=0.001μM), compound (4) (IC50=22.07μM) and compound (5) (IC50=3.11μM). Furthermore, the isolated secondary metabolites were tested for NF-κB and K-Ras inhibitory activities. When tested in the p65 assay, compounds (2) and (4) displayed potent NF-κB inhibition (IC50=1.5 nM and 3.4nM, respectively).

  3. Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes

    PubMed Central

    Martinez-Zamudio, Ricardo

    2012-01-01

    The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation. PMID:22547677

  4. Pyrosequencing analysis of BRCA1 methylation level in breast cancer cells.

    PubMed

    Cai, Fengfeng; Ge, Isabell; Wang, Minghong; Biskup, Ewelina; Lin, Xiaoyan; Zhong, Xiaoyan

    2014-04-01

    BRCA1 and BRCA2 genes are crucial for double-strand break repair by homologous recombination, and mutations in these genes are responsible for most familial breast carcinomas. Cells with inactivating mutations of the BRCA1 or BRCA2 tumor suppressor genes are sensitive to poly (ADP-ribose) polymerase-1 (PARP1) inhibitors. Already in 2010, it has been predicted, that BRCA1 hypermethylation might be sensitive to PARP1 inhibitor. However, till today, a statistically significant proof has been missing, and the effectiveness of PARP1 inhibitors for breast cancer caused by BRCA1 promoter hypermethylation remained elusive. Pyrosequencing has been proposed as an optimal method to investigate the methylation status of the BRCA1 genes. Here, we show for the first time that BRCA1 CpG island hypermethylation is sensitive to PARP1 inhibitors. In clinical settings, this might improve treatment response and provide a more personalized therapy for breast cancer patients. Furthermore, the determination of methylation status of BRCA1 and other genes of the BRCA/homologous recombination (HR) pathway may be an important predictive classifier of response to PARP inhibitor therapy.

  5. miR-223 reverses experimental pulmonary arterial hypertension.

    PubMed

    Meloche, Jolyane; Le Guen, Marie; Potus, François; Vinck, Jérôme; Ranchoux, Benoit; Johnson, Ian; Antigny, Fabrice; Tremblay, Eve; Breuils-Bonnet, Sandra; Perros, Frederic; Provencher, Steeve; Bonnet, Sébastien

    2015-09-15

    Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.

  6. Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss

    PubMed Central

    Lee, Yunjong; Karuppagounder, Senthilkumar S.; Shin, Joo-Ho; Lee, Yun-Il; Ko, Han Seok; Swing, Debbie; Jiang, Haisong; Kang, Sung-Ung; Lee, Byoung Dae; Kang, Ho Chul; Kim, Donghoon; Tessarollo, Lino; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    The defining pathogenic feature of Parkinson’s disease is the age dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, cause Parkinson’s disease through accumulation of pathogenic substrates. Here we show that transgenic overexpression of the parkin substrate, aminoacyl-tRNA synthetase complex interacting multifunctional protein-2 (AIMP2) leads to a selective, age-dependent progressive loss of dopaminergic neurons via activation of poly(ADP-ribose) polymerase-1 (PARP1). AIMP2 accumulation in vitro and in vivo results in PARP1 overactivation and dopaminergic cell toxicity via direct association of these proteins in the nucleus providing a new path to PARP1 activation other than DNA damage. Inhibition of PARP1 through gene deletion or drug inhibition reverses behavioral deficits and protects in vivo against dopamine neuron death in AIMP2 transgenic mice. These data indicate that brain permeable PARP inhibitors could be effective in delaying or preventing disease progression in Parkinson’s disease. PMID:23974709

  7. Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks.

    PubMed

    Kotoglou, Polychronis; Kalaitzakis, Alexandros; Vezyraki, Patra; Tzavaras, Theodore; Michalis, Lampros K; Dantzer, Francoise; Jung, Jae U; Angelidis, Charalampos

    2009-07-01

    For many years, there has been uncertainty concerning the reason for Hsp70 translocation to the nucleus and nucleolus. Herein, we propose that Hsp70 translocates to the nucleus and nucleoli in order to participate in pathways related to the protection of the nucleoplasmic DNA or ribosomal DNA from single-strand breaks. The absence of Hsp70 in HeLa cells, via Hsp70 gene silencing (knockdown), indicated the essential role of Hsp70 in DNA integrity. Therefore, HeLa Hsp70 depleted cells were very sensitive in heat treatment and their DNA breaks were multiple compared to that of control HeLa cells. The molecular mechanism with which Hsp70 performs its role at the level of nucleus and nucleolus during stress was examined. Hsp70 co-localizes with PARP1 in the nucleus/nucleoli as was observed in confocal studies and binds to the BCRT domain of PARP1 as was revealed with protein-protein interaction assays. It was also found that Hsp70 binds simultaneously to XRCC1 and PARP-1, indicating that Hsp70 function takes place at the level of DNA repair and possibly at the base excision repair system. Making a hypothetical model, we have suggested that Hsp70 is the molecule that binds and interrelates with PARP1 creating the repair proteins simultaneously, such as XRCC1, at the single-strand DNA breaks. Our data partially clarify a previously unrecognized cellular response to heat stress. Finally, we can speculate that Hsp70 plays a role in the quality and integrity of DNA.

  8. Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks

    PubMed Central

    Kotoglou, Polychronis; Kalaitzakis, Alexandros; Vezyraki, Patra; Tzavaras, Theodore; Michalis, Lampros K.; Dantzer, Francoise; Jung, Jae U.

    2008-01-01

    For many years, there has been uncertainty concerning the reason for Hsp70 translocation to the nucleus and nucleolus. Herein, we propose that Hsp70 translocates to the nucleus and nucleoli in order to participate in pathways related to the protection of the nucleoplasmic DNA or ribosomal DNA from single-strand breaks. The absence of Hsp70 in HeLa cells, via Hsp70 gene silencing (knockdown), indicated the essential role of Hsp70 in DNA integrity. Therefore, HeLa Hsp70 depleted cells were very sensitive in heat treatment and their DNA breaks were multiple compared to that of control HeLa cells. The molecular mechanism with which Hsp70 performs its role at the level of nucleus and nucleolus during stress was examined. Hsp70 co-localizes with PARP1 in the nucleus/nucleoli as was observed in confocal studies and binds to the BCRT domain of PARP1 as was revealed with protein–protein interaction assays. It was also found that Hsp70 binds simultaneously to XRCC1 and PARP-1, indicating that Hsp70 function takes place at the level of DNA repair and possibly at the base excision repair system. Making a hypothetical model, we have suggested that Hsp70 is the molecule that binds and interrelates with PARP1 creating the repair proteins simultaneously, such as XRCC1, at the single-strand DNA breaks. Our data partially clarify a previously unrecognized cellular response to heat stress. Finally, we can speculate that Hsp70 plays a role in the quality and integrity of DNA. PMID:19089598

  9. Combination treatment with arsenic trioxide and phytosphingosine enhances apoptotic cell death in arsenic trioxide-resistant cancer cells.

    PubMed

    Park, Moon-Taek; Kang, Young-Hee; Park, In-Chul; Kim, Chun-Ho; Lee, Yun-Sil; Chung, Hee Yong; Lee, Su-Jae

    2007-01-01

    Resistance to anticancer drugs can sometimes be overcome by combination treatment with other therapeutic drugs. Here, we showed that phytosphingosine treatment in combination with arsenic trioxide (As(2)O(3)) enhanced cell death of naturally As(2)O(3)-resistant human myeloid leukemia cells. The combination treatment induced an increase in intracellular reactive oxygen species level, mitochondrial relocalization of Bax, poly(ADP-ribose) polymerase-1 (PARP-1) activation, and cytochrome c release from the mitochondria. N-acetyl-l-cysteine, a thiol-containing antioxidant, completely blocked Bax relocalization, PARP-1 activation, and cytochrome c release. Pretreatment of 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone, a PARP-1 inhibitor, or PARP-1/small interfering RNA partially attenuated cytochrome c release, whereas the same treatment did not affect Bax relocalization. The combination treatment induced selective activation of p38 mitogen-activated protein kinase (MAPK). Inhibition of p38 MAPK by treatment of SB203580 or expression of dominant-negative forms of p38 MAPK suppressed the combination treatment-induced Bax relocalization but did not affect PARP-1 activation. In addition, antioxidant N-acetyl-l-cysteine completely blocked p38 MAPK activation. These results indicate that phytosphingosine in combination with As(2)O(3) induces synergistic apoptosis in As(2)O(3)-resistant leukemia cells through the p38 MAPK-mediated mitochondrial translocation of Bax and the PARP-1 activation, and that p38 MAPK and PARP-1 activations are reactive oxygen species dependent. The molecular mechanism that we elucidated in this study may provide insight into the design of future combination cancer therapies to cells intrinsically less sensitive to As(2)O(3) treatment.

  10. Arsenite Interacts Selectively with Zinc Finger Proteins Containing C3H1 or C4 Motifs*

    PubMed Central

    Zhou, Xixi; Sun, Xi; Cooper, Karen L.; Wang, Feng; Liu, Ke Jian; Hudson, Laurie G.

    2011-01-01

    Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues. PMID:21550982

  11. Niacinamide - mechanisms of action and its topical use in dermatology.

    PubMed

    Wohlrab, Johannes; Kreft, Daniela

    2014-01-01

    Niacinamide, an amide of vitamin B3 (niacin), is a hydrophilic endogenous substance. Its effects after epicutaneous application have long been described in the literature. Given a sufficient bioavailability, niacinamide has antipruritic, antimicrobial, vasoactive, photo-protective, sebostatic and lightening effects depending on its concentration. Within a complex metabolic system niacinamide controls the NFκB-mediated transcription of signalling molecules by inhibiting the nuclear poly (ADP-ribose) polymerase-1 (PARP-1). Niacinamide is a well-tolerated and safe substance often used in cosmetics. Clinical data for its therapeutic use in various dermatoses can increasingly be found in the literature. Although the existing data are not sufficient for a scientifically founded evaluation, it can be stated that the use of niacinamide in galenic preparations for epicutaneous application offers most interesting prospects.

  12. Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population

    PubMed Central

    2013-01-01

    Background Few high penetrance genes are known in Malignant Melanoma (MM), however, the involvement of low-penetrance genes such as MC1R, OCA2, ASIP, SLC45A2 and TYR has been observed. Lately, genome-wide association studies (GWAS) have been the ideal strategy to identify new common, low-penetrance susceptibility loci. In this case–control study, we try to validate in our population nine melanoma associated markers selected from published GWAS in melanoma predisposition. Methods We genotyped the 9 markers corresponding to 8 genes (PARP1, MX2, ATM, CCND1, NADSYN1, CASP8, IRF4 and CYP2R1) in 566 cases and 347 controls from a Spanish population using KASPar probes. Genotypes were analyzed by logistic regression and adjusted by phenotypic characteristics. Results We confirm the protective role in MM of the rs3219090 located on the PARP1 gene (p-value 0.027). Additionally, this SNP was also associated with eye color (p-value 0.002). A second polymorphism, rs12203592, located on the IRF4 gene was associated with protection to develop MM for the dominant model (p-value 0.037). We have also observed an association of this SNP with both lentigines (p-value 0.014) and light eye color (p-value 3.76 × 10-4). Furthermore, we detected a novel association with rs1485993, located on the CCND1 gene, and dark eye color (p-value 4.96 × 10-4). Finally, rs1801516, located on the ATM gene, showed a trend towards a protective role in MM similar to the one firstly described in a GWAS study. Conclusions To our knowledge, this is the first time that these SNPs have been associated with MM in a Spanish population. We confirmed the proposed role of rs3219090, located on the PARP1 gene, and rs12203592, located on the IRF4 gene, as protective to MM along the same lines as have previous genome-wide associated works. Finally, we have seen associations between IRF4, PARP1, and CCND1 and phenotypic characteristics, confirming previous results for the IRF4 gene and presenting novel data

  13. Iduna Protects the Brain from Glutamate Excitotoxicity and Stroke by Interfering with Parthanatos

    PubMed Central

    Andrabi, Shaida A.; Kang, Ho Chul; Haince, Jean-François; Lee, Yun-Il; Zhang, Jian; Chi, Zhikai; West, Andrew B.; Koehler, Raymond C.; Poirier, Guy G.; Dawson, Ted M.; Dawson, Valina L.

    2013-01-01

    Glutamate acting on N-methyl-D-aspartate (NMDA) receptors plays an important role in neurodegenerative diseases and neuronal injury following stroke, through activation of poly(ADP-ribose) polymerase-1 and generation of the death molecule poly(ADP-ribose) (PAR) polymer. Here we identify Iduna, a novel NMDA receptor-induced survival gene that is neuroprotective against glutamate NMDA receptor mediated excitotoxicity both in vitro and in vivo and against stroke through interfering with PAR polymer induced cell death (parthanatos). Iduna’s protective effects are independent and downstream of PARP-1 activity. Iduna is a PAR polymer binding protein and mutations at the PAR polymer binding site abolishes the PAR binding activity of Iduna and attenuates its protective actions. Iduna is protective in vivo against NMDA-induced excitotoxicity and middle cerebral artery occlusion (MCAO)-induced stroke in mice. These results define Iduna as the first endogenous inhibitor of parthanatos. Interfering with PAR polymer signaling offers a new therapeutic strategy for the treatment of neurologic disorders. PMID:21602803

  14. The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition

    PubMed Central

    McAndrew, Erin N.; Lepage, Chloe C.; McManus, Kirk J.

    2016-01-01

    Colorectal cancer (CRC) is a leading cause of cancer-related death throughout the world. Despite improved screening efforts, most CRCs are diagnosed at late stages when surgery alone is not curative. Moreover, the low 5-year survival rate (∼8-13%) for those living with stage IV CRC highlights the need for better treatment options. Many current chemotherapeutic approaches are non-specific and associated with side effects due to their tendency to target both normal and cancer cells. To address this issue, synthetic lethal (SL) approaches are now being explored in cancer and are defined as the lethal combination of two independently viable mutations/deletions. From a therapeutic perspective, SL interactors of genes mutated in cancer serve as candidate drug targets. The present study focuses on RAD54B, a gene that is aberrantly expressed in many cancer types, including CRC. We show that PARP1 silencing or inhibition (BMN673 or Olaparib) leads to selective killing within RAD54B-deficient cells relative to controls, and is accompanied by increases in γ-H2AX (a surrogate marker of DNA double strand breaks) and cleaved Caspase-3 (an apoptotic indicator). We further show that BMN673 synergizes with LCS-1 (an inhibitor of an established RAD54B SL interactor) to induce enhanced killing in RAD54B-deficient cells. Collectively, these data identify RAD54B and PARP1 as SL interactors, and thus reveal PARP1 as a novel candidate drug target in RAD54B-deficient CRCs. These findings further show that combinatorial chemotherapies involving multiple SL targets may promote synergistic killing within cancer cells, a strategy that may hold potential in many cancer contexts. PMID:27902462

  15. The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells.

    PubMed

    Luo, Qingying; Li, Yang; Lai, Yanhao; Zhang, Zunzhen

    2015-06-01

    The therapeutic efficacy of arsenic trioxide (ATO) for treatments of solid tumors is restricted by its drug resistance and chemotoxicity. In this study, we investigated ATO sensitization and detoxification effect of the Poly (ADP ribose) polymerase-1 (PARP-1) inhibitor 4-Amino-1,8-naphthalimide (4AN) in the hepatocellular carcinoma cell line HepG2. We firstly reported that ATO treatment induced the activation of Nuclear factor of κB (NF-κB) and its downstream anti-apoptosis and pro-inflammatory effectors in a PARP-1-dependent manner and thus conferred HepG2 cells with ATO resistance and toxicity. 4AN significantly suppressed the ATO-induced NF-κB activation, which promotes the apoptotic response and alleviates the inflammatory reaction induced by ATO, resulting in sensitization and detoxification against ATO. We also demonstrated that the ATO-induced activation of PARP-1 and NF-κB was closely associated with the oxidative DNA damage mediated by the generated reactive oxygen species (ROS). Furthermore, the attenuation of ATO-induced ROS and the resulting oxidative DNA damage by N-acetyl-L-cysteine (NAC), a potent antioxidant, significantly reduced the activation of PARP-1 and NF-κB in ATO-treated cells. Our study provides novel insights into the mechanism of the PARP-1-mediated NF-κB signaling pathway in ATO resistance and toxicity in anticancer treatments. This study also highlights the application potential of PARP-1 inhibitors in ATO-based anti-cancer treatments and in prevention of NF-κB-mediated therapeutic resistance and toxicity.

  16. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications.

    PubMed

    Drew, Yvette; Plummer, Ruth

    2009-12-01

    The abundant nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1) represents an important novel target in cancer therapy. PARP-1 is essential to the repair of single strand DNA breaks via the base excision repair pathway. Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionising radiation and DNA damaging chemotherapy agents such as the methylating agents and topoisomerase-I inhibitors. There are currently at least eight PARP inhibitors in clinical trial development. In vitro data, in vivo preclinical data and most recently early clinical trial data suggests that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers but also as single agents to selectively kill cancers defective in DNA repair, specifically cancers with mutations in the breast cancer associated (BRCA)1 and BRCA2 genes. This theory of selectively exploiting cells defective in one DNA repair pathway by inhibiting another is a major breakthrough in the treatment of cancer. The current clinical data are discussed within this review with reference to the preclinical models which predicted activity and also future directions and the possible dangers/pitfalls of this clinical strategy are explored.

  17. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.

    PubMed

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-02-06

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres.

  18. Caspase 3 activation and PARP cleavage in lymphocytes from newborn babies of diabetic mothers with unbalanced glycaemic control.

    PubMed

    Tarquini, F; Tiribuzi, R; Crispoltoni, L; Porcellati, S; Del Pino, A M; Orlacchio, A; Coata, G; Arnone, S; Torlone, E; Cappuccini, B; Di Renzo, G C; Orlacchio, A

    2014-01-01

    Several epidemiological studies showed that gestational diabetes mellitus is the most frequent metabolic disorder of pregnancy, the pathogenesis of which has yet to be completely clarified. The aim of this study was to investigate the presence and processing of caspase 3 (Casp3) and poly(ADP-ribose) polymerase 1 (PARP1) in cord blood lymphocytes as markers of apoptosis in relation to glycaemic control during intrauterine life. Our results showed a specific positive correlation between the levels of active Casp3 (17-19 kDa) and the inactive form of PARP1 (89 kDa) in lymphocytes isolated from newborn babies of diabetic women with unbalanced glycaemic control, with a direct correlation between the activation of casp3 and the inactivation of PARP1, that makes lymphocytes unresponsive towards lipopolysaccharide stimulation, highlighting an altered functional response. Besides more studies are required to fully correlate the activation of the apoptotic process during the intrauterine life with the foetal health later in life, our study indicates that a cord blood lymphocyte, an easily accessible source, is informative about the activation of apoptotic stimuli in circulating cells of newborn babies in relation to the glycaemic control reached by the mother during pregnancy.

  19. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

    PubMed Central

    Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P < 0.001) and EFS (P = 0.016). The ten-year DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  20. Neurodegeneration in accelerated aging.

    PubMed

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  1. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release.

    PubMed

    Park, Moon-Taek; Kim, Min-Jung; Kang, Young-Hee; Choi, Soon-Young; Lee, Jae-Hoon; Choi, Jung-A; Kang, Chang-Mo; Cho, Chul-Koo; Kang, Seongman; Bae, Sangwoo; Lee, Yun-Sil; Chung, Hee Yong; Lee, Su-Jae

    2005-02-15

    The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with gamma-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with gamma-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy.

  2. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2004-08-01

    The proteins were transferred to a nitrocellulose membrane and PARP was detected using anti-human PARP monoclonal antibody. Since PARP is a basic...to check if this modification is due to poly(ADP-ribosyl)ation of the protein , the membrane was stripped off and re-probed with anti-PAR polyclonal...detect any poly(ADP- ribosyl)ated proteins corresponding to the molecular weight of PARP (116 kDa) (Figure 18 ), we initiated experiment to test possible

  3. Molecular Toxicology of Chromatin: The Role of Poly(ADP-Ribose) in Gene Control.

    DTIC Science & Technology

    1985-02-01

    portions (100 ug/mg nuclear protein) and incubation for 2 x 20 min. at 37*. In (A) adducts were hydrolyzed by 1 M NaOH by incubation at 55 ° for two hours...indicate NAD-glycohydrolase activities that are probably unrelated to the polymerase reaction. When polymer- I" . protein adducts are hydrolyzed by...cells, were dispensed in Falcon Petri dishes (60-100 mm diameter) precoated with collagen , previously sterilized by UV radiation. Collagen was isolated

  4. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases.

    PubMed

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R; Kümmerer, Beate M; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-02-02

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.

  5. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases

    PubMed Central

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R.; Kümmerer, Beate M.; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-01-01

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict. PMID:28150709

  6. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    DTIC Science & Technology

    2015-10-01

    strand breaks Recruitment of polymer binding proteins PARP1 PARP1 NHEJ: DNA-PK HR: BRCA1/2 RAD51 FA proteins Znl ZnII Catalytic domain Automodification...cleavage of NAD and addition of ADP- ribose units to various proteins, including its own automodification domain. Result- ing pADPr polymers (depicted...additional proteins that bind to polymer noncovalently.30,31 (C-F) Mod- els proposed to explain observed syn- thetic lethality between homologous

  7. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer

    PubMed Central

    Bisso, Andrea; Faleschini, Michela; Zampa, Federico; Capaci, Valeria; De Santa, Jacopo; Santarpia, Libero; Piazza, Silvano; Cappelletti, Vera; Daidone, Mariagrazia; Agami, Reuven; Del Sal, Giannino

    2013-01-01

    Breast cancer is a heterogeneous tumor type characterized by a complex spectrum of molecular aberrations, resulting in a diverse array of malignant features and clinical outcomes. Deciphering the molecular mechanisms that fuel breast cancer development and act as determinants of aggressiveness is a primary need to improve patient management. Among other alterations, aberrant expression of microRNAs has been found in breast cancer and other human tumors, where they act as either oncogenes or tumor suppressors by virtue of their ability to finely modulate gene expression at the post-transcriptional level. In this study, we describe a new role for miR-181a/b as negative regulators of the DNA damage response in breast cancer, impacting on the expression and activity of the stress-sensor kinase ataxia telangiectasia mutated (ATM). We report that miR-181a and miR-181b were overexpressed in more aggressive breast cancers, and their expression correlates inversely with ATM levels. Moreover we demonstrate that deregulated expression of miR-181a/b determines the sensitivity of triple-negative breast cancer cells to the poly-ADP-ribose-polymerase1 (PARP1) inhibition. These evidences suggest that monitoring the expression of miR-181a/b could be helpful in tailoring more effective treatments based on inhibition of PARP1 in breast and other tumor types. PMID:23656790

  8. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    PubMed

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  9. Preventing NAD+ Depletion Protects Neurons against Excitotoxicity

    PubMed Central

    Liu, Dong; Pitta, Michael; Mattson, Mark P.

    2008-01-01

    Neurons are excitable cells that require large amounts of energy to support their survival and functions and are therefore prone to excitotoxicity, which involves energy depletion. By examining bioenergetic changes induced by glutamate, we found that the cellular nicotinamide adenine dinucleotide (NAD+) level is a critical determinant of neuronal survival. The bioenergetic effects of mitochondrial uncoupling and caloric restriction were also examined in cultured neurons and rodent brain. 2, 4-dinitrophenol (DNP) is a chemical mitochondrial uncoupler that stimulates glucose uptake and oxygen consumption on cultured neurons, which accelerates oxidation of NAD(P)H to NAD+ in mitochondria. The NAD+-dependent histone deacetylase sirtulin 1 (SIRT1) and glucose transporter 1 (GLUT1) mRNA are upregulated mouse brain under caloric restriction. To examine whether NAD+ mediates neuroprotective effects, nicotinamide, a precursor of NAD+ and inhibitor of SIRT1 and poly (ADP-ribose) polymerase 1 (PARP1) (two NAD+-dependent enzymes), was employed. Nicotinamide attenuated excitotoxic death and preserved cellular NAD+ levels to support SIRT1 and PARP 1 activities. Our findings suggest that mild mitochondrial uncoupling and caloric restriction exert hormetic effects by stimulating bioenergetics in neurons thereby increasing tolerance of neurons to metabolic stress. PMID:19076449

  10. Intervention timing and effect of PJ34 on astrocytes during oxygen-glucose deprivation/reperfusion and cell death pathways.

    PubMed

    Cai, Chuan; Zhang, Rui; Huang, Qiao-Ying; Cao, Xu; Zou, Liang-Yu; Chu, Xiao-Fan

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) plays as a double edged sword in cerebral ischemia-reperfusion, hinging on its effect on the intracellular energy storage and injury severity, and the prognosis has relationship with intervention timing. During ischemia injury, apoptosis and oncosis are the two main cell death pathway sin the ischemic core. The participation of astrocytes in ischemia-reperfusion induced cell death has triggered more and more attention. Here, we examined the protective effects and intervention timing of the PARP-1 inhibitor PJ34, by using a mixed oxygen-glucose deprivation/reperfusion (OGDR) model of primary rat astrocytes in vitro, which could mimic the ischemia-reperfusion damage in the "ischemic core". Meanwhile, cell death pathways of various PJ34 treated astrocytes were also investigated. Our results showed that PJ34 incubation (10 μmol/L) did not affect release of lactate dehydrogenase (LDH) from astrocytes and cell viability or survival 1 h after OGDR. Interestingly, after 3 or 5 h OGDR, PJ34 significantly reduced LDH release and percentage of PI-positive cells and increased cell viability, and simultaneously increased the caspase-dependent apoptotic rate. The intervention timing study demonstrated that an earlier and longer PJ34 intervention during reperfusion was associated with more apparent protective effects. In conclusion, earlier and longer PJ34 intervention provides remarkable protective effects for astrocytes in the "ischaemic core" mainly by reducing oncosis of the astrocytes, especially following serious OGDR damage.

  11. Redox regulation of SIRT1 in inflammation and cellular senescence.

    PubMed

    Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K; Rahman, Irfan

    2013-08-01

    Sirtuin 1 (SIRT1) regulates inflammation, aging (life span and health span), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging, in which oxidative stress occurs. SIRT1 is regulated by a NAD(+)-dependent DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), and subsequent NAD(+) depletion by oxidative stress may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to posttranslational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65, and FOXO3, thereby enhancing the inflammatory, prosenescent, and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed. Furthermore, we have also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases.

  12. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism.

    PubMed

    Kim, Hyung-Jin; Pandit, Arpana; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2016-03-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity.

  13. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD(+) metabolism.

    PubMed

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwon, Kang-Beom; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD(+)) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD(+) in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD(+) levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage.

  14. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone

    PubMed Central

    Chakrabarti, Gaurab; Silvers, Molly A.; Ilcheva, Mariya; Liu, Yuliang; Moore, Zachary R.; Luo, Xiuquan; Gao, Jinming; Anderson, Glenda; Liu, Lili; Sarode, Venetia; Gerber, David E.; Burma, Sandeep; DeBerardinis, Ralph J.; Gerson, Stanton L.; Boothman, David A.

    2015-01-01

    Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The NAD(P)H:Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Rapid NAD+/ATP depletion and programmed necrosis results. To identify BER modulators essential for repair of ß-lapachone-induced DNA base damage, a focused synthetic lethal RNAi screen demonstrated that silencing the BER scaffolding protein, XRCC1, sensitized PDA cells. In contrast, depleting OGG1 N-glycosylase spared cells from ß-lap-induced lethality and blunted PARP1 hyperactivation. Combining ß-lapachone with XRCC1 knockdown or methoxyamine (MeOX), an apyrimidinic/apurinic (AP)-modifying agent, led to NQO1-dependent synergistic killing in PDA, NSCLC, breast and head and neck cancers. OGG1 knockdown, dicoumarol-treatment or NQO1- cancer cells were spared. MeOX + ß-lapachone exposure resulted in elevated DNA double-strand breaks, PARP1 hyperactivation and TUNEL+ programmed necrosis. Combination treatment caused dramatic antitumor activity, enhanced PARP1-hyperactivation in tumor tissue, and improved survival of mice bearing MiaPaca2-derived xenografts, with 33% apparent cures. Significance: Targeting base excision repair (BER) alone has limited therapeutic potential for pancreatic or other cancers due to a general lack of tumor-selectivity. Here, we present a treatment strategy that makes BER inhibition tumor-selective and NQO1-dependent for therapy of most solid neoplasms, particularly for pancreatic cancer. PMID:26602448

  15. Quantitative characterization of protein–protein complexes involved in base excision DNA repair

    PubMed Central

    Moor, Nina A.; Vasil'eva, Inna A.; Anarbaev, Rashid O.; Antson, Alfred A.; Lavrik, Olga I.

    2015-01-01

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process. PMID:26013813

  16. Targeting abnormal DNA double strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias

    PubMed Central

    Tobin, Lisa A.; Robert, Carine; Rapoport, Aaron P.; Gojo, Ivana; Baer, Maria R.; Tomkinson, Alan E.; Rassool, Feyruz V.

    2013-01-01

    Resistance to imatinib (IM) and other BCR-ABL1 tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. Since chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show that the sensitivity of cell lines expressing BCR-ABL1 to the combination of DNA ligase and PARP inhibitors correlates with the steady state levels of PARP1 and DNA ligase IIIα, and ALT NHEJ activity. Importantly, analysis of clinical samples from CML patients confirmed that the expression levels of PARP1 and DNA ligase IIIα correlated with sensitivity to the DNA repair inhibitor combination. Thus, the expression levels of PARP1 and DNA ligase IIIα serve as biomarkers to identify a subgroup of CML patients who may be candidates for therapies that target the ALT NHEJ pathway when treatment with TKIs has failed. PMID:22641215

  17. XRCC2 Promotes Colorectal Cancer Cell Growth, Regulates Cell Cycle Progression, and Apoptosis

    PubMed Central

    Xu, Kaiwu; Song, Xinming; Chen, Zhihui; Qin, Changjiang; He, Yulong; Zhan, Wenhua

    2014-01-01

    Abstract X-ray repair complementing defective repair in Chinese hamster cells 2 (XRCC2) and poly(ADP-ribose) polymerase 1 (PARP1) both play important roles in homologous recombination DNA repair. According to the theory of synthetic lethality, XRCC2-deficient cells are more sensitive to PARP1 inhibitors compared to XRCC2-expressing cells. We investigated XRCC2 expression and function in colorectal cancer (CRC), and the characteristics of sensitivity to PARP1 inhibitor in CRC cells with different XRCC2 levels. We enrolled 153 patients with CRC who had undergone surgery in this study. XRCC2 expression was assessed using immunohistochemistry. Stable CRC SW480 cell lines with low or high XRCC2 expression were constructed. Following treatment with the PARP1 inhibitor olaparib, the viability of cells with different XRCC2 levels was determined; cell cycle distribution and apoptosis were analyzed using flow cytometry. B-cell lymphoma-2 (Bcl-2) protein expression was measured by Western blotting. The positive rates of XRCC2 in primary CRC tissue were significantly higher than that in the matched adjacent noncancerous tissue, and XRCC2 expression status in primary CRC was related to tumor site, Dukes’ stage, and tumor-nodes-metastasis (TNM) stage. XRCC2 overexpression inhibited CRC cell apoptosis and promoted proliferation by enriching cells in the G0/G1 phase. Moreover, olaparib suppressed proliferation, and olaparib sensitivity in CRC cells with high XRCC2 expression was greater. High XRCC2 expression promotes CRC cell proliferation and enriches cells in the G0/G1 phase but inhibits apoptosis. High XRCC2 expression cells are more sensitive to olaparib, which inhibits their viability. PMID:25526472

  18. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2

    SciTech Connect

    Quenet, Delphine; Mark, Manuel; Govin, Jerome; Dorsselear, A. van; Schreiber, Valerie; Khochbin, Saadi; Dantzer, Francoise

    2009-10-01

    Spermiogenesis is a complex male germ cell post-meiotic differentiation process characterized by dramatic changes in chromatin structure and function, including chromatin condensation, transcriptional inhibition and the sequential replacement of histones by transition proteins and protamines. Recent advances, in mammalian cells, suggest a possible role of poly(ADP-ribosyl)ation catalyzed by Parp1 and/or Parp2 in this process. We have recently reported severely compromised spermiogenesis in Parp2-deficient mice characterized by a marked delay in nuclear elongation whose molecular mechanisms remain however unknown. Here, using in vitro protein-protein interaction assays, we show that Parp2 interacts significantly with both the transition protein TP2 and the transition chaperone HSPA2, whereas Parp1 binds weakly to HSPA2. Parp2-TP2 interaction is partly mediated by poly(ADP-ribosyl)ation. Only Parp1 poly(ADP-ribosyl)ates HSPA2. In addition, a detailed analysis of spermatid maturation in Parp2-deficient mice, combining immunohistochemistry and electron microscopic approaches, reveals a loss of spermatids expressing TP2, a defect in chromatin condensation and abnormal formation of the manchette microtubules that, together, contribute to spermatid-specific cell death. In conclusion, we propose both Parps as new participants of a spermatid-specific protein complex involved in genome reorganization throughout spermiogenesis.

  19. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  20. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    PubMed

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  1. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions.

    PubMed

    Papadimitriou, Alexandros; Silva, Kamila C; Peixoto, Elisa B M I; Borges, Cynthia M; Lopes de Faria, Jacqueline M; Lopes de Faria, José B

    2015-02-01

    Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.

  2. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    PubMed

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei

    2015-08-05

    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  3. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1mg/kg; intraperitoneal injection) at 18 wks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in chinese hamster cells 6 (Xrcc6), Breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), Poly [ADP-ribose] polymerase 1 (Parp1) and Protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. PMID:25448685

  4. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    PubMed

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.

  5. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  6. Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease.

    PubMed

    Low, Jin-Yih; Nicholson, Helen D

    2014-09-01

    Polymerase-1 and release transcript factor (PTRF) was initially reported to be involved in the termination of the transcription process. More recently, it has been implicated in the formation of caveolae, cave-like structures in the plasma membrane. The effects of PTRF related to caveolae suggest that this protein may play important roles in health and disease. PTRF is highly expressed in various cells, including adipocytes, osteoblasts and muscle (cardiac, skeletal and smooth) cells. The role of PTRF in prostate cancer has been recently reviewed but there is growing evidence that PTRF is involved in other physiological processes such as cell repair and the regulation of glucose and lipid metabolism and, furthermore, altered expression of PTRF may be associated with disease. This review discusses the emerging role of PTRF in health and disease.

  7. Solution structures of the two PBZ domains from human APLF and their interaction with poly(ADP-ribose)

    PubMed Central

    Eustermann, Sebastian; Brockmann, Christoph; Mehrotra, Pawan Vinod; Yang, Ji-Chun; Loakes, David; West, Stephen C.; Ahel, Ivan; Neuhaus, David

    2010-01-01

    Poly(ADP-ribosyl)ation represents an important post-translational modification in higher eukaryotes. Several DNA repair/checkpoint proteins possess specific PAR-Binding Zinc finger (PBZ) modules critical for function. Here, we present solution structures of the two PBZ modules of APLF (Aprataxin and PNK-like factor), revealing a novel type of zinc finger. By combining in vivo PAR-binding data with NMR interaction data using PAR fragments, we suggest a structural basis for PBZ-PAR recognition. PMID:20098424

  8. Inhibition of DNA Binding by the Phosphorylation of Poly ADP-Ribose Polymerase Protein Catalyzed by Protein Kinase C

    DTIC Science & Technology

    1993-04-21

    drying and authentic Ser-P and Thr-P were added as standards followed by paper electrophoresis (27). The paper strips were ninhydrin -stained, dried and... tested with the specific oligopeptide substrate of PKC (26) and therefore the inhibition by DNA is due to a ADPRT-DNA interaction (Fig 3...correctness of this conclusion was tested also by "opposite" labeling, i.e. radioiodination of the major chymotryptic polypeptides of ADPRT (i.e. the 56 and 64

  9. Autophagy in DNA damage response.

    PubMed

    Czarny, Piotr; Pawlowska, Elzbieta; Bialkowska-Warzecha, Jolanta; Kaarniranta, Kai; Blasiak, Janusz

    2015-01-23

    DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2-Atg13-FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11-Rad50-Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  10. A mechanism for 1,4-Benzoquinone-induced genotoxicity

    PubMed Central

    Son, Mi Young; Deng, Chu-Xia; Hoeijmarkers, Jan H.; Rebel, Vivienne I.; Hasty, Paul

    2016-01-01

    Benzene is a common environmental toxin and its metabolite, 1-4-Benzoquinone (BQ) causes hematopoietic cancers like myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). BQ has not been comprehensively assessed for its impact on genome maintenance, limiting our understanding of the true health risks associated with benzene exposure and our ability to identify people with increased sensitivity to this genotoxin. Here we analyze the impact BQ exposure has on wild type and DNA repair-defective mouse embryonic stem (ES) cells and wild type human cells. We find that double strand break (DSB) repair and replication fork maintenance pathways including homologous recombination (HR) and Fanconi anemia (FA) suppress BQ toxicity. BQ-induced damage efficiently stalls replication forks, yet poorly induces ATR/DNA-PKCS responses. Furthermore, the pattern of BQ-induced γH2AX and 53BP1foci is consistent with the formation of poly(ADP-ribose) polymerase 1 (PARP1)-stabilized regressed replication forks. At a biochemical level, BQ inhibited topoisomerase 1 (topo1)-mediated DNA ligation and nicking in vitro; thus providing mechanism for the cellular phenotype. These data are consistent with a model that proposes BQ interferes with type I topoisomerase's ability to maintain replication fork restart and progression leading to chromosomal instability that has the potential to cause hematopoietic cancers like MDS and AML. PMID:27340773

  11. Antitumor Activity of 3-Indolylmethanamines 31B and PS121912

    PubMed Central

    Guthrie, Margaret L; Sidhu, Preetpal S.; Hill, Emily K.; Horan, Timothy C.; Nandhikonda, Premchendar; Teske, Kelly A.; Yuan, Nina Y.; Sidorko, Marina; Kodali, Revathi; Cook, James M.; Han, Lanlan; Silvaggi, Nicholas R.; Bikle, Daniel D.; Moore, Richard G.; Singh, Rakesh K.; Arnold, Leggy A.

    2015-01-01

    Aim To investigate the in vivo effects of 3-indolylmethanamines 31B and PS121912 in treating ovarian cancer and leukemia, respectively. Materials and Methods Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting were applied to demonstrate the induction of apoptosis. Xenografted mice were investigated to show the antitumor effects of 3-indolylmethanamines. 13C-Nuclear magnetic resource (NMR) and western blotting were used to demonstrate inhibition of glucose metabolism. Results 31B inhibited ovarian cancer cell proliferation and activated caspase-3, cleaved poly [ADP-ribose] polymerase 1 (PARP-1), and phosphorylated mitogen-activated protein kinases (MAPK), jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38. 31B reduced ovarian cancer xenograft tumor growth and PS121912 inhibited the growth of HL-60 derived xenografts without any sign of toxicity. Compound 31B inhibited de novo glycolysis and lipogenesis mediated by the reduction of fatty acid synthase and lactate dehydrogenase-A expression. Conclusion 3-Indolylmethanamines represent a new class of antitumor agents. We have shown for the first time the in vivo anticancer effects of 3-indolylmethanamines 31B and PS121912. PMID:26504023

  12. Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway

    PubMed Central

    Wang, Juan; Huang, Fengxiang; Bai, Zhun; Chi, Bixia; Wu, Jiacai; Chen, Xu

    2015-01-01

    Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy. PMID:26307972

  13. Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway.

    PubMed

    Wang, Juan; Huang, Fengxiang; Bai, Zhun; Chi, Bixia; Wu, Jiacai; Chen, Xu

    2015-08-20

    Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.

  14. Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells

    PubMed Central

    Kim, Ji Yong; Lee, Jai-Sung; Han, Yong-Seok; Lee, Jun Hee; Bae, Inhyu; Yoon, Yeo Min; Kwon, Sang Mo; Lee, Sang Hun

    2015-01-01

    Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although H2O2 (200 μM) increased intracellular ROS levels in human MSCs, lycopene (10 μM) pretreatment suppressed H2O2-induced ROS generation and increased survival. H2O2-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by H2O2 treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases. PMID:26535076

  15. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

    PubMed

    Malewicz, Michal; Kadkhodaei, Banafsheh; Kee, Nigel; Volakakis, Nikolaos; Hellman, Ulf; Viktorsson, Kristina; Leung, Chuen Yan; Chen, Benjamin; Lewensohn, Rolf; van Gent, Dik C; Chen, David J; Perlmann, Thomas

    2011-10-01

    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.

  16. Pathogenesis of Malaria and Clinically Similar Conditions

    PubMed Central

    Clark, Ian A.; Alleva, Lisa M.; Mills, Alison C.; Cowden, William B.

    2004-01-01

    There is now wide acceptance of the concept that the similarity between many acute infectious diseases, be they viral, bacterial, or parasitic in origin, is caused by the overproduction of inflammatory cytokines initiated when the organism interacts with the innate immune system. This is also true of certain noninfectious states, such as the tissue injury syndromes. This review discusses the historical origins of these ideas, which began with tumor necrosis factor (TNF) and spread from their origins in malaria research to other fields. As well the more established proinflammatory mediators, such as TNF, interleukin-1, and lymphotoxin, the roles of nitric oxide and carbon monoxide, which are chiefly inhibitory, are discussed. The established and potential roles of two more recently recognized contributors, overactivity of the enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the escape of high-mobility-group box 1 (HMGB1) protein from its normal location into the circulation, are also put in context. The pathogenesis of the disease caused by falciparum malaria is then considered in the light of what has been learned about the roles of these mediators in these other diseases, as well as in malaria itself. PMID:15258091

  17. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells.

    PubMed

    Tee, Thiam Tsui; Cheah, Yew Hoong; Hawariah, Lope Pihie Azimahtol

    2007-01-01

    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.

  18. Metabolomic Analysis of Exercise Effects in the POLG Mitochondrial DNA Mutator Mouse Brain

    PubMed Central

    Clark-Matott, Joanne; Saleem, Ayesha; Dai, Ying; Shurubor, Yevgeniya; Ma, Xiaoxing; Safdar, Adeel; Beal, M. Flint; Tarnopolsky, Mark; Simon, David K.

    2015-01-01

    Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma (PolgA) that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type (WT) littermate controls at 9–10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD+) depletion and evidence of increased Poly [ADP-ribose] polymerase 1 (PARP-1) activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer’s disease and Parkinson’s disease, and provide insights into potential mechanisms of beneficial effects of exercise on brain function. PMID:26294258

  19. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition.

    PubMed

    Nateewattana, Jintapat; Dutta, Suman; Reabroi, Somrudee; Saeeng, Rungnapha; Kasemsook, Sakkasem; Chairoungdua, Arthit; Weerachayaphorn, Jittima; Wongkham, Sopit; Piyachaturawat, Pawinee

    2014-01-15

    Cholangiocarcinoma (CCA), the common primary malignant tumor of bile duct epithelial cells, is unresponsive to most chemotherapeutic drugs. Diagnosis with CCA has a poor prognosis, and therefore urgently requires effective therapeutic agents. In the present study we investigated anti-cancer effects of andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) and its mechanism in human CCA cell line KKU-M213 derived from a Thai CCA patient. By 24h after exposure, the analogue 3A.1 exhibited a potent cytotoxic effect on KKU-M213 cells with an inhibition concentration 50 (IC50) of approximately 8.0µM. Analogue 3A.1 suppressed DNA topoisomerase II α (Topo II α) protein expression, arrested the cell cycle at sub G0/G1 phase, induced cleavage of DNA repair protein poly (ADP-ribose) polymerases-1 (PARP-1), and enhanced expression of tumor suppressor protein p53 and pro-apoptotic protein Bax. In addition, analogue 3A.1 induced caspase 3 activity and inhibited cyclin D1, CDK6, and COX-2 protein expression. These results suggest that andrographolide analogue 3A.1, a novel topo II inhibitor, has significant potential to be developed as a new anticancer agent for the treatment of CCA.

  20. Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats.

    PubMed

    Grigorov, Ilijana; Bogojević, Desanka; Jovanović, Sofija; Petrović, Anja; Ivanović-Matić, Svetlana; Zolotarevski, Lidija; Poznanović, Goran; Martinović, Vesna

    2014-06-01

    Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated