Science.gov

Sample records for adp-ribosyl cyclase cd38

  1. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion

    PubMed Central

    Vogel, Paul A.; Kopple, Tayler E.; Arendshorst, William J.

    2013-01-01

    The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2·−) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca2+ from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2·− in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30–40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2·−. The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2·− production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2·− involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2·− production by the afferent arteriole. PMID:23884143

  2. Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38

    PubMed Central

    Kopple, Tayler E.; Arendshorst, William J.

    2014-01-01

    Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38−/− mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3–25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38−/− mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38−/− mice. Inhibition of nitric oxide (NO) synthase with nitro-l-arginine methyl ester (l-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38−/− (P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38−/− mice (P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains (P < 0.005) but was ineffective when administered after l-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by l-NAME and indomethacin (P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways. PMID:24623148

  3. The ADP-ribosyl cyclases--the current evolutionary state of the ARCs.

    PubMed

    Ferrero, Enza; Lo Buono, Nicola; Horenstein, Alberto L; Funaro, Ada; Malavasi, Fabio

    2014-01-01

    The major ADP-ribosylating enzyme families are the focus of this special issue of Frontiers in Bioscience . However, there is room for another family of enzymes with the capacity to utilize nicotinamide adenine dinucleotide (NAD): the ADP-ribosyl cyclases (ARCs). These unique enzymes catalyse the cyclization of NAD to cyclic ADP ribose (cADPR), a widely distributed second messenger. However, the ARCs are versatile enzymes that can manipulate NAD, NAD phosphate (NADP) and other substrates to generate various bioactive molecules including nicotinic acid adenine dinucleotide diphosphate (NAADP) and ADP ribose (ADPR). This review will focus on the group of well-characterized invertebrate and vertebrate ARCs whose common gene structure allows us to trace their origin to the ancestor of bilaterian animals. Behind a facade of gene and protein homology lies a family with a disparate functional repertoire dictated by the animal model and the physical trait under investigation. Here we present a phylogenetic view of the ARCs to better understand the evolution of function in this family. PMID:24896331

  4. NO-Mediated [Ca2+]cyt Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis1[OPEN

    PubMed Central

    Hotta, Carlos T.; Davey, Matthew P.; Dodd, Antony N.

    2016-01-01

    Cyclic ADP ribose (cADPR) is a Ca2+-mobilizing intracellular second messenger synthesized from NAD by ADP-ribosyl cyclases (ADPR cyclases). In animals, cADPR targets the ryanodine receptor present in the sarcoplasmic/endoplasmic reticulum to promote Ca2+ release from intracellular stores to increase the concentration of cytosolic free Ca2+ in Arabidopsis (Arabidopsis thaliana), and cADPR has been proposed to play a central role in signal transduction pathways evoked by the drought and stress hormone, abscisic acid, and the circadian clock. Despite evidence for the action of cADPR in Arabidopsis, no predicted proteins with significant similarity to the known ADPR cyclases have been reported in any plant genome database, suggesting either that there is a unique route for cADPR synthesis or that a homolog of ADPR cyclase with low similarity might exist in plants. We sought to determine whether the low levels of ADPR cyclase activity reported in Arabidopsis are indicative of a bona fide activity that can be associated with the regulation of Ca2+ signaling. We adapted two different fluorescence-based assays to measure ADPR cyclase activity in Arabidopsis and found that this activity has the characteristics of a nucleotide cyclase that is activated by nitric oxide to increase cADPR and mobilize Ca2+. PMID:26932235

  5. ADP-Ribosylation: Activation, Recognition, and Removal

    PubMed Central

    Li, Nan; Chen, Junjie

    2014-01-01

    ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions. PMID:24552704

  6. Functional expression of soluble forms of human CD38 in Escherichia coli and Pichia pastoris.

    PubMed

    Fryxell, K B; O'Donoghue, K; Graeff, R M; Lee, H C; Branton, W D

    1995-06-01

    Cyclic adenosine diphosphate (ADP)-ribose (cADPR), a metabolite of nicotinamide adenine dinucleotide (NAD+), mobilizes calcium from intracellular stores in many cells. The synthesis of cADPR from NAD+ and its subsequent hydrolysis to ADPR is catalyzed by an ADP-ribosyl cyclase and a cADPR hydrolase, respectively. The ADP-ribosyl cyclase cloned from the ovotestis of the marine invertebrate Aplysia californica has amino acid sequence homology to the human lymphocyte surface antigen CD38. CD38 has been shown to catalyze both the formation and the hydrolysis of cADPR. In this study, we produced soluble, enzymatically active CD38 using recombinant expression techniques in bacteria and yeast. We engineered a gene coding for a soluble form of CD38 by excision of the region of the gene coding for the N-terminal amino acids representing the putative membrane spanning sequence and short putative intracellular sequence. For expression in bacteria (Escherichia coli), this construct was cloned into the pFlag-1 plasmid which allows induced, periplasmic expression and relatively simple purification of the soluble CD38. For expression in yeast (Pichia pastoris) the CD38 sequence was further modified to eliminate four putative N-linked glycosylation sites and the resulting construct was expressed as a secreted protein. Both systems produce soluble enzymes of approximately 30 kDa and both recombinant enzymes display similar cyclase and hydrolase activities. PMID:7663169

  7. ADP-ribosylation of membrane components by pertussis and cholera toxin

    SciTech Connect

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.

  8. ADP-Ribosyltransferases and Poly ADP-Ribosylation

    PubMed Central

    Liu, Chao; Yu, Xiaochun

    2016-01-01

    Protein ADP-ribosylation is an important posttranslational modification that plays versatile roles in multiple biological processes. ADP-ribosylation is catalyzed by a group of enzymes known as ADP-ribosyltransferases (ARTs). Using nicotinamide adenine dinucleotide (NAD+) as the donor, ARTs covalently link single or multiple ADP-ribose moieties from NAD+ to the substrates, forming mono ADP-ribosylation or poly ADP-ribosylation (PARylation). Novel functions of ARTs and ADP-ribosylation have been revealed over the past few years. Here we summarize the current knowledge on ARTs and PARylation. PMID:25938242

  9. Wnt pathway activation by ADP-ribosylation

    PubMed Central

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P.; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S.; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)—known to target Axin for proteolysis—regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  10. Wnt pathway activation by ADP-ribosylation.

    PubMed

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  11. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system.

    PubMed

    Aravind, L; Zhang, Dapeng; de Souza, Robson F; Anand, Swadha; Iyer, Lakshminarayan M

    2015-01-01

    Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems. PMID:25027823

  12. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    SciTech Connect

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.

  13. Proteomics Approaches to Identify Mono(ADP-ribosyl)ated and Poly(ADP-ribosyl)ated proteins

    PubMed Central

    Vivelo, Christina A.; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by mass spectrometry using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD+ analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed. PMID:25263235

  14. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins.

    PubMed

    Vivelo, Christina A; Leung, Anthony K L

    2015-01-01

    ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription, and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by MS using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD(+) analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed. PMID:25263235

  15. A Clickable Aminooxy Probe for Monitoring Cellular ADP-Ribosylation

    PubMed Central

    Morgan, Rory K.; Cohen, Michael S.

    2015-01-01

    ADP-ribosylation is essential for cell function, yet there is a dearth of methods for detecting this post-translational modification in cells. Here, we describe a clickable aminooxy alkyne (AO-alkyne) probe that can detect cellular ADP-ribosylation on acidic amino acids following Cu-catalyzed conjugation to an azide-containing reporter. Using AO-alkyne, we show that PARP10 and PARP11 are auto-ADP-ribosylated in cells. We also demonstrate that AO-alkyne can be used to monitor stimulus-induced ADP-ribosylation in cells. Functional studies using AO-alkyne support a previously unknown mechanism for ADP-ribosylation on acidic amino acids, wherein a glutamate or aspartate at the initial C1′-position of ADP-ribose transfers to the C2′ position. This new mechanism for ADP-ribosylation has important implications for how glutamyl/aspartyl-ADP-ribose is recognized by proteins in cells. PMID:25978521

  16. [CD38 and autism spectrum disorders].

    PubMed

    Higashida, Haruhiro; Munesue, Toshio

    2013-11-01

    We have demonstrated that CD38, a transmembrane protein with ADP-ribosyl cyclase activity, plays a critical role in mouse social behavior by regulating the release of oxytocin (OXT), which is essential for mutual recognition. When CD38 was disrupted, social amnesia was observed in Cd38 knockout mice. We investigated single nucleotide polymorphisms (SNPs) in the human CD38 gene in autism spectrum disorder (ASD) patients. The SNP rs3796863 (A>C) was associated with high-functioning autism (HFA) in American samples. Although this finding was partially confirmed in low-functioning autism subjects in Israel, it has not been replicated in Japanese HFA subjects. The second SNP of interest, rs1800561 (4693C>T), leads to the substitution of an arginine (R) at codon 140 by tryptophan (W;R140W) in CD38. This mutation was found in 4 probands of ASD and in family members of 3 pedigrees with variable levels of ASD or ASD traits. The plasma levels of OXT in ASD subjects with the R140W allele were lower than those in ASD subjects lacking this allele. One proband with the R140W allele receiving intranasal OXT for approximately 3 years showed improvement in areas of social approach, eye contact and communication behaviors, emotion, irritability, and aggression. Five other ASD subjects with mental deficits received nasal OXT for various periods;three subjects showed improved symptoms, while 2 showed little or no effect. These results suggest that SNPs in CD38 may be risk factors for ASD by abrogating the OXT function, and that some ASD subjects can be treated with OXT in preliminary clinical trials. PMID:24313001

  17. CD38 and its role in oxytocin secretion and social behavior.

    PubMed

    Higashida, Haruhiro; Yokoyama, Shigeru; Kikuchi, Mitsuru; Munesue, Toshio

    2012-03-01

    Here, we review the functional roles of cyclic ADP-ribose and CD38, a transmembrane protein with ADP-ribosyl cyclase activity, in mouse social behavior via the regulation of oxytocin (OXT) release, an essential component of social cognition. Herein we describe data detailing the molecular mechanism of CD38-dependent OXT secretion in CD38 knockout mice. We also review studies that used OXT, OXT receptor (OXTR), or CD38 knockout mice. Additionally, we compare the behavioral impairments that occur in these knockout mice in relation to the OXT system and CD38. This review also examines autism spectrum disorder (ASD), which is characterized by social and communication impairments, in relation to defects in the OXT system. Two single nucleotide polymorphisms (SNPs) in the human CD38 gene are possible risk factors for ASD via inhibition of OXT function. Further analysis of CD38 in relation to the OXT system may provide a better understanding of the neuroendocrinological roles of OXT and CD38 in the hypothalamus and of the pathophysiology of ASD. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22227279

  18. Structure-based Mechanism of ADP-ribosylation by Sirtuins

    SciTech Connect

    Hawse, William F.; Wolberger, Cynthia

    2009-12-01

    Sirtuins comprise a family of enzymes found in all organisms, where they play a role in diverse processes including transcriptional silencing, aging, regulation of transcription, and metabolism. The predominant reaction catalyzed by these enzymes is NAD{sup +}-dependent lysine deacetylation, although some sirtuins exhibit a weaker ADP-ribosyltransferase activity. Although the Sir2 deacetylation mechanism is well established, much less is known about the Sir2 ADP-ribosylation reaction. We have studied the ADP-ribosylation activity of a bacterial sirtuin, Sir2Tm, and show that acetylated peptides containing arginine or lysine 2 residues C-terminal to the acetyl lysine, the +2 position, are preferentially ADP-ribosylated at the +2 residue. A structure of Sir2Tm bound to the acetylated +2 arginine peptide shows how this arginine could enter the active site and react with a deacetylation reaction intermediate to yield an ADP-ribosylated peptide. The new biochemical and structural studies presented here provide mechanistic insights into the Sir2 ADP-ribosylation reaction and will aid in identifying substrates of this reaction.

  19. Arginine-Specific Mono ADP-Ribosylation In Vitro of Antimicrobial Peptides by ADP-Ribosylating Toxins

    PubMed Central

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues. PMID:22879887

  20. ADP-ribosylation of proteins: Enzymology and biological significance

    SciTech Connect

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probing of proteins involved in signal transduction and protein biosynthesis.

  1. PARPs and ADP-Ribosylation: Fifty Years… and Counting

    PubMed Central

    Kraus, W. Lee

    2015-01-01

    Summary Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion - the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. PMID:26091339

  2. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  3. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    PubMed

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  4. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  5. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  6. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltransferase activity and interaction with ADP-ribosylation factors.

    PubMed

    Stevens, L A; Moss, J; Vaughan, M; Pizza, M; Rappuoli, R

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsalpha, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  7. The Roles of Oxytocin and CD38 in Social or Parental Behaviors

    PubMed Central

    Lopatina, Olga; Inzhutova, Alena; Salmina, Alla B.; Higashida, Haruhiro

    2013-01-01

    The nine amino acid peptide oxytocin (OXT) has been directly associated with different types of behavioral reactions. The formation and maintenance of social relationships in youth and middle age are important components of human mental health. A deficit in healthy behavioral formation leads to social isolation and limitation of well-being. Mice are social animals and are therefore useful for investigating the neurobiological mechanisms of cognitive process control, including the development of social relationships and social skills. Studies in mice may broaden our understanding of the human condition. The multifunctional protein CD38/ADP-ribosyl cyclase is highly expressed in the brain, plays an important role in central OXT release, and regulates social memory. In this review article, we discuss the mechanisms of social behavior affected by the dysregulation of brain OXT function as a consequence of a lack of CD38. OXT bound to OXT receptors initiates autoregulatory positive feedback of OXT release in the hypothalamus and posterior pituitary. OXT bio-behavioral positive feedback is usually implicated in female reproductive systems, but can also be observed in social behavior. Exogenous stimuli (OXT treatment in vitro, OXT intravenous or intraventricular administration, and nasal OXT delivery) initiate activation of OXT neurons via PKC-CD38/ADP-ribosyl cyclase cascades and result in the modulation of social behavior in humans and mice. Based on these findings, we reviewed the functions of OXT and its properties with respect to the development of therapies for human social behavior impairments in psychological diseases. In addition, preliminary studies of continuous nasal OXT administration on subjects with autism spectrum disorders are described. PMID:23335873

  8. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  9. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  10. ADP-ribosylation of transducin by pertussis toxin

    SciTech Connect

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-11-05

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is (TSP)ADP-ribosylated by pertussis toxin and (TSP)NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and TS kDa. The amino terminus of both 38- and TS-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The TS-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of (TSP)ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased (TSP)ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed (TSP)ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma.

  11. CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer.

    PubMed

    Karakasheva, Tatiana A; Waldron, Todd J; Eruslanov, Evgeniy; Kim, Sang-Bae; Lee, Ju-Seog; O'Brien, Shaun; Hicks, Philip D; Basu, Devraj; Singhal, Sunil; Malavasi, Fabio; Rustgi, Anil K

    2015-10-01

    Myeloid-derived suppressor cells (MDSC) are an immunosuppressive population of immature myeloid cells found in advanced-stage cancer patients and mouse tumor models. Production of inducible nitric oxide synthase (iNOS) and arginase, as well as other suppressive mechanisms, allows MDSCs to suppress T-cell-mediated tumor clearance and foster tumor progression. Using an unbiased global gene expression approach in conditional p120-catenin knockout mice (L2-cre;p120ctn(f/f)), a model of oral-esophageal cancer, we have identified CD38 as playing a vital role in MDSC biology, previously unknown. CD38 belongs to the ADP-ribosyl cyclase family and possesses both ectoenzyme and receptor functions. It has been described to function in lymphoid and early myeloid cell differentiation, cell activation, and neutrophil chemotaxis. We find that CD38 expression in MDSCs is evident in other mouse tumor models of esophageal carcinogenesis, and CD38(high) MDSCs are more immature than MDSCs lacking CD38 expression, suggesting a potential role for CD38 in the maturation halt found in MDSC populations. CD38(high) MDSCs also possess a greater capacity to suppress activated T cells, and promote tumor growth to a greater degree than CD38(low) MDSCs, likely as a result of increased iNOS production. In addition, we have identified novel tumor-derived factors, specifically IL6, IGFBP3, and CXCL16, which induce CD38 expression by MDSCs ex vivo. Finally, we have detected an expansion of CD38(+) MDSCs in peripheral blood of advanced-stage cancer patients and validated targeting CD38 in vivo as a novel approach to cancer therapy. PMID:26294209

  12. The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation.

    PubMed

    Katada, Toshiaki

    2012-01-01

    Pertussis toxin (PTX) produced by Bordetella pertussis was first introduced by Ui and his colleagues in research on signal transduction under the name islet-activating protein in 1979, when the mechanism of toxin-induced stimulation of insulin release from pancreatic islets was reported in the rat. The stimulatory effect of PTX in vivo results from the blockage of α(2)-adrenergic receptor-mediated inhibition of insulin release. The receptor-induced inhibition of cAMP formation was also abolished in pancreatic islets isolated from PTX-treated rats, suggesting that the toxin caused uncoupling of adenylyl cyclase inhibition from receptor stimulation. The action of PTX on isolated membranes required a cytosolic factor, nicotinamide adenine dinucleotide (NAD), and the uncoupling induced by PTX was shown to be due to the toxin-catalyzed ADP-ribosylation of a 41-kDa protein with NAD as another substrate. The 41-kDa PTX substrate was soon identified and purified as the α-subunit of the inhibitory G protein that transmits an inhibitory signal from membrane receptors to adenylyl cyclase. After demonstration of the molecular mechanism of PTX, the toxin was widely utilized as a probe for identifying and analyzing major αβγ-trimeric G proteins. Thus, PTX-sensitive G proteins appeared to carry positive and negative signals from many membrane receptors to a variety of effectors other than adenylyl cyclase. PMID:23207763

  13. 50Years of poly(ADP-ribosyl)ation.

    PubMed

    Virág, László

    2013-12-01

    The seminal paper published in 1963 by Chambon, Weil and Mandel reporting a new NAD-dependent protein modification now known as poly(ADP-ribosyl)ation (PARylation) marked the launch of a new era in both protein research and cell biology. In the coming decades, the identity, biochemical characteristics and regulation of enzymes responsible for the synthesis and degradation of protein-bound poly(ADP-ribose) have been discovered and the surprisingly multifarious biological roles of PARylation have not ceased to amaze cell and molecular biologists ever since. The review series on PARylation following this preface is comprised of ten papers written by great experts of the field and aims to provide practicing physicians and basic scientists with the state-of-the-art on the "writers, readers and erasers" of poly(ADP-ribose), some recent paradigm shifts of the field and its translational potential. PMID:23727362

  14. The Promise of Proteomics for the Study of ADP-ribosylation

    PubMed Central

    Daniels, Casey M.; Ong, Shao-En; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation is a post-translational modification where single units (mono-ADP-ribosylation) or polymeric chains (poly-ADP-ribosylation) of ADP-ribose are conjugated to proteins by ADP-ribosyltransferases. This post-translational modification and the ADP-ribosyltransferases (also known as PARPs) responsible for its synthesis have been found to play a role in nearly all major cellular processes, including DNA repair, transcription, translation, cell signaling and cell death. Furthermore, dysregulation of ADP-ribosylation has been linked to diseases including cancers, diabetes, neurodegenerative disorders and heart failure, leading to the development of therapeutic PARP inhibitors, many of which are currently in clinical trials. The study of this therapeutically important modification has recently been bolstered by the application of mass spectrometry-based proteomics, arguably the most powerful tool for the unbiased analysis of protein modifications. Unfortunately, progress has been hampered by the inherent challenges that stem from the physicochemical properties of ADP-ribose which as a post-translational modification is highly charged, heterogeneous (linear or branched polymers, as well as monomers), labile, and found on a wide range of amino acid acceptors. In this perspective, we discuss the progress that has been made in addressing these challenges, including the recent breakthroughs in proteomics techniques to identify ADP-ribosylation sites, and future developments to provide a proteome-wide view of the many cellular processes regulated by ADP-ribosylation. PMID:26091340

  15. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription

    PubMed Central

    Verdone, Loredana; La Fortezza, Marco; Ciccarone, Fabio; Caiafa, Paola; Zampieri, Michele; Caserta, Micaela

    2015-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnfα, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription. PMID:26636673

  16. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  17. Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure

    PubMed Central

    Mironov, Alexander; Colanzi, Antonino; Silletta, Maria Giuseppina; Fiucci, Giusy; Flati, Silvio; Fusella, Aurora; Polishchuk, Roman; Mironov, Alexander; Tullio, Giuseppe Di; Weigert, Roberto; Malhotra, Vivek; Corda, Daniela; Matteis, Maria Antonietta De; Luini, Alberto

    1997-01-01

    We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the

  18. State of the art of protein mono-ADP-ribosylation: biological role and therapeutic potential.

    PubMed

    Fabrizio, Gaia; Scarpa, Emanuele Salvatore; Di Girolamo, Maria

    2015-01-01

    Mono-ADP-ribosylation is a post-translational modification that was discovered more than five decades ago, and it consists of the enzymatic transfer of ADP-ribose from NAD⁺ to acceptor proteins. In viruses and prokaryotes, mono-ADP-ribosylation is mainly, but not exclusively, a mechanism used to take control of the host cell. In mammals, mono-ADP-ribosylation serves to regulate protein functions, and it is catalysed by two families of toxin-related cellular ADP-ribosyltransferases: ecto-enzymes that modify various cell-surface proteins, like integrins and receptors, and intracellular enzymes that act on a variety of nuclear and cytosolic proteins. These two families have been recently renamed the ARTCs (clostridia toxin like) and ARTDs (diphtheria toxin like), depending on their conserved structural features, and in terms of their relationships to the bacterial toxins. In addition, two members of the structurally non-related sirtuin family can also modify cellular proteins by mono-ADP-ribosylation. Recently, new examples of ADP-ribosylation of proteins involved in signal transduction and intracellular trafficking have been discovered, thus opening the route to the better molecular understanding of this reaction and of its role in human cell physiology and pathology. PMID:25553458

  19. Cluster of Differentiation 38 (CD38) Mediates Bile Acid-induced Acinar Cell Injury and Pancreatitis through Cyclic ADP-ribose and Intracellular Calcium Release*

    PubMed Central

    Orabi, Abrahim I.; Muili, Kamaldeen A.; Javed, Tanveer A.; Jin, Shunqian; Jayaraman, Thottala; Lund, Frances E.; Husain, Sohail Z.

    2013-01-01

    Aberrant Ca2+ signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca2+ signals due to bile acid exposure is the intracellular Ca2+ channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca2+ signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38−/−). Cytosolic Ca2+ signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 μm). To focus on intracellular Ca2+ release and to specifically exclude Ca2+ influx, cells were perifused in Ca2+-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mm) or the cADPR antagonist 8-Br-cADPR (30 μm) abrogated TLCS-induced Ca2+ signals and cell injury. TLCS-induced Ca2+ release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca2+ signaling. PMID:23940051

  20. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens.

    PubMed

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R; Matic, Ivan; Peleg, Anton Y; Leys, David; Traven, Ana; Ahel, Ivan

    2015-07-16

    Sirtuins are an ancient family of NAD(+)-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  1. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens

    PubMed Central

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R.; Matic, Ivan; Peleg, Anton Y.; Leys, David; Traven, Ana; Ahel, Ivan

    2015-01-01

    Summary Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  2. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

    PubMed Central

    D'Amours, D; Desnoyers, S; D'Silva, I; Poirier, G G

    1999-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism. PMID:10455009

  3. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    SciTech Connect

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.

  4. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA.

    PubMed Central

    Price, S R; Nightingale, M; Tsai, S C; Williamson, K C; Adamik, R; Chen, H C; Moss, J; Vaughan, M

    1988-01-01

    Three (two soluble and one membrane) guanine nucleotide-binding proteins (G proteins) that enhance ADP-ribosylation of the Gs alpha stimulatory subunit of the adenylyl cyclase (EC 4.6.1.1) complex by choleragen have recently been purified from bovine brain. To further define the structure and function of these ADP-ribosylation factors (ARFs), we isolated a cDNA clone (lambda ARF2B) from a bovine retinal library by screening with a mixed heptadecanucleotide probe whose sequence was based on the partial amino acid sequence of one of the soluble ARFs from bovine brain. Comparison of the deduced amino acid sequence of lambda ARF2B with sequences of peptides from the ARF protein (total of 60 amino acids) revealed only two differences. Whether these are cloning artifacts or reflect the existence of more than one ARF protein remains to be determined. Deduced amino acid sequences of ARF, Go alpha (the alpha subunit of a G protein that may be involved in regulation of ion fluxes), and c-Ha-ras gene product p21 show similarities in regions believed to be involved in guanine nucleotide binding and GTP hydrolysis. ARF apparently lacks a site analogous to that ADP-ribosylated by choleragen in G-protein alpha subunits. Although both the ARF proteins and the alpha subunits bind guanine nucleotides and serve as choleragen substrates, they must interact with the toxin A1 peptide in different ways. In addition to serving as an ADP-ribose acceptor, ARF interacts with the toxin in a manner that modifies its catalytic properties. PMID:3135549

  5. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  6. Agonist-induced ADP-ribosylation of a cytosolic protein in human platelets

    SciTech Connect

    Bruene, B.; Molina Y Vedia, L.; Lapetina, E.G. )

    1990-05-01

    {alpha}-Thrombin and phorbol 12,13-dibutyrate stimulated the mono(ADP-ribosyl)ation of a 42-kDa cytosolic protein of human platelets. This effect was mediated by protein kinase C activation and was inhibited by protein kinase C inhibitor staurosporine. It also was prevented by prostacyclin, which is known to inhibit the phospholipase C-induced formation of 1,2-diacylglycerol, which is one of the endogenous activators of protein kinase C. On sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the 42-kDa protein that is ADP-ribosylated by {alpha}-thrombin was clearly distinct from the {alpha} subunits of membrane-bound inhibitory and stimulatory guanine nucleotide-binding regulatory proteins, respectively G{sub i{alpha}} and G{sub s{alpha}}; the 47-kDa protein that is phosphorylated by protein kinase C in platelets; and the 39-kDa protein that has been shown to be endogenously ADP-ribosylated by agents that release nitric oxide. This information shows that agonist-induced activation of protein kinase leads to the ADP-ribosylation of a specific protein. This covalent modification might have a functional role in platelet activation.

  7. ADP ribosylation of human neutrophil peptide-1 regulates its biological properties.

    PubMed

    Paone, Gregorino; Wada, Akihiro; Stevens, Linda A; Matin, Abul; Hirayama, Toshiya; Levine, Rodney L; Moss, Joel

    2002-06-11

    In human airways, epithelial cells lining the lumen and intraluminal cells (e.g., polymorphonuclear cells) participate in the innate immune response. These cells secrete or express on their surfaces arginine-specific ADP ribosyltransferases. Defensins, antimicrobial proteins secreted by immune cells, are arginine-rich, leading us to hypothesize that ADP ribosylation could modify their biological activities. We found that an arginine-specific ADP ribosyltransferase-1 present on airway epithelial cells modifies Arg-14 of alpha defensin-1. ADP-ribosylated defensin-1 had decreased antimicrobial and cytotoxic activities but still stimulated T cell chemotaxis and IL-8 release from A549 cells. Further, ADP-ribosylated defensin-1 inhibited cytotoxic and antimicrobial activities of unmodified defensin-1. We identified ADP-ribosylated defensin-1 in bronchoalveolar lavage fluid from smokers but not from nonsmokers, confirming its existence in vivo. Thus, airway mono-ADP-ribosyltransferases could have an important regulatory role in the innate immune response through modification of alpha defensin-1 and perhaps other basic molecules, with alteration of their biological properties. PMID:12060767

  8. Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARCKS) in an ADP-ribosylation reaction.

    PubMed

    Chao, D; Severson, D L; Zwiers, H; Hollenberg, M D

    1994-01-01

    In an ADP-ribosylation reaction, we have observed the radiolabelling of a protein in a crude bovine brain homogenate, which upon two-dimensional gel electrophoresis migrated with an acidic pI (< 4.5) and an apparent molecular mass (80-90 kDa) consistent with the properties of the myristoylated, alanine-rich, protein kinase C substrate protein termed MARCKS. To establish the identity of this radiolabelled constituent in brain homogenates, we first purified bovine brain MARCKS using calmodulin-Sepharose affinity chromatography and we then supplemented the crude ADP-ribosylation reaction mixture with this purified MARCKS fraction. Concordant increases in radiolabelling and silver staining of the same protein component from the MARCKS-supplemented ADP-ribosylation reaction, as compared with the ADP-ribosylated crude homogenate, established the identity of this constituent as MARCKS. The radiolabelling of MARCKS was lower in comparison with the ADP-ribosylation of the related neuronal protein B-50/GAP-43 under identical reaction conditions. The potential functional consequences of the ADP-ribosylation of MARCKS are discussed and the possibility is raised that other members of the MARCKS family, such as the F52/MacMARCKS/MRP protein, may also be subject to ADP-ribosylation. PMID:7605610

  9. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

    PubMed

    Gagné, Jean-Philippe; Ethier, Chantal; Defoy, Daniel; Bourassa, Sylvie; Langelier, Marie-France; Riccio, Amanda A; Pascal, John M; Moon, Kyung-Mee; Foster, Leonard J; Ning, Zhibin; Figeys, Daniel; Droit, Arnaud; Poirier, Guy G

    2015-06-01

    An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process. PMID:25800440

  10. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin

    PubMed Central

    Tsuge, Hideaki; Nagahama, Masahiro; Oda, Masataka; Iwamoto, Shinobu; Utsunomiya, Hiroko; Marquez, Victor E.; Katunuma, Nobuhiko; Nishizawa, Mugio; Sakurai, Jun

    2008-01-01

    The ADP-ribosylating toxins (ADPRTs) produced by pathogenic bacteria modify intracellular protein and affect eukaryotic cell function. Actin-specific ADPRTs (including Clostridium perfringens ι-toxin and Clostridium botulinum C2 toxin) ADP-ribosylate G-actin at Arg-177, leading to disorganization of the cytoskeleton and cell death. Although the structures of many actin-specific ADPRTs are available, the mechanisms underlying actin recognition and selective ADP-ribosylation of Arg-177 remain unknown. Here we report the crystal structure of actin-Ia in complex with the nonhydrolyzable NAD analog βTAD at 2.8 Å resolution. The structure indicates that Ia recognizes actin via five loops around NAD: loop I (Tyr-60–Tyr-62 in the N domain), loop II (active-site loop), loop III, loop IV (PN loop), and loop V (ADP-ribosylating turn–turn loop). We used site-directed mutagenesis to confirm that loop I on the N domain and loop II are essential for the ADP-ribosyltransferase activity. Furthermore, we revealed that Glu-378 on the EXE loop is in close proximity to Arg-177 in actin, and we proposed that the ADP-ribosylation of Arg-177 proceeds by an SN1 reaction via first an oxocarbenium ion intermediate and second a cationic intermediate by alleviating the strained conformation of the first oxocarbenium ion. Our results suggest a common reaction mechanism for ADPRTs. Moreover, the structure might be of use in rational drug design to block toxin-substrate recognition. PMID:18490658

  11. Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

    PubMed Central

    2015-01-01

    Poly(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of these polymers (large, charged, heterogeneous, base-labile) has made these attachment sites difficult to study by mass spectrometry. Here we propose a new pipeline that allows for the identification of mono(ADP-ribosyl)ation and poly(ADP-ribosyl)ation sites via the enzymatic product of phosphodiesterase-treated ADP-ribose, or phospho(ribose). The power of this method lies in the enrichment potential of phospho(ribose), which we show to be enriched by phosphoproteomic techniques when a neutral buffer, which allows for retention of the base-labile attachment site, is used for elution. Through the identification of PARP-1 in vitro automodification sites as well as endogenous ADP-ribosylation sites from whole cells, we have shown that ADP-ribose can exist on adjacent amino acid residues as well as both lysine and arginine in addition to known acidic modification sites. The universality of this technique has allowed us to show that enrichment of ADP-ribosylated proteins by macrodomain leads to a bias against ADP-ribose modifications conjugated to glutamic acids, suggesting that the macrodomain is either removing or selecting against these distinct protein attachments. Ultimately, the enrichment pipeline presented here offers a universal approach for characterizing the mono- and poly(ADP-ribosyl)ated proteome. PMID:24920161

  12. Effect of CD38 on the multidrug resistance of human chronic myelogenous leukemia K562 cells to doxorubicin

    PubMed Central

    YALÇINTEPE, LEMAN; HALIS, EMRE; ULKU, SIBEL

    2016-01-01

    Drug resistance is a serious challenge in cancer chemotherapy. Alterations in the intracellular concentration and homeostasis of calcium (Ca2+) may contribute to the development of drug resistance. To investigate the mechanism of drug resistance in leukemia, the present study rendered human chronic myelogenous leukemia K562 cells resistant to the cytotoxic effect of doxorubicin by progressively adapting the sensitive parental K562 cells to doxorubicin. The resulting cells were termed K562/DOX. Subsequently, the expression of two multidrug resistance proteins, P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1), was analyzed in K562/DOX cells. In addition to P-gp and MRP1, these cells also expressed cluster of differentiation (CD)38 and its active enzyme adenosine diphosphate (ADP)-ribosyl cyclase. The present study also demonstrated that K562/DOX cells responded to cyclic ADP-ribose-mediated increases in intracellular Ca2+. These data indicate that CD38 may participate in the development of drug resistance to doxorubicin in K562 cells. PMID:26998164

  13. Calcium-dependent ADP-ribosylation of high-mobility-group I (HMGI) proteins.

    PubMed Central

    Giancotti, V; Bandiera, A; Sindici, C; Perissin, L; Crane-Robinson, C

    1996-01-01

    Micrococcal nuclease digestion of nuclei from mouse Lewis lung carcinoma cells releases a protein mixture into the supernatant that lacks histone H1 and contains a full complement of high-mobility-group I (HMGI) proteins (i.e. I, Y and I-C). This implies that all three HMGI proteins are localized at the nuclease-sensitive regions of active chromatin. It is also shown that if Ca2+ ions are present in the nuclear incubation buffer (with or without exogenous nuclease), all three HMGI proteins become ADP-ribosylated. We propose that this modification of HMGI family proteins is part of the general poly(ADP-ribosyl)ation that accompanies DNA damage in apoptosis and other processes. PMID:8760375

  14. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.

    PubMed

    Picchianti, Monica; Del Vecchio, Mariangela; Di Marcello, Federica; Biagini, Massimiliano; Veggi, Daniele; Norais, Nathalie; Rappuoli, Rino; Pizza, Mariagrazia; Balducci, Enrico

    2013-12-01

    NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Site-directed mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R(7) residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities. PMID:23964075

  15. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody

    PubMed Central

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-01-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  16. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody.

    PubMed

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-04-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  17. Brefeldin A-induced ADP-ribosylation in the structure and function of the Golgi complex.

    PubMed

    Colanzi, A; Mironov, A; Weigert, R; Limina, C; Flati, S; Cericola, C; Di Tullio, G; Di Girolamo, M; Corda, D; De Matteis, M A; Luini, A

    1997-01-01

    Brefeldin A (BFA) is a fungal metabolite that exerts generally inhibitory actions on membrane transport and induces the disappearance of the Golgi complex. Previously we have shown that BFA stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 KD. The BFA-binding components mediating the BFA-sensitive ADP-ribosylation (BAR) and the effect of BFA on ARF binding to Golgi membranes have similar specificities and affinities for BFA and its analogues, suggesting that BAR may have a role in the cellular effects of BFA. To investigate this we used the approach to impair BAR activity by the use of BAR inhibitors. A series of BAR inhibitors was developed and their effects were studied in RBL cells treated with BFA. In addition to the common ADP-ribosylation inhibitors (nicotinamide and aminobenzamide), compounds belonging to the cumarin (novobiocin, cumermycin, dicumarol) class were active BAR inhibitors. All BAR inhibitors were able to prevent the BFA-induced redistribution of a Golgi marker (Helix pomatia lectin) into the endoplasmic reticulum, as assessed in immunofluorescence experiments. At the ultrastructural level, BAR inhibitors prevented the tubular-vesicular transformation of the Golgi complex caused by BFA. The potencies of these compounds in preventing the BFA effects on the Golgi complex were similar to those at which they inhibited BAR. Altogether these data support the hypothesis that BAR mediates at least some of the effects of BFA on the Golgi structure and function. PMID:9193673

  18. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    PubMed

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. PMID:27234208

  19. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin

    PubMed Central

    Belyy, Alexander; Tabakova, Irina; Lang, Alexander E.; Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-01-01

    Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia. PMID:26713879

  20. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity.

    PubMed

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-05-01

    We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  1. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity

    PubMed Central

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-01-01

    Summary We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  2. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    SciTech Connect

    Fendrick, J.L.; Iglewski, W.J. )

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  3. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation.

    PubMed

    Bobak, D A; Bliziotes, M M; Noda, M; Tsai, S C; Adamik, R; Moss, J

    1990-01-30

    Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF. PMID:2111167

  4. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  5. ADP-ribosylation factor-like protein 4C (ARL4C) interacts with galectin-3 during oocyte development and embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-ribosylation factor-like protein 4 (ARL4) is a GTP-binding protein which belongs to the ADP-ribosylation factor protein (ARF) superfamily of small GTPases. ARL4 has been shown to be mainly related to the development of male germ cells and embryogenesis in mouse. To investigate the role of ARL4 i...

  6. Analysis of Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP.

    PubMed

    Bartolomei, Giody; Leutert, Mario; Manzo, Massimiliano; Baubec, Tuncay; Hottiger, Michael O

    2016-02-01

    Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes. PMID:26833088

  7. TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation.

    PubMed Central

    Rawling, J M; Alvarez-Gonzalez, R

    1997-01-01

    We have examined the susceptibility of some of the basal eukaryotic transcription factors as covalent targets for poly(ADP-ribosyl)ation. Human recombinant TATA-binding protein, transcription factor (TF)IIB and TFIIF (made up of the 30 and 74 kDa RNA polymerase II-associated proteins RAP30 and RAP74) were incubated with calf thymus poly(ADP-ribose) polymerase and [32P]NAD+ at 37 degrees C. On lithium dodecyl sulphate/PAGE and autoradiography, two bands of radioactivity, coincident with RAP30 and RAP74, were observed. No radioactivity co-migrated with TATA-binding protein or TFIIB. The phenomenon was dependent on the presence of nicked DNA, which is essential for poly(ADP-ribose) polymerase activity. Covalent modification of TFIIF increased with time of incubation, with increasing TFIIF concentration and with increasing NAD+ concentration. High-resolution PAGE confirmed that the radioactive species associated with RAP30 and RAP74 were ADP-ribose polymers. From these observations, we conclude that both TFIIF subunits are highly specific substrates for covalent poly(ADP-ribosyl)ation. PMID:9164864

  8. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish.

    PubMed

    Nakano, Tsuyoshi; Takahashi-Nakaguchi, Azusa; Yamamoto, Masafumi; Watanabe, Masahiko

    2015-01-01

    The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed. PMID:25033755

  9. Transcutaneous Immunization with Bacterial ADP-Ribosylating Exotoxins, Subunits, and Unrelated Adjuvants

    PubMed Central

    Scharton-Kersten, Tanya; Yu, Jian-mei; Vassell, Russell; O'Hagan, Derek; Alving, Carl R.; Glenn, Gregory M.

    2000-01-01

    We have recently described a needle-free method of vaccination, transcutaneous immunization, consisting of the topical application of vaccine antigens to intact skin. While most proteins themselves are poor immunogens on the skin, we have shown that the addition of cholera toxin (CT), a mucosal adjuvant, results in cellular and humoral immune responses to the adjuvant and coadministered antigens. The present study explores the breadth of adjuvants that have activity on the skin, using diphtheria toxoid (DTx) and tetanus toxoid as model antigens. Heat-labile enterotoxin (LT) displayed adjuvant properties similar to those of CT when used on the skin and induced protective immune responses against tetanus toxin challenge when applied topically at doses as low as 1 μg. Interestingly, enterotoxin derivatives LTR192G, LTK63, and LTR72 and the recombinant CT B subunit also exhibited adjuvant properties on the skin. Consistent with the latter finding, non-ADP-ribosylating exotoxins, including an oligonucleotide DNA sequence, as well as several cytokines (interleukin-1β [IL-1β] fragment, IL-2, IL-12, and tumor necrosis factor alpha) and lipopolysaccharide also elicited detectable anti-DTx immunoglobulin G titers in the immunized mice. These results indicate that enhancement of the immune response to topical immunization is not restricted to CT or the ADP-ribosylating exotoxins as adjuvants. This study also reinforces earlier findings that addition of an adjuvant is important for the induction of robust immune responses to vaccine antigens delivered by topical application. PMID:10948159

  10. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins.

    PubMed

    Domenighini, M; Magagnoli, C; Pizza, M; Rappuoli, R

    1994-10-01

    Computer analysis of the three-dimensional structure of ADP-ribosylating toxins showed that in all toxins the NAD-binding site is located in a cavity. This cavity consists of 18 contiguous amino acids that form an alpha-helix bent over a beta-strand. The tertiary folding of this structure is strictly conserved despite the differences in the amino acid sequence. Catalysis is supported by two spatially conserved amino acids, each flanking the NAD-binding site. These are: a glutamic acid that is conserved in all toxins, and a nucleophilic residue, which is a histidine in the diphtheria toxin and Pseudomonas exotoxin A, and an arginine in the cholera toxin, the Escherichia coli heat-labile enterotoxins, the pertussis toxin and the mosquitocidal toxin of Bacillus sphaericus. The latter group of toxins presents an additional histidine that appears important for catalysis. This structure suggests a general mechanism of ADP-ribosylation evolved to work on different target proteins. PMID:7830559

  11. Poly(ADP-ribosylation) regulates chromatin organization through histone H3 modification and DNA methylation of the first cell cycle of mouse embryos

    SciTech Connect

    Osada, Tomoharu; Rydén, Anna-Margareta; Masutani, Mitsuko

    2013-04-26

    Highlights: •Histone modification of the mouse pronuclei is regulated by poly(ADP-ribosylation). •Hypermethylation of the mouse female pronuclei is maintained by poly(ADP-ribosylation). •Parp1 is physically interacted with Suz12, which may function in the pronuclei. •Poly(ADP-ribosylation) affects ultrastructure of chromatin of the mouse pronucleus. -- Abstract: We examined the roles of poly(ADP-ribosylation) in chromatin remodeling during the first cell cycle of mouse embryos. Drug-based inhibition of poly(ADP-ribosylation) by a PARP inhibitor, PJ-34, revealed up-regulation of dimethylation of histone H3 at lysine 4 in male pronuclei and down-regulation of dimethylation of histone H3 at lysine 9 (H3K9) and lysine 27 (H3K27). Association of poly(ADP-ribosylation) with histone modification was suggested to be supported by the interaction of Suz12, a histone methyltransferase in the polycomb complex, with Parp1. PARP activity was suggested to be required for a proper localization and maintenance of Suz12 on chromosomes. Notably, DNA methylation level of female pronuclei in one-cell embryos was robustly decreased by PJ-34. Electron microscopic analysis showed a frequent appearance of unusual electron-dense areas within the female pronuclei, implying the disorganized and hypercondensed chromatin ultrastructure. These results show that poly(ADP-ribosylation) is important for the integrity of non-equivalent epigenetic dynamics of pronuclei during the first cell cycle of mouse embryos.

  12. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  13. Chemical reporters for exploring ADP-ribosylation and AMPylation at the host-pathogen interface

    PubMed Central

    Westcott, Nathan P.; Hang, Howard C.

    2014-01-01

    Bacterial pathogens secrete protein toxins and effectors that hijack metabolites to covalently modify key host proteins and interfere with their function during infection. Adenosine metabolites, such as nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP), have in particular been co-opted by these secreted virulence factors to reprogram host pathways. While some host targets for secreted virulence factors have been identified, other toxin and effector substrates have been elusive, which require new methods for their characterization. In this review, we focus on chemical reporters based on NAD and ATP that should facilitate the discovery and characterization of adenosine diphosphate (ADP)-ribosylation and adenylylation/AMPylation in bacterial pathogenesis and cell biology. PMID:25461386

  14. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  15. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  16. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure.

    PubMed

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M Cristina

    2016-03-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  17. Modes of Action of ADP-Ribosylated Elongation Factor 2 in Inhibiting the Polypeptide Elongation Cycle: A Modeling Study

    PubMed Central

    Chen, Kevin C.; Xie, Honglin; Cai, Yujie

    2013-01-01

    Despite the fact that ADP-ribosylation of eukaryotic elongation factor 2 (EF2) leads to inhibition of protein synthesis, the mechanism by which ADP-ribosylated EF2 (ADPR•EF2) causes this inhibition remains controversial. Here, we applied modeling approaches to investigate the consequences of various modes of ADPR•EF2 inhibitory actions on the two coupled processes, the polypeptide chain elongation and ADP-ribosylation of EF2. Modeling of experimental data indicates that ADPR•EF2 fully blocks the late-phase translocation of tRNAs; but the impairment in the translocation upstream process, mainly the GTP-dependent factor binding with the pretranslocation ribosome and/or the guanine nucleotide exchange in EF2, is responsible for the overall inhibition kinetics. The reduced ADPR•EF2-ribosome association spares the ribosome to bind and shield native EF2 against toxin attack, thereby deferring the inhibition of protein synthesis inhibition and inactivation of EF2. Minimum association with the ribosome also keeps ADPR•EF2 in an accessible state for toxins to catalyze the reverse reaction when nicotinamide becomes available. Our work underscores the importance of unveiling the interactions between ADPR•EF2 and the ribosome, and argues against that toxins inhibit protein synthesis through converting native EF2 to a competitive inhibitor to actively disable the ribosome. PMID:23861744

  18. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation.

    PubMed

    Mangerich, Aswin; Bürkle, Alexander

    2011-01-15

    Poly(ADP-ribosyl)ation is a post-translational modification catalyzed by the enzyme family of poly(ADP-ribose) polymerases (PARPs). PARPs exhibit pleiotropic cellular functions ranging from maintenance of genomic stability and chromatin remodeling to regulation of cell death, thereby rendering PARP homologues promising targets in cancer therapy. Depending on the molecular status of a cancer cell, low-molecular weight PARP inhibitors can (i) either be used as monotherapeutic agents following the concept of synthetic lethality or (ii) to support classical chemotherapy or radiotherapy. The rationales are the following: (i) in cancers with selective defects in homologous recombination repair, inactivation of PARPs directly causes cell death. In cancer treatment, this phenomenon can be employed to specifically target tumor cells while sparing nonmalignant tissue. (ii) PARP inhibitors can also be used to sensitize cells to cytotoxic DNA-damaging treatments, as some PARPs actively participate in genomic maintenance. Apart from that, PARP inhibitors possess antiangiogenic functions, thus opening up a further option to inhibit tumor growth. In view of the above, a number of high-potency PARP inhibitors have been developed during the last decade and are currently evaluated as cancer therapeutics in clinical trials by several leading pharmaceutical companies. PMID:20853319

  19. Rifamycin Antibiotic Resistance by ADP-Ribosylation: Structure and Diversity of Arr

    SciTech Connect

    Baysarowich, J.; Koteva, K; Hughes, D; Ejim, L; Griffiths, E; Zhang, K; Junop, M; Wright, G

    2008-01-01

    The rifamycin antibiotic rifampin is important for the treatment of tuberculosis and infections caused by multidrug-resistant Staphylococcus aureus. Recent iterations of the rifampin core structure have resulted in new drugs and drug candidates for the treatment of a much broader range of infectious diseases. This expanded use of rifamycin antibiotics has the potential to select for increased resistance. One poorly characterized mechanism of resistance is through Arr enzymes that catalyze ADP-ribosylation of rifamycins. We find that genes encoding predicted Arr enzymes are widely distributed in the genomes of pathogenic and nonpathogenic bacteria. Biochemical analysis of three representative Arr enzymes from environmental and pathogenic bacterial sources shows that these have equally efficient drug resistance capacity in vitro and in vivo. The 3D structure of one of these orthologues from Mycobacterium smegmatis was determined and reveals structural homology with ADP-ribosyltransferases important in eukaryotic biology, including poly(ADP-ribose) polymerases (PARPs) and bacterial toxins, despite no significant amino acid sequence homology with these proteins. This work highlights the extent of the rifamycin resistome in microbial genera with the potential to negatively impact the expanded use of this class of antibiotic.

  20. Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor

    PubMed Central

    Belov, George A.; Fogg, Mark H.; Ehrenfeld, Ellie

    2005-01-01

    Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication. PMID:15890959

  1. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  2. ADP ribosylation factor like 2 (Arl2) protein influences microtubule dynamics in breast cancer cells

    SciTech Connect

    Beghin, Anne . E-mail: anne.beghin@recherche.univ-lyon1.fr; Honore, Stephane; Messana, Celine; Matera, Eva-Laure; Aim, Jennifer; Burlinchon, Sandrine; Braguer, Diane; Dumontet, Charles

    2007-02-01

    ADP ribosylation factor like 2 (Arl2) protein is involved in the folding of tubulin peptides. Variants of the human adenocarcinoma line MCF7 cells with increased or reduced content of Arl2 protein were produced and characterized. Western blot analysis performed after separation of the different fractions of tubulins showed that the content in polymerizable soluble heterodimers was significantly increased in cells with the highest Arl2 expression level (MA+) and reduced in cells with the lowest Arl2 expression level (MA-) in comparison to control cells (MP). Microtubule dynamic instability, measured after microinjection of rhodamine-labelled tubulin in living cells, was significantly enhanced in MA+ cells and reduced in MA- cells. These alterations involved modifications of the microtubule growth and shortening rates, duration of attenuation phases, percentage of time spent in each phase (growth, shortening and attenuation) and catastrophe frequency. We also observed modifications in the expression level of the tumor suppressor protein phosphatase 2Ac, which has been shown to form a complex with Arl2. Finally, cell cycle progression was modified in these cells, particularly in regard to duration of telophase. In summary, alterations in Arl2 protein content were found to be associated with modifications in tubulin pools, microtubule dynamics as well as cell cycle progression.

  3. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors.

    PubMed

    Kim, Byoung Sik; Satchell, Karla J F

    2016-08-01

    Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin. PMID:26780191

  4. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy

    PubMed Central

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance. PMID:25607248

  5. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6

    PubMed Central

    2009-01-01

    Background Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. Results Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. Conclusion These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways. PMID:19686593

  6. Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal

    PubMed Central

    DaRosa, Paul A.; Wang, Zhizhi; Jiang, Xiaomo; Pruneda, Jonathan N.; Cong, Feng; Klevit, Rachel E.; Xu, Wenqing

    2014-01-01

    Protein poly(ADP-ribosyl)ation (PARylation) plays a role in diverse cellular processes such as DNA repair, transcription, Wnt signaling, and cell death1–6. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several critical regulatory proteins, including Axin and 3BP2 (refs 7–9). The RING-type E3 ubiquitin ligase RNF146 (a.k.a. Iduna) is responsible for PARylation-dependent ubiquitination (PARdU)10–12. Here we provide a structural basis for RNF146 catalyzed PARdU and how PARdU specificity is achieved. First, we show that iso-ADPr, the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to efficiently bind and activate an E2. Binding of PAR/iso-ADPr induces a major conformational change that creates a functional RING structure. Thus RNF146 represents a new mechanistic class of RING E3 ligases whose activities are regulated by non-covalent ligand binding, which may provide a template for designing inducible protein-degradation systems. Second, we found that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146/TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalyzed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell. PMID:25327252

  7. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes.

    PubMed Central

    Tsai, S C; Adamik, R; Haun, R S; Moss, J; Vaughan, M

    1992-01-01

    Six mammalian ADP-ribosylation factors (ARFs) identified by cDNA cloning were expressed as recombinant proteins (rARFs) that stimulated cholera toxin ADP-ribosyltransferase activity. Microsequencing of soluble ARFs I and II (sARFs I and II), purified from bovine brain, established that they are ARFs 1 and 3, respectively. Rabbit antibodies (IgG) against sARF II reacted similarly with ARFs 1, 2, and 3 (class I) on Western blots. ARFs 1 and 3 were distinguished by their electrophoretic mobilities. Antiserum against rARF 5 cross-reacted partially with rARF 4 but not detectably with rARF 6 and minimally with class I ARFs. Guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma S]) increased recovery of ARF activity and immunoreactivity in organelle fractions separated by density gradient centrifugation, after incubation of rat brain homogenate with ATP and a regenerating system. ARF 1 accumulated in microsomes plus Golgi and Golgi fractions, whereas ARF 5 seemed to localize more specifically in Golgi; the smaller increment in ARF 3 was distributed more evenly among fractions. On incubation of Golgi with a crude ARF fraction, GTP[gamma S], and an ATP-regenerating system, association of ARF activity with Golgi increased with increasing ATP concentration paralleled by increases in immunoreactive ARFs 1 and 5 and, to a lesser degree, ARF 3. Golgi incubated with GTP[gamma S] and purified ARF 1 or 3 bound more ARF 1 than ARF 3. Based on immunoreactivity and assay of ARF activity, individual ARFs 1, 3, and 5 appeared to behave independently and selectively in their GTP-dependent association with Golgi in vitro. Images PMID:1409634

  8. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes.

    PubMed

    Tsai, S C; Adamik, R; Haun, R S; Moss, J; Vaughan, M

    1992-10-01

    Six mammalian ADP-ribosylation factors (ARFs) identified by cDNA cloning were expressed as recombinant proteins (rARFs) that stimulated cholera toxin ADP-ribosyltransferase activity. Microsequencing of soluble ARFs I and II (sARFs I and II), purified from bovine brain, established that they are ARFs 1 and 3, respectively. Rabbit antibodies (IgG) against sARF II reacted similarly with ARFs 1, 2, and 3 (class I) on Western blots. ARFs 1 and 3 were distinguished by their electrophoretic mobilities. Antiserum against rARF 5 cross-reacted partially with rARF 4 but not detectably with rARF 6 and minimally with class I ARFs. Guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma S]) increased recovery of ARF activity and immunoreactivity in organelle fractions separated by density gradient centrifugation, after incubation of rat brain homogenate with ATP and a regenerating system. ARF 1 accumulated in microsomes plus Golgi and Golgi fractions, whereas ARF 5 seemed to localize more specifically in Golgi; the smaller increment in ARF 3 was distributed more evenly among fractions. On incubation of Golgi with a crude ARF fraction, GTP[gamma S], and an ATP-regenerating system, association of ARF activity with Golgi increased with increasing ATP concentration paralleled by increases in immunoreactive ARFs 1 and 5 and, to a lesser degree, ARF 3. Golgi incubated with GTP[gamma S] and purified ARF 1 or 3 bound more ARF 1 than ARF 3. Based on immunoreactivity and assay of ARF activity, individual ARFs 1, 3, and 5 appeared to behave independently and selectively in their GTP-dependent association with Golgi in vitro. PMID:1409634

  9. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    PubMed Central

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  10. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    SciTech Connect

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  11. Cellular regulation of ADP-ribosylation of proteins: 3. Selective augmentation of in vitro ADP-ribosylation of histone H3 in murine thymic cells after in vivo emetine treatment

    SciTech Connect

    Sooki-Toth, A.; Banfalvi, G.; Staub, M.; Antoni, F. ); Szoelloesi, J. ); Kirsten, E. ); Kun, E. )

    1989-09-01

    Thymic cells were isolated at intervals of between 0 and 144 h from mice that received one intraperitoneal injection of emetine, and thymus weight, incorporation of ({sup 14}C)leucine into proteins and ({sup 3}H)thymidine into DNA in intact thymic cells, as well as initial rates of protein ADP-ribosylation in permeabilized cells were simultaneously monitored. The effect of emetine as an inhibitor of protein synthesis corresponds to the induction of sequential cellular events, such as cell exit and remigration, by other antimitotic agents and produces an activation of proliferation of cells reentering into this organ. Proliferation, as demonstrated by a large increase in DNA synthesis and entrance into S phase, was kinetically related to an apparent increase in poly (ADP-ribose) polymerase activity in thymic cells and a highly significant in vitro ADP-ribosylation of histone H3. since no DNA fragmentation occurred in thymic cells, as tested by a fluorometric technique it is probable that a selective activation of poly (ADP-ribose) polymerase may have been induced in cells that undergo differentiation and proliferation while repopulating thymus.

  12. AmtB Is Necessary for NH4+-Induced Nitrogenase Switch-Off and ADP-Ribosylation in Rhodobacter capsulatus‡

    PubMed Central

    Yakunin, Alexander F.; Hallenbeck, Patrick C.

    2002-01-01

    Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH4+ addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity. PMID:12107124

  13. Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure

    SciTech Connect

    Komissarova, Elena V.; Rossman, Toby G.

    2010-03-15

    Arsenite is an environmental pollutant. Exposure to inorganic arsenic in drinking water is associated with elevated cancer risk, especially in skin. Arsenite alone does not cause skin cancer in animals, but arsenite can enhance the carcinogenicity of solar UV. Arsenite is not a significant mutagen at non-toxic concentrations, but it enhances the mutagenicity of other carcinogens. The tumor suppressor protein P53 and nuclear enzyme PARP-1 are both key players in DNA damage response. This laboratory demonstrated earlier that in cells treated with arsenite, the P53-dependent increase in p21{sup WAF1/CIP1} expression, normally a block to cell cycle progression after DNA damage, is deficient. Here we show that although long-term exposure of human keratinocytes (HaCaT) to a nontoxic concentration (0.1 muM) of arsenite decreases the level of global protein poly(ADP-ribosyl)ation, it increases poly(ADP-ribosyl)ation of P53 protein and PARP-1 protein abundance. We also demonstrate that exposure to 0.1 muM arsenite depresses the constitutive expression of p21 mRNA and P21 protein in HaCaT cells. Poly(ADP-ribosyl)ation of P53 is reported to block its activation, DNA binding and its functioning as a transcription factor. Our results suggest that arsenite's interference with activation of P53 via poly(ADP-ribosyl)ation may play a role in the comutagenic and cocarcinogenic effects of arsenite.

  14. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    PubMed Central

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  15. Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner

    PubMed Central

    2011-01-01

    Background Fanconi anemia (FA) is a rare autosomal recessive syndrome characterized by developmental abnormalities, progressive bone marrow failure, and predisposition to cancer. The key FA protein FANCD2 crosstalks with members of DNA damage and repair pathways that also play a role at telomeres. Therefore, we investigated whether FANCD2 has a similar involvement at telomeres. Results We reveal that FANCD2 may perform a novel function separate to the FANCD2/BRCA pathway. This function includes FANCD2 interaction with one of the telomere components, the PARP family member tankyrase-1. Moreover, FANCD2 inhibits tankyrase-1 activity in vitro. In turn, FANCD2 deficiency increases the polyADP-ribosylation of telomere binding factor TRF1. Conclusions FANCD2 binding and inhibiting tankyrase-1PARsylation at telomeres may provide an additional step within the FA pathway for the regulation of genomic integrity. PMID:21314979

  16. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius.

    PubMed

    Wang, Liling; Li, Haibo; Zhou, Yifeng; Qin, Yuchuan; Wang, Yanbin; Liu, Bentong; Qian, Hua

    2016-05-01

    ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation. PMID:26928195

  17. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    SciTech Connect

    Jones, J.; Schultz, R.M. )

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  18. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    SciTech Connect

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus, ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37/sup 0/C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl/sub 2/, and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and (U-/sup 14/C) nicotinaide adenine dinucleotide ((/sup 14/C)NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of (/sup 14/C) ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film.

  19. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.

    PubMed

    Bindesbøll, Christian; Tan, Susanna; Bott, Debbie; Cho, Tiffany; Tamblyn, Laura; MacPherson, Laura; Grønning-Wang, Line; Nebb, Hilde Irene; Matthews, Jason

    2016-04-01

    Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRβ activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and inTiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/β peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRβ co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRβ. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced inTiparp(-/-)mice compared withTiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1. PMID:26814197

  20. Differential expression during development of ADP-ribosylation factors, 20-kDa guanine nucleotide-binding protein activators of cholera toxin.

    PubMed

    Tsai, S C; Adamik, R; Tsuchiya, M; Chang, P P; Moss, J; Vaughan, M

    1991-05-01

    Cholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken. Levels of ARF were higher in brain than in non-neural tissues. In rat brain, on the second postnatal day, amounts of sARF I and II were similar. By the 10th postnatal day and thereafter, sARF II predominated. Relative levels of ARF determined by immunoreactivity were in agreement with levels assessed in functional assays of cholera toxin-catalyzed ADP-ribosylation. Based on nucleotide and deduced amino acid sequences of human and bovine cDNAs, there appear to be at least six different ARF-like genes. Northern blots of rat brain poly(A)+ RNA were hybridized with cDNA and oligonucleotide probes specific for each of the human and bovine ARF genes. From the second to the 27th postnatal day, ARF 3 mRNA increased, whereas mRNAs for ARFs 2 and 4 decreased; and those for ARFs 1, 5, and 6 were apparently unchanged. Partial amino acid sequence of sARF II is consistent with it being either the ARF 1 or 3 gene product. The developmental changes in rat brain ARF parallel neuronal maturation and synapse formation. PMID:1902473

  1. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes. PMID:27465490

  2. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice

    PubMed Central

    Muthamilarasan, Mehanathan; Mangu, Venkata R.; Zandkarimi, Hana; Prasad, Manoj; Baisakh, Niranjan

    2016-01-01

    ADP-ribosylation factors (ARFs) have been reported to function in diverse physiological and molecular activities. Recent evidences also demonstrate the involvement of ARFs in conferring tolerance to biotic and abiotic stresses in plant species. In the present study, 23 and 25 ARF proteins were identified in C3 model- rice and C4 model- foxtail millet, respectively. These proteins are classified into four classes (I–IV) based on phylogenetic analysis, with ARFs in classes I–III and ARF-like proteins (ARLs) in class IV. Sequence alignment and domain analysis revealed the presence of conserved and additional motifs, which may contribute to neo- and sub-functionalization of these proteins. Promoter analysis showed the presence of several cis-regulatory elements related to stress and hormone response, indicating their role in stress regulatory network. Expression analysis of rice ARFs and ARLs in different tissues, stresses and abscisic acid treatment highlighted temporal and spatial diversification of gene expression. Five rice cultivars screened for allelic variations in OsARF genes showed the presence of allelic polymorphisms in few gene loci. Altogether, the study provides insights on characteristics of ARF/ARL genes in rice and foxtail millet, which could be deployed for further functional analysis to extrapolate their precise roles in abiotic stress responses. PMID:27097755

  3. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1

    PubMed Central

    Ashery, Uri; Koch, Henriette; Scheuss, Volker; Brose, Nils; Rettig, Jens

    1999-01-01

    ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane. PMID:9927699

  4. ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation.

    PubMed

    Lim, Yun-Sook; Ngo, Huong T T; Lee, Jihye; Son, Kidong; Park, Eun-Mee; Hwang, Soon B

    2016-01-01

    The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy. PMID:27550144

  5. Poly(ADP-Ribosyl)ation Is Required to Modulate Chromatin Changes at c-MYC Promoter during Emergence from Quiescence

    PubMed Central

    Battistelli, Cecilia; Ciotti, Agnese; Amati, Paolo; Maione, Rossella

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of various proteins and participates in the regulation of chromatin structure and transcription through complex mechanisms not completely understood. We have previously shown that PARP-1, the major family member of poly(ADP-ribose)polymerases, plays an important role in the cell cycle reactivation of resting cells by regulating the expression of Immediate Early Response Genes, such as c-MYC, c-FOS, JUNB and EGR-1. In the present work we have investigated the molecular mechanisms by which the enzyme induces c-MYC transcription upon serum stimulation of quiescent cells. We show that PARP-1 is constitutively associated in vivo to a c-MYC promoter region recognized as biologically relevant for the transcriptional regulation of the gene. Moreover, we report that serum stimulation causes the prompt accumulation of ADP-ribose polymers on the same region and that this modification is required for chromatin decondensation and for the exchange of negative for positive transcriptional regulators. Finally we provide evidence that the inhibition of PARP activity along with serum stimulation impairs c-MYC induction by preventing the proper accumulation of histone H3 phosphoacetylation, a specific chromatin mark for the activation of Immediate Early Response Genes. These findings not only suggest a novel strategy by which PARP-1 regulates the transcriptional activity of promoters but also provide new information about the complex regulation of c-MYC expression, a critical determinant of the transition from quiescence to proliferation. PMID:25047032

  6. Poly(ADP-ribosyl)ation of Apoptosis Antagonizing Transcription Factor Involved in Hydroquinone-Induced DNA Damage Response.

    PubMed

    Ling, Xiao Xuan; Liu, Jia Xian; Yun, Lin; DU, Yu Jun; Chen, Shao Qian; Chen, Jia Long; Tang, Huan Wen; Liu, Lin Hua

    2016-01-01

    The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (γ-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-1-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, γ-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation (PARylation) regulated AATF expression. In conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation. PMID:26822515

  7. ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation

    PubMed Central

    Lim, Yun-Sook; Ngo, Huong T. T.; Lee, Jihye; Son, Kidong; Park, Eun-Mee; Hwang, Soon B.

    2016-01-01

    The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy. PMID:27550144

  8. Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation.

    PubMed

    Wang, C; Qu, C; Alippe, Y; Bonar, S L; Civitelli, R; Abu-Amer, Y; Hottiger, M O; Mbalaviele, G

    2016-01-01

    Evidence implicates ARTD1 in cell differentiation, but its role in skeletal metabolism remains unknown. Osteoclasts (OC), the bone-resorbing cells, differentiate from macrophages under the influence of macrophage colony-stimulating factor (M-CSF) and receptor-activator of NF-κB ligand (RANKL). We found that M-CSF induced ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1) auto-ADP-ribosylation in macrophages, a modification that marked ARTD1 for cleavage, and subsequently, for degradation upon RANKL exposure. We established that ARTD1 proteolysis was NLRP3 inflammasome-dependent, and occurred via the proteasome pathway. Since ARTD1 is cleaved at aspartate(214), we studied the impact of ARTD1 rendered uncleavable by D214N substitution (ARTD1(D214N)) on skeletal homeostasis. ARTD1(D214N), unlike wild-type ARTD1, was resistant to cleavage and degradation during osteoclastogenesis. As a result, ARTD1(D214N) altered histone modification and promoted the abundance of the repressors of osteoclastogenesis by interfering with the expression of B lymphocyte-induced maturation protein 1 (Blimp1), the master regulator of anti-osteoclastogenic transcription factors. Importantly, ARTD1(D214N)-expressing mice exhibited higher bone mass compared with controls, owing to decreased osteoclastogenesis while bone formation was unaffected. Thus, unless it is degraded, ARTD1 represses OC development through transcriptional regulation. PMID:27010854

  9. Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation

    PubMed Central

    Wang, C; Qu, C; Alippe, Y; Bonar, S L; Civitelli, R; Abu-Amer, Y; Hottiger, M O; Mbalaviele, G

    2016-01-01

    Evidence implicates ARTD1 in cell differentiation, but its role in skeletal metabolism remains unknown. Osteoclasts (OC), the bone-resorbing cells, differentiate from macrophages under the influence of macrophage colony-stimulating factor (M-CSF) and receptor-activator of NF-κB ligand (RANKL). We found that M-CSF induced ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1) auto-ADP-ribosylation in macrophages, a modification that marked ARTD1 for cleavage, and subsequently, for degradation upon RANKL exposure. We established that ARTD1 proteolysis was NLRP3 inflammasome-dependent, and occurred via the proteasome pathway. Since ARTD1 is cleaved at aspartate214, we studied the impact of ARTD1 rendered uncleavable by D214N substitution (ARTD1D214N) on skeletal homeostasis. ARTD1D214N, unlike wild-type ARTD1, was resistant to cleavage and degradation during osteoclastogenesis. As a result, ARTD1D214N altered histone modification and promoted the abundance of the repressors of osteoclastogenesis by interfering with the expression of B lymphocyte-induced maturation protein 1 (Blimp1), the master regulator of anti-osteoclastogenic transcription factors. Importantly, ARTD1D214N-expressing mice exhibited higher bone mass compared with controls, owing to decreased osteoclastogenesis while bone formation was unaffected. Thus, unless it is degraded, ARTD1 represses OC development through transcriptional regulation. PMID:27010854

  10. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice.

    PubMed

    Muthamilarasan, Mehanathan; Mangu, Venkata R; Zandkarimi, Hana; Prasad, Manoj; Baisakh, Niranjan

    2016-01-01

    ADP-ribosylation factors (ARFs) have been reported to function in diverse physiological and molecular activities. Recent evidences also demonstrate the involvement of ARFs in conferring tolerance to biotic and abiotic stresses in plant species. In the present study, 23 and 25 ARF proteins were identified in C3 model- rice and C4 model- foxtail millet, respectively. These proteins are classified into four classes (I-IV) based on phylogenetic analysis, with ARFs in classes I-III and ARF-like proteins (ARLs) in class IV. Sequence alignment and domain analysis revealed the presence of conserved and additional motifs, which may contribute to neo- and sub-functionalization of these proteins. Promoter analysis showed the presence of several cis-regulatory elements related to stress and hormone response, indicating their role in stress regulatory network. Expression analysis of rice ARFs and ARLs in different tissues, stresses and abscisic acid treatment highlighted temporal and spatial diversification of gene expression. Five rice cultivars screened for allelic variations in OsARF genes showed the presence of allelic polymorphisms in few gene loci. Altogether, the study provides insights on characteristics of ARF/ARL genes in rice and foxtail millet, which could be deployed for further functional analysis to extrapolate their precise roles in abiotic stress responses. PMID:27097755

  11. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.

    PubMed Central

    Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1994-01-01

    ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A. PMID:8159707

  12. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    SciTech Connect

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.

  13. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes.

    PubMed

    Kanoh, H; Williger, B T; Exton, J H

    1997-02-28

    ADP-ribosylation factors (ARFs) have been implicated in vesicle transport in the Golgi complex. Employing yeast two-hybrid screening of an HL60 cDNA library using a constitutively active mutant of ARF3 (ARF3.Q71L), as a probe, we have identified a cDNA encoding a novel protein with a calculated molecular mass of 38.6 kDa, which we have named arfaptin 1. The mRNA of arfaptin 1 was ubiquitously expressed, and recombinant arfaptin 1 bound preferentially to class I ARFs, especially ARF1, but only in the GTP-bound form. The interactions were independent of myristoylation of ARF. Arfaptin 1 in cytosol was recruited to Golgi membranes by ARF in a guanosine 5'-O-(3-thiotriphosphate)-dependent and brefeldin A-sensitive manner. When expressed in COS cells, arfaptin 1 was localized to the Golgi complex. The yeast two-hybrid system yielded another clone, which encoded a putative protein, which we have named arfaptin 2. This consisted of the same number of amino acids as arfaptin 1 and was 60% identical to it. Arfaptin 2 was also ubiquitously expressed and bound to the GTP-, but not GDP-liganded form of class I ARFs, especially ARF1. These results suggest that arfaptins 1 and 2 may be direct target proteins of class 1 ARFs. Arfaptin 1 may be involved in Golgi function along with ARF1. PMID:9038142

  14. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. PMID:20435371

  15. ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation*

    PubMed Central

    Pelletán, Leonardo E.; Suhaiman, Laila; Vaquer, Cintia C.; Bustos, Matías A.; De Blas, Gerardo A.; Vitale, Nicolas; Mayorga, Luis S.; Belmonte, Silvia A.

    2015-01-01

    Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization. PMID:25713146

  16. Centaurin-alpha 1, an ADP-ribosylation factor 6 GTPase activating protein, inhibits beta 2-adrenoceptor internalization.

    PubMed

    Lawrence, Joanna; Mundell, Stuart J; Yun, Hongruo; Kelly, Eamonn; Venkateswarlu, Kanamarlapudi

    2005-06-01

    The small GTP-binding protein ADP ribosylation factor 6 (ARF6) has recently been implicated in the internalization of G protein-coupled receptors (GPCRs), although its precise molecular mechanism in this process remains unclear. We have recently identified centaurin alpha(1) as a GTPase activating protein (GAP) for ARF6. In the current study, we characterized the effects of centaurin alpha(1) on the agonist-induced internalization of the beta(2)-adrenoceptor transiently expressed in human embryonic kidney (HEK) 293 cells. Using an enzyme-linked immunosorbent assay as well as confocal imaging of cells, we found that expression of centaurin alpha(1) strongly inhibited the isoproterenol-induced internalization of beta(2)-adrenoceptor. On the other hand, expression of functionally inactive versions of centaurin alpha(1), including an R49C mutant, which has no catalytic activity, and a double pleckstrin homology (PH) mutant (DM; R148C/R273C), which has mutations in both the PH domains of centaurin alpha(1), rendering it unable to translocate to the cell membrane, were unable to inhibit beta(2)-adrenoceptor internalization. In addition, a constitutively active version of ARF6, ARF6Q67L, reversed the ability of centaurin alpha(1) to inhibit beta(2)-adrenoceptor internalization. Finally, expression of centaurin alpha(1) also inhibited the agonist-induced internalization of beta(2)-adrenoceptor endogenously expressed in HEK 293 cells, whereas the R49C and DM mutant versions of centaurin alpha(1) had no effect. Together, these data indicate that by acting as an ARF6 GAP, centaurin alpha(1) is able to switch off ARF6 and so inhibit its ability to mediate beta(2)-adrenoceptor internalization. Thus, ARF6 GAPs, such as centaurin alpha(1), are likely to play a crucial role in GPCR trafficking by modulating the activity of ARF6. PMID:15778454

  17. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: two guanine nucleotide-dependent activators of cholera toxin.

    PubMed Central

    Bobak, D A; Nightingale, M S; Murtagh, J J; Price, S R; Moss, J; Vaughan, M

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A)+ RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A)+ RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFs also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs. Images PMID:2474826

  18. Aryl Hydrocarbon Receptor Activation by Dioxin Targets Phosphoenolpyruvate Carboxykinase (PEPCK) for ADP-ribosylation via 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly(ADP-ribose) Polymerase (TiPARP)*

    PubMed Central

    Diani-Moore, Silvia; Zhang, Sheng; Ram, Payal; Rifkind, Arleen B.

    2013-01-01

    Effects of the environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) include a wasting syndrome associated with decreased gluconeogenesis. TCDD is a potent activator of the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The relationship between gene activation by the AHR and TCDD toxicities is not well understood. We recently identified a pathway by which the AHR target gene TiPARP (TCDD-inducible poly(ADP-ribose) polymerase) contributes to TCDD suppression of transcription of phosphoenolpyruvate carboxykinase (PEPCK), a key regulator of gluconeogenesis, by consuming NAD+ and decreasing Sirtuin 1 activation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a transcriptional activator of PEPCK. We report here that TCDD-induced TiPARP also targets PEPCK for ADP-ribosylation. Both cytosolic and mitochondrial forms of PEPCK were found to undergo ADP-ribosylation. Unexpectedly, AHR suppression also enhanced ADP-ribosylation and did so by a poly(ADP-ribose) polymerase-independent mechanism. This report 1) identifies ADP-ribosylation as a new posttranslational modification for PEPCK, 2) describes a pathway by which transcriptional induction of TiPARP by the AHR can lead to a downstream posttranslational change in a TCDD target protein (PEPCK), and 3) reveals that the AHR exerts complex, previously unidentified modulatory effects on ADP-ribosylation. PMID:23770670

  19. Differences in the poly(ADP-ribosyl)ation patterns of ICP4, the herpes simplex virus major regulatory protein, in infected cells and in isolated nuclei.

    PubMed Central

    Blaho, J A; Michael, N; Kang, V; Aboul-Ela, N; Smulson, M E; Jacobson, M K; Roizman, B

    1992-01-01

    Infected-cell protein 4 (ICP4), the major regulatory protein in herpes simplex viruses 1 and 2, was previously reported to accept 32P from [32P]NAD in isolated nuclei. This modification was attributed to poly(ADP-ribosyl)ation (C. M. Preston and E. L. Notarianni, Virology 131:492-501, 1983). We determined that an antibody specific for poly(ADP-ribose) reacts with ICP4 extracted from infected cells, electrophoretically separated in denaturing gels, and electrically transferred to nitrocellulose. Our results indicate that all forms of ICP4 observed in one-dimensional gel electrophoresis are poly(ADP-ribosyl)ated. Poly(ADP-ribose) on ICP4 extracted from infected cells was resistant to cleavage by purified poly(ADP-ribose) glycohydrolase unless ICP4 was in a denatured state. Poly(ADP-ribose) added to ICP4 in isolated nuclei was sensitive to this enzyme. This result indicates that the two processes are distinct and may involve different sites on the ICP4 molecule. Images PMID:1328673

  20. GTP but not GDP analogues promote association of ADP-ribosylation factors, 20-kDa protein activators of cholera toxin, with phospholipids and PC-12 cell membranes.

    PubMed

    Walker, M W; Bobak, D A; Tsai, S C; Moss, J; Vaughan, M

    1992-02-15

    ADP-ribosylation factors (ARFs) are a family of approximately 20-kDa guanine nucleotide-binding proteins initially identified by their ability to enhance cholera toxin ADP-ribosyltransferase activity in the presence of GTP. ARFs have been purified from both membrane and cytosolic fractions. ARF purified from bovine brain cytosol requires phospholipid plus detergent for high affinity guanine nucleotide binding and for optimal enhancement of cholera toxin ADP-ribosyltransferase activity. The phospholipid requirements, combined with a putative role for ARF in vesicular transport, suggested that the soluble protein might interact reversibly with membranes. A polyclonal antibody against purified bovine ARF (sARF II) was used to detect ARF by immunoblot in membrane and soluble fractions from rat pheochromocytoma (PC-12) cell homogenates. ARF was predominantly cytosolic but increased in membranes during incubation of homogenates with nonhydrolyzable GTP analogues guanosine 5'-O-(3-thiotriphosphate), guanylyl-(beta gamma-imido)-diphosphate, and guanylyl-(beta gamma-methylene)-diphosphate, and to a lesser extent, adenosine 5'-O-(3-thiotriphosphate). GTP, GDP, GMP, and ATP were inactive. Cytosolic ARF similarly associated with added phosphatidylserine, phosphatidylinositol, or cardiolipin in GTP gamma S-dependent fashion. ARF binding to phosphatidylserine was reversible and coincident with stimulation of cholera toxin-catalyzed ADP-ribosylation. These observations may reflect a mechanism by which ARF could cycle between soluble and membrane compartments in vivo. PMID:1737779

  1. Regulation of adenylyl cyclase from Blastocladiella emersonii by guanine nucleotides.

    PubMed

    Terenzi, H; Maia, J C

    1993-11-01

    GTP gamma S stimulates adenylyl cyclase in particulate fractions of Blastocladiella emersonii zoospores. Cholera toxin catalyses the ADP-ribosylation of a membrane protein of a molecular weight (46,000) similar to that of the alpha subunit of Gs found in vertebrate cells. A membrane protein of 46 kDa can also be recognized in Western blots by an antipeptide antiserum (RM/1) raised against the C-terminus of G alpha 2-subunits. These results suggest that a G-protein mediates the regulation of Blastocladiella adenylyl cyclase by guanine nucleotides. PMID:8224237

  2. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  3. Exogenous nitric oxide (NO) generation or IL-1[beta]-induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells

    SciTech Connect

    Dimmeler, S.; Bruene, B. ); Ankarcrona, M.; Nicotera, P. )

    1993-04-01

    Nitric oxide (NO) stimulates the auto-ADP-ribosylation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which results in the inhibition of enzyme activity. In the present work the authors show that addition of exogenous NO or IL-1[beta]-induced intracellular NO generation cause GAPDH ADP-ribosylation and inhibition of enzyme activity. Incubation of RINm5F cells with sodium nitroprusside (SNP) for 18 h caused a time- and dose-dependent inhibition of GAPDH activity. Half-maximal inhibition of GAPDH activity was observed with 80 [mu]M of the NO donor, with maximal inhibition after roughly 6 h of incubation. In parallel, SNP induced endogenous ADP-ribosylation of GAPDH measured by a decreased incorporation of [[sup 32]P]ADP-ribose from [[sup 32]P]NAD[sup +] in the cytosol of the SNP-treated cells. Stimulation of endogenous NO production by inducing the NO synthase by exposure to the cytokine IL-1[beta] results in decreased GAPDH activity. IL-1[beta] (10[sup [minus]9] M) inhibited GAPDH activity about 55%, compared with control values. Production of nitrite and inhibition of GAPDH was reversed by the NAD[sup +] synthease inhibitor N[sub G]-monomethyl-L-arginine, indicating the endogenous generated NO was the effective molecule. Again, GAPDH inhibition was associated with NO-stimulated endogenous ADP-ribosylation of the enzyme Western blot analysis of GAPDH excluded degradation of GAPDH by NO. NO-stimulated auto-ADP-ribosylation resulted in inhibition of the glycolytic enzyme GAPDH and may be relevant as a cytotoxic effect of NO. In concert with its inhibitory actions on iron-sulfur enzymes like aconitase and electron transport proteins of the respiratory chain, NO may mediate autocytotoxic effect in [beta]-cells. 40 refs., 7 figs.

  4. Identification of a GTP-binding protein. cap alpha. subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    SciTech Connect

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.; Simon, M.I.

    1988-05-01

    Recent molecular cloning of cDNA for the ..cap alpha.. subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein ..cap alpha.. subunit, which they refer to as G/sub z/..cap alpha.., by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ ..cap alpha..-subunit cDNA. The deduced amino acid sequence of G/sub z/..cap alpha.. is 41-67% identical with those of other known G-protein ..cap alpha.. subunits. However, the 355-residue G/sub z/..cap alpha.. lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein ..cap alpha.. subunits. They suggest that G/sub z/..cap alpha.., which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems.

  5. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer

    PubMed Central

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-01-01

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell–cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  6. Functional Characterization of an Extended Binding Component of the Actin-ADP-Ribosylating C2 Toxin Detected in Clostridium botulinum Strain (C) 2300 ▿

    PubMed Central

    Sterthoff, Charlott; Lang, Alexander E.; Schwan, Carsten; Tauch, Andreas; Aktories, Klaus

    2010-01-01

    Clostridium botulinum C2 toxin consists of the binding component C2II and the enzyme component C2I, which ADP-ribosylates G-actin of eukaryotic cells. Trypsin-activated C2II (C2IIa) forms heptamers that mediate cell binding and translocation of C2I from acidic endosomes into the cytosol of target cells. By genome sequencing of C. botulinum strain (C) 2300, we found that C2II from this strain carries a C-terminal extension of 129 amino acids, unlike its homologous counterparts from strains (C) 203U28, (C) 468, and (D) 1873. This extension shows a high similarity to the C-terminal receptor-binding domain of C2II and is presumably the result of a duplication of this domain. The C2II extension facilitates the binding to cell surface receptors, which leads to an increased intoxication efficiency compared to that of C2II proteins from other C. botulinum strains. PMID:20145093

  7. ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin.

    PubMed

    Hara, Yoshinobu; Fukaya, Masahiro; Hayashi, Kanehiro; Kawauchi, Takeshi; Nakajima, Kazunori; Sakagami, Hiroyuki

    2016-01-01

    During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell-cell and cell-extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking. PMID:27622210

  8. ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin

    PubMed Central

    Hara, Yoshinobu; Fukaya, Masahiro

    2016-01-01

    Abstract During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell–cell and cell–extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking. PMID:27622210

  9. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer.

    PubMed

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-03-29

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell-cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  10. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.

    PubMed

    Padilla, Philip Ian; Pacheco-Rodriguez, Gustavo; Moss, Joel; Vaughan, Martha

    2004-03-01

    Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with serum, BIG1 was primarily cytosolic and Golgi-associated. After incubation overnight without serum, a large fraction of endogenous BIG1 was in the nuclei. By confocal immunofluorescence microscopy, BIG1 was localized with nucleoporin p62 at the nuclear envelope (probably during nucleocytoplasmic transport) and also in nucleoli, clearly visible against the less concentrated overall matrix staining. BIG1 was also identified by Western blot analyses in purified subnuclear fractions (e.g., nucleoli and nuclear matrix). Antibodies against BIG1, nucleoporin, or nucleolin coimmunoprecipitated the other two proteins from purified nuclei. In contrast, BIG2 was not associated with nuclear BIG1. Also of note, ARF was never detected among proteins precipitated from purified nuclei by anti-BIG1 antibodies, although microscopically the two proteins do appear sometimes to be colocalized in the nucleus. These data are consistent with independent intracellular movements and actions of BIG1 and BIG2, and they are also evidence of the participation of BIG1 in both Golgi and nuclear functions. PMID:14973189

  11. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1

    PubMed Central

    Wang, Chenliang; Timmons, Christine L.; Shao, Qiujia; Kinlock, Ballington L.; Turner, Tiffany M.; Iwamoto, Aikichi; Zhang, Hui; Liu, Huanliang; Liu, Bindong

    2015-01-01

    GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1. PMID:26675377

  12. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  13. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  14. ADP-Ribosylation Factor 6 Acts as an Allosteric Activator for the Folded but not Disordered Cholera Toxin A1 Polypeptide

    PubMed Central

    Banerjee, Tuhina; Taylor, Michael; Jobling, Michael G.; Burress, Helen; Yang, ZhiJie; Serrano, Albert; Holmes, Randall K.; Tatulian, Suren A.; Teter, Ken

    2014-01-01

    Summary The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells. PMID:25257027

  15. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function

    PubMed Central

    Franco, Michel; Boretto, Joëlle; Robineau, Sylviane; Monier, Solange; Goud, Bruno; Chardin, Pierre; Chavrier, Philippe

    1998-01-01

    Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component β-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells. PMID:9707577

  16. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    SciTech Connect

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. )

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  17. Characterization of ADP ribosylation factor 1 gene from Exopalaemon carinicauda and its immune response to pathogens challenge and ammonia-N stress.

    PubMed

    Duan, Yafei; Li, Jian; Zhang, Zhe; Li, Jitao; Liu, Ping

    2016-08-01

    ADP ribosylation factors (Arf), as highly conserved small guanosine triphosphate (GTP)-binding proteins, participates in intracellular trafficking and organelle structure. In this study, a full-length cDNA of Arf1 (designated EcArf1) was cloned from Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcArf1 was 1428 bp, which contains an open reading frame (ORF) of 549 bp, encoding a 182 amino-acid polypeptide with the predicted molecular weight of 20.69 kDa and estimated isoelectric point was 7.24. Sequence analysis revealed that the conserved Arf protein family signatures were identified in EcArf1. The deduced amino acid sequence of EcArf1 shared high identity (95%-98%) with that of other species and clustered together with Arf1 of other shrimp in the NJ phylogenetic tree, indicating that EcArf1 should be a member of the Arf1 family. Quantitative real-time RT-qPCR analysis indicated that EcArf1 was expressed in hemocytes, hepatopancreas, gills, muscle, ovary, intestine, stomach and heart, and the most abundant level was in hemocytes and gills, which were also the two main target tissues of pathogen infection and environmental stress. After Vibrio parahaemolyticus challenge, EcArf1 transcripts level significantly increased in hemocytes and hepatopancreas at 3 h and 6 h, respectively. The expression of EcArf1 in hemocytes and hepatopancreas significantly up-regulated at 12 h and 6 h respectively, and down-regulated at 72 h and 48 h, respectively. EcArf1 expression in hepatopancreas and gills both significantly increased at 6 h and decreased at 24 h under ammonia-N stress. The results suggested that EcArf1 might be involved in immune responses to pathogens (V. parahaemolyticus and WSSV) challenge and ammonia-N stress in E. carinicauda. PMID:27231192

  18. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    PubMed

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  19. Guanine nucleotide binding regulatory proteins and adenylate cyclase in livers of streptozotocin- and BB/Wor-diabetic rats. Immunodetection of Gs and Gi with antisera prepared against synthetic peptides.

    PubMed Central

    Lynch, C J; Blackmore, P F; Johnson, E H; Wange, R L; Krone, P K; Exton, J H

    1989-01-01

    Adenylate cyclase in liver plasma membranes from streptozotocin-diabetic (STZ) or BB/Wor spontaneously diabetic rats showed increased responsiveness to GTP, glucagon, fluoroaluminate, and cholera toxin. Basal or forskolin-stimulated activity was unchanged in STZ rats, but increased in BB/Wor rats. No change in the alpha-subunit of Gi (alpha i) was observed in STZ or BB/Wor rats using pertussis toxin-stimulated [32P]ADP-ribosylation. Immunodetection using antibodies against the COOH-terminal decapeptides of alpha T and alpha i-3 showed no change in alpha i in STZ rats and a slight decrease in BB/Wor rats. Angiotensin II inhibition of hepatic adenylate cyclase was not altered in either diabetic rat. In both models of diabetes, Gs alpha-subunits were increased as measured by cholera toxin-stimulated [32P]-ADP-ribosylation of 43-47.5-kD peptides, reconstitution with membranes from S49 cyc- cells or immunoreactivity using antibodies against the COOH-terminal decapeptide of alpha s. These data indicate that STZ-diabetes increases hepatic Gs but does not change Gi or adenylate cyclase catalytic activity. In contrast, BB/Wor rats show increased hepatic Gs and adenylate cyclase. These changes could explain the increase in hepatic cAMP and related dysfunctions observed in diabetes. Images PMID:2498395

  20. Cellular regulation of poly ADP-ribosylation of proteins: II. Augmentation of poly(ADP-ribose) polymerase in SV40 3T3 cells following methotrexate-induced G1/S inhibition of cell cycle progression

    SciTech Connect

    Sooki-Toth, A.; Asghari, F.; Kirsten, E.; Kun, E. )

    1987-05-01

    SV40-3T3 cells were exposed in monolayer cultures to 5{times}10{sup {minus}7} M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5{times}10{sup {minus}7} MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5{times}10{sup {minus}7} M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.

  1. ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I.

    PubMed Central

    Jones, D H; Bax, B; Fensome, A; Cockcroft, S

    1999-01-01

    The small GTP-binding protein, ADP-ribosylation factor 1 (ARF1) is essential for the formation of coatomer-coated vesicles from the Golgi and is also an activator of phospholipase D (PLD). Moreover, ARF1-regulated PLD is part of the signal-transduction pathway that can lead to secretion. In this study, substitution and deletion mutants of ARF1 were tested for their ability to activate PLD. These map the PLD effector region of ARF1 to the alpha2 helix, part of the beta2-strand and the N-terminal helix and its ensuing loop. ARF mutants with an increased or decreased ability to activate PLD showed similar characteristics when tested for their ability to stimulate secretion from HL60 cells. ARF1, deleted of the N-terminal 17 amino acid residues (Ndel17), did not support PLD activity or secretion, and neither did it inhibit the activity of wild-type myristoylated ARF1 (myrARF1). In contrast, Ndel17 effectively competed with wild-type myrARF1 to prevent coatomer binding to membranes. This appears to define a structural role for Ndel17, as it can bind a high-molecular mass complex in cytosol. In addition, ethanol has no effect on recruitment of coatomer to membrane. We conclude that the function of ARF-regulated PLD is in the signal-transduction pathway leading to secretion of lysosomal granules, and not as an essential component of ARF1-mediated coatomer binding. PMID:10377261

  2. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    SciTech Connect

    Neuhof, Dirk Zwicker, Felix; Kuepper, Jan-Heiner; Debus, Juergen; Weber, Klaus-Josef

    2007-11-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKC{alpha}/{beta}{sub II} was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than {alpha}/{beta}{sub II} cannot be ruled out.

  3. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  4. CD38 and chronic lymphocytic leukemia: a decade later.

    PubMed

    Malavasi, Fabio; Deaglio, Silvia; Damle, Rajendra; Cutrona, Giovanna; Ferrarini, Manlio; Chiorazzi, Nicholas

    2011-09-29

    This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the host's microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia. PMID:21765022

  5. Immuno-targeting the multifunctional CD38 using nanobody

    PubMed Central

    Li, Ting; Qi, Shali; Unger, Mandy; Hou, Yun Nan; Deng, Qi Wen; Liu, Jun; Lam, Connie M. C.; Wang, Xian Wang; Xin, Du; Zhang, Peng; Koch-Nolte, Friedrich; Hao, Quan; Zhang, Hongmin; Lee, Hon Cheung; Zhao, Yong Juan

    2016-01-01

    CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma. PMID:27251573

  6. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond.

    PubMed

    van de Donk, Niels W C J; Janmaat, Maarten L; Mutis, Tuna; Lammerts van Bueren, Jeroen J; Ahmadi, Tahamtan; Sasser, A Kate; Lokhorst, Henk M; Parren, Paul W H I

    2016-03-01

    CD38 is a multifunctional cell surface protein that has receptor as well as enzyme functions. The protein is generally expressed at low levels on various hematological and solid tissues, while plasma cells express particularly high levels of CD38. The protein is also expressed in a subset of hematological tumors, and shows especially broad and high expression levels in plasma cell tumors such as multiple myeloma (MM). Together, this triggered the development of various therapeutic CD38 antibodies, including daratumumab, isatuximab, and MOR202. Daratumumab binds a unique CD38 epitope and showed strong anti-tumor activity in preclinical models. The antibody engages diverse mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, programmed cell death, modulation of enzymatic activity, and immunomodulatory activity. CD38-targeting antibodies have a favorable toxicity profile in patients, and early clinical data show a marked activity in MM, while studies in other hematological malignancies are ongoing. Daratumumab has single agent activity and a limited toxicity profile, allowing favorable combination therapies with existing as well as emerging therapies, which are currently evaluated in the clinic. Finally, CD38 antibodies may have a role in the treatment of diseases beyond hematological malignancies, including solid tumors and antibody-mediated autoimmune diseases. PMID:26864107

  7. CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations.

    PubMed

    Arce, Sergio; Luger, Elke; Muehlinghaus, Gwendolin; Cassese, Giuliana; Hauser, Anja; Horst, Alexander; Lehnert, Katja; Odendahl, Marcus; Hönemann, Dirk; Heller, Karl-Dieter; Kleinschmidt, Harald; Berek, Claudia; Dörner, Thomas; Krenn, Veit; Hiepe, Falk; Bargou, Ralf; Radbruch, Andreas; Manz, Rudolf A

    2004-06-01

    Despite the important role immunoglobulin G (IgG)-secreting plasma cells play in memory immune responses, the differentiation and homeostasis of these cells are not completely understood. Here, we studied the differentiation of human IgG-secreting cells ex vivo and in vitro, identifying these cells by the cellular affinity matrix technology. Several subpopulations of IgG-secreting cells were identified among the cells isolated from tonsils and bone marrow, particularly differing in the expression levels of CD9, CD19, and CD38. CD38 low IgG-secreting cells were present exclusively in the tonsils. A major fraction of these cells appeared to be early plasma cell precursors, as upon activation of B cells in vitro, IgG secretion preceded up-regulation of CD38, and on tonsillar sections, IgG-containing, CD38 low cells with a plasmacytoid phenotype were found in follicles, where plasma cell differentiation starts. A unitary phenotype of migratory peripheral blood IgG-secreting cells suggests that all bone marrow plasma cell populations share a common precursor cell. These data are compatible with a multistep model for plasma cell differentiation and imply that a common CD38 low IgG-secreting precursor gives rise to a diverse plasma cell compartment. PMID:15020647

  8. Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis.

    PubMed Central

    Way, G; O'luanaigh, N; Cockcroft, S

    2000-01-01

    The physiological stimulus to exocytosis in mast cells is the cross-linking of the high-affinity IgE receptor, FcepsilonR1, with antigen. We demonstrate a novel function for ADP-ribosylation factor 1 (ARF1) in the regulation of antigen-stimulated secretion using cytosol-depleted RBL-2H3 mast cells for reconstitution of secretory responses. When antigen is used as the stimulus, ARF1 also reconstitutes phospholipase D activation. Using ethanol to divert the phosphatidic acid (the product of phospholipase D activity) to phosphatidylethanol causes inhibition of ARF1-reconstituted secretion. In addition. ARF1 causes an increase in phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels at the expense of phosphatidylinositol 4-monophosphate. The requirement for PIP(2) in exocytosis was confirmed by using phosphatidylinositol transfer protein (PITPalpha) to increase PIP(2) levels. Exocytosis, restored by either ARF1 or PITPalpha, was inhibited when PIP(2) levels were depleted by phospholipase Cdelta1. We conclude that the function of ARF1 and PITPalpha is to increase the local synthesis of PIP(2), the function of which in exocytosis is likely to be linked to lipid-protein interactions, whereby recruitment of key components of the exocytotic machinery are targeted to the appropriate membrane compartment. PMID:10657240

  9. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment.

    PubMed

    Abazeed, Mohamed E; Fuller, Robert S

    2008-11-01

    Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  10. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    PubMed Central

    Abazeed, Mohamed E.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN–PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the β subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Δ membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Δ mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  11. Role of CD38, a cyclic ADP-ribosylcyclase, in morphine antinociception and tolerance.

    PubMed

    Hull, Lynn C; Rabender, Christopher; Gabra, Bichoy H; Zhang, Fan; Li, Pin-Lan; Dewey, William L

    2010-09-01

    Our previous studies have demonstrated that an increase in intracellular levels of Ca(2+) in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca(2+) signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate beta-NAD(+) in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38-cADPR-ryanodine receptor Ca(2+) signaling pathway. These inhibitors were the ADP-ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 muM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(-/-)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(-/-) and WT animals. It was also found that less tolerance to morphine developed in CD38(-/-) mice compared with WT animals. These results indicate that cADRP-ryanodine receptor Ca(2+) signaling associated with CD38 plays an important role in morphine tolerance. PMID:20551293

  12. CD38 Is Expressed on Inflammatory Cells of the Intestine and Promotes Intestinal Inflammation

    PubMed Central

    Schneider, Michael; Schumacher, Valéa; Lischke, Timo; Lücke, Karsten; Meyer-Schwesinger, Catherine; Velden, Joachim; Koch-Nolte, Friedrich; Mittrücker, Hans-Willi

    2015-01-01

    The enzyme CD38 is expressed on a variety of hematopoietic and non-hematopoietic cells and is involved in diverse processes such as generation of calcium-mobilizing metabolites, cell activation, and chemotaxis. Here, we show that under homeostatic conditions CD38 is highly expressed on immune cells of the colon mucosa of C57BL/6 mice. Myeloid cells recruited to this tissue upon inflammation also express enhanced levels of CD38. To determine the role of CD38 in intestinal inflammation, we applied the dextran sulfate sodium (DSS) colitis model. Whereas wild-type mice developed severe colitis, CD38-/- mice had only mild disease following DSS-treatment. Histologic examination of the colon mucosa revealed pronounced inflammatory damage with dense infiltrates containing numerous granulocytes and macrophages in wild-type animals, while these findings were significantly attenuated in CD38-/- mice. Despite attenuated histological findings, the mRNA expression of inflammatory cytokines and chemokines was only marginally lower in the colons of CD38-/- mice as compared to wild-type mice. In conclusion, our results identify a function for CD38 in the control of inflammatory processes in the colon. PMID:25938500

  13. Role of CD38, a Cyclic ADP-Ribosylcyclase, in Morphine Antinociception and Tolerance

    PubMed Central

    Hull, Lynn C.; Rabender, Christopher; Gabra, Bichoy H.; Zhang, Fan; Li, Pin-Lan

    2010-01-01

    Our previous studies have demonstrated that an increase in intracellular levels of Ca2+ in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca2+ signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate β-NAD+ in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38–cADPR–ryanodine receptor Ca2+ signaling pathway. These inhibitors were the ADP–ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 μM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(−/−)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(−/−) and WT animals. It was also found that less tolerance to morphine developed in CD38(−/−) mice compared with WT animals. These results indicate that cADRP–ryanodine receptor Ca2+ signaling associated with CD38 plays an important role in morphine tolerance. PMID:20551293

  14. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  15. Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes

    PubMed Central

    Xu, Ming; Li, Xiao-Xue; Ritter, Joseph K.; Abais, Justine M.; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2·−) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2·− serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2·− production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2·− significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2·− production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells. PMID:23940720

  16. Design, synthesis and biological characterization of novel inhibitors of CD38

    PubMed Central

    Dong, Min; Si, Yuan-Qi; Sun, Shuang-Yong; Pu, Xiao-Ping; Yang, Zhen-Jun; Zhang, Liang-Ren; Zhang, Li-He; Leung, Fung Ping; Lam, Connie Mo Ching.; Kwong, Anna Ka Yee; Yue, Jianbo; Zhou, Yeyun; Kriksunov, Irina A.; Hao, Quan; Lee, Hon Cheung

    2012-01-01

    Human CD38 is a novel multi-functional protein that acts not only as an antigen for B-lymphocyte activation, but also an enzyme catalyzing the synthesis of a Ca2+ messenger molecule, cyclic ADP-ribose, from NAD+. It is well established that this novel Ca2+ signaling enzyme is responsible for regulating a wide range of physiological functions. Based on the crystal structure of the CD38/NAD+ complex, we synthesized a series of simplified N-substituted nicotinamide derivatives (Compound 1–14). A number of these compounds exhibited moderate inhibition of the NAD+ utilizing activity of CD38, with Compound 4 showing the higher potency. The crystal structure of CD38/ Compound 4 complex and computer simulation of Compound 7 docking to CD38 show a significant role of the nicotinamide moiety and the distal aromatic group of the compounds for substrate recognition by the active site of CD38. Biologically, we showed that both Compounds 4 and 7 effectively relaxed the agonist-induced contraction of muscle preparations form rats and guinea pigs. This study is a rational design of inhibitors for CD38 that exhibit important physiological effects, and can serve as a model for future drug development. PMID:21431168

  17. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  18. Regulation of chromatin structure by poly(ADP-ribosyl)ation

    PubMed Central

    Beneke, Sascha

    2012-01-01

    The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose) has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose), the zinc-finger protein poly(ADP-ribose) polymerase-1 (PARP1), was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor. PMID:22969794

  19. Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in CD38(-/-) mice.

    PubMed

    Xu, Xiaoyang; Yuan, Xinxu; Li, Ningjun; Dewey, William L; Li, Pin-Lan; Zhang, Fan

    2016-06-01

    The disruption in transportation of oxLDL-derived cholesterol and the subsequent lipid accumulation in macrophages are the hallmark events in atherogenesis. Our recent studies demonstrated that lysosomal Ca(2+) messenger of nicotinic acid adenine dinucleotide phosphate (NAADP), an enzymatic product of CD38 ADP-ribosylcyclase (CD38), promoted lipid endocytic trafficking in human fibroblast cells. The current studies are designed to examine the functional role of CD38/NAADP pathway in the regulation of lysosomal cholesterol efflux in atherosclerosis. Oil red O staining showed that oxLDL concentration-dependently increased lipid buildup in bone marrow-derived macrophages from both wild type and CD38(-/-) , but to a significant higher extent with CD38 gene deletion. Bodipy 493/503 fluorescence staining found that the deposited lipid in macrophages was mainly enclosed in lysosomal organelles and largely enhanced with the blockade of CD38/NAADP pathway. Filipin staining and direct measurement of lysosome fraction further revealed that the free cholesterol constituted a major portion of the total cholesterol segregated in lysosomes. Moreover, in situ assay disclosed that both lysosomal lumen acidity and the acid lipase activity were reduced upon cholesterol buildup in lysosomes. In CD38(-/-) mice, treatment with Western diet (12 weeks) produced atherosclerotic damage in coronary artery with striking lysosomal cholesterol sequestration in macrophages. These data provide the first experimental evidence that the proper function of CD38/NAADP pathway plays an essential role in promoting free cholesterol efflux from lysosomes and that a defection of this signalling leads to lysosomal cholesterol accumulation in macrophages and results in coronary atherosclerosis in CD38(-/-) mice. PMID:26818887

  20. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma.

    PubMed

    Nijhof, Inger S; Casneuf, Tineke; van Velzen, Jeroen; van Kessel, Berris; Axel, Amy E; Syed, Khaja; Groen, Richard W J; van Duin, Mark; Sonneveld, Pieter; Minnema, Monique C; Zweegman, Sonja; Chiu, Christopher; Bloem, Andries C; Mutis, Tuna; Lokhorst, Henk M; Sasser, A Kate; van de Donk, Niels W C J

    2016-08-18

    The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance. In a cohort of 102 patients treated with daratumumab monotherapy (16 mg/kg), we found that pretreatment levels of CD38 expression on MM cells were significantly higher in patients who achieved at least partial response (PR) compared with patients who achieved less than PR. However, cell surface expression of the CIPs, CD46, CD55, and CD59, was not associated with clinical response. In addition, CD38 expression was reduced in both bone marrow-localized and circulating MM cells, following the first daratumumab infusion. CD38 expression levels on MM cells increased again following daratumumab discontinuation. In contrast, CD55 and CD59 levels were significantly increased on MM cells only at the time of progression. All-trans retinoic acid increased CD38 levels and decreased CD55 and CD59 expression on MM cells from patients who developed daratumumab resistance, to approximately pretreatment values. This resulted in significant enhancement of daratumumab-mediated complement-dependent cytotoxicity. Together, these data demonstrate an important role for CD38 and CIP expression levels in daratumumab sensitivity and suggest that therapeutic combinations that alter CD38 and CIP expression levels should be investigated in the treatment of MM. These trials were registered at www.clinicaltrials.gov as #NCT00574288 (GEN501) and #NCT01985126 (SIRIUS). PMID:27307294

  1. Seminal CD38 Enhances Human Sperm Capacitation through Its Interaction with CD31

    PubMed Central

    Kim, Byung-Ju; Park, Dae-Ryoung; Nam, Tae-Sik; Lee, Seo Ho; Kim, Uh-Hyun

    2015-01-01

    Human sperm have to undergo a maturational process called capacitation in the female reproductive tract. Capacitation confers upon the sperm an ability to gain hypermotility and undergo acrosome reaction. Previous studies have suggested that seminal plasma proteins induce the capacitation of sperm in the female reproductive tract for the successful fertilization of the oocyte. However, the function of seminal plasma proteins in capacitation remains largely unclear. To the end, we found that soluble CD38 (sCD38) in seminal plasma increases the capacitation of sperm via specific interactions between sCD38 and the CD31 on the sperm. Upon the association of sCD38 with CD31, tyrosine kinase Src phosphorylates CD31, a process blocked by Src inhibitors. Shc, SHP-2, Grb2, and SOS, as well as Src kinase were found to associate with the phosphorylated CD31. The sCD38-induced phosphorylation of CD31 initiates a cascade reaction through the phosphorylation of Erk1/2, which results in the acrosome reaction, and sperm hypermotility. These processes were prevented by Src, Ras and MEK inhibitors. Taken together, these data indicate that the sCD38 present in seminal plasma plays a critical role in the capacitation of sperm. PMID:26407101

  2. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  3. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  4. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells

    PubMed Central

    Damle, Rajendra N.; Temburni, Sonal; Calissano, Carlo; Yancopoulos, Sophia; Banapour, Taraneh; Sison, Cristina; Allen, Steven L.; Rai, Kanti R.

    2007-01-01

    Chronic lymphocytic leukemia (CLL) cells are thought to have diminished cell-cycling capacity, a view challenged by their phenotypic resemblance to activated human B lymphocytes. The present study addresses the cell-cycling status of CLL cells, focusing on those leukemic cells expressing CD38, a molecule involved in signaling and activation that also serves as a prognostic marker in this disease. CD38+ and CD38− members of individual CLL clones were analyzed for coexpression of molecules associated with cellular activation (CD27, CD62L, and CD69), cell-cycle entry (Ki-67), signaling (ZAP-70), and protection from apoptosis (telomerase and Bcl-2). Regardless of the size of the CD38+ fraction within a CLL clone, CD38+ subclones are markedly enriched for expression of Ki-67, ZAP-70, human telomerase reverse transcriptase, and telomerase activity. Although the percentage of cells (approximately 2%) entering the cell cycle as defined by Ki-67 expression is small, the absolute number within a clone can be sizeable and is contained primarily within the CD38+ fraction. Despite these activation/proliferation differences, both CD38+ and CD38− fractions have similar telomere lengths, suggesting that CD38 expression is dynamic and transient. These findings may help explain why high percentages of CD38+ cells within clones are associated with poor clinical outcome. PMID:17684154

  5. Mobilization of CD34+CD38- hematopoietic stem cells after priming in acute myeloid leukemia

    PubMed Central

    Plesa, Adriana; Chelghoum, Youcef; Mattei, Eve; Labussière, Hélène; Elhamri, Mohamed; Cannas, Giovanna; Morisset, Stéphane; Tagoug, Inès; Michallet, Mauricette; Dumontet, Charles; Thomas, Xavier

    2013-01-01

    AIM: To evaluate quantitatively and qualitatively the different CD34+ cell subsets after priming by chemotherapy granulocyte colony-stimulating factor (± G-CSF) in patients with acute myeloid leukemia. METHODS: Peripheral blood and bone marrow samples were harvested in 8 acute myeloid leukemia patients during and after induction chemotherapy. The CD34/CD38 cell profile was analyzed by multi-parameter flow cytometry. Adhesion profile was made using CXC chemokine receptor 4 (CXCR4) (CD184), VLA-4 (CD49d/CD29) and CD47. RESULTS: Chemotherapy ± G-CSF mobilized immature cells (CD34+CD38− population), while the more mature cells (CD34+CD38low and CD34+CD38+ populations) decreased progressively after treatment. Circulating CD34+ cells tended to be more sensitive to chemotherapy after priming with G-CSF. CD34+ cell mobilization was correlated with a gradual increase in CXCR4 and CD47 expression, suggesting a role in cell protection and the capacity of homing back to the marrow. CONCLUSION: Chemotherapy ± G-CSF mobilizes into the circulation CD34+ bone marrow cells, of which, the immature CD34+CD38– cell population. Further manipulations of these interactions may be a means with which to control the trafficking of leukemia stem cells to improve patients’ outcomes. PMID:24179607

  6. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility

    PubMed Central

    Chiang, Shian-Huey; Harrington, W. Wallace; Luo, Guizhen; Milliken, Naphtali O.; Ulrich, John C.; Chen, Jing; Rajpal, Deepak K.; Qian, Ying; Carpenter, Tiffany; Murray, Rusty; Geske, Robert S.; Stimpson, Stephen A.; Kramer, Henning F.; Haffner, Curt D.; Becherer, J. David; Preugschat, Frank; Billin, Andrew N.

    2015-01-01

    Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet. PMID:26287487

  7. CD24+/CD38- as new prognostic marker for non-small cell lung cancer

    PubMed Central

    2013-01-01

    Background Lung cancer is the leading cause of death among cancers in the world. The annual death toll due to this disease exceeds the combined deaths caused by colon, breast, prostate, and pancreatic cancers. As a result, there has been a tremendous effort to identify new biomarkers for early detection and diagnosis of lung cancer. Methods In this study we report the results of screening a panel of eight non-small cell lung cancer (NSCLC) cell lines originating from different subtypes of lung cancer in an attempt to identify potential biomarkers unique to this disease. We used real-time polymerase chain reaction and flow cytometry techniques to analyze the expression of ALDHA1, EpCAM, CD133, CD24, and CD38 in this panel. Results We demonstrate for the first time that the majority of NSCLC cells do not express levels of CD38 that would qualify it as a new biomarker for the disease. In contrast, we found that CD24 is over-expressed in 6 out of 8 of the cell lines. The combined CD24+/CD38-/low phenotype was detected in 50% of the cell lines that are also positive for CD133 and EpCAM. Conclusions We report that CD24+/CD38-/low signature could potentially be used as a new biomarker for the early detection of NSCLC. PMID:24094028

  8. CD38-Targeted Immunochemotherapy in Refractory Multiple Myeloma: A New Horizon.

    PubMed

    Laubach, Jacob P; Richardson, Paul G

    2015-06-15

    CD38 is a type II transmembrane glycoprotein that is highly expressed in multiple myeloma and is a promising target for immunotherapy. Daratumumab is a human monoclonal antibody that has potent anti-multiple myeloma activity both as monotherapy and in combination with other multiple myeloma treatments, and has breakthrough designation on this basis. PMID:25878332

  9. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    SciTech Connect

    Aksoy, Pinar; Escande, Carlos; White, Thomas A.; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N. . E-mail: chini.eduardo@mayo.edu

    2006-10-13

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.

  10. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

    PubMed

    Drent, Esther; Groen, Richard W J; Noort, Willy A; Themeli, Maria; Lammerts van Bueren, Jeroen J; Parren, Paul W H I; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W C J; Martens, Anton C M; Lokhorst, Henk M; Mutis, Tuna

    2016-05-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. PMID:26858358

  11. Inhibition of the intrinsic NAD+ glycohydrolase activity of CD38 by carbocyclic NAD analogues.

    PubMed

    Wall, K A; Klis, M; Kornet, J; Coyle, D; Amé, J C; Jacobson, M K; Slama, J T

    1998-11-01

    Carba-NAD and pseudocarba-NAD are carbocyclic analogues of NAD+ in which a 2,3-dihydroxycyclopentane methanol replaces the beta-d-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ [Slama and Simmons (1988) Biochemistry 27, 183-193]. These carbocyclic NAD+ analogues, related to each other as diastereomers, have been tested as inhibitors of the intrinsic NAD+ glycohydrolase activity of human CD38, dog spleen NAD+ glycohydrolase, mouse CD38 and Aplysia californica cADP-ribose synthetase. Pseudocarba-NAD, the carbocyclic dinucleotide in which l-2,3-dihydroxycyclopentane methanol replaces the d-ribose of the nicotinamide riboside moiety of NAD+, was found to be the more potent inhibitor. Pseudocarba-NAD was shown to inhibit the intrinsic NAD+ glycohydrolase activity of human CD38 competitively, with Ki=148 microM determined for the recombinant extracellular protein domain and Ki=180 microM determined for the native protein expressed as a cell-surface enzyme on cultured Jurkat cells. Pseudocarba-NAD was shown to be a non-competitive inhibitor of the purified dog spleen NAD+ glycohydrolase, with Kis=47 miroM and Kii=198 microM. Neither pseudocarba-NAD nor carba-NAD inhibited mouse CD38 or Aplysia californica cADP-ribose synthetase significantly at concentrations up to 1 mM. The results underscore significant species differences in the sensitivity of these enzymes to inhibition, and indicate that pseudocarba-NAD will be useful as an inhibitor of the enzymic activity of human but not mouse CD38 in studies using cultured cells. PMID:9794804

  12. Inhibition of the intrinsic NAD+ glycohydrolase activity of CD38 by carbocyclic NAD analogues.

    PubMed Central

    Wall, K A; Klis, M; Kornet, J; Coyle, D; Amé, J C; Jacobson, M K; Slama, J T

    1998-01-01

    Carba-NAD and pseudocarba-NAD are carbocyclic analogues of NAD+ in which a 2,3-dihydroxycyclopentane methanol replaces the beta-d-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ [Slama and Simmons (1988) Biochemistry 27, 183-193]. These carbocyclic NAD+ analogues, related to each other as diastereomers, have been tested as inhibitors of the intrinsic NAD+ glycohydrolase activity of human CD38, dog spleen NAD+ glycohydrolase, mouse CD38 and Aplysia californica cADP-ribose synthetase. Pseudocarba-NAD, the carbocyclic dinucleotide in which l-2,3-dihydroxycyclopentane methanol replaces the d-ribose of the nicotinamide riboside moiety of NAD+, was found to be the more potent inhibitor. Pseudocarba-NAD was shown to inhibit the intrinsic NAD+ glycohydrolase activity of human CD38 competitively, with Ki=148 microM determined for the recombinant extracellular protein domain and Ki=180 microM determined for the native protein expressed as a cell-surface enzyme on cultured Jurkat cells. Pseudocarba-NAD was shown to be a non-competitive inhibitor of the purified dog spleen NAD+ glycohydrolase, with Kis=47 miroM and Kii=198 microM. Neither pseudocarba-NAD nor carba-NAD inhibited mouse CD38 or Aplysia californica cADP-ribose synthetase significantly at concentrations up to 1 mM. The results underscore significant species differences in the sensitivity of these enzymes to inhibition, and indicate that pseudocarba-NAD will be useful as an inhibitor of the enzymic activity of human but not mouse CD38 in studies using cultured cells. PMID:9794804

  13. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    PubMed Central

    Xu, Ming; Li, Xiao-Xue; Wang, Lei; Wang, Mi; Zhang, Yang; Li, Pin-Lan

    2015-01-01

    Background/Aims Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC) phenotypic switching remain unknown. Methods & Results In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs) from CD38−/− mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38−/− CAMs was enhanced by 7-ketocholesterol (7-Ket), an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2), a basic leucine zipper (bZIP) transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38−/− CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38−/− CAMs, 7-Ket failed to stimulate the production of O2−., while in CD38+/+ CAMs 7-Ket induced marked O2−. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2−. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  14. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies

    PubMed Central

    Green, Damian J.; Orgun, Nural N.; Jones, Jon C.; Hylarides, Mark D.; Pagel, John M.; Hamlin, Donald K.; Wilbur, D.S.; Lin, Yukang; Fisher, Darrell R.; Kenoyer, Aimee L.; Frayo, Shani L.; Gopal, Ajay K.; Orozco, Johnnie J.; Gooley, Theodore A.; Wood, Brent L.; Bensinger, William I.; Press, Oliver W.

    2014-01-01

    The vast majority of patients with plasma cell neoplasms die of progressive disease despite high response rates to novel agents. Malignant plasma cells are very radiosensitive, but the potential role of radioimmunotherapy (RIT) in the management of plasmacytomas and multiple myeloma (MM) has undergone only limited evaluation. Furthermore, CD38 has not been explored as a RIT target despite its uniform high expression on plasma cell malignancies. In this report, both conventional RIT (directly radiolabeled antibody) and streptavidin-biotin pretargeted RIT (PRIT) directed against the CD38 antigen, were assessed as approaches to deliver radiation doses sufficient for MM cell eradication. PRIT demonstrated biodistributions that were markedly superior to conventional RIT. Tumor-to-blood ratios as high as 638:1 were seen 24hr after PRIT, while ratios never exceeded 1:1 with conventional RIT. 90Yttrium absorbed dose estimates demonstrated excellent target-to-normal organ ratios (6:1 for the kidney, lung, liver; 10:1 for the whole body). Objective remissions were observed within 7 days in 100% of the mice treated with doses ranging from 800 µCi to 1200 µCi of anti-CD38 pretargeted 90Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in treated mice compared to tumors that were 2982±2834% of initial tumor volume in control animals) by day 23. Furthermore, 100% of animals bearing NCI-H929 multiple myeloma tumor xenografts treated with 800 µCi of anti-CD38 pretargeted 90Y-DOTA-biotin achieved long-term myeloma-free survival (>70 days) compared to none (0%) of the control animals. PMID:24371230

  15. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies.

    PubMed

    Green, Damian J; Orgun, Nural N; Jones, Jon C; Hylarides, Mark D; Pagel, John M; Hamlin, Donald K; Wilbur, D S; Lin, Yukang; Fisher, Darrell R; Kenoyer, Aimee L; Frayo, Shani L; Gopal, Ajay K; Orozco, Johnnie J; Gooley, Theodore A; Wood, Brent L; Bensinger, William I; Press, Oliver W

    2014-02-15

    The vast majority of patients with plasma cell neoplasms die of progressive disease despite high response rates to novel agents. Malignant plasma cells are very radiosensitive, but the potential role of radioimmunotherapy (RIT) in the management of plasmacytomas and multiple myeloma has undergone only limited evaluation. Furthermore, CD38 has not been explored as a RIT target despite its uniform high expression on malignant plasma cells. In this report, both conventional RIT (directly radiolabeled antibody) and streptavidin-biotin pretargeted RIT (PRIT) directed against the CD38 antigen were assessed as approaches to deliver radiation doses sufficient for multiple myeloma cell eradication. PRIT demonstrated biodistributions that were markedly superior to conventional RIT. Tumor-to-blood ratios as high as 638:1 were seen 24 hours after PRIT, whereas ratios never exceeded 1:1 with conventional RIT. (90)Yttrium absorbed dose estimates demonstrated excellent target-to-normal organ ratios (6:1 for the kidney, lung, liver; 10:1 for the whole body). Objective remissions were observed within 7 days in 100% of the mice treated with doses ranging from 800 to 1,200 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in treated mice compared with tumors that were 2,982% ± 2,834% of initial tumor volume in control animals) by day 23. Furthermore, 100% of animals bearing NCI-H929 multiple myeloma tumor xenografts treated with 800 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin achieved long-term myeloma-free survival (>70 days) compared with none (0%) of the control animals. PMID:24371230

  16. Global transcriptional response of Clostridium difficile carrying the CD38 prophage.

    PubMed

    Sekulovic, Ognjen; Fortier, Louis-Charles

    2015-02-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like CD38-2 and CD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the CD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. CD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated 20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, 95% of f lysogenic cells express cwpV, as opposed to only 5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, CD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes. PMID:25501487

  17. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.

    PubMed

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben; Palumbo, Antonio; Gay, Francesca; Laubach, Jacob P; Malavasi, Fabio; Avet-Loiseau, Hervé; Mateos, Maria-Victoria; Sonneveld, Pieter; Lokhorst, Henk M; Richardson, Paul G

    2016-02-11

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and preliminary results from studies with relapsed/refractory patients have shown enhanced therapeutic efficacy when daratumumab and isatuximab are combined with other agents. Furthermore, although elotuzumab (anti-SLAMF7) has no single agent activity in advanced MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than infusion-related reactions specific to the therapeutic antibody. Prevention and management of infusion reactions is important to avoid drug discontinuation, which may in turn lead to reduced efficacy of anti-MM therapy. Therapeutic antibodies interfere with several laboratory tests. First, interference of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting antibodies, interfere with blood compatibility testing and thereby complicate the safe release of blood products. Neutralization of the therapeutic CD38 antibody or CD38 denaturation on reagent red blood cells mitigates daratumumab interference with transfusion laboratory serologic tests. Finally, therapeutic antibodies may complicate flow cytometric evaluation of normal and neoplastic plasma cells, since the therapeutic antibody can affect the availability of the epitope for binding

  18. Global Transcriptional Response of Clostridium difficile Carrying the ϕCD38-2 Prophage

    PubMed Central

    Sekulovic, Ognjen

    2014-01-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like ϕCD38-2 and ϕCD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the ϕCD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. ϕCD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated ∼20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, ∼95% of lysogenic cells express cwpV, as opposed to only ∼5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, ϕCD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes. PMID:25501487

  19. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  20. Transient receptor potential melastatin-2 and temperature participate in the process of CD38-regulated oxytocin secretion.

    PubMed

    Liu, Hong-Xiang; Ma, Shuang; Nan, Yong; Yang, Wan-Hua

    2016-08-17

    In recent studies, oxytocin showed potential for the treatment of mental diseases. CD38 is essential for oxytocin release, and hence plays a critical role in social behavior. CD38 catalyzes β-NAD into cyclic ADP ribose (cADPR), which could elevate the intracellular Ca by Ca-permeable channels for oxytocin secretion. The temperature-sensitive cation channel, transient receptor potential melastatin-2 (TRPM2), is a cation-nonselective cation and has been shown to affect oxytocin indirectly. The aim of the present study was to verify the participation of temperature and TRPM2 in CD38-regulated oxytocin release. The crude membranes were prepared to isolate the nerve terminals from the posterior pituitary. At 34°C, 37°C, and 39°C, agonists (β-NAD, ADPR, cADPR) and antagonists (8-Br-cADPR, 2-APB) were used to stimulate the nerve terminals. Oxytocin releases were investigated by enzyme-linked immunosorbent assay. In addition, the expression of TRPM2 and CD38 in the hypothalamus and pituitary was detected by western blotting and quantitative PCR. CD38 agonists (β-NAD, cADPR) and antagonist (8-Br-cADPR) could increase or reduce the oxytocin release, respectively. TRPM2 agonist (ADPR) and antagonist (2-APB) alone could also regulate oxytocin release. Furthermore, temperature could increase agonist stimulation and attenuate the antagonist inhibition on oxytocin release. In addition, CD38 and TRPM2 were expressed in the hypothalamus and pituitary at both the mRNA and the protein level. TRPM2 in pituitary nerve terminals plays a role in oxytocin release. Temperature- enhanced oxytocin release by CD38 and TRPM2. TRPM2 might be involved in the process of CD38-regulated oxytocin release. PMID:27348016

  1. Anti-CD38 Antibody Therapy: Windows of Opportunity Yielded by the Functional Characteristics of the Target Molecule

    PubMed Central

    Chillemi, Antonella; Zaccarello, Gianluca; Quarona, Valeria; Ferracin, Manuela; Ghimenti, Chiara; Massaia, Massimo; Horenstein, Alberto L; Malavasi, Fabio

    2013-01-01

    In vivo use of monoclonal antibodies (mAbs) has become a mainstay of routine clinical practice in the treatment of various human diseases. A number of molecules can serve as targets, according to the condition being treated. Now entering human clinical trials, CD38 molecule is a particularly attractive target because of its peculiar pattern of expression and its twin role as receptor and ectoenzyme. This review provides a range of analytical perspectives on the current progress in and challenges to anti-CD38 mAb therapy. We present a synopsis of the evidence available on CD38, particularly in myeloma and chronic lymphocytic leukemia (CLL). Our aim is to make the data from basic science helpful and accessible to a diverse clinical audience and, at the same time, to improve its potential for in vivo use. The topics covered include tissue distribution and signal implementation by mAb ligation and the possibility of increasing cell density on target cells by exploiting information about the molecule’s regulation in combination with drugs approved for in vivo use. Also analyzed is the behavior of CD38 as an enzyme: CD38 is a component of a pathway leading to the production of adenosine in the tumor microenvironment, thus inducing local anergy. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes. PMID:23615966

  2. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  3. Combinations of ZAP-70, CD38 and IGHV mutational status as predictors of time to first treatment in CLL.

    PubMed

    Morilla, Alison; Gonzalez de Castro, David; Del Giudice, Ilaria; Osuji, Nnenna; Else, Monica; Morilla, Ricardo; Brito Babapulle, Vasantha; Rudenko, Hannah; Matutes, Estella; Dearden, Claire; Catovsky, Daniel; Morgan, Gareth J

    2008-11-01

    ZAP-70, CD38 and IGHV mutations have all been reported to have prognostic impact in chronic lymphocytic leukemia (CLL), both individually and in paired combinations. We aimed to determine whether the combination of all three factors provided more refined prognostic information concerning the treatment-free interval (TFI) from diagnosis. ZAP-70, CD38 and IGHV mutations were evaluated in 142 patients. Combining all three factors, the ZAP-70-/CD38-/Mutated group showed the longest median TFI (62 months, n = 37), ZAP-70+/CD38+/Unmutated cases the shortest (11 months, n = 37) and cases discordant for > or = 1 factor, an intermediate TFI (27 months, n = 68) (p = 0.006). Analysis of discordant cases revealed values that were otherwise masked when measuring single prognostic factors. The presence or absence of cytogenetic abnormalities did not explain the variability among discordant cases. Simultaneous analysis of ZAP-70, CD38 and IGHV mutations in CLL provides more discriminatory prediction of TFI than any factor alone. PMID:19021053

  4. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.

    PubMed

    Nijhof, I S; Groen, R W J; Lokhorst, H M; van Kessel, B; Bloem, A C; van Velzen, J; de Jong-Korlaar, R; Yuan, H; Noort, W A; Klein, S K; Martens, A C M; Doshi, P; Sasser, K; Mutis, T; van de Donk, N W C J

    2015-10-01

    Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients. PMID:25975191

  5. A Deletion Involving CD38 and BST1 Results in a Fusion Transcript in a Patient With Autism and Asthma

    PubMed Central

    Ceroni, Fabiola; Sagar, Angela; Simpson, Nuala H.; Gawthrope, Alex J.T.; Newbury, Dianne F.; Pinto, Dalila; Francis, Sunday M.; Tessman, Dorothy C.; Cook, Edwin H.; Monaco, Anthony P.; Maestrini, Elena; Pagnamenta, Alistair T.; Jacob, Suma

    2015-01-01

    CD38 encodes a ligand in the oxytocin signaling pathway. Some single nucleotide polymorphisms in this gene have been associated with low serum oxytocin levels in autism spectrum disorder (ASD) patients. Oxytocin disruption has been hypothesized to account for features of ASD, including impaired communication and social behavior, based on animal studies. Recent human studies have shown administration of oxytocin improving emotion recognition, promoting social behavior, and improving auditory processing of social stimuli in ASD patients. In addition to its role in oxytocin signaling, CD38 is involved in the regulation of calcium concentration in airway smooth muscle with impairment of CD38 being implicated in airway diseases like asthma. While a number of studies have implicated rare chromosomal deletions and duplications in helping determine genetic risk for autism, there are to our knowledge no reports describing rearrangements involving CD38 or deletions in patients with ASD. Here, we present two sisters diagnosed with autism and with features of regression—previously acquired speech lost in the second year of life. The younger sister, who also had asthma, inherited a maternal deletion of 4p15.32 that results in a BST1-CD38 fusion transcript. Their mother's deletion was mosaic and she was not affected. Although further work is required to assess functional consequences of the fusion transcript, we hypothesize that the proband's deletion may have served as a risk factor for autism that, when combined with other susceptibility variants, resulted in a more severe presentation than her sister. PMID:24634087

  6. Bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  7. Targeting of CD34+CD38- cells using Gemtuzumab ozogamicin (Mylotarg) in combination with tipifarnib (Zarnestra) in acute Myeloid Leukaemia

    PubMed Central

    2012-01-01

    Background The CD34+CD38- subset of AML cells is enriched for resistance to current chemotherapeutic agents and considered to contribute to disease progression and relapse in Acute Myeloid Leukaemia (AML) patients following initial treatment. Methods Chemosensitivity in phenotypically defined subsets from 34 primary AML samples was measured by flow cytometry following 48 hr in vitro treatment with gemtuzumab ozogamicin (GO, Mylotarg) and the farnesyltransferase inhibitor tipifarnib/zarnestra. The DNA damage response was measured using flow cytometry, immunofluorescence and immunohistochemistry. Results Using a previously validated in vitro minimal residual disease model, we now show that the combination of GO (10 ng/ml) and tipifarnib (5 μM) targets the CD34+CD38- subset resulting in 65% median cell loss compared to 28% and 13% CD34+CD38- cell loss in GO-treated and tipifarnib-treated cells, respectively. Using phosphokinome profiling and immunofluorescence in the TF-1a cell line, we demonstrate that the drug combination is characterised by the activation of a DNA damage response (induction of γH2A.X and thr68 phosphorylation of chk2). Higher induction of γH2AX was found in CD34+CD38- than in CD34+CD38+ patient cells. In a model system, we show that dormancy impairs damage resolution, allowing accumulation of γH2AX foci. Conclusions The chemosensitivity of the CD34+CD38- subset, combined with enhanced damage indicators, suggest that this subset is primed to favour programmed cell death as opposed to repairing damage. This interaction between tipifarnib and GO suggests a potential role in the treatment of AML. PMID:23013471

  8. NAD(P)H oxidase-dependent intracellular and extracellular O2·- production in coronary arterial myocytes from CD38 knockout mice

    PubMed Central

    Xu, Ming; Zhang, Yang; Xia, Min; Li, Xiao-Xue; Ritter, Joseph K; Zhang, Fan; Li, Pin-Lan

    2011-01-01

    Activation of NAD(P)H oxidase has been reported to produce superoxide (O2 ·-) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use NAD(P)H oxidase product, NAD+ or NADP+ to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), which mediates intracellular Ca2+ signaling. The present study was designed to test a hypothesis that CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O2 ·-in mouse coronary arterial myocytes (CAMs). By fluorescent microscopic imaging, we simultaneously monitored extra- and intracellular O2 ·-production in wild-type (CD38+/+) and CD38 knockout (CD38-/-) CAMs in response to oxotremorine (OXO), a muscarinic type 1 (M1) receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O2 ·-production in CAMs. Consistently, the OXO-induced intracellular O2 ·-production was markedly inhibited by CD38 shRNA or CD38 inhibitor nicotinamide in CD38+/+ CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O2 ·- production, whereas Nox1 siRNA attenuated both intracellular and extracellular O2 ·-production in CD38+/+ CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca2+ concentration and restored intracellular O2 ·-production in CD38-/- CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that CD38/cADPR pathway importantly controls Nox4-mediated intracellular O2 ·-production and that CD38-dependent intracellular O2

  9. α-Radioimmunotherapy with 213Bi-anti-CD38 immunoconjugates is effective in a mouse model of human multiple myeloma

    PubMed Central

    Blechert, Birgit; Gaertner, Florian C.; Gilbertz, Klaus-Peter; Fernandez, Vanesa; Bassermann, Florian; Endell, Jan; Boxhammer, Rainer; Leclair, Stephane; Vallon, Mario; Aichler, Michaela; Feuchtinger, Annette; Bruchertseifer, Frank; Morgenstern, Alfred; Essler, Markus

    2015-01-01

    In spite of development of molecular therapeutics, multiple myeloma (MM) is fatal in most cases. CD38 is a promising target for selective treatment of MM. We tested radioimmunoconjugates consisting of the α-emitter 213Bi coupled to an anti-CD38 MAb in preclinical treatment of MM. Efficacy of 213Bi-anti-CD38-MAb was assayed towards different MM cell lines with regard to induction of DNA double-strand breaks, induction of apoptosis and initiation of cell cycle arrest. Moreover, mice bearing luciferase-expressing MM xenografts were treated with 213Bi-anti-CD38-MAb. Therapeutic efficacy was monitored by bioluminescence imaging, overall survival and histology. 213Bi-anti-CD38-MAb treatment induced DNA damage which did not result in activation of the G2 DNA-damage-response checkpoint, but instead in mitotic arrest and subsequent mitotic catastrophe. The anti-tumor effect of 213Bi-anti-CD38-MAb correlated with the expression level of CD38 in each MM cell line. In myeloma xenografts, treatment with 213Bi-anti-CD38-MAb suppressed tumor growth via induction of apoptosis in tumor tissue and significantly prolonged survival compared to controls. The major organ systems did not show any signs of 213Bi-induced toxicity. Preclinical treatment of MM with 213Bi-anti-CD38-MAb turned out as an effective therapeutic option. PMID:25576914

  10. CD38 Expression in a Subset of Memory T Cells Is Independent of Cell Cycling as a Correlate of HIV Disease Progression

    PubMed Central

    Würsch, Daniela; Ormsby, Christopher E.; Romero-Rodríguez, Dámaris P.; Olvera-García, Gustavo; Zúñiga, Joaquín; Jiang, Wei; Pérez-Patrigeon, Santiago

    2016-01-01

    In order to determine if the expression of the activation marker CD38 can correlate with HIV disease progression independently of cycling, we performed a cluster-based multivariate correlation analysis of total circulating CD4+ T cell counts and viral loads with frequencies of CD38 and Ki67 expression on CD4+ lymphocytes from patients with untreated HIV infection, stratified in maturation subpopulations, and subpopulation subsets defined by the expression of CXCR5, CXCR3, and CCR4. The frequencies of the activated phenotypes %CD38+ Ki67− and %CD38+ Ki67+ of the CXCR5− CXCR3− CCR4+ (“pre-Th2”) central memory (TCM) cell subset clustered together, comprising a significant negative correlate of total circulating CD4+ T cell counts and a positive correlate of viral load in multivariate analysis. Frequency of cycling-uncoupled CD38 expression in “pre-Th2” TCM cells was a negative correlate of total circulating CD4+ T cell counts in univariate analysis, which was not the case of their %CD38+ Ki67+. CXCR5+ CXCR3− CCR4−  TCM cells were underrepresented in patients, and their absolute counts correlated negatively with their %CD38+ Ki67− but not with their % CD38+ Ki67+. Our results may imply that CD38 expression either reflects or participates in pathogenic mechanisms of HIV disease independently of cell cycling. PMID:27064238

  11. Dominant enrichment of phenotypically activated CD38(+) HLA-DR(+) CD8(+) T cells, rather than CD38(+) HLA-DR(+) CD4(+) T cells, in HIV/HCV coinfected patients on antiretroviral therapy.

    PubMed

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Serafino, Sara; Giustini, Noemi; Cavallari, Eugenio Nelson; Bianchi, Luigi; Pavone, Paolo; Bellelli, Valeria; Turriziani, Ombretta; Antonelli, Guido; Stroffolini, Tommaso; Vullo, Vincenzo

    2016-08-01

    HIV infection may enhance immune-activation, while little is known regarding the role of HCV infection. This study investigates the impact of HCV in HIV coinfected patients with undetectable viraemia under HAART on the levels of peripheral T cell's immune-activation. We determined T lymphocytes subsets to characterize immune-activation defined as CD38 and/or HLA-DR expression in chronic monoinfected HCV, HIV, and HIV/HCV coinfected subjects. One hundred and fifty six patients were divided into three groups: (i) 77 HIV+ patients; (ii) 50 HCV+ patients; and (iii) 29 coinfected HIV/HCV patients. The level of CD4(+) was significantly higher in HCV+ than in HIV+ or in coinfected HIV/HCV subjects. The frequencies of CD4(+) CD38(+) /HLA-DR(-) , CD4(+) CD38(-) /HLA-DR(+) and CD4(+) CD38(+) /HLA-DR(+) in HIV+ patients were comparable to those measured in coinfected patients, but statistically higher than those observed in HCV+ subjects. The percentage of CD8(+) was comparable in HIV-1+ patients and coinfected HIV/HCV but the results obtained in both groups were significantly higher compared to the results obtained in HCV patients. The level of CD8(+) CD38(+) /HLA-DR(-) showed values lower in HIV+ patients than in that monoinfected HCV and coinfected HIV/HCV patients. The frequencies of CD8(+) CD38(-) /HLA-DR(+) were higher in HIV+ patients compared to HCV+ and coinfected HIV/HCV patients. HIV/HCV coinfected group showed highest levels of CD8(+) CD38(+) /HLA-DR(+) . HIV plays a pivotal role to determine the immune activation in the host. The role of HCV needs of further investigations but our data show that HCV mainly influences the immune-activation of the pool of CD8, but also probably plays a supporting additive effect on CD4 immune-activation. J. Med. Virol. 88:1347-1356, 2016. © 2016 Wiley Periodicals, Inc. PMID:26765625

  12. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines.

    PubMed

    Zheng, Danwei; Liao, Shan; Zhu, Guangchao; Luo, Gengqiu; Xiao, Songshu; He, Junyu; Pei, Zhen; Li, Guiyuan; Zhou, Yanhong

    2016-03-01

    Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line. PMID:25630761

  13. Genetic variation in CD38 and breastfeeding experience interact to impact infants’ attention to social eye cues

    PubMed Central

    Krol, Kathleen M.; Monakhov, Mikhail; Lai, Poh San; Ebstein, Richard P.; Grossmann, Tobias

    2015-01-01

    Attending to emotional information conveyed by the eyes is an important social skill in humans. The current study examined this skill in early development by measuring attention to eyes while viewing emotional faces in 7-mo-old infants. In particular, we investigated individual differences in infant attention to eyes in the context of genetic variation (CD38 rs3796863 polymorphism) and experiential variation (exclusive breastfeeding duration) related to the oxytocin system. Our results revealed that, whereas infants at this age show a robust fear bias (increased attention to fearful eyes), their attention to angry and happy eyes varies as a function of exclusive breastfeeding experience and genetic variation in CD38. Specifically, extended exclusive breastfeeding duration selectively enhanced looking preference to happy eyes and decreased looking to angry eyes. Importantly, however, this interaction was impacted by CD38 variation, such that only the looking preferences of infants homozygous for the C allele of rs3796863 were affected by breastfeeding experience. This genotype has been associated with reduced release of oxytocin and higher rates of autism. In contrast, infants with the CA/AA genotype showed similar looking preferences regardless of breastfeeding exposure. Thus, differences in the sensitivity to emotional eyes may be linked to an interaction between the endogenous (CD38) and exogenous (breastfeeding) availability of oxytocin. These findings underline the importance of maternal care and the oxytocin system in contributing to the early development of responding to social eye cues. PMID:26371313

  14. Genetic variation in CD38 and breastfeeding experience interact to impact infants' attention to social eye cues.

    PubMed

    Krol, Kathleen M; Monakhov, Mikhail; Lai, Poh San; Ebstein, Richard P; Grossmann, Tobias

    2015-09-29

    Attending to emotional information conveyed by the eyes is an important social skill in humans. The current study examined this skill in early development by measuring attention to eyes while viewing emotional faces in 7-mo-old infants. In particular, we investigated individual differences in infant attention to eyes in the context of genetic variation (CD38 rs3796863 polymorphism) and experiential variation (exclusive breastfeeding duration) related to the oxytocin system. Our results revealed that, whereas infants at this age show a robust fear bias (increased attention to fearful eyes), their attention to angry and happy eyes varies as a function of exclusive breastfeeding experience and genetic variation in CD38. Specifically, extended exclusive breastfeeding duration selectively enhanced looking preference to happy eyes and decreased looking to angry eyes. Importantly, however, this interaction was impacted by CD38 variation, such that only the looking preferences of infants homozygous for the C allele of rs3796863 were affected by breastfeeding experience. This genotype has been associated with reduced release of oxytocin and higher rates of autism. In contrast, infants with the CA/AA genotype showed similar looking preferences regardless of breastfeeding exposure. Thus, differences in the sensitivity to emotional eyes may be linked to an interaction between the endogenous (CD38) and exogenous (breastfeeding) availability of oxytocin. These findings underline the importance of maternal care and the oxytocin system in contributing to the early development of responding to social eye cues. PMID:26371313

  15. Activation of immobilized, biotinylated choleragen AI protein by a 19-kilodalton guanine nucleotide-binding protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Bobak, D A; Moss, J; Vaughan, M

    1989-09-19

    Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator. PMID:2514798

  16. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart

    PubMed Central

    Reyes, Levy A.; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J.; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L.

    2015-01-01

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP+, coincided with formation of 2’-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes. PMID:26297248

  17. Expression and purification of the recombinant His-tagged GST-CD38 fusion protein using the baculovirus/insect cell expression system.

    PubMed

    Khoo, Keng Meng; Chang, Chan Fong; Schubert, Jeffrey; Wondrak, Ewald; Chng, Hiok Hee

    2005-04-01

    CD38 is a type II transmembrane glycoprotein found in myriad mammalian tissues and cell types. It is known for its involvement in the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. CD38 itself has been shown to have clinical significance in certain diseases with possible utilization in diagnostic and prognostic applications. Previous studies on several autoimmune diseases have shown the usefulness of recombinant CD38 protein expressed from Escherichia coli and Pichia pastoris in the detection of autoantibodies to CD38 via Western blot and ELISA. In this study, we produced a 6 x His-tagged GST-CD38 fusion protein using a recombinant baculovirus/insect cell expression technique that was purified as a soluble protein. The fusion protein was purified to homogeneity by affinity and gel filtration chromatography steps. It has an apparent molecular mass of 56 kDa on SDS-PAGE gel stained with Coomassie blue and was recognized on Western blots by antibodies against human CD38 as well as the polyhistidine tag. Peptide mass fingerprinting analysis confirmed the identity of human CD38 in the fusion protein. PMID:15766882

  18. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.

    PubMed

    Pogue, Sarah L; Taura, Tetsuya; Bi, Mingying; Yun, Yong; Sho, Angela; Mikesell, Glen; Behrens, Collette; Sokolovsky, Maya; Hallak, Hussein; Rosenstock, Moti; Sanchez, Eric; Chen, Haiming; Berenson, James; Doyle, Anthony; Nock, Steffen; Wilson, David S

    2016-01-01

    Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. PMID:27611189

  19. CD38 Ligation in Peripheral Blood Mononuclear Cells of Myeloma Patients Induces Release of Protumorigenic IL-6 and Impaired Secretion of IFNγ Cytokines and Proliferation

    PubMed Central

    Fedele, Giorgio; Di Girolamo, Marco; Recine, Umberto; Palazzo, Raffaella; Urbani, Francesca; Horenstein, Alberto L.; Malavasi, Fabio; Ausiello, Clara Maria

    2013-01-01

    CD38, a surface receptor that controls signals in immunocompetent cells, is densely expressed by cells of multiple myeloma (MM). The immune system of MM patients appears as functionally impaired, with qualitative and quantitative defects in T cell immune responses. This work answers the issue whether CD38 plays a role in the impairment of T lymphocyte response. To this aim, we analyzed the signals implemented by monoclonal antibodies (mAb) ligation in peripheral blood mononuclear cells (PBMC) obtained from MM patients and compared to benign monoclonal gammopathy of undetermined significance (MGUS). PBMC from MM both failed to proliferate and secrete IFNγ induced by CD38 ligation while it retained the ability to respond to TCR/CD3. The impaired CD38-dependent proliferative response likely reflects an arrest in the progression of cell cycle, as indicated by the reduced expression of PCNA. CD38 signaling showed an enhanced ability to induce IL-6 secretion. PBMC from MM patients displays a deregulated response possibly due to defects of CD38 activation pathways and CD38 may be functionally involved in the progression of this pathology via the secretion of high levels of IL-6 that protects neoplastic cells from apoptosis. PMID:24489445

  20. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia

    PubMed Central

    Rassenti, Laura Z.; Jain, Sonia; Keating, Michael J.; Wierda, William G.; Grever, Michael R.; Byrd, John C.; Kay, Neil E.; Brown, Jennifer R.; Gribben, John G.; Neuberg, Donna S.; He, Feng; Greaves, Andrew W.; Rai, Kanti R.

    2008-01-01

    Leukemia-cell expression of ZAP-70, CD38, or unmutated immunoglobulin heavy chain variable region genes (U-IGHV) each is associated with aggressive disease in patients with chronic lymphocytic leukemia (CLL). To assess the relative strength of each marker, we defined thresholds for designating a case as positive for CD38 or ZAP-70 in a test cohort of 307 patients and used these data-defined criteria to stratify patients in an independent cohort of 705 patients. Multivariable analysis revealed that ZAP-70 was the strongest risk factor. Knowledge of the IGHV mutation status or CD38 did not improve our ability to predict the time to first treatment except for ZAP-70–negative cases, which could be segregated into 2 groups of intermediate-risk or low-risk disease based on whether they expressed unmutated or mutated IGHV. ZAP-70 maintained its high relative prognostic value for the subset of patients with early-stage, asymptomatic disease, including patients evaluated within 1 year of diagnosis. Although it is premature to recommend therapy based on these risk factors, patients with ZAP-70–positive CLL cells should be monitored closely for disease progression as they have a median time from diagnosis to requiring initial therapy by standard criteria of approximately 3 years. PMID:18577710

  1. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation

    PubMed Central

    Chillemi, Antonella; Quarona, Valeria; Zaccarello, Gianluca; Carrega, Paolo; Ferlazzo, Guido; Mingari, Maria Cristina; Moretta, Lorenzo

    2015-01-01

    Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD+. Melanoma cells inhibited T cell proliferation through an ADO-dependent mechanism, since such inhibition was reverted using CD38/CD73 specific inhibitors. Melanoma cells abolished the function of effector memory, central memory and reduced naïve CD4+ T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4+ T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8+ T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role. PMID:26329660

  2. CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway

    PubMed Central

    Guan, Xiao-Hui; Liu, Xiao-Hong; Hong, Xuan; Zhao, Ning; Xiao, Yun-Fei; Wang, Ling-Fang; Qian, Yi-Song; Deng, Ke-Yu; Ji, Guangju; Fu, Mingui

    2016-01-01

    Ischemia/reperfusion (I/R) injury induces irreversible oxidative stress damage to the cardiac muscle. We previously observed that CD38 deficiency remarkably protects mouse embryonic fibroblasts (MEFs) from oxidative stress-induced injury. However, whether CD38 deficiency protects from I/R injury in the heart is not explored. Here, we showed that the hearts of CD38 deficient mice or wild type mice supplied with exogenous NAD were significantly protected from ischemia/reperfusion injury, seen as reduction of the myocardial infarct sizes when the mice were subjected to 30 min ischemia followed by 24 hours of reperfusion. Consistently, the protection of CD38 deficiency on hypoxia/reoxygenation (H/R) injury was confirmed with a CD38 knockdown H9c2 stable cell line. Furthermore, we observed that knockdown of CD38 remarkably inhibited ROS generation and intracellular Ca2+ overloading induced by H/R in H9c2 cells. The FOXO1 and FOXO3 expressions were significantly elevated by H/R injury in CD38 knockdown cells compared with normal H9c2 cells. The cell immunofluorescence assay showed that FOXO1 nuclear translocation was significantly increased in CD38 knockdown H9c2 cells. In addition, we demonstrated that the increase of FOXO1 nuclear translocation was associated with the increased expressions of antioxidant catalase and SOD2 and the attenuated expression of the ROS generation enzyme NOX4. In conclusion, our results provide new evidence that CD38 deficiency protects the heart from I/R injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. PMID:27547294

  3. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2015-01-01

    The MHC class-I like molecule CD1d presents glycolipid antigens and thereby activates invariant natural killer-T (NKT) cells. However, little is understood regarding the regulation of its expression. All-trans-retinoic acid (RA) and CD38, which is itself a target of RA, both independently regulate the differentiation of antigen presenting cells. In the current study, we treated human THP-1 cells and murine splenic cells with RA, with and without antibody-mediated ligation of cell-surface CD38. Whereas a physiological concentration (20 nM) of RA alone rapidly and markedly increased CD1d protein in THP-1 cells, there was a marked synergy between RA and ligation of CD38 with antibody to CD38. Moreover, RA and CD38 ligation differentially regulated CD1d protein distribution between the cell surface and intracellular compartments, as, whereas RA mainly increased intracellular CD1d protein, ligation of CD38 increased CD1d protein both at the cell surface and intracellularly. By confocal microscopy, CD1d was located close to the plasma membrane but only partially overlapped with LAMP1, a late endosomes/lysosomal marker. Furthermore, RA and/or CD38 ligation increased splenocyte proliferation and differentiation after treatment with the CD1 ligand α-galactosylceramide (αGalCer), evidenced by an increase in the number of splenic dendritic cells, NKT cells, and germinal center plasmacytes. RA also differentially regulated αGalCer-induced cytokine expression, increasing IL-4 and decreasing IFNγ production by total spleen cells and the NKT cell population. Our results indicate a previously unknown mechanism in which RA and CD38 differentially yet cooperatively regulate CD1d expression and antigen-presenting function, which could be important for the enhancement of immunity. PMID:25248321

  4. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited.

    PubMed

    Lupo, Barbara; Trusolino, Livio

    2014-08-01

    Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics. PMID:25026313

  5. Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly-ADP-ribosylation

    PubMed Central

    Thomas, Colin J.; Kotova, Elena; Andrake, Mark; Adolf-Bryfogle, Jared; Glaser, Robert; Regnard, Catherine; Tulin, Alexei V.

    2014-01-01

    SUMMARY Dynamically controlled post-translational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating Poly(ADP-ribose) Polymerase 1 (PARP-1). JIL-1 phosphorylates the C-terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1 dependent genes. PMID:24508391

  6. Studies on protein poly(ADP-ribosylation) using high resolution gel electrophoresis.

    PubMed

    Boulikas, T

    1990-08-25

    Analysis of poly(ADP-ribose) synthesized in cellular lysates or in isolated nuclei on 100-cm-long thin gels of 20% polyacrylamide, 2.5 M urea permits determination of the exact size of poly(ADP-ribose) molecules using labeled oligonucleotides as molecular weight markers. The size and concentration of poly(ADP-ribose) molecules increase at time intervals during its synthesis. Differences in the concentration of poly(ADP-ribose) size classes among cell lines are also shown. Inhibition of poly(ADP-ribose) degradation by ethacridine that directly interacts with the polymer and inhibits its hydrolysis by poly(ADP-ribose) glycohydrolase shows a dramatic increase in both polymer size and concentration. Use of alkaline conditions for the hydrolysis of poly(ADP-ribose)-protein linkages reveals a specific shortening of all size classes of poly(ADP-ribose) compared with its size in preparations obtained by extensive digestion of nuclei with nucleases, RNases, and proteases. PMID:2167322

  7. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    SciTech Connect

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  8. Human CD38hiCD138+ Plasma Cells Can Be Generated In Vitro from CD40-Activated Switched-Memory B Lymphocytes

    PubMed Central

    Itoua Maïga, Rayelle; Tremblay Rochette, Josiane; Néron, Sonia

    2014-01-01

    B lymphocyte differentiation into long-lived plasma cells is the keystone event for the production of long-term protective antibodies. CD40-CD154 and CD27-CD70 interactions are involved in human B lymphocyte differentiation into CD38hiCD138+ cells in vivo as well as in vitro. In this study, we have compared these interactions in their capacity to drive switched-memory B lymphocytes differentiation into CD38hiCD138+ plasma cells. The targeted B lymphocytes were isolated from human peripheral blood, expanded for 19 days, and then submitted to CD70 or CD154 interactions for 14 days. The expanded B lymphocytes were constitutively expressing CD39, whereas CD31's expression was noticed only following the in vitro differentiation step (day 5) and was exclusively present on the CD38hi cell population. Furthermore, the generated CD38hiCD138+ cells showed a higher proportion of CD31+ cells than the CD38hiCD138− cells. Besides, analyses done with human blood and bone marrow plasma cells showed that in vivo and de novo generated CD38hiCD138+ cells have a similar CD31 expression profile but are distinct according to their reduced CD39 expression level. Overall, we have evidences that in vitro generated plasma cells are heterogeneous and appear as CD39+ precursors to the ones present in bone marrow niches. PMID:25759831

  9. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome.

    PubMed

    Escande, Carlos; Nin, Veronica; Price, Nathan L; Capellini, Verena; Gomes, Ana P; Barbosa, Maria Thereza; O'Neil, Luke; White, Thomas A; Sinclair, David A; Chini, Eduardo N

    2013-04-01

    Metabolic syndrome is a growing health problem worldwide. It is therefore imperative to develop new strategies to treat this pathology. In the past years, the manipulation of NAD(+) metabolism has emerged as a plausible strategy to ameliorate metabolic syndrome. In particular, an increase in cellular NAD(+) levels has beneficial effects, likely because of the activation of sirtuins. Previously, we reported that CD38 is the primary NAD(+)ase in mammals. Moreover, CD38 knockout mice have higher NAD(+) levels and are protected against obesity and metabolic syndrome. Here, we show that CD38 regulates global protein acetylation through changes in NAD(+) levels and sirtuin activity. In addition, we characterize two CD38 inhibitors: quercetin and apigenin. We show that pharmacological inhibition of CD38 results in higher intracellular NAD(+) levels and that treatment of cell cultures with apigenin decreases global acetylation as well as the acetylation of p53 and RelA-p65. Finally, apigenin administration to obese mice increases NAD(+) levels, decreases global protein acetylation, and improves several aspects of glucose and lipid homeostasis. Our results show that CD38 is a novel pharmacological target to treat metabolic diseases via NAD(+)-dependent pathways. PMID:23172919

  10. Multisite comparison of methods for the quantitation of the surface expression of CD38 on CD8(+) T lymphocytes. The ACTG Advanced Flow Cytometry Focus Group.

    PubMed

    Schmitz, J L; Czerniewski, M A; Edinger, M; Plaeger, S; Gelman, R; Wilkening, C L; Zawadzki, J A; Wormsley, S B

    2000-06-15

    We evaluated the effect of specimen processing variations and quantitation methods on quantitative determination of CD38 expression on CD8 T lymphocytes. Neither lysing reagent (ammonium chloride versus BD FACSlyse), fixation (paraformaldehyde versus no final fixation step), nor acquisition delay (acquisition within 6 h after fixation versus 24 h after fixation) had a significant effect on CD38 relative fluorescent intensity or CD38 quantitative estimates (RFI or antibodies bound per cell). The only significant difference in fluorescent intensity and CD38 antibodies bound per cell (ABC) was encountered when whole blood was held for 24 h prior to staining and fixation and then acquired after another 24-h hold. However, for all sample processing methods above, the CD4 biologic calibrator and QuantiBRITE bead methods gave significantly different estimates of CD38 intensity. In many cases, however, these differences are relatively small and were more pronounced in certain laboratories. We conclude that there is some flexibility in sample processing methods for quantitative CD38 determination; however, it is preferable for a laboratory to employ one method of fluorescence quantitation calculation consistently because small differences are detected between different methods. Cytometry (Comm. Clin. Cytometry) 42:174-179, 2000. PMID:10861690

  11. Computational study on the conformations of CD38 and inclusion complexes of some lower-size large-ring cyclodextrins

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko; Atanassov, Emanouil; Jaime, Carlos

    2014-01-01

    The conformations of CD38 were examined by conformational search with molecular dynamics simulations using the Glycam04 force field. The results were compared with previous ones for CD26, the largest cyclodextrin for which crystal data are available. Principal component analysis (PCA) was applied for post-processing of the simulation trajectories. Limited number of modes determine the overall deformations of the macroring of CD38. The longer perimeter of the macroring allowed the formation of a form not observed so far - a three-turn helix shaped as a short tube. In analogy with CD26, significant participation was monitored for conformations of CD38 with one-turn spirals at the opposite sides of the macroring linked together from the 'bottom' and from the 'top' with extended bridge spacers. Computationally were examined for the first time inclusion complexes of some lower-size LR-CDs, namely complexes of CDn (n = 13, 14, 26) with adamantane and of CD14 with 1-hydroxyadamantane. The macroring conformation of CD13 was not altered by the inclusion of the substrate molecule which acquired preferred positioning not in the middle of the cavity but rather close to the glucose residues at one of the sides. The same positioning of the small molecule in the cavity of the more flexible CD14 macroring enhanced the appearance of bent onto two conformation of this cyclodextrin. The most interesting behaviour presented the complex of CD26 with adamantane in which case the small molecule acts as a 'nucleation center' for the formation of a second helical turn about the substrate molecule.

  12. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport.

    PubMed

    Song, Eun-Kyung; Rah, So-Young; Lee, Young-Rae; Yoo, Chae-Hwa; Kim, Yu-Ri; Yeom, Ji-Hyun; Park, Kwang-Hyun; Kim, Jong-Suk; Kim, Uh-Hyun; Han, Myung-Kwan

    2011-12-30

    The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD(+). cADPR increases intracellular Ca(2+) through the intracellular ryanodine receptor/Ca(2+) release channel (RyR). It has been known that intracellular NAD(+) approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD(+). Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD(+) export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD(+)/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD(+) and importing cADPR into the cell to activate intracellular calcium mobilization. PMID:22033928

  13. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation.

    PubMed

    Morandi, Fabio; Morandi, Barbara; Horenstein, Alberto L; Chillemi, Antonella; Quarona, Valeria; Zaccarello, Gianluca; Carrega, Paolo; Ferlazzo, Guido; Mingari, Maria Cristina; Moretta, Lorenzo; Pistoia, Vito; Malavasi, Fabio

    2015-09-22

    Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD(+ )T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4(+) T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8(+) T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role. PMID:26329660

  14. CD38, CD81 and BAFFR combined expression by transitional B cells distinguishes active from inactive systemic lupus erythematosus.

    PubMed

    Henriques, Ana; Silva, Isabel; Inês, Luís; Souto-Carneiro, M Margarida; Pais, M Luísa; Trindade, Hélder; da Silva, José António Pereira; Paiva, Artur

    2016-05-01

    In view of its heterogeneous presentation and unpredictable course, clinical management of systemic lupus erythematosus (SLE) is difficult. There is a need for biomarkers and diagnostic aids to monitor SLE disease activity and severity prior to, during and after treatment. We undertook this study to search for unique phenotypic patterns in each peripheral blood (PB) B cell subset, capable of distinguishing SLE patients with inactive disease versus SLE patients with active disease versus controls by using an automated population separator (APS) visualization strategy. PB was collected from 41 SLE patients and 28 age- and gender-matched controls. We analyzed the cell surface markers (in a tube CD20/CD27/CD19/CD45/CD38/CD81/BAFFR combination) expression on PB B cell subsets using principal component analysis, implemented in the APS software tool. Overall, our analysis indicates that active SLE can be distinguished from inactive SLE on the basis of a single tube analysis, focused on the decreased expression of CD38, CD81 and BAFFR in transitional B cells. The cluster analysis of immunophenotypic profiles of B cell subsets highlighted disease-specific abnormalities on transitional B cells that emerge as promising surrogate markers for disease activity. Further validation is needed with larger samples and prospective follow-up of patients. PMID:25894569

  15. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.

    PubMed

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S; Verbist, Bie; Bald, Jaime; Plesner, Torben; Syed, Khaja; Liu, Kevin; van de Donk, Niels W C J; Weiss, Brendan M; Ahmadi, Tahamtan; Lokhorst, Henk M; Mutis, Tuna; Sasser, A Kate

    2016-07-21

    Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8(+) PB T-cell counts. Depletion of CD38(+) immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. PMID:27222480

  16. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    PubMed Central

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S.; Verbist, Bie; Bald, Jaime; Plesner, Torben; Syed, Khaja; Liu, Kevin; van de Donk, Niels W. C. J.; Weiss, Brendan M.; Ahmadi, Tahamtan; Lokhorst, Henk M.; Mutis, Tuna

    2016-01-01

    Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab’s effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8+:CD4+ and CD8+:Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8+ PB T-cell counts. Depletion of CD38+ immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. PMID:27222480

  17. c-Cbl Interacts with CD38 and Promotes Retinoic Acid–Induced Differentiation and G0 Arrest of Human Myeloblastic Leukemia Cells

    PubMed Central

    Shen, Miaoqing; Yen, Andrew

    2016-01-01

    Retinoic acid (RA) is known to regulate cell growth and differentiation. In HL-60 human myeloblastic leukemia cells, it causes mitogen-activated protein kinase (MAPK) signaling leading to myeloid differentiation and G0 cell cycle arrest. This communication reports that expression of the Cbl adaptor caused enhanced extracellular signal-regulated kinase 2 activation and promoted RA-induced differentiation and G0-arrest. Stable transfectants ectopically expressing c-Cbl underwent myeloid differentiation faster than wild-type (wt) cells when treated with RA. In contrast, c-Cbl knockdown stable transfectants differentiated slower than wt cells when treated with RA. Cells ectopically expressing c-Cbl had enhanced CD38 expression when treated with RA, and cells ectopically expressing CD38 had enhanced c-Cbl expression, even without with RA, suggesting an interaction between c-Cbl and CD38. Fluorescence resource energy transfer and coimmunoprecipitation showed that c-Cbl and CD38 bind each other. RA causes the gradual down-regulation and eventual loss of c-Cbl expression, resulting in loss of the Cbl-CD38 interaction, suggesting that c-Cbl plays a relatively early role in promoting RA-induced differentiation. RA-induced differentiation can thus be propelled by c-Cbl and by CD38, both of which bind together, enhance the expression of each other, and cause MAPK signaling. There thus seems to be a cooperative role for c-Cbl and CD38, reflected in their direct binding, in propulsion of RA-induced differentiation. PMID:18974118

  18. [TLR9 expression is positively correlated with the levels of CD38, HLA-DR and CD95 on peripheral blood mononuclear cells in chronic HBV infected patients].

    PubMed

    Mao, Xuefeng; Peng, Lishan; Liu, Xian; Yang, Yang; Wang, Qihui; Wang, Dengrong; Xiao, Jian; Leng, Jing

    2016-05-01

    Objective To explore the relationship between the expression of TLR9 and the levels of CD38, HLA-DR and CD95 on peripheral blood mononuclear cells (PBMCs) of chronic hepatitis B virus (HBV) infected patients. Methods70 chronic HBV infected patients and 12 healthy donors were enrolled in this study, and density gradient centrifugation was used to isolate PBMCs from peripheral blood with EDTA for anticoagulation. Flow cytometry was used to detect the levels of TLR9, CD38, HLA-DR and CD95 on PBMCs. Results Compared to the healthy donors, chronic HBV infected patients with low viral load or high viral load had significantly higher levels of TLR9, HLA-DR and CD95 on PMBCs. Furthermore, the co-expression rates of TLR9 and CD38, HLA-DR, CD95 on PBMCs were obviously higher than those of the healthy donors. Correlation analysis showed that the expression of TLR9 was positively correlated with CD38 (r=0.345), HLA-DR (r=0.334), CD95 (r=0.227) on PBMCs in the patients with chronic HBV infection. Conclusion The expression of TLR9 increased and was positively associated with CD38, HLA-DR and CD95 on PBMCs during chronic HBV infection. PMID:27126946

  19. Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2005-10-01

    Vitamin A and its active metabolite, all-trans retinoic acid (RA), regulate the antibody response in vivo, although the underlying mechanisms are not well understood. We have investigated the regulation by RA of B cell population dynamics and Ig gene expression in purified splenic mouse B cells stimulated through the B cell antigen receptor (BCR) and/or CD38, a BCR coreceptor. After ligation of the BCR and/or CD38, B cells became more heterogeneous in size. RA substantially restrained this change, concomitant with inhibition of cell proliferation. To examine B cell heterogeneity more closely, we categorized stimulated B cells by size (forward angle light scatter) and determined cell division dynamics, germ-line Ig heavy chain gene transcription and surface IgG1 (sIgG1) expression. Flow cytometric analysis of carboxyfluorescein diacetate succinimidyl ester-labeled B cells costained for sIgG1 showed that the more proliferative groups of B cells were smaller, whereas cells expressing more sIgG1 were larger. RA enriched the latter population, whereas cell division frequency in general and the number of smaller B cells that had undergone division cycles were reduced. Although RA significantly inhibited Ig germ-line transcript levels in the total B cell population, CD19(-)IgG1(+) B cells, which represent a more differentiated phenotype, were enriched. Furthermore, pax-5 mRNA was decreased and activation-induced cytidine deaminase mRNA was increased in RA-treated stimulated B cells. Thus, RA regulated factors known to be required for Ig class switch recombination and modulated the population dynamics of ligation-stimulated B cells, while promoting the progression of a fraction of B cells into differentiated sIgG-expressing cells. PMID:16093312

  20. The relationship of HLA-DR, CD38 and CD71 markers to activation, proliferation and differentiation of some human leukemia and lymphoma cells.

    PubMed

    Glasová, M; Koníková, E; Stasáková, J; Babusíková, O

    1998-01-01

    We investigated the expression-percentage as well as MESF values ("molecules of equivalent soluble fluorochrom" that represent approximately the density of marker expression) of HLA-DR, CD71 and CD38 markers in some human leukemias (ALL, AML, CLL, CML) and lymphomas. They are non-lineage restricted and are supposed to be activation markers except for cases where they represent pathological phenotype like HLA-DR in pre B-ALL, CD38 in some M0 AML or in plasmocytoma or CD38 and CD71 in less mature T-ALL. We used flow cytometry, immunofluorescent staining, DNA staining by propidium iodide and quantification by calibration particles. We demonstrated increased MESF values of HLA-DR compared with controls in all investigated disorders, what could have a prognostic value. We demonstrated significantly higher MESF values of HLA-DR in cALL (37,300-46,000) in comparison with AML (9400-12,400), what could represent another important parameter when distinguishing between these two groups of leukemia. In cells of CML patients with lower CD38% and CD71% increased MESF values (5100 for CD38 and 7900 for CD71), were found while in some T-ALL, AML and cALL patients with high percentages of CD71 and CD38 there were lower MESF values what could indicate a possible connection of higher stage of cell maturation with increased density of CD38 and CD71 markers. We investigated possible relationship between percentage of expression of HLA-DR, CD38 and CD71 and proliferation rate by DNA analysis of the cell cycle. In a group of non-Hodgkin's lymphoma patients, there was no significant increase of proliferation index of malignant cells compared with control. The correlation between percentage of expression of mentioned parameters and proliferation index was not significant. In one patient with Burkitt's lymphoma we demonstrated significant increase of proliferation index of CD71+ subpopulation compared with CD71- one, what indicates that in aggressive form of NHL CD71 can be evaluated not

  1. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase.

    PubMed Central

    Roelofs, J; Snippe, H; Kleineidam, R G; Van Haastert, P J

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase. PMID:11237875

  2. Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein.

    PubMed Central

    Tsai, S C; Noda, M; Adamik, R; Moss, J; Vaughan, M

    1987-01-01

    Choleragen activates adenylate cyclase by catalyzing, in the presence of NAD, the ADP-ribosylation of Gs alpha, the stimulatory guanyl nucleotide-binding protein of the cyclase system. Kahn and Gilman [Kahn, R. A. & Gilman, A. G. (1986) J. Biol. Chem. 261, 7906-7911] identified another guanyl nucleotide-binding protein termed ADP-ribosylation factor (ARF) that stimulated this reaction. It was proposed that the toxin substrate is an ARF-Gs alpha complex and that ARF may have a physiological role in regulation of Gs alpha activity. We have found that purified ARF from bovine brain enhances not only the ADP-ribosylation of Gs alpha but also Gs alpha-independent choleragen-catalyzed reactions. These are (i) ADP-ribosylation of agmatine, a low molecular weight guanidino compound; (ii) ADP-ribosylation of several proteins unrelated to Gs alpha; and (iii) auto-ADP-ribosylation of the toxin A1 peptide. These reactions, as well as the ADP-ribosylation of ARF itself, were stimulated by GTP or stable GTP analogues such as guanyl-5'-yl imido-beta gamma-diphosphate and guanosine 5'-O-[gamma-thio]triphosphate; GDP and guanosine 5'-O-[beta-thio]diphosphate were inactive. These observations are consistent with the conclusion that ARF interacts directly with the A subunit of choleragen in a GTP-dependent fashion thereby enhancing catalytic activity manifest as transfer of ADP-ribose to Gs alpha and other proteins, to the toxin A1 peptide, or to agmatine. It is tempting to speculate that ARF may be involved in regulating one or another of the ADP-ribosyltransferases found in animal cells. Images PMID:3110784

  3. Monoclonal antibody 1.6.1 against human MPL receptor allows HSC enrichment of CB and BM CD34(+)CD38(-) populations.

    PubMed

    Petit Cocault, Laurence; Fleury, Maud; Clay, Denis; Larghero, Jérôme; Vanneaux, Valérie; Souyri, Michèle

    2016-04-01

    Thrombopoietin (TPO) and its receptor Mpl (CD110) play a crucial role in the regulation of hematopoietic stem cells (HSCs). Functional study of Mpl-expressing HSCs has, however, been hampered by the lack of efficient monoclonal antibodies, explaining the very few data available on Mpl(+) HSCs during human embryonic development and after birth. Investigating the main monoclonal antibodies used so far to sort CD110(+) cells from cord blood (CB) and adult bone marrow (BM), we found that only the recent monoclonal antibody 1.6.1 engineered by Immunex Corporation was specific. Using in vitro functional assays, we found that this antibody can be used to sort a CD34(+)CD38(-)CD110(+) population enriched in hematopoietic progenitor stem cells, both in CB and in adult BM. In vivo injection into NSG mice further indicated that the CB CD34(+)CD38(-)CD110(+) population is highly enriched in HSCs compared with both CD34(+)CD38(-)CD110(-) and CD34(+)CD38(-) populations. Together our results validate MAb1.6.1 as an important tool, which has so far been lacking, in the HSC field. PMID:26733047

  4. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL).

    PubMed

    Del Giudice, I; Davis, Z; Matutes, E; Osuji, N; Parry-Jones, N; Morilla, A; Brito-Babapulle, V; Oscier, D; Catovsky, D

    2006-07-01

    B-prolymphocytic leukemia (B-PLL) is a rare disease with poor prognosis. To further characterize the biological features of this disease, we analyzed immunoglobulin heavy chain (IgVH) mutations, ZAP-70 and CD38 in 19 cases with de novo B-PLL. Immunoglobulin heavy chain genes analysis showed an unmutated pattern (>98% homology to germ line) in 9/17 cases (53%), with 100% homology in eight. In the remaining, it ranged from 90 to 97.4%, with three cases slightly mutated (98-95%) and five heavily mutated (<95%). All B-PLL utilized members of VH3 (11/17) and VH4 (6/17) families, with V3-23, V4-59 and V4-34 gene accounting for more than half of them, regardless of mutational status. ZAP-70, assessed by flow cytometry, ranged from 1 to 91% cells, being > or =20% in 57% of cases. CD38 ranged from 1 to 99% (median 21%). There was no correlation between IgVH status and ZAP-70 or CD38 expression, but male gender and del(17p) were more common in the unmutated group. Neither IgVH mutations, CD38 expression nor del(17p) influenced patients' outcome. Unexpectedly, ZAP-70+ B-PLL patients survived longer (40 months) than ZAP-70- B-PLL (8 months). B-PLL appears biologically heterogeneous regarding IgVH mutations, ZAP-70 and CD38 expression, showing a pattern distinct from that of other lymphoproliferative disorders. PMID:16642047

  5. Percentage of Peripheral CD19+CD24hiCD38hi Regulatory B Cells in Neonatal Sepsis Patients and Its Functional Implication

    PubMed Central

    Pan, Xiao; Ji, Zuoquan; Xue, Jiang

    2016-01-01

    Background As a major cause of mortality in neonates, neonatal sepsis is often accompanied by immune dysfunctions, which are frequently caused by dysregulated T cell sub-populations. The role of regulatory B cells in neonatal sepsis, however, remains unknown. Therefore, this study investigated the percentage and functional variation of CD19+CD24hiCD38hi regulatory B cells in peripheral blood of neonatal sepsis patients in an attempt to elucidate the role of these regulatory B cells in pathogenesis of sepsis. Material/Methods Flow cytometry was used to quantify the percentage of CD19+CD24hiCD38hi regulatory B cells from peripheral blood samples. The correlation between B cell percentage and C reactive protein (CRP) level was analyzed. Secretion level of interleukin-10 (IL-10) and effects on the proliferation of naïve CD4+ T cells were further analyzed. Results The percentage of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis patients was significantly higher compared to healthy controls (p<0.05), and was positively correlated with serum CRP level. The percentage of IL-10+ CD19+CD24hiCD38hi regulatory B cells was also higher in sepsis patients, and also had more potent inhibition on naïve CD4+ T cells (p<0.01). Conclusions The elevation of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis can inhibit body immune function and thus may participate in the pathogenesis of sepsis. PMID:27389933

  6. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1990-05-16

    Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin. PMID:2112955

  7. cADP-ribose formation by blood platelets is not responsible for intracellular calcium mobilization.

    PubMed Central

    Ohlmann, P; Leray, C; Ravanat, C; Hallia, A; Cassel, D; Cazenave, J P; Gachet, C

    1998-01-01

    Human platelet CD38 is a multifunctional ectoenzyme catalysing the synthesis and hydrolysis of cADP-ribose (cADPR), a recently identified calcium-mobilizing agent that acts independently of D-myo-inositol 1,4,5-trisphosphate and is known to be expressed by human platelets. The present work shows that ADP-ribosyl cyclase activity is exclusively a membrane activity, of which the major part is located in plasma membranes and a small part in internal membranes. In broken cells, cyclase activity was insensitive to the presence of calcium and was not modulated by agonists such as thrombin or ADP, whereas in intact cells thrombin increased cADPR formation by 30%, an effect due to fusion of granules with the plasma membrane. In order to assess the role of cADPR as a calcium-mobilizing agent, vesicles were prepared from internal membranes and loaded with 45CaCl2. These vesicles were efficiently discharged by IP3 in a dose-dependent manner, but were not responsive to cADPR or ryanodine in the presence or absence of calmodulin. Thus cADPR is unlikely to play a role in intracellular calcium release in human blood platelets. PMID:9531481

  8. Guanylyl cyclase structure, function and regulation

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies. PMID:21914472

  9. Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude.

    PubMed

    Algoe, Sara B; Way, Baldwin M

    2014-12-01

    Oxytocin is thought to play a central role in promoting close social bonds via influence on social interactions. The current investigation targeted interactions involving expressed gratitude between members of romantic relationships because recent evidence suggests gratitude and its expression provides behavioral and psychological 'glue' to bind individuals closer together. Specifically, we took a genetic approach to test the hypothesis that social interactions involving expressed gratitude would be associated with variation in a gene, CD38, which has been shown to affect oxytocin secretion. A polymorphism (rs6449182) that affects CD38 expression was significantly associated with global relationship satisfaction, perceived partner responsiveness and positive emotions (particularly love) after lab-based interactions, observed behavioral expression of gratitude toward a romantic partner in the lab, and frequency of expressed gratitude in daily life. A separate polymorphism in CD38 (rs3796863) previously associated with plasma oxytocin levels and social engagement was also associated with perceived responsiveness in the benefactor after an expression of gratitude. The combined influence of the two polymorphisms was associated with a broad range of gratitude-related behaviors and feelings. The consistent pattern of findings suggests that the oxytocin system is associated with solidifying the glue that binds adults into meaningful and important relationships. PMID:24396004

  10. The A-myb gene is preferentially expressed in tonsillar CD38+, CD39-, and sIgM- B lymphocytes and in Burkitt's lymphoma cell lines.

    PubMed

    Golay, J; Erba, E; Bernasconi, S; Peri, G; Introna, M

    1994-07-15

    The A-myb gene is structurally related to the c-mby proto-oncogene, a transcription factor involved in the regulation of hemopoietic proliferation and differentiation. Recent evidence has shown that A-myb also functions as a transcriptional activator. We have previously demonstrated that A-myb RNA is not expressed in most mature human leukocytes at rest or after mitogenic or functional activation. We show here, by using cell sorting, PCR, and Western analyses that A-myb is most highly expressed in the subsets of human tonsillar B lymphocytes with the phenotypes CD38+, CD39-, and SIgM-. The preferential expression of A-myb in these populations was seen at both the RNA and protein levels. CD38 was consistently best at separating high from low A-myb-expressing cells, whereas other markers (CD10, 22, 23, 77, 11a, and 49d) did not correlate with A-myb expression. The CD38+ population expressing the highest levels of A-myb was shown to contain mostly cycling cells inasmuch as more than 95% were in the late G1, S, G2, and M phases of the cell cycle. In addition, A-myb expression always correlated with the percentage of cells in S/G2/M in the populations sorted with either CD38, CD39, or sIgM. Small resting tonsillar B lymphocytes induced to proliferate in vitro by several different polyclonal B cell activators did not, however, express detectable levels of A-myb, although these cells were demonstrated to express CD38 and enter the S/G2/M phases of the cell cycle. These data suggest that A-myb is a marker of in vivo-activated but not in vitro-activated B lymphocytes. Finally, A-myb was also found to be highly expressed in five of seven Burkitt's lymphoma lines and in none of three EBV lymphoblastoid cell lines. This finding is in agreement with the phenotype of the normal B cells that express high levels of A-myb in vivo and suggests that A-myb may be specifically induced within germinal center B cells. PMID:8021494

  11. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice

    PubMed Central

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i) that seems to trigger OT release can be elevated by β-NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than those

  12. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice.

    PubMed

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca(2+)]i) that seems to trigger OT release can be elevated by β-NAD(+), cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD(+) metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca(2+)]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than

  13. All-trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-delta.

    PubMed

    Uruno, Akira; Noguchi, Naoya; Matsuda, Ken; Nata, Koji; Yoshikawa, Takeo; Chikamatsu, Youichiro; Kagechika, Hiroyuki; Harigae, Hideo; Ito, Sadayoshi; Okamoto, Hiroshi; Sugawara, Akira

    2011-08-01

    ATRA and a synthetic RAR agonist tamibarotene (Am80) induce granulocytic differentiation of human acute leukemia HL-60 cells and have been used in antineoplastic therapy. ATRA induces CD38 antigen during HL-60 cell differentiation, which interacts with CD31 antigen on the vascular EC surface and may induce disadvantages in the therapy. We here examined the mechanisms of the ATRA-mediated CD38 induction and compared the difference between ATRA- and tamibarotene-mediated induction. Tamibarotene-induced HL-60 cell adhesion to ECs was 38% lower than ATRA, and NB4 cell adhesion to ECs by tamibarotene was equivalent to ATRA, which induced CD38 gene transcription biphasically in HL-60 cells, the early-phase induction via DR-RARE containing intron 1, and the delayed-phase induction via RARE lacking the 5'-flanking region. In contrast to ATRA, tamibarotene induced only the early-phase induction, resulting in its lower CD38 induction than ATRA. A PKCδ inhibitor, rottlerin, and siRNA-mediated PKCδ knockdown suppressed the ATRA-induced CD38 promoter activity of the 5'-flanking region, whereas a RAR antagonist, LE540, or RAR knockdown did not affect it. Cycloheximide and rottlerin suppressed the delayed-phase induction of CD38 expression by ATRA but did not affect the early-phase induction. Moreover, ATRA, but not tamibarotene, induced PKCδ expression without affecting its mRNA stability. The diminished effect of tamibarotene on CD38-mediated HL-60 cell adhesion to ECs compared with ATRA is likely a result of the lack of its delayed-phase induction of CD38 expression, which may be advantageous in antineoplastic therapy. PMID:21393419

  14. CD56brightCD16- NK Cells Produce Adenosine through a CD38-Mediated Pathway and Act as Regulatory Cells Inhibiting Autologous CD4+ T Cell Proliferation.

    PubMed

    Morandi, Fabio; Horenstein, Alberto L; Chillemi, Antonella; Quarona, Valeria; Chiesa, Sabrina; Imperatori, Andrea; Zanellato, Silvia; Mortara, Lorenzo; Gattorno, Marco; Pistoia, Vito; Malavasi, Fabio

    2015-08-01

    Recent studies suggested that human CD56(bright)CD16(-) NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56(dim)CD16(+) and CD56(bright)CD16(-) NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56(bright)CD16(-) than in CD56(dim)CD16(+) NK cells. CD57 was mostly expressed by CD56(dim)CD16(+) NK cells. CD203a/PC-1 expression was restricted to CD56(bright)CD16(-) NK cells. CD56(bright)CD16(-) NK cells produce ADO and inhibit autologous CD4(+) T cell proliferation. Such inhibition was 1) reverted pretreating CD56(bright)CD16(-) NK cells with a CD38 inhibitor and 2) increased pretreating CD56(bright)CD16(-) NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56(bright)CD16(-) NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4(+) T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56(bright)CD16(-) NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56(bright)CD16(-) NK cells act as "regulatory cells" through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases. PMID:26091716

  15. Insights into the Mechanism of Bovine CD38/NAD+Glycohydrolase from the X-Ray Structures of Its Michaelis Complex and Covalently-Trapped Intermediates

    PubMed Central

    Egea, Pascal F.; Muller-Steffner, Hélène; Kuhn, Isabelle; Cakir-Kiefer, Céline; Oppenheimer, Norman J.; Stroud, Robert M.; Kellenberger, Esther; Schuber, Francis

    2012-01-01

    Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants

  16. In vitro expansion of CD34(+)CD38(-) cells under stimulation with hematopoietic growth factors on AGM-S3 cells in juvenile myelomonocytic leukemia.

    PubMed

    Sakashita, K; Kato, I; Daifu, T; Saida, S; Hiramatsu, H; Nishinaka, Y; Ebihara, Y; Ma, F; Matsuda, K; Saito, S; Hirabayashi, K; Kurata, T; Uyen, L T N; Nakazawa, Y; Tsuji, K; Heike, T; Nakahata, T; Koike, K

    2015-03-01

    Using serum-containing culture, we examined whether AGM-S3 stromal cells, alone or in combination with hematopoietic growth factor(s), stimulated the proliferation of CD34(+) cells from patients with juvenile myelomonocytic leukemia (JMML). AGM-S3 cells in concert with stem cell factor plus thrombopoietin increased the numbers of peripheral blood CD34(+) cells to approximately 20-fold of the input value after 2 weeks in nine JMML patients with either PTPN11 mutations or RAS mutations, who received allogeneic hematopoietic transplantation. Granulocyte-macrophage colony-stimulating factor (GM-CSF) also augmented the proliferation of JMML CD34(+) cells on AGM-S3 cells. The expansion potential of CD34(+) cells was markedly low in four patients who achieved spontaneous hematological improvement. A large proportion of day-14-cultured CD34(+) cells were negative for CD38 and cryopreservable. Cultured JMML CD34(+)CD38(-) cells expressed CD117, CD116, c-mpl, CD123, CD90, but not CXCR4, and formed GM and erythroid colonies. Day-7-cultured CD34(+) cells from two of three JMML patients injected intrafemorally into immunodeficient mice stimulated with human GM-CSF after transplantation displayed significant hematopoietic reconstitution. The abilities of OP9 cells and MS-5 cells were one-third and one-tenth, respectively, of the value obtained with AGM-S3 cells. Our culture system may provide a useful tool for elucidating leukemogenesis and for therapeutic approaches in JMML. PMID:25102944

  17. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer

    PubMed Central

    Wang, Weiwei; Yuan, Xiangliang; Chen, Hui; Xie, Guohua; Ma, Yanhui; Zheng, Yingxia; Zhou, Yunlan; Shen, Lisong

    2015-01-01

    Regulatory B cells (Bregs) play a critical role in inflammation and autoimmune disease. We characterized the role of Bregs in the progression of gastric cancer. We detected an increase in Bregs producing IL-10 both in peripheral blood mononuclear cells (PBMCs) and in gastric tumors. Multicolor flow cytometry analysis revealed that a subset of CD19+CD24hiCD38hi B cells produces IL-10. Functional studies indicated that increased Bregs do not inhibit the proliferation of CD3+T cells or CD4+ helper T cells (Th cells). However, Bregs do suppress the secretion of IFN-γ and TNF-α by CD4+Th cells. CD19+CD24hiCD38hiBregs were also found to correlate positively with CD4+FoxP3+ regulatory T cells (Tregs). Neutralization experiments showed that Bregs convert CD4+CD25− effector T cells to CD4+FoxP3+Tregs via TGF-β1. Collectively, these findings demonstrate that increased Bregs play a immunosuppressive role in gastric cancer by inhibiting T cells cytokines as well as conversion to Tregs. These results may provide new clues about the underlying mechanisms of immune escape in gastric cancer. PMID:26378021

  18. Low oxygen tension favored expansion and hematopoietic reconstitution of CD34(+) CD38(-) cells expanded from human cord blood-derived CD34(+) Cells.

    PubMed

    Wang, Ziyan; Du, Zheng; Cai, Haibo; Ye, Zhaoyang; Fan, Jinli; Tan, Wen-Song

    2016-07-01

    Oxygen tension is an important factor that regulates hematopoietic stem cells (HSCs) in both in vivo hematopoietic microenvironment and ex vivo culture system. Although the effect of oxygen tension on ex vivo expansion of HSCs was extensively studied, there were no clear descriptions on physiological function and gene expression analysis of HSCs under different oxygen tensions. In this study, the effects of oxygen tension on ex vivo expansion characteristics of human umbilical cord blood (UCB)-derived CD34(+) cells are evaluated. Moreover, the physiological function of expanded CD34(+) cells was assessed by secondary expansion ability ex vivo and hematopoietic reconstitution ability in vivo. Also, genetic profiling was applied to analyze the expression of genes related to cell function. It was found that low oxygen tension favored expansion of CD34(+) CD38(-) cells. Additionally, CD34(+) cells expanded under low oxygen tension showed better secondary expansion ability and reconstitution ability than those under atmospheric oxygen concentration. Finally, the genetic profiling of CD34(+) CD38(-) cells cultured under low oxygen tension was more akin to freshly isolated cells. These results collectively demonstrate that low oxygen tension was able to better maintain both self-renewal and hematopoietic reconstitution potential and may lay an experimental basis for clinical transplantation of HSCs. PMID:26997358

  19. The contributions of oxytocin and vasopressin pathway genes to human behavior.

    PubMed

    Ebstein, Richard P; Knafo, Ariel; Mankuta, David; Chew, Soo Hong; Lai, Poh San

    2012-03-01

    Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22245314

  20. Quantitation of CD38 activation antigen expression on CD8+ T cells in HIV-1 infection using CD4 expression on CD4+ T lymphocytes as a biological calibrator.

    PubMed

    Hultin, L E; Matud, J L; Giorgi, J V

    1998-10-01

    For some membrane-associated antigens, the number of molecules expressed per cell carries information about the cell's differentiation and activation state. Quantitating antigen expression by flow cytometry has immediate application in monitoring CD38 expression on CD8+ T cells in human immunodeficiency virus 1-associated disease, where elevated CD38 antigen expression is a marker of CD8+ T-cell activation and a poor prognostic indicator. Reproducible methods are needed in order to quantify such antigens. Here we describe a reproducible method for quantitative fluorescence cytometry (QFCM) that depends on the tightly regulated expression of CD4 antigen on human CD4+ T lymphocytes, which we estimated in a study of 57 normal donors to have an interperson coefficient of variation of 4.9%. Using phycoerythrin (PE)-conjugated CD4 monoclonal antibody (mAb) with a nominal fluorochrome to protein ratio of 1:1 and a nominal published value of approximately 50,000 CD4 antibody molecules bound per CD4+ T lymphocyte, we estimated the number of PE molecules detected per relative fluorescence intensity (RFI) unit on our flow cytometer to be 41 (19, 20). This value is called the "RFI multiplier." To estimate the number of CD38 antibodies bound per CD8+ T cell (CD38-ABC) on patient samples, we multiply the measured CD38 RFI value of CD38 staining using a nominal 1:1 conjugate of CD38-PE by the "RFI multiplier." The measurements for CD4 and CD38 were stable for 2 years despite the use of different mAb lots and the potential for drift in instrumentation. We used this approach in a study of nine flow cytometers in which the interinstrument interlaboratory coefficients of variation for CD3-ABC ranged from 3.3% to 5.8% and those for CD38-ABC ranged from 9.8% to 13.8%. These data indicate that CD4 expression can serve as a biological calibrator to standardize fluorescence intensity measurements in longitudinal and multicenter studies. PMID:9773872

  1. T. vaginalis Infection Is Associated with Increased IL-8 and TNFr1 Levels but with the Absence of CD38 and HLADR Activation in the Cervix of ESN

    PubMed Central

    Brady, Kirsten E.; Plants, Jill; Landay, Alan L.; Ghassemi, Mahmood; Golub, Elizabeth T.; Spear, Greg T.

    2015-01-01

    Introduction Trichomonas vaginalis infection is associated with an increased risk of HIV infection in exposed-seronegative women (ESN) despite their unique immune quiescent profile. It is important to understand possible mechanisms, such as recruitment of activated T cells, by which T. vaginalis could facilitate HIV infection in this population. Methods We conducted a cross-sectional study exploring the relationships between T. vaginalis infection, inflammatory markers and T cell activation in the cervix of ESN. During scheduled study visits, participants completed a behavioral questionnaire and physical exam, including sexually transmitted infection (STI) screening and collection of endocervical sponge and cytobrush specimens. T cell and monocyte phenotypes were measured in cervical cytobrush specimens using multi-parameter flow cytometry. Cervical sponge specimens were used to measure cytokines (IL-6, IL-8,IL-10, IP-10, RANTES) using Luminex immunoassays and the immune activation marker soluble TNF receptor 1 using ELISA. Results Specimens of 65 women were tested. Twenty-one of these women were infected with T. vaginalis. T. vaginalis infection was associated with significantly increased concentrations of IL-8 (1275pg/ml vs. 566pg/ml, p=.02) and sTNFr1 (430 pg/ml vs. 264 pg/ml, p=.005). However, T. vaginalis infection was not associated with increased percent expression of CCR5+ T cells nor increased CD38 and HLADR activation compared to uninfected women. It was also not associated with increased expression of CCR5+ monocytes. Conclusions Among ESN T. vaginalis infection is associated with increased levels of genital pro-inflammatory/immune activation markers IL-8 and TNFr1, but was not associated with an increased percentage of activated endocervical T cells along the CD38 and HLADR pathways. Thus, while T.vaginalis infection may result in some reversal of the immune quiescent profile of ESN, enhanced recruitment of activated CD38 and HLADR expressing CD4+ cells

  2. Synergistic and persistent effect of T-cell immunotherapy with anti-CD19 or anti-CD38 chimeric receptor in conjunction with rituximab on B-cell non-Hodgkin lymphoma.

    PubMed

    Mihara, Keichiro; Yanagihara, Kazuyoshi; Takigahira, Misato; Kitanaka, Akira; Imai, Chihaya; Bhattacharyya, Joyeeta; Kubo, Takanori; Takei, Yoshifumi; Yasunaga, Shin'ichiro; Takihara, Yoshihiro; Kimura, Akiro

    2010-10-01

    Using artificial receptors, it is possible to redirect the specificity of immune cells to tumour-associated antigens, which is expected to provide a useful strategy for cancer immunotherapy. Given that B-cell non-Hodgkin lymphoma (B-NHL) cells invariably express CD19 and CD38, these antigens may be suitable molecular candidates for such immunotherapy. We transduced human peripheral T cells or a T-cell line with either anti-CD19-chimeric receptor (CAR) or anti-CD38-CAR, which contained an anti-CD19 or anti-CD38 antibody-derived single-chain variable domain respectively. Retroviral transduction led to anti-CD19-CAR or anti-CD38-CAR expression in T cells with high efficiency (>60%). The T cell line, Hut78, when transduced with anti-CD19-CAR or anti-CD38-CAR, exerted strong cytotoxicity against the B-NHL cell lines, HT and RL, and lymphoma cells isolated from patients. Interestingly, use of both CARs had an additive cytotoxic effect on HT cells in vitro. In conjunction with rituximab, human peripheral T cells expressing either anti-CD19-CAR or anti-CD38-CAR enhanced cytotoxicity against HT-luciferase cells in xenografted mice. Moreover, the synergistic tumour-suppressing activity was persistent in vivo for over 2 months. These results provide a powerful rationale for clinical testing of the combination of rituximab with autologous T cells carrying either CAR on aggressive or relapsed B-NHLs. PMID:20678160

  3. Diterpene Cyclases and the Nature of the Isoprene Fold

    PubMed Central

    Cao, Rong; Zhang, Yonghui; Mann, Francis M.; Huang, Cancan; Mukkamala, Dushyant; Hudock, Michael P.; Mead, Matthew; Prisic, Sladjana; Wang, Ke; Lin, Fu-Yang; Chang, Ting-Kai; Peters, Reuben; Oldfield, Eric

    2013-01-01

    The structures and mechanism of action of many terpene cyclases are known, but there are no structures of diterpene cyclases. Here, we propose structural models based on bioinformatics, site-directed mutagenesis, domain swapping, enzyme inhibition and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ∼20 α-helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ-domain structure together with a third, α-domain, forming an αβγ structure, and in H+-initiated cyclases, there is an EDxxD-like Mg2+/diphosphate binding motif located in the γ-domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. PMID:20602361

  4. Reduced CD5(+) CD24(hi) CD38(hi) and interleukin-10(+) regulatory B cells in active anti-neutrophil cytoplasmic autoantibody-associated vasculitis permit increased circulating autoantibodies.

    PubMed

    Aybar, L T; McGregor, J G; Hogan, S L; Hu, Y; Mendoza, C E; Brant, E J; Poulton, C J; Henderson, C D; Falk, R J; Bunch, D O

    2015-05-01

    Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is B cell-dependent, although how particular B cell subsets modulate immunopathogenesis remains unknown. Although their phenotype remains controversial, regulatory B cells (Bregs ), play a role in immunological tolerance via interleukin (IL)-10. Putative CD19(+) CD24(hi) CD38(hi) and CD19(+) CD24(hi) CD27(+) Bregs were evaluated in addition to their CD5(+) subsets in 69 patients with ANCA-associated vasculitis (AAV). B cell IL-10 was verified by flow cytometry following culture with CD40 ligand and cytosine-phosphate-guanosine (CpG) DNA. Patients with active disease had decreased levels of CD5(+) CD24(hi) CD38(hi) B cells and IL-10(+) B cells compared to patients in remission and healthy controls (HCs). As IL-10(+) and CD5(+) CD24(hi) CD38(hi) B cells normalized in remission within an individual, ANCA titres decreased. The CD5(+) subset of CD24(hi) CD38(hi) B cells decreases in active disease and rebounds during remission similarly to IL-10-producing B cells. Moreover, CD5(+) B cells are enriched in the ability to produce IL-10 compared to CD5(neg) B cells. Together these results suggest that CD5 may identify functional IL-10-producing Bregs . The malfunction of Bregs during active disease due to reduced IL-10 expression may thus permit ANCA production. PMID:25376552

  5. Soluble Adenylyl Cyclase in Health and Disease

    PubMed Central

    Schmid, Andreas; Meili, Dimirela; Salathe, Matthias

    2014-01-01

    The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO3-, Ca2+ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. PMID:25064591

  6. Renal Transplant Recipients Treated with Calcineurin-Inhibitors Lack Circulating Immature Transitional CD19+CD24hiCD38hi Regulatory B-Lymphocytes

    PubMed Central

    Tebbe, Bastian; Wilde, Benjamin; Ye, Zeng; Wang, Junyu; Wang, Xinning; Jian, Fu; Dolff, Sebastian; Schedlowski, Manfred; Hoyer, Peter F.; Kribben, Andreas; Witzke, Oliver; Hoerning, André

    2016-01-01

    Background CD19+CD24hiCD38hi transitional immature B-lymphocytes have been demonstrated to play an important role in regulating the alloimmune response in transplant recipients. Here, we analyzed the effect of calcineurin inhibition on these peripherally circulating regulatory B-cells (Breg) in renal transplant recipients receiving cyclosporine A (CsA) or tacrolimus. Methods PBMCs from healthy subjects (HS) (n = 16) and renal transplant recipients (n = 46) were isolated. Flow cytometry was performed for CD19, CD24, CD38 and IL-10 either after isolation or after 72 hours of co-culture in presence of PMA/Ionomycin and TLR9-ligand in presence or absence of increasing concentrations of tacrolimus or CsA. Results The amount of CD19+ B-cells among lymphocytes was ∼9.1% in HS, ∼3.6% in CsA (n = 11, p<0.05) and ∼6.4% in TAC (n = 35, p<0.05) treated patients. Among B-cells, a distinct subset of Breg was found to be 4.7% in HS, 1.4% in tacrolimus treated patients and almost blunted in patients receiving CsA. Similarily, ∼4% of B-cells in HS and even fewer in CsA or tacrolimus treated patients produced IL-10 (0.5% and 1.5%, p<0.05) and this was confirmed both in non-transplanted CsA-treated healthy subjects and in in vitro co-culture experiments. Among 29 patients with <1% of Breg, 9 cases (31%) displayed an allograft rejection in contrast to only one case of rejection (6%) among 17 patients with >1%. Conclusion Calcineurin inhibitors reduce number and IL-10 production of Bregs in the peripheral circulation of both renal transplant recipients and non-transplanted healthy subjects. CNI induced Breg reduction is not restricted to a solid organ transplant setting and is not mediated by co-medication with steroids or MPA. A low proportion of Breg cells is associated with an elevated frequency of allograft rejection events. PMID:27045291

  7. Membrane guanylyl cyclase receptors: an update

    PubMed Central

    Garbers, David L.; Chrisman, Ted D.; Wiegn, Phi; Katafuchi, Takeshi; Albanesi, Joseph P.; Bielinski, Vincent; Barylko, Barbara; Redfield, Margaret M.; Burnett, John C.

    2007-01-01

    Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance. PMID:16815030

  8. Distinct serum proteome profiles associated with collagen-induced arthritis and complete Freund's adjuvant-induced inflammation in CD38⁻/⁻ mice: The discriminative power of protein species or proteoforms.

    PubMed

    Rosal-Vela, Antonio; García-Rodríguez, Sonia; Postigo, Jorge; Iglesias, Marcos; Longobardo, Victoria; Lario, Antonio; Merino, Jesús; Merino, Ramón; Zubiaur, Mercedes; Sancho, Jaime

    2015-10-01

    Collagen-type-II-induced arthritis (CIA) is an autoimmune disease, which involves a complex host systemic response including inflammatory and autoimmune reactions. CIA is milder in CD38(-/-) than in wild-type (WT) mice. ProteoMiner-equalized serum samples were subjected to 2D-DiGE and MS-MALDI-TOF/TOF analyses to identify proteins that changed in their relative abundances in CD38(-/-) versus WT mice either with arthritis (CIA(+) ), with no arthritis (CIA(-) ), or with inflammation (complete Freund's adjuvant (CFA)-treated mice). Multivariate analyses revealed that a multiprotein signature (n = 28) was able to discriminate CIA(+) from CIA(-) mice, and WT from CD38(-/-) mice within each condition. Likewise, a distinct multiprotein signature (n = 16) was identified which differentiated CIA(+) CD38(-/-) mice from CIA(+) WT mice, and lastly, a third multiprotein signature (n = 18) indicated that CD38(-/-) and WT mice could be segregated in response to CFA treatment. Further analyses showed that the discriminative power to distinguish these groups was reached at protein species level and not at the protein level. Hence, the need to identify and quantify proteins at protein species level to better correlate proteome changes with disease processes. It is crucial for plasma proteomics at the low-abundance protein species level to apply the ProteoMiner enrichment. All MS data have been deposited in the ProteomeXchange with identifiers PXD001788, PXD001799 and PXD002071 (http://proteomecentral.proteomexchange.org/dataset/PXD001788, http://proteomecentral.proteomexchange.org/dataset/PXD001799 and http://proteomecentral.proteomexchange.org/dataset/PXD002071). PMID:26175002

  9. Comparative analysis of plant lycopene cyclases.

    PubMed

    Koc, Ibrahim; Filiz, Ertugrul; Tombuloglu, Huseyin

    2015-10-01

    Carotenoids are essential isoprenoid pigments produced by plants, algae, fungi and bacteria. Lycopene cyclase (LYC) commonly cyclize carotenoids, which is an important branching step in the carotenogenesis, at one or both end of the backbone. Plants have two types of LYC (β-LCY and ϵ-LCY). In this study, plant LYCs were analyzed. Based on domain analysis, all LYCs accommodate lycopene cyclase domain (Pf05834). Furthermore, motif analysis indicated that motifs were conserved among the plants. On the basis of phylogenetic analysis, β-LCYs and ϵ-LCYs were classified in β and ϵ groups. Monocot and dicot plants separated from each other in the phylogenetic tree. Subsequently, Oryza sativa Japonica Group and Zea mays of LYCs as monocot plants and Vitis vinifera and Solanum lycopersicum of LYCs as dicot plants were analyzed. According to nucleotide diversity analysis of β-LCY and ϵ-LCY genes, nucleotide diversities were found to be π: 0.30 and π: 0.25, respectively. The result highlighted β-LCY genes showed higher nucleotide diversity than ϵ-LCY genes. LYCs interacting genes and their co-expression partners were also predicted using String server. The obtained data suggested the importance of LYCs in carotenoid metabolism. 3D modeling revealed that depicted structures were similar in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs. Likewise, the predicted binding sites were highly similar between O. sativa, Z mays, S. lycopersicum, and V. vinifera LCYs. Most importantly, analysis elucidated the V/IXGXGXXGXXXA motif for both type of LYC (β-LCY and ϵ-LCY). This motif related to Rossmann fold domain and probably provides a flat platform for binding of FAD in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs with conserved structure. In addition to lycopene cyclase domain, the V/IXGXGXXGXXXA motif can be used for exploring LYCs proteins and to annotate the function of unknown proteins containing lycopene cyclase

  10. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  11. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  12. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes

    PubMed Central

    Horenstein, Alberto L; Chillemi, Antonella; Zaccarello, Gianluca; Bruzzone, Santina; Quarona, Valeria; Zito, Andrea; Serra, Sara; Malavasi, Fabio

    2013-01-01

    The tumor microenvironment is characterized by of high levels of extracellular nucleotides that are metabolized through the dynamic and sequential action of cell surface enzymes (ectoenzymes). These ectoenzymes operate according to their spatial arrangement, as part of (1) continuous (molecules on the same cell) or (2) discontinuous (molecules on different cells) pathways, the latter being facilitated by restricted cellular microenvironment. The outcome of this catabolic activity is an increase in the local concentration of adenosine, a nucleoside involved in the control of inflammation and immune responses. The aim of the work presented here was to demonstrate that a previously unexplored enzymatic pathway may be an alternate route to produce extracellular adenosine. Our data show that this new axis is driven by the nucleotide-metabolizing ectoenzymes CD38 (an NAD+ nucleosidase), the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, also known as CD203a or PC-1) and the 5′ ectonucleotidase (5′-NT) CD73, while bypassing the canonical catabolic pathway mediated by the nucleoside tri- and diphosphohydrolase (NTPDase) CD39. To determine the relative contributions of these cell surface enzymes to the production of adenosine, we exploited a human T-cell model allowing for the modular expression of the individual components of this alternative pathway upon activation and transfection. The biochemical analysis of the products of these ectoenzymes by high-performance liquid chromatography (HPLC) fully substantiated our working hypothesis. This newly characterized pathway may facilitate the emergence of an adaptive immune response in selected cellular contexts. Considering the role for extracellular adenosine in the regulation of inflammation and immunogenicity, this pathway could constitute a novel strategy of tumor evasion, implying that these enzymes may represent ideal targets for antibody-mediated therapy. PMID:24319640

  13. Progesterone Levels Associate with a Novel Population of CCR5+CD38+ CD4 T Cells Resident in the Genital Mucosa with Lymphoid Trafficking Potential.

    PubMed

    Swaims-Kohlmeier, Alison; Haaland, Richard E; Haddad, Lisa B; Sheth, Anandi N; Evans-Strickfaden, Tammy; Lupo, L Davis; Cordes, Sarah; Aguirre, Alfredo J; Lupoli, Kathryn A; Chen, Cheng-Yen; Ofotukun, Igho; Hart, Clyde E; Kohlmeier, Jacob E

    2016-07-01

    The female genital tract (FGT) provides a means of entry to pathogens, including HIV, yet immune cell populations at this barrier between host and environment are not well defined. We initiated a study of healthy women to characterize resident T cell populations in the lower FGT from lavage and patient-matched peripheral blood to investigate potential mechanisms of HIV sexual transmission. Surprisingly, we observed FGT CD4 T cell populations were primarily CCR7(hi), consistent with a central memory or recirculating memory T cell phenotype. In addition, roughly half of these CCR7(hi) CD4 T cells expressed CD69, consistent with resident memory T cells, whereas the remaining CCR7(hi) CD4 T cells lacked CD69 expression, consistent with recirculating memory CD4 T cells that traffic between peripheral tissues and lymphoid sites. HIV susceptibility markers CCR5 and CD38 were increased on FGT CCR7(hi) CD4 T cells compared with blood, yet migration to the lymphoid homing chemokines CCL19 and CCL21 was maintained. Infection with GFP-HIV showed that FGT CCR7(hi) memory CD4 T cells are susceptible HIV targets, and productive infection of CCR7(hi) memory T cells did not alter chemotaxis to CCL19 and CCL21. Variations of resident CCR7(hi) FGT CD4 T cell populations were detected during the luteal phase of the menstrual cycle, and longitudinal analysis showed the frequency of this population positively correlated to progesterone levels. These data provide evidence women may acquire HIV through local infection of migratory CCR7(hi) CD4 T cells, and progesterone levels predict opportunities for HIV to access these novel target cells. PMID:27233960

  14. Cooperative substrate binding by a diguanylate cyclase.

    PubMed

    Oliveira, Maycon C; Teixeira, Raphael D; Andrade, Maxuel O; Pinheiro, Glaucia M S; Ramos, Carlos H I; Farah, Chuck S

    2015-01-30

    XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo. PMID:25463434

  15. Functional non-nucleoside adenylyl cyclase inhibitors.

    PubMed

    Lelle, Marco; Hameed, Abdul; Ackermann, Lisa-Maria; Kaloyanova, Stefka; Wagner, Manfred; Berisha, Filip; Nikolaev, Viacheslav O; Peneva, Kalina

    2015-05-01

    In this study, we describe the synthesis of novel functional non-nucleoside adenylyl cyclase inhibitors, which can be easily modified with thiol containing biomolecules such as tumour targeting structures. The linkage between inhibitor and biomolecule contains cleavable bonds to enable efficient intracellular delivery in the reductive milieu of the cytosol as well as in the acidic environment within endosomes and lysosomes. The suitability of this synthetic approach was shown by the successful bioconjugation of a poor cell-permeable inhibitor with a cell-penetrating peptide. Additionally, we have demonstrated the excellent inhibitory effect of the compounds presented here in a live-cell Förster resonance energy transfer-based assay in human embryonic kidney cells. PMID:25319071

  16. Adenylate cyclases involvement in pathogenicity, a minireview.

    PubMed

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed. PMID:23947014

  17. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  18. Immunohistochemical Localization of Guanylate Cyclase within Neurons of Rat Brain

    NASA Astrophysics Data System (ADS)

    Ariano, Marjorie A.; Lewicki, John A.; Brandwein, Harvey J.; Murad, Ferid

    1982-02-01

    The immunohistochemical localization of guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] has been examined in rat neocortex, caudate-putamen, and cerebellum by using specific monoclonal antibodies. Immunofluorescence could be seen within somata and proximal dendrites of neurons in these regions. A nuclear immunofluorescence reaction to guanylate cyclase was characteristically absent. The staining pattern for guanylate cyclase was coincident with previously described localizations of cyclic GMP immunofluorescence within medium spiny neurons of the caudate-putamen and pyramidal cells of the neocortex. Cerebellar guanylate cyclase immunoreactivity was primarily confined to Purkinje cells and their primary dendrites, similar to the pattern reported for cyclic GMP-dependent protein kinase localization. Guanylate cyclase immunofluorescence was abolished when the monoclonal antibodies were exposed to purified enzyme prior to incubation of the tissue slices or when control antibody was substituted for the primary antibody. Immunohistochemical localization of cyclic AMP in these same tissues was readily distinguished from that of guanylate cyclase or cyclic GMP, showing uniform fluorescence throughout the cell bodies of neurons and glial elements.

  19. Carnosine as a regulator of soluble guanylate cyclase.

    PubMed

    Severina, I S; Bussygina, O G; Pyatakova, N V

    2000-07-01

    The molecular mechanism of the participation of carnosine in the functioning of soluble guanylate cyclase is discussed. It is shown that carnosine inhibits the activation of soluble guanylate cyclase by sodium nitroprusside and a derivative of furoxan--1,2,5-oxadiazolo-trioxide (an NO donor). However, carnosine has no effect on stimulation of the enzyme by a structural analog of the latter compound, a furazan derivative (1,2,5-oxadiazolo-dioxide) that is not an NO donor; nor was carnosine involved in the enzyme activation by protoporphyrin IX, whose stimulatory effect is not associated with the guanylate cyclase heme. The inhibition by carnosine of guanylate cyclase activation by an NO donor is due to the interaction of carnosine with heme iron with subsequent formation of a chelate complex. It was first demonstrated that carnosine is a selective inhibitor of NO-dependent activation of guanylate cyclase and may be used for suppression of activity of the intracellular signaling system NO-soluble guanylate cyclase-cGMP, whose sharp increase is observed in malignant tumors, sepsis, septic shock, asthma, and migraine. PMID:10951096

  20. Circulating (CD3−CD19+CD20−IgD−CD27highCD38high) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy?

    PubMed Central

    Beukinga, Ingrid; Willard-Gallo, Karen; Nortier, Joëlle; Pradier, Olivier

    2016-01-01

    Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN. PMID:27493452

  1. The ΔC splice-variant of TRPM2 is the hypertonicity-induced cation channel in HeLa cells, and the ecto-enzyme CD38 mediates its activation

    PubMed Central

    Numata, Tomohiro; Sato, Kaori; Christmann, Jens; Marx, Romy; Mori, Yasuo; Okada, Yasunobu; Wehner, Frank

    2012-01-01

    Hypertonicity-induced cation channels (HICCs) are key-players in proliferation and apoptosis but their molecular correlate remains obscure. Furthermore, the activation profile of HICCs is not well defined yet. We report here that, in HeLa cells, intracellular adenosine diphosphate ribose (ADPr) and cyclic ADPr (cADPr), as supposed activators of TRPM2, elicited cation currents that were virtually identical to the osmotic activation of HICCs. Silencing of the expression of TRPM2 and of the ecto-enzyme CD38 (as a likely source of ADPr and cADPr) inhibited HICC as well as nucleotide-induced currents and, in parallel, the hypertonic volume response of cells (the regulatory volume increase, RVI) was attenuated. Quantification of intracellular cADPr levels and the systematic application of extra- vs. intracellular nucleotides indicate that the outwardly directed gradient rather than the cellular activity of ADPr and cADPr triggers TRPM2 activation, probably along with a simultaneous biotransformation of nucleotides. Cloning of TRPM2 identified the ΔC-splice variant as the molecular correlate of the HICC, which could be strongly supported by a direct comparison of the respective Ca2+ selectivity. Finally, immunoprecipitation and high-resolution FRET/FLIM imaging revealed the interaction of TRPM2 and CD38 in the native as well as in a heterologous (HEK293T) expression system. We propose transport-related nucleotide export via CD38 as a novel mechanism of TRPM2/HICC activation. With the biotransformation of nucleotides running in parallel, continuous zero trans-conditions are achieved which will render the system infinitely sensitive. PMID:22219339

  2. Novel hopanoid cyclases from the environment.

    PubMed

    Pearson, Ann; Flood Page, Sarah R; Jorgenson, Tyler L; Fischer, Woodward W; Higgins, Meytal B

    2007-09-01

    Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record. PMID:17686016

  3. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    PubMed

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  4. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption.

    PubMed

    Zaidi, Mone; Moonga, Baljit S; Huang, Christopher L H

    2004-02-01

    The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved

  5. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.

    PubMed Central

    Li, M; Dyda, F; Benhar, I; Pastan, I; Davies, D R

    1996-01-01

    The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles. Images Fig. 1 Fig. 3 PMID:8692916

  6. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.

    PubMed

    Sukhanova, Maria V; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M; Anarbaev, Rashid O; Curmi, Patrick A; Hamon, Loic; Lavrik, Olga I

    2016-04-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  7. The Poly(ADP-ribose) Polymerase Enzyme Tankyrase Antagonizes Activity of the β-Catenin Destruction Complex through ADP-ribosylation of Axin and APC2.

    PubMed

    Croy, Heather E; Fuller, Caitlyn N; Giannotti, Jemma; Robinson, Paige; Foley, Andrew V A; Yamulla, Robert J; Cosgriff, Sean; Greaves, Bradford D; von Kleeck, Ryan A; An, Hyun Hyung; Powers, Catherine M; Tran, Julie K; Tocker, Aaron M; Jacob, Kimberly D; Davis, Beckley K; Roberts, David M

    2016-06-10

    Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein β-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the β-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate β-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases β-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy. PMID:27068743

  8. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  9. Increased poly(ADP-ribosyl)ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment

    PubMed Central

    Oláh, Gábor; Finnerty, Celeste; Sbrana, Elena; Elijah, Itoro; Gerö, Domokos; Herndon, David; Szabó, Csaba

    2011-01-01

    Summary Activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) has been shown to promote cellular energetic collapse and cellular necrosis in various forms of critical illness. Most of the evidence implicating the PARP pathway in disease processes is derived from preclinical studies. With respect to PARP and burns, studies in rodent and large animal models of burn injury have demonstrated the activation of PARP in various tissues and the beneficial effect of its pharmacological inhibition. The aim of the current study was to measure the activation of PARP in human skeletal muscle biopsies at various stages of severe pediatric burn injury and to identify the cell types where this activation may occur. Another aim of the study was to test the effect of propranolol (an effective treatment of patients with burns), on the activation of PARP in skeletal muscle biopsies. PARP activation was measured by Western blotting for its product, poly(ADP-ribose) (PAR). The localization of PARP activation was determined by PAR immunohistochemistry. The results showed that PARP becomes activated in the skeletal muscle tissue after burns, with the peak of the activation occurring in the middle stage of the disease (13–18 days after burns). Even at the late stage of the disease (69–369 days post-burn) an elevated degree of PARP activation persisted in some of the patients. Immunohistochemical studies localized the staining of PAR primarily to vascular endothelial cells, and occasionally to resident mononuclear cells. There was a marked suppression of PARP activation in the skeletal muscle biopsies of patients who received propranolol treatment. We conclude that human burn injury is associated with the activation of PARP. We hypothesize that this response may contribute to the inflammatory responses and cell dysfunction in burns. Some of the clinical benefit of propranolol in burns may be related to its inhibitory effect on PARP activation. PMID:21368715

  10. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity.

    PubMed

    Cuvillier, A; Redon, F; Antoine, J C; Chardin, P; DeVos, T; Merlin, G

    2000-06-01

    The small G protein-encoding LdARL-3A gene, a homologue of the human ARL-3 gene, was isolated from Leishmania donovani, and its protein product characterised. It is unique in the Leishmania genome and expressed only in the extracellular promastigote insect form, but not in the intracellular amastigote mammalian form, as shown by northern blots and western blots developed with a specific anti-C terminus immune serum. Indirect immunofluorescence microscopy revealed distinct labelled spots regularly distributed on the plasma membrane, including the part lining the flagellum and the flagellar pocket. By transfection experiments, it was found that wild-type LdARL-3A-overexpressing promastigotes reached higher densities in culture, but released significantly less secreted acid phosphatase in the extracellular medium than the parental strain. When LdARL-3A blocked under the GDP-bound 'inactive' form or with an inactivated potential myristoylation site was overexpressed, the cells displayed an apparent wild-type phenotype, but died earlier in the stationary phase; in contrast to parental cells, they showed a diffuse pattern of fluorescence labelling in the cytoplasm and on the cell membrane. Strikingly, when a constitutively 'active' form of LdARL-3A (blocked under the GTP-bound form) was overexpressed, the promastigotes were immobile with a very short flagellum, a slow growth rate and a low level of acid phosphatase secretion; the length of the flagellum was inversely proportional to mutant protein expression. We concluded that LdARL-3A could be an essential gene involved in flagellum biogenesis; it may provide new approaches for control of the parasite at the insect stage. PMID:10806117

  11. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    SciTech Connect

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-08-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability.

  12. ADP-ribosylation factor-like 4C (ARL4C), a novel ovarian cancer metastasis suppressor, identified by integrated genomics

    PubMed Central

    Su, Dan; Katsaros, Dionyssios; Xu, Shenhua; Xu, Haiyan; Gao, Yun; Biglia, Nicoletta; Feng, Jianguo; Ying, Lisha; Zhang, Ping; Benedetto, Chiara; Yu, Herbert

    2015-01-01

    Understanding the molecular mechanisms involving the initiation, progression, and metastasis of ovarian cancer is important for the prevention, detection, and treatment of ovarian cancer. In this study, two ovarian cancer cell lines, HO-8910 and its derivative HO-8910PM with highly metastatic potential, were applied to comparative genomic hybridization (CGH) analysis. We found 14 chromosome fragments with different copy numbers between the two cell lines, one (2q36.1-37.3) of which was confirmed to be one-copy loss in HO-8910PM by fluorescent in situ hybridization (FISH). Using the microarray data on gene expression profiles from these cell lines, 6 significantly expression-decreased genes located on 2q36.1-37.3 in HO-8910PM were identified. Of the 6 genes, ARL4C was identified as a novel ovarian cancer-related gene using integrated molecular and genomic analyses. ARL4C mRNA expression was validated by quantitative PCR to be markedly decreased in HO-8910PM cells, compared to that in HO-8910. Both overexpression and knockdown of ARL4C demonstrated that low ARL4C expression promotes the migration but not influences proliferation capability of ovarian cancer cells in vitro, indicating its specific role in ovarian cancer progression. Furthermore, ovarian cancer patients with medium and high expression of ARL4C mRNA had a favorable prognosis compared to those with low expression, suggesting the ARL4C could be a potential predictor for ovarian cancer prognosis. PMID:25901194

  13. Neurohypophyseal Hormone-Responsive Adenylate Cyclase from Mammalian Kidney

    PubMed Central

    Douša, Thomas; Hechter, Oscar; Schwartz, Irving L.; Walter, Roderich

    1971-01-01

    The investigation was undertaken to evaluate the direct stimulatory effects of neurohypophyseal hormones upon adenylate cyclase activity in a cell-free, particulate fraction derived from the kidney medulla of various mammalian species. The relative affinity of neurohypophyseal hormones for the receptor component of the adenylate cyclase system (as defined by the concentration of hormone required for half-maximal stimulation) had the order [8-arginine]-vasopressin > [8-lysine]-vasopressin ≫ oxytocin (AVP > LVP ≫ OT) for rat, mouse, rabbit, and ox; in the pig, the order was LVP > AVP ≫ OT. The relative affinities of the three hormones in rat and pig cyclase systems were found to correspond with the relative antidiuretic potencies of these hormones in the intact rat and pig. These findings show that the renal receptor for neurohypophyseal hormones in a particular species exhibits the highest affinity for the specific antidiuretic hormone that occurs naturally in that species. Some of the molecular requirements for the stimulation of rabbit adenylate cyclase were defined by studies of several neurohypophyseal analogs possessing structural changes in positions 1, 2, 3, 4, 5, 8, and 9. This investigation introduces the particulate preparation of renal medullary adenylate cyclase as a tool for the analysis of neurohypophyseal hormone-receptor interactions and indicates that this preparation can be adapted to serve as an in vitro bioassay system for antidiuretic hormonal activity. PMID:4331557

  14. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    PubMed

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  15. Protein kinase C sensitizes olfactory adenylate cyclase.

    PubMed

    Frings, S

    1993-02-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  16. Identification of sea urchin sperm adenylate cyclase

    PubMed Central

    1990-01-01

    Calmodulin (CaM) affinity chromatography of a detergent extract of sea urchin sperm yielded approximately 20 major proteins. One of these proteins, of Mr 190,000, was purified and used to immunize rabbits. After absorption with living sperm, the serum reacted monospecifically on one- and two-dimensional Western immunoblots with the Mr 190,000 protein. The anti-190-kD serum inhibited 94% of the adenylate cyclase (AC) activity of the CaM eluate. An immunoaffinity column removed 95% of the AC activity, and the purified (but inactive) Mr 190,000 protein was eluted from the column. The antiserum also inhibited 23% of the activity of bovine brain CaM-sensitive AC and 90% of the activity of horse sperm CaM-sensitive AC. These data support the hypothesis that the Mr 190,000 protein is sea urchin sperm AC. Although this AC bound to CaM, it was not possible to demonstrate directly a Ca2+ or CaM sensitivity. However, two CaM antagonists, calmidazolium and chlorpromazine, both inhibited AC activity, and the inhibition was released by added CaM, suggesting the possibility of regulation of this AC by CaM. Indirect immunofluorescence showed the Mr 190,000 protein to be highly concentrated on only the proximal half of the sea urchin sperm flagellum. This asymmetric localization of AC may be important to its function in flagellar motility. This is the first report of the identification of an AC from animal spermatozoa. PMID:2121742

  17. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    PubMed

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field. PMID:27030537

  18. Regulation and organization of adenylyl cyclases and cAMP.

    PubMed Central

    Cooper, Dermot M F

    2003-01-01

    Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments. PMID:12940771

  19. Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells.

    PubMed

    Okamoto, Hiroshi; Takasawa, Shin

    2002-12-01

    Twenty years ago, we first proposed our hypothesis on beta-cell damage and its prevention (the Okamoto model), according to which poly(ADP-ribose) synthetase/polymerase (PARP) activation is critically involved in the consumption of NAD(+), leading to energy depletion and cell death by necrosis. Recently, the model was reconfirmed by results using PARP knockout mice and has been recognized as providing the basis for necrotic death of various cells and tissues. Based on the model, we proposed two signal systems in beta-cells: one is the CD38-cyclic ADP-ribose (cADPR) signal system for insulin secretion, and the other is the regenerating gene protein (Reg)-Reg receptor system for beta-cell regeneration. The physiological and pathological significance of the two signal systems in a variety of cells and tissues as well as in pancreatic beta-cells has recently been recognized. Here, we describe the Okamoto model and its descendents, the CD38-cADPR signal system and the Reg-Reg receptor system, focusing on recent advances and how their significance came to light. Because PARP is involved in Reg gene transcription to induce beta-cell regeneration, and the PARP activation reduces the cellular NAD(+) to decrease the formation of cADPR (a second messenger for insulin secretion) and further to cause necrotic beta-cell death, PARP and its inhibitors have key roles in the induction of beta-cell regeneration, the maintenance of insulin secretion, and the prevention of beta-cell death. PMID:12475791

  20. Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins.

    PubMed Central

    Lee, C M; Chang, P P; Tsai, S C; Adamik, R; Price, S R; Kunz, B C; Moss, J; Twiddy, E M; Holmes, R K

    1991-01-01

    Escherichia coli heat-labile enterotoxins (LT) are responsible in part for "traveler's diarrhea" and related diarrheal illnesses. The family of LTs comprises two serogroups termed LT-I and LT-II; each serogroup includes two or more antigenic variants. The effects of LTs result from ADP ribosylation of Gs alpha, a stimulatory component of adenylyl cyclase; the mechanism of action is identical to that of cholera toxin (CT). The ADP-ribosyltransferase activity of CT is enhanced by 20-kD guanine nucleotide-binding proteins, known as ADP-ribosylation factors or ARFs. These proteins directly activate the CTA1 catalytic unit and stimulate its ADP ribosylation of Gs alpha, other proteins, and simple guanidino compounds (e.g., agmatine). Because of the similarities between CT and LTs, we investigated the effects of purified bovine brain ARF and a recombinant form of bovine ARF synthesized in Escherichia coli on LT activity. ARF enhanced the LT-I-, LT-IIa-, and LT-IIb-catalyzed ADP ribosylation of agmatine, as well as the auto-ADP ribosylation of the toxin catalytic unit. Stimulation of ADP-ribosylagmatine formation by LTs and CT in the presence of ARF was GTP dependent and enhanced by sodium dodecyl sulfate. With agmatine as substrate, LT-IIa and LT-IIb exhibited less than 1% the activity of CT and LT-Ih. CT and LTs catalyzed ADP-ribosyl-Gs alpha formation in a reaction dependent on ARF, GTP, and dimyristoyl phosphatidylcholine/cholate. With Gs alpha as substrate, the ADP-ribosyltransferase activities of the toxins were similar, although CT and LT-Ih appeared to be slightly more active than LT-IIa and LT-IIb. Thus, LT-IIa and LT-IIb appear to differ somewhat from CT and LT-Ih in substrate specificity. Responsiveness to stimulation by ARF, GTP, and phospholipid/detergent as well as the specificity of ADP-ribosyltransferase activity are functions of LTs from serogroups LT-I and LT-II that are shared with CT. Images PMID:1902492

  1. High levels of CD34+CD38low/−CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucémies Aiguës et Maladies du Sang (GOELAMS) study

    PubMed Central

    Vergez, François; Green, Alexa S.; Tamburini, Jerome; Sarry, Jean-Emmanuel; Gaillard, Baptiste; Cornillet-Lefebvre, Pascale; Pannetier, Melanie; Neyret, Aymeric; Chapuis, Nicolas; Ifrah, Norbert; Dreyfus, François; Manenti, Stéphane; Demur, Cecile; Delabesse, Eric; Lacombe, Catherine; Mayeux, Patrick; Bouscary, Didier; Recher, Christian; Bardet, Valerie

    2011-01-01

    Background Acute myeloid leukemias arise from a rare population of leukemic cells, known as leukemic stem cells, which initiate the disease and contribute to frequent relapses. Although the phenotype of these cells remains unclear in most patients, these cells are enriched within the CD34+CD38low/− compartment expressing the interleukin-3 alpha chain receptor, CD123. The aim of this study was to determine the prognostic value of the percentage of blasts with the CD34+CD38low/−CD123+ phenotype. Design and Methods The percentage of CD34+CD38low/−CD123+ cells in the blast population was determined at diagnosis using flow cytometry. One hundred and eleven patients under 65 years of age with de novo acute myeloid leukemia and treated with intensive chemotherapy were retrospectively included in the study. Correlations with complete response, disease-free survival and overall survival were evaluated with univariate and multivariate analyses. Results A proportion of CD34+CD38low/−CD123+ cells greater than 15% at diagnosis and an unfavorable karyotype were significantly correlated with a lack of complete response. By logistic regression analysis, a percentage of CD34+CD38low/−CD123+ higher than 15% retained significance with an odds ratio of 0.33 (0.1–0.97; P=0.044). A greater than 1% population of CD34+CD38low/−CD123+ cells negatively affected disease-free survival (0.9 versus 4.7 years; P<0.0001) and overall survival (1.25 years versus median not reached; P<0.0001). A greater than 1% population of CD34+CD38low/−CD123+ cells retained prognostic significance for both parameters after multivariate analysis. Conclusions The percentage of CD34+CD38low/−CD123+ leukemic cells at diagnosis was significantly correlated with response to treatment and survival. This prognostic marker might be easily adopted in clinical practice to rapidly identify patients at risk of treatment failure. PMID:21933861

  2. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    SciTech Connect

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. )

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  3. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    SciTech Connect

    Rybin, V.O.; Gureeva, A.A.

    1986-05-10

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.

  4. Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin.

    PubMed

    Bennett, V; Cuatrecasas, P

    1975-06-01

    The kinetics and properties of the activation of adenylate cyclase by cholera enterotoxin have been examined primarily in toad erythrocytes, but also in avian erythrocytes, rat fat cells and cultured melanoma cells. When cholera toxin is incubated with intact cells it stimulates adenylate cyclase activity, as measured in the subsequently isolated plasma membranes, according to a triphasic time course. This consists of a true lag period of about 30 min, followed by a stage of exponentially increasing adenylate cyclase activity which continues for 110 to 130 min, and finally a period of slow activation which may extend as long as 30 hr in cultured melanoma cells. The progressive activation of adenylate cyclase activity by cholera toxin is interrupted by cell lysis; continued incubation of the isolated membranes under nearly identical conditions does not lead to further activation of the enzyme. The delay in the action of the toxin is not grossly dependent of the number of toxin-receptor (GM1 ganglioside) complexes, and is still seen upon adding a second dose of toxin to partially stimulated cells. Direct measurements indicate negligible intracellular levels of biologically active radioiodinated toxin in either a soluble or a nuclear-bound form. The effects are not prevented by Actinomycin D (20 mug/ml), uromycin (30 mug/ml), cycloheximide (30 mug/ml), sodium fluoride (10 mM) or sodium azide (1 mM); KCN, however, almost completely prevents the action of cholera toxin. The action of the toxin is temperature dependent, occurring at very slow or negligible rates below certain critical temperatures, the values of which depend on the specific animal species. Thetransition for toad erythrocytes occurs at 15 to 17 degrees C, while rat adipocytes and turkey erythrocytes demonstrate a discontinuity at 26 to 30 degrees C. The temperature effects are evident during the lag period as well as during the exponential phase of activation. The rate of decay of the stimulated adenylate

  5. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  6. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  7. Yeast mating pheromone alpha factor inhibits adenylate cyclase.

    PubMed Central

    Liao, H; Thorner, J

    1980-01-01

    The pheromone alpha factor, secreted by Saccharomyces cerevisiae cells of the alpha mating type, serves to synchronize the opposite mating type (a cells) at G1 as a prelude to fusion of the two cell types. We found that, in vitro, alpha factor inhibited the membrane-bound adenylate cyclase of these cells in a dose-dependent manner. Moreover, one class (ste5) of a cell mutants that grow normally at either 23 degrees or 34 degrees C but that are unable to respond to alpha factor or to mate at the higher temperature possessed an adenylate cyclase activity that was not inhibited by alpha factor at 34 degrees C but was fully sensitive to inhibition at 23 degrees C. Furthermore, addition of cyclic AMP to a cell culture medium shortened the period of pheromone-induced G1 arrest. We conclude that inhibition of adenylate cyclase activity by alpha factor may constitute, at least in part, the biochemical mode of action of the pheromone in vivo. PMID:6246513

  8. Requirements for the adenylyl cyclases in the development of Dictyostelium.

    PubMed

    Anjard, C; Söderbom, F; Loomis, W F

    2001-09-01

    It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl cyclase encoded by acrA has recently been found that functions in a cell autonomous fashion during late development. We have found that expression of a modified acaA gene rescues acrA- mutant cells indicating that the only role played by ACR is to produce cAMP. To determine whether cells lacking both adenylyl cyclase genes can develop when PKA is constitutive we disrupted acrA in a acaA- PKA-C(over) strain. When developed at high cell densities, acrA- acaA- PKA-C(over) cells form mounds, express cell type-specific genes at reduced levels and secrete cellulose coats but do not form fruiting bodies or significant numbers of viable spores. Thus, it appears that synthesis of cAMP is required for spore differentiation in Dictyostelium even if PKA activity is high. PMID:11566867

  9. Dephosphorylation of sperm guanylate cyclase during sea urchin fertilization

    SciTech Connect

    Ward, G.E.

    1985-01-01

    When intact Arbacia punctulata spermatozoa are exposed to solubilized egg jelly, the electrophoretic mobility of an abundant sperm flagellar membrane protein changes from an apparent molecular mass of 160 kDa to 150 kDa. A. punctulata spermatozoa can be labeled in vivo with /sup 32/P-labeled cells it was demonstrated that the mobility shift of the 160-kDa protein is due to dephosphorylation. The peptide resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH/sub 2/) is the component of egg jelly which is responsible for inducing the dephosphorylation. The 160/150-kdal sperm membrane protein has been purified to homogeneity by affinity chromatography on concanavalin A-agarose, and identified as sperm guanylate cyclase. The enzymatic activity of the guanylate cyclase is tightly coupled to its phosphorylation state. Resact has been shown to act as a potent chemoattractant for A. punctulata spermatozoa. The chemotactic response is concentration-dependent, is abolished by pretreatment of the spermatozoa with resact, and shows an absolute requirement for external calcium. This work represents the first demonstration of animal sperm chemotaxis in response to a precisely-defined molecule of egg origin. The results established a new, biologically meaningful function for resact, and may implicate sperm guanylate cyclase and cGMP in flagellar function and the chemotactic response.

  10. Adenylate cyclase mediates olfactory transduction for a wide variety of odorants.

    PubMed Central

    Lowe, G; Nakamura, T; Gold, G H

    1989-01-01

    An odor-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] is thought to mediate olfactory transduction in vertebrates. However, it is not known whether the adenylate cyclase serves this function for all odorants or for only certain classes of odorants. To investigate this question, we have compared the abilities of 35 odorants to stimulate the adenylate cyclase and to elicit an electrophysiological response. We report a strong positive correlation between the magnitude of adenylate cyclase stimulation and the summated electrical response of the olfactory epithelium (electro-olfactogram) evoked by individual odorants. We also show that the adenylate cyclase stimulator forskolin equally attenuates the electro-olfactogram response for all odorants tested. These data provide evidence that the adenylate cyclase mediates transduction for a wide variety of odorants. PMID:2787513

  11. High expression of CD38, CD69, CD95 and CD154 biomarkers in cultured peripheral T lymphocytes correlates with an increased risk of acute rejection in liver allograft recipients.

    PubMed

    Boix, Francisco; Millan, Olga; Segundo, David San; Mancebo, Esther; Rimola, Antoni; Fabrega, Emilio; Fortuna, Virginia; Mrowiec, Anna; Castro-Panete, Maria J; Peña, Jesus de la; Llorente, Santiago; Minguela, Alfredo; Bolarin, Jose M; Paz-Artal, Estela; Lopez-Hoyos, Marcos; Brunet, Mercé; Muro, Manuel

    2016-05-01

    The mayor goal still outstanding into the solid organ transplantation field involves the search of surrogate biomarkers able to predict several clinical events, such as acute rejection (AR) or opportunistic infection. In the present multicenter study, a series of interesting surface antigens with important activator or inhibitory immune functions on cultured peripheral T cells were monitored in liver transplant recipients drawn at baseline and up to one year after transplantation. Sixty-four patients were included in the multicenter study during 3 years. Pre- and post-transplantation surface antigens levels displayed significant differences between AR and non acute rejection (NAR) groups, and also this differential expression was used to construct a risk predictive model based on a composite panel of outcome biomarkers (CD38, CD69, CD95 and CD154). The model was able to stratify these patients at high risk of AR. These preliminary results could provide basic information to improve the immunosuppressive treatment and it might better help to predict AR episodes. PMID:26850323

  12. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  13. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS.

    PubMed

    Gonzalez, Sandra M; Taborda, Natalia A; Correa, Luis A; Castro, Gustavo A; Hernandez, Juan C; Montoya, Carlos J; Rugeles, Maria T

    2016-06-01

    The spontaneous control of HIV replication in HIV-controllers underlines the importance of these subjects for exploring factors related to delayed progression. Several studies have revealed fewer immune alterations and effector mechanisms related to viral control, mainly in peripheral blood, in these individuals compared to normal progressors. However, immune characterization of gut-associated lymphoid tissue (GALT), the major target of infection, has not been thoroughly explored in these subjects. We evaluated the following parameters in GALT samples from 11 HIV-controllers and 15 HIV-progressors: (i) frequency and activation phenotype of T cells; (ii) expression of transcription factors associated with immune response profiles; and (iii) frequency of apoptotic cells. Interestingly, HIV-controllers exhibited a particular activation phenotype, with predominance of T cells expressing HLA-DR but not CD38 in GALT. This phenotype, previously associated with better control of infection, was correlated with low viral load and higher CD4(+) T cell count. Furthermore, a positive correlation of this activation phenotype with higher expression of Foxp3 and RORγT transcription factors suggested a key role for Treg and Th17 cells in the control of the immune activation and in the maintenance of gut mucosal integrity. Although we evaluated apoptosis by measuring expression of cleaved caspase-3 in GALT, we did not find differences between HIV-controllers and HIV-progressors. Taken together, our findings suggest that predominance of HLA-DR(+) T cells, along with lower immune activation and higher expression of transcription factors required for the development of Treg and Th17 cells, is associated with better viral control and delayed progression to AIDS. PMID:26724942

  14. Differential effects of ceramides upon adenylyl cyclase subtypes.

    PubMed

    Bösel, A; Pfeuffer, T

    1998-01-30

    Ceramides are reported to stimulate different effector systems, among them atypical protein kinases C (PKCs). When HEK 293 cells, stably expressing adenylyl cyclase type II (AC II), were treated with various ceramide derivatives, adenylyl cyclase activity was enhanced 8-15-fold. The stimulation by the most potent analog, C18/C24 ceramide, was comparable to that by the phorbolester TPA. The stimulatory effect of ceramide was not restricted to AC II, although the type I and type V enzymes were affected less dramatically. Unexpectedly, the dihydro derivatives of ceramides, generally serving as non-activating controls, exhibited only slightly lower stimulation than ceramides, whereas short-chain ceramides (e.g. C2) were without effect. The action of ceramides was at least partially inhibited by okadaic acid, suggesting involvement of a phosphatase. Furthermore, ceramides and TPA operated synergistically. While the PKC inhibitor staurosporine counteracted the action of phorbol-esters, it significantly (2.5x) enhanced the effect of ceramides. PMID:9490008

  15. Crystallization of the class IV adenylyl cyclase from Yersinia pestis

    SciTech Connect

    Smith, Natasha; Kim, Sook-Kyung; Reddy, Prasad T.; Gallagher, D. Travis

    2006-03-01

    The class IV adenylyl cyclase from Y. pestis has been crystallized in an orthorhombic form suitable for structure determination. The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 Å, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 Å, α = 88.7, β = 82.5, γ = 65.5°. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 Å, diffract to 3 Å and probably have two dimers per asymmetric unit and V{sub M} = 3.0 Å{sup 3} Da{sup −1}. Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination.

  16. Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone.

    PubMed

    Chang, Jer-Cherng; Yang, Ruey-Bing; Adams, Michael E; Lu, Kuang-Hui

    2009-08-11

    A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively. PMID:19666575

  17. Role of soluble adenylyl cyclase in the heart

    PubMed Central

    Chen, Jonathan; Levin, Lonny R.

    2012-01-01

    This review discusses the potential place of soluble adenylyl cyclase (sAC) in the framework of signaling in the cardiovascular system. cAMP has been studied as a critical and pleiotropic second messenger in cardiomyocytes, endothelial cells, and smooth muscle vascular cells for many years. It is involved in the transduction of signaling by catecholamines, prostaglandins, adenosine, and glucagon, just to name a few. These hormones can act via cAMP by binding to a G protein-coupled receptor on the plasma membrane with subsequent activation of a heterotrimeric G protein and its downstream effector, transmembrane adenylyl cyclase. This has long been the canonical standard for cAMP production in a cell. However, the relatively recent discovery of a unique source of cAMP, sAC, creates the potential for a shift in this signaling paradigm. In fact, sAC has been shown to play a role in apoptosis in coronary endothelial cells and cardiomyocytes. Additionally, it links nutrient utilization with ATP production in the liver and brain, which suggests one of many potential roles for sAC in cardiac function. The possibility of producing cAMP from a source distal to the plasma membrane provides a critical new building block for reconstructing the cellular signaling infrastructure. PMID:22058150

  18. Adenylate cyclase in Arthrospira platensis responds to light through transcription.

    PubMed

    Kashith, M; Keerthana, B; Sriram, S; Ramamurthy, V

    2016-08-19

    Cyclic 3',5' adenosine monophosphate (cAMP) is a ubiquitous signaling molecule, but its role in higher plants was in doubt due to its very low concentration. In this study we wanted to look at the flux of cAMP in response to light in algae, considered to be the more primitive form of photosynthetic organisms. While it did not fluctuate very much in the tested green algae, in the cyanobacterium Arthrospira platensis its level was closely linked to exposure to light. The expression from cyaC, the major isoform of adenylate cyclase was strongly influenced by exposure of the cells to light. There was about 300 fold enhancement of cyaC transcripts in cells exposed to light compared to the transcripts in cells in the dark. Although post-translational regulation of adenylate cyclase activity has been widely known, our studies suggest that transcriptional control could also be an important aspect of its regulation in A. platensis. PMID:27311855

  19. Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide production in bovine coronary arteries.

    PubMed

    Zhang, Guo; Teggatz, Eric G; Zhang, Andrew Y; Koeberl, Matthew J; Yi, Fan; Chen, Li; Li, Pin-Lan

    2006-03-01

    The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs. PMID:16243917

  20. The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors*S

    PubMed Central

    Baehr, Wolfgang; Karan, Sukanya; Maeda, Tadao; Luo, Dong-Gen; Li, Sha; Darin Bronson, J.; Watt, Carl B.; Yau, King-Wai; Frederick, Jeanne M.; Palczewski, Krzysztof

    2007-01-01

    Retinal guanylate cyclases 1 and 2 (GC1 and GC2) are responsible for synthesis of cyclic GMP in rods and cones, but their individual contributions to phototransduction are unknown. We report here that the deletion of both GC1 and GC2 rendered rod and cone photoreceptors nonfunctional and unstable. In the rod outer segments of GC double knock-out mice, guanylate cyclase-activating proteins 1 and 2, and cyclic GMP phosphodiesterase were undetectable, although rhodopsin and transducin α-subunit were mostly unaffected. Outer segment membranes of GC1−/− and GC double knock-out cones were destabilized and devoid of cone transducin (α- and γ-subunits), cone phosphodiesterase, and G protein-coupled receptor kinase 1, whereas cone pigments were present at reduced levels. Real time reverse transcription-PCR analyses demonstrated normal RNA transcript levels for the down-regulated proteins, indicating that down-regulation is posttranslational. We interpret these results to demonstrate an intrinsic requirement of GCs for stability and/or transport of a set of membrane-associated phototransduction proteins. PMID:17255100

  1. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    PubMed

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids. PMID:14740205

  2. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    SciTech Connect

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  3. Targeting soluble guanylate cyclase for the treatment of pulmonary hypertension

    PubMed Central

    Lasker, George F; Maley, Jason H; Pankey, Edward A; Kadowitz, Philip J

    2011-01-01

    Pulmonary arterial hypertension is a disease characterized by a sustained increase in pulmonary arterial pressure leading to right heart failure. Current treatments focus on endothelial dysfunction and an aberrant regulatory pathway for vascular tone. Unfortunately, a large proportion of patients are unresponsive to conventional vasodilator therapy. Investigations are ongoing into the effects of experimental therapies targeting the signal transduction pathway that mediates vasodilation. Here, we briefly discuss the pathophysiology of pulmonary hypertension and endothelial dysfunction, along with current treatments. We then present a focused review of recent animal studies and human trials examining the use of activators and stimulators of soluble guanylate cyclase for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. PMID:21510726

  4. Tetrahydrobiopterin protects soluble guanylate cyclase against oxidative inactivation.

    PubMed

    Schmidt, Kurt; Neubauer, Andrea; Kolesnik, Bernd; Stasch, Johannes-Peter; Werner, Ernst R; Gorren, Antonius C F; Mayer, Bernd

    2012-09-01

    Tetrahydrobiopterin (BH4) is a major endogenous vasoprotective agent that improves endothelial function by increasing nitric oxide (NO) synthesis and scavenging of superoxide and peroxynitrite. Therefore, administration of BH4 is considered a promising therapy for cardiovascular diseases associated with endothelial dysfunction and oxidative stress. Here we report on a novel function of BH4 that might contribute to the beneficial vascular effects of the pteridine. Treatment of cultured porcine aortic endothelial cells with nitroglycerin (GTN) or 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) resulted in heme oxidation of soluble guanylate cyclase (sGC), as evident from diminished NO-induced cGMP accumulation that was paralleled by increased cGMP response to a heme- and NO-independent activator of soluble guanylate cyclase [4-([(4-carboxybutyl)[2-(5-fluoro-2-([4'-(trifluoromethyl)biphenyl-4-yl]methoxy)phenyl)ethyl]amino]methyl)benzoic acid (BAY 60-2770)]. Whereas scavenging of superoxide and/or peroxynitrite with superoxide dismutase, tiron, Mn(III)tetrakis(4-benzoic acid)porphyrin, and urate had no protective effects, supplementation of the cells with BH4, either by application of BH4 directly or of its precursors dihydrobiopterin or sepiapterin, completely prevented the inhibition of NO-induced cGMP accumulation by GTN and ODQ. Tetrahydroneopterin had the same effect, and virtually identical results were obtained with RFL-6 fibroblasts, suggesting that our observation reflects a general feature of tetrahydropteridines that is unrelated to NO synthase function and not limited to endothelial cells. Protection of sGC against oxidative inactivation may contribute to the known beneficial effects of BH4 in cardiovascular disorders associated with oxidative stress. PMID:22648973

  5. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes.

    PubMed

    Rosenberg, Jonathan; Dickmanns, Achim; Neumann, Piotr; Gunka, Katrin; Arens, Johannes; Kaever, Volkhard; Stülke, Jörg; Ficner, Ralf; Commichau, Fabian M

    2015-03-01

    The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement. PMID:25605729

  6. Structural and Biochemical Analysis of the Essential Diadenylate Cyclase CdaA from Listeria monocytogenes*

    PubMed Central

    Rosenberg, Jonathan; Dickmanns, Achim; Neumann, Piotr; Gunka, Katrin; Arens, Johannes; Kaever, Volkhard; Stülke, Jörg; Ficner, Ralf; Commichau, Fabian M.

    2015-01-01

    The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement. PMID:25605729

  7. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  8. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    SciTech Connect

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  9. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    PubMed

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin. PMID:22642150

  10. Adenylate cyclase in prothoracic glands during the last larval instar of the silkworm, Bombyx mori.

    PubMed

    Chen, C H; Gu, S H; Chow, Y S

    2001-04-27

    We have previously reported that the absence of prothoracicotropic hormone (PTTH) signal transduction during the early last larval instar of Bombyx mori plays a role in leading to very low ecdysteroid levels in the hemolymph, inactivation of the corpora allata, as well as larval-pupal transformation. In the present study, adenylate cyclase was characterized in crude preparations of prothoracic gland cell membranes in an effort to localize the cause of refractoriness to PTTH. It was found that cyclase activity of the prothoracic glands from the day 6 last instar showed activation responses to fluoride, a guanine nucleotide analogue, as well as calmodulin (CaM) in dose-dependent fashions. The additive effects of day 5 prothoracic gland adenylate cyclase stimulation by fluoride and CaM imply that there may exist Gs protein-dependent and CaM-dependent forms of adenylate cyclase. For day 1 last instar prothoracic glands, which showed no response to stimulation by PTTH in either cAMP generation or ecdysteroidogenesis, adenylate cyclase activity exhibited far less responsiveness to Ca(2+)/CaM than did that from day 5 glands. These findings suggest that day 1 prothoracic glands may possess some lesions in the receptor-Ca(2+) influx-adenylate cyclase signal transduction pathway and these impairments in PTTH signal transduction may be, at least in part, responsible for decreased ecdysteroidogenesis. PMID:11267904

  11. Prenatal exposure to cocaine decreases adenylyl cyclase activity in embryonic mouse striatum.

    PubMed

    Unterwald, Ellen M; Ivkovic, Sanja; Cuntapay, Marie; Stroppolo, Antonella; Guinea, Barbara; Ehrlich, Michelle E

    2003-12-30

    Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine. PMID:14741752

  12. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  13. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.

    PubMed

    Gao, Yuansheng

    2016-05-01

    Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated. PMID:26452163

  14. Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation

    PubMed Central

    Lee, Yu-Chen; Martin, Emil; Murad, Ferid

    2000-01-01

    The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein. PMID:10995472

  15. Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation.

    PubMed

    Hahn, David K; Tusell, Jose R; Sprang, Stephen R; Chu, Xi

    2015-10-13

    Adenylyl cyclase (AC) catalyzes the synthesis of cyclic AMP, an important intracellular regulatory molecule, from ATP. We propose a catalytic mechanism for class III mammalian AC based on density functional theory calculations. We employ a model of the AC active site derived from a crystal structure of mammalian AC activated by Gα·GTP and forskolin at separate allosteric sites. We compared the calculated activation free energies for 13 possible reaction sequences involving proton transfer, nucleophilic attack, and elimination of pyrophosphate. The proposed most probable mechanism is initiated by deprotonation of 3'OH and water-mediated transfer of the 3'H to the γ-phosphate. Proton transfer is followed by changes in coordination of the two magnesium ion cofactors and changes in the conformation of ATP to enhance the role of 3'O as a nucleophile and to bring 3'O close to Pα. The subsequent phosphoryl transfer step is concerted and rate-limiting. Comparison of the enzyme-catalyzed and nonenzymatic reactions reveals that the active site residues lower the free energy barrier for both phosphoryl transfer and proton transfer and significantly shift the proton transfer equilibrium. Calculations for mutants K1065A and R1029A demonstrate that K1065 plays a significant role in shifting the proton transfer equilibrium, whereas R1029 is important for making the transition state of concerted phosphoryl transfer tight rather than loose. PMID:26393535

  16. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme. PMID:25161314

  17. Bordetella pertussis adenylate cyclase inactivation by the host cell.

    PubMed Central

    Gilboa-Ron, A; Rogel, A; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-dependent adenylate cyclase (AC) which acts as a toxin capable of penetrating eukaryotic cells and generating high levels of intracellular cyclic AMP. Transfer of target cells into B. pertussis AC-free medium leads to a rapid decay in the intracellular AC activity, implying that the invasive enzyme is unstable in the host cytoplasm. We report here that treatment of human lymphocytes with a glycolysis inhibitor and an uncoupler of oxidative phosphorylation completely blocked the intracellular inactivation of B. pertussis AC. Lymphocyte lysates inactivated all forms of B. pertussis AC in the presence of exogenous ATP. This inactivation was associated with degradation of an 125I-labelled 200 kDa form of B. pertussis AC. It appears that ATP is required for the proteolytic pathway, but not as an energy source, since non-hydrolysable ATP analogues supported inactivation and complete degradation of the enzyme. The possibility that binding of ATP to B. pertussis AC renders it susceptible to degradation by the host cell protease is discussed. Images Fig. 2. Fig. 4. PMID:2554887

  18. Expression of soluble adenylyl cyclase in acral melanomas.

    PubMed

    Li, H; Kim, S M; Savkovic, V; Jin, S A; Choi, Y D; Yun, S J

    2016-06-01

    Soluble adenylyl cyclase (sAC) regulates melanocytic cells, and is a diagnostic marker for pigmented skin lesions. Because only a few studies on sAC expression in acral melanomas have been performed, we investigated the histopathological significance of sAC expression in 33 cases of acral melanoma, and assessed its diagnostic value in distinguishing melanoma in situ (MIS, n = 17) from acral invasive melanomas (n = 16) and melanocytic naevi (n = 11). Acral melanomas exhibited more marked nuclear immunopositivity compared with acral melanocytic naevi. sAC expression significantly correlated with the nuclear morphology of melanocytes and melanoma cells, namely, hyperchromatic nuclei and prominent nucleoli within vesicular nuclei. sAC expression was predominantly observed in the hyperchromatic nuclei of MIS and the prominent nucleoli invasive melanomas, respectively. In vitro culture models of melanocytes and melanoma cell lines exhibited sAC staining patterns similar to those of acral melanomas. Differentiation induction showed that nuclear and nucleolar expression varied depending on cell morphology. sAC immunostaining may be useful for the differential diagnosis of acral melanocytic lesions, and sAC expressed in the nucleus and nucleolus might be related to cytological and nuclear changes associated with invasion and progression of acral melanomas. PMID:26290224

  19. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  20. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells

    PubMed Central

    Martín, César; Etxaniz, Asier; Uribe, Kepa B.; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M.; Aréchaga, Juan; Ostolaza, Helena

    2015-01-01

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of “toxin-coated bacteria” proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or “free” in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca2+-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system. PMID:26346097

  1. The adenylate cyclase receptor complex and aqueous humor formation.

    PubMed Central

    Caprioli, J.; Sears, M.

    1984-01-01

    The secretory tissue of the eye, the ciliary processes, contains an enzyme receptor complex, composed of membrane proteins, the catalytic moiety of the enzyme adenylate cyclase, a guanyl nucleotide regulatory protein (or N protein), and other features. The enzyme can be activated by well-known neurohumoral or humoral agents, catecholamines, glycoprotein hormones produced by the hypothalamic pituitary axis, and other related compounds, including placental gonadotropin, organic fluorides, and forskolin, a diterpene. These compounds cause the ciliary epithelia to produce cyclic AMP at an accelerated rate. Cyclic AMP, as a second messenger, causes, either directly or indirectly, a decrease in the net rate of aqueous humor inflow that may be modulated by cofactors. Clinical syndromes fit the experimental data so that an integrated explanation can be given for the reduced intraocular pressure witnessed under certain central nervous system and adrenergic influences. The molecular biology of this concept provides important leads for future investigations that bear directly both upon the regulation of intraocular pressure and upon glaucoma. Images FIG. 11 PMID:6093393

  2. Endothelin-1, superoxide and adeninediphosphate ribose cyclase in shark vascular smooth muscle.

    PubMed

    Fellner, Susan K; Parker, Laurel

    2005-03-01

    In vascular smooth muscle (VSM) of Squalus acanthias, endothelin-1 (ET-1) signals via the ET(B) receptor. In both shark and mammalian VSM, ET-1 induces a rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) via activation of the inositol trisphosphate (IP(3)) receptor (IP(3)R) and subsequent release of Ca(2+) from the sarcoplasmic reticulum (SR). IP(3)R-mediated release of SR Ca(2+) causes calcium-induced calcium release (CICR) via the ryanodine receptor (RyR), which can be sensitized by cyclic adeninediphosphate ribose (cADPR). cADPR is synthesized from NAD(+) by a membrane-bound bifunctional enzyme, ADPR cyclase. We have previously shown that the antagonists of the RyR, Ruthenium Red, high concentrations of ryanodine and 8-Br cADPR, diminish the [Ca(2+)](i) response to ET-1 in shark VSM. To investigate how ET-1 might influence the activity of the ADPR cyclase, we employed inhibitors of the cyclase. To explore the possibility that ET-1-induced production of superoxide (O(2)*-) might activate the cyclase, we used an inhibitor of NAD(P)H oxidase (NOX), DPI and a scavenger of O(2)*-, TEMPOL. Anterior mesenteric artery VSM was loaded with fura-2AM to measure [Ca(2+)](i). In Ca(2+)-free shark Ringers, ET-1 increased [Ca(2+)](i) by 104+/-8 nmol l(-1). The VSM ADPR cyclase inhibitors, nicotinamide and Zn(2+), diminished the response by 62% and 72%, respectively. Both DPI and TEMPOL reduced the response by 63%. The combination of the IP(3)R antagonists, 2-APB or TMB-8, with DPI or TEMPOL further reduced the response by 83%. We show for the first time that in shark VSM, inhibition of the ADPR cyclase reduces the [Ca(2+)](i) response to ET-1 and that superoxide may be involved in the activation of the cyclase. PMID:15767306

  3. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee.

    PubMed

    Wachten, Sebastian; Schlenstedt, Jana; Gauss, Renate; Baumann, Arnd

    2006-03-01

    Cyclic AMP (cAMP) serves as an important messenger in virtually all organisms. In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory. Key components of cAMP-signalling cascades are adenylyl cyclases. However, the molecular identities and biochemical properties of adenylyl cyclases are completely unknown in the honeybee. We have cloned a cDNA (Amac3) from honeybee brain that encodes a membrane-bound adenylyl cyclase. The Amac3 gene is an orthologue of the Drosophila ac39E gene. The corresponding proteins share an overall amino acid similarity of approximately 62%. Phylogenetically, AmAC3 belongs to group 1 adenylyl cyclases. Heterologously expressed AmAC3 displays basal enzymatic activity and efficient coupling to endogenous G protein signalling pathways. Stimulation of beta-adrenergic receptors induces AmAC3 activity with an EC(50) of about 3.1 microm. Enzymatic activity is also increased by forskolin (EC(50) approximately 15 microm), a specific agonist of membrane-bound adenylyl cyclases. Similar to certain biogenic amine receptor genes of the honeybee, Amac3 transcripts are expressed in many somata of the brain, especially in mushroom body neurones. These results suggest that the enzyme serves in biogenic amine signal transduction cascades and in higher brain functions that contribute to learning and memory of the bee. PMID:16464235

  4. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol.

    PubMed Central

    MacNeil, S; Crawford, A; Amirrasooli, H; Johnson, S; Pollock, A; Ollis, C; Tomlinson, S

    1980-01-01

    1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E. PMID:7396869

  5. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    PubMed

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  6. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides

    PubMed Central

    Gagne, Steve J.; Stout, Jake M.; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M.; Page, Jonathan E.

    2012-01-01

    Δ9-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2–C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity. PMID:22802619

  7. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.

    PubMed

    Frickey, Tancred; Kannenberg, Elmar

    2009-05-01

    Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species (Stigmatella, Gemmata and Methylococcus) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi. PMID:19207562

  8. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp.

    PubMed Central

    Hong, S B; Farrand, S K

    1994-01-01

    Catabolic mannopine (MOP) cyclase encoded by Ti or Ri plasmids lactonizes MOP to agropine (AGR). The gene of the octopine-type Ti plasmid pTi15955 encoding the catabolic MOP cyclase enzyme previously was localized to a 1.6-kb segment within a cosmid clone, pYDH208. A subclone containing only this region complemented the AGR catabolism-negative phenotype conferred by a derivative of the octopine-type plasmid pTiB6S3 containing a Tn7 insertion in the region encoding the MOP cyclase enzyme. Uptake assays of strains harboring pRiA4 or pArA4a, along with complementation analyses, indicate that MOP cyclase is not sufficient for catabolism of AGR but that the strains must also express an AGR transport system. To determine the requirement for MOP cyclase in opine catabolism unequivocally, a site-specific, nonpolar deletion mutation abolishing only MOP cyclase activity was introduced into pYDH208, a cosmid clone that confers utilization of MOP, AGR, and mannopinic acid (MOA). Strains harboring this MOP cyclase-negative mutant clone, pYDPH208, did not utilize AGR but continued to utilize MOP. Growth on AGR was restored in this strain upon introduction of clones encoding the pTi15955-derived catabolic or anabolic MOP cyclase genes. The induction pattern of MOA catabolism shown by strain NT1 harboring the MOP cyclase-deficient pYDPH208 suggests that AGR is converted into MOP by MOP cyclase and that MOP, but not AGR, induces catabolism of MOA. Genetic and biochemical analyses of MOP and AGR metabolism suggest that only the conversion of AGR to MOP is directly involved in catabolism of AGR, even though the reaction catalyzed by MOP cyclase predominantly lies in the lactonization of MOP to AGR. Images PMID:8206835

  9. Quaternary Structure Controls Ligand Dynamics in Soluble Guanylate Cyclase*

    PubMed Central

    Yoo, Byung-Kuk; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-01-01

    Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β1(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β1(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β1(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates kon = 0.075 ± 0.01 × 106 m−1·s−1 for sGC and 0.83 ± 0.1 × 106 m−1·s−1 for β1(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β1(191–619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe2+-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit. PMID:22223482

  10. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  11. Human soluble guanylate cyclase: functional expression and revised isoenzyme family.

    PubMed Central

    Zabel, U; Weeger, M; La, M; Schmidt, H H

    1998-01-01

    Soluble guanylate cyclase (sGC), a heterodimeric (alpha/beta) haem protein that converts GTP to the second messenger cGMP, functions as the receptor for nitric oxide (NO) and nitrovasodilator drugs. Three distinct cDNA species of each subunit (alpha1-alpha3, beta1-beta3) have been reported from various species. From human sources, none of these have been expressed as functionally active enzyme. Here we describe the expression of human alpha/beta heterodimeric sGC in Sf9 cells yielding active recombinant enzyme that was stimulated by the nitrovasodilator sodium nitroprusside or the NO-independent activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1). At the protein level, both alpha and beta subunits were detected in human tissues, suggesting co-expression also in vivo. Moreover, resequencing of the human cDNA clones [originally termed alpha3 and beta3; Giuili, Scholl, Bulle and Guellaen (1992) FEBS Lett. 304, 83-88] revealed several sequencing errors in human alpha3; correction of these eliminated major regions of divergence from rat and bovine alpha1. As human beta3 also displays more than 98% similarity to rat and bovine beta1 at the amino acid level, alpha3 and beta3 represent the human homologues of rat and bovine alpha1 and beta1, and the isoenzyme family is decreased to two isoforms for each subunit (alpha1, alpha2; beta1, beta2). Having access to the human key enzyme of NO signalling will now permit the study of novel sGC-modulating compounds with therapeutic potential. PMID:9742212

  12. Role of Adenylate Cyclase 1 in Retinofugal Map Development

    PubMed Central

    Dhande, Onkar S.; Bhatt, Shivani; Anishchenko, Anastacia; Elstrott, Justin; Iwasato, Takuji; Swindell, Eric C.; Xu, Hong-Ping; Jamrich, Milan; Itohara, Shigeyoshi; Feller, Marla B.; Crair, Michael C.

    2013-01-01

    The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN. PMID:22102330

  13. Allostery in Recombinant Soluble Guanylyl Cyclase from Manduca sexta*

    PubMed Central

    Hu, Xiaohui; Murata, Lauren B.; Weichsel, Andrzej; Brailey, Jacqueline L.; Roberts, Sue A.; Nighorn, Alan; Montfort, William R.

    2008-01-01

    Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the ∼100-kDa N-terminal heterodimeric fragment and increases the CO affinity by ∼50-fold to 1.7 μm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k6-5 = 12.8 s-1). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to ∼30 μm. NO release is biphasic in the absence of YC-1 (koff1 = 0.10 s-1 and koff2 = 0.0015 s-1); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the α subunit with importance for heme binding. PMID:18515359

  14. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  15. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    PubMed Central

    Krumenacker, Joshua S.; Hyder, Salman M.; Murad, Ferid

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17β-estradiol (E2) regulates the α1 and β1 subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC α1 10% and sGC β1 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression. PMID:11209068

  16. Heme deficiency of soluble guanylate cyclase induces gastroparesis

    PubMed Central

    COSYNS, S. M. R.; DHAESE, I.; THOONEN, R.; BUYS, E. S.; VRAL, A.; BROUCKAERT, P.; LEFEBVRE, R. A.

    2016-01-01

    Background Soluble guanylate cyclase (sGC) is the principal target of nitric oxide (NO) to control gastrointestinal motility. The consequence on nitrergic signaling and gut motility of inducing a heme-free status of sGC, as induced by oxidative stress, was investigated. Methods sGCβ1H105F knock-in (apo-sGC) mice, which express heme-free sGC that has basal activity, but cannot be stimulated by NO, were generated. Key Results Diethylenetriamine NONOate did not increase sGC activity in gastrointestinal tissue of apo-sGC mice. Exogenous NO did not induce relaxation in fundic, jejunal and colonic strips, and pyloric rings of apo-sGC mice. The stomach was enlarged in apo-sGC mice with hypertrophy of the muscularis externa of the fundus and pylorus. In addition, gastric emptying and intestinal transit were delayed and whole-gut transit time was increased in the apo-sGC mice, while distal colonic transit time was maintained. The nitrergic relaxant responses to electrical field stimulation at 1–4 Hz were abolished in fundic and jejunal strips from apo-sGC mice, but in pyloric rings and colonic strips, only the response at 1 Hz was abolished, indicating the contribution of other transmitters than NO. Conclusions & Inferences The results indicate that the gastrointestinal consequences of switching from a native sGC to a heme-free sGC, which cannot be stimulated by NO, are most pronounced at the level of the stomach establishing a pivotal role of the activation of sGC by NO in normal gastric functioning. In addition, delayed intestinal transit was observed, indicating that nitrergic activation of sGC also plays a role in the lower gastrointestinal tract. PMID:23551931

  17. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana

    PubMed Central

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores. PMID:20610397

  18. Molecular Characterization of Tick Salivary Gland Glutaminyl Cyclase

    PubMed Central

    Adamson, Steven W.; Browning, Rebecca E.; Chao, Chien-Chung; Bateman, Robert C.; Ching, Wei-Mei; Karim, Shahid

    2013-01-01

    Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood-feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc-binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the blood-meal of adult female ticks prior to fast feeding phases in both I. scapularis and A. maculatum suggesting a functional link with blood meal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC-transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control. PMID:23770496

  19. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins.

    PubMed

    Milde, Markus; Werthmann, Ruth C; von Hayn, Kathrin; Bünemann, Moritz

    2014-04-01

    A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas G(q)-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)-cAMPS (adenosine 3',5'-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via G(i)-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled G(i)-proteins and AC5. FRET between Gα(i1) and AC5 developed at much lower concentration of agonist compared with the overall G(i)-protein activity. We found the dissociation of Gα(i1) subunits and AC5 to occur slower than the G(i)-protein deactivation. This led us to the conclusion that AC5, by binding active Gα(i1), interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation. PMID:24646224

  20. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  1. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    NASA Technical Reports Server (NTRS)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  2. ADENYLATE CYCLASE REGULATES ELONGATION OF MAMMALIAN PRIMARY CILIA

    PubMed Central

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; van der Hoorn, Frans A.

    2011-01-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1–2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway. PMID:19576885

  3. Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase.

    PubMed Central

    Toscano, W A; Westcott, K R; LaPorte, D C; Storm, D R

    1979-01-01

    An adenylate cyclase [ATP pyrophosphatelyase (cyclizing), EC 4.6.1.1] preparation that is not stimulated by NaF,5'-guanylyl imidodiphosphate, or Ca2+.calmodulin has been isolated from bovine cerebral cortex by Affi-Gel Blue chromatography and calmodulin-Sepharose chromatography. Sensitivity to these effectors was restored by incubation of the adenylate cyclase preparation with detergent-solubilized protein from bovine cerebral cortex. Reconstitution of of Ca2+.calmodulin activation required the presence of 5'-guanylyl imidodiphosphate. The factor required for restoration of Ca2+.calmodulin stimulation was sensitive to heat, trypsin digestion, and N-ethylmaleimide. These observations suggest that this adenylate cyclase activity requires the presence of one or more guanyl nucleotide binding subunits for calmodulin sensitivity. PMID:293663

  4. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods.

    PubMed Central

    Gorczyca, W A; Gray-Keller, M P; Detwiler, P B; Palczewski, K

    1994-01-01

    In retinal rods light triggers a cascade of enzymatic reactions that increases cGMP hydrolysis and generates an electrical signal by causing closure of cGMP-gated ion channels in the photoreceptor outer segment. This leads to a decrease in internal Ca, which activates guanylate cyclase and promotes photoresponse recovery by stimulating the resynthesis of cGMP. We report here that the activation of guanylate cyclase by low Ca is mediated by an approximately 20-kDa protein purified from bovine rod outer segments by using DEAE-Sepharose, hydroxylapatite, and reverse-phase chromatographies. In a reconstituted system, this protein restores the Ca-sensitive regulation of guanylate cyclase and when dialyzed into functionally intact lizard rod outer segment decreases the sensitivity, time to peak, and recovery time of the flash response. Images PMID:7909609

  5. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  6. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    PubMed

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  7. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  8. Synechocystis Strain PCC 6803 cya2, a Prokaryotic Gene That Encodes a Guanylyl Cyclase

    PubMed Central

    Ochoa de Alda, Jesús A. G.; Ajlani, Ghada; Houmard, Jean

    2000-01-01

    Synechocystis strain PCC 6803 exhibits similar levels of cyclic AMP (cAMP) and cyclic GMP (cGMP). A thorough analysis of its genome showed that Cya2 (Sll0646) has all the sequence determinants required in terms of activity and purine specificity for being a guanylyl cyclase. Insertional mutagenesis of cya2 caused a marked reduction in cGMP content without altering the cAMP content. Thus, Cya2 represents the first example of a prokaryotic guanylyl cyclase. PMID:10851002

  9. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    SciTech Connect

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  10. Multiple lineage specific expansions within the guanylyl cyclase gene family

    PubMed Central

    Fitzpatrick, David A; O'Halloran, Damien M; Burnell, Ann M

    2006-01-01

    Background Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within

  11. A Soluble Adenylyl Cyclase Form Targets to Axonemes and Rescues Beat Regulation in Soluble Adenylyl Cyclase Knockout Mice

    PubMed Central

    Chen, Xi; Baumlin, Nathalie; Buck, Jochen; Levin, Lonny R.; Fregien, Nevis

    2014-01-01

    Ciliary beating is important for effective mucociliary clearance. Soluble adenylyl cyclase (sAC) regulates ciliary beating, and a roughly 50-kD sAC variant is expressed in axonemes. Normal human bronchial epithelial (NHBE) cells express multiple sAC splice variants: full-length sAC; variants with catalytic domain 1 (C1) deletions; and variants with partial C1. One variant, sACex5v2-ex12v2, contains two alternative splices creating new exons 5 (ex5v2) and 12 (ex12v2), encoding a roughly 45-kD protein. It is therefore similar in size to ciliary sAC. The variant increases in expression upon ciliogenesis during differentiation at the air–liquid interface. When expressed in NHBE cells, this variant was targeted to cilia. Exons 5v2–7 were important for ciliary targeting, whereas exons 2–4 prevented it. In vitro, cytoplasmic sACex2-ex12v2 (containing C1 and C2) was the only variant producing cAMP. Ciliary sACex5v2-ex12v2 was not catalytically active. Airway epithelial cells isolated from wild-type mice revealed sAC-dependent ciliary beat frequency (CBF) regulation, analogous to NHBE cells: CBF rescue from HCO3−/CO2–mediated intracellular acidification was sensitive to the sAC inhibitor, KH7. Compared with wild type, sAC C2 knockout (KO) mice revealed lower CBF baseline, and the HCO3−/CO2–mediated CBF decrease was not inhibited by KH7, confirming lack of functional sAC. Human sACex5v2-ex12v2 was targeted to cilia and sACex2-ex12v2 to the cytoplasm in these KO mice. Introduction of the ciliary sACex5v2-ex12v2 variant, but not the cytoplasmic sACex2-ex12v2, restored functional sAC activity in C2 KO mice. Thus, we show, for the first time, a mammalian axonemal targeting sequence that localizes a sAC variant to cilia to regulate CBF. PMID:24874272

  12. A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases

    PubMed Central

    Kots, Alexander Y.; Martin, Emil; Sharina, Iraida G.

    2014-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules. PMID:19089322

  13. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR

    PubMed Central

    De, Nabanita; Navarro, Marcos V.A.S.; Raghavan, Rahul V.; Sondermann, Holger

    2009-01-01

    The bacterial second messenger c-di-GMP controls secretion, cell adhesion and motility leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver (REC) and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity. PMID:19695263

  14. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  15. Cytochemical localization of adenylate cyclase in the various tissues of Locusta migratoria (migratorioides R.F.).

    PubMed

    Benedeczky, I; Rózsa, K S

    1981-01-01

    The ultrastructural cytochemical procedure to demonstrate adenyl cyclase in mammalian organs was used in insects. After several modifications, an utilizable method was applied for the detection of the enzyme in the various tissues. Adenylate cyclase which can be stimulated with octopamine was localized on the membrane of the glial cells and the axolemma of certain large axons in the insect brain. Adenylate cyclase which could be activated by NaF and isoproterenol was also demonstrated in the lipid droplets of glial cells of the brain. With the simultaneous application of NaF and isoproterenol, rather strong adenylate cyclase activity could be detected on the surface of the corpora allata cells both in the cells situated on the glandular surface and the central part of the gland. In contrast in the corpus cardiacum enzyme activity was only observable on the basal lamina of the glandular surface. An appreciable amount of reaction product, indicating the presence of the enzyme, could be found on the surface of the lipid droplets in the fat body situated near the glandular tissues. In the heart muscle, reaction product referring to enzyme activation could not be demonstrated with the help of the methods applied. PMID:7216835

  16. Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids.

    PubMed

    Tippelt, A; Jahnke, L; Poralla, K

    1998-03-30

    We report the cloning and characterisation of the Methylococcus capsulatus shc gene, which encodes the squalene-hopene cyclase (SHC). This enzyme catalyses the complex cyclization of squalene to the pentacyclic triterpene skeleton of hopanoids and represents the key reaction in this biosynthesis. Using a combination of PCR amplification and DNA hybridization, two overlapping 2.6 kb PstI and 3.3 kb SalI DNA fragments were cloned bearing a 1962 bp open reading frame encoding a 74 kDa protein with 654 amino acids and a predicted isoelectric point at about pH 6.3. The deduced amino acid sequence of the M. capsulatus shc gene showed significant similarity to known prokaryotic SHCs and to a lesser degree to the related eukaryotic oxidosqualene cyclases (OSCs). Like other triterpene cyclases, the M. capsulatus SHC contains seven so-called QW-motifs as well as an aspartate-rich domain. The recombinant M. capsulatus SHC was expressed in Escherichia coli and in vitro activity of the recombinant cyclase was demonstrated using crude cell-free lysate or solubilized membrane preparation. The cyclization products hop-22-ene and hopan-22-ol (diplopterol) were identified by GC and GC-MS. PMID:9555026

  17. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  18. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942.

    PubMed

    Cunningham, F X; Sun, Z; Chamovitz, D; Hirschberg, J; Gantt, E

    1994-08-01

    A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme. PMID:7919981

  19. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  20. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells.

    PubMed Central

    Bruzzone, Santina; De Flora, Antonio; Usai, Cesare; Graeff, Richard; Lee, Hon Cheung

    2003-01-01

    Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 microg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD+ levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]i), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs. PMID:12852785

  1. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs

    PubMed Central

    Tamura, Naohisa; Doolittle, Lynda K.; Hammer, Robert E.; Shelton, John M.; Richardson, James A.; Garbers, David L.

    2004-01-01

    Guanylyl cyclase B is the receptor for a small peptide (C-type natriuretic peptide) produced locally in many different tissues. To unravel the functions of the receptor, we generated mice lacking guanylyl cyclase B through gene targeting. Expression of the receptor mRNA in tissues such as bone and female reproductive organs was evident, and significant phenotypes associated with each of these tissues were apparent in null mice. A dramatic impairment of endochondral ossification and an attenuation of longitudinal vertebra or limb-bone growth were seen in null animals. C-type natriuretic peptide-dependent increases of guanylyl cyclase B activity, but not basal enzyme activity, appeared to be required for the progression of endochondral ossification. Female mice were infertile, but male mice were not. This result was due to the failure of the female reproductive tract to develop. Thus, the guanylyl cyclase B receptor is critical for the development of both bone and female reproductive organs. PMID:15572448

  2. Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products.

    PubMed

    Reddy, P; Peterkofsky, A; McKenney, K

    1989-12-25

    We describe the construction of a new generation of vectors (pRE) for the hyperexpression of lethal gene products such as adenylate cyclase in Escherichia coli. The pRE vectors are based on the lambda PL promoter and lambda cII ribosome binding site described by Shimatake and Rosenberg (Nature, 292, 128-132, 1981). They have a unique NdeI restriction endonuclease site 3' of the lambda cII ribosome binding site that includes the ATG initiation codon, multilinker cloning sites 3' to the NdeI site, and two lambda transcription terminators 5' and 3' of the lambda PL promoter to eliminate nonspecific transcription and reduce leaky PL transcription, respectively. For hyperexpression of adenylate cyclase, tight control of transcription was necessary since elevation of cAMP levels above the physiological range is lethal to E. coli. Lethality associated with the overproduction of adenylate cyclase was shown to be mediated through the cAMP receptor protein. We used this expression system to overproduce adenylate cyclase 7500 fold, corresponding to 30% of the total cellular protein. Under these conditions the enzyme precipitated with significant loss of activity. Reducing the rate and amount of adenylate cyclase expression to 16% of the total cell protein produced one fourth of the enzyme in a soluble form with high specific activity. The soluble adenylate cyclase was purified to near homogeneity. PMID:2557591

  3. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  4. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-01

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2). PMID:21173231

  5. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers. PMID:27294564

  6. An Adenylyl Cyclase, CyaB, Acts as an Osmosensor in Myxococcus xanthus

    PubMed Central

    Kimura, Yoshio; Ohtani, Mika; Takegawa, Kaoru

    2005-01-01

    We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant. PMID:15866951

  7. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  8. G/sub o/ protein of fat cells: role in hormonal regulation of agonist-stimulated phosphatidyl inositol breakdown

    SciTech Connect

    Rapiejko, P.J.; Northup, J.K.; Malbon, C.C.

    1986-05-01

    Incubating rat fat cell membranes in the presence of (/sup 32/P)NAD/sup +/ and pertussis toxin (PT) results in the ADP-ribosylation of two peptides (M/sub r/ = 41,000 and 40,000). The 41,000-M/sub r/ peptide is the inhibitory G-protein of adenylate cyclase (G/sub i/). The 40,000-M/sub r/ peptide radiolabeled in the presence of (/sup 32/P)NAD/sup +/ and PT has been purified from rabbit heart and bovine brain, but has not been identified uniformly in membranes of fat cells. Two rabbit polyclonal antisera raised against the alpha-subunit of bovine brain G/sub o/ were used to probe the nature of the 40,000-M/sub r/ peptide in rat fat cell membranes that had been separated by gel electrophoresis in the presence of sodium dodecyl sulfate and transferred electrophoretically to nitrocellulose. Both antisera specific for the alpha-subunit of G/sub o/ recognized the M/sub r/ = 40,000 peptide of fat cells that is ADP-ribosylated in the presence of PT. PT treatment of rat fat cells blocks epinephrine-stimulated inositol 1,4,5 trisphosphate (IP/sub 3/) generation. The inhibition of IP/sub 3/ generation by PT suggests a role for either G/sub i/ or G/sub o/ in receptor-mediated phosphatidyl inositol breakdown in the rat fat cell.

  9. Cholera toxin effects on body temperature changes induced by morphine.

    PubMed

    Basilico, L; Parenti, M; Fumagalli, A; Parolaro, D; Giagnoni, G

    1997-03-01

    The present study evaluates the influence of cholera toxin and its B-subunit on thermic responses to morphine in the rats. The holotoxin (1 microg/rat) and the B-subunit (5 microg) were administered ICV and three days later rats were challenged ICV with morphine and tested for changes of body temperature. Cholera toxin, but not its B-subunit, modified the time course of the hyperthermic response induced by a low dose of morphine (2.5 microg), converted the hypothermia due to a higher dose of morphine (18 microg) to a consistent hyperthermia and only partially reduced the greater hypothermia induced by 36 microg of morphine. Cholera toxin-induced modifications of thermic responses to morphine were paralleled with a decreased Gs(alpha) immunoreactivity and a reduced ability for the toxin to catalyse the "in vitro" ADP-ribosylation of Gs(alpha) in hypothalamic membranes. In contrast, at the same time when morphine-induced effects on body temperature were assessed, no changes in pertussis toxin-mediated ADP-ribosylation of Gi(alpha)/Go(alpha), or basal adenylate cyclase activity, or binding of mu-opioid receptor selective ligand [3H]-DAMGO were observed in hypothalamic areas from rats treated with cholera toxin. These findings suggest that adaptative events secondary to prolonged activation of Gs(alpha) play a role in the modifications of thermic responses to morphine induced by CTX. PMID:9077589

  10. Adenylate cyclase responsiveness to hormones in various portions of the human nephron.

    PubMed Central

    Chabardès, D; Gagnan-Brunette, M; Imbert-Teboul, M; Gontcharevskaia, O; Montégut, M; Clique, A; Morel, F

    1980-01-01

    The action sites for parathyroid hormone (PTH), salmon calcitonin (SCT), and arginine-vasopressin (AVP) were investigated along the human nephron by measuring adenylate cyclase activity, using a single tubule in vitro microassay. Well-localized segments of tubule were isolated by microdissection from five human kidneys unsuitable for transplantation. PTH (10 IU/ml) increased adenylate cyclase activity in the convoluted and the straight proximal tubule, in the medullary and cortical portions of the thick ascending limb, and in the early portion of the distal convoluted tubule (corresponding stimulated:basal activity ratios were 64, 19, 10, 18, and 22, respectively). SCT (10 ng/ml) increased adenylate cyclase activity in the medullary and cortical portions of the thick ascending limb, in the early portion of the distal convoluted tubule, and, to a lesser extent, in the cortical and the medullay collecting tubule (activity ratios were 7, 14, 15, 3, and 3, respectively). AVP (1 microM) stimulated adenylate cyclase activity in the terminal nephron segments only, i.e., the late portion of the distal convoluted tubule, the cortical and medullary portions of the collecting tubule (activity ratios 81, 51, and 97, respectively). As measured in one experiment, nearly one-half maximal responses were obtained with 0.1 IU/ml PTH or 0.3 ng/ml SCT in thick ascending limbs and with 1 nM AVP in collecting tubules, suggesting that enzyme sensitivity to hormones as well preserved under the conditions used in this study. PMID:7356689

  11. Control of the Diadenylate Cyclase CdaS in Bacillus subtilis

    PubMed Central

    Mehne, Felix M. P.; Schröder-Tittmann, Kathrin; Eijlander, Robyn T.; Herzberg, Christina; Hewitt, Lorraine; Kaever, Volkhard; Lewis, Richard J.; Kuipers, Oscar P.; Tittmann, Kai; Stülke, Jörg

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis encodes three diadenylate cyclases that synthesize the essential signaling nucleotide cyclic di-AMP. The activities of the vegetative enzymes DisA and CdaA are controlled by protein-protein interactions with their conserved partner proteins. Here, we have analyzed the regulation of the unique sporulation-specific diadenylate cyclase CdaS. Very low expression of CdaS as the single diadenylate cyclase resulted in the appearance of spontaneous suppressor mutations. Several of these mutations in the cdaS gene affected the N-terminal domain of CdaS. The corresponding CdaS mutant proteins exhibited a significantly increased enzymatic activity. The N-terminal domain of CdaS consists of two α-helices and is attached to the C-terminal catalytically active diadenylate cyclase (DAC) domain. Deletion of the first or both helices resulted also in strongly increased activity indicating that the N-terminal domain serves to limit the enzyme activity of the DAC domain. The structure of YojJ, a protein highly similar to CdaS, indicates that the protein forms hexamers that are incompatible with enzymatic activity of the DAC domains. In contrast, the mutations and the deletions of the N-terminal domain result in conformational changes that lead to highly increased enzymatic activity. Although the full-length CdaS protein was found to form hexamers, a truncated version with a deletion of the first N-terminal helix formed dimers with high enzyme activity. To assess the role of CdaS in sporulation, we assayed the germination of wild type and cdaS mutant spores. The results indicate that cyclic di-AMP formed by CdaS is required for efficient germination. PMID:24939848

  12. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S; Pahirulzaman, Khomaizon A K; Rabe, Patrick; Klapschinski, Tim A

    2014-04-14

    A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases. PMID:24573945

  13. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    PubMed

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products. PMID:24141052

  14. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.

    PubMed Central

    Alexander, R W; Galper, J B; Neer, E J; Smith, T W

    1982-01-01

    We have studied the properties of beta-adrenergic receptors and of their interaction with adenylate cyclase in the chick myocardium during embryogenesis. Between 4.5 and 7.5 days in ovo the number of receptors determined by (-)-[3H]dihydroalprenolol ([3H]DHA) binding is constant at approx. 0.36 pmol of receptor/mg of protein. By day 9 the density decreases significantly to 0.22 pmol of receptor/mg of protein. At day 12.5--13.5 the number was 0.14--0.18 pmol of receptor/mg of protein. This number did not change further up to day 16. The same results were obtained with guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) added to the assay mixtures. There was no significant change in receptor affinity for the antagonist [3H]DHA between days 5.5 and 13. Despite the decrease in numbers of beta-adrenergic receptors, there was no change in basal, p[NH]ppG-, isoprenaline- or isoprenaline-plus-p[NH]ppG-stimulated adenylate cyclase activity between days 3 and 12 of development. We conclude that beta-adrenergic receptors and adenylate cyclase are not co-ordinately regulated during early embryonic development of the chick heart. Some of the beta-adrenergic receptors present very early in the ontogeny of cardiac tissue appear not to be coupled to adenylate cyclase since their loss is not reflected in decreased activation of the enzyme. PMID:6289805

  15. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light. PMID:24201148

  16. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    PubMed Central

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  17. Sensitization of olfactory guanylyl cyclase to a specific imprinted odorant in coho salmon.

    PubMed

    Dittman, A H; Quinn, T P; Nevitt, G A; Hacker, B; Storm, D R

    1997-08-01

    The role of cGMP in olfactory signaling is not fully understood, but it is believed to play a modulatory role in intracellular signaling in vertebrate olfactory receptor neurons (ORNs). Here, we present evidence that cGMP in ORNs may play an important role in recognition of biologically relevant odors and olfactory learning. Specifically, we investigated the cellular mechanisms underlying olfactory imprinting in salmon. Salmon learn odors associated with their natal site as juveniles and later use these odors to guide their homing migration. This imprinting is believed to involve sensitization of the peripheral olfactory system to specific homestream odorants. We imprinted juvenile salmon to the odorant beta-phenylethyl alcohol (PEA) and examined the sensitivity of olfactory adenylyl and guanylyl cyclases to PEA during development. Stimulation of guanylyl cyclase activity by PEA was significantly greater in olfactory cilia isolated from PEA-imprinted salmon compared with PEA-naive fish only at the time of the homing migration, 2 years after PEA exposure. These results suggest that sensitization of olfactory guanylyl cyclase may play an important role in olfactory imprinting by salmon. PMID:9292727

  18. Guanylyl cyclase and cGMP-specific phosphodiesterase participate in the acrosome reaction of starfish sperm.

    PubMed

    Kawase, Osamu; Ueno, Seiichi; Minakata, Hiroyuki; Hoshi, Motonori; Matsumoto, Midori

    2004-11-01

    In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, i.e. ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for inducing the acrosome reaction. Experimentally, ARIS and asterosap are sufficient for the induction. However, when sperm are treated only with asterosap, they become unresponsive to the egg jelly to undergo the reaction. In this study, we analysed the mechanism of the acrosome reaction, using sperm inactivation by asterosap as a clue. Asterosap causes a rapid and transient increase in intracellular cGMP through the activation of the asterosap receptor, a guanylyl cyclase, and causes an increase in intracellular Ca(2+). When sperm were pretreated with asterosap, the guanylyl cyclase seemed to be inactivated irreversibly by dephosphorylation. They were still responsive to ARIS but no longer to asterosap. However, in the presence of IBMX or zaprinast, inhibitors against phosphodiesterases (PDEs), they retained their capacity to undergo the acrosome reaction in response to the egg jelly or ARIS alone. IBMX and zaprinast suppressed the intracellular catabolism of cGMP, but not of cAMP. These results suggest that guanylyl cyclase and cGMP-specific, IBMX- and zaprinast-susceptible PDEs are involved in the regulation of the acrosome reaction. PMID:15751545

  19. Sll0254 (CrtLdiox) Is a Bifunctional Lycopene Cyclase/Dioxygenase in Cyanobacteria Producing Myxoxanthophyll

    PubMed Central

    Mohamed, Hatem E.; Vermaas, Wim F. J.

    2006-01-01

    Upon depletion of Sll0254 in Synechocystis sp. strain PCC 6803, cyclized carotenoids were replaced by linear, relatively hydrophilic carotenoids, and the amount of the two photosystems decreased greatly. Full segregants of the sll0254 deletion in Synechocystis were not obtained, implying that this gene is essential for survival, most likely to allow normal cell division. The N-terminal half of Sll0254 has limited similarity to the family of lycopene cyclases, has an additional dehydrogenase motif near the N terminus, and is followed by a Rieske 2Fe-2S center sequence signature. To test whether Sll0254 serves as a lycopene cyclase in Synechocystis, the corresponding gene was expressed in Escherichia coli strains that can produce lycopene or neurosporene. In the presence of Sll0254 these linear carotenoids were converted into cyclized, relatively hydrophilic pigments, with masses consistent with the introduction of two hydroxyl groups and with spectra indicative of only small changes in the number of conjugated double bonds. This suggests that Sll0254 catalyzes formation of oxygenated, cyclized carotenoids. We interpret the appearance of the hydroxyl groups in the carotenoids to be due to dioxygenase activity involving the Rieske 2Fe-2S center and the additional dehydrogenase domain. This dioxygenase activity is required in the myxoxanthophyll biosynthesis pathway, after or concomitant with cyclization on the other end of the molecule. We interpret Sll0254 to be a dual-function enzyme with both lycopene cyclase and dioxygenase activity and have named it CrtLdiox. PMID:16621828

  20. Central role of soluble adenylyl cyclase and cAMP in sperm physiology

    PubMed Central

    Buffone, Mariano G.; Wertheimer, Eva V.; Visconti, Pablo E.; Krapf, Dario

    2014-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cylases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. PMID:25066614

  1. Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases.

    PubMed

    Rajaonarivony, J I; Gershenzon, J; Miyazaki, J; Croteau, R

    1992-11-15

    (4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes. PMID:1444454

  2. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    PubMed Central

    Gillis, John Stuart

    2006-01-01

    Background In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. Methods Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. Results In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. Conclusion Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines. PMID:16820060

  3. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    SciTech Connect

    Azarkan, Mohamed; Clantin, Bernard; Bompard, Coralie; Belrhali, Hassan; Baeyens-Volant, Danielle; Looze, Yvan; Wintjens, René

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  4. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  5. Eubacterial Diterpene Cyclase Genes Essential for Production of the Isoprenoid Antibiotic Terpentecin

    PubMed Central

    Dairi, Tohru; Hamano, Yoshimitsu; Kuzuyama, Tomohisa; Itoh, Nobuya; Furihata, Kazuo; Seto, Haruo

    2001-01-01

    A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627–1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC. PMID:11567009

  6. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation.

    PubMed

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3',5' -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  7. Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers.

    PubMed

    Christie-Pope, B C; Palmer, G C

    1986-12-01

    It has been previously established that prolonged bilateral carotid occlusion followed by recirculation produces damage to the synaptic enzyme adenylate cyclase in the frontal cortex of the gerbil. Since calcium entrance into the brain may account in part for the deleterious consequences of stroke, the present study examined whether pretreatment with calcium channel blockers would modify the effects of 60 min of bilateral ischemia plus 40 min of reflow on various parameters of cortical adenylate cyclase activation. In this context activation of cerebral homogenates by norepinephrine with or without 5'-guanylyl imidodiphosphate was preserved by pretreatment of ischemic gerbils with verapamil but worsened by flunarizine. In contrast, in particulate fractions (treated with EGTA to reduce metallic ion levels) the damage to the Mn2+-sensitive catalytic site of adenylate cyclase was prevented only by flunarizine. Pretreatment with the two calcium channel blockers resulted in an elevated basal activity of the enzyme, thereby reducing the response in the homogenate preparation to forskolin. Gerbils pretreated with verapamil tended to have an increased ability for survival resulting from the ischemic episode. Under in vitro conditions the enzyme preparations were not markedly influenced by either drug. PMID:3508245

  8. An Adenylyl Cyclase, CyaA, of Myxococcus xanthus Functions in Signal Transduction during Osmotic Stress

    PubMed Central

    Kimura, Yoshio; Mishima, Yukako; Nakano, Hiromi; Takegawa, Kaoru

    2002-01-01

    An adenylyl cyclase gene (cyaA) present upstream of an osmosensor protein gene (mokA) was isolated from Myxococcus xanthus. cyaA encoded a polypeptide of 843 amino acids with a predicted molecular mass of 91,187 Da. The predicted cyaA gene product had structural similarity to the receptor-type adenylyl cyclases that are composed of an amino-terminal sensor domain and a carboxy-terminal catalytic domain of adenylyl cyclase. In reverse transcriptase PCR experiments, the transcript of the cyaA gene was detected mainly during development and spore germination. A cyaA mutant, generated by gene disruption, showed normal growth, development, and germination. However, a cyaA mutant placed under conditions of ionic (NaCl) or nonionic (sucrose) osmostress exhibited a marked reduction in spore formation and spore germination. When wild-type and cyaA mutant cells at developmental stages were stimulated with 0.2 M NaCl or sucrose, the mutant cells increased cyclic AMP accumulation at levels similar to those of the wild-type cells. In contrast, the mutant cells during spore germination had mainly lost the ability to respond to high-ionic osmolarity. In vegetative cells, the cyaA mutant responded normally to osmotic stress. These results suggested that M. xanthus CyaA functions mainly as an ionic osmosensor during spore germination and that CyaA is also required for osmotic tolerance in fruiting formation and sporulation. PMID:12057952

  9. Evolutionary Divergence of Sedoheptulose 7-phosphate Cyclases Leads to Several Distinct Cyclic Products

    PubMed Central

    Asamizu, Shumpei; Xie, Pengfei; Brumsted, Corey J.; Flatt, Patricia M.; Mahmud, Taifo

    2012-01-01

    Sedoheptulose 7-phosphate cyclases are enzymes that utilize the pentose phosphate pathway intermediate, sedoheptulose 7-phosphate, to generate cyclic precursors of many bioactive natural products, such as the antidiabetic drug acarbose, the crop protectant validamycin, and the natural sunscreens mycosporine-like amino acids. These proteins are phylogenetically related to the dehydroquinate (DHQ) synthases from the shikimate pathway, and are part of the more recently recognized superfamily of sugar phosphate cyclases, which includes DHQ synthases, aminoDHQ synthases and 2-deoxy-scyllo-inosose synthases. Through genome mining and biochemical studies, we identified yet another subset of DHQS-like proteins in the actinomycete Actinosynnema mirum and the myxobacterium Stigmatella aurantiaca DW4/3–1. These enzymes catalyze the conversion of sedoheptulose 7-phosphate to 2-epi-valiolone, which is predicted to be an alternative precursor for aminocyclitol biosynthesis. Comparative bioinformatics and biochemical analyses of these proteins with 2-epi-5-epi-valiolone synthases (EEVS) and desmethyl-4-deoxygadusol synthases (DDGS) provided further insights into their genetic diversity, conserved amino acid sequences, and plausible catalytic mechanisms. The results further highlight the uniquely diverse DHQS-like sugar phosphate cyclases, which may provide new tools for chemoenzymatic, stereospecific synthesis of various cyclic molecules. PMID:22741921

  10. Persistent stimulation of adenylate cyclase and urea transport by an AVP photolabel

    SciTech Connect

    Eggena, P.; Ma, C.L.; Fahrenholz, F.; Schwartz, I.L.

    1985-07-01

    The effects of a photoaffinity label for arginine vasopressin receptors, (Phe2, Phe(p-N3)3)AVP (N3-AVP), on urea permeability and adenylate cyclase activity have been investigated in the toad urinary bladder. This compound, when activated by ultraviolet light, induced a maximal and persistent increase in the urea permeability of the intact bladder and a persistent increase in the adenylate cyclase activity of toad bladder epithelial cell homogenates. Covalent attachment of the analogue to target tissue during photolysis was equivalent at 4 and 20 degrees C. Bladders exposed to N3-AVP in the presence of AVP during photolysis were substantially less permeable to urea than controls that had been exposed to N3-AVP alone. These findings constitute further evidence in support of the previous suggestion that N3-AVP binds covalently to AVP receptors and, in addition, demonstrates that N3-AVP evokes a persistent increase in adenylate cyclase activity which, in turn, triggers a persistent increase in bladder permeability to urea.

  11. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation

    PubMed Central

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3’,5’ -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  12. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.

    PubMed

    Mondéjar, Laura García; Lupas, Andrei; Schultz, Anita; Schultz, Joachim E

    2012-01-01

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function. PMID:22094466

  13. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions

    PubMed Central

    Cynis, Holger; Hoffmann, Torsten; Friedrich, Daniel; Kehlen, Astrid; Gans, Kathrin; Kleinschmidt, Martin; Rahfeld, Jens-Ulrich; Wolf, Raik; Wermann, Michael; Stephan, Anett; Haegele, Monique; Sedlmeier, Reinhard; Graubner, Sigrid; Jagla, Wolfgang; Müller, Anke; Eichentopf, Rico; Heiser, Ulrich; Seifert, Franziska; Quax, Paul H A; de Vries, Margreet R; Hesse, Isabel; Trautwein, Daniela; Wollert, Ulrich; Berg, Sabine; Freyse, Ernst-Joachim; Schilling, Stephan; Demuth, Hans-Ulrich

    2011-01-01

    Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis. PMID:21774078

  14. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    PubMed

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. PMID:26524654

  15. Opioid inhibition of adenylate cyclase in the striatum and vas deferens of the rat.

    PubMed Central

    Bhoola, K. D.; Pay, S.

    1986-01-01

    The activity of adenylate cyclase in striatal membrane-enriched fractions (25,000 g) was inhibited by morphine, beta-endorphin, [D-Ala2-D-Leu5] enkephalin (DADLenk), fentanyl and bremazocine. Whereas guanosine triphosphate (GTP) appeared essential for the expression of this effect, sodium chloride seemed to enhance the degree of inhibition. Dopamine stimulation and sodium fluoride activation of the enzyme was also suppressed by morphine, beta-endorphin and DADLenk. beta-Endorphin and DADLenk inhibited adenylate cyclase activity in vasa deferentia membrane-enriched fractions (25,000 g); both opioids required GTP and NaCl and were inhibited by a delta-opioid receptor antagonist and by naloxone. Morphine, bremazocine and tifluadom did not significantly alter the activity of the vas deferens enzyme. Basal cyclic AMP values of striatal slices were not significantly altered by morphine, beta-endorphin or DADLenk. However, dopamine-induced elevation of cyclic AMP was reduced by morphine and this effect of the opiate was suppressed by naloxone. Only beta-endorphin lowered the basal cyclic AMP values in the vas deferens. The physiological relevance of adenylate cyclase coupling to opioid receptor subtypes is considered. PMID:3026542

  16. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  17. Isolation and characterization of an Escherichia coli mutant affected in the regulation of adenylate cyclase.

    PubMed Central

    Guidi-Rontani, C; Danchin, A; Ullmann, A

    1981-01-01

    A mutant, cyaR1, affecting regulation of adenylate cyclase expression or activity is described. It was obtained as a thermoresistant revertant of a strain harboring a thermosensitive transcription termination factor, rho (rho-15). This mutant failed to synthesize adenosine 3',5'-phosphate and exhibited a carbohydrate-negative phenotype. A secondary mutation at the crp locus (crpC) restored the ability of the mutant to synthesize adenosine 3',5'-phosphate, enabled the expression of catabolite-sensitive operons, and conferred on the strain an extreme sensitivity to catabolite repression. In addition, we showed that the crpC mutation restored the pleiotropic carbohydrate-positive phenotype even in a delta cya background. We interpret this to mean that the adenosine 3',5'-phosphate receptor protein regulates negatively either the activity or synthesis of adenylate cyclase and that the cyaR1 mutation is either in a regulatory protein or a regulatory site of adenylate cyclase. Images PMID:6273380

  18. Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases.

    PubMed Central

    Premont, R T; Chen, J; Ma, H W; Ponnapalli, M; Iyengar, R

    1992-01-01

    cDNA encoding a hormone- and guanine nucleotide-stimulated adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] (type 6) from rat liver and kidney has been cloned and expressed. This enzyme is stimulated by forskolin, guanosine 5'-[gamma-thio]triphosphate, and isoproterenol plus GTP but is not stimulated by beta gamma subunits of guanine nucleotide-binding proteins. A second form (type 5), which is 75% similar to type 6, has also been cloned. Both types 5 and 6 cDNAs have multiple messages. PCR-based detection of the mRNA for the type 5 and 6 enzymes indicates that both are widely distributed. Homology analyses indicate at least four distinct subfamilies of guanine nucleotide stimulatory protein-regulated adenylyl cyclases. Types 5 and 6 enzymes define one distinct subfamily of mammalian adenylyl cyclases. Diversity of one guanine nucleotide-binding protein-regulated effector may allow different modes of regulation of cell-surface signal transmission. Images PMID:1409703

  19. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity.

    PubMed

    Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  20. Activation of adenylate cyclase by dopamine, GTP, NaF and forskolin in striatal membranes of neonatal, adult and senescent rats.

    PubMed

    Nomura, Y; Makihata, J; Segawa, T

    1984-11-13

    Dopamine (DA) caused a significant activation of striatal adenylate cyclase in neonatal and adult but not in senescent rats. GTP activated cyclase at the adult stage but not at both neonatal and senescent stages. NaF and forskolin activated cyclase at every stage. The coupling mechanism between DA1 receptors and catalytic units of cyclase seems to become functional at the neonatal stage but GTP recognition and/or binding sites lack in stimulatory GTP binding protein in neonatal and senescent membranes. PMID:6543337

  1. Nerve growth factor-induced differentiation of PC12 cells is accompanied by elevated adenylyl cyclase activity.

    PubMed

    Yung, H S; Lai, K H; Chow, K B S; Ip, N Y; Tsim, K W K; Wong, Y H; Wu, Z; Wise, H

    2010-01-01

    Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation. PMID:20389133

  2. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP. PMID:21185863

  3. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  4. Structure of a Sedoheptulose 7-Phosphate Cyclase: ValA from Streptomyces hygroscopicus

    PubMed Central

    2015-01-01

    Sedoheptulose 7-phosphate cyclases (SH7PCs) encompass three enzymes involved in producing the core cyclitol structures of pseudoglycosides and similar bioactive natural products. One such enzyme is ValA from Streptomyces hygroscopicus subsp. jinggangensis 5008, which makes 2-epi-5-epi-valiolone as part of the biosynthesis of the agricultural antifungal agent validamycin A. We present, as the first SH7PC structure, the 2.1 Å resolution crystal structure of ValA in complex with NAD+ and Zn2+ cofactors. ValA has a fold and active site organization resembling those of the sugar phosphate cyclase dehydroquinate synthase (DHQS) and contains two notable, previously unrecognized interactions between NAD+ and Asp side chains conserved in all sugar phosphate cyclases that may influence catalysis. Because the domains of ValA adopt a nearly closed conformation even though no sugar substrate is present, comparisons with a ligand-bound DHQS provide a model for aspects of substrate binding. One striking active site difference is a loop that adopts a distinct conformation as a result of an Asp → Asn change with respect to DHQS and alters the identity and orientation of a key Arg residue. This and other active site differences in ValA are mostly localized to areas where the ValA substrate differs from that of DHQS. Sequence comparisons with a second SH7PC making a product with distinct stereochemistry lead us to postulate that the product stereochemistry of a given SH7PC is not the result of events taking place during catalysis but is accomplished by selective binding of either the α or β pyranose anomer of the substrate. PMID:24832673

  5. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  6. Reconstitution of beta 1-adrenoceptor-dependent adenylate cyclase from purified components.

    PubMed Central

    Feder, D; Im, M J; Klein, H W; Hekman, M; Holzhöfer, A; Dees, C; Levitzki, A; Helmreich, E J; Pfeuffer, T

    1986-01-01

    In continuation of our efforts to reconstitute from purified components into lipid vesicles the signal transmission chain from beta 1-adrenoceptors to adenylate cyclase, we now report on the total reconstitution of the hormone-dependent adenylate cyclase. In these reconstitution experiments we have employed the purified adenylate cyclase (C) from bovine brain and rabbit heart, the stimulatory GTP-binding protein (GS) purified from turkey erythrocytes and rabbit liver and the beta 1-adrenoceptor (R) from turkey erythrocytes. Several detergents were compared with respect to their suitability to allow reconstitution of subunits into phospholipid vesicles. While octyl-polyoxyethylene (octyl-POE) was almost as potent as lauroyl-sucrose for preparation of vesicles containing GS.C, the latter detergent was clearly superior for vesicles enabling productive R.GS and R.GS.C coupling. The catalytic subunit from either bovine brain or rabbit heart was equally efficient in reconstitution. However, GS from turkey erythrocytes and rabbit liver revealed significant differences in RGS and RGS.C containing vesicles. While isoproterenol-induced activation of GS by GTP gamma S was first order in both instances, kon with turkey GS was 0.12 min-1, whereas kon with rabbit liver GS was 0.6 min-1. Moreover, GTP gamma S activation of erythrocyte GS was significantly more dependent on the presence of hormone than that of liver GS, confirming observations made on the native membrane-bound system. Compared with stimulation by isoproterenol (GTP gamma S) (4-fold), stimulation by isoproterenol/GTP was modest (1.3- to 1.6-fold).(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. PMID:3017696

  7. Insect Stage-Specific Adenylate Cyclases Regulate Social Motility in African Trypanosomes

    PubMed Central

    Lopez, Miguel A.; Saada, Edwin A.

    2014-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed “social motility,” based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  8. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. PMID:27214242

  9. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation

    PubMed Central

    López-Canales, O.A.; Castillo-Hernandez, M.C.; Vargas-Robles, H.; Rios, A.; López-Canales, J.S.; Escalante, B.

    2016-01-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  10. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    PubMed Central

    Sternweis, P C; Gilman, A G

    1982-01-01

    Activation of the purified guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by F- requires the presence of Mg2+ and another factor. This factor, which contaminates commercial preparations of various nucleotides and disposable glass test tubes, has been identified as Al3+. In the presence of 10 mM Mg2+ and 5 mM F-, AlCl3 causes activation of G/F with an apparent activation constant of approximately 1-5 muM. The requirement for Al3+ is highly specific; of 28 other metals tested, only Be2+ promoted activation of G/F by F-. PMID:6289322

  11. Structural and functional characterization of the rod outer segment membrane guanylate cyclase.

    PubMed Central

    Goraczniak, R M; Duda, T; Sitaramayya, A; Sharma, R K

    1994-01-01

    In the vertebrate photoreceptor cell, rod outer segment (ROS) is the site of visual signal-transduction process, and a pivotal molecule that regulates this process is cyclic GMP. Cyclic GMP controls the cationic conductance into the ROS, and light causes a decrease in the conductance by activating hydrolysis of the cyclic nucleotide. The identity of the granylate cyclase (ROS-GC) that synthesizes this pool of cyclic GMP is unknown. We now report the cloning, expression and functional characterization of a DNA from bovine retina that encodes ROS-GC. Images Figure 2 Figure 5 PMID:7916565

  12. Effect of serum lipoproteins on the adenylate cyclase activity of rat liver plasma membranes.

    PubMed Central

    Ghiselli, G; Sirtori, C R; Nicosia, S

    1981-01-01

    Four rat lipoprotein classes [lymph chylomicrons, VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins] were tested for their ability to affect basal adenylate cyclase (EC 4.6.1.1) activity of rat liver plasma membranes. All the lipoproteins, with the exception of lymph chylomicrons, effectively increase the enzyme activity. VLD lipoproteins are the most active class (67% maximal increase), followed by HD lipoproteins (33%) and LD lipoproteins (23%). The effect of VLD lipoproteins is additive to that elicited by GTP or GTP plus glucagon (at least within a certain concentration range). VLD lipoproteins affect only the Vmax. of the enzyme, not the Km. PMID:7317023

  13. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation.

    PubMed

    López-Canales, O A; Castillo-Hernandez, M C; Vargas-Robles, H; Rios, A; López-Canales, J S; Escalante, B

    2016-07-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  14. Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor.

    PubMed

    Ritt, Michael; Sivaramakrishnan, Sivaraj

    2016-04-01

    Adenylyl cyclase (AC) activity relies on multiple effectors acting through distinct binding sites. Crystal structures have revealed the location of these sites, and biochemical studies have explored the kinetics of ACs, but the interplay between conformation and activity remains incompletely understood. Here, we describe a novel fluorescence resonance energy transfer (FRET) sensor that functions both as a soluble cyclase and a reporter of complementation within the catalytic domain. We report a strong linear correlation between catalytic domain complementation and cyclase activity upon stimulation with forskolin and Gαs. Exploiting this, we dissect the mechanism of action of a series of forskolin analogs and a P-site inhibitor, 2'-d3'-AMP. Finally, we demonstrate that this sensor is functional in live cells, wherein it reports forskolin-stimulated activity of AC. PMID:26801393

  15. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  16. Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor- and pathogen-inducible promoter.

    PubMed Central

    Yin, S; Mei, L; Newman, J; Back, K; Chappell, J

    1997-01-01

    The promoter for a tobacco (Nicotiana tabacum) sesquiterpene cyclase gene, a key regulatory step in sesquiterpene phytoalexin biosynthesis, has been analyzed. The EAS4 promoter was fused to the beta-glucuronidase (GUS) reporter gene, and the temporal and spatial expression patterns of GUS activity were examined in stably transformed plants and in transient expression assays using electroporated protoplasts of tobacco. No GUS activity was observed in any tissues under normal growth conditions. A low level of GUS activity was detected in wounded leaf, root, and stem tissues, whereas a much higher level was observed when these tissues were challenged with elicitors or microbial pathogens. The GUS expression pattern directed by the EAS4 promoter was identical to the induction patterns observed for the endogenous sesquiterpene cyclase genes. Neither exogenous salicylic acid nor methyl jasmonate induced GUS expression; and H2O2 induced GUS expression to only a limited extent. Although the EAS4 promoter contains cis-sequences resembling previously identified transcriptional control motifs, other cis-sequences important for quantitative and qualitative gene expression were identified by deletion and gain-of-function analyses. The EAS4 promoter differs from previously described pathogen-/elicitor-inducible promoters because it only supports inducible gene expression and directs unique spatial expression patterns. PMID:9342864

  17. Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds.

    PubMed Central

    Ziegler, J.; Hamberg, M.; Miersch, O.; Parthier, B.

    1997-01-01

    Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid. PMID:12223729

  18. Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR

    PubMed Central

    De, Nabanita; Pirruccello, Michelle; Krasteva, Petya Violinova; Bae, Narae; Raghavan, Rahul Veera; Sondermann, Holger

    2008-01-01

    Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation. PMID:18366254

  19. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    SciTech Connect

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin

  20. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase.

    PubMed

    Guard, Jean; Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J

    2016-07-01

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  1. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade.

    PubMed

    Mohan, Vijee; Pandey, Arun; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the "Beta type" promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening. PMID:27070417

  2. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha.

    PubMed

    Yamamoto, Yusuke; Ohshika, Jun; Takahashi, Tomohiro; Ishizaki, Kimitsune; Kohchi, Takayuki; Matusuura, Hideyuki; Takahashi, Kosaku

    2015-08-01

    12-Oxo-phytodienoic acid (OPDA) is an intermediate in jasmonic acid (JA) biosynthesis. OPDA exerts JA-dependent and JA-independent biological effects; therefore, it is considered a signaling molecule in flowering plants. OPDA is induced by bacterial infection and wounding and inhibits growth in the moss Physcomitrella patens. The functions of OPDA and allene oxide cyclase (AOC) in the liverwort Marchantia polymorpha were explored, which represents the most basal lineage of extant land plants. The analysis of OPDA showed that it is present in M. polymorpha and is increased by wounding. OPDA has been suggested to be involved in the response to environmental stresses. Moreover, OPDA showed growth inhibitory activity in M. polymorpha. Nonetheless JA in M. polymorpha was not found in this study. AOC synthesizes OPDA from an unstable allene oxide. A database search of the M. polymorpha genome identified only a putative gene encoding allene oxide cyclase (MpAOC). Recombinant MpAOC showed AOC activity similar to that in flowering plants. MpAOC was localized to chloroplasts, as in flowering plants. Expression of MpAOC was induced by wounding and OPDA treatment, and positive feedback regulation of OPDA was demonstrated in M. polymorpha. Overexpression of MpAOC increased the endogenous OPDA level and suppressed growth in M. polymorpha. These results indicate the role of OPDA as a signaling molecule regulating growth and the response to wounding in the liverwort M. polymorpha. PMID:25892411

  3. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade

    PubMed Central

    Mohan, Vijee; Pandey, Arun; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the “Beta type” promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening. PMID:27070417

  4. Adenylate cyclase 3: a new target for anti-obesity drug development.

    PubMed

    Wu, L; Shen, C; Seed Ahmed, M; Östenson, C-G; Gu, H F

    2016-09-01

    Obesity has become epidemic worldwide, and abdominal obesity has a negative impact on health. Current treatment options on obesity, however, still remain limited. It is then of importance to find a new target for anti-obesity drug development based upon recent molecular studies in obesity. Adenylate cyclase 3 (ADCY3) is the third member of adenylyl cyclase family and catalyses the synthesis of cAMP from ATP. Genetic studies with candidate gene and genome-wide association study approaches have demonstrated that ADCY3 genetic polymorphisms are associated with obesity in European and Chinese populations. Epigenetic studies have indicated that increased DNA methylation levels in the ADCY3 gene are involved in the pathogenesis of obesity. Furthermore, biological analyses with animal models have implicated that ADCY3 dysfunction resulted in increased body weight and fat mass, while reduction of body weight is partially explained by ADCY3 activation. In this review, we describe genomic and biological features of ADCY3, summarize genetic and epigenetic association studies of the ADCY3 gene with obesity and discuss dysfunction and activation of ADCY3. Based upon all data, we suggest that ADCY3 is a new target for anti-obesity drug development. Further investigation on the effectiveness of ADCY3 activator and its delivery approach to treat abdominal obesity has been taken into our consideration. PMID:27256589

  5. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    PubMed

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC. PMID:26625288

  6. Influence of the beta-adrenergic receptor concentration on functional coupling to the adenylate cyclase system.

    PubMed Central

    Severne, Y; Coppens, D; Bottari, S; Riviere, M; Kram, R; Vauquelin, G

    1984-01-01

    Only part of the beta-adrenergic receptors can undergo functional coupling to the adenylate cyclase regulatory unit. This receptor subpopulation shows an increased affinity for agonists in the presence of Mg2+ and undergoes rapid "inactivation" (locking-in of the agonist) by the alkylating reagent N-ethylmaleimide in the presence of agonists. Several experimental conditions, known to modify the total receptor concentration without alteration of the other components of the adenylate cyclase system, do not affect the percentage of receptors that can undergo functional coupling: (i) homologous regulation of beta 1 receptors in rat brain by noradrenaline (through antidepressive drug or reserpine injections); (ii) up- and down-regulation of the beta 2 receptors in Friend erythroleukemia cells by, respectively, sodium butyrate and cinnarizine treatment; and (iii) dithiothreitol-mediated inactivation of receptors in turkey erythrocytes, Friend erythroleukemia cells, and rat brain. Our findings argue against a stoichiometric limitation in the number of regulatory components, genetically different receptor subpopulations, bound guanine nucleotides, or reduced accessibility of part of the receptors to the agonists as the cause for functional receptor heterogeneity. Differences in either the receptor conformation or its membrane microenvironment are more plausible explanations. PMID:6087337

  7. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    SciTech Connect

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of {sup 32}P-cAMP formed from {sup 32}P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G{sub s}-catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range.

  8. Inhibition of monoterpene cyclases by inert analogues of geranyl diphosphate and linalyl diphosphate☆

    PubMed Central

    Karp, Frank; Zhao, Yuxin; Santhamma, Bindu; Assink, Bryce; Coates, Robert M.; Croteau, Rodney B.

    2007-01-01

    The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which then cyclizes to the various monoterpene skeletons. X-ray crystal structures of these enzymes complexed with suitable analogues of the substrate and intermediate could provide a clearer view of this universal, but cryptic, step of monoterpenoid cyclase catalysis. Toward this end, the functionally inert analogues 2-fluorogeranyl diphosphate, (±)-2-fluorolinalyl diphosphate, and (3R)- and (3S)-homolinalyl diphosphates (2,6-dimethyl-2-vinyl-5-heptenyl diphosphates) were prepared, and compared to the previously described substrate analogue 3-azageranyl diphosphate (3-aza-2,3-dihydrogeranyl diphosphate) as inhibitors and potential crystallization aids with two representative monoterpenoid cyclases, (−)-limonene synthase and (+)-bornyl diphosphate synthase. Although these enantioselective synthases readily distinguished between (3R)- and (3S)-homolinalyl diphosphates, both of which were more effective inhibitors than was 3-azageranyl diphosphate, the fluorinated analogues proved to be the most potent competitive inhibitors and have recently yielded informative liganded structures with limonene synthase. PMID:17949678

  9. E. coli heat-stable enterotoxin and guanylyl cyclase C: new functions and unsuspected actions.

    PubMed Central

    Giannella, Ralph A.; Mann, Elizabeth A.

    2003-01-01

    Some E. coli cause diarrhea by elaborating heat-labile and heat-stable (ST) enterotoxins which stimulate intestinal secretion. E. coli ST's are small peptides which bind to intestinal luminal epithelial cell receptors. The ST receptor, one of a family of receptor-cyclases called guanylyl cyclase C (GC-C), is a membrane spanning protein containing an extracellular binding domain and intracellular protein kinase and catalytic domains. The intestine synthesizes and secretes homologous peptides, guanylin and uroguanylin. The kidney also synthesizes uroguanylin. ST, guanylin or uroguanylin binding to GC-C results in increased cGMP, phosphorylation of the CFTR Cl- channel and secretion. Proguanylin and prouroguanylin circulate in blood and bind to receptors in intestine, kidney, liver, brain etc. In the kidney, they stimulate the excretion of Na+ and K+. Study of GC-C "knock-out" mice reveal that GC-C is important to intestinal salt and water secretion, duodenal bicarbonate secretion, recovery from CCl4-induced liver injury, and to intestinal polyp formation in Min mice lacking GC-C. PMID:12813912

  10. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. PMID:27335168

  11. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  12. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    PubMed Central

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  13. A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus

    PubMed Central

    Avelar, Gabriela M.; Schumacher, Robert I.; Zaini, Paulo A.; Leonard, Guy; Richards, Thomas A.; Gomes, Suely L.

    2014-01-01

    Summary Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  14. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.

    PubMed

    Avelar, Gabriela M; Schumacher, Robert I; Zaini, Paulo A; Leonard, Guy; Richards, Thomas A; Gomes, Suely L

    2014-06-01

    Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  15. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue.

    PubMed

    Gray, Jesse M; Karow, David S; Lu, Hang; Chang, Andy J; Chang, Jennifer S; Ellis, Ronald E; Marletta, Michael A; Bargmann, Cornelia I

    2004-07-15

    Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments. PMID:15220933

  16. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors

    PubMed Central

    Mendez, Ana; Burns, Marie E.; Sokal, Izabela; Dizhoor, Alexander M.; Baehr, Wolfgang; Palczewski, Krzysztof; Baylor, Denis A.; Chen, Jeannie

    2001-01-01

    The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca2+ regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs−/− retinas showed no Ca2+ dependence, indicating that Ca2+ regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs−/− rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs−/− rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs−/− rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rod's operating range. PMID:11493703

  17. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  18. Phorbol ester-induced sensitisation of adenylyl cyclase type II is related to phosphorylation of threonine 1057.

    PubMed

    Böl, G F; Gros, C; Hülster, A; Bösel, A; Pfeuffer, T

    1997-08-18

    Following up the results from previous studies on chemical fragmentation of TPA-treated, [32P]phosphate labeled adenylyl cyclase type II (AC II) (Böl, G. F., Hülster, A., and Pfeuffer, T. in press) we have replaced serine 871 or threonine 1057 by alanine using site directed mutagenesis. Both mutants had unimpaired catalytic activity, however enhancement by phorbolester TPA was reduced by 60-80 % in the T1057A mutant, but not in the S871A mutant. The stimulation of adenylyl cyclase type II by betagamma subunits of heterotrimeric G-pro teins and that by PKC have been previously shown to be mutually exclusive (Zimmermann and Taussig (1996), J. Biol. Chem. 271, 27161-27166). This is in line with the present findings that AC II expressed in COS-1 cells was only barely stimulated (10%) by coexpressed betagamma-subunits in presence of TPA. Mutation of threonine 1057 to alanine however caused partial regain of betagamma-stimulation in the presence of TPA by 40%, as compared to that of WT adenylyl cyclase type II which was 70% in the absence of TPA. These data strongly implicate the importance of threonine 1057 as phosphate acceptor following PKC-mediated sensitisation of adenylyl cyclase type II. PMID:9268695

  19. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  20. Multiplex PCR Assay Targeting a Diguanylate Cyclase-Encoding Gene, cgcA, To Differentiate Species within the Genus Cronobacter

    PubMed Central

    Carter, L.; Lindsey, L. A.; Grim, C. J.; Sathyamoorthy, V.; Jarvis, K. G.; Gopinath, G.; Lee, C.; Sadowski, J. A.; Trach, L.; Pava-Ripoll, M.; McCardell, B. A.; Tall, B. D.

    2013-01-01

    In a comparison to the widely used Cronobacter rpoB PCR assay, a highly specific multiplexed PCR assay based on cgcA, a diguanylate cyclase gene, that identified all of the targeted six species among 305 Cronobacter isolates was designed. This assay will be a valuable tool for identifying suspected Cronobacter isolates from food-borne investigations. PMID:23144142

  1. Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor

    PubMed Central

    Conley, Jason M.; Brand, Cameron S.; Bogard, Amy S.; Pratt, Evan P. S.; Xu, Ruqiang; Hockerman, Gregory H.; Ostrom, Rennolds S.; Dessauer, Carmen W.

    2013-01-01

    Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells. PMID:24008337

  2. Efficacy of inverse agonists in cells overexpressing a constitutively active β2-adrenoceptor and type II adenylyl cyclase

    PubMed Central

    Stevens, Patricia A; Milligan, Graeme

    1998-01-01

    Maximal stimulant output from the adenylyl cyclase cascade in neuroblastoma × glioma hybrid, NG108-15, cells is limited by the levels of expression of isoforms of adenylyl cyclase. Stable expression in these cells of a constitutively active mutant (CAM) version of the human β2-adrenoceptor resulted in higher basal adenylyl cyclase activity than following expression of the human wild type β2-adrenoceptor. Isoprenaline acted as a full agonist in membranes from both wild type and CAM β2-adrenoceptor expressing clones.Expression of type II adenylyl cyclase resulted in a substantially elevated capacity of isoprenaline to stimulate [3H]-forskolin binding, whereas in CAM β2-adrenoceptor expressing cells the basal high affinity [3H]-forskolin binding represented a markedly greater % of the maximal effect which could be produced by addition of isoprenaline, and the EC50 for isoprenaline was some 10 fold lower than in cells expressing the wild type β2-adrenoceptor.Further transfection of the CAM β2-adrenoceptor expressing cells with type II adenylyl cyclase greatly increased both absolute basal and agonist-stimulated levels of adenylyl cyclase activity.Betaxolol, ICI 118,551, sotalol and timolol acted as inverse agonists with varying degrees of efficacy, whereas propranolol functioned as a neutral antagonist and alprenolol as a partial agonist.Pretreatment of the CAM β2-adrenoceptor and type II adenylyl cyclase expressing clones with the irreversible alkylating agent BAAM (1 μM) did not reduce the efficacy of isoprenaline but eliminated efficacy from all the inverse agonist ligands. This effect was dependent upon the concentration of BAAM employed, with half-maximal effects being produced between 10 nM and 100 nM of the alkylating agent, which is similar to the concentrations required to prevent subsequent ligand access to some 50% of the CAM β2-adrenoceptor population.These data demonstrate that inverse agonist efficacy can be modulated by receptor

  3. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus.

    PubMed

    Hurwitz, N; Segal, M; Marbach, I; Levitzki, A

    1995-11-21

    Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements. PMID:7479926

  4. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module

    PubMed Central

    Linder, Jürgen Ulrich

    2015-01-01

    YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1–10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain. PMID:26512893

  5. An Approach to Mimicking the Sesquiterpene Cyclase Phase by Nickel-Promoted Diene/Alkyne Cooligomerization

    PubMed Central

    Holte, Dane; Götz, Daniel C. G.; Baran, Phil S.

    2012-01-01

    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist’s toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature’s approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zero-valent nickel catalysis building off the classic studies by Günther Wilke and coworkers. PMID:22229741

  6. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice

    PubMed Central

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-01-01

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca2+-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine1076 of ACIII, the only residue responsible for Ca2+-induced phosphorylation and inhibition of ACIII (Wei et al., 1996; Wei et al., 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wildtype and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine1076 plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  7. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice.

    PubMed

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-10-17

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca(2+)-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine(1076) of ACIII, the only residue responsible for Ca(2+)-induced phosphorylation and inhibition of ACIII (Wei et al., 1996, 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wild-type and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine(1076) plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  8. Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences.

    PubMed

    Dobritsa, S V; Potter, D; Gookin, T E; Berry, A M

    2001-06-01

    In Frankia, the microsymbiont in actinorhizal root nodules, nitrogen fixation takes place in specialized structures called vesicles. The lipidic vesicle envelope forms a barrier to oxygen diffusion, an essential part of the nitrogenase oxygen protection system. We have shown previously that the vesicle envelope is composed primarily of two species of hopanoid lipids, sterol-like molecules that are synthesized in a wide range of bacteria, including Frankia, several cyanobacteria, and rhizobia. The levels of hopanoid found in Frankia are among the highest of any organism known to date. Here we report that short (328-bp) DNA sequences from several strains of Frankia spp. have been identified that are homologous to a portion of the coding region of squalene-hopene cyclase (shc) genes. The fragments and corresponding polymerase chain reaction (PCR) primers can be used in phylogenetic comparisons of Frankia, both within Frankiaceae and among bacteria that synthesize hopanoids. PMID:11467729

  9. Pharmacology and clinical potential of guanylyl cyclase C agonists in the treatment of ulcerative colitis

    PubMed Central

    Pitari, Giovanni M

    2013-01-01

    Agonists of the transmembrane intestinal receptor guanylyl cyclase C (GCC) have recently attracted interest as promising human therapeutics. Peptide ligands that can specifically induce GCC signaling in the intestine include endogenous hormones guanylin and uroguanylin, diarrheagenic bacterial enterotoxins (ST), and synthetic drugs linaclotide, plecanatide, and SP-333. These agonists bind to GCC at intestinal epithelial surfaces and activate the receptor’s intracellular catalytic domain, an event initiating discrete biological responses upon conversion of guanosine-5′-triphosphate to cyclic guanosine monophosphate. A principal action of GCC agonists in the colon is the promotion of mucosal homeostasis and its dependent barrier function. Herein, GCC agonists are being developed as new medications to treat inflammatory bowel diseases, pathological conditions characterized by mucosal barrier hyperpermeability, abnormal immune reactions, and chronic local inflammation. This review will present important concepts underlying the pharmacology and therapeutic utility of GCC agonists for patients with ulcerative colitis, one of the most prevalent inflammatory bowel disease disorders. PMID:23637522

  10. Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits.

    PubMed

    Guo, Fei; Zhou, Wenjing; Zhang, Jiancheng; Xu, Qiang; Deng, Xiuxin

    2012-01-01

    Lycopene β-cyclase (LYCB) is the key enzyme for the synthesis of β-carotene, a valuable component of the human diet. In this study, tomato constitutively express Lycb-1 was engineered. The β-carotene level of transformant increased 4.1 fold, and the total carotenoid content increased by 30% in the fruits. In the transgenic line, the downstream α-branch metabolic fluxes were repressed during the three developmental stages while α-carotene content increased in the ripe stage. Microarray analysis in the ripe stage revealed that the constitutive expression of Lycb-1 affected a number of pathways including the synthesis of fatty acids, flavonoids and phenylpropanoids, the degradation of limonene and pinene, starch and sucrose metabolism and photosynthesis. This study provided insight into the regulatory effect of Lycb-1 gene on plant carotenoid metabolism and fruit transcriptome. PMID:22384184

  11. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue.

    PubMed

    Hoffmann, Linda S; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W C; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  12. An approach to mimicking the sesquiterpene cyclase phase by nickel-promoted diene/alkyne cooligomerization.

    PubMed

    Holte, Dane; Götz, Daniel C G; Baran, Phil S

    2012-01-20

    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist's toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature's approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zerovalent nickel catalysis building off the classic studies by Wilke and co-workers. PMID:22229741

  13. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential

    PubMed Central

    Evgenov, Oleg V.; Pacher, Pál; Schmidt, Peter M.; Haskó, György; Schmidt, Harald H. H. W.; Stasch, Johannes-Peter

    2008-01-01

    Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766). PMID:16955067

  14. Measles virus modulates human T-cell somatostatin receptors and their coupling to adenylyl cyclase.

    PubMed Central

    Krantic, S; Enjalbert, A; Rabourdin-Combe, C

    1997-01-01

    The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM

  15. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  16. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis.

    PubMed

    Hammer, Stephan C; Marjanovic, Antonija; Dominicus, Jörg M; Nestl, Bettina M; Hauer, Bernhard

    2015-02-01

    For many important reactions catalyzed in chemical laboratories, the corresponding enzymes are missing, representing a restriction in biocatalysis. Although nature provides highly developed machineries appropriate to catalyze such reactions, their potential is often ignored. This also applies to Brønsted acid catalysis, a powerful method to promote a myriad of chemical transformations. Here, we report on the unique protonation machinery of a squalene hopene cyclase (SHC). Active site engineering of this highly evolvable enzyme yielded a platform for enzymatic Brønsted acid catalysis in water. This is illustrated by activation of different functional groups (alkenes, epoxides and carbonyls), enabling the highly stereoselective syntheses of various cyclohexanoids while uncoupling SHC from polycyclization chemistry. This work highlights the potential of systematic investigation on nature's catalytic machineries to generate unique catalysts. PMID:25503928

  17. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases.

    PubMed

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities. PMID:20861902

  18. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    NASA Astrophysics Data System (ADS)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  19. Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis

    PubMed Central

    Vagstad, Anna L; Hill, Eric A; Labonte, Jason W; Townsend, Craig A

    2012-01-01

    Summary Melanins are a broad class of darkly-pigmented macromolecules formed by oxidative polymerization of phenolic monomers. In fungi, melanins are known virulence factors that contribute to pathogenicity. Their biosynthesis generally involves polymerization of 1,8-dihydroxynaphthalene via a 1,3,6,8- tetrahydroxynaphthalene (THN) precursor assembled by multidomain, nonreducing polyketide synthases. Multiple, convergent routes to THN have evolved in fungi. Parallel heptaketide and hexaketide pathways exist that utilize conventional C-terminal thioesterase/Claisen cyclase domains and separate side-chain deacylases. Here, in vitro characterization of Pks1 from Colletotrichum lagenarium establishes a true THN synthase with a bifunctional thioesterase (TE) catalyzing both cyclization and deacetylation of an enzyme-bound hexaketide substrate. Chimeric TE domains were generated by swapping lid regions of active sites between classes of melanin TEs to gain insight into this unprecedented catalysis of carbon–carbon bond making and breaking by an α/β-hydrolase fold enzyme. PMID:23261597

  20. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin

    PubMed Central

    Wu, Chao; Cheng, Yuan-Yuan; Yin, Hao; Song, Xiang-Ning; Li, Wen-Wei; Zhou, Xian-Xuan; Zhao, Li-Ping; Tian, Li-Jiao; Han, Jun-Cheng; Yu, Han-Qing

    2013-01-01

    Although oxygen has been reported to regulate biofilm formation by several Shewanella species, the exact regulatory mechanism mostly remains unclear. Here, we identify a direct oxygen-sensing diguanylate cyclase (DosD) and reveal its regulatory role in biofilm formation by Shewanella putrefaciens CN32 under aerobic conditions. In vitro and in vivo analyses revealed that the activity of DosD culminates to synthesis of cyclic diguanylate (c-di-GMP) in the presence of oxygen. DosD regulates the transcription of bpfA operon which encodes seven proteins including a large repetitive adhesin BpfA and its cognate type I secretion system (TISS). Regulation of DosD in aerobic biofilms is heavily dependent on an adhesin BpfA and the TISS. This study offers an insight into the molecular mechanism of oxygen-stimulated biofilm formation by S. putrefaciens CN32. PMID:23736081

  1. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  2. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  3. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  4. Structure, signaling mechanism and regulation of natriuretic peptide receptor-guanylate cyclase

    PubMed Central

    Misono, Kunio S.; Philo, John S.; Arakawa, Tsutomu; Ogata, Craig M.; Qiu, Yue; Ogawa, Haruo; Young, Howard S.

    2011-01-01

    Summary Atrial natriuretic peptide (ANP) and homologous B-type natriuretic peptide (BNP) are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and BNP counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by the A-type natriuretic peptide receptor (NPRA), a single transmembrane segment, guanylate cyclase (GC) linked receptor that occurs as a homodimer. Here we present an overview of the structure, possible chloride-mediated regulation, and signaling mechanism of the NPRA and other receptor-GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacter GC Cya2 have been reported. These structures closely resemble that of the adenylate cyclase catalytic domain consisting of C1 and C2 subdomain heterodimer. AC is activated by binding of Gsα to C2 and ensuing 7° rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer into a catalytically active conformation. We speculate that, in the NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity. PMID:21375693

  5. Restoring Soluble Guanylyl Cyclase Expression and Function Blocks the Aggressive Course of GliomaS⃞

    PubMed Central

    Zhu, Haifeng; Li, Jessica Tao; Zheng, Fang; Martin, Emil; Kots, Alexander Y.; Krumenacker, Joshua S.; Choi, Byung-Kwon; McCutcheon, Ian E.; Weisbrodt, Norman; Bögler, Oliver; Murad, Ferid

    2011-01-01

    The NO and cGMP signaling pathways are of broad physiological and pathological significance. We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tissues and cell lines with that of healthy control samples and demonstrated that sGC expression is significantly lower in glioma preparations. Our analysis of GEO databases (National Cancer Institute) further revealed a statistically significant reduction of sGC transcript levels in human glioma specimens. On the other hand, the expression levels of particulate (membrane) guanylyl cyclases (pGC) and cGMP-specific phosphodiesterase (PDE) were intact in the glioma cells that we have tested. Pharmacologically manipulating endogenous cGMP generation in glioma cells through either stimulating pGC by ANP/BNP, or blocking PDE by 3-isobutyl-1-methylxanthine/zaprinast caused significant inhibition of proliferation and colony formation of glioma cells. Genetically restoring sGC expression also correlated inversely with glioma cells growth. Orthotopic implantation of glioma cells transfected with an active mutant form of sGC (sGCα1β1Cys105) in athymic mice increased the survival time by 4-fold over the control. Histological analysis of xenografts overexpressing α1β1Cys105 sGC revealed changes in cellular architecture that resemble the mo