Science.gov

Sample records for adp-ribosylation factor-binding proteins

  1. Proteomics Approaches to Identify Mono(ADP-ribosyl)ated and Poly(ADP-ribosyl)ated proteins

    PubMed Central

    Vivelo, Christina A.; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by mass spectrometry using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD+ analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed. PMID:25263235

  2. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins.

    PubMed

    Vivelo, Christina A; Leung, Anthony K L

    2015-01-01

    ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription, and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by MS using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD(+) analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed. PMID:25263235

  3. ADP-ribosylation of proteins: Enzymology and biological significance

    SciTech Connect

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probing of proteins involved in signal transduction and protein biosynthesis.

  4. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    PubMed

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  5. State of the art of protein mono-ADP-ribosylation: biological role and therapeutic potential.

    PubMed

    Fabrizio, Gaia; Scarpa, Emanuele Salvatore; Di Girolamo, Maria

    2015-01-01

    Mono-ADP-ribosylation is a post-translational modification that was discovered more than five decades ago, and it consists of the enzymatic transfer of ADP-ribose from NAD⁺ to acceptor proteins. In viruses and prokaryotes, mono-ADP-ribosylation is mainly, but not exclusively, a mechanism used to take control of the host cell. In mammals, mono-ADP-ribosylation serves to regulate protein functions, and it is catalysed by two families of toxin-related cellular ADP-ribosyltransferases: ecto-enzymes that modify various cell-surface proteins, like integrins and receptors, and intracellular enzymes that act on a variety of nuclear and cytosolic proteins. These two families have been recently renamed the ARTCs (clostridia toxin like) and ARTDs (diphtheria toxin like), depending on their conserved structural features, and in terms of their relationships to the bacterial toxins. In addition, two members of the structurally non-related sirtuin family can also modify cellular proteins by mono-ADP-ribosylation. Recently, new examples of ADP-ribosylation of proteins involved in signal transduction and intracellular trafficking have been discovered, thus opening the route to the better molecular understanding of this reaction and of its role in human cell physiology and pathology. PMID:25553458

  6. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens.

    PubMed

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R; Matic, Ivan; Peleg, Anton Y; Leys, David; Traven, Ana; Ahel, Ivan

    2015-07-16

    Sirtuins are an ancient family of NAD(+)-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  7. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens

    PubMed Central

    Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya; Cameron, David R.; Matic, Ivan; Peleg, Anton Y.; Leys, David; Traven, Ana; Ahel, Ivan

    2015-01-01

    Summary Sirtuins are an ancient family of NAD+-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species. PMID:26166706

  8. Agonist-induced ADP-ribosylation of a cytosolic protein in human platelets

    SciTech Connect

    Bruene, B.; Molina Y Vedia, L.; Lapetina, E.G. )

    1990-05-01

    {alpha}-Thrombin and phorbol 12,13-dibutyrate stimulated the mono(ADP-ribosyl)ation of a 42-kDa cytosolic protein of human platelets. This effect was mediated by protein kinase C activation and was inhibited by protein kinase C inhibitor staurosporine. It also was prevented by prostacyclin, which is known to inhibit the phospholipase C-induced formation of 1,2-diacylglycerol, which is one of the endogenous activators of protein kinase C. On sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the 42-kDa protein that is ADP-ribosylated by {alpha}-thrombin was clearly distinct from the {alpha} subunits of membrane-bound inhibitory and stimulatory guanine nucleotide-binding regulatory proteins, respectively G{sub i{alpha}} and G{sub s{alpha}}; the 47-kDa protein that is phosphorylated by protein kinase C in platelets; and the 39-kDa protein that has been shown to be endogenously ADP-ribosylated by agents that release nitric oxide. This information shows that agonist-induced activation of protein kinase leads to the ADP-ribosylation of a specific protein. This covalent modification might have a functional role in platelet activation.

  9. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    SciTech Connect

    Scaife, R.M. ); Wilson, L. ); Purich, D.L. )

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  10. Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

    PubMed Central

    2015-01-01

    Poly(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of these polymers (large, charged, heterogeneous, base-labile) has made these attachment sites difficult to study by mass spectrometry. Here we propose a new pipeline that allows for the identification of mono(ADP-ribosyl)ation and poly(ADP-ribosyl)ation sites via the enzymatic product of phosphodiesterase-treated ADP-ribose, or phospho(ribose). The power of this method lies in the enrichment potential of phospho(ribose), which we show to be enriched by phosphoproteomic techniques when a neutral buffer, which allows for retention of the base-labile attachment site, is used for elution. Through the identification of PARP-1 in vitro automodification sites as well as endogenous ADP-ribosylation sites from whole cells, we have shown that ADP-ribose can exist on adjacent amino acid residues as well as both lysine and arginine in addition to known acidic modification sites. The universality of this technique has allowed us to show that enrichment of ADP-ribosylated proteins by macrodomain leads to a bias against ADP-ribose modifications conjugated to glutamic acids, suggesting that the macrodomain is either removing or selecting against these distinct protein attachments. Ultimately, the enrichment pipeline presented here offers a universal approach for characterizing the mono- and poly(ADP-ribosyl)ated proteome. PMID:24920161

  11. Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARCKS) in an ADP-ribosylation reaction.

    PubMed

    Chao, D; Severson, D L; Zwiers, H; Hollenberg, M D

    1994-01-01

    In an ADP-ribosylation reaction, we have observed the radiolabelling of a protein in a crude bovine brain homogenate, which upon two-dimensional gel electrophoresis migrated with an acidic pI (< 4.5) and an apparent molecular mass (80-90 kDa) consistent with the properties of the myristoylated, alanine-rich, protein kinase C substrate protein termed MARCKS. To establish the identity of this radiolabelled constituent in brain homogenates, we first purified bovine brain MARCKS using calmodulin-Sepharose affinity chromatography and we then supplemented the crude ADP-ribosylation reaction mixture with this purified MARCKS fraction. Concordant increases in radiolabelling and silver staining of the same protein component from the MARCKS-supplemented ADP-ribosylation reaction, as compared with the ADP-ribosylated crude homogenate, established the identity of this constituent as MARCKS. The radiolabelling of MARCKS was lower in comparison with the ADP-ribosylation of the related neuronal protein B-50/GAP-43 under identical reaction conditions. The potential functional consequences of the ADP-ribosylation of MARCKS are discussed and the possibility is raised that other members of the MARCKS family, such as the F52/MacMARCKS/MRP protein, may also be subject to ADP-ribosylation. PMID:7605610

  12. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    SciTech Connect

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.

  13. Calcium-dependent ADP-ribosylation of high-mobility-group I (HMGI) proteins.

    PubMed Central

    Giancotti, V; Bandiera, A; Sindici, C; Perissin, L; Crane-Robinson, C

    1996-01-01

    Micrococcal nuclease digestion of nuclei from mouse Lewis lung carcinoma cells releases a protein mixture into the supernatant that lacks histone H1 and contains a full complement of high-mobility-group I (HMGI) proteins (i.e. I, Y and I-C). This implies that all three HMGI proteins are localized at the nuclease-sensitive regions of active chromatin. It is also shown that if Ca2+ ions are present in the nuclear incubation buffer (with or without exogenous nuclease), all three HMGI proteins become ADP-ribosylated. We propose that this modification of HMGI family proteins is part of the general poly(ADP-ribosyl)ation that accompanies DNA damage in apoptosis and other processes. PMID:8760375

  14. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment.

    PubMed

    Abazeed, Mohamed E; Fuller, Robert S

    2008-11-01

    Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  15. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    PubMed Central

    Abazeed, Mohamed E.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN–PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the β subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Δ membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Δ mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  16. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life

    PubMed Central

    Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as

  17. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity.

    PubMed

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-05-01

    We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  18. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity

    PubMed Central

    Gibbs-Seymour, Ian; Fontana, Pietro; Rack, Johannes Gregor Matthias; Ahel, Ivan

    2016-01-01

    Summary We report the identification of histone PARylation factor 1 (HPF1; also known as C4orf27) as a regulator of ADP-ribosylation signaling in the DNA damage response. HPF1/C4orf27 forms a robust protein complex with PARP-1 in cells and is recruited to DNA lesions in a PARP-1-dependent manner, but independently of PARP-1 catalytic ADP-ribosylation activity. Functionally, HPF1 promotes PARP-1-dependent in trans ADP-ribosylation of histones and limits DNA damage-induced hyper-automodification of PARP-1. Human cells lacking HPF1 exhibit sensitivity to DNA damaging agents and PARP inhibition, thereby suggesting an important role for HPF1 in genome maintenance and regulating the efficacy of PARP inhibitors. Collectively, our results demonstrate how a fundamental step in PARP-1-dependent ADP-ribosylation signaling is regulated and suggest that HPF1 functions at the crossroads of histone ADP-ribosylation and PARP-1 automodification. PMID:27067600

  19. ADP-ribosylation factor-like protein 4C (ARL4C) interacts with galectin-3 during oocyte development and embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-ribosylation factor-like protein 4 (ARL4) is a GTP-binding protein which belongs to the ADP-ribosylation factor protein (ARF) superfamily of small GTPases. ARL4 has been shown to be mainly related to the development of male germ cells and embryogenesis in mouse. To investigate the role of ARL4 i...

  20. The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation.

    PubMed

    Katada, Toshiaki

    2012-01-01

    Pertussis toxin (PTX) produced by Bordetella pertussis was first introduced by Ui and his colleagues in research on signal transduction under the name islet-activating protein in 1979, when the mechanism of toxin-induced stimulation of insulin release from pancreatic islets was reported in the rat. The stimulatory effect of PTX in vivo results from the blockage of α(2)-adrenergic receptor-mediated inhibition of insulin release. The receptor-induced inhibition of cAMP formation was also abolished in pancreatic islets isolated from PTX-treated rats, suggesting that the toxin caused uncoupling of adenylyl cyclase inhibition from receptor stimulation. The action of PTX on isolated membranes required a cytosolic factor, nicotinamide adenine dinucleotide (NAD), and the uncoupling induced by PTX was shown to be due to the toxin-catalyzed ADP-ribosylation of a 41-kDa protein with NAD as another substrate. The 41-kDa PTX substrate was soon identified and purified as the α-subunit of the inhibitory G protein that transmits an inhibitory signal from membrane receptors to adenylyl cyclase. After demonstration of the molecular mechanism of PTX, the toxin was widely utilized as a probe for identifying and analyzing major αβγ-trimeric G proteins. Thus, PTX-sensitive G proteins appeared to carry positive and negative signals from many membrane receptors to a variety of effectors other than adenylyl cyclase. PMID:23207763

  1. ADP ribosylation factor like 2 (Arl2) protein influences microtubule dynamics in breast cancer cells

    SciTech Connect

    Beghin, Anne . E-mail: anne.beghin@recherche.univ-lyon1.fr; Honore, Stephane; Messana, Celine; Matera, Eva-Laure; Aim, Jennifer; Burlinchon, Sandrine; Braguer, Diane; Dumontet, Charles

    2007-02-01

    ADP ribosylation factor like 2 (Arl2) protein is involved in the folding of tubulin peptides. Variants of the human adenocarcinoma line MCF7 cells with increased or reduced content of Arl2 protein were produced and characterized. Western blot analysis performed after separation of the different fractions of tubulins showed that the content in polymerizable soluble heterodimers was significantly increased in cells with the highest Arl2 expression level (MA+) and reduced in cells with the lowest Arl2 expression level (MA-) in comparison to control cells (MP). Microtubule dynamic instability, measured after microinjection of rhodamine-labelled tubulin in living cells, was significantly enhanced in MA+ cells and reduced in MA- cells. These alterations involved modifications of the microtubule growth and shortening rates, duration of attenuation phases, percentage of time spent in each phase (growth, shortening and attenuation) and catastrophe frequency. We also observed modifications in the expression level of the tumor suppressor protein phosphatase 2Ac, which has been shown to form a complex with Arl2. Finally, cell cycle progression was modified in these cells, particularly in regard to duration of telophase. In summary, alterations in Arl2 protein content were found to be associated with modifications in tubulin pools, microtubule dynamics as well as cell cycle progression.

  2. Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor

    PubMed Central

    Belov, George A.; Fogg, Mark H.; Ehrenfeld, Ellie

    2005-01-01

    Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication. PMID:15890959

  3. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  4. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6

    PubMed Central

    2009-01-01

    Background Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. Results Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. Conclusion These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways. PMID:19686593

  5. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure.

    PubMed

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M Cristina

    2016-03-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  6. ADP-Ribosyltransferases and Poly ADP-Ribosylation

    PubMed Central

    Liu, Chao; Yu, Xiaochun

    2016-01-01

    Protein ADP-ribosylation is an important posttranslational modification that plays versatile roles in multiple biological processes. ADP-ribosylation is catalyzed by a group of enzymes known as ADP-ribosyltransferases (ARTs). Using nicotinamide adenine dinucleotide (NAD+) as the donor, ARTs covalently link single or multiple ADP-ribose moieties from NAD+ to the substrates, forming mono ADP-ribosylation or poly ADP-ribosylation (PARylation). Novel functions of ARTs and ADP-ribosylation have been revealed over the past few years. Here we summarize the current knowledge on ARTs and PARylation. PMID:25938242

  7. ADP-Ribosylation: Activation, Recognition, and Removal

    PubMed Central

    Li, Nan; Chen, Junjie

    2014-01-01

    ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions. PMID:24552704

  8. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    PubMed Central

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  9. Cellular regulation of ADP-ribosylation of proteins: 3. Selective augmentation of in vitro ADP-ribosylation of histone H3 in murine thymic cells after in vivo emetine treatment

    SciTech Connect

    Sooki-Toth, A.; Banfalvi, G.; Staub, M.; Antoni, F. ); Szoelloesi, J. ); Kirsten, E. ); Kun, E. )

    1989-09-01

    Thymic cells were isolated at intervals of between 0 and 144 h from mice that received one intraperitoneal injection of emetine, and thymus weight, incorporation of ({sup 14}C)leucine into proteins and ({sup 3}H)thymidine into DNA in intact thymic cells, as well as initial rates of protein ADP-ribosylation in permeabilized cells were simultaneously monitored. The effect of emetine as an inhibitor of protein synthesis corresponds to the induction of sequential cellular events, such as cell exit and remigration, by other antimitotic agents and produces an activation of proliferation of cells reentering into this organ. Proliferation, as demonstrated by a large increase in DNA synthesis and entrance into S phase, was kinetically related to an apparent increase in poly (ADP-ribose) polymerase activity in thymic cells and a highly significant in vitro ADP-ribosylation of histone H3. since no DNA fragmentation occurred in thymic cells, as tested by a fluorometric technique it is probable that a selective activation of poly (ADP-ribose) polymerase may have been induced in cells that undergo differentiation and proliferation while repopulating thymus.

  10. Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner

    PubMed Central

    2011-01-01

    Background Fanconi anemia (FA) is a rare autosomal recessive syndrome characterized by developmental abnormalities, progressive bone marrow failure, and predisposition to cancer. The key FA protein FANCD2 crosstalks with members of DNA damage and repair pathways that also play a role at telomeres. Therefore, we investigated whether FANCD2 has a similar involvement at telomeres. Results We reveal that FANCD2 may perform a novel function separate to the FANCD2/BRCA pathway. This function includes FANCD2 interaction with one of the telomere components, the PARP family member tankyrase-1. Moreover, FANCD2 inhibits tankyrase-1 activity in vitro. In turn, FANCD2 deficiency increases the polyADP-ribosylation of telomere binding factor TRF1. Conclusions FANCD2 binding and inhibiting tankyrase-1PARsylation at telomeres may provide an additional step within the FA pathway for the regulation of genomic integrity. PMID:21314979

  11. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    SciTech Connect

    Jones, J.; Schultz, R.M. )

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  12. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.

    PubMed Central

    Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1994-01-01

    ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A. PMID:8159707

  13. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

    PubMed

    Rodas, Paula I; Álamos-Musre, A Said; Álvarez, Francisca P; Escobar, Alejandro; Tapia, Cecilia V; Osorio, Eduardo; Otero, Carolina; Calderón, Iván L; Fuentes, Juan A; Gil, Fernando; Paredes-Sabja, Daniel; Christodoulides, Myron

    2016-09-01

    The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes. PMID:27465490

  14. Differential expression during development of ADP-ribosylation factors, 20-kDa guanine nucleotide-binding protein activators of cholera toxin.

    PubMed

    Tsai, S C; Adamik, R; Tsuchiya, M; Chang, P P; Moss, J; Vaughan, M

    1991-05-01

    Cholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken. Levels of ARF were higher in brain than in non-neural tissues. In rat brain, on the second postnatal day, amounts of sARF I and II were similar. By the 10th postnatal day and thereafter, sARF II predominated. Relative levels of ARF determined by immunoreactivity were in agreement with levels assessed in functional assays of cholera toxin-catalyzed ADP-ribosylation. Based on nucleotide and deduced amino acid sequences of human and bovine cDNAs, there appear to be at least six different ARF-like genes. Northern blots of rat brain poly(A)+ RNA were hybridized with cDNA and oligonucleotide probes specific for each of the human and bovine ARF genes. From the second to the 27th postnatal day, ARF 3 mRNA increased, whereas mRNAs for ARFs 2 and 4 decreased; and those for ARFs 1, 5, and 6 were apparently unchanged. Partial amino acid sequence of sARF II is consistent with it being either the ARF 1 or 3 gene product. The developmental changes in rat brain ARF parallel neuronal maturation and synapse formation. PMID:1902473

  15. ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation.

    PubMed

    Lim, Yun-Sook; Ngo, Huong T T; Lee, Jihye; Son, Kidong; Park, Eun-Mee; Hwang, Soon B

    2016-01-01

    The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy. PMID:27550144

  16. ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation

    PubMed Central

    Lim, Yun-Sook; Ngo, Huong T. T.; Lee, Jihye; Son, Kidong; Park, Eun-Mee; Hwang, Soon B.

    2016-01-01

    The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy. PMID:27550144

  17. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes.

    PubMed

    Kanoh, H; Williger, B T; Exton, J H

    1997-02-28

    ADP-ribosylation factors (ARFs) have been implicated in vesicle transport in the Golgi complex. Employing yeast two-hybrid screening of an HL60 cDNA library using a constitutively active mutant of ARF3 (ARF3.Q71L), as a probe, we have identified a cDNA encoding a novel protein with a calculated molecular mass of 38.6 kDa, which we have named arfaptin 1. The mRNA of arfaptin 1 was ubiquitously expressed, and recombinant arfaptin 1 bound preferentially to class I ARFs, especially ARF1, but only in the GTP-bound form. The interactions were independent of myristoylation of ARF. Arfaptin 1 in cytosol was recruited to Golgi membranes by ARF in a guanosine 5'-O-(3-thiotriphosphate)-dependent and brefeldin A-sensitive manner. When expressed in COS cells, arfaptin 1 was localized to the Golgi complex. The yeast two-hybrid system yielded another clone, which encoded a putative protein, which we have named arfaptin 2. This consisted of the same number of amino acids as arfaptin 1 and was 60% identical to it. Arfaptin 2 was also ubiquitously expressed and bound to the GTP-, but not GDP-liganded form of class I ARFs, especially ARF1. These results suggest that arfaptins 1 and 2 may be direct target proteins of class 1 ARFs. Arfaptin 1 may be involved in Golgi function along with ARF1. PMID:9038142

  18. Centaurin-alpha 1, an ADP-ribosylation factor 6 GTPase activating protein, inhibits beta 2-adrenoceptor internalization.

    PubMed

    Lawrence, Joanna; Mundell, Stuart J; Yun, Hongruo; Kelly, Eamonn; Venkateswarlu, Kanamarlapudi

    2005-06-01

    The small GTP-binding protein ADP ribosylation factor 6 (ARF6) has recently been implicated in the internalization of G protein-coupled receptors (GPCRs), although its precise molecular mechanism in this process remains unclear. We have recently identified centaurin alpha(1) as a GTPase activating protein (GAP) for ARF6. In the current study, we characterized the effects of centaurin alpha(1) on the agonist-induced internalization of the beta(2)-adrenoceptor transiently expressed in human embryonic kidney (HEK) 293 cells. Using an enzyme-linked immunosorbent assay as well as confocal imaging of cells, we found that expression of centaurin alpha(1) strongly inhibited the isoproterenol-induced internalization of beta(2)-adrenoceptor. On the other hand, expression of functionally inactive versions of centaurin alpha(1), including an R49C mutant, which has no catalytic activity, and a double pleckstrin homology (PH) mutant (DM; R148C/R273C), which has mutations in both the PH domains of centaurin alpha(1), rendering it unable to translocate to the cell membrane, were unable to inhibit beta(2)-adrenoceptor internalization. In addition, a constitutively active version of ARF6, ARF6Q67L, reversed the ability of centaurin alpha(1) to inhibit beta(2)-adrenoceptor internalization. Finally, expression of centaurin alpha(1) also inhibited the agonist-induced internalization of beta(2)-adrenoceptor endogenously expressed in HEK 293 cells, whereas the R49C and DM mutant versions of centaurin alpha(1) had no effect. Together, these data indicate that by acting as an ARF6 GAP, centaurin alpha(1) is able to switch off ARF6 and so inhibit its ability to mediate beta(2)-adrenoceptor internalization. Thus, ARF6 GAPs, such as centaurin alpha(1), are likely to play a crucial role in GPCR trafficking by modulating the activity of ARF6. PMID:15778454

  19. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA.

    PubMed Central

    Price, S R; Nightingale, M; Tsai, S C; Williamson, K C; Adamik, R; Chen, H C; Moss, J; Vaughan, M

    1988-01-01

    Three (two soluble and one membrane) guanine nucleotide-binding proteins (G proteins) that enhance ADP-ribosylation of the Gs alpha stimulatory subunit of the adenylyl cyclase (EC 4.6.1.1) complex by choleragen have recently been purified from bovine brain. To further define the structure and function of these ADP-ribosylation factors (ARFs), we isolated a cDNA clone (lambda ARF2B) from a bovine retinal library by screening with a mixed heptadecanucleotide probe whose sequence was based on the partial amino acid sequence of one of the soluble ARFs from bovine brain. Comparison of the deduced amino acid sequence of lambda ARF2B with sequences of peptides from the ARF protein (total of 60 amino acids) revealed only two differences. Whether these are cloning artifacts or reflect the existence of more than one ARF protein remains to be determined. Deduced amino acid sequences of ARF, Go alpha (the alpha subunit of a G protein that may be involved in regulation of ion fluxes), and c-Ha-ras gene product p21 show similarities in regions believed to be involved in guanine nucleotide binding and GTP hydrolysis. ARF apparently lacks a site analogous to that ADP-ribosylated by choleragen in G-protein alpha subunits. Although both the ARF proteins and the alpha subunits bind guanine nucleotides and serve as choleragen substrates, they must interact with the toxin A1 peptide in different ways. In addition to serving as an ADP-ribose acceptor, ARF interacts with the toxin in a manner that modifies its catalytic properties. PMID:3135549

  20. A Clickable Aminooxy Probe for Monitoring Cellular ADP-Ribosylation

    PubMed Central

    Morgan, Rory K.; Cohen, Michael S.

    2015-01-01

    ADP-ribosylation is essential for cell function, yet there is a dearth of methods for detecting this post-translational modification in cells. Here, we describe a clickable aminooxy alkyne (AO-alkyne) probe that can detect cellular ADP-ribosylation on acidic amino acids following Cu-catalyzed conjugation to an azide-containing reporter. Using AO-alkyne, we show that PARP10 and PARP11 are auto-ADP-ribosylated in cells. We also demonstrate that AO-alkyne can be used to monitor stimulus-induced ADP-ribosylation in cells. Functional studies using AO-alkyne support a previously unknown mechanism for ADP-ribosylation on acidic amino acids, wherein a glutamate or aspartate at the initial C1′-position of ADP-ribose transfers to the C2′ position. This new mechanism for ADP-ribosylation has important implications for how glutamyl/aspartyl-ADP-ribose is recognized by proteins in cells. PMID:25978521

  1. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    SciTech Connect

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.

  2. Wnt pathway activation by ADP-ribosylation

    PubMed Central

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P.; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S.; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)—known to target Axin for proteolysis—regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  3. Wnt pathway activation by ADP-ribosylation.

    PubMed

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  4. Studies on protein poly(ADP-ribosylation) using high resolution gel electrophoresis.

    PubMed

    Boulikas, T

    1990-08-25

    Analysis of poly(ADP-ribose) synthesized in cellular lysates or in isolated nuclei on 100-cm-long thin gels of 20% polyacrylamide, 2.5 M urea permits determination of the exact size of poly(ADP-ribose) molecules using labeled oligonucleotides as molecular weight markers. The size and concentration of poly(ADP-ribose) molecules increase at time intervals during its synthesis. Differences in the concentration of poly(ADP-ribose) size classes among cell lines are also shown. Inhibition of poly(ADP-ribose) degradation by ethacridine that directly interacts with the polymer and inhibits its hydrolysis by poly(ADP-ribose) glycohydrolase shows a dramatic increase in both polymer size and concentration. Use of alkaline conditions for the hydrolysis of poly(ADP-ribose)-protein linkages reveals a specific shortening of all size classes of poly(ADP-ribose) compared with its size in preparations obtained by extensive digestion of nuclei with nucleases, RNases, and proteases. PMID:2167322

  5. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  6. Differences in the poly(ADP-ribosyl)ation patterns of ICP4, the herpes simplex virus major regulatory protein, in infected cells and in isolated nuclei.

    PubMed Central

    Blaho, J A; Michael, N; Kang, V; Aboul-Ela, N; Smulson, M E; Jacobson, M K; Roizman, B

    1992-01-01

    Infected-cell protein 4 (ICP4), the major regulatory protein in herpes simplex viruses 1 and 2, was previously reported to accept 32P from [32P]NAD in isolated nuclei. This modification was attributed to poly(ADP-ribosyl)ation (C. M. Preston and E. L. Notarianni, Virology 131:492-501, 1983). We determined that an antibody specific for poly(ADP-ribose) reacts with ICP4 extracted from infected cells, electrophoretically separated in denaturing gels, and electrically transferred to nitrocellulose. Our results indicate that all forms of ICP4 observed in one-dimensional gel electrophoresis are poly(ADP-ribosyl)ated. Poly(ADP-ribose) on ICP4 extracted from infected cells was resistant to cleavage by purified poly(ADP-ribose) glycohydrolase unless ICP4 was in a denatured state. Poly(ADP-ribose) added to ICP4 in isolated nuclei was sensitive to this enzyme. This result indicates that the two processes are distinct and may involve different sites on the ICP4 molecule. Images PMID:1328673

  7. GTP but not GDP analogues promote association of ADP-ribosylation factors, 20-kDa protein activators of cholera toxin, with phospholipids and PC-12 cell membranes.

    PubMed

    Walker, M W; Bobak, D A; Tsai, S C; Moss, J; Vaughan, M

    1992-02-15

    ADP-ribosylation factors (ARFs) are a family of approximately 20-kDa guanine nucleotide-binding proteins initially identified by their ability to enhance cholera toxin ADP-ribosyltransferase activity in the presence of GTP. ARFs have been purified from both membrane and cytosolic fractions. ARF purified from bovine brain cytosol requires phospholipid plus detergent for high affinity guanine nucleotide binding and for optimal enhancement of cholera toxin ADP-ribosyltransferase activity. The phospholipid requirements, combined with a putative role for ARF in vesicular transport, suggested that the soluble protein might interact reversibly with membranes. A polyclonal antibody against purified bovine ARF (sARF II) was used to detect ARF by immunoblot in membrane and soluble fractions from rat pheochromocytoma (PC-12) cell homogenates. ARF was predominantly cytosolic but increased in membranes during incubation of homogenates with nonhydrolyzable GTP analogues guanosine 5'-O-(3-thiotriphosphate), guanylyl-(beta gamma-imido)-diphosphate, and guanylyl-(beta gamma-methylene)-diphosphate, and to a lesser extent, adenosine 5'-O-(3-thiotriphosphate). GTP, GDP, GMP, and ATP were inactive. Cytosolic ARF similarly associated with added phosphatidylserine, phosphatidylinositol, or cardiolipin in GTP gamma S-dependent fashion. ARF binding to phosphatidylserine was reversible and coincident with stimulation of cholera toxin-catalyzed ADP-ribosylation. These observations may reflect a mechanism by which ARF could cycle between soluble and membrane compartments in vivo. PMID:1737779

  8. Arginine-Specific Mono ADP-Ribosylation In Vitro of Antimicrobial Peptides by ADP-Ribosylating Toxins

    PubMed Central

    Castagnini, Marta; Picchianti, Monica; Talluri, Eleonora; Biagini, Massimiliano; Del Vecchio, Mariangela; Di Procolo, Paolo; Norais, Nathalie; Nardi-Dei, Vincenzo; Balducci, Enrico

    2012-01-01

    Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and β- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and β- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues. PMID:22879887

  9. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  10. Identification of a GTP-binding protein. cap alpha. subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    SciTech Connect

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.; Simon, M.I.

    1988-05-01

    Recent molecular cloning of cDNA for the ..cap alpha.. subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein ..cap alpha.. subunit, which they refer to as G/sub z/..cap alpha.., by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ ..cap alpha..-subunit cDNA. The deduced amino acid sequence of G/sub z/..cap alpha.. is 41-67% identical with those of other known G-protein ..cap alpha.. subunits. However, the 355-residue G/sub z/..cap alpha.. lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein ..cap alpha.. subunits. They suggest that G/sub z/..cap alpha.., which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems.

  11. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.

    PubMed

    Padilla, Philip Ian; Pacheco-Rodriguez, Gustavo; Moss, Joel; Vaughan, Martha

    2004-03-01

    Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with serum, BIG1 was primarily cytosolic and Golgi-associated. After incubation overnight without serum, a large fraction of endogenous BIG1 was in the nuclei. By confocal immunofluorescence microscopy, BIG1 was localized with nucleoporin p62 at the nuclear envelope (probably during nucleocytoplasmic transport) and also in nucleoli, clearly visible against the less concentrated overall matrix staining. BIG1 was also identified by Western blot analyses in purified subnuclear fractions (e.g., nucleoli and nuclear matrix). Antibodies against BIG1, nucleoporin, or nucleolin coimmunoprecipitated the other two proteins from purified nuclei. In contrast, BIG2 was not associated with nuclear BIG1. Also of note, ARF was never detected among proteins precipitated from purified nuclei by anti-BIG1 antibodies, although microscopically the two proteins do appear sometimes to be colocalized in the nucleus. These data are consistent with independent intracellular movements and actions of BIG1 and BIG2, and they are also evidence of the participation of BIG1 in both Golgi and nuclear functions. PMID:14973189

  12. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear

  13. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1

    PubMed Central

    Wang, Chenliang; Timmons, Christine L.; Shao, Qiujia; Kinlock, Ballington L.; Turner, Tiffany M.; Iwamoto, Aikichi; Zhang, Hui; Liu, Huanliang; Liu, Bindong

    2015-01-01

    GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1. PMID:26675377

  14. Modes of Action of ADP-Ribosylated Elongation Factor 2 in Inhibiting the Polypeptide Elongation Cycle: A Modeling Study

    PubMed Central

    Chen, Kevin C.; Xie, Honglin; Cai, Yujie

    2013-01-01

    Despite the fact that ADP-ribosylation of eukaryotic elongation factor 2 (EF2) leads to inhibition of protein synthesis, the mechanism by which ADP-ribosylated EF2 (ADPR•EF2) causes this inhibition remains controversial. Here, we applied modeling approaches to investigate the consequences of various modes of ADPR•EF2 inhibitory actions on the two coupled processes, the polypeptide chain elongation and ADP-ribosylation of EF2. Modeling of experimental data indicates that ADPR•EF2 fully blocks the late-phase translocation of tRNAs; but the impairment in the translocation upstream process, mainly the GTP-dependent factor binding with the pretranslocation ribosome and/or the guanine nucleotide exchange in EF2, is responsible for the overall inhibition kinetics. The reduced ADPR•EF2-ribosome association spares the ribosome to bind and shield native EF2 against toxin attack, thereby deferring the inhibition of protein synthesis inhibition and inactivation of EF2. Minimum association with the ribosome also keeps ADPR•EF2 in an accessible state for toxins to catalyze the reverse reaction when nicotinamide becomes available. Our work underscores the importance of unveiling the interactions between ADPR•EF2 and the ribosome, and argues against that toxins inhibit protein synthesis through converting native EF2 to a competitive inhibitor to actively disable the ribosome. PMID:23861744

  15. The family of bacterial ADP-ribosylating exotoxins.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1995-01-01

    Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites. PMID:7704894

  16. The Promise of Proteomics for the Study of ADP-ribosylation

    PubMed Central

    Daniels, Casey M.; Ong, Shao-En; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation is a post-translational modification where single units (mono-ADP-ribosylation) or polymeric chains (poly-ADP-ribosylation) of ADP-ribose are conjugated to proteins by ADP-ribosyltransferases. This post-translational modification and the ADP-ribosyltransferases (also known as PARPs) responsible for its synthesis have been found to play a role in nearly all major cellular processes, including DNA repair, transcription, translation, cell signaling and cell death. Furthermore, dysregulation of ADP-ribosylation has been linked to diseases including cancers, diabetes, neurodegenerative disorders and heart failure, leading to the development of therapeutic PARP inhibitors, many of which are currently in clinical trials. The study of this therapeutically important modification has recently been bolstered by the application of mass spectrometry-based proteomics, arguably the most powerful tool for the unbiased analysis of protein modifications. Unfortunately, progress has been hampered by the inherent challenges that stem from the physicochemical properties of ADP-ribose which as a post-translational modification is highly charged, heterogeneous (linear or branched polymers, as well as monomers), labile, and found on a wide range of amino acid acceptors. In this perspective, we discuss the progress that has been made in addressing these challenges, including the recent breakthroughs in proteomics techniques to identify ADP-ribosylation sites, and future developments to provide a proteome-wide view of the many cellular processes regulated by ADP-ribosylation. PMID:26091340

  17. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    SciTech Connect

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. )

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  18. ADP-ribosylation of transducin by pertussis toxin

    SciTech Connect

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-11-05

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is (TSP)ADP-ribosylated by pertussis toxin and (TSP)NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and TS kDa. The amino terminus of both 38- and TS-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The TS-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of (TSP)ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased (TSP)ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed (TSP)ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma.

  19. Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure

    PubMed Central

    Mironov, Alexander; Colanzi, Antonino; Silletta, Maria Giuseppina; Fiucci, Giusy; Flati, Silvio; Fusella, Aurora; Polishchuk, Roman; Mironov, Alexander; Tullio, Giuseppe Di; Weigert, Roberto; Malhotra, Vivek; Corda, Daniela; Matteis, Maria Antonietta De; Luini, Alberto

    1997-01-01

    We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the

  20. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.

    PubMed Central

    D'Amours, D; Desnoyers, S; D'Silva, I; Poirier, G G

    1999-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism. PMID:10455009

  1. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system.

    PubMed

    Aravind, L; Zhang, Dapeng; de Souza, Robson F; Anand, Swadha; Iyer, Lakshminarayan M

    2015-01-01

    Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems. PMID:25027823

  2. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    PubMed

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. PMID:27234208

  3. ADP ribosylation of human neutrophil peptide-1 regulates its biological properties.

    PubMed

    Paone, Gregorino; Wada, Akihiro; Stevens, Linda A; Matin, Abul; Hirayama, Toshiya; Levine, Rodney L; Moss, Joel

    2002-06-11

    In human airways, epithelial cells lining the lumen and intraluminal cells (e.g., polymorphonuclear cells) participate in the innate immune response. These cells secrete or express on their surfaces arginine-specific ADP ribosyltransferases. Defensins, antimicrobial proteins secreted by immune cells, are arginine-rich, leading us to hypothesize that ADP ribosylation could modify their biological activities. We found that an arginine-specific ADP ribosyltransferase-1 present on airway epithelial cells modifies Arg-14 of alpha defensin-1. ADP-ribosylated defensin-1 had decreased antimicrobial and cytotoxic activities but still stimulated T cell chemotaxis and IL-8 release from A549 cells. Further, ADP-ribosylated defensin-1 inhibited cytotoxic and antimicrobial activities of unmodified defensin-1. We identified ADP-ribosylated defensin-1 in bronchoalveolar lavage fluid from smokers but not from nonsmokers, confirming its existence in vivo. Thus, airway mono-ADP-ribosyltransferases could have an important regulatory role in the innate immune response through modification of alpha defensin-1 and perhaps other basic molecules, with alteration of their biological properties. PMID:12060767

  4. 50Years of poly(ADP-ribosyl)ation.

    PubMed

    Virág, László

    2013-12-01

    The seminal paper published in 1963 by Chambon, Weil and Mandel reporting a new NAD-dependent protein modification now known as poly(ADP-ribosyl)ation (PARylation) marked the launch of a new era in both protein research and cell biology. In the coming decades, the identity, biochemical characteristics and regulation of enzymes responsible for the synthesis and degradation of protein-bound poly(ADP-ribose) have been discovered and the surprisingly multifarious biological roles of PARylation have not ceased to amaze cell and molecular biologists ever since. The review series on PARylation following this preface is comprised of ten papers written by great experts of the field and aims to provide practicing physicians and basic scientists with the state-of-the-art on the "writers, readers and erasers" of poly(ADP-ribose), some recent paradigm shifts of the field and its translational potential. PMID:23727362

  5. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    SciTech Connect

    Fendrick, J.L.; Iglewski, W.J. )

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  6. Cellular regulation of poly ADP-ribosylation of proteins: II. Augmentation of poly(ADP-ribose) polymerase in SV40 3T3 cells following methotrexate-induced G1/S inhibition of cell cycle progression

    SciTech Connect

    Sooki-Toth, A.; Asghari, F.; Kirsten, E.; Kun, E. )

    1987-05-01

    SV40-3T3 cells were exposed in monolayer cultures to 5{times}10{sup {minus}7} M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5{times}10{sup {minus}7} MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5{times}10{sup {minus}7} M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.

  7. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin

    PubMed Central

    Tsuge, Hideaki; Nagahama, Masahiro; Oda, Masataka; Iwamoto, Shinobu; Utsunomiya, Hiroko; Marquez, Victor E.; Katunuma, Nobuhiko; Nishizawa, Mugio; Sakurai, Jun

    2008-01-01

    The ADP-ribosylating toxins (ADPRTs) produced by pathogenic bacteria modify intracellular protein and affect eukaryotic cell function. Actin-specific ADPRTs (including Clostridium perfringens ι-toxin and Clostridium botulinum C2 toxin) ADP-ribosylate G-actin at Arg-177, leading to disorganization of the cytoskeleton and cell death. Although the structures of many actin-specific ADPRTs are available, the mechanisms underlying actin recognition and selective ADP-ribosylation of Arg-177 remain unknown. Here we report the crystal structure of actin-Ia in complex with the nonhydrolyzable NAD analog βTAD at 2.8 Å resolution. The structure indicates that Ia recognizes actin via five loops around NAD: loop I (Tyr-60–Tyr-62 in the N domain), loop II (active-site loop), loop III, loop IV (PN loop), and loop V (ADP-ribosylating turn–turn loop). We used site-directed mutagenesis to confirm that loop I on the N domain and loop II are essential for the ADP-ribosyltransferase activity. Furthermore, we revealed that Glu-378 on the EXE loop is in close proximity to Arg-177 in actin, and we proposed that the ADP-ribosylation of Arg-177 proceeds by an SN1 reaction via first an oxocarbenium ion intermediate and second a cationic intermediate by alleviating the strained conformation of the first oxocarbenium ion. Our results suggest a common reaction mechanism for ADPRTs. Moreover, the structure might be of use in rational drug design to block toxin-substrate recognition. PMID:18490658

  8. Structure-based Mechanism of ADP-ribosylation by Sirtuins

    SciTech Connect

    Hawse, William F.; Wolberger, Cynthia

    2009-12-01

    Sirtuins comprise a family of enzymes found in all organisms, where they play a role in diverse processes including transcriptional silencing, aging, regulation of transcription, and metabolism. The predominant reaction catalyzed by these enzymes is NAD{sup +}-dependent lysine deacetylation, although some sirtuins exhibit a weaker ADP-ribosyltransferase activity. Although the Sir2 deacetylation mechanism is well established, much less is known about the Sir2 ADP-ribosylation reaction. We have studied the ADP-ribosylation activity of a bacterial sirtuin, Sir2Tm, and show that acetylated peptides containing arginine or lysine 2 residues C-terminal to the acetyl lysine, the +2 position, are preferentially ADP-ribosylated at the +2 residue. A structure of Sir2Tm bound to the acetylated +2 arginine peptide shows how this arginine could enter the active site and react with a deacetylation reaction intermediate to yield an ADP-ribosylated peptide. The new biochemical and structural studies presented here provide mechanistic insights into the Sir2 ADP-ribosylation reaction and will aid in identifying substrates of this reaction.

  9. Brefeldin A-induced ADP-ribosylation in the structure and function of the Golgi complex.

    PubMed

    Colanzi, A; Mironov, A; Weigert, R; Limina, C; Flati, S; Cericola, C; Di Tullio, G; Di Girolamo, M; Corda, D; De Matteis, M A; Luini, A

    1997-01-01

    Brefeldin A (BFA) is a fungal metabolite that exerts generally inhibitory actions on membrane transport and induces the disappearance of the Golgi complex. Previously we have shown that BFA stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 KD. The BFA-binding components mediating the BFA-sensitive ADP-ribosylation (BAR) and the effect of BFA on ARF binding to Golgi membranes have similar specificities and affinities for BFA and its analogues, suggesting that BAR may have a role in the cellular effects of BFA. To investigate this we used the approach to impair BAR activity by the use of BAR inhibitors. A series of BAR inhibitors was developed and their effects were studied in RBL cells treated with BFA. In addition to the common ADP-ribosylation inhibitors (nicotinamide and aminobenzamide), compounds belonging to the cumarin (novobiocin, cumermycin, dicumarol) class were active BAR inhibitors. All BAR inhibitors were able to prevent the BFA-induced redistribution of a Golgi marker (Helix pomatia lectin) into the endoplasmic reticulum, as assessed in immunofluorescence experiments. At the ultrastructural level, BAR inhibitors prevented the tubular-vesicular transformation of the Golgi complex caused by BFA. The potencies of these compounds in preventing the BFA effects on the Golgi complex were similar to those at which they inhibited BAR. Altogether these data support the hypothesis that BAR mediates at least some of the effects of BFA on the Golgi structure and function. PMID:9193673

  10. PARPs and ADP-Ribosylation: Fifty Years… and Counting

    PubMed Central

    Kraus, W. Lee

    2015-01-01

    Summary Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion - the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. PMID:26091339

  11. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription

    PubMed Central

    Verdone, Loredana; La Fortezza, Marco; Ciccarone, Fabio; Caiafa, Paola; Zampieri, Michele; Caserta, Micaela

    2015-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnfα, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription. PMID:26636673

  12. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity.

    PubMed

    Cuvillier, A; Redon, F; Antoine, J C; Chardin, P; DeVos, T; Merlin, G

    2000-06-01

    The small G protein-encoding LdARL-3A gene, a homologue of the human ARL-3 gene, was isolated from Leishmania donovani, and its protein product characterised. It is unique in the Leishmania genome and expressed only in the extracellular promastigote insect form, but not in the intracellular amastigote mammalian form, as shown by northern blots and western blots developed with a specific anti-C terminus immune serum. Indirect immunofluorescence microscopy revealed distinct labelled spots regularly distributed on the plasma membrane, including the part lining the flagellum and the flagellar pocket. By transfection experiments, it was found that wild-type LdARL-3A-overexpressing promastigotes reached higher densities in culture, but released significantly less secreted acid phosphatase in the extracellular medium than the parental strain. When LdARL-3A blocked under the GDP-bound 'inactive' form or with an inactivated potential myristoylation site was overexpressed, the cells displayed an apparent wild-type phenotype, but died earlier in the stationary phase; in contrast to parental cells, they showed a diffuse pattern of fluorescence labelling in the cytoplasm and on the cell membrane. Strikingly, when a constitutively 'active' form of LdARL-3A (blocked under the GTP-bound form) was overexpressed, the promastigotes were immobile with a very short flagellum, a slow growth rate and a low level of acid phosphatase secretion; the length of the flagellum was inversely proportional to mutant protein expression. We concluded that LdARL-3A could be an essential gene involved in flagellum biogenesis; it may provide new approaches for control of the parasite at the insect stage. PMID:10806117

  13. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    SciTech Connect

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  14. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  15. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltransferase activity and interaction with ADP-ribosylation factors.

    PubMed

    Stevens, L A; Moss, J; Vaughan, M; Pizza, M; Rappuoli, R

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsalpha, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  16. TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation.

    PubMed Central

    Rawling, J M; Alvarez-Gonzalez, R

    1997-01-01

    We have examined the susceptibility of some of the basal eukaryotic transcription factors as covalent targets for poly(ADP-ribosyl)ation. Human recombinant TATA-binding protein, transcription factor (TF)IIB and TFIIF (made up of the 30 and 74 kDa RNA polymerase II-associated proteins RAP30 and RAP74) were incubated with calf thymus poly(ADP-ribose) polymerase and [32P]NAD+ at 37 degrees C. On lithium dodecyl sulphate/PAGE and autoradiography, two bands of radioactivity, coincident with RAP30 and RAP74, were observed. No radioactivity co-migrated with TATA-binding protein or TFIIB. The phenomenon was dependent on the presence of nicked DNA, which is essential for poly(ADP-ribose) polymerase activity. Covalent modification of TFIIF increased with time of incubation, with increasing TFIIF concentration and with increasing NAD+ concentration. High-resolution PAGE confirmed that the radioactive species associated with RAP30 and RAP74 were ADP-ribose polymers. From these observations, we conclude that both TFIIF subunits are highly specific substrates for covalent poly(ADP-ribosyl)ation. PMID:9164864

  17. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  18. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  19. The ADP-ribosyl cyclases--the current evolutionary state of the ARCs.

    PubMed

    Ferrero, Enza; Lo Buono, Nicola; Horenstein, Alberto L; Funaro, Ada; Malavasi, Fabio

    2014-01-01

    The major ADP-ribosylating enzyme families are the focus of this special issue of Frontiers in Bioscience . However, there is room for another family of enzymes with the capacity to utilize nicotinamide adenine dinucleotide (NAD): the ADP-ribosyl cyclases (ARCs). These unique enzymes catalyse the cyclization of NAD to cyclic ADP ribose (cADPR), a widely distributed second messenger. However, the ARCs are versatile enzymes that can manipulate NAD, NAD phosphate (NADP) and other substrates to generate various bioactive molecules including nicotinic acid adenine dinucleotide diphosphate (NAADP) and ADP ribose (ADPR). This review will focus on the group of well-characterized invertebrate and vertebrate ARCs whose common gene structure allows us to trace their origin to the ancestor of bilaterian animals. Behind a facade of gene and protein homology lies a family with a disparate functional repertoire dictated by the animal model and the physical trait under investigation. Here we present a phylogenetic view of the ARCs to better understand the evolution of function in this family. PMID:24896331

  20. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish.

    PubMed

    Nakano, Tsuyoshi; Takahashi-Nakaguchi, Azusa; Yamamoto, Masafumi; Watanabe, Masahiko

    2015-01-01

    The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed. PMID:25033755

  1. Transcutaneous Immunization with Bacterial ADP-Ribosylating Exotoxins, Subunits, and Unrelated Adjuvants

    PubMed Central

    Scharton-Kersten, Tanya; Yu, Jian-mei; Vassell, Russell; O'Hagan, Derek; Alving, Carl R.; Glenn, Gregory M.

    2000-01-01

    We have recently described a needle-free method of vaccination, transcutaneous immunization, consisting of the topical application of vaccine antigens to intact skin. While most proteins themselves are poor immunogens on the skin, we have shown that the addition of cholera toxin (CT), a mucosal adjuvant, results in cellular and humoral immune responses to the adjuvant and coadministered antigens. The present study explores the breadth of adjuvants that have activity on the skin, using diphtheria toxoid (DTx) and tetanus toxoid as model antigens. Heat-labile enterotoxin (LT) displayed adjuvant properties similar to those of CT when used on the skin and induced protective immune responses against tetanus toxin challenge when applied topically at doses as low as 1 μg. Interestingly, enterotoxin derivatives LTR192G, LTK63, and LTR72 and the recombinant CT B subunit also exhibited adjuvant properties on the skin. Consistent with the latter finding, non-ADP-ribosylating exotoxins, including an oligonucleotide DNA sequence, as well as several cytokines (interleukin-1β [IL-1β] fragment, IL-2, IL-12, and tumor necrosis factor alpha) and lipopolysaccharide also elicited detectable anti-DTx immunoglobulin G titers in the immunized mice. These results indicate that enhancement of the immune response to topical immunization is not restricted to CT or the ADP-ribosylating exotoxins as adjuvants. This study also reinforces earlier findings that addition of an adjuvant is important for the induction of robust immune responses to vaccine antigens delivered by topical application. PMID:10948159

  2. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins.

    PubMed

    Domenighini, M; Magagnoli, C; Pizza, M; Rappuoli, R

    1994-10-01

    Computer analysis of the three-dimensional structure of ADP-ribosylating toxins showed that in all toxins the NAD-binding site is located in a cavity. This cavity consists of 18 contiguous amino acids that form an alpha-helix bent over a beta-strand. The tertiary folding of this structure is strictly conserved despite the differences in the amino acid sequence. Catalysis is supported by two spatially conserved amino acids, each flanking the NAD-binding site. These are: a glutamic acid that is conserved in all toxins, and a nucleophilic residue, which is a histidine in the diphtheria toxin and Pseudomonas exotoxin A, and an arginine in the cholera toxin, the Escherichia coli heat-labile enterotoxins, the pertussis toxin and the mosquitocidal toxin of Bacillus sphaericus. The latter group of toxins presents an additional histidine that appears important for catalysis. This structure suggests a general mechanism of ADP-ribosylation evolved to work on different target proteins. PMID:7830559

  3. Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure

    SciTech Connect

    Komissarova, Elena V.; Rossman, Toby G.

    2010-03-15

    Arsenite is an environmental pollutant. Exposure to inorganic arsenic in drinking water is associated with elevated cancer risk, especially in skin. Arsenite alone does not cause skin cancer in animals, but arsenite can enhance the carcinogenicity of solar UV. Arsenite is not a significant mutagen at non-toxic concentrations, but it enhances the mutagenicity of other carcinogens. The tumor suppressor protein P53 and nuclear enzyme PARP-1 are both key players in DNA damage response. This laboratory demonstrated earlier that in cells treated with arsenite, the P53-dependent increase in p21{sup WAF1/CIP1} expression, normally a block to cell cycle progression after DNA damage, is deficient. Here we show that although long-term exposure of human keratinocytes (HaCaT) to a nontoxic concentration (0.1 muM) of arsenite decreases the level of global protein poly(ADP-ribosyl)ation, it increases poly(ADP-ribosyl)ation of P53 protein and PARP-1 protein abundance. We also demonstrate that exposure to 0.1 muM arsenite depresses the constitutive expression of p21 mRNA and P21 protein in HaCaT cells. Poly(ADP-ribosyl)ation of P53 is reported to block its activation, DNA binding and its functioning as a transcription factor. Our results suggest that arsenite's interference with activation of P53 via poly(ADP-ribosyl)ation may play a role in the comutagenic and cocarcinogenic effects of arsenite.

  4. Chemical reporters for exploring ADP-ribosylation and AMPylation at the host-pathogen interface

    PubMed Central

    Westcott, Nathan P.; Hang, Howard C.

    2014-01-01

    Bacterial pathogens secrete protein toxins and effectors that hijack metabolites to covalently modify key host proteins and interfere with their function during infection. Adenosine metabolites, such as nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP), have in particular been co-opted by these secreted virulence factors to reprogram host pathways. While some host targets for secreted virulence factors have been identified, other toxin and effector substrates have been elusive, which require new methods for their characterization. In this review, we focus on chemical reporters based on NAD and ATP that should facilitate the discovery and characterization of adenosine diphosphate (ADP)-ribosylation and adenylylation/AMPylation in bacterial pathogenesis and cell biology. PMID:25461386

  5. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  6. Aryl Hydrocarbon Receptor Activation by Dioxin Targets Phosphoenolpyruvate Carboxykinase (PEPCK) for ADP-ribosylation via 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly(ADP-ribose) Polymerase (TiPARP)*

    PubMed Central

    Diani-Moore, Silvia; Zhang, Sheng; Ram, Payal; Rifkind, Arleen B.

    2013-01-01

    Effects of the environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) include a wasting syndrome associated with decreased gluconeogenesis. TCDD is a potent activator of the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The relationship between gene activation by the AHR and TCDD toxicities is not well understood. We recently identified a pathway by which the AHR target gene TiPARP (TCDD-inducible poly(ADP-ribose) polymerase) contributes to TCDD suppression of transcription of phosphoenolpyruvate carboxykinase (PEPCK), a key regulator of gluconeogenesis, by consuming NAD+ and decreasing Sirtuin 1 activation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a transcriptional activator of PEPCK. We report here that TCDD-induced TiPARP also targets PEPCK for ADP-ribosylation. Both cytosolic and mitochondrial forms of PEPCK were found to undergo ADP-ribosylation. Unexpectedly, AHR suppression also enhanced ADP-ribosylation and did so by a poly(ADP-ribose) polymerase-independent mechanism. This report 1) identifies ADP-ribosylation as a new posttranslational modification for PEPCK, 2) describes a pathway by which transcriptional induction of TiPARP by the AHR can lead to a downstream posttranslational change in a TCDD target protein (PEPCK), and 3) reveals that the AHR exerts complex, previously unidentified modulatory effects on ADP-ribosylation. PMID:23770670

  7. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    SciTech Connect

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  8. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    SciTech Connect

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus, ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37/sup 0/C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl/sub 2/, and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and (U-/sup 14/C) nicotinaide adenine dinucleotide ((/sup 14/C)NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of (/sup 14/C) ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film.

  9. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.

    PubMed

    Bindesbøll, Christian; Tan, Susanna; Bott, Debbie; Cho, Tiffany; Tamblyn, Laura; MacPherson, Laura; Grønning-Wang, Line; Nebb, Hilde Irene; Matthews, Jason

    2016-04-01

    Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRβ activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and inTiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/β peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRβ co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRβ. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced inTiparp(-/-)mice compared withTiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1. PMID:26814197

  10. AmtB Is Necessary for NH4+-Induced Nitrogenase Switch-Off and ADP-Ribosylation in Rhodobacter capsulatus‡

    PubMed Central

    Yakunin, Alexander F.; Hallenbeck, Patrick C.

    2002-01-01

    Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH4+ addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity. PMID:12107124

  11. ADP-ribosylation of membrane components by pertussis and cholera toxin

    SciTech Connect

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its ..cap alpha../sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its ..cap alpha..; subunit. By using (/sup 32/P)NAD/sup +/ and determining the transfer of its (/sup 32/P)ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin.

  12. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors.

    PubMed

    Kim, Byoung Sik; Satchell, Karla J F

    2016-08-01

    Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin. PMID:26780191

  13. Rifamycin Antibiotic Resistance by ADP-Ribosylation: Structure and Diversity of Arr

    SciTech Connect

    Baysarowich, J.; Koteva, K; Hughes, D; Ejim, L; Griffiths, E; Zhang, K; Junop, M; Wright, G

    2008-01-01

    The rifamycin antibiotic rifampin is important for the treatment of tuberculosis and infections caused by multidrug-resistant Staphylococcus aureus. Recent iterations of the rifampin core structure have resulted in new drugs and drug candidates for the treatment of a much broader range of infectious diseases. This expanded use of rifamycin antibiotics has the potential to select for increased resistance. One poorly characterized mechanism of resistance is through Arr enzymes that catalyze ADP-ribosylation of rifamycins. We find that genes encoding predicted Arr enzymes are widely distributed in the genomes of pathogenic and nonpathogenic bacteria. Biochemical analysis of three representative Arr enzymes from environmental and pathogenic bacterial sources shows that these have equally efficient drug resistance capacity in vitro and in vivo. The 3D structure of one of these orthologues from Mycobacterium smegmatis was determined and reveals structural homology with ADP-ribosyltransferases important in eukaryotic biology, including poly(ADP-ribose) polymerases (PARPs) and bacterial toxins, despite no significant amino acid sequence homology with these proteins. This work highlights the extent of the rifamycin resistome in microbial genera with the potential to negatively impact the expanded use of this class of antibiotic.

  14. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy

    PubMed Central

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance. PMID:25607248

  15. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    PubMed Central

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  16. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius.

    PubMed

    Wang, Liling; Li, Haibo; Zhou, Yifeng; Qin, Yuchuan; Wang, Yanbin; Liu, Bentong; Qian, Hua

    2016-05-01

    ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation. PMID:26928195

  17. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

    PubMed

    Gagné, Jean-Philippe; Ethier, Chantal; Defoy, Daniel; Bourassa, Sylvie; Langelier, Marie-France; Riccio, Amanda A; Pascal, John M; Moon, Kyung-Mee; Foster, Leonard J; Ning, Zhibin; Figeys, Daniel; Droit, Arnaud; Poirier, Guy G

    2015-06-01

    An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process. PMID:25800440

  18. Exogenous nitric oxide (NO) generation or IL-1[beta]-induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells

    SciTech Connect

    Dimmeler, S.; Bruene, B. ); Ankarcrona, M.; Nicotera, P. )

    1993-04-01

    Nitric oxide (NO) stimulates the auto-ADP-ribosylation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which results in the inhibition of enzyme activity. In the present work the authors show that addition of exogenous NO or IL-1[beta]-induced intracellular NO generation cause GAPDH ADP-ribosylation and inhibition of enzyme activity. Incubation of RINm5F cells with sodium nitroprusside (SNP) for 18 h caused a time- and dose-dependent inhibition of GAPDH activity. Half-maximal inhibition of GAPDH activity was observed with 80 [mu]M of the NO donor, with maximal inhibition after roughly 6 h of incubation. In parallel, SNP induced endogenous ADP-ribosylation of GAPDH measured by a decreased incorporation of [[sup 32]P]ADP-ribose from [[sup 32]P]NAD[sup +] in the cytosol of the SNP-treated cells. Stimulation of endogenous NO production by inducing the NO synthase by exposure to the cytokine IL-1[beta] results in decreased GAPDH activity. IL-1[beta] (10[sup [minus]9] M) inhibited GAPDH activity about 55%, compared with control values. Production of nitrite and inhibition of GAPDH was reversed by the NAD[sup +] synthease inhibitor N[sub G]-monomethyl-L-arginine, indicating the endogenous generated NO was the effective molecule. Again, GAPDH inhibition was associated with NO-stimulated endogenous ADP-ribosylation of the enzyme Western blot analysis of GAPDH excluded degradation of GAPDH by NO. NO-stimulated auto-ADP-ribosylation resulted in inhibition of the glycolytic enzyme GAPDH and may be relevant as a cytotoxic effect of NO. In concert with its inhibitory actions on iron-sulfur enzymes like aconitase and electron transport proteins of the respiratory chain, NO may mediate autocytotoxic effect in [beta]-cells. 40 refs., 7 figs.

  19. Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal

    PubMed Central

    DaRosa, Paul A.; Wang, Zhizhi; Jiang, Xiaomo; Pruneda, Jonathan N.; Cong, Feng; Klevit, Rachel E.; Xu, Wenqing

    2014-01-01

    Protein poly(ADP-ribosyl)ation (PARylation) plays a role in diverse cellular processes such as DNA repair, transcription, Wnt signaling, and cell death1–6. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several critical regulatory proteins, including Axin and 3BP2 (refs 7–9). The RING-type E3 ubiquitin ligase RNF146 (a.k.a. Iduna) is responsible for PARylation-dependent ubiquitination (PARdU)10–12. Here we provide a structural basis for RNF146 catalyzed PARdU and how PARdU specificity is achieved. First, we show that iso-ADPr, the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to efficiently bind and activate an E2. Binding of PAR/iso-ADPr induces a major conformational change that creates a functional RING structure. Thus RNF146 represents a new mechanistic class of RING E3 ligases whose activities are regulated by non-covalent ligand binding, which may provide a template for designing inducible protein-degradation systems. Second, we found that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146/TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalyzed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell. PMID:25327252

  20. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes.

    PubMed Central

    Tsai, S C; Adamik, R; Haun, R S; Moss, J; Vaughan, M

    1992-01-01

    Six mammalian ADP-ribosylation factors (ARFs) identified by cDNA cloning were expressed as recombinant proteins (rARFs) that stimulated cholera toxin ADP-ribosyltransferase activity. Microsequencing of soluble ARFs I and II (sARFs I and II), purified from bovine brain, established that they are ARFs 1 and 3, respectively. Rabbit antibodies (IgG) against sARF II reacted similarly with ARFs 1, 2, and 3 (class I) on Western blots. ARFs 1 and 3 were distinguished by their electrophoretic mobilities. Antiserum against rARF 5 cross-reacted partially with rARF 4 but not detectably with rARF 6 and minimally with class I ARFs. Guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma S]) increased recovery of ARF activity and immunoreactivity in organelle fractions separated by density gradient centrifugation, after incubation of rat brain homogenate with ATP and a regenerating system. ARF 1 accumulated in microsomes plus Golgi and Golgi fractions, whereas ARF 5 seemed to localize more specifically in Golgi; the smaller increment in ARF 3 was distributed more evenly among fractions. On incubation of Golgi with a crude ARF fraction, GTP[gamma S], and an ATP-regenerating system, association of ARF activity with Golgi increased with increasing ATP concentration paralleled by increases in immunoreactive ARFs 1 and 5 and, to a lesser degree, ARF 3. Golgi incubated with GTP[gamma S] and purified ARF 1 or 3 bound more ARF 1 than ARF 3. Based on immunoreactivity and assay of ARF activity, individual ARFs 1, 3, and 5 appeared to behave independently and selectively in their GTP-dependent association with Golgi in vitro. Images PMID:1409634

  1. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes.

    PubMed

    Tsai, S C; Adamik, R; Haun, R S; Moss, J; Vaughan, M

    1992-10-01

    Six mammalian ADP-ribosylation factors (ARFs) identified by cDNA cloning were expressed as recombinant proteins (rARFs) that stimulated cholera toxin ADP-ribosyltransferase activity. Microsequencing of soluble ARFs I and II (sARFs I and II), purified from bovine brain, established that they are ARFs 1 and 3, respectively. Rabbit antibodies (IgG) against sARF II reacted similarly with ARFs 1, 2, and 3 (class I) on Western blots. ARFs 1 and 3 were distinguished by their electrophoretic mobilities. Antiserum against rARF 5 cross-reacted partially with rARF 4 but not detectably with rARF 6 and minimally with class I ARFs. Guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma S]) increased recovery of ARF activity and immunoreactivity in organelle fractions separated by density gradient centrifugation, after incubation of rat brain homogenate with ATP and a regenerating system. ARF 1 accumulated in microsomes plus Golgi and Golgi fractions, whereas ARF 5 seemed to localize more specifically in Golgi; the smaller increment in ARF 3 was distributed more evenly among fractions. On incubation of Golgi with a crude ARF fraction, GTP[gamma S], and an ATP-regenerating system, association of ARF activity with Golgi increased with increasing ATP concentration paralleled by increases in immunoreactive ARFs 1 and 5 and, to a lesser degree, ARF 3. Golgi incubated with GTP[gamma S] and purified ARF 1 or 3 bound more ARF 1 than ARF 3. Based on immunoreactivity and assay of ARF activity, individual ARFs 1, 3, and 5 appeared to behave independently and selectively in their GTP-dependent association with Golgi in vitro. PMID:1409634

  2. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.

    PubMed

    Picchianti, Monica; Del Vecchio, Mariangela; Di Marcello, Federica; Biagini, Massimiliano; Veggi, Daniele; Norais, Nathalie; Rappuoli, Rino; Pizza, Mariagrazia; Balducci, Enrico

    2013-12-01

    NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Site-directed mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R(7) residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities. PMID:23964075

  3. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody

    PubMed Central

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-01-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  4. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody.

    PubMed

    Rohrbeck, Astrid; Fühner, Viola; Schröder, Anke; Hagemann, Sandra; Vu, Xuan-Khang; Berndt, Sarah; Hust, Michael; Pich, Andreas; Just, Ingo

    2016-04-01

    Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry. PMID:27043630

  5. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin

    PubMed Central

    Belyy, Alexander; Tabakova, Irina; Lang, Alexander E.; Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-01-01

    Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia. PMID:26713879

  6. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice

    PubMed Central

    Muthamilarasan, Mehanathan; Mangu, Venkata R.; Zandkarimi, Hana; Prasad, Manoj; Baisakh, Niranjan

    2016-01-01

    ADP-ribosylation factors (ARFs) have been reported to function in diverse physiological and molecular activities. Recent evidences also demonstrate the involvement of ARFs in conferring tolerance to biotic and abiotic stresses in plant species. In the present study, 23 and 25 ARF proteins were identified in C3 model- rice and C4 model- foxtail millet, respectively. These proteins are classified into four classes (I–IV) based on phylogenetic analysis, with ARFs in classes I–III and ARF-like proteins (ARLs) in class IV. Sequence alignment and domain analysis revealed the presence of conserved and additional motifs, which may contribute to neo- and sub-functionalization of these proteins. Promoter analysis showed the presence of several cis-regulatory elements related to stress and hormone response, indicating their role in stress regulatory network. Expression analysis of rice ARFs and ARLs in different tissues, stresses and abscisic acid treatment highlighted temporal and spatial diversification of gene expression. Five rice cultivars screened for allelic variations in OsARF genes showed the presence of allelic polymorphisms in few gene loci. Altogether, the study provides insights on characteristics of ARF/ARL genes in rice and foxtail millet, which could be deployed for further functional analysis to extrapolate their precise roles in abiotic stress responses. PMID:27097755

  7. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice.

    PubMed

    Muthamilarasan, Mehanathan; Mangu, Venkata R; Zandkarimi, Hana; Prasad, Manoj; Baisakh, Niranjan

    2016-01-01

    ADP-ribosylation factors (ARFs) have been reported to function in diverse physiological and molecular activities. Recent evidences also demonstrate the involvement of ARFs in conferring tolerance to biotic and abiotic stresses in plant species. In the present study, 23 and 25 ARF proteins were identified in C3 model- rice and C4 model- foxtail millet, respectively. These proteins are classified into four classes (I-IV) based on phylogenetic analysis, with ARFs in classes I-III and ARF-like proteins (ARLs) in class IV. Sequence alignment and domain analysis revealed the presence of conserved and additional motifs, which may contribute to neo- and sub-functionalization of these proteins. Promoter analysis showed the presence of several cis-regulatory elements related to stress and hormone response, indicating their role in stress regulatory network. Expression analysis of rice ARFs and ARLs in different tissues, stresses and abscisic acid treatment highlighted temporal and spatial diversification of gene expression. Five rice cultivars screened for allelic variations in OsARF genes showed the presence of allelic polymorphisms in few gene loci. Altogether, the study provides insights on characteristics of ARF/ARL genes in rice and foxtail millet, which could be deployed for further functional analysis to extrapolate their precise roles in abiotic stress responses. PMID:27097755

  8. Regulation of chromatin structure by poly(ADP-ribosyl)ation

    PubMed Central

    Beneke, Sascha

    2012-01-01

    The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose) has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose), the zinc-finger protein poly(ADP-ribose) polymerase-1 (PARP1), was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor. PMID:22969794

  9. Analysis of Chromatin ADP-Ribosylation at the Genome-wide Level and at Specific Loci by ADPr-ChAP.

    PubMed

    Bartolomei, Giody; Leutert, Mario; Manzo, Massimiliano; Baubec, Tuncay; Hottiger, Michael O

    2016-02-01

    Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes. PMID:26833088

  10. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1

    PubMed Central

    Ashery, Uri; Koch, Henriette; Scheuss, Volker; Brose, Nils; Rettig, Jens

    1999-01-01

    ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane. PMID:9927699

  11. Poly(ADP-ribosyl)ation of Apoptosis Antagonizing Transcription Factor Involved in Hydroquinone-Induced DNA Damage Response.

    PubMed

    Ling, Xiao Xuan; Liu, Jia Xian; Yun, Lin; DU, Yu Jun; Chen, Shao Qian; Chen, Jia Long; Tang, Huan Wen; Liu, Lin Hua

    2016-01-01

    The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (γ-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-1-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, γ-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation (PARylation) regulated AATF expression. In conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation. PMID:26822515

  12. NO-Mediated [Ca2+]cyt Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis1[OPEN

    PubMed Central

    Hotta, Carlos T.; Davey, Matthew P.; Dodd, Antony N.

    2016-01-01

    Cyclic ADP ribose (cADPR) is a Ca2+-mobilizing intracellular second messenger synthesized from NAD by ADP-ribosyl cyclases (ADPR cyclases). In animals, cADPR targets the ryanodine receptor present in the sarcoplasmic/endoplasmic reticulum to promote Ca2+ release from intracellular stores to increase the concentration of cytosolic free Ca2+ in Arabidopsis (Arabidopsis thaliana), and cADPR has been proposed to play a central role in signal transduction pathways evoked by the drought and stress hormone, abscisic acid, and the circadian clock. Despite evidence for the action of cADPR in Arabidopsis, no predicted proteins with significant similarity to the known ADPR cyclases have been reported in any plant genome database, suggesting either that there is a unique route for cADPR synthesis or that a homolog of ADPR cyclase with low similarity might exist in plants. We sought to determine whether the low levels of ADPR cyclase activity reported in Arabidopsis are indicative of a bona fide activity that can be associated with the regulation of Ca2+ signaling. We adapted two different fluorescence-based assays to measure ADPR cyclase activity in Arabidopsis and found that this activity has the characteristics of a nucleotide cyclase that is activated by nitric oxide to increase cADPR and mobilize Ca2+. PMID:26932235

  13. Poly(ADP-Ribosyl)ation Is Required to Modulate Chromatin Changes at c-MYC Promoter during Emergence from Quiescence

    PubMed Central

    Battistelli, Cecilia; Ciotti, Agnese; Amati, Paolo; Maione, Rossella

    2014-01-01

    Poly(ADP-ribosyl)ation is a post-translational modification of various proteins and participates in the regulation of chromatin structure and transcription through complex mechanisms not completely understood. We have previously shown that PARP-1, the major family member of poly(ADP-ribose)polymerases, plays an important role in the cell cycle reactivation of resting cells by regulating the expression of Immediate Early Response Genes, such as c-MYC, c-FOS, JUNB and EGR-1. In the present work we have investigated the molecular mechanisms by which the enzyme induces c-MYC transcription upon serum stimulation of quiescent cells. We show that PARP-1 is constitutively associated in vivo to a c-MYC promoter region recognized as biologically relevant for the transcriptional regulation of the gene. Moreover, we report that serum stimulation causes the prompt accumulation of ADP-ribose polymers on the same region and that this modification is required for chromatin decondensation and for the exchange of negative for positive transcriptional regulators. Finally we provide evidence that the inhibition of PARP activity along with serum stimulation impairs c-MYC induction by preventing the proper accumulation of histone H3 phosphoacetylation, a specific chromatin mark for the activation of Immediate Early Response Genes. These findings not only suggest a novel strategy by which PARP-1 regulates the transcriptional activity of promoters but also provide new information about the complex regulation of c-MYC expression, a critical determinant of the transition from quiescence to proliferation. PMID:25047032

  14. Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation.

    PubMed

    Wang, C; Qu, C; Alippe, Y; Bonar, S L; Civitelli, R; Abu-Amer, Y; Hottiger, M O; Mbalaviele, G

    2016-01-01

    Evidence implicates ARTD1 in cell differentiation, but its role in skeletal metabolism remains unknown. Osteoclasts (OC), the bone-resorbing cells, differentiate from macrophages under the influence of macrophage colony-stimulating factor (M-CSF) and receptor-activator of NF-κB ligand (RANKL). We found that M-CSF induced ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1) auto-ADP-ribosylation in macrophages, a modification that marked ARTD1 for cleavage, and subsequently, for degradation upon RANKL exposure. We established that ARTD1 proteolysis was NLRP3 inflammasome-dependent, and occurred via the proteasome pathway. Since ARTD1 is cleaved at aspartate(214), we studied the impact of ARTD1 rendered uncleavable by D214N substitution (ARTD1(D214N)) on skeletal homeostasis. ARTD1(D214N), unlike wild-type ARTD1, was resistant to cleavage and degradation during osteoclastogenesis. As a result, ARTD1(D214N) altered histone modification and promoted the abundance of the repressors of osteoclastogenesis by interfering with the expression of B lymphocyte-induced maturation protein 1 (Blimp1), the master regulator of anti-osteoclastogenic transcription factors. Importantly, ARTD1(D214N)-expressing mice exhibited higher bone mass compared with controls, owing to decreased osteoclastogenesis while bone formation was unaffected. Thus, unless it is degraded, ARTD1 represses OC development through transcriptional regulation. PMID:27010854

  15. Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation

    PubMed Central

    Wang, C; Qu, C; Alippe, Y; Bonar, S L; Civitelli, R; Abu-Amer, Y; Hottiger, M O; Mbalaviele, G

    2016-01-01

    Evidence implicates ARTD1 in cell differentiation, but its role in skeletal metabolism remains unknown. Osteoclasts (OC), the bone-resorbing cells, differentiate from macrophages under the influence of macrophage colony-stimulating factor (M-CSF) and receptor-activator of NF-κB ligand (RANKL). We found that M-CSF induced ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1) auto-ADP-ribosylation in macrophages, a modification that marked ARTD1 for cleavage, and subsequently, for degradation upon RANKL exposure. We established that ARTD1 proteolysis was NLRP3 inflammasome-dependent, and occurred via the proteasome pathway. Since ARTD1 is cleaved at aspartate214, we studied the impact of ARTD1 rendered uncleavable by D214N substitution (ARTD1D214N) on skeletal homeostasis. ARTD1D214N, unlike wild-type ARTD1, was resistant to cleavage and degradation during osteoclastogenesis. As a result, ARTD1D214N altered histone modification and promoted the abundance of the repressors of osteoclastogenesis by interfering with the expression of B lymphocyte-induced maturation protein 1 (Blimp1), the master regulator of anti-osteoclastogenic transcription factors. Importantly, ARTD1D214N-expressing mice exhibited higher bone mass compared with controls, owing to decreased osteoclastogenesis while bone formation was unaffected. Thus, unless it is degraded, ARTD1 represses OC development through transcriptional regulation. PMID:27010854

  16. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    SciTech Connect

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.

  17. Poly(ADP-ribosylation) regulates chromatin organization through histone H3 modification and DNA methylation of the first cell cycle of mouse embryos

    SciTech Connect

    Osada, Tomoharu; Rydén, Anna-Margareta; Masutani, Mitsuko

    2013-04-26

    Highlights: •Histone modification of the mouse pronuclei is regulated by poly(ADP-ribosylation). •Hypermethylation of the mouse female pronuclei is maintained by poly(ADP-ribosylation). •Parp1 is physically interacted with Suz12, which may function in the pronuclei. •Poly(ADP-ribosylation) affects ultrastructure of chromatin of the mouse pronucleus. -- Abstract: We examined the roles of poly(ADP-ribosylation) in chromatin remodeling during the first cell cycle of mouse embryos. Drug-based inhibition of poly(ADP-ribosylation) by a PARP inhibitor, PJ-34, revealed up-regulation of dimethylation of histone H3 at lysine 4 in male pronuclei and down-regulation of dimethylation of histone H3 at lysine 9 (H3K9) and lysine 27 (H3K27). Association of poly(ADP-ribosylation) with histone modification was suggested to be supported by the interaction of Suz12, a histone methyltransferase in the polycomb complex, with Parp1. PARP activity was suggested to be required for a proper localization and maintenance of Suz12 on chromosomes. Notably, DNA methylation level of female pronuclei in one-cell embryos was robustly decreased by PJ-34. Electron microscopic analysis showed a frequent appearance of unusual electron-dense areas within the female pronuclei, implying the disorganized and hypercondensed chromatin ultrastructure. These results show that poly(ADP-ribosylation) is important for the integrity of non-equivalent epigenetic dynamics of pronuclei during the first cell cycle of mouse embryos.

  18. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: two guanine nucleotide-dependent activators of cholera toxin.

    PubMed Central

    Bobak, D A; Nightingale, M S; Murtagh, J J; Price, S R; Moss, J; Vaughan, M

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A)+ RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A)+ RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFs also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs. Images PMID:2474826

  19. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation.

    PubMed

    Bobak, D A; Bliziotes, M M; Noda, M; Tsai, S C; Adamik, R; Moss, J

    1990-01-30

    Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF. PMID:2111167

  20. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. PMID:20435371

  1. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation.

    PubMed

    Mangerich, Aswin; Bürkle, Alexander

    2011-01-15

    Poly(ADP-ribosyl)ation is a post-translational modification catalyzed by the enzyme family of poly(ADP-ribose) polymerases (PARPs). PARPs exhibit pleiotropic cellular functions ranging from maintenance of genomic stability and chromatin remodeling to regulation of cell death, thereby rendering PARP homologues promising targets in cancer therapy. Depending on the molecular status of a cancer cell, low-molecular weight PARP inhibitors can (i) either be used as monotherapeutic agents following the concept of synthetic lethality or (ii) to support classical chemotherapy or radiotherapy. The rationales are the following: (i) in cancers with selective defects in homologous recombination repair, inactivation of PARPs directly causes cell death. In cancer treatment, this phenomenon can be employed to specifically target tumor cells while sparing nonmalignant tissue. (ii) PARP inhibitors can also be used to sensitize cells to cytotoxic DNA-damaging treatments, as some PARPs actively participate in genomic maintenance. Apart from that, PARP inhibitors possess antiangiogenic functions, thus opening up a further option to inhibit tumor growth. In view of the above, a number of high-potency PARP inhibitors have been developed during the last decade and are currently evaluated as cancer therapeutics in clinical trials by several leading pharmaceutical companies. PMID:20853319

  2. ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin.

    PubMed

    Hara, Yoshinobu; Fukaya, Masahiro; Hayashi, Kanehiro; Kawauchi, Takeshi; Nakajima, Kazunori; Sakagami, Hiroyuki

    2016-01-01

    During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell-cell and cell-extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking. PMID:27622210

  3. ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin

    PubMed Central

    Hara, Yoshinobu; Fukaya, Masahiro

    2016-01-01

    Abstract During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell–cell and cell–extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking. PMID:27622210

  4. Functional Characterization of an Extended Binding Component of the Actin-ADP-Ribosylating C2 Toxin Detected in Clostridium botulinum Strain (C) 2300 ▿

    PubMed Central

    Sterthoff, Charlott; Lang, Alexander E.; Schwan, Carsten; Tauch, Andreas; Aktories, Klaus

    2010-01-01

    Clostridium botulinum C2 toxin consists of the binding component C2II and the enzyme component C2I, which ADP-ribosylates G-actin of eukaryotic cells. Trypsin-activated C2II (C2IIa) forms heptamers that mediate cell binding and translocation of C2I from acidic endosomes into the cytosol of target cells. By genome sequencing of C. botulinum strain (C) 2300, we found that C2II from this strain carries a C-terminal extension of 129 amino acids, unlike its homologous counterparts from strains (C) 203U28, (C) 468, and (D) 1873. This extension shows a high similarity to the C-terminal receptor-binding domain of C2II and is presumably the result of a duplication of this domain. The C2II extension facilitates the binding to cell surface receptors, which leads to an increased intoxication efficiency compared to that of C2II proteins from other C. botulinum strains. PMID:20145093

  5. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  6. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function

    PubMed Central

    Franco, Michel; Boretto, Joëlle; Robineau, Sylviane; Monier, Solange; Goud, Bruno; Chardin, Pierre; Chavrier, Philippe

    1998-01-01

    Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component β-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells. PMID:9707577

  7. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  8. Activation of immobilized, biotinylated choleragen AI protein by a 19-kilodalton guanine nucleotide-binding protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Bobak, D A; Moss, J; Vaughan, M

    1989-09-19

    Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator. PMID:2514798

  9. Characterization of ADP ribosylation factor 1 gene from Exopalaemon carinicauda and its immune response to pathogens challenge and ammonia-N stress.

    PubMed

    Duan, Yafei; Li, Jian; Zhang, Zhe; Li, Jitao; Liu, Ping

    2016-08-01

    ADP ribosylation factors (Arf), as highly conserved small guanosine triphosphate (GTP)-binding proteins, participates in intracellular trafficking and organelle structure. In this study, a full-length cDNA of Arf1 (designated EcArf1) was cloned from Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcArf1 was 1428 bp, which contains an open reading frame (ORF) of 549 bp, encoding a 182 amino-acid polypeptide with the predicted molecular weight of 20.69 kDa and estimated isoelectric point was 7.24. Sequence analysis revealed that the conserved Arf protein family signatures were identified in EcArf1. The deduced amino acid sequence of EcArf1 shared high identity (95%-98%) with that of other species and clustered together with Arf1 of other shrimp in the NJ phylogenetic tree, indicating that EcArf1 should be a member of the Arf1 family. Quantitative real-time RT-qPCR analysis indicated that EcArf1 was expressed in hemocytes, hepatopancreas, gills, muscle, ovary, intestine, stomach and heart, and the most abundant level was in hemocytes and gills, which were also the two main target tissues of pathogen infection and environmental stress. After Vibrio parahaemolyticus challenge, EcArf1 transcripts level significantly increased in hemocytes and hepatopancreas at 3 h and 6 h, respectively. The expression of EcArf1 in hemocytes and hepatopancreas significantly up-regulated at 12 h and 6 h respectively, and down-regulated at 72 h and 48 h, respectively. EcArf1 expression in hepatopancreas and gills both significantly increased at 6 h and decreased at 24 h under ammonia-N stress. The results suggested that EcArf1 might be involved in immune responses to pathogens (V. parahaemolyticus and WSSV) challenge and ammonia-N stress in E. carinicauda. PMID:27231192

  10. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion

    PubMed Central

    Vogel, Paul A.; Kopple, Tayler E.; Arendshorst, William J.

    2013-01-01

    The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2·−) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca2+ from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2·− in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30–40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2·−. The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2·− production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2·− involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2·− production by the afferent arteriole. PMID:23884143

  11. ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation*

    PubMed Central

    Pelletán, Leonardo E.; Suhaiman, Laila; Vaquer, Cintia C.; Bustos, Matías A.; De Blas, Gerardo A.; Vitale, Nicolas; Mayorga, Luis S.; Belmonte, Silvia A.

    2015-01-01

    Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization. PMID:25713146

  12. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    SciTech Connect

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  13. ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I.

    PubMed Central

    Jones, D H; Bax, B; Fensome, A; Cockcroft, S

    1999-01-01

    The small GTP-binding protein, ADP-ribosylation factor 1 (ARF1) is essential for the formation of coatomer-coated vesicles from the Golgi and is also an activator of phospholipase D (PLD). Moreover, ARF1-regulated PLD is part of the signal-transduction pathway that can lead to secretion. In this study, substitution and deletion mutants of ARF1 were tested for their ability to activate PLD. These map the PLD effector region of ARF1 to the alpha2 helix, part of the beta2-strand and the N-terminal helix and its ensuing loop. ARF mutants with an increased or decreased ability to activate PLD showed similar characteristics when tested for their ability to stimulate secretion from HL60 cells. ARF1, deleted of the N-terminal 17 amino acid residues (Ndel17), did not support PLD activity or secretion, and neither did it inhibit the activity of wild-type myristoylated ARF1 (myrARF1). In contrast, Ndel17 effectively competed with wild-type myrARF1 to prevent coatomer binding to membranes. This appears to define a structural role for Ndel17, as it can bind a high-molecular mass complex in cytosol. In addition, ethanol has no effect on recruitment of coatomer to membrane. We conclude that the function of ARF-regulated PLD is in the signal-transduction pathway leading to secretion of lysosomal granules, and not as an essential component of ARF1-mediated coatomer binding. PMID:10377261

  14. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer

    PubMed Central

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-01-01

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell–cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  15. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer.

    PubMed

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-03-29

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell-cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  16. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  17. ADP-Ribosylation Factor 6 Acts as an Allosteric Activator for the Folded but not Disordered Cholera Toxin A1 Polypeptide

    PubMed Central

    Banerjee, Tuhina; Taylor, Michael; Jobling, Michael G.; Burress, Helen; Yang, ZhiJie; Serrano, Albert; Holmes, Randall K.; Tatulian, Suren A.; Teter, Ken

    2014-01-01

    Summary The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells. PMID:25257027

  18. Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein.

    PubMed Central

    Tsai, S C; Noda, M; Adamik, R; Moss, J; Vaughan, M

    1987-01-01

    Choleragen activates adenylate cyclase by catalyzing, in the presence of NAD, the ADP-ribosylation of Gs alpha, the stimulatory guanyl nucleotide-binding protein of the cyclase system. Kahn and Gilman [Kahn, R. A. & Gilman, A. G. (1986) J. Biol. Chem. 261, 7906-7911] identified another guanyl nucleotide-binding protein termed ADP-ribosylation factor (ARF) that stimulated this reaction. It was proposed that the toxin substrate is an ARF-Gs alpha complex and that ARF may have a physiological role in regulation of Gs alpha activity. We have found that purified ARF from bovine brain enhances not only the ADP-ribosylation of Gs alpha but also Gs alpha-independent choleragen-catalyzed reactions. These are (i) ADP-ribosylation of agmatine, a low molecular weight guanidino compound; (ii) ADP-ribosylation of several proteins unrelated to Gs alpha; and (iii) auto-ADP-ribosylation of the toxin A1 peptide. These reactions, as well as the ADP-ribosylation of ARF itself, were stimulated by GTP or stable GTP analogues such as guanyl-5'-yl imido-beta gamma-diphosphate and guanosine 5'-O-[gamma-thio]triphosphate; GDP and guanosine 5'-O-[beta-thio]diphosphate were inactive. These observations are consistent with the conclusion that ARF interacts directly with the A subunit of choleragen in a GTP-dependent fashion thereby enhancing catalytic activity manifest as transfer of ADP-ribose to Gs alpha and other proteins, to the toxin A1 peptide, or to agmatine. It is tempting to speculate that ARF may be involved in regulating one or another of the ADP-ribosyltransferases found in animal cells. Images PMID:3110784

  19. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1990-05-16

    Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin. PMID:2112955

  20. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b

    PubMed Central

    Wang, Meimei; Soyano, Takashi; Machida, Satoru; Yang, Jun-Yi; Jung, Choonkyun; Chua, Nam-Hai; Yuan, Y. Adam

    2011-01-01

    The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40–55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.1 Å, Agrobacterium vitis AB6b at 1.65 Å, and Arabidopsis ADP ribosylation factor (ARF) at 1.8 Å. The 6b structure adopts an ADP-ribosylating toxin fold closely related to cholera toxin. In vitro ADP ribosylation analysis demonstrates that 6b represents a new toxin family, with Tyr 66, Thr 93, and Tyr 153 as the ADP ribosylation catalytic residues in the presence of Arabidopsis ARF and GTP. Our work provides molecular insights, suggesting that 6b regulates plant cell growth by the disturbance of the miRNA pathway through its ADP ribosylation activity. PMID:21156810

  1. Detection and properties of A-factor-binding protein from Streptomyces griseus

    SciTech Connect

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T. )

    1989-08-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding {sup 3}H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.

  2. Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis.

    PubMed Central

    Way, G; O'luanaigh, N; Cockcroft, S

    2000-01-01

    The physiological stimulus to exocytosis in mast cells is the cross-linking of the high-affinity IgE receptor, FcepsilonR1, with antigen. We demonstrate a novel function for ADP-ribosylation factor 1 (ARF1) in the regulation of antigen-stimulated secretion using cytosol-depleted RBL-2H3 mast cells for reconstitution of secretory responses. When antigen is used as the stimulus, ARF1 also reconstitutes phospholipase D activation. Using ethanol to divert the phosphatidic acid (the product of phospholipase D activity) to phosphatidylethanol causes inhibition of ARF1-reconstituted secretion. In addition. ARF1 causes an increase in phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels at the expense of phosphatidylinositol 4-monophosphate. The requirement for PIP(2) in exocytosis was confirmed by using phosphatidylinositol transfer protein (PITPalpha) to increase PIP(2) levels. Exocytosis, restored by either ARF1 or PITPalpha, was inhibited when PIP(2) levels were depleted by phospholipase Cdelta1. We conclude that the function of ARF1 and PITPalpha is to increase the local synthesis of PIP(2), the function of which in exocytosis is likely to be linked to lipid-protein interactions, whereby recruitment of key components of the exocytotic machinery are targeted to the appropriate membrane compartment. PMID:10657240

  3. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.

    PubMed Central

    Gishizky, M L; Cortez, D; Pendergast, A M

    1995-01-01

    Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479904

  4. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer

    PubMed Central

    Akkiprik, Mustafa; Feng, Yumei; Wang, Huamin; Chen, Kexin; Hu, Limei; Sahin, Aysegul; Krishnamurthy, Savitri; Ozer, Ayse; Hao, Xishan; Zhang, Wei

    2008-01-01

    The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics. PMID:18710598

  5. Emerging role of insulin-like growth factor-binding protein 7 in hepatocellular carcinoma.

    PubMed

    Akiel, Maaged; Rajasekaran, Devaraja; Gredler, Rachel; Siddiq, Ayesha; Srivastava, Jyoti; Robertson, Chadia; Jariwala, Nidhi Himanshu; Fisher, Paul B; Sarkar, Devanand

    2014-01-01

    Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed "IGFBP-related proteins" that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy. PMID:27508172

  6. Transcriptional and posttranslational regulation of insulin-like growth factor binding protein-3 by Akt3

    PubMed Central

    Jin, Quanri; Lee, Hyo-Jong; Min, Hye-Young; Smith, John Kendal; Hwang, Su Jung; Whang, Young Mi; Kim, Woo-Young; Kim, Yeul Hong; Lee, Ho-Young

    2014-01-01

    Insulin-like growth factor (IGF)-dependent and -independent antitumor activities of insulin-like growth factor binding protein-3 (IGFBP-3) have been proposed in human non-small cell lung cancer (NSCLC) cells. However, the mechanism underlying regulation of IGFBP-3 expression in NSCLC cells is not well understood. In this study, we show that activation of Akt, especially Akt3, plays a major role in the mRNA expression and protein stability of IGFBP-3 and thus antitumor activities of IGFBP-3 in NSCLC cells. When Akt was activated by genomic or pharmacologic approaches, IGFBP-3 transcription and protein stability were decreased. Conversely, suppression of Akt increased IGFBP-3 mRNA levels and protein stability in NSCLC cell lines. Characterization of the effects of constitutively active form of each Akt subtype (HA-Akt-DD) on IGFBP-3 expression in NSCLC cells and a xenograft model indicated that Akt3 plays a major role in the Akt-mediated regulation of IGFBP-3 expression and thus suppression of Akt effectively enhances the antitumor activities of IGFBP-3 in NSCLC cells with Akt3 overactivation. Collectively, these data suggest a novel function of Akt3 as a negative regulator of IGFBP-3, indicating the possible benefit of a combined inhibition of IGFBP-3 and Akt3 for the treatment of patients with NSCLC. PMID:24942865

  7. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    PubMed

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  8. Insulin-like growth factor binding protein-3 in preterm infants with retinopathy of prematurity

    PubMed Central

    Gharehbaghi, Manizheh Mostafa; Peirovifar, Ali; Sadeghi, Karim; Mostafidi, Haleh

    2012-01-01

    Background: Retinopathy of prematurity (ROP) is the main cause of visual impairment in preterm newborn infants. Objective: This study was conducted to determine whether insulin-like growth factor binding protein -3 (IGFBP-3) is associated with proliferative ROP and has a role in pathogenesis of the disease in premature infants. Materials and Methods: A total of 71 preterm infants born at or before 32 weeks of gestation participated in this study. Studied patients consisted of 41 neonates without vaso-proliferative findings of ROP as the control group and 30 preterm infants with evidence of severe ROP in follow up eye examination as the case group. Blood samples obtained from these infants 6-8 weeks after birth and blood levels of IGFBP-3 were measured using enzyme-linked immunosorbent assay (ELISA). Results: The mean gestation age and birth weight of the studied patients were 28.2±1.6 weeks and 1120.7±197 gram in the case group and 28.4±1.6 weeks and 1189.4±454 gram in the control group (P=0.25 and P=0.44 respectively). The infants in the case group had significantly lower Apgar score at first and 5 min after birth. Insulin-like growth factor binding protein -3 (IGFBP-3) was significantly lower in the patients with proliferative ROP than the patients without ROP [592.5±472.9 vs. 995.5±422.2 ng/ml (P=0.009)]. Using a cut-off point 770.45 ng/ml for the plasma IGFBP-3, we obtained a sensitivity of 65.9% and a specificity of 66.7% in the preterm infants with vasoproliferative ROP. Conclusion: Our data demonstrated that the blood levels IGFBP-3 was significantly lower in the patients with ROP and it is suspected that IGFBP-3 deficiency in the premature infants may have a pathogenetic role in proliferative ROP. PMID:23202391

  9. Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells.

    PubMed

    Nickerson, T; Huynh, H; Pollak, M

    1997-08-28

    Insulin-like growth factors (IGFs) are known to have potent antiapoptotic activity. The antiestrogen ICI 182,780 (ICI) is a potent inhibitor of MCF7 human breast cancer cell growth and has recently been reported to act as an antiproliferative agent in part via upregulation of expression of insulin-like growth factor binding proteins (IGFBPs) -3 and -5, which attenuate the bioactivity of IGFs in many experimental systems. We show here that ICI and IGFBP-3 induce apoptosis in MCF7 cells. Treatment of MCF7 cells with 10 nM ICI or 36 nM recombinant human IGFBP. 3 for 72 hours increased apoptosis approximately 3.5-fold relative to control as quantitated by a cell death ELISA which measures DNA fragmentation. Long R3 IGF-I, an IGF-I analogue with greatly reduced affinity for IGFBPs yet similar affinity for IGF-I receptors, was a more potent inhibitor of IGFBP-3-induced and ICI-induced apoptosis than IGF-I. These results suggest that IGFBP-3 enhances apoptosis by reducing bioavailability of ligands for the IGF-I receptor and suggest that modulation of IGFBP-3 expression by ICI contributes to apoptosis induced by this compound. More generally, the data suggest that IGFBPs are regulators of apoptosis. PMID:9299428

  10. Interaction of AIM with insulin-like growth factor-binding protein-4.

    PubMed

    You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia

    2015-09-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353

  11. Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis

    PubMed Central

    Han, Jie; Ye, Yujin; Singh, Sandeep; Zhou, Jinchun; Li, Yajuan; Ding, Huihua; Li, Quan-zhen; Zhou, Xin; Putterman, Chaim; Saxena, Ramesh; Mohan, Chandra

    2016-01-01

    Kidney biopsy remains the mainstay of Lupus Nephritis (LN) diagnosis and prognostication. The objective of this study is to identify non-invasive biomarkers that closely parallel renal pathology in LN. Previous reports have demonstrated that serum Insulin-like growth factor binding protein 4 (IGFBP-4) was increased in diabetic nephropathy in both animal models and patients. We proceeded to assess if IGFBP4 could be associated with LN. We performed ELISA using the serum of 86 patients with LN. Normal healthy adults (N = 23) and patients with other glomerular diseases (N = 20) served as controls. Compared to the healthy controls or other glomerular disease controls, serum IGFBP-4 levels were significantly higher in the patients with LN. Serum IGFBP-4 did not correlate well with systemic lupus erythematosus disease activity index (SLEDAI), renal SLEDAI or proteinuria, but it did correlate with estimated glomerular filtration rate (R = 0.609, P < 0.0001). Interestingly, in 18 patients with proliferative LN whose blood samples were obtained at the time of renal biopsy, serum IGFBP-4 levels correlated strongly with the chronicity index of renal pathology (R = 0.713, P < 0.001). IGFBP-4 emerges a potential marker of lupus nephritis, reflective of renal pathology chronicity changes. PMID:27019456

  12. N-Acetylgalactosaminyltransferase 14, a novel insulin-like growth factor binding protein-3 binding partner

    SciTech Connect

    Wu, Chen; Yao, Guangyin; Zou, Minji; Chen, Guangyu; Wang, Min; Liu, Jingqian; Wang, Jiaxi; Xu, Donggang . E-mail: xudg@nic.bmi.ac.cn

    2007-06-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is known to inhibit cell proliferation and induce apoptosis in IGF-dependent and IGF-independent manners, but the mechanism underlying IGF-independent effects is not yet clear. In a yeast two-hybrid assay, IGFBP-3 was used as the bait to screen a human fetal liver cDNA library for it interactors that may potentially mediate IGFBP-3-regulated functions. N-Acetylgalactosaminyltransferase 14 (GalNAc-T14), a member of the GalNAc-Tases family, was identified as a novel IGFBP-3 binding partner. This interaction involved the ricin-type beta-trefoil domain of GalNAc-T14. The interaction between IGFBP-3 and GalNAc-T14 was reconfirmed in vitro and in vivo, using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assays. Our findings may provide new clues for further study on the mechanism behind the IGF-independent effects of IGFBP-3 promoting apoptosis. The role of GalNAc-T14 as an intracellular mediator of the effects of IGFBP-3 need to be verified in future studies.

  13. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  14. Insulin-like growth factor binding protein production and regulation in fetal rat lung cells.

    PubMed

    Price, W A; Moats-Staats, B M; D'Ercole, A J; Stiles, A D

    1993-04-01

    Insulin-like growth factor binding proteins (IGFBPs) are expressed in lung from early in gestation and may modulate IGF-stimulated fetal lung cell proliferation and/or differentiation. To begin to define IGFBP production and regulation in lung cells during development, we prepared primary cultures of 19 day gestation fetal rat lung fibroblasts and epithelial cells and identified IGFBPs secreted into medium. Ligand blot analysis of conditioned media (CM) from both cell types demonstrated IGFBP bands of approximately 39,000-45,000, 32,000, 24,000, and 22,000 M(r). These migration characteristics allowed the identification of the 39,000-45,000 M(r) bands as IGFBP-3 and the 24,000 M(r) band as IGFBP-4, while Western immunoblot analyses localized IGFBP-2 to the 32,000 M(r) band and IGFBP-5 to the 22,000 M(r) band. Polymerase chain reaction amplification of cDNAs generated by reverse transcription of fibroblast and epithelial cell RNA using specific oligodeoxynucleotide primers for IGFBPs 1 through 6, demonstrated the presence of amplified products for IGFBP-2, -3, -4, -5, and -6. In both cell types, IGFBP-2 and -3 production was sustained during 48 h of incubation in serum-free medium, whereas IGFBP-4 abundance increased only during the first 6 to 12 h of incubation. CM from fibroblasts and epithelial cells plated at low densities contained a high abundance of IGFBP-2 per microgram cellular DNA compared with cells at higher densities. In contrast, IGFBP-3 and -4 abundance normalized to cell DNA did not change with differing cell densities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682822

  15. Mxi1 regulates cell proliferation through insulin-like growth factor binding protein-3

    SciTech Connect

    Ko, Je Yeong; Yoo, Kyung Hyun; Lee, Han-Woong; Park, Jong Hoon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Mxi1 regulates cell proliferation. Black-Right-Pointing-Pointer Expression of IGFBP-3 is regulated by Mxi1. Black-Right-Pointing-Pointer Inactivation of Mxi1 reduces IGFBP-3 expression in vitro and in vivo. -- Abstract: Mxi1, a member of the Myc-Max-Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1-/- mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1-/- MEFs and Mxi1-/- mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1-/- mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1-/- mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1-/- mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.

  16. Endothelial cells express insulin-like growth factor-binding proteins 2 to 6.

    PubMed

    Moser, D R; Lowe, W L; Dake, B L; Booth, B A; Boes, M; Clemmons, D R; Bar, R S

    1992-11-01

    Cultured endothelial cells have been shown to produce insulin-like growth factor-binding proteins (IGFBPs); however, the identity of these BPs has not been defined. We now demonstrate that cultured bovine endothelial cells produce IGFBP2, IGFBP3, and IGFBP4 and have mRNA specific for IGFBP2, -3, -4, -5 and -6. DNA probes for bovine IGFBP2-6 were obtained by polymerase chain reaction (PCR) amplification of cDNA from bovine large vessel pulmonary artery and aortic endothelial cells as well as omental and periaortic fat microvessel cells, using oligonucleotide primers whose sequences were based on the reported cDNA sequences of IGFBP2-6. The PCR-derived probes were labeled with 32P and used for Northern blot analysis of RNAs obtained from the four bovine endothelial cell types. Transcripts corresponding to IGFBP2-6 were found in RNA from large vessel endothelial cells (bovine pulmonary artery and bovine aorta) and microvessel cells (periaortic and omental fat). The PCR-derived probe for IGFBP4 was used to screen a bovine pulmonary artery cDNA library for a full-length bovine IGFBP4 cDNA clone. One positive clone, containing a single EcoRI insert of approximately 2.0 kilobases, was selected for further characterization by DNA sequence analysis. This clone contained an open reading frame encoding a 258-amino acid protein that was 97% identical to human IGFBP4, 268 basepairs of 5'-untranslated region, and a longer 1044 basepairs of 3'-untranslated region. IGFBP4 protein was purified from bovine pulmonary artery-conditioned medium, shown to have N-terminal amino acid sequence DEAIHCPPCSEEKLARCR (identical to human IGFBP4) and to be secreted in glycosylated and nonglycosylated forms. Immunoblots further demonstrated that microvessel cells, at early passage, secrete predominantly IGFBP2 and IGFBP3, while large vessel cells, at early and late passages, secrete IGFBP3 and IGFBP4. Thus, cultured bovine endothelial cells synthesize and secrete IGFBP2, IGFBP3, and IGFBP4 and

  17. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease

    PubMed Central

    Sharifi, Reza; Morra, Rosa; Denise Appel, C; Tallis, Michael; Chioza, Barry; Jankevicius, Gytis; Simpson, Michael A; Matic, Ivan; Ozkan, Ege; Golia, Barbara; Schellenberg, Matthew J; Weston, Ria; Williams, Jason G; Rossi, Marianna N; Galehdari, Hamid; Krahn, Juno; Wan, Alexander; Trembath, Richard C; Crosby, Andrew H; Ahel, Dragana; Hay, Ron; Ladurner, Andreas G; Timinszky, Gyula; Williams, R Scott; Ahel, Ivan

    2013-01-01

    Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans. PMID:23481255

  18. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  19. Circulating insulin-like growth factor-binding protein 3 as prognostic biomarker in liver cirrhosis

    PubMed Central

    Correa, Carina Gabriela; Colombo, Bruno da Silveira; Ronsoni, Marcelo Fernando; Soares e Silva, Pedro Eduardo; Fayad, Leonardo; Silva, Telma Erotides; Wildner, Letícia Muraro; Bazzo, Maria Luiza; Dantas-Correa, Esther Buzaglo; Narciso-Schiavon, Janaína Luz; Schiavon, Leonardo de Lucca

    2016-01-01

    AIM: To investigate the prognostic significance of insulin-like growth factor-binding protein 3 (IGFBP-3) in patients with cirrhosis. METHODS: Prospective study that included two cohorts: outpatients with stable cirrhosis (n = 138) and patients hospitalized for acute decompensation (n = 189). Development of complications, mortality or liver transplantation was assessed by periodical phone calls and during outpatient visits. The cohort of stable cirrhosis also underwent clinical and laboratory evaluation yearly (2013 and 2014) in predefined study visits. In patients with stable cirrhosis, IGFBP-3 levels were measured at baseline (2012) and at second re-evaluation (2014). In hospitalized subjects, IGFBP-3 levels were measured in serum samples collected in the first and in the third day after admission and stored at -80 °C. IGFBP-3 levels were measured by immunochemiluminescence. RESULTS: IGFBP-3 levels were lower in hospitalized patients as compared to outpatients (0.94 mcg/mL vs 1.69 mcg/mL, P < 0.001) and increased after liver transplantation (3.81 mcg/mL vs 1.33 mcg/mL, P = 0.008). During the follow-up of the stable cohort, 17 patients died and 11 received liver transplantation. Bivariate analysis showed that death or transplant was associated with lower IGFBP-3 levels (1.44 mcg/mL vs 1.74 mcg/mL, P = 0.027). The Kaplan-Meier transplant-free survival probability was 88.6% in patients with IGFBP-3 ≥ 1.67 mcg/mL and 72.1% for those with IGFBP3 < 1.67 mcg/mL (P = 0.015). In the hospitalized cohort, 30-d mortality was 24.3% and was independently associated with creatinine, INR, SpO2/FiO2 ratio and IGFBP-3 levels in the logistic regression. The 90-d transplant-free survival probability was 80.4% in patients with IGFBP-3 ≥ 0.86 mcg/mL and 56.1% for those with IGFBP3 < 0.86 mcg/mL (P < 0.001). CONCLUSION: Lower IGFBP-3 levels were associated with worse outcomes in patients with cirrhosis, and might represent a promising prognostic tool that can be incorporated in

  20. Heterogeneity of binding subunits of the human 150K insulin-like growth factor binding protein.

    PubMed

    Gelato, M C; Gaynes, L A; Greenstein, L A; Nissley, S P

    1990-04-01

    Models for the structure of the GH-dependent 150K insulin-like growth factor-binding protein (IGF-BP) complex include 1) a binding subunit of 40-60K mol wt associated with a larger nonbinding component, and 2) an oligomeric structure simply made up of six 25-28K monomeric IGF-BP complexes. To evaluate these alternative models we examined the IGF-binding characteristics and behavior on an SP-Sephadex ion exchange column of BP species identified by chemically cross-linking [125I]IGF-I and [125I]IGF-II. In addition, human serum was gel filtered on Sephadex G-200 in 0.05 M NH4HCO3, pH 8.0, and the 150K BP identified by binding of [125I]IGF-II to column fractions. When [125I]IGF-I or [125I]IGF-II was cross-linked to the 150K BP with disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%) and autoradiography, four specifically labeled complexes of 20K, 24K, 33K, and 47K mol wt were identified. We examined the IGF-binding characteristics of these species by cross-linking [125I]IGF-I and [125I]IGF-II after incubation in the presence of increasing concentrations of unlabeled IGF-I or IGF-II. Formation of the 24K complex was inhibited more potently by IGF-II than IGF-I, whereas the relative potency of IGF-I vs. IGF-II for inhibition of the formation of the other complexes depended upon whether [125I]IGF-II or [125I]IGF-I was used. When the 150K BP complex generated from gel filtration on Sephadex G-200 was acid stripped, the only species seen with chemical cross-linking of either [125I]IGF-I or [125I]IGF-II was the 47K complex. By both conventional competitive binding studies and cross-linking [125I]IGF-I and [125I]IGF-II after incubation with increasing concentrations of unlabeled IGF-I or IGF-II, the formation of the 47K complex was usually more potently inhibited by IGF-I than IGF-II. When Cohn fraction IV extract was chromatographed on a SP-Sephadex column (pH 3) and cross-linking performed on the flow-through, the 47K

  1. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis

    PubMed Central

    Beattie, James; Allan, Gordon J.; Lochrie, Jennifer D.; Flint, David J.

    2006-01-01

    The six members of the insulin-like growth factor-binding protein family (IGFBP-1–6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells. PMID:16526944

  2. Genomic Analysis Identifies a Transcription Factor Binding Motif Regulating Expression of the Alpha C Protein in Group B Streptococcus

    PubMed Central

    Klinzing, David C.; Madoff, Lawrence C.; Puopolo, Karen M.

    2009-01-01

    The virulence-associated alpha C protein (ACP) of Group B Streptococcus (GBS) facilitates the bacterial interaction with host epithelial cells. We previously demonstrated that phase-variable expression of ACP is controlled by variation in short-sequence repeat sequences present upstream of the promoter of bca, the gene encoding ACP. To determine if trans-acting transcriptional control also influences ACP expression, we developed an in silico prediction algorithm that identified a potential transcription-factor binding motif (TTT-N6-ATAT) in the bca upstream region. In vitro reporter gene expression studies confirmed that this motif is required for full ACP expression, and DNA-binding assays with a GBS protein extract demonstrated that the predicted site is bound by a protein. This approach demonstrates the utility of in silico genomic predictive methods in the study of GBS regulatory mechanisms. PMID:19328843

  3. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. PMID:25448590

  4. COMPLEMENT C5 REGULATES THE EXPRESSION OF INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS IN CHRONIC EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

    PubMed Central

    Cudrici, Cornelia; Ito, Takahiro; Zafranskaia, Ekaterina; Weerth, Susanna; Rus, Violeta; Chen, Hegang; Niculescu, Florin; Soloviova, Katerina; Tegla, Cosmin; Gherman, Adrian; Raine, Cedric S.; Shin, Moon L.; Rus, Horea

    2008-01-01

    Complement activation plays a central role in autoimmune demyelination. To explore the possible effects of C5 on post-inflammatory tissue repair, we investigated the transcriptional profile induced by C5 in chronic experimental allergic encephalomyelitis (EAE) using oligonucleotide arrays. We used C5-deficient (C5-d) and C5-sufficient (C5-s) mice to compare the gene expression profile and we found that 390 genes were differentially regulated in C5-s mice as compared to C5-d mice during chronic EAE. Among them, a group of genes belonging to the family of insulin-like growth factor binding proteins (IGFBP) and transforming growth factor (TGF)-β3 were found most significantly differentially regulated by C5. The dysregulation of these genes suggests that these proteins might be responsible for the gliosis and lack of remyelination seen in C5-d mice with chronic EAE. PMID:18692252

  5. Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants.

    PubMed

    Cheung, Stanley C K; Sun, Samuel S M; Chan, Juliana C N; Tong, Peter C Y

    2009-12-01

    Human insulin-like growth factor binding protein-3 (hIGFBP-3) is a multifunctional protein which has high affinity for insulin-like growth factor-I (IGF-I). It combines with IGF-I to form a tertiary complex in circulation, thus regulating the activity of IGF-I. Furthermore, recombinant hIGFBP-3 (rhIGFBP-3) has been found to negatively regulate cell proliferation and induce apoptosis. In this study, we have established an efficient plant bioreactor platform for mass production of rhIGFBP-3. Different expression constructs, driven by the seed-specific phaseolin promoter, were designed and transformed into tobacco plant via Agrobacterium. To enhance protein expression level, the signal peptide (SP) and the C-terminal tetrapeptide AFVY of phaseolin were used to direct rhIGFBP-3 to protein storage vacuole (PSV) in tobacco seed for stable accumulation. Western blot analysis showed that rhIGFBP-3 was successfully synthesized in transgenic tobacco seeds, with the highest protein expression of 800 mug/g dry weight. The localization of rhIGFBP-3 in PSV was also evident by confocal immunofluorescence microscopy. Our results indicated that protein sorting sequences could benefit the expression level of rhIGFBP-3 and it is feasible to use plant as "bio-factory" to produce therapeutic recombinant proteins in large quantity. PMID:19504171

  6. Characterization of insulin-like growth factor-binding proteins from sheep thyroid cells.

    PubMed

    Bachrach, L K; Liu, F R; Burrow, G N; Eggo, M C

    1989-12-01

    The insulin-like growth factors (IGFs) are bound by specific, high affinity binding proteins. Distinct classes of IGF-binding proteins have been described in human serum, amniotic fluid, cerebrospinal fluid, and conditioned medium from cultured cells. Sheep thyroid cells produce IGF-binding proteins under hormonal regulation. Cells grown without or with standard medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) released binding proteins with apparent mol wt of 23, 29, and 32 kDa on Western ligand blot (nonreduced). Binding proteins from these cells appeared as 21, 26, 34, 36, and 41 kDa bands when cross-linked to [125I]IGF-I under reducing conditions. The addition of epidermal growth factor (EGF) or phorbol esters, thyroid cell mitogens stimulated the production of larger binding proteins with mol wt of 40-44 and 48-52 by ligand blot and cross-linking methods, respectively. Deglycosylation of conditioned medium cross-linked to [125I]IGF-I with endoglycosidase-F did not alter the size of the smaller binding proteins, but reduced EGF-stimulated binding proteins to 36-40 kDa. Similarly, tunicamycin treatment, which inhibits glycosylation, reduced only the size of this larger binding protein species. Polyclonal antisera directed against the human amniotic fluid binding protein (BP-28) immunoprecipitated the 32 kDa sheep thyroid binding protein seen on ligand blot and the cross-linked binding protein at 36-38 kDa. Antibody against the major human serum binding protein (BP-53) recognized only the larger EGF-stimulated binding proteins. In contrast to sheep thyroid cells, rat FRTL5 thyroid cells produced no detectable IGF-binding proteins. We conclude that the predominant binding proteins produced by sheep thyroid cells under standard culture conditions are non-glycosylated and immunoreact with antiserum directed against BP-28. EGF and phorbol esters stimulate production of larger glycosylated binding proteins

  7. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry.

    PubMed

    Gerold, Gisa; Meissner, Felix; Bruening, Janina; Welsch, Kathrin; Perin, Paula M; Baumert, Thomas F; Vondran, Florian W; Kaderali, Lars; Marcotrigiano, Joseph; Khan, Abdul G; Mann, Matthias; Rice, Charles M; Pietschmann, Thomas

    2015-08-01

    Hepatitis C virus (HCV) enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1), which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion. PMID:26212323

  8. Proteomic Analysis of Nuclear Factors Binding to an Intronic Enhancer in the Myelin Proteolipid Protein Gene

    PubMed Central

    Dobretsova, Anna; Johnson, Jennifer W.; Jones, Richard C.; Edmondson, Ricky D.; Wight, Patricia A.

    2015-01-01

    The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. EMSA analysis demonstrated that specific DNA binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over twenty sequence-specific DNA-binding proteins. Supplementary Western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. PMID:18266931

  9. Insulin-like growth factor binding proteins in follicular fluid from morphologically distinct healthy and atretic bovine antral follicles.

    PubMed

    Irving-Rodgers, H F; Catanzariti, K D; Master, M; Grant, P A; Owens, P C; Rodgers, R J

    2003-01-01

    In bovine follicles 2-5 mm in diameter, two morphologically distinct types of healthy follicles and two types of atretic follicles have been described recently. Healthy follicles either have columnar basal granulosa cells with follicular basal lamina composed of many layers or 'loops' or they have rounded basal cells with a conventional single-layered, aligned follicular basal lamina. In atretic follicles, cell death either commences at the basal layer and progresses to the antrum (basal atresia) with macrophage penetration of the membrana granulosa or death progresses from the antrum in a basal direction (antral atresia). Little is known about how these different phenotypes develop. To determine whether insulin-like growth factor binding protein (IGFBP) levels in follicular fluid differ between these different types of follicles, we measured IGFBP levels in fluids from these follicles. A total of 61 follicles were assessed by light microscopy and characterized by morphological analysis as either healthy, with columnar or rounded basal granulosa cells, or as undergoing antral or basal atresia. The IGFBP concentration in the follicular fluid of individual follicles from the four groups (n = 12-20 per group) was identified by Western ligand blots using (125)I-insulin-like growth factor (IGF)-II as a probe. Insulin-like growth factor binding proteins 2, 3 (44 and 40 kDa), 4 (glycosylated and non-glycosylated) and 5 were observed. The levels (per volume of fluid) of IGFBPs 2, 4 and 5 were greater in atretic follicles than in healthy follicles. However, there were no statistical differences in levels of each IGFBP between either the two types of healthy follicle or between the two types of atretic follicles. Thus, IGFBP levels are not related to the different types of healthy or atretic follicles. PMID:12921699

  10. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    SciTech Connect

    Neuhof, Dirk Zwicker, Felix; Kuepper, Jan-Heiner; Debus, Juergen; Weber, Klaus-Josef

    2007-11-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKC{alpha}/{beta}{sub II} was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than {alpha}/{beta}{sub II} cannot be ruled out.

  11. Expression of a Secreted Fibroblast Growth Factor Binding Protein-1 (FGFBP1) in Angioproliferative Kaposi Sarcoma

    PubMed Central

    Ray, Patricio E; Al-Attar, Ali; Liu, Xue-Hui; Das, Jharna R; Tassi, Elena; Wellstein, Anton

    2014-01-01

    Objective Kaposi’s sarcoma (KS) is an angioproliferative disease frequently seen in patients with the acquired immunodeficiency syndrome (AIDS). Previous studies suggest that the HIV-1 protein Tat and Fibroblast Growth Factor 2 (FGF-2) have synergistic angiogenic effects in AIDS-KS tumors. However, the mechanisms by which FGF-2 is released and activated in KS tumors are not clearly defined. We carried out this study to determine whether an FGF-binding protein (FGFBP1 or BP1) that enhances the angiogenic activity of FGF-2 is expressed in AIDS-KS tumors, and to define whether BP1, FGF-2, and HIV-Tat protein-protein interactions could play a potential clinically role in the pathogenesis of AIDS-KS. Methods BP1 was localized in AIDS-KS lesions by immunohistochemistry and in situ hybridization studies. The binding of radiolabeled FGF-2 to His-tagged BP1 or the FGF-receptor 1 was assessed in the presence and absence of HIV-Tat and other viral proteins. Mice carrying tetracycline-regulated BP1 transgene mice were used to determine whether activation of BP1 during wound healing induces KS-like lesions. Results BP1 expression was detected in AIDS-KS tumor keratinocytes, spindle cells, and infiltrating mononuclear cells. In addition, HIV-Tat competed for the binding of FGF-2 to immobilized BP1, but does not affect the interactions of FGF-2 with its high affinity receptor (FGFR-1). In contrast, two other HIV-proteins, Nef and gp120, did not affect the binding of FGF-2 to BP1 or to FGFR-1. Finally, up-regulation of BP1 expression in tetracycline-regulated –conditional BP1 transgenic mice subjected to skin wounds, induced KS-like skin lesions. Conclusion Taking into consideration the results of previous studies showing that both HIV-Tat and BP1 enhance the mitogenic and angiogenic activity of locally-stored FGF-2, both in vitro and in vivo, our findings suggest a novel mechanism by which the release and activity of FGFs can be modulated in AIDS-KS tumors by HIV-Tat as well

  12. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  13. Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Bokes, P.; Fox, Z.; Singh, A.

    2015-10-01

    Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.

  14. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export.

    PubMed

    Zhang, Maoxiang; Davis, Jason E; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A; Terry, Alvin V; Wu, Guangyu

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  15. Arabidopsis Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense[W

    PubMed Central

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-01-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif–containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens. PMID:21990940

  16. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma

    PubMed Central

    Luo, Li-Ling; Zhao, Lei; Wang, Ying-Xue; Tian, Xiao-Peng; Xi, Mian; Shen, Jing-Xian; He, Li-Ru; Li, Qiao-Qiao; Liu, Shi-Liang; Zhang, Peng; Xie, Dan; Liu, Meng-Zhong

    2015-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in radiosensitivity of esophageal squamous cell carcinoma (ESCC). However, the underlying mechanism is not completely understood. Here, we observed that IGFBP-3 had favorable impact on the tumorigenicity of ESCC cells in nude mice by using an in vivo imaging system (IVIS) to monitor tumor growth treated with ionizing radiation (IR). Downregulation of IGFBP-3 expression enhanced tumor growth, inhibited anti-proliferative and apoptotic activity and result in IR resistance in vivo. Cell cycle antibody array suggested that silencing IGFBP-3 promoted transition from G0/G1 to S phase, perhaps though influencing Smad3 dephosphorylation and retinoblastoma protein (Rb) phosphorylation. Downregulation of P21 and P27, and upregulation of p-P27 (phospho-Thr187), cyclin-dependent kinase 2 (CDK2), and cyclin E1 might contribute to the G0/G1 to S phase transition promoted by IGFBP-3. Our results suggest that Smad3-P27/P21-cyclin E1/CDK2-phosphorylated retinoblastoma protein pathways might be involved in this IGFBP-3 mediated radiosensitivity transition in ESCC. PMID:26670461

  17. Deletion of Corticotropin-releasing Factor Binding Protein Selectively Impairs Maternal, but not Intermale Aggression

    PubMed Central

    Gammie, Stephen C.; Seasholtz, Audrey F.; Stevenson, Sharon A.

    2008-01-01

    Corticotropin-releasing factor (CRF) binding protein (CRF-BP) is a secreted protein that acts to bind and limit the activity of the neuropeptides, CRF and urocortin (Ucn) 1. We previously selected for high maternal defense (protection of offspring) in mice and found CRF-BP to be elevated in the CNS of selected mice. We also previously determined that both CRF and Ucn 1 are potent inhibitors of offspring protection when administered centrally. Thus, elevated CRF-BP could promote defense by limiting endogenous actions of CRF or Ucn 1. To test this hypothesis, we crossed the deletion for CRF-BP into the mice selected for high maternal defense and evaluated offspring protection and other maternal behaviors. CRF-BP knockout (KO) mice exhibited significant deficits in maternal aggression relative to wild-type (WT) mice in three different measures. Other maternal features were almost identical between groups, including dam and pup weight, litter size, nursing time, and pup retrieval. Both groups performed similarly in a forced swim stress test and aggression in both groups was reduced following the swim test. Virgin KO female mice exhibited higher levels of anxiety-like behavior in terms of decreased time in the light portion of the light/dark box test. For males, no differences in light/dark box or swim test were found. However, increased anxiety-like behavior in male KO mice was identified in terms of contact and approach to a novel object both with and without previous exposure to the swim test. No differences in isolation induced resident intruder male aggression were found between groups. Together, these results indicate that loss of CRF-BP selectively impairs maternal, but not intermale aggression and that loss of the gene induces anxiety-like behavior in males and females, but there are sex differences in terms of how that anxiety is revealed. PMID:18929624

  18. Deletion of corticotropin-releasing factor binding protein selectively impairs maternal, but not intermale aggression.

    PubMed

    Gammie, S C; Seasholtz, A F; Stevenson, S A

    2008-12-01

    Corticotropin-releasing factor (CRF) binding protein (CRF-BP) is a secreted protein that acts to bind and limit the activity of the neuropeptides, CRF and urocortin (Ucn) 1. We previously selected for high maternal defense (protection of offspring) in mice and found CRF-BP to be elevated in the CNS of selected mice. We also previously determined that both CRF and Ucn 1 are potent inhibitors of offspring protection when administered centrally. Thus, elevated CRF-BP could promote defense by limiting endogenous actions of CRF or Ucn 1. To test this hypothesis, we crossed the deletion for CRF-BP into the mice selected for high maternal defense and evaluated offspring protection and other maternal behaviors. CRF-BP knockout (KO) mice exhibited significant deficits in maternal aggression relative to wild-type (WT) mice in three different measures. Other maternal features were almost identical between groups, including dam and pup weight, litter size, nursing time, and pup retrieval. Both groups performed similarly in a forced swim stress test and aggression in both groups was reduced following the swim test. Virgin KO female mice exhibited higher levels of anxiety-like behavior in terms of decreased time in the light portion of the light/dark box test. For males, no differences in light/dark box or swim test were found. However, increased anxiety-like behavior in male KO mice was identified in terms of contact and approach to a novel object both with and without previous exposure to the swim test. No differences in isolation induced resident intruder male aggression were found between groups. Together, these results indicate that loss of CRF-BP selectively impairs maternal, but not intermale aggression and that loss of the gene induces anxiety-like behavior in males and females, but there are sex differences in terms of how that anxiety is revealed. PMID:18929624

  19. IL-6 stimulation of insulin-like growth factor binding protein (IGFBP)-1 production.

    PubMed

    Samstein, B; Hoimes, M L; Fan, J; Frost, R A; Gelato, M C; Lang, C H

    1996-11-12

    TNF alpha and IL-1 beta have previously been shown to increase the IGFBP-1 concentration in plasma and liver under in vivo conditions. The present study demonstrates that another inflammatory cytokine, IL-6, also elevates a 30- to 32-kDa IGF binding protein in the plasma of mice. Moreover, IL-6 produced dose- and time-dependent increases in IGFBP-1 production by HepG2 cells. The maximal IL-6-induced increase in IGFBP-1 was comparable to that observed with dexamethasone, and this increase was attenuated by diltiazem or dantrolene, both of which are known to reduce the cytosolic Ca2+ concentration. Finally, incubation of HepG2 cells with TNF alpha or IL-1 beta also increased IGFBP-1 in a dose-dependent manner. These results demonstrate that IGFBP-1 production is mediated directly by proinflammatory cytokines and suggest that this mechanism may be important for the upregulation of IGFBP-1 seen in catabolic conditions associated with overexpression of these cytokines. PMID:8920958

  20. Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling

    PubMed Central

    Veraldi, Kristen L.; Gibson, Bethany T.; Yasuoka, Hidekata; Myerburg, Michael M.; Kelly, Elizabeth A.; Balzar, Silvana; Jarjour, Nizar N.; Pilewski, Joseph M.; Wenzel, Sally E.; Feghali-Bostwick, Carol A.

    2009-01-01

    Rationale: The hallmarks of allergic asthma are airway inflammation, obstruction, and remodeling. Airway remodeling may lead to irreversible airflow obstruction with increased morbidity and mortality. Despite advances in the treatment of asthma, the mechanisms underlying airway remodeling are still poorly understood. We reported that insulin-like growth factor (IGF) binding proteins (IGFBPs) contribute to extracellular matrix deposition in idiopathic pulmonary fibrosis; however, their contribution to airway remodeling in asthma has not been established. Objectives: We hypothesized that IGFBP-3 is overexpressed in asthma and contributes to airway remodeling. Methods: We evaluated levels of IGFBP-3 in tissues and bronchoalveolar lavage fluid from patients with asthma at baseline and 48 hours after allergen challenge, in reparative epithelium in an in vitro wounding assay, and in conditioned media from cytokine- and growth factor–stimulated primary epithelial cells. Measurements and Main Results: IGFBP-3 levels and distribution were evaluated by Western blot, ELISA, and immunofluorescence. IGFBP-3 is increased in vivo in the airway epithelium of patients with asthma compared with normal control subjects. The concentration of IGFBP-3 is increased in the bronchoalveolar lavage fluid of patients with asthma after allergen challenge, its levels are increased in reparative epithelium in an in vitro wounding assay and in the conditioned medium of primary airway epithelial cell cultures stimulated with IGF-I. Conclusions: Our results suggest that one mechanism of allergic airway remodeling is through the secretion of the profibrotic IGFBP-3 from IGF-I–stimulated airway epithelial cells during allergic inflammation. PMID:19608721

  1. The Poly(ADP-ribose) Polymerase Enzyme Tankyrase Antagonizes Activity of the β-Catenin Destruction Complex through ADP-ribosylation of Axin and APC2.

    PubMed

    Croy, Heather E; Fuller, Caitlyn N; Giannotti, Jemma; Robinson, Paige; Foley, Andrew V A; Yamulla, Robert J; Cosgriff, Sean; Greaves, Bradford D; von Kleeck, Ryan A; An, Hyun Hyung; Powers, Catherine M; Tran, Julie K; Tocker, Aaron M; Jacob, Kimberly D; Davis, Beckley K; Roberts, David M

    2016-06-10

    Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein β-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the β-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate β-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases β-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy. PMID:27068743

  2. Light-dependent GTP-binding proteins in squid photoreceptors.

    PubMed Central

    Robinson, P R; Wood, S F; Szuts, E Z; Fein, A; Hamm, H E; Lisman, J E

    1990-01-01

    Previous biochemical and electrophysiological evidence suggests that in invertebrate photoreceptors, a GTP-binding protein (G-protein) mediates the actions of photoactivated rhodopsin in the initial stages of transduction. We find that squid photoreceptors contain more than one protein (molecular masses 38, 42 and 46 kDa) whose ADP-ribosylation by bacterial exotoxins is light-sensitive. Several lines of evidence suggest that these proteins represent distinct alpha subunits of G-proteins. (1) Pertussis toxin and cholera toxin react with distinct subsets of these polypeptides. (2) Only the 42 kDa protein immunoreacts with the monoclonal antibody 4A, raised against the alpha subunit of the G-protein of vertebrate rods [Hamm & Bownds (1984) J. Gen. Physiol. 84. 265-280]. (3) In terms of ADP-ribosylation, the 42 kDa protein is the least labile to freezing. (4) Of the 38 kDa and 42 kDa proteins, the former is preferentially extracted with hypo-osmotic solutions, as demonstrated by the solubility of its ADP-ribosylated state and by the solubility of the light-dependent binding of guanosine 5'-[gamma-thio]triphosphate. The specific target enzymes for the observed G-proteins have not been established. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2124806

  3. Activation-dependent expression of the insulin-like growth factor binding protein-2 in human lymphocytes.

    PubMed Central

    Föll, J L; Dannecker, L; Zehrer, C; Hettmer, S; Berger, J; Elmlinger, M; Niethammer, D; Ranke, M B; Dannecker, G E

    1998-01-01

    The expression of the insulin-like growth factor binding protein-2 (IGFBP-2) was assayed in mononuclear cells originating from different organs of the immune system. All mononuclear cells studied did express IGFBP-2, but the expression level was found to be dependent on the cell type and origin of the cell. T cells showed a higher expression of IGFBP-2 mRNA than did B cells, and CD34+ stem cells expressed IGFBP-2 mRNA at a high level. Expression was highest in bone marrow and thymus. Stimulation of peripheral mononuclear cells resulted in a marked increase of IGFBP-2 mRNA and also intracellular IGFBP-2, as analysed by fluorescence staining. This increase parallels the increase of other known T-cell activation markers. Furthermore, the increase of intracellular IGFBP-2 seems to precede T-cell blast formation and all T cells in active phases of the cell cycle have high levels of IGFBP-2. Our results provide a basis for further investigations on the contribution of the IGF-system to the regulation of T-cell proliferation and differentiation. IGFBP-2, in particular, may have an important influence in the regulation of T-cell activation and proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:9741338

  4. Insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells.

    PubMed

    Schneider, M R; Zhou, R; Hoeflich, A; Krebs, O; Schmidt, J; Mohan, S; Wolf, E; Lahm, H

    2001-10-26

    The precise role of insulin-like growth factor-binding protein-5 (IGFBP-5) in regulating the growth of tumor cells, especially of bone-derived malignant cells, is not well understood. We have investigated the biological activity of IGFBP-5 by transfecting OS/50-K8 mouse osteosarcoma cells with an expression vector containing the osteocalcin promoter and the complete mouse IGFBP-5 cDNA (OC-IGFBP-5). Overexpression of IGFBP-5 mRNA and secretion of increased amounts of bioactive protein in conditioned media were demonstrated in different clones. For the analysis of cell proliferation, three clones exhibiting high levels of IGFBP-5 expression were selected and compared to a mock clone and to nontransfected parental cells. IGFBP-5-secreting clones displayed reduced proliferation under both anchorage-dependent and -independent conditions (P < 0.05). The increase in proliferation observed in IGFBP-5-secreting clones after addition of exogenous IGF was significantly lower than that observed in mock-transfected or parental cells. A similar result was obtained with long[R3]IGF-I which has a low affinity for all IGFBPs, suggesting that the inhibitory effect of IGFBP-5 is only partially IGF-dependent. OC-IGFBP-5-transfected clones expressed significantly higher amounts of osteocalcin mRNA (P < 0.05) and secreted more osteocalcin protein than a mock clone or parental OS-50/K8 cells. Thus, part of the growth-inhibiting effect of IGFBP-5 may be due to an induction of differentiation in these cells. PMID:11606061

  5. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  6. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.

    PubMed Central

    Li, M; Dyda, F; Benhar, I; Pastan, I; Davies, D R

    1996-01-01

    The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles. Images Fig. 1 Fig. 3 PMID:8692916

  7. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.

    PubMed

    Sukhanova, Maria V; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M; Anarbaev, Rashid O; Curmi, Patrick A; Hamon, Loic; Lavrik, Olga I

    2016-04-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  8. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  9. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    PubMed

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  10. Interaction of Insulin-like Growth Factor-binding Protein-3 and BAX in Mitochondria Promotes Male Germ Cell Apoptosis

    PubMed Central

    Jia, Yue; Lee, Kuk-Wha; Swerdloff, Ronald; Hwang, David; Cobb, Laura J.; Sinha Hikim, Amiya; Lue, Yan He; Cohen, Pinchas; Wang, Christina

    2010-01-01

    Germ cell apoptosis is crucial for spermatogenesis and can be triggered by various stimuli, including intratesticular hormone deprivation. This study proposes a role for insulin-like growth factor binding protein-3 (IGFBP-3) in male germ cell apoptosis. Groups of adult Sprague-Dawley male rats received one of the following treatments for 5 days: (i) daily intratesticular (IT) injections with saline (control); (ii) a single subcutaneous injection of the gonadotropin-releasing hormone antagonist (GnRH-A), acyline, on day 1 and a daily IT injection of saline; (iii) daily IT injection of IGFBP-3; and (iv) a GnRH-A injection on day 1 and a daily IT injection of IGFBP-3. Germ cell apoptosis increased significantly after IGFBP-3 or GnRH-A treatment which was further enhanced by the combined treatment. After co-immunoprecipitation with BAX antibody, IGFBP-3 association with BAX was demonstrated in total and mitochondrial fractions but not in the cytosol of testis extracts. BAX-associated IGFBP-3 expression was increased in mitochondria after treatment compared with control, which was confirmed by an IGFBP-3 enzyme-linked immunosorbent assay. Dot blot studies further validated the BAX-IGFBP-3 binding in vitro. IGFBP-3 as well as BAX induced release of cytochrome c and DIABLO from isolated testicular mitochondria in vitro. IGFBP-3, when combined with an ineffective dose of BAX, triggered release of these proteins from isolated mitochondria at a 4-fold lower dose than IGFBP-3 alone. Our data demonstrate that the IGFBP-3 and BAX interaction activates germ cell apoptosis via the mitochondria-dependent pathway. This represents a novel pathway regulating germ call homeostasis that may have significance for male fertility and testicular disease. PMID:19887447

  11. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.

    PubMed

    Gagné, Jean-Philippe; Isabelle, Maxim; Lo, Ken Sin; Bourassa, Sylvie; Hendzel, Michael J; Dawson, Valina L; Dawson, Ted M; Poirier, Guy G

    2008-12-01

    Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli. PMID:18981049

  12. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes

    PubMed Central

    Gagné, Jean-Philippe; Isabelle, Maxim; Lo, Ken Sin; Bourassa, Sylvie; Hendzel, Michael J.; Dawson, Valina L.; Dawson, Ted M.; Poirier, Guy G.

    2008-01-01

    Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli. PMID:18981049

  13. Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

    PubMed Central

    Yu, Jessie Z; Warycha, Melanie A; Christos, Paul J; Darvishian, Farbod; Yee, Herman; Kaminio, Hideko; Berman, Russell S; Shapiro, Richard L; Buckley, Michael T; Liebes, Leonard F; Pavlick, Anna C; Polsky, David; Brooks, Peter C; Osman, Iman

    2008-01-01

    Background Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression. Methods The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients. Results Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients. Conclusion Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients. PMID:19025658

  14. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    SciTech Connect

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael . E-mail: michael.pollak@mcgill.ca

    2005-11-04

    PTEN is a tumor suppressor gene whose loss of function is observed in {approx}40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.

  15. Characterization of insulin-like growth factor-binding proteins secreted by isolated sheep thyroid epithelial cells.

    PubMed

    Wang, J F; Becks, G P; Buckingham, K D; Hill, D J

    1990-06-01

    We have characterized the insulin-like growth factor-binding proteins (IGF-BPs) released by isolated sheep thyroid epithelial cells. Thyroid follicles were isolated with collagenase and cultured in Coon's modified F-12 M (0H medium) supplemented with insulin, cortisol, transferrin, glycyl-histidyl-lysine and somatostatin (5H medium) and TSH (6H medium). Conditioned 0H medium specifically bound both 125I-labelled IGF-I and -II, although binding capacity was reduced following acid-gel filtration to separate endogenous IGF-BP complexes, suggesting some destruction of BPs. The binding of 125I-labelled IGF-I or -II to conditioned (0H) medium was progressively displaced by increasing amounts of unlabelled homologous peptides, while fractionation on concanavalin A-Sepharose showed that the IGF-BPs consisted of both glycoprotein and non-glycoprotein components. The molecular sizes of the IGF-BPs were resolved by separation of 0H medium on SDS-PAGE and ligand blot analysis with 125I-labelled IGF-I or -II. Conditioned medium contained four specific binding species for IGF-II of 19, 30, 38 and 46 kDa; all but the smallest also binding radiolabelled IGF-I. Prior fractionation on concanavalin A-Sepharose showed that the 46 kDa binding species was a glycoprotein. Competition studies with increasing concentrations of unlabelled IGF-I or -II during ligand blotting suggested that the 46 and 30 kDa binding species had a greater affinity for IGF-II than IGF-I, while the 38 kDa had a greater relative affinity for IGF-I. Incubation of cells in 5H medium reduced the abundance of the 46 kDa binding protein, while incubation in 6H medium decreased the release of all binding protein species. Results show that isolated thyroid follicles released several forms of IGF-BP with differing relative affinities for IGF-I and -II. Gross changes seen in the presence of BPs between 0H, 5H and 6H media suggest acute hormonal control of release. PMID:1695663

  16. Nudix hydrolases degrade protein-conjugated ADP-ribose.

    PubMed

    Daniels, Casey M; Thirawatananond, Puchong; Ong, Shao-En; Gabelli, Sandra B; Leung, Anthony K L

    2015-01-01

    ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR. PMID:26669448

  17. Nudix hydrolases degrade protein-conjugated ADP-ribose

    PubMed Central

    Daniels, Casey M.; Thirawatananond, Puchong; Ong, Shao-En; Gabelli, Sandra B.; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD+ to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP—the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR. PMID:26669448

  18. Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins.

    PubMed Central

    Lee, C M; Chang, P P; Tsai, S C; Adamik, R; Price, S R; Kunz, B C; Moss, J; Twiddy, E M; Holmes, R K

    1991-01-01

    Escherichia coli heat-labile enterotoxins (LT) are responsible in part for "traveler's diarrhea" and related diarrheal illnesses. The family of LTs comprises two serogroups termed LT-I and LT-II; each serogroup includes two or more antigenic variants. The effects of LTs result from ADP ribosylation of Gs alpha, a stimulatory component of adenylyl cyclase; the mechanism of action is identical to that of cholera toxin (CT). The ADP-ribosyltransferase activity of CT is enhanced by 20-kD guanine nucleotide-binding proteins, known as ADP-ribosylation factors or ARFs. These proteins directly activate the CTA1 catalytic unit and stimulate its ADP ribosylation of Gs alpha, other proteins, and simple guanidino compounds (e.g., agmatine). Because of the similarities between CT and LTs, we investigated the effects of purified bovine brain ARF and a recombinant form of bovine ARF synthesized in Escherichia coli on LT activity. ARF enhanced the LT-I-, LT-IIa-, and LT-IIb-catalyzed ADP ribosylation of agmatine, as well as the auto-ADP ribosylation of the toxin catalytic unit. Stimulation of ADP-ribosylagmatine formation by LTs and CT in the presence of ARF was GTP dependent and enhanced by sodium dodecyl sulfate. With agmatine as substrate, LT-IIa and LT-IIb exhibited less than 1% the activity of CT and LT-Ih. CT and LTs catalyzed ADP-ribosyl-Gs alpha formation in a reaction dependent on ARF, GTP, and dimyristoyl phosphatidylcholine/cholate. With Gs alpha as substrate, the ADP-ribosyltransferase activities of the toxins were similar, although CT and LT-Ih appeared to be slightly more active than LT-IIa and LT-IIb. Thus, LT-IIa and LT-IIb appear to differ somewhat from CT and LT-Ih in substrate specificity. Responsiveness to stimulation by ARF, GTP, and phospholipid/detergent as well as the specificity of ADP-ribosyltransferase activity are functions of LTs from serogroups LT-I and LT-II that are shared with CT. Images PMID:1902492

  19. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications.

    PubMed

    Zheng, Hong; Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun

    2016-01-01

    Diabetes and its complications are hyperglycemic toxicity diseases. Many metabolic pathways in this array of diseases become aberrant, which is accompanied with a variety of posttranslational protein modifications that in turn reflect diabetic glucotoxicity. In this review, we summarize some of the most widely studied protein modifications in diabetes and its complications. These modifications include glycation, carbonylation, nitration, cysteine S-nitrosylation, acetylation, sumoylation, ADP-ribosylation, O-GlcNAcylation, and succination. All these posttranslational modifications can be significantly attributed to oxidative stress and/or carbon stress induced by diabetic redox imbalance that is driven by activation of pathways, such as the polyol pathway and the ADP-ribosylation pathway. Exploring the nature of these modifications should facilitate our understanding of the pathological mechanisms of diabetes and its associated complications. PMID:27042090

  20. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications

    PubMed Central

    Zheng, Hong; Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun

    2016-01-01

    Diabetes and its complications are hyperglycemic toxicity diseases. Many metabolic pathways in this array of diseases become aberrant, which is accompanied with a variety of posttranslational protein modifications that in turn reflect diabetic glucotoxicity. In this review, we summarize some of the most widely studied protein modifications in diabetes and its complications. These modifications include glycation, carbonylation, nitration, cysteine S-nitrosylation, acetylation, sumoylation, ADP-ribosylation, O-GlcNAcylation, and succination. All these posttranslational modifications can be significantly attributed to oxidative stress and/or carbon stress induced by diabetic redox imbalance that is driven by activation of pathways, such as the polyol pathway and the ADP-ribosylation pathway. Exploring the nature of these modifications should facilitate our understanding of the pathological mechanisms of diabetes and its associated complications. PMID:27042090

  1. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    PubMed

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development. PMID:26108887

  2. Insulin-like growth factor binding protein-1 expression in baboon endometrial stromal cells: regulation by filamentous actin and requirement for de novo protein synthesis.

    PubMed

    Kim, J J; Jaffe, R C; Fazleabas, A T

    1999-02-01

    Stromal fibroblasts in the primate endometrium undergo dramatic morphological and biochemical changes in response to pregnancy. This transformation is characterized by the expression of insulin-like growth factor binding protein-1 (IGFBP-1). Stromal cells from the baboon endometrium of nonpregnant animals were cultured and subsequently treated with cytochalasin D to disrupt actin filaments. In response to cytochalasin D treatment, cells contracted and became rounded as early as 10 min after the initiation of treatment. When cytochalasin D was removed, cells reverted back to their original fibroblastic shape within 1 h. After cells were treated with cytochalasin D for 5 h, addition of (Bu)2cAMP and/or hormones (estradiol, medroxyprogesterone acetate, and relaxin) resulted in the expression of IGFBP-1 messenger RNA and protein within 24 h. Cells with an intact cytoskeleton did not express detectable levels of IGFBP-1 in response to hormones and/or (Bu)2cAMP. Furthermore, the addition of cycloheximide inhibited expression of IGFBP-1 in cytochalasin D-treated cells. Stromal cells were also isolated from early pregnant and simulated pregnant animals. Within 48 h, cells from both the pregnant and simulated pregnant animals produced IGFBP-1 in response to hormones and/or (Bu)2cAMP. In these studies, IGFBP-1 expression was also inhibited by cycloheximide. These studies suggest that induction of IGFBP-1 requires an intermediary protein and that alterations in the cytoskeleton may be involved. PMID:9927334

  3. Correlation between insulin-like growth factor binding protein 3 and metastasis-associated gene 1 protein in esophageal squamous cell carcinoma

    PubMed Central

    YANG, HAIPING; XU, LIJUAN; QIAN, HAILI; NIU, XINQIANG; ZHAO, DAN; ZHAO, ZHILONG; WU, JUN; LIU, JUNFENG; WANG, YANYU

    2016-01-01

    The present study aimed to investigate the correlation between insulin-like growth factor binding protein 3 (IGFBP-3) and metastasis-associated gene 1 (MTA1) protein, and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC). Patients with ESCC who underwent surgical resection were enrolled in the current study, ESCC tissues and adjacent normal tissues (control) were obtained from 197 patients. The protein expression levels of IGFBP-3 and MTA1 were detected using immunohistochemistry. The results demonstrated that the expression of IGFBP-3 in ESCC tissues was significantly lower than in the adjacent normal tissues (27.4 vs. 40.6%; P<0.05), and was negatively correlated with smoking status, degree of tumor differentiation and lymph node metastasis (P<0.05). The expression of MTA1 protein in ESCC tissues was significantly higher than that of the adjacent tissues (42.1 vs. 11.2%; P<0.05), and was positively correlated with the tumor size, extent of tumor invasion and lymph node metastasis (P<0.05). No association was identified between the protein expression levels of IGFBP-3 and MTA1. The protein expression levels of IGFBP-3 and MTA1 were not independent risk factors for ESCC prognosis; however, the degree of tumor invasion (P=0.02) and rate of lymph node metastasis (P=0.027) were. IGFBP-3 inhibits the proliferation and metastasis of ESCC; however, MTA1 promotes the proliferation and metastasis of ESCC. There is no interaction between IGFBP-3 and MTA1 in ESCC, and they are not independent risk factors for ESCC prognosis. PMID:27035126

  4. A Mutational Analysis of Residues in Cholera Toxin A1 Necessary for Interaction with Its Substrate, the Stimulatory G Protein Gsα

    PubMed Central

    Jobling, Michael G.; Gotow, Lisa F.; Yang, Zhijie; Holmes, Randall K.

    2015-01-01

    Pathogenesis of cholera diarrhea requires cholera toxin (CT)-mediated adenosine diphosphate (ADP)-ribosylation of stimulatory G protein (Gsα) in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP) differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging “active-site” and “activation” loops in inactive CTA1) and an ADP ribosylating turn-turn (ARTT) motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino)-guanidine (DEABAG), a small substrate predicted to fit into the CTA1 active site). Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα. PMID:25793724

  5. 150-kD von Willebrand factor binding protein extracted from human vascular subendothelium is type VI collagen.

    PubMed Central

    Rand, J H; Patel, N D; Schwartz, E; Zhou, S L; Potter, B J

    1991-01-01

    We have previously shown that von Willebrand factor (vWF), a glycoprotein which plays a critical role in the adhesion of platelets to injured blood vessels, is present within vascular subendothelium. We investigated the identity of the subendothelial binding site(s) for vWF by examining vWF binding to subendothelial constituents and solubilized a 150-kD protein with SDS-urea that bound vWF. This protein had an amino-acid composition similar to that of the type VI collagen alpha-1/alpha-2 chains, was recognized by specific polyclonal antibodies against type VI collagen, and had a similar acidic isoelectric point. Furthermore, we found that purified type VI collagen also bound vWF. Thus, we have identified the extracted 150-kD protein as type VI collagen. This protein may play a significant role in the binding of vWF to vascular subendothelium in vivo. Images PMID:2056120

  6. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation.

    PubMed

    Qiu, Jia; Ma, Xiao-Li; Wang, Xin; Chen, Hong; Huang, Bing-Ren

    2012-02-01

    Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3',5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3. PMID:21997736

  7. Body Size in Early Life and Adult Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3

    PubMed Central

    Poole, Elizabeth M.; Tworoger, Shelley S.; Hankinson, Susan E.; Schernhammer, Eva S.; Pollak, Michael N.; Baer, Heather J.

    2011-01-01

    Body size in early life has been associated with breast cancer risk. This may be partly mediated through the insulin-like growth factor (IGF) pathway. The authors assessed whether birth weight, body fatness at ages 5 and 10 years, and body mass index (BMI; weight (kg)/height (m)2) at age 18 years were associated with plasma concentrations of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 in 6,520 women aged 32–70 years at blood draw from the Nurses’ Health Study (1990–2006) and Nurses’ Health Study II (1997–2005). Birth weight, body fatness in childhood, and BMI at age 18 years were inversely associated with adult IGF-1 levels. For example, IGF-1 levels were 11.9% lower in women who reported being heaviest at age 10 years than in those who were leanest at age 10 (P-trend < 0.0001). Further, women who reported their birth weight as ≥10 pounds (≥4.5 kg) (vs. <5.5 pounds (<2.5 kg)) had 7.9% lower IGF-1 levels (P-trend = 0.002). Women whose BMI at age 18 years was ≥30 (vs. <20) had 14.1% lower IGF-1 levels (P-trend < 0.0001). Similar inverse associations were observed for insulin-like growth factor binding protein 3. These observations did not vary by adult BMI or menopausal status at blood draw. These findings suggest that altered IGF-1 levels in adulthood may be a mechanism through which early-life body size influences subsequent breast cancer risk. PMID:21828371

  8. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    PubMed Central

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  9. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  10. Temporal expression patterns of insulin-like growth factor binding protein-4 in the embryonic and postnatal rat brain

    PubMed Central

    2013-01-01

    Background IGFBP-4 has been considered as a factor involving in development of the central nervous system (CNS), but its role needs to be further clarified. In present study, the localization of IGFBP-4 expression in the embryonic forebrain, midbrain and hindbrain was determined using immunohistochemistry, and the levels of IGFBP-4 protein and mRNA were semi-quantified using RT-PCR and Western blot in the embryonic (forebrain, midbrain and hindbrain) and postnatal brain (cerebral cortex, cerebellum and midbrain). Results A clear immunoreactivity of IGFBP-4 covered almost the entire embryonic brain (forebrain, midbrain, hindbrain) from E10.5 to E18.5, except for the area near the ventricle from E14.5. The change of IGFBP-4 mRNA level was regularly from E10.5 to E18.5: its expression peaked at E13.5 and E14.5, followed by gradual decreasing from E15.5. The expression of IGFBP-4 protein was similar to that of mRNA in embryonic stage. After birth, the pattern of IGFBP-4 expression was shown to be rather divergent in different brain areas. In the cerebral cortex, the IGFBP-4 mRNA increased gradually after birth (P0), while the protein showed little changes from P0 to P28, but decreased significantly at P70. In the cerebellum, the IGFBP-4 mRNA decreased gradually from P0, reached the lowest level at P21, and then increased again. However, its protein level gradually increased from P0 to P70. In the midbrain, the IGFBP-4 mRNA first decreased and reached its lowest level at P28 before it increased, while the protein remained constant from P0 to P70. At P7, P14, P21, P28 and P70, the levels of IGFBP-4 mRNA in the cerebral cortex were significantly higher than that in the cerebellum or in the midbrain. Differently, the protein levels in the cerebellum were significantly higher than that either in the cerebral cortex or in the midbrain at P14, P21, P28 and P70. Conclusions The temporal expression pattern of IGFBP-4 in the embryonic brain from E10.5 to E18.5 was consistent

  11. Regulation of insulin-like growth factor-binding protein messenger ribonucleic acid levels in sheep thyroid cells.

    PubMed

    Bachrach, L K; Eggo, M C; Burrow, G N; Liu, F; Tram, T; Powell, D R

    1991-04-01

    The insulin-like growth factors (IGFs) exist primarily bound to cell surface receptors or complexed to specific binding proteins (IGFBPs). The IGFBPs modulate the bioavailability of the IGFs and may enhance or inhibit IGF actions. Several distinct forms of IGFBPs have been described on the basis of size, immunological determinants, and distribution in biological fluids; the IGFBPs may differ as well in their biological function. Sheep thyroid cells produce IGFBPs under hormonal regulation. Cells grown in basal medium or with six-hormone (6H) medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) release nonglycosylated BPs that migrate at 24, 27, 29, and 32 kDa on Western ligand blot. Cells cultured with the thyroid mitogens epidermal growth factor and phorbol ester release additional glycosylated IGFBPs of 40-44 kDa. Immunoprecipitation experiments indicate that 29- and 32-kDa IGFBPs are antigenically related to IGFBP-2, and the 40- to 44-kDa proteins are related to IGFBP-3. Using specific cDNA probes IGFBP-1, -2, and -3, we examined the regulation of IGFBP mRNA levels in sheep thyroid cultures. The rat IGFBP-2 cDNA probe hybridized to an approximately 1.6-kilobase mRNA species in cells under all culture conditions. However, IGFBP-3 mRNA was detectable only in epidermal growth factor- or phorbol ester-treated cells and appeared within 4 h, preceding the release of IGFBP-3 protein into the medium. The 6H additives, which stimulate differentiated function in thyroid cells, inhibited the mRNA levels of both IGFBP-2 and IGFBP-3. IGFBP-1 mRNA was not detectable. The distinct regulation of these IGFBPs suggest that they may play different biological roles in modulating thyroid physiology. PMID:1706262

  12. Aggravation of post-ischemic liver injury by overexpression of insulin-like growth factor binding protein 3

    PubMed Central

    Zhou, Lu; Koh, Hyoung-Won; Bae, Ui-Jin; Park, Byung-Hyun

    2015-01-01

    Insulin-like growth factor-1 (IGF-1) is known to inhibit reperfusion-induced apoptosis. IGF-binding protein-3 (IGFBP-3) is the major circulating carrier protein for IGF-1 and induces apoptosis. In this study, we determined if IGFBP-3 was important in the hepatic response to I/R. To deliver IGFBP-3, we used an adenovirus containing IGFBP-3 cDNA (AdIGFBP-3) or an IGFBP-3 mutant devoid of IGF binding affinity but retaining IGFBP-3 receptor binding ability (AdIGFBP-3GGG). Mice subjected to I/R injury showed typical patterns of hepatocellular damage. Protein levels of IGFBP-3 were increased after reperfusion and showed a positive correlation with the extent of liver injury. Prior injection with AdIGFBP-3 aggravated liver injury: serum aminotransferases, prothrombin time, proinflammatory cytokines, hepatocellular necrosis and apoptosis, and neutrophil infiltration were markedly increased compared to control mice. A decrease in antioxidant potential and an upregulation of NADPH oxidase might have caused these aggravating effects of IGFBP-3. Experiments using HepG2 cells and N-acetylcysteine-pretreated mice showed a discernible effect of IGFBP-3 on reactive oxygen species generation. Lastly, AdIGFBP-3 abolished the beneficial effects of ischemic preconditioning and hypothermia. Mice treated with AdIGFBP-3GGG exhibited effects similar to those of AdIGFBP-3, suggesting a ligand-independent effect of IGFBP-3. Our results suggest IGFBP-3 as an aggravating factor during hepatic I/R injury. PMID:26073647

  13. RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch.

    PubMed

    Santonico, E; Mattioni, A; Panni, S; Belleudi, F; Mattei, M; Torrisi, M R; Cesareni, G; Castagnoli, L

    2015-06-01

    Ring finger protein 11 (RNF11) is a RING (really interesting new gene)-H2 E3 ligase that is overexpressed in several human tumor tissues. The mature protein, which is anchored to membranes via a double acylation, localizes to early endosome and recycling compartments. Apart from its subcellular localization, additional lines of evidence implicate RNF11 in the mechanisms underlying vesicle traffic. Here we identify two acidic-cluster dileucine (Ac-LL) motifs, which are recognized by the VHS domains of Golgi-localized, gamma adaptin era-containing, ADP-ribosylation factor-binding protein (GGA) adaptors, as the molecular determinants governing RNF11 sorting at the trans-Golgi network and its internalization from the plasma membrane. We also show that RNF11 recruits itch to drive the ubiquitination of GGA3. This function is experimentally detectable only in cells overexpressing an RNF11 variant that is inactivated in the RING domain, indicating that RNF11 recruits GGA3 and controls its ubiquitination by regulating itch activity. Accordingly, our data demonstrate the involvement of itch in regulating GGA3 stability. Indeed, we observe that the endogenous levels of GGA3 are increased in cells knocked down for itch and endogenous GGA3 is hyperubiquitinated in an itch-dependent manner in a cell line expressing catalytically inactive RNF11. Our data are consistent with a model whereby the RING E3 ligase RNF11 is a novel GGA cargo actively participating in regulating the ubiquitination of the GGA protein family. The results that we are presenting put RNF11 at the center of a finally regulated system where it acts both as an adaptor and a modulator of itch-mediated control of ubiquitination events underlying membrane traffic. PMID:25195858

  14. Insulin-like growth factor-II and insulin-like growth factor-binding proteins in bovine cystic ovarian disease.

    PubMed

    Rey, F; Rodríguez, F M; Salvetti, N R; Palomar, M M; Barbeito, C G; Alfaro, N S; Ortega, H H

    2010-01-01

    Cystic ovarian disease (COD) is one of the most common reproductive disorders of cattle and is considered to have multifactorial aetiology. An accepted hypothesis involves neuroendocrinological dysfunction of the hypothalamic-pituitary-gonadal axis; however, the role of growth factors in COD has not been extensively investigated. The present study examines the potential role of members of the insulin-like growth factor (IGF) family in COD. Expression of genes encoding IGF-II and insulin-like growth factor-binding proteins (IGFBPs) was examined and the distribution of IGF-II within the follicular wall was assessed immunohistochemically. Finally, the concentration of IGF-II protein was determined in follicular fluid. There was increased IGF-II mRNA in the wall of cystic follicles, mainly associated with granulosa cells. Additionally, there was significantly more IGF-II protein in granulosa and theca cells in cystic follicles, but no change in the concentration of IGF-II in follicular fluid. Total IGFBPs, assessed by western blotting, were similar in different structures. However, by discriminating each IGFBP a decrease was detected in IGFBP-2 expression in cystic follicles that may be related to the observed higher expression of IGF-II. In summary, the present study provides evidence to suggest that COD in cattle is associated with modifications in the IGF-II system. PMID:19959179

  15. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction.

    PubMed

    Watson, Carole S; Bialek, Peter; Anzo, Makoto; Khosravi, Javad; Yee, Siu-Pok; Han, Victor K M

    2006-03-01

    IGF binding protein-1 (IGFBP-1) inhibits the mitogenic actions of the IGFs. Circulating IGFBP-1 is elevated in newborns and experimental animals with fetal growth restriction (FGR). To establish a causal relationship between high circulating IGFBP-1 and FGR, we have generated transgenic mice using the mouse alpha-fetoprotein gene promoter to target overexpression of human IGFBP-1 (hIGFBP-1) in the fetal liver. These transgenic mice (AFP-BP1) expressed hIGFBP-1 mainly in the fetal hepatocytes, starting at embryonic d 14.5 (E14.5), with lower levels in the gut. The expression peaked at 1 wk postnatally (plasma concentration, 474 +/- 34 ng/ml). At birth, AFP-BP1 pups were 18% smaller [weighed 1.34 +/- 0.02 g compared with 1.62 +/- 0.04 g for wild type (WT); P < 0.05], and they did not demonstrate any postnatal catch-up growth. The placentas of the AFP-BP1 mice were larger than WT from E16.5 onwards (150 +/- 12 for AFP-BP1 vs. 100 +/- 5 mg for WT at E16.5; P < 0.05). Thus, this model of FGR is associated with a larger placenta, but without postnatal catch-up growth. Overall, these data clearly demonstrate that high concentrations of circulating IGFBP-1 are sufficient to cause FGR. PMID:16293667

  16. Hypoxia and Leucine Deprivation Induce Human Insulin-Like Growth Factor Binding Protein-1 Hyperphosphorylation and Increase Its Biological Activity

    PubMed Central

    Seferovic, Maxim D.; Ali, Rashad; Kamei, Hiroyasu; Liu, Suya; Khosravi, Javad M.; Nazarian, Steven; Han, Victor K. M.; Duan, Cunming; Gupta, Madhulika B.

    2009-01-01

    Fetal growth restriction is often caused by uteroplacental insufficiency that leads to fetal hypoxia and nutrient deprivation. Elevated IGF binding protein (IGFBP)-1 expression associated with fetal growth restriction has been documented. In this study we tested the hypothesis that hypoxia and nutrient deprivation induce IGFBP-1 phosphorylation and increase its biological potency in inhibiting IGF actions. HepG2 cells were subjected to hypoxia and leucine deprivation to mimic the deprivation of metabolic substrates. The total IGFBP-1 levels measured by ELISA were approximately 2- to 2.5-fold higher in hypoxia and leucine deprivation-treated cells compared with the controls. Two-dimensional immunoblotting showed that whereas the nonphosphorylated isoform is the predominant IGFBP-1 in the controls, the highly phosphorylated isoforms were dominant in hypoxia and leucine deprivation-treated cells. Liquid chromatography-tandem mass spectrometry analysis revealed four serine phosphorylation sites: three known sites (pSer 101, pSer 119, and pSer 169); and a novel site (pSer 98). Liquid chromatography-mass spectrometry was used to estimate the changes of phosphorylation upon treatment. Biacore analysis indicated that the highly phosphorylated IGFBP-1 isoforms found in hypoxia and leucine deprivation-treated cells had greater affinity for IGF-I [dissociation constant 5.83E (times 10 to the power)−10 m and 6.40E−09 m] relative to the IGFBP-1 from the controls (dissociation constant ∼1.54E−07 m). Furthermore, the highly phosphorylated IGFBP-1 had a stronger effect in inhibiting IGF-I-stimulated cell proliferation. These findings suggest that IGFBP-1 phosphorylation may be a novel mechanism of fetal adaptive response to hypoxia and nutrient restriction. PMID:18772238

  17. Interaction between acid-labile subunit and insulin-like growth factor binding protein 3 expressed in Xenopus oocytes.

    PubMed

    Choi, Kyung-Yi; Lee, Dong-Hee

    2002-03-31

    The acid-labile subunit (ALS) associates with the insulinlike growth factor (IGF)-I or II, and the IGF binding protein-3 (IGFBP-3) in order to form a 150-kD complex in the circulation. This complex may regulate the serum IGFs by restricting them in the vascular system and promoting their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in a mixture, and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF. When cross-linked by disuccinimidyl suberate, the band that represents the ALSIGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 remained in the vegetal half in the presence of ALS. However, the mutant IGFBP3 freely diffused into the animal half, despite the presence of ALS, which is different from the wild type IGFBP3. This study, therefore, suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS that assemble into the ternary structure and circulate the IGF system. PMID:12297028

  18. Hepatic insulin-like growth-factor binding protein (igfbp) responses tofood restriction in Atlantic salmon smolts

    USGS Publications Warehouse

    Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen

    2016-01-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.

  19. Relationship between low-molecular-weight insulin-like growth factor-binding proteins, caspase-3 activity, and oocyte quality.

    PubMed

    Nicholas, B; Alberio, R; Fouladi-Nashta, A A; Webb, R

    2005-04-01

    Bovine follicular atresia is associated with the apoptosis of granulosa cells and the subsequent loss of oocyte competence through the reduction of cellular contact (e.g., gap junctions). Several components of the insulin-like growth factor (IGF) system are thought to affect follicular atresia. Whereas the IGF-binding proteins (IGFBPs) are present in varying quantities throughout follicular development, IGFBP-5 appears to be present only during atresia, in parallel with its regulation in other tissue remodeling systems. However, to our knowledge, no connection has yet been made between atresia, low-molecular-weight IGFBP content, and oocyte quality in the bovine ovary. Caspases are actively involved in ovarian follicular atresia, and apoptosis in antral follicles is caspase-3-dependent. Hence, the aim of the present study was to investigate the use of these factors in the assessment of oocyte quality and developmental potential. Oocytes were aspirated, morphologically classified, and individually matured in vitro. The follicular fluid and granulosa cells of these follicles were analyzed for IGFBP profile and caspase-3 activity, respectively. A significant correlation was found between the presence of low-molecular-weight IGFBPs in bovine follicular fluid and caspase-3 activity of granulosa cells isolated from individual follicles. The highest percentage of development to the blastocyst stage was observed in oocytes from slightly atretic follicles. This group of oocytes contained an equal proportion of oocytes at grades 1-3. These data demonstrate that low-molecular-weight IGFBP profile is a more reliable method than the traditional morphological assessment of oocytes and can be used as an effective marker of developmentally competent oocytes. Importantly, these results have implications for the use of noninvasive follicular fluid markers in the selection of competent oocytes to improve outcomes of in vitro fertilization. PMID:15564596

  20. Hepatic insulin-like growth-factor binding protein (igfbp) responses to food restriction in Atlantic salmon smolts.

    PubMed

    Breves, Jason P; Phipps-Costin, Silas K; Fujimoto, Chelsea K; Einarsdottir, Ingibjörg E; Regish, Amy M; Björnsson, Björn Thrandur; McCormick, Stephen D

    2016-07-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon (Salmo salar). Fish were fasted for 3 or 10days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3days and condition factor by 10days. Plasma Gh, cortisol, and thyroxine (T4) were not altered in response to fasting, whereas Igf1 and 3,5,3'-triiodo-l-thyronine (T3) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1, -1b2, -2a, -2b1 and -2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10days of fasting. Fasting did not alter hepatic igf1 or igf2; however, muscle igf1 was diminished by 10days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na(+)/K(+)-ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism. PMID:27210270

  1. Insulin-like growth factor binding protein-1 levels are increased in patients with IgA nephropathy

    SciTech Connect

    Tokunaga, Koki; Uto, Hirofumi; Takami, Yoichiro; Mera, Kumiko; Nishida, Chika; Yoshimine, Yozo; Fukumoto, Mayumi; Oku, Manei; Sogabe, Atsushi; Nosaki, Tsuyoshi; Moriuchi, Akihiro; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2010-08-20

    Research highlights: {yields} IGFBP-1 mRNA over express in kidneys obtained from mice model of IgA nephropathy. {yields} Serum IGFBP-1 levels are high in patients with IgA nephropathy. {yields} Serum IGFBP-1 levels correlate with renal function and the severity of renal injury. -- Abstract: The mechanisms underlying the pathogenesis of immunoglobulin A (IgA) nephropathy (IgAN) are not well understood. In this study, we examined gene expression profiles in kidneys obtained from mice with high serum IgA levels (HIGA mice), which exhibit features of human IgAN. Female inbred HIGA, established from the ddY line, were used in these experiments. Serum IgA levels, renal IgA deposition, mesangial proliferation, and glomerulosclerosis were increased in 32-week-old HIGA mice in comparison to ddY animals. By microarray analysis, five genes were observed to be increased by more than 2.5-fold in 32-week-old HIGA in comparison to 16-week-old HIGA; these same five genes were decreased more than 2.5-fold in 32-week-old ddY in comparison to 16-week-old ddY mice. Of these five genes, insulin-like growth factor (IGF) binding protein (IGFBP)-1 exhibited differential expression between these mouse lines, as confirmed by quantitative RT-PCR. In addition, serum IGFBP-1 levels were significantly higher in patients with IgAN than in healthy controls. In patients with IgAN, these levels correlated with measures of renal function, such as estimated glomerular filtration rate (eGFR), but not with sex, age, serum IgA, C3 levels, or IGF-1 levels. Pathologically, serum IGFBP-1 levels were significantly associated with the severity of renal injury, as assessed by mesangial cell proliferation and interstitial fibrosis. These results suggest that increased IGFBP-1 levels are associated with the severity of renal pathology in patients with IgAN.

  2. Molecular cloning and function analysis of insulin-like growth factor-binding protein 1a in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Tian, Yu-Mei; Chen, Jie; Tao, Yang; Jiang, Xia-Yun; Zou, Shu-Ming

    2014-07-01

    Insulin-like growth factor-binding protein 1 (IGFBP-1), a hypoxia-induced protein, is a member of the IGFBP family that regulates vertebrate growth and development. In this study, full-length IGFBP-1a cDNA was cloned from a hypoxia-sensitive Cyprinidae fish species, the blunt snout bream (Megalobrama amblycephala). IGFBP-1a was expressed in various organs of adult blunt snout bream, including strongly in the liver and weakly in the gonads. Under hypoxia, IGFBP-1a mRNA levels increased sharply in the skin, liver, kidney, spleen, intestine and heart tissues of juvenile blunt snout bream, but recovered to normal levels after 24-hour exposure to normal dissolved oxygen. In blunt snout bream embryos, IGFBP-1a mRNA was expressed at very low levels at both four and eight hours post-fertilization, and strongly at later stages. Embryonic growth and development rates decreased significantly in embryos injected with IGFBP-1a mRNA. The average body length of IGFBP-1a-overexpressed embryos was 82.4% of that of the control group, and somite numbers decreased to 85.2%. These findings suggest that hypoxia-induced IGFBP-1a may inhibit growth in this species under hypoxic conditions. PMID:25017749

  3. Amyloid beta-mediated epigenetic alteration of insulin-like growth factor binding protein 3 controls cell survival in Alzheimer's disease.

    PubMed

    Sung, Hye Youn; Choi, Eun Nam; Lyu, Dahyun; Mook-Jung, Inhee; Ahn, Jung-Hyuck

    2014-01-01

    Swedish double mutation (KM670/671NL) of amyloid precursor protein (APP) is reported to increase toxic amyloid β (Aβ) production via aberrant cleavage at the β-secretase site and thereby cause early-onset Alzheimer's disease (AD). However, the underlying molecular mechanisms leading to AD pathogenesis remains largely unknown. Previously, our transcriptome sequence analyses revealed global expressional modifications of over 600 genes in APP-Swedish mutant-expressing H4 (H4-sw) cells compared to wild type H4 cells. Insulin-like growth factor binding protein 3 (IGFBP3) is one gene that showed significantly decreased mRNA expression in H4-sw cells. In this study, we investigated the functional role of IGFBP3 in AD pathogenesis and elucidated the mechanisms regulating its expression. We observed decreased IGFBP3 expression in the H4-sw cell line as well as the hippocampus of AD model transgenic mice. Treatment with exogenous IGFBP3 protein inhibited Aβ1-42- induced cell death and caspase-3 activity, whereas siRNA-mediated suppression of IGFBP3 expression induced cell death and caspase-3 cleavage. In primary hippocampal neurons, administration of IGFBP3 protein blocked apoptotic cell death due to Aβ1-42 toxicity. These data implicate a protective role for IGFBP3 against Aβ1-42-mediated apoptosis. Next, we investigated the regulatory mechanisms of IGFBP3 expression in AD pathogenesis. We observed abnormal IGFBP3 hypermethylation within the promoter CpG island in H4-sw cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored IGFBP3 expression at both the mRNA and protein levels. Chronic exposure to Aβ1-42 induced IGFBP3 hypermethylation at CpGs, particularly at loci -164 and -173, and subsequently suppressed IGFBP3 expression. Therefore, we demonstrate that expression of anti-apoptotic IGFBP3 is regulated by epigenetic DNA methylation, suggesting a mechanism that contributes to AD pathogenesis. PMID:24964199

  4. Association of the insulin-like growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians.

    PubMed

    He, Yong-Han; Lu, Xiang; Yang, Li-Qin; Xu, Liang-You; Kong, Qing-Peng

    2014-11-01

    Human lifespan is determined greatly by genetic factors and some investigations have identified putative genes implicated in human longevity. Although some genetic loci have been associated with longevity, most of them are difficult to replicate due to ethnic differences. In this study, we analyzed the association of 18 reported gene single nucleotide polymorphisms (SNPs) with longevity in 1075 samples consisting of 567 nonagenarians/centenarians and 508 younger controls using the GenomeLab SNPstream Genotyping System. Our results confirm the association of the forkhead box O3 (FOXO3) variant (rs13217795) and the ATM serine/threonine kinase (ATM) variant (rs189037) genotypes with longevity (p=0.0075 and p=0.026, using the codominant model and recessive model, respectively). Of note is that we first revealed the association of insulin-like growth factor binding protein 3 (IGFBP-3) gene polymorphism rs11977526 with longevity in Chinese nonagenarians/centenarians (p=0.033 using the dominant model and p=0.035 using the overdominant model). The FOXO3 and IGFBP-3 form important parts of the insulin/insulin-like growth factor-1 signaling pathway (IGF-1) implicated in human longevity, and the ATM gene is involved in sensing DNA damage and reducing oxidative stress, therefore our results highlight the important roles of insulin pathway and oxidative stress in the longevity in the Chinese population. PMID:25553725

  5. Insulin-like growth factor binding protein-1 inhibits cancer cell invasion and is associated with poor prognosis in hepatocellular carcinoma

    PubMed Central

    Dai, Bin; Ruan, Bai; Wu, Juan; Wang, Jianlin; Shang, Runze; Sun, Wei; Li, Xia; Dou, Kefeng; Wang, Desheng; Li, Yu

    2014-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1) plays an important role in the development and progression of cancer. However, the expression of IGFBP-1 remains equivocal, and little is known about its clinicopathological significance and prognostic value in hepatocellular carcinoma (HCC). In this study, we evaluated the expression of IGFBP-1 in 90 paired HCC tissues and adjacent non-cancerous liver tissues and analyzed its clinical and prognostic significance. The results showed that IGFBP-1 was detected in cytoplasm as well as cell nucleus, and down-regulated in HCC tissues compared to the adjacent non-cancerous liver tissues. The decreased expression of IGFBP-1 was correlated with tumor differentiation, liver cirrhosis, microvascular invasion or metastasis, TNM stage and poor survival. Moreover, low levels of IGFBP-1 may be an independent prognostic indicator for the survival of patients with HCC. We also evaluated its function by adding recombinant IGFBP-1 to the cultured HCC cell lines HepG2 and MHCC97-H. The result of the invasion chamber assay showed that IGFBP-1 could inhibit the invasion of HepG2 and MHCC97-H. MMP-9 secretion by these cells was significantly decreased when the cells were treated with IGFBP-1. Our results suggest that IGFBP-1 inhibits the invasion and metastasis of HCC cells and that IGFBP-1 may be useful as a valuable marker for the prognosis of patients with HCC. PMID:25337205

  6. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival. PMID:26943480

  7. Phosphorylation of insulin-like growth factor binding protein-1 in patients with insulin-dependent diabetes mellitus and severe trauma.

    PubMed

    Frost, R A; Bereket, A; Wilson, T A; Wojnar, M M; Lang, C H; Gelato, M C

    1994-06-01

    We have determined the level of phosphorylated insulin-like growth factor binding protein-1 (pIGFBP-1) in serum during two catabolic states: diabetes mellitus and trauma. Human sera were incubated with [125I]IGF-I for 2 h followed by non-denaturing PAGE. [125I]IGF-I/IGFBP-1 complexes from serum co-migrated with a pure p4IGFBP-1 standard. Complex formation was specifically inhibited by unlabeled IGF-I. The migration of IGF-I/pIGFBP-1 complexes was retarded by IGFBP-1 antibodies, but not by antibodies against IGFBP-2 or IGFBP-3. Sera from three severely traumatized patients had up to 12-fold more pIGFBP-1 than sera from age-matched controls. The level of pIGFBP-1 was reduced in all three patients upon hospital discharge. Sera from three patients with insulin dependent diabetes mellitus (IDDM) and severe ketoacidosis (DKA) had more pIGFBP-1 than controls. Administration of insulin to DKA patients lowered the level of pIGFBP-1. The present study shows that IGFBP-1 exists as a free, high affinity, phosphorylated form in vivo during two catabolic states. PMID:7515391

  8. Insulin-Like Growth Factor Binding Protein-2 Promotes Adhesion of Endothelial Progenitor Cells to Endothelial Cells via Integrin α5β1.

    PubMed

    Feng, Nianping; Zhang, Zhuo; Wang, Zhengfei; Zheng, Haihong; Qu, Fujun; He, Xijun; Wang, Chunlai

    2015-11-01

    The contribution of endothelial progenitor cells (EPCs) to new vessel formation has been studied in different physiological and pathological conditions for decades. As previously suggested, insulin-like growth factor binding protein-2 (IGFBP-2) may interact with integrins and promote cell migration. However, the role of IGFBP-2 in regulation of EPC functions remains largely unknown. In this present study, we found that overexpression of IGFBP-2 in human umbilical vein endothelial cells (HUVECs) promoted EPC-endothelial adhesion. Conversely, siRNA-mediated depletion of IGFBP-2 inhibited oxygen-glucose deprivation (OGD)-induced EPC-endothelial adhesion. Further, we demonstrated that the arginine-glycine-aspartic acid (RGD) motif in its C-domain is required for interaction with integrin α5β1. In addition, treatment with IGFBP-2 significantly enhanced incorporation of EPCs into tubule networks formed by HUVECs. Thus, our findings suggest that exogenous administration of IGFBP-2 may facilitate neovascularization and improve treatment of ischemic conditions. PMID:26076738

  9. NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation.

    PubMed

    Muhlbradt, Erin; Asatiani, Ekaterina; Ortner, Elizabeth; Wang, Antai; Gelmann, Edward P

    2009-03-15

    NKX3.1 is a homeobox gene that codes for a haploinsufficient prostate cancer tumor suppressor. NKX3.1 protein levels are down-regulated in the majority of primary prostate cancer tissues. NKX3.1 expression in PC-3 cells increased insulin-like growth factor binding protein-3 (IGFBP-3) mRNA expression 10-fold as determined by expression microarray analysis. In both stably and transiently transfected PC-3 cells and in LNCaP cells, NKX3.1 expression increased IGFBP-3 mRNA and protein expression. In prostates of Nkx3.1 gene-targeted mice Igfbp-3 mRNA levels correlated with Nkx3.1 copy number. NKX3.1 expression in PC-3 cells attenuated the ability of insulin-like growth factor-I (IGF-I) to induce phosphorylation of type I IGF receptor (IGF-IR), insulin receptor substrate 1, phosphatidylinositol 3-kinase, and AKT. The effect of NKX3.1 on IGF-I signaling was not seen when cells were exposed to long-R3-IGF-I, an IGF-I variant peptide that does not bind to IGFBP-3. Additionally, small interfering RNA-induced knockdown of IGFBP-3 expression partially reversed the attenuation of IGF-IR signaling by NKX3.1 and abrogated NKX3.1 suppression of PC-3 cell proliferation. Thus, there is a close relationship in vitro and in vivo between NKX3.1 and IGFBP-3. The growth-suppressive effects of NKX3.1 in prostate cells are mediated, in part, by activation of IGFBP-3 expression. PMID:19258508

  10. Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line.

    PubMed

    Woodward, T L; Turner, J D; Hung, H T; Zhao, X

    1996-06-01

    Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10-100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1-3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1-3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. PMID:8655603

  11. Histone Deacetylase Inhibitors Enhance the Apoptotic Activity of Insulin-Like Growth Factor Binding Protein-3 by Blocking PKC-Induced IGFBP-3 Degradation

    PubMed Central

    Oh, Seung Hyun; Whang, Young Mi; Min, Hye-Young; Han, Seung Ho; Kang, Ju-Hee; Song, Ki-Hoon; Glisson, Bonnie S.; Kim, Yeul Hong; Lee, Ho-Young

    2012-01-01

    Overexpression of insulin-like growth factor binding protein (IGFBP)-3 induces apoptosis of cancer cells. However, preexisting resistance to IGFBP-3 could limit its antitumor activities. This study characterizes the efficacy and mechanism of the combination of recombinant IGFBP-3 (rIGFBP-3) and HDAC inhibitors to overcome IGFBP-3 resistance in a subset of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cells. The effects of the combination of rIGFBP-3 and a number of HDAC inhibitors on cell proliferation and apoptosis were assessed in vitro and in vivo by using the MTT assay, a flow cytometry-based TUNEL assay, western blot analyses, and the NSCLC xenograft tumor model. Combined treatment with HDAC inhibitors and rIGFBP-3 had synergistic antiproliferative effects accompanied by increased apoptosis rates in a subset of NSCLC and HNSCC cell lines in vitro. Moreover, combined treatment with depsipeptide and rIGFBP-3 completely suppressed tumor growth and increased the apoptosis rate in vivo in H1299 NSCLC xenografts. Evidence suggests that HDAC inhibitors increased the half-life of rIGFBP-3 protein by blocking protein kinase C (PKC)-mediated phosphorylation and degradation of rIGFBP-3. In addition, combined treatment of IGFBP-3 with an HDAC inhibitor facilitates apoptosis through up-regulation of rIGFBP-3 stability and Akt signaling inhibition. The ability of HDAC inhibitors to decrease PKC activation may enhance apoptotic activities of rIGFBP-3 in NSCLC cells in vitro and in vivo. These results indicated that combined treatment with HDAC inhibitor and rIGFBP-3 could be an effective treatment strategy for NSCLC and HNSCC with highly activated PKC. PMID:22362554

  12. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression. PMID:26245897

  13. Cloning and expression of full-length human insulin-like growth factor binding protein 3 (IGFBP3) in the Escherichia coli

    PubMed Central

    Khodadadi, Emad; Panjepour, Mojtaba; Abbasian, Mahdi; Broujeni, Zahra Khalili; Mofid, Mohammad Reza

    2015-01-01

    Background: The effect of the growth hormone on target cells is mediated by the insulin-like growth factor 1 (IGF-1). IGF-1 binds to the insulin-like growth factor binding proteins (IGFBPs) in blood and biological fluids. Considering the important application of IGBP3 as a drug component, in this research we cloned and expressed the full-length IGFBP3 in the pET-11a vector and BL21 (DE3) expression host. Materials and Methods: First the sequence encoding of IGFBP3 was designed based on the amino acid sequence of the protein and then by codon optimization, in order to ensure the maximum expression in Escherichia coli. In the next step, the synthetic DNA encoding IGFBP3 was inserted into the pUC57 vector, at the appropriate restriction sites and then subcloned in the pET-11a expression vector in the same restriction sites. The constructed vector was transformed to E. coli BL21 as an expression host and induced in the presence of IPTG for expression of the IGFBP3 protein. Protein expression was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Results: Double digestion of the new plasmid (pET-11a -IGBP3) with NdeI and BamHI showed two bands in 873 bp and 5700 bp. To study the accurate cloning procedure, the plasmid was sequenced and its authenticity was confirmed. Also the expected protein band (31.6 kDa) was observed in SDS-PAGE analysis. Conclusion: DNA fragment encoding the full-length IGFBP3 protein was accurately cloned in the pET-11a expression vector and the recombinant plasmid transformed to E. coli BL21 (DE3) expression host. Results of the SDS-PAGE analysis verified that recombinant IGFBP3 (31.6 kDa) are successfully expressed under the control of T7 promoter. As we shown pET-11a can be successfully used for expression of the IGFBP3 protein. PMID:25878991

  14. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  15. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    SciTech Connect

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of {sup 125}I-IGF-I was specific for IGF-I with anIC{sub 50} of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, {sup 125}I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy.

  16. Comparative expression profiling of insulin-like growth factor binding protein-5 in milk of Bos indicus and Bubalus bubalis during lactation.

    PubMed

    Mohapatra, S K; Singh, S; Kumar, S; Dang, A K; Datta, T K; Das, S K; Mohanty, T K; Kaushik, J K; Mohanty, A K

    2015-04-01

    Insulin-like growth factor binding protein-5 (IGFBP-5) is a key molecule in mammary gland development, which facilitates the removal of mammary epithelial cells (MECs) by apoptosis that takes place during remodeling of the mammary gland during involution. IGFBP-5 binds with IGFs for their bioavailability. IGFBP-5 has been reported to perform pleiotropic roles such as cellular apoptosis, proliferation and differentiation. To understand the role of IGFBP-5 during lactation and clinical mastitis, expression profiling of IGFBP-5 at the protein level was performed in both indigenous cows (Bos indicus) and buffaloes (Bubalus bubalis) belonging to two different breeds - Sahiwal cows and Murrah buffaloes. Reverse-transcriptase PCR (RT-PCR) of IGFBP-5 mRNA confirmed its expression in milk somatic cells and MECs of Sahiwal cows. ELISA was performed for quantitative measurement of IGFBP-5 concentrations in milk during different days (0, 50, 100, 150, 200, 250 and 300) of lactation, during the involution period and in animals exhibiting short lactation and clinical mastitis. The highest concentration of IGFBP-5 in milk was observed during the involution period followed by colostrum, late and early lactation, respectively, in both cattle and buffaloes. No significant difference in the concentration of IGFBP-5 was observed during the first 150 days of lactation between cows and buffaloes. However, higher concentration of IGFBP-5 was observed in cows during late lactation (200 to 300 days) in comparison with buffaloes. To validate the ELISA data, quantitative real-time PCR was performed in MECs of Sahiwal cows. The relative mRNA abundance of IGFBP-5 was found to be significantly (P<0.05) higher on day 15 than between 50 and 150 days of lactation in case of Sahiwal cows. Highest mRNA expression of IGFBP-5 was observed around 300 days of lactation followed by 200 and 250 days (P<0.05), respectively. Murrah buffaloes showed low levels of IGFBP-5 protein in milk as compared with

  17. Genetic variants in insulin-like growth factor binding protein-3 are associated with prostate cancer susceptibility in Eastern Chinese Han men

    PubMed Central

    Zhang, Guiming; Zhu, Yao; Liu, Fang; Gu, Chengyuan; Chen, Haitao; Xu, Jianfeng; Ye, Dingwei

    2016-01-01

    Background Growing evidence has indicated that insulin-like growth factor binding protein-3 (IGFBP-3) polymorphisms are associated with altered risk of prostate cancer (PCa). However, few studies have been conducted in Chinese population to validate this association. Materials and methods Herein, we examined the association between genetic variants in the IGFBP-3 gene and PCa risk in the Chinese Han population based on a genome-wide association study (1,417 cases and 1,008 controls), and replicated three genetic variants loci in an independent case-control study (1,755 cases and 1,523 controls) using Sequenom platform. Logistic regression analyses were performed to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Results We found that in the discovery stage, rs9691259 (OR =0.691, 95% CI: 0.587–0.814, P<0.001) and rs6950179 (OR =1.420, 95% CI: 1.201–1.677, P<0.001) were significantly associated with PCa risk, whereas rs2854744 showed a marginal association with PCa risk. In the replication stage, the association between rs9691259 and rs6950179 and PCa risk was not replicated, whereas rs2854744 conferred a significant association with PCa risk (OR =1.399, 95% CI: 1.010–1.937, P=0.043). After combining the two stages, we found that rs9691259, rs6950179, and rs2854744 were all significantly associated with PCa risk. Conclusion This study suggests that IGFBP-3 genetic variants are significantly associated with PCa risk in the Chinese population. PMID:26730204

  18. Functional and Complementary Phosphorylation State Attributes of Human Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) Isoforms Resolved by Free Flow Electrophoresis

    PubMed Central

    Nissum, Mikkel; Shehab, Majida Abu; Sukop, Ute; Khosravi, Javad M.; Wildgruber, Robert; Eckerskorn, Christoph; Han, Victor K. M.; Gupta, Madhulika B.

    2009-01-01

    Fetal growth restriction (FGR) is a common disorder in which a fetus is unable to achieve its genetically determined potential size. High concentrations of insulin-like growth factor-binding protein-1 (IGFBP-1) have been associated with FGR. Phosphorylation of IGFBP-1 is a mechanism by which insulin-like growth factor-I (IGF-I) bioavailability can be modulated in FGR. In this study a novel strategy was designed to determine a link between IGF-I affinity and the concomitant phosphorylation state characteristics of IGFBP-1 phosphoisoforms. Using free flow electrophoresis (FFE), multiple IGFBP-1 phosphoisoforms in amniotic fluid were resolved within pH 4.43–5.09. The binding of IGFBP-1 for IGF-I in each FFE fraction was determined with BIAcore biosensor analysis. The IGF-I affinity (K) for different IGFBP-1 isoforms ranged between 1.12e−08 and 4.59e−07. LC-MS/MS characterization revealed four phosphorylation sites, Ser(P)98, Ser(P)101, Ser(P)119, and Ser(P)169, of which Ser(P)98 was new. Although the IGF-I binding affinity for IGFBP-1 phosphoisoforms across the FFE fractions did not correlate with phosphopeptide intensities for Ser(P)101, Ser(P)98, and Ser(P)169 sites, a clear association was recorded with Ser(P)119. Our data demonstrate that phosphorylation at Ser119 plays a significant role in modulating affinity of IGFBP-1 for IGF-I. In addition, an altered profile of IGFBP-1 phosphoisoforms was revealed between FGR and healthy pregnancies that may result from potential site-specific phosphorylation. This study provides a strong basis for use of this novel approach in establishing the linkage between phosphorylation of IGFBP-1 and FGR. This overall strategy will also be broadly applicable to other phosphoproteins with clinical and functional significance. PMID:19193607

  19. Regulation of protumorigenic pathways by Insulin like growth factor binding protein2 and its association along with β-catenin in breast cancer lymph node metastasis

    PubMed Central

    2013-01-01

    Background Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of β-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for β-catenin and IGFBP2 expression. Results Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of β- catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of β-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and β-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion This study highlights regulation of β-catenin by IGFBP2 in breast cancer cells and

  20. The joint effects of arsenic and risk diplotypes of insulin-like growth factor binding protein-3 in renal cell carcinoma.

    PubMed

    Huang, Chao-Yuan; Huang, Ya-Li; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Chen, Wei-Jen; Chen, Shih-Shan; Lin, Ying-Chin; Su, Chien-Tien; Hsueh, Yu-Mei

    2016-07-01

    The association between renal cell carcinoma (RCC) and diabetes mellitus (DM), alcohol consumption, insulin-like growth factor binding protein-3 (IGFBP-3) gene, and arsenic exposure, has been the subject of independent studies. However, few studies have examined the combined effect of these factors on RCC risk. The aim of this study was to examine the association between these risk factors and the odds ratio (OR) of RCC. A hospital-based case-control study was conducted in 398 RCC patients and 756 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of IRS-1 (Gly972Arg), PI3-K (Met362Ile), IGFBP-3 (A[-202]C), and IGFBP-3 (C[-1590]A) by PCR-RFLP. Profiles of urinary arsenic were measured by high performance liquid chromatography linked with hydride generator and atomic absorption spectrometry. Participants who had never consumed alcohol and who had high total levels of urinary arsenic and DM had a high OR of RCC. IGFBP-3 (A[-202]C) and IGFBP-3 (C[-1590]A) were in linkage disequilibrium. Participants carrying high-risk IGFBP-3 diplotypes A-C/C-C, A-A/A-C, and C-A/C-A had a significantly higher odds ratio (OR) and 95% confidence interval (2.80, 1.91-4.12) of RCC compared to those carrying other IGFBP-3 diplotypes. This is the first study to show that borderline significant interaction of high total levels of urinary arsenic and IGFBP-3 high-risk diplotypes significantly enhanced the OR of RCC. Our data also provide evidence that subjects with more risk factors (e.g., high total levels of urinary arsenic, never consumed alcohol, IGFBP-3 high-risk diplotypes) may experience a higher OR of RCC. PMID:27038904

  1. Serum Levels of Vascular Endothelial Growth Factor and Insulin-like Growth Factor Binding Protein-3 in Obstructive Sleep Apnea Patients: Effect of Continuous Positive Airway Pressure Treatment

    PubMed Central

    Archontogeorgis, Kostas; Nena, Evangelia; Papanas, Nikolaos; Xanthoudaki, Maria; Hatzizisi, Olga; Kyriazis, Georgios; Tsara, Venetia; Maltezos, Efstratios; Froudarakis, Marios; Steiropoulos, Paschalis

    2015-01-01

    Background and Aim: Hypoxia, a major feature of obstructive sleep apnea (OSA), modifies Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) levels, which contribute to atherogenesis and occurrence of cardiovascular (CV) events. We assessed and compared serum levels of VEGF and IGFBP-3 in newly diagnosed OSA patients and controls, to explore associations with anthropometric and sleep parameters and to study the effect of continuous positive airway pressure (CPAP) treatment on these levels. Materials and Methods: Serum levels of VEGF and IGFBP-3 were measured in 65 OSA patients and 31 age- and body mass index- matched controls. In OSA patients, measurements were repeated after 6 months of CPAP therapy. All participants were non-smokers, without any comorbidities or systemic medication use. Results: At baseline, serum VEGF levels in OSA patients were higher compared with controls (p<0.001), while IGFBP-3 levels were lower (1.41±0.56 vs. 1.61±0.38 μg/ml, p=0.039). VEGF levels correlated with apnea-hypopnea index (r=0.336, p=0.001) and oxygen desaturation index (r=0.282, p=0.007). After 6 months on CPAP treatment, VEGF levels decreased in OSA patients (p<0.001), while IGFBP-3 levels increased (p<0.001). Conclusion: In newly diagnosed OSA patients, serum levels of VEGF are elevated, while IGFBP-3 levels are low. After 6 months of CPAP treatment these levels change. These results may reflect an increased CV risk in untreated OSA patients, which is ameliorated after CPAP therapy. PMID:27006717

  2. Insulin-like growth factor binding protein-5 (IGFBP-5) interacts with thrombospondin-1 to induce negative regulatory effects on IGF-I actions.

    PubMed

    Moralez, Anna M; Maile, Laura A; Clarke, Jane; Busby, Walker H; Clemmons, David R

    2005-05-01

    Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I. To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal

  3. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells.

    PubMed

    Dong, Feng; Wu, Hai-Bin; Hong, Jiang; Rechler, Matthew M

    2002-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane. PMID:11807812

  4. Urinary Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) • Insulin-Like Growth Factor-Binding Protein 7 (IGFBP7) Predicts Adverse Outcome in Pediatric Acute Kidney Injury

    PubMed Central

    Westhoff, Jens H.; Tönshoff, Burkhard; Waldherr, Sina; Pöschl, Johannes; Teufel, Ulrike; Westhoff, Timm H.; Fichtner, Alexander

    2015-01-01

    Background The G1 cell cycle inhibitors tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) have been identified as promising biomarkers for the prediction of adverse outcomes including renal replacement therapy (RRT) and mortality in critically ill adult patients who develop acute kidney injury (AKI). However, the prognostic value of urinary TIMP-2 and IGFBP7 in neonatal and pediatric AKI for adverse outcome has not been investigated yet. Methods The product of the urinary concentration of TIMP-2 and IGFBP7 ([TIMP-2]•[IGFBP7]) was assessed by a commercially available immunoassay (NephroCheck™) in a prospective cohort study in 133 subjects aged 0–18 years including 46 patients with established AKI according to pRIFLE criteria, 27 patients without AKI (non-AKI group I) and 60 apparently healthy neonates and children (non-AKI group II). AKI etiologies were: dehydration/hypovolemia (n = 7), hemodynamic instability (n = 7), perinatal asphyxia (n = 9), septic shock (n = 7), typical hemolytic-uremic syndrome (HUS; n = 5), interstitial nephritis (n = 5), vasculitis (n = 4), nephrotoxic injury (n = 1) and renal vein thrombosis (n = 1). Results When AKI patients were classified into pRIFLE criteria, 6/46 (13%) patients fulfilled the criteria for the category “Risk”, 13/46 (28%) for “Injury”, 26/46 (57%) for “Failure” and 1/46 (2%) for “Loss”. Patients in the “Failure” stage had a median 3.7-fold higher urinary [TIMP-2]•[IGFBP7] compared to non-AKI subjects (P<0.001). When analyzed for AKI etiology, highest [TIMP-2]•[IGFBP7] values were found in patients with septic shock (P<0.001 vs. non-AKI I+II). Receiver operating characteristic (ROC) curve analyses in the AKI group revealed good performance of [TIMP-2]•[IGFBP7] in predicting 30-day (area under the curve (AUC) 0.79; 95% CI, 0.61–0.97) and 3-month mortality (AUC 0.84; 95% CI, 0.67–0.99) and moderate performance in predicting RRT

  5. Construction of hormonally responsive intact cell hybrids by cell fusion: transfer of. beta. -adrenergic receptor and nucleotide regulatory protein(s) in normal and desensitized cells

    SciTech Connect

    Schulster, D.; Salmon, D.M.

    1985-01-01

    Fusion of normal, untreated human erythrocytes with desensitized turkey erythrocytes increases isoproterenol stimulation of cyclic (/sup 3/H)AMP accumulation over basal rates. Moreover, pretreatment of the human erythrocytes with cholera toxin before they are fused with desensitized turkey erthythrocytes leads to a large stimulation with isoproterenol. This is even greater and far more rapid than the response obtained if turkey erythrocytes are treated directly with cholera toxin. It is concluded that the stimulation in the fused system is due to the transfer of an ADP-ribosylated subunit of nucleotide regulatory protein.

  6. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages.

    PubMed Central

    Paul, A; Pendreigh, R H; Plevin, R

    1995-01-01

    1. In RAW 264.7 macrophages, lipopolysaccharide (LPS) and gamma-interferon (IFN gamma) alone or in combination stimulated the induction of nitric oxide synthase (iNOS) activity and increased the expression of the 130 kDa isoform of NOS. 2. LPS-induced NOS activity was reduced by incubation with CD14 neutralising antibodies and abolished in macrophages deprived of serum. 3. LPS stimulated a small increase in protein kinase C (PKC) activity in RAW 264.7 macrophages which was dependent on the presence of serum. However, IFN gamma did not potentiate LPS-stimulated PKC activity. 4. The protein kinase C inhibitor, Ro-318220, abolished both LPS- and IFN gamma-stimulated protein kinase C activity and the induction of NOS activity. 5. LPS- and IFN gamma-induced NOS activity was reduced by the tyrosine kinase inhibitor genestein. Genestein also reduced LPS-stimulated protein kinase C activity but did not affect the response to the protein kinase C activator, tetradecanoylphorbol acetate (TPA). 6. Nicotinamide, an inhibitor of poly-ADP ribosylation, abolished LPS- and IFN gamma-induced NOS activity. 7. Brefeldin A, an inhibitor of a factor which stimulates nucleotide exchange activity on the 21 kDa ADP-ribosylation factor, ARF, reduced LPS- and IFN gamma-induced NOS activity by approximately 80%. 8. These results suggest the involvement of protein kinase C, tyrosine kinase and poly-ADP ribosylation pathways in the regulation of the induction of nitric oxide synthase in RAW 264.7 macrophages by LPS and IFN gamma. Images Figure 2 PMID:7533621

  7. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    SciTech Connect

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparum ARFGAP.

  8. Mecasermin rinfabate: insulin-like growth factor-I/insulin-like growth factor binding protein-3, mecaserimin rinfibate, rhIGF-I/rhIGFBP-3.

    PubMed

    2005-01-01

    Insmed is developing mecasermin rinfabate, a recombinant complex of insulin-like growth factor-I (rhIGF-I) and binding protein-3 (rhIGFBP-3) [insulin-like growth factor-I/insulin-like growth factor binding protein-3, rhIGF-I/rhIGFBP-3, SomatoKine], for a number of metabolic and endocrine indications. In the human body, IGF-I circulates in the blood bound to a binding protein-3 (IGFBP-3), which regulates the delivery of IGF-I to target tissues, and particular proteases clip them apart in response to stresses and release IGF-I as needed. IGF-I, a naturally occurring hormone, is necessary for normal growth and metabolism. For the treatment of IGF-I deficiency, it is desirable to administer IGF-I bound to IGFBP-3 to maintain the normal equilibrium of these proteins in the blood. Mecasermin rinfabate (rhIGF-I/rhIGFBP-3) mimics the effects of the natural protein complex in the bloodstream and would augment the natural supply of these linked compounds. The most advanced indication in development of mecasermin rinfabate is the treatment of severe growth disorders due to growth hormone insensitivity syndrome (GHIS), also called Laron syndrome. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Mecasermin rinfabate also has potential as replacement therapy for IGF-I, which may become depleted in indications such as major surgery, organ damage/failure, traumatic injury, cachexia and severe burn trauma. It also has potential for the treatment of osteoporosis. Mecasermin rinfabate was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on 1 June 2000. Insmed and Avecia of the UK have signed an agreement for manufacturing mecasermin rinfabate and its components, rhIGF-1 and rhIGFBP-3. CGMP clinical production of mecasermin rinfabate

  9. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    PubMed Central

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  10. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  11. Cholecystokinin activates Gi1-, Gi2-, Gi3- and several Gs-proteins in rat pancreatic acinar cells.

    PubMed Central

    Schnefel, S; Pröfrock, A; Hinsch, K D; Schulz, I

    1990-01-01

    On separation of rat pancreatic plasma membrane proteins by two-dimensional gel electrophoresis, 15 GTP-binding protein (G-protein) alpha-subunits could be detected immunochemically using an alpha common antibody. These consisted of five 48 kDa proteins (pI 5.70, 5.80, 5.90, 6.10 and 6.25) and five 45 kDa proteins (pI 5.90, 6.05, 6.25, 6.30 and 6.70), presumably corresponding to low- and high-molecular mass forms of the Gs-protein, as well as three 40/41 kDa proteins (pI 5.50, 5.70 and 6.00) and two 39 kDa proteins (pI 5.50 and 6.00). All of these proteins except for the more acidic 39 kDa protein were ADP-ribosylated by cholera toxin (CT). In addition, the three 40/41 kDa proteins and the more alkaline 39 kDa protein were also ADP-ribosylated by pertussis toxin (PT). CT- and PT-induced ADP-ribosylation changed the pI values of G-protein alpha-subunits by 0.2 pI units to more acidic values. Preincubation of isolated pancreatic membranes with cholecystokinin octapeptide (CCK-OP), which stimulates phospholipase C in acinar cells, decreased CT-induced as well as PT-induced ADP-ribosylation of the three 40/41 kDa proteins, whereas CT-induced ADP-ribosylation of one 45 kDa (pI 5.80) and all 48 kDa proteins was enhanced in the presence of CCK. Carbachol, another stimulant of phospholipase C, had no effect. The three 40/41 kDa proteins and one 48 kDa protein could be labelled with the GTP analogue [alpha-32P]GTP-gamma-azidoanilide. CCK, but not carbachol, stimulated incorporation of the GTP analogue into all of these four proteins. Using different anti-peptide antisera specific for alpha-subunits of G-proteins we identified the three 40/41 kDa Gi-proteins as Gi1 (pI 6.00), Gi2 (pI 5.50) and Gi3 (pI 5.70). The Gi3-protein was found to be the major Gi-protein of pancreatic plasma membranes. One of the 39 kDa proteins (pI 6.0) was identified as Go. These results indicate that CCK receptors functionally interact with six Gs-proteins and with Gi1, Gi2 and Gi3-proteins. Since

  12. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance. PMID:11953652

  13. Insulinlike Growth Factor I Plus Insulinlike Growth Factor Binding Protein 3 Attenuates the Proinflammatory Acute Phase Response in Severely Burned Children

    PubMed Central

    Jeschke, Marc G.; Barrow, Robert E.; Herndon, David N.

    2000-01-01

    Objective To determine the effect of insulinlike growth factor I (IGF-I) in combination with its principal binding protein (IGFBP-3) on the hepatic acute phase response in severely burned children. Summary Background Data The hepatic acute phase response is a cascade of events initiated to restore homeostasis after trauma. A prolonged response, however, may contribute to multiple organ failure, hypermetabolism, complications, and death. Methods Twenty-two children with a mean total body surface area (TBSA) burn of 57 ± 3% were given a continuous infusion of 1 to 4 mg/kg/day IGF-I/BP-3 for 5 days after wound excision and grafting. Eight children with a TBSA burn of 54 ± 4% were given saline as controls. Before and 5 days after excision and grafting, blood samples were taken for serum hepatic constitutive protein, acute phase protein, and proinflammatory cytokine analysis. Results Serum IGF-I levels in burned children given the IGF-I/BP-3 complex increased from 113 ± 15 to 458 ± 40 ng/mL and IGFBP-3 levels increased from 1.8 ± 0.2 to 3.1 ± 0.3 ng/mL. Levels of serum constitutive hepatic proteins (prealbumin, retinol-binding protein, and transferrin) increased with IGF-I/BP-3, whereas levels of type I acute phase proteins (C-reactive protein, α1-acid glycoprotein, and complement C-3) decreased when compared with controls. The complex had no effect on type II acute phase proteins. Tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) levels decreased with IGF-I/BP-3 compared with controls, with no effect on interleukin-6. Conclusion Severely burned children receiving IGF-I/BP-3 showed a decrease in IL-1β and TNF-α followed by a decrease in type I acute phase proteins that was associated with a concomitant increase in constitutive hepatic proteins. Attenuating the proinflammatory acute phase with IGF-1/BP-3 response may prevent multiple organ failure and improve clinical outcomes after thermal injury without any detectable adverse side effects. PMID

  14. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells.

    PubMed Central

    Shafren, D R; Williams, D T; Barry, R D

    1997-01-01

    The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein. PMID:9371658

  15. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  16. Identification and subcellular distribution of the Gi-proteins in the enterocytic-differentiated adenocarcinoma cell-line, Caco-2.

    PubMed

    Lacombe, C; Viallard, V; Schaak, S; Paris, H

    1996-01-01

    As evidenced by pertussis toxin-catalysed [32P]ADP-ribosylation, immunoblotting and Northern blot, the human adenocarcinoma intestinal cell line Caco-2 expresses Gi2 and Gi3 proteins. The localization of these two Gis within the cell was investigated by using subcellular fractionation and confocal microscopy on intact cell layer. A brush-border rich fraction and a pellet containing the remaining cellular membranes were prepared. [32P]ADP-ribosylation and immunoblotting demonstrated the presence of both alpha i2 and alpha i3 in these two preparations. Immunofluorescence studies performed on intact cells grown on Transwell filters and viewed by confocal microscopy further confirmed the localization of alpha i3-subunit on basolateral as well as on apical membranes. In contrast, alpha i2-subunit was shown to accumulate mainly in the intra-cellular compartment while only faint staining of the plasma membrane was detectable. Based upon double-labelling experiments with antibody against rough endoplasmic reticulum (RER), there is a strong possibility that intra-cellular sites of alpha i2-subunit correspond to association with RER membranes. PMID:9237368

  17. G/sub o/ protein of fat cells: role in hormonal regulation of agonist-stimulated phosphatidyl inositol breakdown

    SciTech Connect

    Rapiejko, P.J.; Northup, J.K.; Malbon, C.C.

    1986-05-01

    Incubating rat fat cell membranes in the presence of (/sup 32/P)NAD/sup +/ and pertussis toxin (PT) results in the ADP-ribosylation of two peptides (M/sub r/ = 41,000 and 40,000). The 41,000-M/sub r/ peptide is the inhibitory G-protein of adenylate cyclase (G/sub i/). The 40,000-M/sub r/ peptide radiolabeled in the presence of (/sup 32/P)NAD/sup +/ and PT has been purified from rabbit heart and bovine brain, but has not been identified uniformly in membranes of fat cells. Two rabbit polyclonal antisera raised against the alpha-subunit of bovine brain G/sub o/ were used to probe the nature of the 40,000-M/sub r/ peptide in rat fat cell membranes that had been separated by gel electrophoresis in the presence of sodium dodecyl sulfate and transferred electrophoretically to nitrocellulose. Both antisera specific for the alpha-subunit of G/sub o/ recognized the M/sub r/ = 40,000 peptide of fat cells that is ADP-ribosylated in the presence of PT. PT treatment of rat fat cells blocks epinephrine-stimulated inositol 1,4,5 trisphosphate (IP/sub 3/) generation. The inhibition of IP/sub 3/ generation by PT suggests a role for either G/sub i/ or G/sub o/ in receptor-mediated phosphatidyl inositol breakdown in the rat fat cell.

  18. The roles of selenium, insulin-like growth factor binding protein 2 and suppressor of cytokine signaling 3 in the pathogenesis of Kashin-Beck disease.

    PubMed

    Wang, Sen; Duan, Chen; Liu, Huan; Shao, Wanzhen; Wu, Cuiyan; Han, Jing; Guo, Xiong

    2016-07-01

    We aimed to verify the levels of IGFBP2 and SOCS3 in cartilage and chondrocytes of Kashin-Beck disease (KBD) patients and the effects of different selenium concentrations on the protein expression levels. Chondrocytes were cultured with sodium selenite in vitro. Immunohistochemistry and western blotting were used to verify the protein expressions. IGFBP2 and SOCS3 were up-regulated in KBD chondrocytes and decreased with increasing selenium concentrations. IGFBP2 expressed highest in the middle zone of KBD cartilage, SOCS3 expressed higher in the middle and deep zone. IGFBP2 and SOCS3 may be the biomarkers for KBD diagnosis and evaluating the effect of selenium supplement. PMID:27099071

  19. Enhancing the Apoptotic Potential of Insulin-Like Growth Factor-Binding Protein-3 in Prostate Cancer by Modulation of CK2 Phosphorylation

    PubMed Central

    Cobb, Laura J.; Mehta, Hemal; Cohen, Pinchas

    2009-01-01

    IGF-binding protein 3 (IGFBP-3) promotes apoptosis by both IGF-dependent and -independent mechanisms. We have previously reported that phosphorylation of IGFBP-3 (S156) by DNA-dependent protein kinase enhances its nuclear accumulation and is essential for its ability to interact with retinoid X receptor-α and induce apoptosis in cultured prostate cancer cells. Using specific chemical inhibitors and small interfering RNA, we demonstrate that preventing casein kinase 2 (CK2) activation enhanced the apoptotic potential of IGFBP-3. We mapped potential CK2 phosphosphorylation sites in IGFBP-3 to S167 and S175 and identified that wild-type IGFBP-3- and IGFBP-3-S175A-induced apoptosis to a comparable extent. In contrast, IGFBP-3-S167A was far more potently apoptosis inducing due to inability to undergo CK2 phosphorylation. Pretreatment of 22RV1 cells with IGFBP-3 small interfering RNA also limits the ability of high doses of CK2 inhibitor to induce apoptosis. These effects can be reversed by the addition of exogenous IGFBP-3 protein, suggesting reciprocal regulation of cell survival and apoptosis by IGFBP-3 and CK2. These studies reveal multisite phosphorylation of IGFBP-3 that both positively and negatively regulate its apoptotic potential. Understanding such intrinsic regulation of IGFBP-3 action may enhance the development of potential cancer therapies. PMID:19556345

  20. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  1. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  2. Effect of corticotropin-releasing factor-binding protein on prostaglandin release from cultured maternal decidua and on contractile activity of human myometrium in vitro.

    PubMed

    Petraglia, F; Benedetto, C; Florio, P; D'Ambrogio, G; Genazzani, A D; Marozio, L; Vale, W

    1995-10-01

    Human placenta and uterine tissues are sites of production and local action of corticotropin-releasing factor (CRF). The recent evidence that CRF-binding protein (CRF-BP), a protein that blocks CRF-induced pituitary ACTH release, is produced by placental tissues suggested the present study to investigate the effects of CRF-BP on prostaglandin release and contractile activity of myometrial strips. Primary cultures of decidual cells were prepared using tissue collected from healthy women undergoing cesarean delivery at term. Mechanical and enzymatic cell dispersions were carried out, and experiments were performed 24-28 h after cell plating. The prostaglandin E2 (PGE2) concentration in cultured medium was measured by RIA. Myometrial strips were obtained from the upper edge of the uterine incision during elective cesarean section at term. Dissected free of connective tissue, strips were mounted in a 30-mL two-chamber organ bath containing oxygenated Tyrode's buffer (37 C) and connected to a two-channel isometric smooth muscle transducer. Cultured decidual cells collected at term significantly increased the release of PGE2 in the presence of CRF (P < 0.01). The addition of CRF-BP did not significantly modify PGE2 release, but completely reversed the effect of CRF. When human myometrial strips were incubated in the presence of CRF and PGF2 alpha, a significant increase in contractile activity was observed (P < 0.01); preincubation with CRF-BP prevented the increased contractile activity induced by CRF. The present data show that CRF-BP is able to counteract the biological effect of CRF on human pregnancy endometrium and myometrium and suggest that CRF-BP may be a regulatory protein that plays a role in the local function of uterine tissues during pregnancy. PMID:7559899

  3. Influence of insulin-like growth factor-binding proteins-2 and -3 in the pathogenesis of cystic ovarian disease in cattle.

    PubMed

    Rodríguez, Fernanda M; Salvetti, Natalia R; Panzani, Carolina G; Barbeito, Claudio G; Ortega, Hugo H; Rey, Florencia

    2011-10-01

    Ovarian cysts are one of the major causes of infertility in dairy cows. The development is associated with an endocrine imbalance in the hypothalamo-hypophyseal-gonadal axis in which endocrine factors participate in follicular growth and differentiation and in the secretion of ovarian hormones. Insulin-like growth factor family are essential local regulators of ovarian follicle development and functionality and actions are mediated by binding protein activity. The aim of the present study was to analyze the expression of IGFBP-2 and IGFBP-3 in developing follicles of normal estrous cycling animals and with spontaneous and induced cystic ovarian disease (COD) to determine IGF bioavailability. The mRNA of IGFBP-2 and IGFBP-3 in follicular walls was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. Protein expression was analyzed by immunohistochemistry. The results demonstrated reduced amounts of mRNA of both IGFBPs in the granulosa cells of ovarian follicles of animals with COD (P<0.05). The present study suggests that the IGF system or imbalances between IGFs and IGFBPs may be involved in COD of cattle. PMID:21940120

  4. Short hairpin RNA targeting insulin-like growth factor binding protein-3 restores the bioavailability of insulin-like growth factor-1 in diabetic rats

    PubMed Central

    Zhou, Zhang-Yan; Zhong, Guang-Jun; Cheng, Shao-Ping; Huang, Hui; Wang, Jing; Pan, Hui; Liu, Chang-Mao; Xing, Cheng; Sun, Ya-Ling; Liu, Rong-Hua; Fei-Li

    2016-01-01

    ABSTRACT Purpose To investigate whether intracavernosal injection of short hairpin RNA for IGFBP-3 could improve erectile function in streptozotocin-induced diabetic rats. Materials and methods After 12 weeks of IGFBP-3 short hairpin RNA injection treatment, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 and IGF-1 at mRNA and protein levels were detected by quantitative real-time PCR analysis and Western blot, respectively. The concentration of cavernous cyclic guanosine monophosphate was detected by enzyme-linked immunosorbent assay. Results At 12 weeks after intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic group (P<0.05). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. At the same time, cavernous IGF-1 expression was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). Cavernous cyclic guanosine monophosphate concentration was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). Conclusions Gene transfer of IGFBP-3 shRNA could improve erectile function via the restoration of cavernous IGF-1 bioavailability and an increase of cavernous cGMP concentration in the pathogenesis of erectile dysfunction in streptozotocin-induced diabetic rats. PMID:27136480

  5. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures

    PubMed Central

    Pickard, Adam; McDade, Simon S.; McFarland, Marie; McCluggage, W. Glenn; Wheeler, Cosette M.; McCance, Dennis J.

    2015-01-01

    Cervical cancer is a multi-stage disease caused by human papillomaviruses (HPV) infection of cervical epithelial cells, but the mechanisms regulating disease progression are not clearly defined. Using 3-dimensional organotypic cultures, we demonstrate that HPV16 E6 and E7 proteins alter the secretome of primary human keratinocytes resulting in local epithelial invasion. Mechanistically, absence of the IGF-binding protein 2 (IGFBP2) caused increases in IGFI/II signalling and through crosstalk with KGF/FGFR2b/AKT, cell invasion. Repression of IGFBP2 is mediated by histone deacetylation at the IGFBP2 promoter and was reversed by treatment with histone deacetylase (HDAC) inhibitors. Our in vitro findings were confirmed in 50 invasive cancers and 79 cervical intra-epithelial neoplastic lesions caused by HPV16 infection, where IGFBP2 levels were reduced with increasing disease severity. In summary, the loss of IGFBP2 is associated with progression of premalignant disease, and sensitises cells to pro-invasive IGF signalling, and together with stromal derived factors promotes epithelial invasion. PMID:26107517

  6. Partial characterization of GTP-binding proteins in Neurospora

    SciTech Connect

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-08-14

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. (/sup 35/S)GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of (/sup 35/S)GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.

  7. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  8. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma.

    PubMed

    Lee, Hyun; Kim, So Ri; Oh, Youngman; Cho, Seong Ho; Schleimer, Robert P; Lee, Yong Chul

    2014-04-01

    Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma. PMID:24219511

  9. Apoptosis Inducing Factor Binding Protein PGAM5 Triggers Mitophagic Cell Death That Is Inhibited by the Ubiquitin Ligase Activity of X-Linked Inhibitor of Apoptosis.

    PubMed

    Lenhausen, Audrey M; Wilkinson, Amanda S; Lewis, Eric M; Dailey, Kaitlin M; Scott, Andrew J; Khan, Shahzeb; Wilkinson, John C

    2016-06-14

    Apoptosis inducing factor (AIF) plays a well-defined role in controlling cell death but is also a critical factor for maintaining mitochondrial energy homeostasis; how these dueling activities are balanced has remained largely elusive. To identify new AIF binding partners that may define the continuum of AIF cellular regulation, a biochemical screen was performed that identified the mitochondrial phosphoglycerate mutase 5 (PGAM5) as an AIF associated factor. AIF binds both the short and long isoforms of PGAM5 and can reduce the ability of PGAM5 to control antioxidant responses. Transient overexpression of either PGAM5 isoform triggers caspase activation and cell death, and while AIF could reduce this caspase activation neither AIF expression nor caspase activity is required for PGAM5-mediated death. PGAM5 toxicity morphologically and biochemically resembles mitophagic cell death and is inhibited by the AIF binding protein X-linked inhibitor of apoptosis (XIAP) in a manner that depends on the ubiquitin ligase activity of XIAP. The phosphatase activity of PGAM5 was not required for cell death, and comparison of phosphatase activity between short and long PGAM5 isoforms suggested that only the long isoform is catalytically competent. This property correlated with an increased ability of PGAM5L to form dimers and/or higher order oligomers in intact cells compared to PGAM5S. Overall this study identifies an AIF/PGAM5/XIAP axis that can regulate PGAM5 activities related to the antioxidant response and mitophagy. PMID:27218139

  10. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity.

    PubMed

    Martin, Janet L; Lin, Mike Z; McGowan, Eileen M; Baxter, Robert C

    2009-09-18

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 approximately 2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the "missing link" mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3. PMID:19633297

  11. Antepartal insulin-like growth factor 1 and insulin-like growth factor binding protein 2 concentrations are indicative of ketosis in dairy cows.

    PubMed

    Piechotta, M; Mysegades, W; Ligges, U; Lilienthal, J; Hoeflich, A; Miyamoto, A; Bollwein, H

    2015-05-01

    A study involving a small number of cows found that the concentrations of insulin-like growth hormone 1 (IGF1) may be a useful predictor of metabolic disease. Further, IGF1 may provide also a pathophysiological link to metabolic diseases such as ketosis. The objective of the current study was to test whether the low antepartal total IGF1 or IGF1 binding protein (IGFBP) concentrations might predict ketosis under field conditions. Clinical examinations and blood sampling were performed antepartum (262-270 d after artificial insemination) on 377 pluriparous pregnant Holstein Friesian cows. The presence of postpartum diseases were recorded (ketosis, fatty liver, displacement of the abomasum, hypocalcemia, mastitis, retention of fetal membranes, and clinical metritis or endometritis), and the concentrations of IGF1, IGFBP2, IGFBP3, and nonesterified fatty acids were measured. Cows with postpartum clinical ketosis had lower IGF1 concentrations antepartum than healthy cows. The sensitivity of antepartal IGF1 as a marker for postpartum ketosis was 0.87, and the specificity was 0.43; a positive predictive value of 0.91 and a negative predictive value of 0.35 were calculated. The cows with ketosis and retained fetal membranes had lower IGFBP2 concentrations compared with the healthy cows. It can be speculated that lower IGF1 production in the liver during late pregnancy may increase growth hormone secretions and lipolysis, thereby increasing the risk of ketosis. Lower IGFBP2 concentrations may reflect the suppression of IGFBP2 levels through higher growth hormone secretion. In conclusion, compared with nonesterified fatty acids as a predictive parameter, IGF1 and IGFBP2 may represent earlier biomarkers of inadequate metabolic adaptation to the high energy demand required postpartum. PMID:25704973

  12. Insulin-Like Growth Factor-Binding Protein-5 Induces a Gender-Related Decrease in Bone Mineral Density in Transgenic Mice

    PubMed Central

    Salih, Dervis A. M.; Mohan, Subburaman; Kasukawa, Yuji; Tripathi, Gyanendra; Lovett, Fiona A.; Anderson, Neil F.; Carter, Emma J.; Wergedal, Jon E.; Baylink, David J.; Pell, Jennifer M.

    2010-01-01

    IGF-binding protein-5 (IGFBP-5) is abundant in serum and bone during normal skeletal development, but levels decrease in osteoporosis. Studies have shown that IGFBP-5 stimulates markers of bone formation by potentiating IGF actions and by IGF-independent actions. To test the hypothesis that IGFBP-5 promotes the acquisition of bone mineral density (BMD), we generated transgenic (Tg) mice overexpressing Igfbp5 using a cytomegalovirus enhancer and β-actin promoter (CMV/βA). Tg animals showed an increase in serum IGFBP-5 concentrations by 7.7- to 3.5-fold at 3–8 wk of age, respectively. Concentrations were 6–49% higher for males compared with females in both wild-type and Tg mice. Surprisingly, BMD decreased in a gender-dependent manner, with Tg male adults affected more severely than Tg females (31.3% vs. 19.2% reduction, respectively, compared with wild-type mice, assessed by dual energy x-ray absorptiometry). Significant gender differences in BMD were confirmed by peripheral quantitative computed tomography. Histomorphometry revealed that although the bone formation rate and mineralizing surface at the periosteum decreased in Tg mice, they increased at the endosteum, suggesting opposing effects of IGFBP-5 on periosteal and endosteal osteoblasts (by altering proliferation or survival). These findings differ from previous observations in Igf1- and Igf2-null animals. In conclusion, IGFBP-5 has a significant influence on BMD acquisition and maintenance that is dependent on gender and age. The phenotype of Igfbp5 mice cannot be explained solely by IGF inhibition; thus, this study provides the first in vivo evidence, by genetic manipulation, for IGF-independent actions of IGFBP-5 in bone function. These findings have implications for the gender-biased progression of osteoporosis. PMID:15550514

  13. Serum concentrations of insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -3 in eight hoofstock species.

    PubMed

    Govoni, Kristen E; Goodman, Danielle; Maclure, Rebecca M; Penfold, Linda M; Zinn, Steven A

    2011-01-01

    The somatotropic axis, which includes growth hormone, insulin-like growth factor (IGF)-I, and IGF binding proteins (IGFBP), is involved in the regulation of growth and metabolism. Measures of the somatotropic axis can be predictive of nutritional status and growth rate that can be utilized to identify nutritional status of individual animals. Before the somatotropic axis can be a predictive tool, concentrations of hormones of the somatotropic axis need to be established in healthy individuals. To begin to establish these data, we quantified IGF-I, IGFBP-2, and IGFBP-3 in males and females of eight threatened hoofstock species at various ages. Opportunistic blood samples were collected from Bos javanicus (Java banteng), Tragelaphus eurycerus isaaci (bongo), Gazella dama ruficollis (addra gazelle), Taurotragus derbianus gigas (giant eland), Kobus megaceros (Nile lechwe), Hippotragus equines cottoni (roan antelope), Ceratotherium simum simum (white rhinoceros), and Elephas maximus (Asian elephant). Serum IGF-I and IGFBPs were determined by radioimmunoassay and ligand blot, respectively. Generally, IGF-I and IGFBP-3 were greater in males, and IGFBP-2 was greater in females. In banteng (P = 0.08) and male Nile lechwe (P < 0.05), IGF-I increased with age, but decreased in rhinoceros (P = 0.07) and female Nile lechwe (P < 0.05). In banteng, IGFBP-3 was greater (P < 0.01) in males. In elephants (P < 0.05) and antelope (P = 0.08), IGFBP-2 were greater in females. Determination of concentrations of hormones in the somatotropic axis in healthy animals makes it possible to develop models that can identify the nutritional status of these threatened hoofstock species. PMID:20853408

  14. Proteolysis of insulin-like growth factor-binding protein-3 in human immunodeficiency virus-positive children who fail to thrive.

    PubMed

    Frost, R A; Nachman, S A; Lang, C H; Gelato, M C

    1996-08-01

    Failure to thrive is a common manifestation of human immunodeficiency virus (HIV) infection in children. Given the role of insulin-like growth factor I (IGF-I) in stimulating postnatal growth, we have examined whether HIV-infected pediatric patients with growth failure have lower serum concentrations of IGF-I than age-matched control subjects. IGF-I was measured in 16 HIV-infected children and 13 HIV-negative controls. Ten of the HIV-infected children failed to thrive based on height and linear growth that was below the National Center for Health Statistics 10th percentile. IGF-I levels were significantly lower in children who failed to thrive compared to those in age-matched controls (20 vs. 60 micrograms/L; P < 0.001). Children who failed to thrive also displayed lower IGF-I levels than HIV-positive children, who exhibited normal growth velocity (20 vs. 91 micrograms/L; P < 0.001). Failure to thrive was associated with a significant reduction in circulating levels of IGF-binding protein-3 (IGFBP-3), as determined by ligand and Western blotting (P < 0.001), enhanced IGFBP-3 proteolysis (P < 0.001), and a decrease in the serum concentration of the acid-labile subunit of the IGFBP-3 ternary complex (P < 0.005). IGFBP-3 proteolysis was negatively correlated with IGF-I (r = 0.78) and IGFBP-3 levels (r = 0.70). Failure to thrive was associated with a reduction in the formation of the ternary complex, but the ternary complex could be restored by the addition of an excess of IGFBP-3 to serum. These results indicate that low levels of IGF-I, IGFBP-3, and acid-labile subunit are associated with a failure to thrive in HIV-infected children. PMID:8768858

  15. Rho-modifying bacterial protein toxins from Photorhabdus species.

    PubMed

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins. PMID:26026623

  16. Genetic polymorphisms of insulin-like growth factor 1 and insulin-like growth factor binding protein 3, xenoestrogen, phytoestrogen, and premenopausal breast cancer

    PubMed Central

    Li, H.; Zhao, M.; Wang, Q.; Liu, L.; Qi, Y.N.; Li, J.Y.

    2016-01-01

    Background Previous studies suggest a combined effect of insulin-like growth factor 1 (igf-1) and igf binding protein 3 (igfbp-3) gene polymorphisms, xenoestrogen, and phytoestrogen on the igf-1 signalling pathway and serum concentrations in the igf system, which are associated with premenopausal breast cancer (bca) risk. Methods Between 2010 and 2012, our study recruited 140 premenopausal bca patients and 160 community-based premenopausal control subjects. Participants were surveyed about oral contraceptive (oc) use, dietary habits, and other bca risk factors. TaqMan assays were used to determine igf-1 rs1520220 and igfbp-3 rs2854744 genotypes. Daily intakes of energy-adjusted soy isoflavones (easis) were calculated by the residual method. Multivariate logistic regression was applied to estimate the adjusted odds ratios (ors) and 95% confidence intervals (cis) of the igf-1 rs1520220 and igfbp-3 rs2854744 genotypes, oc use, and intake of easis. Stratified analyses were performed to detect the gene–environment combined effect, and multivariate logistic regression was used to estimate interaction coefficients (iors) by the multiplicative model, with 95% cis. The delta method was used to calculate interaction coefficients by the additive model [relative excess risk of interaction (reri), attributable proportions of interaction (apis)] and 95% cis. Results The igf-1 and igfbp-3 genotypes, oc use, and easis were not found to be associated with bca risk (p > 0.05). Stratified analysis showed that the risk of bca was markedly increased in women carrying the igfbp-3C allele and using ocs compared with women either carrying the igfbp-3C allele or using ocs (or: 3.02; 95% ci: 1.04 to 8.79). The interaction coefficients ior, reri, and api were 4.89 (95% ci: 1.09 to 21.90), 2.42 (95% ci: −0.76 to 5.61), and 0.80 (95% ci: 0.46 to 1.67) respectively. Conclusions The igfbp-3 rs2854744 polymorphism and oc use might synergistically increase premenopausal bca risk. PMID:26966408

  17. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees.

    PubMed

    Behringer, Verena; Wudy, Stefan A; Blum, Werner F; Stevens, Jeroen M G; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30-35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in the

  18. Intact and total insulin-like growth factor-binding protein-3 (IGFBP-3) levels in relation to breast cancer risk factors: a cross-sectional study

    PubMed Central

    Diorio, Caroline; Brisson, Jacques; Bérubé, Sylvie; Pollak, Michael

    2008-01-01

    Introduction Levels of insulin-like growth factor (IGF)-I and its main binding protein (IGFBP-3) have been associated with breast cancer risk among premenopausal women. However, associations of IGFBP-3 levels with breast cancer risk have been inconsistent, possibly due to the different predominant forms of circulating IGFBP-3 (intact versus fragmented) that were measured in these studies. Here, we examine the association of breast cancer risk factors with intact and total IGFBP-3 levels. Methods This cross-sectional study includes 737 premenopausal women recruited at screening mammography. Plasma intact and total IGFBP-3 and IGF-I levels were measured by enzyme-linked immunosorbent assay methods. Percent and absolute breast density were estimated using a computer-assisted method. The associations were evaluated using generalized linear models and Pearson (r) or Spearman (rs) partial correlation coefficients. Results Means ± standard deviations of intact and total IGFBP-3 levels (ng/mL) were 1,044 ± 234 and 4,806 ± 910, respectively. Intact and total IGFBP-3 levels were correlated with age and smoking. Levels of intact IGFBP-3 were negatively correlated with waist-to-hip ratio (WHR) (r = -0.128; P = 0.0005), parity (rs = -0.078; P = 0.04), and alcohol intake (r = -0.137; P = 0.0002) and positively correlated with energy intake (r = 0.075; P = 0.04). In contrast, total IGFBP-3 levels were positively correlated with WHR (r = 0.115; P = 0.002), parity (rs = 0.089; P = 0.02), body mass index (BMI) (r = 0.115; P = 0.002), physical activity (r = 0.118; P = 0.002), and IGF-I levels (r = 0.588; P < 0.0001) and negatively correlated with percent or absolute breast density (r = -0.095; P = 0.01 and r = -0.075; P = 0.04, respectively). Conclusion Our data show that associations of some breast cancer risk factors with intact levels of IGFBP-3 are different from those with total (intact and fragmented) IGFBP-3 levels. These findings suggest that different molecular forms of

  19. Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees

    PubMed Central

    Behringer, Verena; Wudy, Stefan A.; Blum, Werner F.; Stevens, Jeroen M. G.; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried

    2016-01-01

    There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30–35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in

  20. The human insulin-like growth factor-binding protein 4 gene maps to chromosome region 17q12-q21. 1 and is close to the gene for hereditary breast-ovarian cancer

    SciTech Connect

    Tonin, P.; Vivier, A.; Morgan, K.; Narod, S.; Pollack, M. ); Ehrenborg, E.; Zazzi, H.; Luthman, H.; Larsson, C. ); Lenoir, G. )

    1993-11-01

    The gene for insulin-like growth factor-binding protein 4 (IGFBP4) codes for a serum protein that binds to the family of insulin-like growth factors and modulates their activity. It has been mapped by in situ hybridization to chromosome region 17q12-q21.1. The authors have developed a CA-repeat polymorphism from a cosmid clone containing IGFBP4. By linkage analysis, IGFBP4 maps to the chromosome 17q interval THRA1-D17S579. This interval also contains the gene for hereditary breast-ovarian cancer, BRCA1. Genetic recombination between IGFBP4 and BRCA1 places IGFBP4 centromeric to the cancer susceptibility gene and effectively excludes it as a candidate gene for BRCA1. IGFBP4 is, however, one of the closest known centromeric markers for BRCA1; the estimated recombination fraction is 0.015. IGFBP4 and D17S579 together define a 2.8-cM interval that contains BRCA1. 18 refs., 3 figs., 1 tab.

  1. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. PMID:27521890

  2. Insulin-like growth factor binding proteins-2 and -3 stimulate growth hormone receptor binding and mitogenesis in rat osteosarcoma cells.

    PubMed

    Slootweg, M C; Ohlsson, C; Salles, J P; de Vries, C P; Netelenbos, J C

    1995-10-01

    GH exerts its biological actions on osteoblasts through a specific high affinity receptor expressed on these cells. GH receptor binding is positively modulated by a number of factors, including retinoic acid and dexamethasone, whereas fetal calf serum strongly decreases the binding. To identify responsible factors in serum, components of serum, the insulin-like growth factors (IGFs)-I and -II, and IGF binding proteins (IGFBPs)-2 and -3 were tested for a possible negative modulatory role. IGF-I and -II decreased [125I]hGH binding at an optimal concentration of 30 ng/ml for IGF-I and 100 ng/ml IGF-II, reducing the binding to 51% and 55%, respectively, of control values. A stimulation of [125I]hGH binding was observed with IGFBP-2 as well as IGFBP-3, inducing an increase to 148% and 151% of control binding at an optimal concentration of 3000 ng/ml for both peptides. The effects of all peptides were dependent on the incubation time, being significantly increased after 8 h of incubation and reaching the full effect thereafter. The effects were declined at 24 h compared with 16 h for IGFBP-2 and -3 but not for IGF-I and -II. Coincubation of the cells with IGF-I and -II and IGFBP-2 and -3 neutralized the effects of the factors alone. In conclusion, these results show that IGF-I and -II on the one hand and IGFBP-2 and -3 on the other hand exert opposite actions on [125I]hGH binding, IGFBP-2 and -3 exerting probably an IGF-independent effect. Further, IGF-I and -II decreased GH receptor messenger RNA (mRNA) levels, as quantified by a solution hybridization ribonuclease protection assay, from 8.65 +/- 1.78 attomoles (amol)/microgram DNA (control) to 2.4 +/- 0.68 and 2.16 +/- 0.92 amol/microgram DNA, respectively. IGFBP-2 increased GH receptor mRNA levels from 5.26 +/- 1.17 (control) to 13.19 +/- 3.48. Incubation with IGFBP-3 did not result in stimulation of GH receptor mRNA levels (8.59 +/- 2.91 amol/microgram DNA). This shows that the mechanism of regulation of the GH

  3. Corticotropin-releasing factor type-2 receptor and corticotropin-releasing factor-binding protein coexist in rat ventral tegmental area nerve terminals originated in the lateral hypothalamic area.

    PubMed

    Slater, Paula G; Noches, Veronica; Gysling, Katia

    2016-01-01

    There is significant functional evidence showing that corticotropin-releasing factor type-2 receptor (CRF2R) and corticotropin-releasing factor-binding protein (CRF-BP) regulate glutamatergic synapses onto ventral tegmental area (VTA) dopaminergic neurons. It has been shown that CRF requires CRF-BP to potentiate N-methyl-D-aspartate receptors in dopaminergic neurons through CRF2R, and that increases glutamate release in cocaine-treated rats through the activation of CRF2R only by agonists with high affinity to CRF-BP. Furthermore, this CRF-mediated increase in VTA glutamate is responsible for stress-induced relapse to cocaine-seeking behaviour. However, there is a lack of anatomical evidence to explain the mechanisms of CRF actions in VTA. Thus, it was studied whether CRF2R and CRF-BP are expressed in VTA nerve terminals, using a synaptosomal preparation devoid of postsynaptic elements. The current results show that both proteins are co-expressed in glutamatergic and γ-aminobutyric acid (GABA)ergic VTA synaptosomes. A main glutamatergic input to the VTA that has been associated to addictive behaviour is originated in the lateral hypothalamic area (LHA). Thus, this study was focused in the LHA-VTA input using orexin as a marker of this input. The results show that CRF2R and CRF-BP mRNA and protein are expressed in the LHA, and that both proteins are present in orexin-positive VTA synaptosomes. The results showing that CRF2R and CRF-BP are expressed in the LHA-VTA input give anatomical support to suggest that this input plays a role in stress-induced relapse to cocaine-seeking behaviour. PMID:26503565

  4. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).

    PubMed

    Shen, Xinchun; Xi, Gang; Wai, Christine; Clemmons, David R

    2015-05-01

    Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it

  5. Insulin-like growth factor-binding protein-1 (IGFBP-1) in goldfish, Carassius auratus: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and cadmium exposure.

    PubMed

    Chen, Wenbo; Zhang, Zhen; Dong, Haiyan; Yan, Fangfang

    2016-06-01

    In this study, the cDNA encoding insulin-like growth factor-binding protein-1 (IGFBP-1) was cloned from the liver of goldfish (Carassius auratus). The obtained goldfish IGFBP-1 cDNA sequence was 1037 bp in length and had an open reading frame of 789 bp encoding a predicted polypeptide of 262 amino acid residues. IGFBP-1 transcript was detected in all tested central nervous and peripheral tissues. The relatively higher levels of IGFBP-1 mRNA were observed in the liver, gill, kidney, heart, spleen, fat and testis, while the lower levels were found in all different regions of brain, muscle and intestine. In the skin, IGFBP-1 mRNA expression level was extremely low. The IGFBP-1 mRNA expression level in liver was significantly elevated after feeding. With cadmium exposure for 24 h, IGFBP-1 mRNA expression levels in spleen and liver were significantly increased at different cadmium concentrations ranging from 0.5 to 10 ppm. The results in this study provided the data regarding molecular characteristics and expression patterns of IGFBP-1 in goldfish and showed that the expression of IGFBP-1 mRNA might be associated with metabolic status and heavy metal stress and regulated by metabolic factors and cadmium in fish. PMID:26753895

  6. Binding between Insulin-like Growth Factor 1 and Insulin-like Growth Factor-binding Protein 3 Is Not Influenced by Glucose or 2-Deoxy-d-glucose

    PubMed Central

    Mireuta, Matei; Hancock, Mark A.; Pollak, Michael

    2011-01-01

    A recent report (Zhong, D., Xiong, L., Liu, T., Liu, X., Liu, X., Chen, J., Sun, S. Y., Khuri, F. R., Zong, Y., Zhou, Q., and Zhou, W. (2009) J. Biol. Chem. 284, 23225–23233) details that 2-deoxy-d-glucose (2-DG), a well known inhibitor of glycolysis and a candidate antineoplastic agent, also induces insulin-like growth factor 1 receptor (IGF-1R) signaling through the inhibition of insulin-like growth factor 1-insulin-like growth factor-binding protein 3 (IGF-1-IGFBP-3) complex formation. Zhong et al. hypothesized that disrupted IGF-1/IGFBP-3 binding by 2-DG led to increased free IGF-1 concentrations and, consequently, activation of IGF-1R downstream pathways. Because their report suggests unprecedented off-target effects of 2-DG, this has profound implications for the fields of metabolism and oncology. Using ELISA, surface plasmon resonance, and novel “intensity-fading” mass spectrometry, we now provide a detailed characterization of complex formation between IGF-1 and IGFBP-3. All three of these independent methods demonstrated that there was no effect of glucose or 2-DG on the interaction between IGF-1 and IGFBP-3. Furthermore, we show examples of 2-DG exposure associated with reduced rather than increased IGF-1R and AKT activation, providing further evidence against a 2-DG increase in IGF-1R activation by IGF-1-IGFBP-3 complex disruption. PMID:21388950

  7. Evidence of a local negative role for cocaine and amphetamine regulated transcript (CART), inhibins and low molecular weight insulin like growth factor binding proteins in regulation of granulosa cell estradiol production during follicular waves in cattle

    PubMed Central

    Kobayashi, Yasuhiro; Jimenez-Krassel, Fermin; Ireland, James J; Smith, George W

    2006-01-01

    The ability of ovarian follicles to produce large amounts of estradiol is a hallmark of follicle health status. Estradiol producing capacity is lost in ovarian follicles before morphological signs of atresia. A prominent wave like pattern of growth of antral follicles is characteristic of monotocous species such as cattle, horses and humans. While our knowledge of the role of pituitary gonadotropins in support of antral follicle growth and development is well established, the intrinsic factors that suppress estradiol production and may help promote atresia during follicular waves are not well understood. Numerous growth factors and cytokines have been reported to suppress granulosa cell estradiol production in vitro, but the association of expression of many such factors in vivo with follicle health status and their physiological significance are not clear. The purpose of this review is to discuss the in vivo and in vitro evidence supporting a local physiological role for cocaine and amphetamine regulated transcript, inhibins and low molecular weight insulin like growth factor binding proteins in negative regulation of granulosa cell estradiol production, with emphasis on evidence from the bovine model system. PMID:16611367

  8. Dynamics of Transcription Factor Binding Site Evolution

    PubMed Central

    Tuğrul, Murat; Paixão, Tiago; Barton, Nicholas H.; Tkačik, Gašper

    2015-01-01

    Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. PMID:26545200

  9. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-beta- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures.

    PubMed

    Kamanga-Sollo, E; Pampusch, M S; White, M E; Hathaway, M R; Dayton, W R

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-beta superfamily members myostatin and TGF-beta1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-beta1 or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-beta1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-beta1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-beta1 or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-beta1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-beta and myostatin to suppress proliferation of PEMC. PMID:16214131

  10. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1.

    PubMed

    Yen, Yi-Chen; Hsiao, Jenn-Ren; Jiang, Shih Sheng; Chang, Jeffrey S; Wang, Ssu-Han; Shen, Ying-Ying; Chen, Chung-Hsing; Chang, I-Shou; Chang, Jang-Yang; Chen, Ya-Wen

    2015-12-01

    Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions. PMID:26540630

  11. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    SciTech Connect

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R. . E-mail: wdayton@umn.edu

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{sub 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.

  12. Cellular proliferation rate and insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 and estradiol receptor alpha expression in the mammary gland of dairy heifers naturally infected with gastrointestinal nematodes during development.

    PubMed

    Perri, A F; Dallard, B E; Baravalle, C; Licoff, N; Formía, N; Ortega, H H; Becú-Villalobos, D; Mejia, M E; Lacau-Mengido, I M

    2014-01-01

    Mammary ductal morphogenesis during prepuberty occurs mainly in response to insulin-like growth factor-1 (IGF-1) and estradiol stimulation. Dairy heifers infected with gastrointestinal nematodes have reduced IGF-1 levels, accompanied by reduced growth rate, delayed puberty onset, and lower parenchyma-stroma relationship in their mammary glands. Immunohistochemical studies were undertaken to determine variations in cell division rate, IGF-1 system components, and estradiol receptors (ESR) during peripubertal development in the mammary glands of antiparasitic-treated and untreated Holstein heifers naturally infected with gastrointestinal nematodes. Mammary biopsies were taken at 20, 30, 40, and 70 wk of age. Proliferating cell nuclear antigen immunolabeling, evident in nuclei, tended to be higher in the parenchyma of the glands from treated heifers than in those from untreated. Insulin-like growth factor binding proteins (IGFBP) type 2 and type 3 immunolabeling was cytoplasmic and was evident in stroma and parenchyma. The IGFBP2-labeled area was lower in treated than in untreated heifers. In the treated group, a maximal expression of this protein was seen at 40 wk of age, whereas in the untreated group the labeling remained constant. No differences were observed for IGFBP3 between treatment groups or during development. Immunolabeling for α ESR (ESR1) was evident in parenchymal nuclei and was higher in treated than in untreated heifers. In the treated group, ESR1 peaked at 30 wk of age and then decreased. These results demonstrate that the parasite burden in young heifers negatively influence mammary gland development, affecting cell division rate and parameters related to estradiol and IGF-1 signaling in the gland. PMID:24931533

  13. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1

    PubMed Central

    Jiang, Shih Sheng; Chang, Jeffrey S.; Wang, Ssu-Han; Shen, Ying-Ying; Chen, Chung-Hsing; Chang, I-Shou; Chang, Jang-Yang; Chen, Ya-Wen

    2015-01-01

    Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions. PMID:26540630

  14. [Identification and isolation of GTP-binding regulator protein from plasma membranes of oocytes from the starfish Asterias amurensis].

    PubMed

    Lamash, N E

    2001-01-01

    A method for isolating a GTP-binding regulatory protein from starfish oocytes is described. The protein consists of three subunits with molecular weights of 40, 37, and about 8 kDa. It is shown that the 40-kDa subunit has a high GTPase activity and is susceptible to ADP-ribosylation by pertussis toxin. The latter property of this subunit proved to decrease upon its incubation with nonhydrolyzable GTP analogues. These data provide evidence that the plasma membrane of starfish oocytes contains a 40-kDa GTP-binding protein with properties characteristic of the alpha subunit of the inhibitory Gi protein. The role of this protein in the transmembrane signal transmission from the 1-methyladenine receptor to intracellular effectors is discussed. PMID:11236575

  15. Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Relation to the Risk of Type 2 Diabetes Mellitus: Results From the EPIC-Potsdam Study.

    PubMed

    Drogan, Dagmar; Schulze, Matthias B; Boeing, Heiner; Pischon, Tobias

    2016-03-15

    Higher levels of insulin-like growth factor-binding protein 3 (IGFBP-3) might raise the risk of type 2 diabetes mellitus (T2DM) via binding of insulin-like growth factor 1 (IGF-1), an insulin-like hormone that is involved in glucose homeostasis. We investigated serum concentrations of IGF-1 and IGFBP-3 and their molar ratio in relation to T2DM incidence in a nested case-cohort study within the European Prospective Investigation Into Cancer and Nutrition-Potsdam Study. We included a randomly selected subcohort of persons without T2DM at the time of blood sampling (n = 2,269) and 776 individuals with incident T2DM identified between 1994 and 2005. For the highest quartile versus lowest, the multivariable-adjusted hazard rate ratios were 0.91 (95% confidence interval (CI): 0.68, 1.23; P for trend = 0.31) for IGF-1, 1.33 (95% CI: 1.00, 1.76; P for trend = 0.04) for IGFBP-3, and 0.77 (95% CI: 0.57, 1.03; P for trend = 0.03) for IGF-1:IGFBP-3 ratio. IGFBP-3 level remained positively associated with T2DM incidence-and the ratio of IGF-1 to IGFBP-3 was inversely related with T2DM incidence--in models that included adjustment for IGF-1 concentrations (P for trend < 0.05). Therefore, our findings do not confirm an association between total IGF-1 concentrations and risk of T2DM in the general study population, although higher IGFBP-3 levels might raise T2DM risk independent of IGF-1 levels. PMID:26880678

  16. Insulin-like growth factor binding protein-3 has dual effects on gastrointestinal stromal tumor cell viability and sensitivity to the anti-tumor effects of imatinib mesylate in vitro

    PubMed Central

    2009-01-01

    Background Imatinib mesylate has significantly improved survival and quality of life of patients with gastrointestinal stromal tumors (GISTs). However, the molecular mechanism through which imatinib exerts its anti-tumor effects is not clear. Previously, we found up-regulation of insulin-like growth factor binding protein-3 (IGFBP3) expression in imatinib-responsive GIST cells and tumor samples. Because IGFBP3 regulates cell proliferation and survival and mediates the anti-tumor effects of a number of anti-cancer agents through both IGF-dependent and IGF-independent mechanisms, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 levels in two imatinib-responsive GIST cell lines and observed cell viability after drug treatment. Results In the GIST882 cell line, imatinib treatment induced endogenous IGFBP3 expression, and IGFBP3 down-modulation by neutralization or RNA interference resulted in partial resistance to imatinib. In contrast, IGFBP3 overexpression in GIST-T1, which had no detectable endogenous IGFBP3 expression after imatinib, had no effect on imatinib-induced loss of viability. Furthermore, both the loss of IGFBP3 in GIST882 cells and the overexpression of IGFBP3 in GIST-T1 cells was cytotoxic, demonstrating that IGFBP3 has opposing effects on GIST cell viability. Conclusion This data demonstrates that IGFBP3 has dual, opposing roles in modulating GIST cell viability and response to imatinib in vitro. These preliminary findings suggest that there may be some clinical benefits to IGFBP3 therapy in GIST patients, but further studies are needed to better characterize the functions of IGFBP3 in GIST. PMID:19903356

  17. Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin

    SciTech Connect

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A. )

    1987-08-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.

  18. Characterization, localization and function of pertussis toxin-sensitive G proteins in the nervous systems of Aplysia and Loligo

    SciTech Connect

    Vogel, S.S.

    1989-01-01

    The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using ({sup 32}P)ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes into membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release.

  19. Pregnane X Receptor Represses HNF4α Gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells.

    PubMed

    Kodama, Susumu; Yamazaki, Yuichi; Negishi, Masahiko

    2015-10-01

    Upon treatment with the pregnane X receptor (PXR) activator rifampicin (RIF), human hepatocellular carcinoma HepG2-derived ShP51 cells that stably express PXR showed epithelial-mesenchymal transition (EMT)-like morphological changes and migration. Our recent DNA microarrays have identified hepatocyte nuclear factor (HNF) 4α and insulin-like growth factor-binding protein (IGFBP) 1 mRNAs to be downregulated and upregulated, respectively, in RIF-treated ShP51 cells, and these regulations were confirmed by the subsequent real-time polymerase chain reaction and Western blot analyses. Using this cell system, we demonstrated here that the PXR-HNF4α-IGFBP1 pathway is an essential signal for PXR-induced morphological changes and migration. First, we characterized the molecular mechanism underlying the PXR-mediated repression of the HNF4α gene. Chromatin conformation capture and chromatin immunoprecipitation (ChIP) assays revealed that PXR activation by RIF disrupted enhancer-promoter communication and prompted deacetylation of histone H3 in the HNF4α P1 promoter. Cell-based reporter and ChIP assays showed that PXR targeted the distal enhancer of the HNF4α P1 promoter and stimulated dissociation of HNF3β from the distal enhancer. Subsequently, small interfering RNA knockdown of HNF4α connected PXR-mediated gene regulation with the PXR-induced cellular responses, showing that the knockdown resulted in the upregulation of IGFBP1 and EMT-like morphological changes without RIF treatment. Moreover, recombinant IGFBP1 augmented migration, whereas an anti-IGFBP1 antibody attenuated both PXR-induced morphological changes and migration in ShP51 cells. PXR indirectly activated the IGFBP1 gene by repressing the HNF4α gene, thus enabling upregulation of IGFBP1 to change the morphology of ShP51 cells and cause migration. These results provide new insights into PXR-mediated cellular responses toward xenobiotics including therapeutics. PMID:26232425

  20. Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins

    PubMed Central

    Guha, Rajarshi; Simon, Nathan; Pasetto, Matteo; Keller, Jonathan; Huang, Manjie; Angelus, Evan; Pastan, Ira; Ferrer, Marc; FitzGerald, David J.; Thomas, Craig J.

    2016-01-01

    The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE), potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as ‘enhancers’ and at least one class of mitigator to be avoided. PMID:27556570

  1. Protein Kinase Inhibitor H89 Enhances the Activity of Pseudomonas Exotoxin A-Based Immunotoxins.

    PubMed

    Liu, Xiufen; Müller, Fabian; Wayne, Alan S; Pastan, Ira

    2016-05-01

    HA22 (Moxetumomab pasudotox) is a recombinant immunotoxin (RIT), composed of an anti-CD22 Fv fused to a truncated portion of Pseudomonas exotoxin A. HA22 is in clinical trials to treat patients with hairy cell leukemia and acute lymphoblastic leukemia (ALL). LMB-11 is an improved variant of HA22 with reduced immunogenicity, has a longer half-life in the blood and high activity in vitro and in a Burkitt lymphoma model in vivo Searching for RIT enhancing combination therapies, we found the protein kinase A inhibitor H89 to enhance LMB-11 and HA22 activity 5- to 10-fold on ALL cell lines and on patient-derived ALL samples. In addition, H89 increased the activity of mesothelin-targeting RITs SS1P (38-fold) and RG7787 (7-fold) against the cervical cancer cell line KB31. Unexpectedly we found that the enhancement by H89 was not because of inhibition of protein kinase A; it was partially recapitulated by inhibition of S6K1, which led to inactivation of its downstream targets rpS6 and GSK3β, resulting in a fall in MCL1 levels. H89 increased the rate of ADP-ribosylation of eukaryotic elongation factor 2, enhancing the arrest of protein synthesis and the reduction of MCL1 in synergy with the RIT. In summary, H89 increased RIT activity by enhancing the two key events: ADP-ribosylation of eEF2 and reduction of MCL1 levels. Significant enhancement was seen with both CD22- and mesothelin-targeting RITs, indicating that H89 might be a potent addition to RIT treatment of CD22-positive ALL and mesothelin-expressing solid tumors. Mol Cancer Ther; 15(5); 1053-62. ©2016 AACR. PMID:26939705

  2. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  3. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    SciTech Connect

    Pratt, B.L.; Takahashi, J.S.

    1988-07-01

    The avian pineal gland is a photoreceptive organ that has been shown to contain postjunctional alpha 2-adrenoceptors that inhibit melatonin synthesis and/or release upon receptor activation. Physiological response and (32P)ADP ribosylation experiments were performed to investigate whether pertussis toxin-sensitive guanine nucleotide-binding proteins (G-proteins) were involved in the transduction of the alpha 2-adrenergic signal. For physiological response studies, the effects of pertussis toxin on melatonin release in dissociated cell cultures exposed to norepinephrine were assessed. Pertussis toxin blocked alpha 2-adrenergic receptor-mediated inhibition in a dose-dependent manner. Pertussis toxin-induced blockade appeared to be noncompetitive. One and 10 ng/ml doses of pertussis toxin partially blocked and a 100 ng/ml dose completely blocked norepinephrine-induced inhibition. Pertussis toxin-catalyzed (32P)ADP ribosylation of G-proteins in chick pineal cell membranes was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Membranes were prepared from cells that had been pretreated with 0, 1, 10, or 100 ng/ml pertussis toxin. In the absence of pertussis toxin pretreatment, two major proteins of 40K and 41K mol wt (Mr) were labeled by (32P)NAD. Pertussis toxin pretreatment of pineal cells abolished (32P) radiolabeling of the 40K Mr G-protein in a dose-dependent manner. The norepinephrine-induced inhibition of both cAMP efflux and melatonin release, as assessed by RIA of medium samples collected before membrane preparation, was also blocked in a dose-dependent manner by pertussis toxin. Collectively, these results suggest that a pertussis toxin-sensitive 40K Mr G-protein labeled by (32P)NAD may be functionally associated with alpha 2-adrenergic signal transduction in chick pineal cells.

  4. Ab initio prediction of transcription factor binding sites.

    PubMed

    Liu, L Angela; Bader, Joel S

    2007-01-01

    Transcription factors are DNA-binding proteins that control gene transcription by binding specific short DNA sequences. Experiments that identify transcription factor binding sites are often laborious and expensive, and the binding sites of many transcription factors remain unknown. We present a computational scheme to predict the binding sites directly from transcription factor sequence using all-atom molecular simulations. This method is a computational counterpart to recent high-throughput experimental technologies that identify transcription factor binding sites (ChIP-chip and protein-dsDNA binding microarrays). The only requirement of our method is an accurate 3D structural model of a transcription factor-DNA complex. We apply free energy calculations by thermodynamic integration to compute the change in binding energy of the complex due to a single base pair mutation. By calculating the binding free energy differences for all possible single mutations, we construct a position weight matrix for the predicted binding sites that can be directly compared with experimental data. As water-bridged hydrogen bonds between the transcription factor and DNA often contribute to the binding specificity, we include explicit solvent in our simulations. We present successful predictions for the yeast MAT-alpha2 homeodomain and GCN4 bZIP proteins. Water-bridged hydrogen bonds are found to be more prevalent than direct protein-DNA hydrogen bonds at the binding interfaces, indicating why empirical potentials with implicit water may be less successful in predicting binding. Our methodology can be applied to a variety of DNA-binding proteins. PMID:17990512

  5. Identifying differential transcription factor binding in ChIP-seq

    PubMed Central

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R.; Siegmund, Kimberly D.

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement. PMID:25972895

  6. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    SciTech Connect

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrations below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.

  7. Guanosine 5'-triphosphate binding protein (G/sub i/) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency

    SciTech Connect

    Moscona-Amir, E.; Henis, Y.I.; Sokolovsky, M.

    1988-07-12

    The coupling of muscarinic receptors with G-proteins was investigated in cultured myocytes prepared from the hearts of newborn rats. The coupling was investigated in both young (5 days after plating) and aged (14 days after plating) cultures, in view of the completely different effects of 5'-guanylyl imidodiphosphate (Gpp(NH)p) on muscarinic agonist binding to homogenates from young vs aged cultures. Pretreatment of cultures from both ages by Bordetella pertussis toxin (IAP) was found to eliminate any Gpp(NH)p effect on carbamylcholine binding. IAP by itself induced a rightward shift in the carbamylcholine competition curve in homogenates from aged cultures, but no such effect was observed in homogenates from young cultures. IAP-catalyzed (/sup 32/P)ADP-ribosylation of membrane preparations from young and aged cultures revealed major differences between them. Young cultures exhibited a major IAP substrate at 40 kDa, which was also recognized by anti-..cap alpha../sub i/ antibodies, and two novel IAP substrates at 28 and 42 kDa, which were weakly ADP-ribosylated by the toxin and were not recognized with either anti-..cap alpha../sub i/ or anti-..cap alpha../sub 0/ antibodies. In aged cultures, only the 40-kDa band (ribosylated to a lower degree) was detected. The parallel age-dependent changes in the three IAP substrates (28, 40, and 42 kDa) and in the interactions of the G-protein(s) with the muscarinic receptors strongly suggest close association between the two phenomena. All of these age-dependent changes in the G-protein related parameters were prevented by phosphatidylcholine-liposome treatment of the aged cultures. The role of the membrane lipid composition in these phenomena is discussed.

  8. Nonparallel changes of growth hormone (GH) and insulin-like growth factor-I, insulin-like growth factor binding protein-3, and GH-binding protein, after craniospinal irradiation and chemotherapy

    SciTech Connect

    Nivot, S.; Adan, L.; Souberbielle, J.; Rappaport, R.; Brauner, R.; Benelli, C.; Clot, J.P.; Saucet, C.; Zucker, J.M.

    1994-03-01

    The authors studied the GH-insulin-like growth factor-I (IGF-I) axis serially over 24-36 months in six patients with medulloblastoma who underwent surgical removal of the tumor followed by craniospinal irradiation therapy for 6 weeks and then chemotherapy for 42 weeks. Eighteen and 24 months after beginning irradiation there was a decline in the peak GH secretory response to acute stimulation with arginine/insulin hypoglycemia. Six months after irradiation and during chemotherapy there was a transient decline in IGF-I, IGF binding protein-3 (IGFBP-3), and GH-BP values (respective mean values of 56.1 {+-} 9.0 ng/mL, 1.1 {+-} 0.2 {mu}g/mL, and 7.6 {+-} 3.3% of radioactivity as compared to time 0 values: 139 {+-} 15 ng/mL, 2.2 {+-} 0.2 {mu}g/mL, and 20.0 {+-} 4.0%, P < 0.001), although provoked GH secretion was normal at this time. The IGF-I, IGFBP-3, and GH-BP returned to pretreatment ranges by 12-36 months after initiation of the study. There was also a decline in body mass index and serum protein values at 6 months after irradiation in ligand and immunoblot analysis there was a decline in IGFBP-3 and an abnormal electrophoretic mobility of IGFBP-2 that were both normalized at 36 months. In one patient they observed a high level of IGFBP-3 proteolysis at this time. This study demonstrates that before the decrease of GH secretion in patients receiving cranial irradiation there is a transient phase of GH insensitivity that may be characteristic of the acute therapeutic phase including the chemotherapy. This partial insensitivity may explain the early growth retardation observed in these patients. 28 refs., 4 figs., 1 tab.

  9. Role of 3', 5' cyclic adenosine monophosphate and protein kinase C in the regulation of insulin-like growth factor-binding protein secretion by thyroid-stimulating hormone in isolated ovine thyroid cells.

    PubMed

    Wang, J F; Hill, D J; Becks, G P

    1994-05-01

    Isolated sheep thyroid follicles release insulin-like growth factors (IGF)-I and -II together with IGF-binding proteins (IGFBPs). We previously showed that TSH suppresses the biosynthesis and release of IGFBPs in vitro which may increase the tissue availability of IGFs, allowing a synergy with TSH which potentiates both thyroid growth and function. Many of the actions of TSH on thyroid cell function are dependent upon activation of adenylate cyclase, although increased synthesis of inositol trisphosphate and activation of protein kinase C (PKC) have also been implicated. We have now examined whether probable changes in intracellular cyclic adenosine monophosphate (cAMP) or PKC are involved in TSH-mediated suppression of IGFBP release. Confluent primary cultures of ovine thyroid cells were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin and glycyl-histidyl-lysine (designated 3H), and further supplemented with sodium iodide (10(-8)-10(-3) mol/l), dibutyryl cAMP (0.25-1 mmol/l), forskolin (5-20 mumol/l) or 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-11)-10(-6) mol/l), with or without exposure to TSH (200 microU/ml). The uptake and organification of Na [125I] by cells was examined after test incubations of up to 48 h, and IGFBPs in conditioned media were analysed by ligand blot using 125I-labelled IGF-II. The PKC activity in the cytosol and plasma membrane fractions of cells was measured by phosphorylation of histone using [gamma-32P]ATP, and PKC immunoreactivity was visualized by Western immunoblot analysis. While dibutyryl cAMP or forskolin largely reproduced the stimulatory effect of TSH on iodine organification, they did not mimic the inhibitory effect of TSH on the secretion of IGFBPs of 43, 34, 28 and 19 kDa. Incubation with physiological or pharmacological concentrations of iodide (10(-6)-10(-3) mol/l) for up to 48 h significantly decreased TSH action on iodide uptake and organification but did not alter the

  10. Identification and isoprenylation of plant GTP-binding proteins.

    PubMed

    Biermann, B; Randall, S K; Crowell, D N

    1996-08-01

    To identify isoprenylated plant GTP-binding proteins, Arabidopsis thaliana and Nicotiana tabacum cDNA expression libraries were screened for cDNA-encoded proteins capable of binding [32P]GTP in vitro. ATGB2, an Arabidopsis homologue of the GTP-binding protein Rab2, was found to bind GTP in vitro and to be a substrate for a geranylgeranyl:protein transferase (GGTase) present in plant extracts. The carboxyl terminus of this protein contains a -GCCG sequence, which has not previously been shown to be recognized by any prenyl:protein transferase (PTase), but which most closely resembles that isoprenylated by the type II GGTase (-XXCC, -XCXC, or -CCXX). In vitro geranylgeranylation of an Arabidopsis Rab1 protein containing a carboxyl-terminal-CCGQ sequence confirmed the presence of a type II GGTase-like activity in plant extracts. Several other proteins were also identified by in vitro GTP binding, including Arabidopsis and tobacco homologues of Rab11, ARF (ADP-ribosylation factor) and Sar proteins, as well as a novel 22 kDa Arabidopsis protein (ATG81). This 22 kDa protein had consensus GTP-binding motifs and bound GTP with high specificity, but its structure was not closely related to that of any known GTP-binding protein (it most resembled proteins within the ARF/Sar and G protein alpha-subunit superfamilies). PMID:8843944

  11. Protein Networks Supporting AP-3 Function in Targeting Lysosomal Membrane Proteins

    PubMed Central

    Baust, Thorsten; Anitei, Mihaela; Czupalla, Cornelia; Parshyna, Iryna; Bourel, Line; Thiele, Christoph; Krause, Eberhard

    2008-01-01

    The AP-3 adaptor complex targets selected transmembrane proteins to lysosomes and lysosome-related organelles. We reconstituted its preferred interaction with liposomes containing the ADP ribosylation factor (ARF)-1 guanosine triphosphatase (GTPase), specific cargo tails, and phosphatidylinositol-3 phosphate, and then we performed a proteomic screen to identify new proteins supporting its sorting function. We identified ≈30 proteins belonging to three networks regulating either AP-3 coat assembly or septin polymerization or Rab7-dependent lysosomal transport. RNA interference shows that, among these proteins, the ARF-1 exchange factor brefeldin A-inhibited exchange factor 1, the ARF-1 GTPase-activating protein 1, the Cdc42-interacting Cdc42 effector protein 4, an effector of septin-polymerizing GTPases, and the phosphatidylinositol-3 kinase IIIC3 are key components regulating the targeting of lysosomal membrane proteins to lysosomes in vivo. This analysis reveals that these proteins, together with AP-3, play an essential role in protein sorting at early endosomes, thereby regulating the integrity of these organelles. PMID:18287518

  12. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling

    PubMed Central

    Karlberg, Tobias; Langelier, Marie-France; Pascal, John M.; Schüler, Herwig

    2013-01-01

    ADP-ribosylation of proteins regulates protein activities in various processes including transcription control, chromatin organization, organelle assembly, protein degradation, and DNA repair. Modulating the proteins involved in the metabolism of ADP-ribosylation can have therapeutic benefits in various disease states. Protein crystal structures can help understand the biological functions, facilitate detailed analysis of single residues, as well as provide a basis for development of small molecule effectors. Here we review recent advances in our understanding of the structural biology of the writers, readers, and erasers of ADP-ribosylation. PMID:23458732

  13. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited.

    PubMed

    Lupo, Barbara; Trusolino, Livio

    2014-08-01

    Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics. PMID:25026313

  14. Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly-ADP-ribosylation

    PubMed Central

    Thomas, Colin J.; Kotova, Elena; Andrake, Mark; Adolf-Bryfogle, Jared; Glaser, Robert; Regnard, Catherine; Tulin, Alexei V.

    2014-01-01

    SUMMARY Dynamically controlled post-translational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating Poly(ADP-ribose) Polymerase 1 (PARP-1). JIL-1 phosphorylates the C-terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1 dependent genes. PMID:24508391

  15. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.

    PubMed

    Hanke-Gogokhia, Christin; Wu, Zhijian; Gerstner, Cecilia D; Frederick, Jeanne M; Zhang, Houbin; Baehr, Wolfgang

    2016-03-25

    Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology. PMID:26814127

  16. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.

    PubMed

    Gibson, Bryan A; Zhang, Yajie; Jiang, Hong; Hussey, Kristine M; Shrimp, Jonathan H; Lin, Hening; Schwede, Frank; Yu, Yonghao; Kraus, W Lee

    2016-07-01

    Poly[adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are a family of enzymes that modulate diverse biological processes through covalent transfer of ADP-ribose from the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) onto substrate proteins. Here we report a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition reactions. Using this approach, we mapped hundreds of sites of ADP-ribosylation for PARPs 1, 2, and 3 across the proteome, as well as thousands of PARP-1-mediated ADP-ribosylation sites across the genome. We found that PARP-1 ADP-ribosylates and inhibits negative elongation factor (NELF), a protein complex that regulates promoter-proximal pausing by RNA polymerase II (Pol II). Depletion or inhibition of PARP-1 or mutation of the ADP-ribosylation sites on NELF-E promotes Pol II pausing, providing a clear functional link between PARP-1, ADP-ribosylation, and NELF. This analog-sensitive approach should be broadly applicable across the PARP family and has the potential to illuminate the ADP-ribosylated proteome and the molecular mechanisms used by individual PARPs to mediate their responses to cellular signals. PMID:27256882

  17. Early events elicited by Bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding

    SciTech Connect

    Zachary, I.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-01-01

    Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an M/sub r/ 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent. The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of /sup 125/I-labeled epidermal growth factor (/sup 125/I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca/sup 2 +/ concentration does not mediate the bombesin inhibition of /sup 125/I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of /sup 125/I-EGF to its cellular receptor.

  18. Uncoupling of gamma-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins

    SciTech Connect

    Asano, T.; Ogasawara, N.

    1986-03-01

    Treatment of membranes from bovine cerebral cortex with N-ethylmaleimide (NEM) resulted in inhibition of gamma-aminobutyric acid (GABA) binding to GABAB receptors. The binding curve for increasing concentrations of agonist was shifted to the right by NEM treatment. Guanine nucleotide had little effect on the binding of GABA to NEM-treated membranes. The addition of purified GTP-binding proteins, which were the substrates of islet-activating protein (IAP), pertussis toxin, to the NEM-treated membranes caused a shift of the binding curve to the left, suggesting modification of GTP-binding proteins rather than receptors by NEM. The effect of NEM on two purified GTP-binding proteins, Gi (composed of three subunits with molecular weight of alpha, 41,000; beta, 35,000; gamma, 10,000) and Go (alpha, 39,000; beta, 35,000; gamma, 10,000) was studied. NEM did not significantly change guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding and GTPase activity of these two proteins. NEM-treated Gi and Go were not ADP-ribosylated by IAP and did not increase GABA binding to NEM-treated membranes. When alpha and beta gamma subunits were treated with NEM and then mixed with nontreated alpha and beta gamma to form Gi or Go, respectively, both oligomers with NEM-treated alpha-subunits lost their abilities to be IAP substrates and to couple to receptors. Results indicate that NEM uncoupled GTP-binding proteins from receptors by modifying alpha-subunits of GTP-binding proteins, and the site seemed to be on or near the site of ADP-ribosylation by IAP. When alpha and beta gamma subunits were treated with NEM and then mixed to form Gi or Go, GTP gamma S binding in the absence of Mg2+ and GTPase activity were changed, although they were not affected when oligomers were treated with NEM. Results suggest the existence of another sulfhydryl group which is protected from NEM by the association of subunits.

  19. Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease

    PubMed Central

    Ricketts, Sally L; Rensing, Katrijn L; Holly, Jeff M; Chen, Li; Young, Elizabeth H; Luben, Robert; Ashford, Sofie; Song, Kijoung; Yuan, Xin; Dehghan, Abbas; Wright, Benjamin J; Waterworth, Dawn M; Mooser, Vincent; Waeber, Gérard; Vollenweider, Peter; Epstein, Stephen E; Burnett, Mary S; Devaney, Joseph M; Hakonarson, Hakon H; Rader, Daniel J; Reilly, Muredach P; Danesh, John; Thompson, Simon G; Dunning, Alison M; van Duijn, Cornelia M; Samani, Nilesh J; McPherson, Ruth; Wareham, Nicholas J; Khaw, Kay-Tee; Boekholdt, S Matthijs; Sandhu, Manjinder S

    2011-01-01

    Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations. PMID:21915365

  20. Proteolysis of insulin-like growth factor-binding protein-3 by human skin keratinocytes in culture in comparison to that in skin interstitial fluid: the role and regulation of components of the plasmin system.

    PubMed

    Xu, S; Savage, P; Burton, J L; Sansom, J; Holly, J M

    1997-06-01

    Proteolysis of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is an important determinant of IGF action on cells. We have investigated this in a human skin keratinocyte cell line HaCaT. Although these cells did not normally produce an active IGFBP-3 protease, addition of plasminogen resulted in a dose-dependent proteolysis of endogenous and exogenous IGFBP-3, producing fragments similar to those cleaved by skin interstitial fluid, but different from those generated by plasmin. Protease inhibitor profiles suggested the enzyme in the conditioned medium to be a calcium-dependent serine protease. Exogenous IGFBP-3 either inhibited or slightly stimulated IGF-I-induced cell proliferation when it was coincubated or preincubated with the cells, respectively. Both effects were attenuated in the presence of plasminogen. Preincubation of cells with IGF-I or long R3 IGF-I divergently changed plasminogen activator inhibitor-1 and -2 secretion, but only IGF-I blocked IGFBP-3 proteolysis. Such inhibition was also observed in a cell-free protease assay. IGF-I, however, had no effect on plasmin-induced IGFBP-3 degradation. Together, these data indicate that an IGFBP-3 protease similar to that in skin interstitial fluid is generated in plasminogen-treated HaCaT cells, and it attenuates the effects of IGFBP-3 on IGF action. IGF-I, probably by coupling with IGFBP-3, can protect it from the action of this protease. PMID:9177397

  1. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  2. Impact of Insulin Resistance on Insulin-Like Growth Factor-1/Insulin Like Growth Factor-Binding Protein-3 Axis and on Early Weight Gain in Small for Gestational Age Infants

    PubMed Central

    Dizdarer, Ceyhun; Korkmaz, Hüseyin Anıl; Büyükocak, Özlem Murat; Tarancı, Selda Mohan; Çoban, Ayşe

    2013-01-01

    Objective: To assess insulin-like growth factor-1 (IGF-1)/IGF-binding protein-3 (IGFBP-3) axis and insulin resistance (IR) and the relationship of these parameters with growth in appropriate for gestational age (AGA) and small for gestational age (SGA) infants at birth and in early infancy. Methods: Postnatal blood samples for measurement of glucose, insulin, IGF-1, and IGFBP-3 were taken from 60 infants (30 AGA and 30 SGA) at birth and at one, three, and six months of age. Both SGA and AGA infants were divided into two groups: growing well and not growing well. Blood glucose, insulin, IGF-1, and IGFBP-3 values were assessed in all infants. Results: Homeostasis model assessment-IR (HOMA-IR) values in well-growing SGA infants in the third and sixth months were found to be higher than in not well-growing SGA infants (3.9±0.8 vs. 1.0±0.3 at 3 months and 3.3±0.9 vs. 2.4±0.9 at 6 months, p<0.05). IGF-1 levels in well-growing SGA infants at 3 and 6 months were found to be higher than those in not well-growing SGA infants (83.80±44.50 vs. 73.50±17.60 ng/mL at 3 months and 95.12±50.74 vs. 87.67±22.91 ng/mL at 6 months, p<0.05). The IGF-1 values were significantly lower in well-growing SGA infants than in well-growing AGA infants (83.80±44.50 vs. 103.31±30.81 ng/mL at 3 months and 95.12±50.74 vs. 110.87±26.44 ng/mL at 6 months, p<0.05). Conclusions: This study demonstrates the effects of accelerated early infant growth on IGF-1/IGFBP-3 axis in SGA-born infants. Conflict of interest:None declared. PMID:23748063

  3. An Open-Label Trial of Recombinant Human Insulin-Like Growth Factor-I/Recombinant Human Insulin-Like Growth Factor Binding Protein-3 (rhIGF-1/rhIGFBP-3) in Myotonic Dystrophy Type 1

    PubMed Central

    Heatwole, Chad R.; Eichinger, Katy J.; Friedman, Deborah I.; Hilbert, James E.; Jackson, Carlayne E.; Logigian, Eric L.; Martens, William B.; McDermott, Michael P.; Pandya, Shree K.; Quinn, Christine; Smirnow, Alexis M.; Thornton, Charles A.; Moxley, Richard T.

    2012-01-01

    Objective To evaluate the safety and tolerability of recombinant human insulin-like growth factor-1 (rhIGF-1) complexed with IGF binding protein-3 (rhIGF-1/rhIGFBP-3) in patients with myotonic dystrophy type 1 (DM1). Design Open-label dose-escalation clinical trial. Setting University medical center. Participants Fifteen moderately affected ambulatory participants with genetically-proven DM1. Intervention Participants received escalating dosages of subcutaneous rhIGF-1/rhIGFBP-3 over 24 weeks followed by a 16 week washout period. Outcome Measures Serial assessments of safety, muscle mass, muscle function, and metabolic state were performed. The primary outcome variable was the ability of participants to complete 24 weeks on rhIGF-1/rhIGFBP-3 treatment. Results All participants tolerated rhIGF-1/rhIGFBP-3. There were no significant changes in muscle strength or functional outcomes measures. Lean body muscle mass measured by dual energy x-ray absorptiometry increased by 1.95 kg (p=0.0007) after treatment. Participants also experienced a mean reduction in triglyceride levels of 47 mg/dL (p=0.002), a mean increase in HDL levels of 5.0 mg/dL (p=0.03), a mean reduction in HbA1c of 0.15% (p=0.03), and a mean increase in testosterone level (in men) of 203 ng/dL (p=0.002) while on rhIGF-1/rhIGFBP-3. Mild reactions at the injection site occurred (n=9 participants), as did mild transient hypoglycemia (n=3), lightheadedness (n=2), and transient papilledema (n=1). Conclusions rhIGF-1/rhIGFBP-3 treatment was generally well tolerated in DM1. rhIGF-1/rhIGFBP-3 was associated with increased lean body mass and improvements in metabolism, but not with increased muscle strength or function. Larger randomized controlled trials would be needed to further evaluate the efficacy and safety of this medication in patients with neuromuscular disease. PMID:20837825

  4. Effect of exogenous insulin on plasma and follicular insulin-like growth factor I, insulin-like growth factor binding protein activity, follicular oestradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows.

    PubMed

    Simpson, R B; Chase, C C; Spicer, L J; Vernon, R K; Hammond, A C; Rae, D O

    1994-11-01

    Angus (n = 14) and Brahman (n = 14) cows were used to evaluate the effects of insulin administered concomitantly with FSH in a superovulation regimen. Cows were allotted to four pen replicates by treatment and breed, and received FSH (i.m.) twice a day for 5 consecutive days (first day of injections = day 0 of study) plus concomitant administration of either saline (control) or long-acting bovine insulin (0.25 iu kg-1 body mass; s.c.). Blood samples were collected at intervals of 6 h during the injection period and analysed for plasma insulin, glucose, insulin-like growth factor I (IGF-I) and IGF-I binding protein (IGFBP) activity. Cows were ovariectomized on day 5. The number and diameter of follicles were recorded. Follicular fluid was aspirated for determination of IGF-I, IGFBP activity, oestradiol and progesterone. Mean plasma concentration of glucose was lower in insulin-treated than in control cows averaged over days 1-5 (56 +/- 3 versus 82 +/- 3 mg dl-1; P < 0.01). Plasma concentration of IGF-I and IGFBP activity were not affected (P > 0.10) by treatment, but were higher in Brahman than in Angus cows (IGF-I: 41 +/- 6 versus 19 +/- 6 ng ml-1, P < 0.05; IGFBP activity: 17.5 +/- 0.4 versus 15.8 +/- 0.04% (10 microliters)-1; P < 0.03). Insulin treatment did not affect the number of small (1.0-3.9 mm), medium (4.0-7.9 mm) or large (> or = 8.0 mm) follicles. Brahman cows had a greater (P < 0.01) number of medium and total follicles (19.4 +/- 2.5 and 60.5 +/- 5.5, respectively) than did Angus cows (7.5 +/- 2.6 and 30.5 +/- 5.6, respectively). Diameter of large follicles was greater in insulin-treated than in control cows (11.4 +/- 0.2 versus 10.6 +/- 0.1 mm; P < 0.05). Follicular fluid IGF-I concentration in large follicles was higher in insulin-treated Brahman cows (60 +/- 2 ng ml-1) than in control Brahman cows (37 +/- 2 ng ml-1), but was lower in insulin-treated Angus cows (31 +/- 3 ng ml-1) than in control Angus cows (38 +/- 2 ng ml-1; treatment x breed

  5. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity.

    PubMed

    Kehrl, John H

    2016-08-15

    Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling. PMID:27071343

  6. Effect of exogenous estradiol on plasma concentrations of somatotropin, insulin-like growth factor-I, insulin-like growth factor binding protein activity, and metabolites in ovariectomized Angus and Brahman cows.

    PubMed

    Simpson, R B; Chase, C C; Spicer, L J; Carroll, J A; Hammond, A C; Welsh, T H

    1997-11-01

    To determine the effect of breed and estradiol-17 beta on selected hormones and metabolites, ovariectomized (> or = 3 mo) Angus (n = 14) and Brahman (n = 12) cows were paired by age and body weight and randomly assigned as either nonimplanted controls (CON) or implanted with estradiol (E2) for 45 d. After Day 7 and through Day 42, plasma concentration of somatotropin was greater for E2 than CON cows (treatment x day, P < 0.05). During an intensive blood sampling on Day 36, E2 cows tended (P < 0.10) to have greater somatotropin pulse amplitudes than CON cows, but other parameters of somatotropin release were not affected (P > 0.10) by E2 treatment. The effect of breed was apparent on Day 36 as Brahman cows had greater (P < 0.05) somatotropin pulse amplitude, basal secretion, and mean concentration than Angus cows. Overall, plasma concentration of IGF-I was greater (P < 0.01) for E2 than CON cows (158.3 vs. 104.2 ng/ml) and was greater for Brahman than Angus cows (164.1 vs. 98.4 ng/ml). However, there was a trend (P < 0.10) for a treatment x breed x day interaction for IGF-I (i.e., the magnitude of increase in IGF-I concentration was greater in E2-Angus than E2-Brahman cows). After Day 7 and through Day 42, total plasma IGF binding protein (IGFBP) activity was greater (P < 0.01) for E2 than CON cows. Ligand blotting revealed at least five forms of IGFBP activity, and E2 cows had greater (P < 0.05) binding activity of IGFBP-3 and the 30- and 32-kDa IGFBP than CON cows. Brahman cows had greater (P < 0.05) IGFBP-3 and the 32-kDa IGFBP than Angus cows. After Day 14 and through Day 42, concentration of urea nitrogen (PUN) was greater (P < 0.001) for CON than E2 cows (treatment x day, P < 0.001). Brahman had greater (P < 0.01) PUN than Angus cows (16.6 vs. 14.2 mg/dl). Plasma concentration of glucose was greater (P < 0.01) for E2 than CON cows (78.9 vs. 76.4 mg/dl) but was not affected (P > 0.10) by breed. In summary, these data suggest that some, but not all, of the

  7. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes.

    PubMed

    Zhou, Wu; Li, Xiaobo; Premont, Richard T

    2016-05-15

    The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease. PMID:27182061

  8. Transcription factor binding predicts histone modifications in human cell lines

    PubMed Central

    Benveniste, Dan; Sonntag, Hans-Joachim; Sanguinetti, Guido; Sproul, Duncan

    2014-01-01

    Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes. PMID:25187560

  9. Position specific variation in the rate of evolution intranscription factor binding sites

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  10. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP) Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles

    PubMed Central

    Gadahi, Javaid Ali; Wang, Shuai; Bo, Gao; Ehsan, Muhammad; Yan, RuoFeng; Song, XiaoKai; Xu, LiXin; Li, XiangRui

    2016-01-01

    Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO) distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis. PMID:27467391

  11. Laa1p, a Conserved AP-1 Accessory Protein Important for AP-1 Localization in Yeast

    PubMed Central

    Fernández, G. Esteban

    2006-01-01

    AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent α-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes. PMID:16687571

  12. Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation.

    PubMed

    Shinozaki-Narikawa, Naeko; Kodama, Tatsuhiko; Shibasaki, Yoshikazu

    2006-11-01

    Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics. PMID:17010122

  13. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    NASA Astrophysics Data System (ADS)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  14. Variable structure motifs for transcription factor binding sites

    PubMed Central

    2010-01-01

    Background Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable

  15. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  16. The Cell Fate Determinant Numb Interacts with EHD/Rme-1 Family Proteins and Has a Role in Endocytic Recycling

    PubMed Central

    Smith, Christian A.; Dho, Sascha E.; Donaldson, Julie; Tepass, Ulrich; McGlade, C. Jane

    2004-01-01

    The adaptor protein Numb is necessary for the cell fate specification of progenitor cells in the Drosophila nervous system. Numb is evolutionarily conserved and previous studies have provided evidence for a similar functional role during mammalian development. The Numb protein has multiple protein-protein interaction regions including a phosphotyrosine binding (PTB) domain and a carboxy-terminal domain that contains conserved interaction motifs including an EH (Eps15 Homology) domain binding motif and α-adaptin binding site. In this study we identify the EHD/Rme-1/Pincher family of endocytic proteins as Numb interacting partners in mammals and Drosophila. The EHD/Rme-1 proteins function in recycling of plasma membrane receptors internalized by both clathrin-mediated endocytosis and a clathrin-independent pathway regulated by ADP ribosylation factor 6 (Arf6). Here we report that Numb colocalizes with endogenous EHD4/Pincher and Arf6 and that Arf6 mutants alter Numb subcellular localization. In addition, we present evidence that Numb has a novel function in endosomal recycling and intracellular trafficking of receptors. PMID:15155807

  17. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins.

    PubMed

    Gotthardt, Katja; Lokaj, Mandy; Koerner, Carolin; Falk, Nathalie; Gießl, Andreas; Wittinghofer, Alfred

    2015-01-01

    Small G-proteins of the ADP-ribosylation-factor-like (Arl) subfamily have been shown to be crucial to ciliogenesis and cilia maintenance. Active Arl3 is involved in targeting and releasing lipidated cargo proteins from their carriers PDE6δ and UNC119a/b to the cilium. However, the guanine nucleotide exchange factor (GEF) which activates Arl3 is unknown. Here we show that the ciliary G-protein Arl13B mutated in Joubert syndrome is the GEF for Arl3, and its function is conserved in evolution. The GEF activity of Arl13B is mediated by the G-domain plus an additional C-terminal helix. The switch regions of Arl13B are involved in the interaction with Arl3. Overexpression of Arl13B in mammalian cell lines leads to an increased Arl3·GTP level, whereas Arl13B Joubert-Syndrome patient mutations impair GEF activity and thus Arl3 activation. We anticipate that through Arl13B's exclusive ciliary localization, Arl3 activation is spatially restricted and thereby an Arl3·GTP compartment generated where ciliary cargo is specifically released. PMID:26551564

  18. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins

    PubMed Central

    Gotthardt, Katja; Lokaj, Mandy; Koerner, Carolin; Falk, Nathalie; Gießl, Andreas; Wittinghofer, Alfred

    2015-01-01

    Small G-proteins of the ADP-ribosylation-factor-like (Arl) subfamily have been shown to be crucial to ciliogenesis and cilia maintenance. Active Arl3 is involved in targeting and releasing lipidated cargo proteins from their carriers PDE6δ and UNC119a/b to the cilium. However, the guanine nucleotide exchange factor (GEF) which activates Arl3 is unknown. Here we show that the ciliary G-protein Arl13B mutated in Joubert syndrome is the GEF for Arl3, and its function is conserved in evolution. The GEF activity of Arl13B is mediated by the G-domain plus an additional C-terminal helix. The switch regions of Arl13B are involved in the interaction with Arl3. Overexpression of Arl13B in mammalian cell lines leads to an increased Arl3·GTP level, whereas Arl13B Joubert-Syndrome patient mutations impair GEF activity and thus Arl3 activation. We anticipate that through Arl13B’s exclusive ciliary localization, Arl3 activation is spatially restricted and thereby an Arl3·GTP compartment generated where ciliary cargo is specifically released. DOI: http://dx.doi.org/10.7554/eLife.11859.001 PMID:26551564

  19. G-protein from Medicago sativa: functional association to photoreceptors.

    PubMed Central

    Muschietti, J P; Martinetto, H E; Coso, O A; Farber, M D; Torres, H N; Flawia, M M

    1993-01-01

    G-protein subunits were characterized from Medicago sativa (alfalfa) seedlings. Crude membranes and GTP-Sepharose-purified fractions were electrophoresed on SDS/polyacrylamide gels and analysed by Western blotting with 9193 (anti-alpha common) and AS/7 (anti-alpha t, anti-alpha i1 and anti-alpha i2) polyclonal antibodies. These procedures led to the identification of a specific polypeptide band of about 43 kDa. Another polypeptide reacting with the SW/1 (anti-beta) antibody, of about 37 kDa, was also detected. The 43 kDa polypeptide bound specifically [alpha-32P]GTP by a photoaffinity reaction and was ADP-ribosylated by activated cholera toxin, but not by pertussis toxin. Irradiation of etiolated Medicago sativa protoplast preparations at 660 nm for 1 min produced a maximal increase in the guanosine 5'-[gamma-thio]triphosphate (GTP[35S])-binding rate. After this period of irradiation, the binding rate tended to decrease. The effect of a red-light (660 nm) pulse on the binding rate was reversed when it was immediately followed by a period of far-red (> 730 nm) illumination. These results may suggest that activation of GTP[S]-binding rate was a consequence of conversion of phytochrome Pr into the Ptr form. Images Figure 1 Figure 2 Figure 3 PMID:8484719

  20. Glucagon induces disaggregation of polymer-like structures of the. alpha. subunit of the stimulatory G protein in liver membranes

    SciTech Connect

    Nakamura, Shunichi; Rodbell, M. )

    1991-08-15

    The hydrodynamic behavior of G{alpha}{sub s}, the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein (G protein), in octyl glucoside extracts of rat liver membranes was investigated. As was previously shown for G proteins similarly extracted from brain synaptoneurosomes, G{alpha}{sub s} behaved as polydisperse structures with S values higher than that of heterotrimeric G proteins. When G{alpha}{sub s} in its membrane-bound form was ({sup 32}P)ADP-ribosylated by cholera toxin and the treated membranes were extracted with octyl glucoside, > 35% of the labeled G{alpha}{sub s} was found in material that sedimented through sucrose gradients and contained relatively low levels of immunoreactive G{alpha}{sub s}. These finding suggest that the glucagon receptor selectivity interacts with polymer-like structures of G{alpha}{sub 2} and that activation by GTP({gamma}S) results in disaggregation. The role of the {beta} and {gamma} subunits of G proteins in the hormone-induced process is not clear since the polymer-like structures extracted with octyl glucoside are devoid of {beta} and {gamma} subunits.

  1. Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling.

    PubMed

    Kanamarlapudi, V

    2005-12-01

    The ARF (ADP-ribosylation factor) family of small GTPases regulate intracellular membrane trafficking by cycling between an inactive GDP- and an active GTP-bound form. Among the six known mammalian ARFs (ARF1-ARF6), ARF6 is the least conserved and plays critical roles in membrane trafficking and cytoskeletal dynamics near the cell surface. Since ARFs have undetectable levels of intrinsic GTP binding and hydrolysis, they are totally dependent on extrinsic GEFs (guanine nucleotide-exchange factors) for GTP binding and GAPs (GTPase-activating proteins) for GTP hydrolysis. We have recently isolated a novel KIF (kinesin) motor protein (KIF13B) that binds to centaurin-alpha1, an ARF6GAP that binds to the second messenger PIP3 [PtdIns(3,4,5)P3]. KIFs transport intracellular vesicles and recognize their cargo by binding to proteins (receptors) localized on the surface of the cargo vesicles. Identification of centaurin-alpha1 as a KIF13B interactor suggests that KIF13B may transport ARF6 and/or PIP3 using centaurin-alpha1 as its receptor. This paper reviews the studies carried out to assess the interaction and regulation of centaurin-alpha1 by KIF13B. PMID:16246098

  2. Effect of oxidative DNA damage in promoter elements on transcription factor binding.

    PubMed Central

    Ghosh, R; Mitchell, D L

    1999-01-01

    Reactive oxygen species produced by endogenous metabolic activity and exposure to a multitude of exogenous agents impact cells in a variety of ways. The DNA base damage 8-oxodeoxyguanosine (8-oxodG) is a prominent indicator of oxidative stress and has been well-characterized as a premutagenic lesion in mammalian cells and putative initiator of the carcinogenic process. Commensurate with the recent interest in epigenetic pathways of cancer causation we investigated how 8-oxodG alters the interaction between cis elements located on gene promoters and sequence-specific DNA binding proteins associated with these promoters. Consensus binding sequences for the transcription factors AP-1, NF-kappaB and Sp1 were modified site-specifically at guanine residues and electrophoretic mobility shift assays were performed to assess DNA-protein interactions. Our results indicate that whereas a single 8-oxodG was sufficient to inhibit transcription factor binding to AP-1 and Sp1 sequences it had no effect on binding to NF-kappaB, regardless of its position. We conclude from these data that minor alterations in base composition at a crucial position within some, but not all, promoter elements have the ability to disrupt transcription factor binding. The lack of inhibition by damaged NF-kappaB sequences suggests that DNA-protein contact sites may not be as determinative for stable p50 binding to this promoter as other, as yet undefined, structural parameters. PMID:10454620

  3. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein.

    PubMed

    Liu, Chien-Hung; Zhou, Ligang; Chen, Guifang; Krug, Robert M

    2015-11-10

    Previous studies showed that ZAPL (PARP-13.1) exerts its antiviral activity via its N-terminal zinc fingers that bind the mRNAs of some viruses, leading to mRNA degradation. Here we identify a different antiviral activity of ZAPL that is directed against influenza A virus. This ZAPL antiviral activity involves its C-terminal PARP domain, which binds the viral PB2 and PA polymerase proteins, leading to their proteasomal degradation. After the PB2 and PA proteins are poly(ADP-ribosylated), they are associated with the region of ZAPL that includes both the PARP domain and the adjacent WWE domain that is known to bind poly(ADP-ribose) chains. These ZAPL-associated PB2 and PA proteins are then ubiquitinated, followed by proteasomal degradation. This antiviral activity is counteracted by the viral PB1 polymerase protein, which binds close to the PARP domain and causes PB2 and PA to dissociate from ZAPL and escape degradation, explaining why ZAPL only moderately inhibits influenza A virus replication. Hence influenza A virus has partially won the battle against this newly identified ZAPL antiviral activity. Eliminating PB1 binding to ZAPL would be expected to substantially increase the inhibition of influenza A virus replication, so that the PB1 interface with ZAPL is a potential target for antiviral development. PMID:26504237

  4. Centaurin-like protein Cnt5 contributes to arsenic and cadmium resistance in fission yeast.

    PubMed

    Vashisht, Ajay Amar; Kennedy, Patrick Joseph; Russell, Paul

    2009-03-01

    Arsenic (As) and cadmium (Cd) are two of the most hazardous substances in the environment and have been implicated in a number of human diseases including cancer. Their mechanisms of toxicity and subsequent carcinogenesis are not understood. To identify the genes involved in As/Cd detoxification, we screened a random insertional mutagenesis library of Schizosaccharomyces pombe for mutants that are hypersensitive to As/Cd. Mutations were mapped to spc1(+) (sty1(+)) and SPBC17G9.08c. Spc1 is a stress-activated protein kinase orthologous to human p38. A fragment of SPBC17G9.08c was previously identified as csx2, a high-copy suppressor of cut6 that encodes an acetyl-CoA carboxylase involved in fatty acid biosynthesis. SPBC17G9.08c is a member of the centaurin ADP ribosylation factor GTPase activating protein family found in a variety of fungi, plants and metazoans, but not in Saccharomyces cerevisiae. Cnt5, so named because its closest human homolog is centaurin beta-5, binds to phosphatidic acid and phosphatidyl serine in vitro. Microscopic localization of Cnt5-GFP indicates significant redistribution of Cnt5 from the cytoplasm to the cell membranes in response to As stress. These data suggest a model in which Cnt5 contributes to As/Cd resistance by maintaining membrane integrity or by modulating membrane trafficking. PMID:19076239

  5. BEX5/RabA1b Regulates trans-Golgi Network-to-Plasma Membrane Protein Trafficking in Arabidopsis[W

    PubMed Central

    Feraru, Elena; Feraru, Mugurel I.; Asaoka, Rin; Paciorek, Tomasz; De Rycke, Riet; Tanaka, Hirokazu; Nakano, Akihiko; Friml, Jiří

    2012-01-01

    Constitutive endocytic recycling is a crucial mechanism allowing regulation of the activity of proteins at the plasma membrane and for rapid changes in their localization, as demonstrated in plants for PIN-FORMED (PIN) proteins, the auxin transporters. To identify novel molecular components of endocytic recycling, mainly exocytosis, we designed a PIN1-green fluorescent protein fluorescence imaging–based forward genetic screen for Arabidopsis thaliana mutants that showed increased intracellular accumulation of cargos in response to the trafficking inhibitor brefeldin A (BFA). We identified bex5 (for BFA-visualized exocytic trafficking defective), a novel dominant mutant carrying a missense mutation that disrupts a conserved sequence motif of the small GTPase, RAS GENES FROM RAT BRAINA1b. bex5 displays defects such as enhanced protein accumulation in abnormal BFA compartments, aberrant endosomes, and defective exocytosis and transcytosis. BEX5/RabA1b localizes to trans-Golgi network/early endosomes (TGN/EE) and acts on distinct trafficking processes like those regulated by GTP exchange factors on ADP-ribosylation factors GNOM-LIKE1 and HOPM INTERACTOR7/BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, which regulate trafficking at the Golgi apparatus and TGN/EE, respectively. All together, this study identifies Arabidopsis BEX5/RabA1b as a novel regulator of protein trafficking from a TGN/EE compartment to the plasma membrane. PMID:22773752

  6. The Pertussis Toxin S1 Subunit Is a Thermally Unstable Protein Susceptible to Degradation by the 20S Proteasome†

    PubMed Central

    Pande, Abhay H.; Moe, David; Jamnadas, Maneesha; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before A chain passage into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP-ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain. PMID:17105192

  7. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    SciTech Connect

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-04-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs.

  8. GPR107, a G-protein-coupled Receptor Essential for Intoxication by Pseudomonas aeruginosa Exotoxin A, Localizes to the Golgi and Is Cleaved by Furin*♦

    PubMed Central

    Tafesse, Fikadu G.; Guimaraes, Carla P.; Maruyama, Takeshi; Carette, Jan E.; Lory, Stephen; Brummelkamp, Thijn R.; Ploegh, Hidde L.

    2014-01-01

    A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport. PMID:25031321

  9. Myristoylation of an inhibitory GTP-binding protein. alpha. subunit is essential for its membrane attachment

    SciTech Connect

    Jones, T.L.Z.; Simonds, W.F.; Merendino, J.J. Jr.; Brann, M.R.; Spiegel, A.M. )

    1990-01-01

    The authors transfected COS cells with cDNAs for the {alpha} subunits of stimulatory and inhibitory GTP-binding proteins, {alpha}{sub s} and {alpha}{sub i1}, respectively, and immunoprecipitated the metabolically labeled products with specific peptide antibodies. Cells were separated into particulate and soluble fractions before immunoprecipitation; ({sup 35}S)methionine-labeled {alpha}{sub s} and {alpha}{sub i} were both found primarily in the particulate fraction. ({sup 3}H)Myristate was incorporated into endogenous and transfected {alpha}{sub i} but could not be detected in {alpha}{sub s} even when it was overexpressed. They converted the second residue, glycine, of {alpha}{sub i1} into alanine by site-directed mutagenesis. Upon transfection of the mutant {alpha}{sub i1} into COS cells, the ({sup 35}S)methionine-labeled product was localized primarily to the soluble fraction, and, also unlike normal {alpha}{sub i1}, the mutant failed to incorporate ({sup 3}H)myristate. The unmyristoylated mutant {alpha}{sub i1} could still interact with the {beta}-{gamma} complex, since purified {beta}{gamma} subunits promoted pertussis toxin-catalyzed ADP-ribosylation of both the normal and mutant {alpha}{sub i1} subunits. These results indicate that myristoylation is critical for membrane attachment of {alpha}{sub i} but not {alpha}{sub s} subunits.

  10. Characterization and cytotoxic activity of apoptosis-inducing pierisin-5 protein from white cabbage butterfly.

    PubMed

    Subbarayan, Sarathbabu; Marimuthu, Satheesh Kumar; Nachimuthu, Senthil Kumar; Zhang, Wenqing; Subramanian, Selvi

    2016-06-01

    In this study, caspase-dependent apoptosis-inducing pierisin-5 gene was identified and characterized from cabbage white butterfly, Pieris canidia. A thousand-fold increase in expression of pierisin-5 gene was observed from second to third instar larvae, gradually decreasing before pupation. Pierisin-5 was purified from the fifth-instar larvae and was found to exhibit cytotoxicity against HeLa and HepG2 human cancer cell lines. Pierisin-5 showed growth inhibition and several morphological changes such as cell shrinkage, chromatin condensation and apoptotic body formation with programmed cell death in HeLa and HepG2 cells. Moreover, DNA fragmentation was observed after gel electrophoresis analysis. Caspase substrate assay showed further cleavage of Ac-DEVD-pNA, suggesting the activation of Caspase-3. Flow cytometry analysis revealed the cell cycle arrest at G1 phase and increased the percentage of apoptotic cells in cancer cell lines treated with pierisin-5. These findings suggest that pierisin-5 could significantly induce apoptosis in cancer cell lines and is mediated by activation of caspase-3 in the mitochondrial pathway. Phylogenetic analysis using pierisin proteins from Pierid butterflies, ADP-ribosylating toxins from bacteria, human, rat, and mouse indicated the possibility of horizontal transfer of pierisin genes from bacteria to butterflies. The single copy of pierisin gene unlike other insect toxin genes also supports lateral transfer. PMID:26812112

  11. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  12. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells.

    PubMed

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  13. An arf1Delta synthetic lethal screen identifies a new clathrin heavy chain conditional allele that perturbs vacuolar protein transport in Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Graham, T R

    1998-01-01

    ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1Delta allele and defined seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1Delta). Most of the swa mutants exhibit phenotypes comparable to arf1Delta mutants such as temperature-conditional growth, hypersensitivity to fluoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 3' end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a significant defect in transport of carboxypeptidase Y or carboxypeptidase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not significantly affected in the chc1-5 mutant, further implicating clathrin specifically in the Golgi to vacuole transport pathway for carboxypeptidase Y. PMID:9755191

  14. Arf GTPase-activating Protein ASAP1 Interacts with Rab11 Effector FIP3 and Regulates Pericentrosomal Localization of Transferrin Receptor–positive Recycling Endosome

    PubMed Central

    Inoue, Hiroki; Ha, Vi Luan; Prekeris, Rytis

    2008-01-01

    ADP-ribosylation factors (Arfs) and Arf GTPase-activating proteins (GAPs) are key regulators of membrane trafficking and the actin cytoskeleton. The Arf GAP ASAP1 contains an N-terminal BAR domain, which can induce membrane tubulation. Here, we report that the BAR domain of ASAP1 can also function as a protein binding site. Two-hybrid screening identified FIP3, which is a putative Arf6- and Rab11-effector, as a candidate ASAP1 BAR domain-binding protein. Both coimmunoprecipitation and in vitro pulldown assays confirmed that ASAP1 directly binds to FIP3 through its BAR domain. ASAP1 formed a ternary complex with Rab11 through FIP3. FIP3 binding to the BAR domain stimulated ASAP1 GAP activity against Arf1, but not Arf6. ASAP1 colocalized with FIP3 in the pericentrosomal endocytic recycling compartment. Depletion of ASAP1 or FIP3 by small interfering RNA changed the localization of transferrin receptor, which is a marker of the recycling endosome, in HeLa cells. The depletion also altered the trafficking of endocytosed transferrin. These results support the conclusion that ASAP1, like FIP3, functions as a component of the endocytic recycling compartment. PMID:18685082

  15. Arf1-GTP-induced Tubule Formation Suggests a Function of Arf Family Proteins in Curvature Acquisition at Sites of Vesicle Budding*

    PubMed Central

    Krauss, Michael; Jia, Jun-Yong; Roux, Aurélien; Beck, Rainer; Wieland, Felix T.; De Camilli, Pietro; Haucke, Volker

    2008-01-01

    ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases. PMID:18693248

  16. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    SciTech Connect

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  17. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis.

    PubMed

    Sparks, J Alan; Kwon, Taegun; Renna, Luciana; Liao, Fuqi; Brandizzi, Federica; Blancaflor, Elison B

    2016-03-01

    The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants. PMID:26941089

  18. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins.

    PubMed Central

    Fields, T A; Casey, P J

    1997-01-01

    Pertussis toxin (PTX) has been widely used as a reagent to characterize the involvement of heterotrimeric G-proteins in signalling. This toxin catalyses the ADP-ribosylation of specific G-protein alpha subunits of the Gi family, and this modification prevents the occurrence of the receptor-G-protein interaction. This review focuses on the biochemical properties and signalling of those G-proteins historically classified as 'PTX-resistant' due to the inability of the toxin to influence signalling through them. These G-proteins include members of the Gq and G12 families and one Gi family member, i.e. Gz. Signalling pathways controlled by these G-proteins are well characterized only for Gq family members, which activate specific isoforms of phospholipase C, resulting in increases in intracellular calcium and activation of protein kinase C (PKC), among other responses. While members of the G12 family have been implicated in processes that regulate cell growth, and Gz has been shown to inhibit adenylate cyclase, the specific downstream targets to these G-proteins in vivo have not been clearly established. Since two of these proteins, G12 alpha and Gz alpha, are excellent substrates for PKC, there is the potential for cross-talk between their signalling and Gq-dependent processes leading to activation of PKC. In tissues that express these G-proteins, a number of guanine-nucleotide-dependent, PTX-resistant, signalling pathways have been defined for which the G-protein involved has not been identified. This review summarizes these pathways and discusses the evidence both for the participation of specific PTX-resistant G-proteins in them and for the regulation of these processes by PKC. PMID:9032437

  19. POBO, transcription factor binding site verification with bootstrapping

    PubMed Central

    Kankainen, Matti; Holm, Liisa

    2004-01-01

    Transcription factors can either activate or repress target genes by binding onto short nucleotide sequence motifs in the promoter regions of these genes. Here, we present POBO, a promoter bootstrapping program, for gene expression data. POBO can be used to detect, compare and verify predetermined transcription factor binding site motifs in the promoters of one or two clusters of co-regulated genes. The program calculates the frequencies of the motif in the input promoter sets. A bootstrap analysis detects significantly over- or underrepresented motifs. The output of the program presents bootstrapped results in picture and text formats. The program was tested with published data from transgenic WRKY70 microarray experiments. Intriguingly, motifs recognized by the WRKY transcription factors of plant defense pathways are similarly enriched in both up- and downregulated clusters. POBO analysis suggests slightly modified hypothetical motifs that discriminate between up- and downregulated clusters. In conclusion, POBO allows easy, fast and accurate verification of putative regulatory motifs. The statistical tests implemented in POBO can be useful in eliminating false positives from the results of pattern discovery programs and increasing the reliability of true positives. POBO is freely available from http://ekhidna.biocenter.helsinki.fi:9801/pobo. PMID:15215385

  20. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  1. COTRASIF: conservation-aided transcription-factor-binding site finder.

    PubMed

    Tokovenko, Bogdan; Golda, Rostyslav; Protas, Oleksiy; Obolenskaya, Maria; El'skaya, Anna

    2009-04-01

    COTRASIF is a web-based tool for the genome-wide search of evolutionary conserved regulatory regions (transcription factor-binding sites, TFBS) in eukaryotic gene promoters. Predictions are made using either a position-weight matrix search method, or a hidden Markov model search method, depending on the availability of the matrix and actual sequences of the target TFBS. COTRASIF is a fully integrated solution incorporating both a gene promoter database (based on the regular Ensembl genome annotation releases) and both JASPAR and TRANSFAC databases of TFBS matrices. To decrease the false-positives rate an integrated evolutionary conservation filter is available, which allows the selection of only those of the predicted TFBS that are present in the promoters of the related species' orthologous genes. COTRASIF is very easy to use, implements a regularly updated database of promoters and is a powerful solution for genome-wide TFBS searching. COTRASIF is freely available at http://biomed.org.ua/COTRASIF/. PMID:19264796

  2. Evolutionary optimization of transcription factor binding motif detection.

    PubMed

    Zhang, Zhao; Wang, Ze; Mai, Guoqin; Luo, Youxi; Zhao, Miaomiao; Zhou, Fengfeng

    2015-01-01

    All the cell types are under strict control of how their genes are transcribed into expressed transcripts by the temporally dynamic orchestration of the transcription factor binding activities. Given a set of known binding sites (BSs) of a given transcription factor (TF), computational TFBS screening technique represents a cost efficient and large scale strategy to complement the experimental ones. There are two major classes of computational TFBS prediction algorithms based on the tertiary and primary structures, respectively. A tertiary structure based algorithm tries to calculate the binding affinity between a query DNA fragment and the tertiary structure of the given TF. Due to the limited number of available TF tertiary structures, primary structure based TFBS prediction algorithm is a necessary complementary technique for large scale TFBS screening. This study proposes a novel evolutionary algorithm to randomly mutate the weights of different positions in the binding motif of a TF, so that the overall TFBS prediction accuracy is optimized. The comparison with the most widely used algorithm, Position Weight Matrix (PWM), suggests that our algorithm performs better or the same level in all the performance measurements, including sensitivity, specificity, accuracy and Matthews correlation coefficient. Our data also suggests that it is necessary to remove the widely used assumption of independence between motif positions. The supplementary material may be found at: http://www.healthinformaticslab.org/supp/ . PMID:25387969

  3. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M; Holder, Anthony A

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  4. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  5. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  6. Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton

    PubMed Central

    Jing, Jian; Tarbutton, Elizabeth; Wilson, Gayle; Prekeris, Rytis

    2009-01-01

    Cell adhesion and motility are very dynamic processes that require the temporal and spatial coordination of many cellular structures. ADP-ribosylation factor 6 (Arf6) has emerged as master regulator of endocytic membrane traffic and cytoskeletal dynamics during cell movement. Recently, a novel Arf6-binding protein known as FIP3/arfophilin/eferin has been identified. In addition to Arf6, FIP3 also interacts with Rab11, a small monomeric GTPase that regulates endocytic membrane transport. Both Arf6 and Rab11 GTPases have been implicated in regulation of cell motility. Here we test the role of FIP3 in breast carcinoma cell motility. First, we demonstrate that FIP3 is associated with recycling endosomes that are present at the leading edge of motile cells. Second, we show that FIP3 is required for the motility of MDA-MB-231 breast carcinoma cells. Third, we demonstrate that FIP3 regulates Rac1-dependent actin cytoskeleton dynamics and modulates the formation and ruffling of lamellipodia. Finally, we demonstrate that FIP3 regulates the localization of Arf6 at the plasma membrane of MDA-MB-231 cells. Based on our data we propose that FIP3 affects cell motility by regulating Arf6 localization to the plasma membrane of the leading edge, thus regulating polarized Rac1 activation and actin dynamics. PMID:19327867

  7. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis[OPEN

    PubMed Central

    Sparks, J. Alan; Renna, Luciana; Liao, Fuqi; Brandizzi, Federica

    2016-01-01

    The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants. PMID:26941089

  8. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    SciTech Connect

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation of unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.

  9. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    SciTech Connect

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..S binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.

  10. Role of protein kinase D2 phosphorylation on Tyr in modulation by ghrelin of Helicobacter pylori-induced up-regulation in gastric mucosal matrix metalloproteinase-9 (MMP-9) secretion.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase associated with host reaction to microbial endotoxins and also characterizes gastric mucosal inflammatory response to H. pylori infection. Here, we report on the factors involved in gastric mucosal MMP-9 secretion in response to H. pylori LPS, and the effect of hormone, ghrelin. We show that both the LPS-elicited induction in MMP-9 secretion and also the modulatory influence of ghrelin occur at the level of MMP-9 processing between the endoplasmic reticulum (ER) and Golgi. Further, we demonstrate that the LPS effect is associated with up-regulation in the activation of Arf1, a small GTPase of the ADP-ribosylation factor family, and the recruitment and phosphorylation of protein kinase D2 (PKD2), involved in the secretory cargo processing in the Golgi. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. Thus, our findings demonstrate the role of Arf1/PKD2 in mediation of H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 secretion and suggest the modulatory mechanism of ghrelin action. PMID:27209313

  11. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans.

    PubMed

    Weyer, Sven; Pääbo, Svante

    2016-02-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  12. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans

    PubMed Central

    Weyer, Sven; Pääbo, Svante

    2016-01-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  13. Dynamics, mechanisms, and functional implications of transcription factor binding evolution in metazoans

    PubMed Central

    Villar, Diego

    2014-01-01

    Synopsis Transcription factor binding differences can contribute to organismal evolution by altering downstream gene expression programmes. Recent genome-wide studies in Drosophila and mammals have revealed common quantitative and combinatorial properties of in vivo DNA-binding, as well as significant differences in the rate and mechanisms of metazoan transcription factor binding evolution. Here, we review the recently-discovered, rapid re-wiring of in vivo transcription factor binding between related metazoan species and summarize general principles underlying the observed patterns of evolution. We then consider what might explain genome evolution differences between metazoan phyla, and outline the conceptual and technological challenges facing the field. PMID:24590227

  14. PARP1 Val762Ala polymorphism reduces enzymatic activity

    SciTech Connect

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin . E-mail: tong@iarc.fr; Shen Yan

    2007-03-02

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K {sub m} of PARP1-Ala762 was increased to a 1.2-fold of the K {sub m} of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K {sub m}. This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism.

  15. Distribution of G/sub o. cap alpha. / mRNA and protein in bovine tissues

    SciTech Connect

    Price, S.R.; Tsai, S.C.; Adamik, R.; Angus, C.W.; Van Meurs, K.P.; Czarnecki, S.; Bruckwick, E.C.; Moss, J.; Vaughan, M.

    1987-05-01

    G/sub o..cap alpha../ is a 39 kDa guanyl nucleotide-binding protein similar in structure and function to G/sub s..cap alpha../ and G/sub i..cap alpha../ in the adenylate cyclase complex and transducin (G/sub t..cap alpha../) in the retinal photon receptor system. A bovine retinal cDNA clone, lambdaG09, that encodes the complete amino acid sequence of G/sub o..cap alpha../ has been isolated. Nick-translated lambdaG09 cDNA and a 5' end-labeled oligonucleotide probe complementary to a 24 base sequence unique to G/sub o..cap alpha../ were used as probes for Northern analysis of poly(A)/sup +/ RNA from bovine tissues. A major 4.0 kb mRNA was detected in brain and retina and in lesser amounts in heart. Several smaller mRNAs also hybridized with both probes in these tissues and in liver and lung. G/sub o..cap alpha../ protein was identified using rabbit polyclonal antibodies directed against purified bovine G/sub o..cap alpha../ and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation. Soluble and membrane proteins were incubated with toxin and (/sup 32/P)NAD and then separated by gel electrophoresis before transfer to nitrocellulose for immunoreaction and subsequent autoradiography. A radiolabeled and immunoreactive 39 kDa membrane protein was found principally in retina and brain, and to a lesser extent, in heart. Thus, in the tissues examined, distribution of the 4.0 kb mRNA parallels that of the immunoreactive G/sub o..cap alpha../ with relatively small amounts in heart and larger amounts in brain and retina.

  16. Identification of cellular factors binding to acetylated HIV-1 integrase.

    PubMed

    Allouch, Awatef; Cereseto, Anna

    2011-11-01

    The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle. PMID:20016921

  17. In vivo dynamics of the F-actin-binding protein neurabin-II.

    PubMed Central

    Stephens, D J; Banting, G

    2000-01-01

    Neurabin-II (spinophilin) is a ubiquitously expressed F-actin-binding protein containing an N-terminal actin-binding domain, a PDZ (PSD95/discs large/ZO-1) domain and a C-terminal domain predicted to form a coiled-coil structure. We have stably expressed a green fluorescent protein (GFP)-tagged version of neurabin-II in PC12 cells, and characterized the in vivo dynamics of this actin-binding protein using confocal fluorescence microscopy. We show that GFP-neurabin-II localizes to actin filaments, especially at cortical sites and areas underlying sites of active membrane remodelling. GFP-neurabin-II labels only a subset of F-actin within these cells, as indicated by rhodamine-phalloidin staining. Both actin filaments and small, highly motile structures within the cell body are seen. Photobleaching experiments show that GFP-neurabin-II also exhibits highly dynamic behaviour when bound to actin filaments. Latrunculin B treatment results in rapid relocalization of GFP-neurabin-II to the cytosol, whereas cytochalasin D treatment causes the collapse of GFP-neurabin-II fluorescence to intensely fluorescent foci of F-actin within the cell body. This collapse is reversed on cytochalasin D removal, recovery from which is greatly accelerated by stimulation of cells with epidermal growth factor (EGF). Furthermore, we show that this EGF-induced relocalization of GFP-neurabin-II is dependent on the activity of the small GTPase Rac1 but not the activity of ADP-ribosylation factor 6. PMID:10620493

  18. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

    PubMed Central

    Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  19. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    PubMed

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  20. Membrane metabolism mediated by Sec14 family members influences Arf GTPase activating protein activity for transport from the trans-Golgi.

    PubMed

    Wong, Tania A; Fairn, Gregory D; Poon, Pak P; Shmulevitz, Maya; McMaster, Christopher R; Singer, Richard A; Johnston, Gerald C

    2005-09-01

    The budding yeast Saccharomyces cerevisiae contains a family of Arf (ADP-ribosylation factor) GTPase activating protein (GAP) proteins with the Gcs1 + Age2 ArfGAP pair providing essential overlapping function for the movement of transport vesicles from the trans-Golgi network. We have generated a temperature-sensitive but stable version of the Gcs1 protein that is impaired only for trans-Golgi transport and find that deleterious effects of this enfeebled Gcs1-4 mutant protein are relieved by increased gene dosage of the gcs1-4 mutant gene itself or by the SFH2 gene (also called CSR1), encoding a phosphatidylinositol transfer protein (PITP). This effect was not seen for the SEC14 gene, encoding the founding member of the yeast PITP protein family, even though the Gcs1 and Age2 ArfGAPs are known to be downstream effectors of Sec14-mediated activity for trans-Golgi transport. Sfh2-mediated suppression of inadequate Gcs1-4 function depended on phospholipase D, whereas inadequate Gcs1-4 activity was relieved by increasing levels of diacylglycerol (DAG). Recombinant Gcs1 protein was found to bind certain phospholipids but not DAG. Our findings favor a model of Gcs1 localization through binding to specific phospholipids and activation of ArfGAP activity by DAG-mediated membrane curvature as the transport vesicle is formed. Thus, ArfGAPs are subject to both temporal and spatial regulation that is facilitated by Sfh2-mediated modulation of the lipid environment. PMID:16126894

  1. Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix

    PubMed Central

    Siddharthan, Rahul

    2010-01-01

    Background Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps. Methodology/Principal Findings I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region. Conclusion/Significance While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements. PMID:20339533

  2. Varying levels of complexity in transcription factor binding motifs

    PubMed Central

    Keilwagen, Jens; Grau, Jan

    2015-01-01

    Binding of transcription factors to DNA is one of the keystones of gene regulation. The existence of statistical dependencies between binding site positions is widely accepted, while their relevance for computational predictions has been debated. Building probabilistic models of binding sites that may capture dependencies is still challenging, since the most successful motif discovery approaches require numerical optimization techniques, which are not suited for selecting dependency structures. To overcome this issue, we propose sparse local inhomogeneous mixture (Slim) models that combine putative dependency structures in a weighted manner allowing for numerical optimization of dependency structure and model parameters simultaneously. We find that Slim models yield a substantially better prediction performance than previous models on genomic context protein binding microarray data sets and on ChIP-seq data sets. To elucidate the reasons for the improved performance, we develop dependency logos, which allow for visual inspection of dependency structures within binding sites. We find that the dependency structures discovered by Slim models are highly diverse and highly transcription factor-specific, which emphasizes the need for flexible dependency models. The observed dependency structures range from broad heterogeneities to sparse dependencies between neighboring and non-neighboring binding site positions. PMID:26116565

  3. Reliable prediction of transcription factor binding sites by phylogenetic verification.

    PubMed

    Li, Xiaoman; Zhong, Sheng; Wong, Wing H

    2005-11-22

    We present a statistical methodology that largely improves the accuracy in computational predictions of transcription factor (TF) binding sites in eukaryote genomes. This method models the cross-species conservation of binding sites without relying on accurate sequence alignment. It can be coupled with any motif-finding algorithm that searches for overrepresented sequence motifs in individual species and can increase the accuracy of the coupled motif-finding algorithm. Because this method is capable of accurately detecting TF binding sites, it also enhances our ability to predict the cis-regulatory modules. We applied this method on the published chromatin immunoprecipitation (ChIP)-chip data in Saccharomyces cerevisiae and found that its sensitivity and specificity are 9% and 14% higher than those of two recent methods. We also recovered almost all of the previously verified TF binding sites and made predictions on the cis-regulatory elements that govern the tight regulation of ribosomal protein genes in 13 eukaryote species (2 plants, 4 yeasts, 2 worms, 2 insects, and 3 mammals). These results give insights to the transcriptional regulation in eukaryotic organisms. PMID:16286651

  4. Quantitative modeling of transcription factor binding specificities using DNA shape.

    PubMed

    Zhou, Tianyin; Shen, Ning; Yang, Lin; Abe, Namiko; Horton, John; Mann, Richard S; Bussemaker, Harmen J; Gordân, Raluca; Rohs, Remo

    2015-04-14

    DNA binding specificities of transcription factors (TFs) are a key component of gene regulatory processes. Underlying mechanisms that explain the highly specific binding of TFs to their genomic target sites are poorly understood. A better understanding of TF-DNA binding requires the ability to quantitatively model TF binding to accessible DNA as its basic step, before additional in vivo components can be considered. Traditionally, these models were built based on nucleotide sequence. Here, we integrated 3D DNA shape information derived with a high-throughput approach into the modeling of TF binding specificities. Using support vector regression, we trained quantitative models of TF binding specificity based on protein binding microarray (PBM) data for 68 mammalian TFs. The evaluation of our models included cross-validation on specific PBM array designs, testing across different PBM array designs, and using PBM-trained models to predict relative binding affinities derived from in vitro selection combined with deep sequencing (SELEX-seq). Our results showed that shape-augmented models compared favorably to sequence-based models. Although both k-mer and DNA shape features can encode interdependencies between nucleotide positions of the binding site, using DNA shape features reduced the dimensionality of the feature space. In addition, analyzing the feature weights of DNA shape-augmented models uncovered TF family-specific structural readout mechanisms that were not revealed by the DNA sequence. As such, this work combines knowledge from structural biology and genomics, and suggests a new path toward understanding TF binding and genome function. PMID:25775564

  5. Structure and function of the ARH family of ADP-ribose-acceptor hydrolases

    PubMed Central

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-01-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD+) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g. ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g. ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39 kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1−/− and ARH3−/− mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos. PMID:24746921

  6. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network.

    PubMed

    Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M

    2007-08-01

    G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves beta-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative beta-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, beta-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter beta-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, beta-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of beta-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation. PMID:17623778

  7. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin.

    PubMed

    Padilla, Philip Ian; Uhart, Marina; Pacheco-Rodriguez, Gustavo; Peculis, Brenda A; Moss, Joel; Vaughan, Martha

    2008-03-01

    BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, activates class I ADP-ribosylation factors (ARF1-3) by catalyzing the replacement of bound GDP by GTP, an action critical for the regulation of protein transport in eukaryotic cells. Our earlier report [Padilla PI, Pancheco-Rodriguez G, Moss J, Vaughan M (2004) Proc Natl Acad Sci USA 101:2752-2757] that BIG1 concentrated in nucleoli of serum-starved HepG2 cells prompted us to identify molecules associated with BIG1 in dynamic nucleolar structures. Antibodies against BIG1 or nucleolin coprecipitated both proteins from nuclei, which was abolished by the incubation of nuclei with RNase A or DNase, indicating that the interaction depended on nucleic acids. (32)P labeling of RNAs immunoprecipitated with BIG1 or nucleolin from nuclei revealed bands of approximately 210 bases that also hybridized with U3 small nucleolar (sno)RNA-specific oligonucleotides. Clones of U3 snoRNA cDNAs from the material precipitated by antibodies against BIG1 or nucleolin yielded identical nucleotide sequences that also were found in genomic DNA. Later analyses revealed the presence of fibrillarin, nucleoporin p62, and La in BIG1 and nucleolin immunoprecipitates. Our data demonstrate that BIG1, nucleolin, U3, the U3-binding protein fibrillarin, and the RNA-binding protein La may exist together in nuclear complexes, consistent with a potential role for BIG1 in nucleolar processes. Evidence that BIG1 and nucleolin, but not fibrillarin, can be present with p62 at the nuclear envelope confirms the presence of BIG1 and nucleolin in dynamic molecular complexes that change in composition while moving through nuclei. Nuclear functions of BIG1 remain to be determined. PMID:18292223

  8. Programmed factor binding to simian virus 40 GC-box replication and transcription control sequences.

    PubMed Central

    Buchanan, R L; Gralla, J D

    1990-01-01

    Nuclear footprinting revealed a temporal program involving factor binding to the repetitive GC-box DNA elements present in the simian virus 40 regulatory region. This program specified ordered and directional binding to these tandem regulatory sequences in vivo during the late phase of infection. The program was interrupted by the DNA replication inhibitor aphidicolin or by inactivation of the viral replication factor simian virus 40 T antigen, suggesting a link between viral DNA replication and new factor binding. Measurements of DNA accumulation in viruses lacking either the distal or proximal halves of the GC-box region suggested that the region has a dual role in replication control. Overall, the data point to important relationships between DNA replication and factor binding to the GC-box DNA, a multifunctional regulatory region. Images PMID:2152821

  9. Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters

    PubMed Central

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters. PMID:21931670

  10. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  11. Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry.

    PubMed

    Fedorova, Maria; Frolov, Andrej; Hoffmann, Ralf

    2010-06-01

    Mono- and poly-adenosine diphosphate (ADP)-ribosylation are common post-translational modifications incorporated by sequence-specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non-enzymatic ADP-ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori-compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix-assisted laser desorption/ionization (MALDI)-MS, the ADP-ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in-source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)-MS. The same fragmentation site also dominated the MALDI-PSD (post-source decay) and ESI-CID (collision-induced dissociation) mass spectra. The remaining phospho-ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b- and y-ion series. Cleavage of the ADP-ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor-ion scans (m/z 348.08), and thereby permits the identification of ADP-ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP-ribosyl group was stable, providing ADP-ribosylated c- and z-ions, and thus allowing reliable sequence analyses. PMID:20527035

  12. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke.

    PubMed

    Pulliam, John V K; Xu, Zhenfeng; Ford, Gregory D; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra C; Cannon, Virginetta S; Tewolde, Teclemichael; Moreno, Carlos S; Ford, Byron D

    2013-02-01

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. PMID:23246490

  13. An information transmission model for transcription factor binding at regulatory DNA sites

    PubMed Central

    2012-01-01

    Background Computational identification of transcription factor binding sites (TFBSs) is a rapid, cost-efficient way to locate unknown regulatory elements. With increased potential for high-throughput genome sequencing, the availability of accurate computational methods for TFBS prediction has never been as important as it currently is. To date, identifying TFBSs with high sensitivity and specificity is still an open challenge, necessitating the development of novel models for predicting transcription factor-binding regulatory DNA elements. Results Based on the information theory, we propose a model for transcription factor binding of regulatory DNA sites. Our model incorporates position interdependencies in effective ways. The model computes the information transferred (TI) between the transcription factor and the TFBS during the binding process and uses TI as the criterion to determine whether the sequence motif is a possible TFBS. Based on this model, we developed a computational method to identify TFBSs. By theoretically proving and testing our model using both real and artificial data, we found that our model provides highly accurate predictive results. Conclusions In this study, we present a novel model for transcription factor binding regulatory DNA sites. The model can provide an increased ability to detect TFBSs. PMID:22672438

  14. Identification of candidate transcription factor binding sites in the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  15. The calcium-sensing receptor changes cell shape via a β-arrestin-1–ARNO–ARF6–ELMO protein network

    PubMed Central

    Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M.

    2012-01-01

    Summary G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves β-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative β-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, β-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter β-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, β-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of β-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation. PMID:17623778

  16. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.

    PubMed

    Tanner, K G; Landry, J; Sternglanz, R; Denu, J M

    2000-12-19

    Conflicting reports have suggested that the silent information regulator 2 (SIR2) protein family employs NAD(+) to ADP-ribosylate histones [Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. (1999) Cell 99, 735-745; Frye, R. A. (1999) Biochem. Biophys. Res. Commun. 260, 273-279], deacetylate histones [Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. & Sternglanz, R. (2000) Proc. Natl. Acad. Sci. USA 97, 5807-5811; Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C. & Boeke, J. D. (2000) Proc. Natl. Acad. Sci. USA 97, 6658-6663], or both [Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. (2000) Nature (London) 403, 795-800]. Uncovering the true enzymatic function of SIR2 is critical to the basic understanding of its cellular function. Therefore, we set out to authenticate the reaction products and to determine the intrinsic catalytic mechanism. We provide direct evidence that the efficient histone/protein deacetylase reaction is tightly coupled to the formation of a previously unidentified acetyl-ADP-ribose product (1-O-acetyl-ADP ribose). One molecule of NAD(+) and one molecule of acetyl-lysine are readily catalyzed to one molecule of deacetylated lysine, nicotinamide, and 1-O-acetyl-ADP-ribose. A unique reaction mechanism involving the attack of enzyme-bound acetate or the direct attack of acetyl-lysine on an oxocarbenium ADP-ribose intermediate is proposed. We suggest that the reported histone/protein ADP-ribosyltransferase activity is a low-efficiency side reaction that can be explained through the partial uncoupling of the intrinsic deacetylation and acetate transfer to ADP-ribose. PMID:11106374

  17. Identification of cDNA encoding an additional. alpha. subunit of a human GTP-binding protein: Expression of three. alpha. sub i subtypes in human tissues and cell lines

    SciTech Connect

    Kim, S.; Ang, S.L.; Bloch, D.B.; Bloch, K.D.; Kawahara, Y.; Tolman, C.; Lee, R.; Seidman, J.G.; Neer, E.J. )

    1988-06-01

    The guanine nucleotide-binding proteins (G proteins), which mediate hormonal regulation of many membrane functions, are composed of {alpha}, {beta}, and {gamma} subunits. The authors have cloned and characterized cDNA from a human T-cell library encoding a form of {alpha}{sub i} that is different from the human {alpha}{sub i} subtypes previously reported. {alpha}{sub i} is the {alpha} subunit of a class of G proteins that inhibits adenylate cyclase and regulates other enzymes and ion channels. This cDNA encodes a polypeptide of 354 amino acids and is assigned to encode the {alpha}{sub i-3} subtype of G proteins on the basis of its similarity to other {alpha}{sub i}-like cDNAs and the presence of a predicted site for ADP ribosylation by pertussis toxin. They have determined the expression of mRNA for this and two other subtypes of human {alpha}{sub i} ({alpha}{sub i-1} and {alpha}{sub i-2}) in a variety of human fetal tissues and in human cell lines. All three {alpha}{sub i} subtypes were present in the tissues tested. However, analysis of individual cell types reveals specificity of {alpha}{sub i-1} expression. mRNA for {alpha}{i-1} is absent in T cells, B cells, and monocytes but is present in other cell lines. The finding of differential expression of {alpha}{sub i-1} genes may permit characterization of distinct physiological roles for this {alpha}{sub i} subunit. mRNA for {alpha}{sub i-2} and {alpha}{sub i-3} was found in all the primary and transformed cell lines tested. Thus, some cells contain all three {alpha}{sub i} subtypes. This observation raises the question of how cells prevent cross talk among receptors that are coupled to effectors through such similar {alpha} proteins.

  18. Several insulin-like growth factor-I analogues and complexes of insulin-like growth factors-I and -II with insulin-like growth factor-binding protein-3 fail to mimic the effect of growth hormone upon lactation in the rat.

    PubMed

    Flint, D J; Tonner, E; Beattie, J; Gardner, M

    1994-02-01

    Lactation was suppressed in rats using a combined treatment of bromocriptine (to reduce prolactin concentrations) and a specific antiserum to rat GH administered twice daily for 2 days. When milk production had ceased, as determined by litter weight loss and the absence of milk in the stomachs of pups, attempts were made to reinitiate lactation using prolactin, GH, insulin-like growth factor-I (IGF-I) precomplexed to recombinant human IGF-binding protein-3 (hIGFBP-3) or IGF-I plus IGF-II precomplexed to hIGFBP-3. Despite the fact that all treatments except prolactin led to increases in serum IGFs and IGFBP-3, only prolactin and GH provoked the reinitiation of milk production as determined by increased litter weight gain, milk in the stomach of pups and a significant increase in the weight of the mammary glands. Since the mammary gland has been shown to produce IGFBPs which may inhibit IGF action we also tested three IGF-I analogues, R3-IGF-I, Long-IGF-I and Long-R3-IGF-I. R3-IGF-I has a single amino acid substitution (Glu to Arg) at position 3 whereas Long-IGF-I has a 13 amino acid N-terminal extension. These modifications dramatically reduce the ability of these analogues to bind to IGFBPs although they remain active at the IGF-I receptor. Such IGF analogues would therefore be expected to be active irrespective of the production of inhibitory IGFBPs. However, none was effective in reinitiating lactation, even at doses which have been shown to be biologically effective in terms of nitrogen retention.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7513341

  19. Modulation of NADH Levels by Arabidopsis Nudix Hydrolases, AtNUDX6 and 7, and the Respective Proteins Themselves Play Distinct Roles in the Regulation of Various Cellular Responses Involved in Biotic/Abiotic Stresses.

    PubMed

    Ogawa, Takahisa; Muramoto, Kohei; Takada, Risa; Nakagawa, Shouya; Shigeoka, Shigeru; Yoshimura, Kazuya

    2016-06-01

    Arabidopsis Nudix hydrolases, AtNUDX6 and 7, exhibit pyrophosphohydrolase activities toward NADH and contribute to the modulation of various defense responses, such as the poly(ADP-ribosyl)ation (PAR) reaction and salicylic acid (SA)-induced Nonexpresser of Pathogenesis-Related genes 1 (NPR1)-dependent defense pathway, against biotic and abiotic stresses. However, the mechanisms by which these enzymes regulate such cellular responses remain unclear. To clarify the functional role(s) of AtNUDX6 and 7 and NADH metabolism, we examined the effects of the transient expression of the active and inactive forms of AtNUDX6 and 7 under the control of an estrogen (ES)-inducible system on various stress responses. The transient expression of active AtNUDX6 and 7 proteins suppressed NADH levels and induced PAR activity, whereas that of their inactive forms did not, indicating the involvement of NADH metabolism in the regulation of the PAR reaction. A transcriptome analysis using KO-nudx6, KO-nudx7 and double KO-nudx6/7 plants, in which intracellular NADH levels increased, identified genes (NADH-responsive genes, NRGs) whose expression levels positively and negatively correlated with NADH levels. Many NRGs did not overlap with the genes whose expression was reported to be responsive to various types of oxidants and reductants, suggesting a novel role for intracellular NADH levels as a redox signaling cue. The active and inactive AtNUDX6 proteins induced the expression of thioredoxin-h5, the activator of NPR1 and SA-induced NPR1-dependent defense genes, while the active and inactive AtNUDX7 proteins suppressed the accumulation of SA and subsequent gene expression, indicating that AtNUDX6 and 7 proteins themselves play distinct roles in stress responses. PMID:27095738

  20. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    SciTech Connect

    Mahy, N.; Woolkalis, M.; Thermos, K.; Carlson, K.; Manning, D.; Reisine, T.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was to a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.

  1. The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents.

    PubMed

    Lee, Young-Sup; Shin, Donghyun; Lee, Wonseok; Taye, Mengistie; Cho, Kwanghyun; Park, Kyoung-Do; Kim, Heebal

    2016-01-01

    Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to 2*SNP effect. PMID:26732326

  2. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    PubMed Central

    Sarfstein, Rive; Belfiore, Antonino; Werner, Haim

    2010-01-01

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells. PMID:24281069

  3. Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38

    PubMed Central

    Kopple, Tayler E.; Arendshorst, William J.

    2014-01-01

    Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38−/− mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3–25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38−/− mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38−/− mice. Inhibition of nitric oxide (NO) synthase with nitro-l-arginine methyl ester (l-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38−/− (P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38−/− mice (P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains (P < 0.005) but was ineffective when administered after l-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by l-NAME and indomethacin (P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways. PMID:24623148

  4. Increased poly(ADP-ribosyl)ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment

    PubMed Central

    Oláh, Gábor; Finnerty, Celeste; Sbrana, Elena; Elijah, Itoro; Gerö, Domokos; Herndon, David; Szabó, Csaba

    2011-01-01

    Summary Activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) has been shown to promote cellular energetic collapse and cellular necrosis in various forms of critical illness. Most of the evidence implicating the PARP pathway in disease processes is derived from preclinical studies. With respect to PARP and burns, studies in rodent and large animal models of burn injury have demonstrated the activation of PARP in various tissues and the beneficial effect of its pharmacological inhibition. The aim of the current study was to measure the activation of PARP in human skeletal muscle biopsies at various stages of severe pediatric burn injury and to identify the cell types where this activation may occur. Another aim of the study was to test the effect of propranolol (an effective treatment of patients with burns), on the activation of PARP in skeletal muscle biopsies. PARP activation was measured by Western blotting for its product, poly(ADP-ribose) (PAR). The localization of PARP activation was determined by PAR immunohistochemistry. The results showed that PARP becomes activated in the skeletal muscle tissue after burns, with the peak of the activation occurring in the middle stage of the disease (13–18 days after burns). Even at the late stage of the disease (69–369 days post-burn) an elevated degree of PARP activation persisted in some of the patients. Immunohistochemical studies localized the staining of PAR primarily to vascular endothelial cells, and occasionally to resident mononuclear cells. There was a marked suppression of PARP activation in the skeletal muscle biopsies of patients who received propranolol treatment. We conclude that human burn injury is associated with the activation of PARP. We hypothesize that this response may contribute to the inflammatory responses and cell dysfunction in burns. Some of the clinical benefit of propranolol in burns may be related to its inhibitory effect on PARP activation. PMID:21368715

  5. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    SciTech Connect

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-08-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability.

  6. ADP-ribosylation factor-like 4C (ARL4C), a novel ovarian cancer metastasis suppressor, identified by integrated genomics

    PubMed Central

    Su, Dan; Katsaros, Dionyssios; Xu, Shenhua; Xu, Haiyan; Gao, Yun; Biglia, Nicoletta; Feng, Jianguo; Ying, Lisha; Zhang, Ping; Benedetto, Chiara; Yu, Herbert

    2015-01-01

    Understanding the molecular mechanisms involving the initiation, progression, and metastasis of ovarian cancer is important for the prevention, detection, and treatment of ovarian cancer. In this study, two ovarian cancer cell lines, HO-8910 and its derivative HO-8910PM with highly metastatic potential, were applied to comparative genomic hybridization (CGH) analysis. We found 14 chromosome fragments with different copy numbers between the two cell lines, one (2q36.1-37.3) of which was confirmed to be one-copy loss in HO-8910PM by fluorescent in situ hybridization (FISH). Using the microarray data on gene expression profiles from these cell lines, 6 significantly expression-decreased genes located on 2q36.1-37.3 in HO-8910PM were identified. Of the 6 genes, ARL4C was identified as a novel ovarian cancer-related gene using integrated molecular and genomic analyses. ARL4C mRNA expression was validated by quantitative PCR to be markedly decreased in HO-8910PM cells, compared to that in HO-8910. Both overexpression and knockdown of ARL4C demonstrated that low ARL4C expression promotes the migration but not influences proliferation capability of ovarian cancer cells in vitro, indicating its specific role in ovarian cancer progression. Furthermore, ovarian cancer patients with medium and high expression of ARL4C mRNA had a favorable prognosis compared to those with low expression, suggesting the ARL4C could be a potential predictor for ovarian cancer prognosis. PMID:25901194

  7. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  8. Every Site Counts: Submitting Transcription Factor-Binding Site Information through the CollecTF Portal.

    PubMed

    Erill, Ivan

    2015-08-01

    Experimentally verified transcription factor-binding sites represent an information-rich and highly applicable data type that aptly summarizes the results of time-consuming experiments and inference processes. Currently, there is no centralized repository for this type of data, which is routinely embedded in articles and extremely hard to mine. CollecTF provides the first standardized resource for submission and deposition of these data into the NCBI RefSeq database, maximizing its accessibility and prompting the community to adopt direct submission policies. PMID:26013488

  9. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  10. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  11. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    PubMed

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  12. A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport.

    PubMed Central

    Gurich, R W; Codina, J; DuBose, T D

    1991-01-01

    The effects of guanosine 5'-triphosphate (GTP) and GTP-gamma-S, known activators of GTP binding proteins, on proton transport were investigated in endosome-enriched vesicles (endosomes). Endosomes were prepared from rabbit renal cortex following the intravenous injection of FITC-dextran. The rate of intravesicular acidification was determined by measuring changes in fluorescence of FITC-dextran. Both GTP and GTP-gamma-S stimulated significantly the initial rate of proton transport. In contrast, GDP-beta-S, which does not activate GTP binding proteins, inhibited proton transport. The rank order of stimulation was GTP-gamma-S greater than GTP greater than control greater than GDP-beta-S. GTP-gamma-S stimulation of proton transport was also observed under conditions in which chloride entry was eliminated, i.e., 0 mM external chloride concentration in the presence of potassium/valinomycin voltage clamping. GTP-gamma-S did not affect proton leak in endosomes as determined by collapse of H+ ATPase-generated pH gradients. ADP ribosylation by treatment of endosomal membranes with pertussis toxin revealed two substrates corresponding to the 39-41 kD region and comigrating with alpha i subunits. Pretreatment of the membranes with pertussis toxin had no effect on proton transport in the absence of GTP or GTP-gamma-S. However, pretreatment with pertussis toxin blocked the stimulation of proton transport by GTP. In contrast, as reported in other membranes by others previously, pertussis toxin did not prevent the stimulation of proton transport by GTP-gamma-S. These findings, taken together, indicate that GTP binding proteins are present in endosomal membranes derived from renal cortex and that activation of G protein by GTP and GTP-gamma-S stimulates proton transport in a rank order identical to that reported for other transport pathways modulated by Gi proteins. Therefore, these studies suggest that G proteins are capable of stimulating the vacuolar H ATPase of endosomes

  13. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    SciTech Connect

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  14. Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites

    PubMed Central

    Reddy, Timothy E; DeLisi, Charles; Shakhnovich, Boris E

    2007-01-01

    Computational prediction of nucleotide binding specificity for transcription factors remains a fundamental and largely unsolved problem. Determination of binding positions is a prerequisite for research in gene regulation, a major mechanism controlling phenotypic diversity. Furthermore, an accurate determination of binding specificities from high-throughput data sources is necessary to realize the full potential of systems biology. Unfortunately, recently performed independent evaluation showed that more than half the predictions from most widely used algorithms are false. We introduce a graph-theoretical framework to describe local sequence similarity as the pair-wise distances between nucleotides in promoter sequences, and hypothesize that densely connected subgraphs are indicative of transcription factor binding sites. Using a well-established sampling algorithm coupled with simple clustering and scoring schemes, we identify sets of closely related nucleotides and test those for known TF binding activity. Using an independent benchmark, we find our algorithm predicts yeast binding motifs considerably better than currently available techniques and without manual curation. Importantly, we reduce the number of false positive predictions in yeast to less than 30%. We also develop a framework to evaluate the statistical significance of our motif predictions. We show that our approach is robust to the choice of input promoters, and thus can be used in the context of predicting binding positions from noisy experimental data. We apply our method to identify binding sites using data from genome scale ChIP–chip experiments. Results from these experiments are publicly available at http://cagt10.bu.edu/BSG. The graphical framework developed here may be useful when combining predictions from numerous computational and experimental measures. Finally, we discuss how our algorithm can be used to improve the sensitivity of computational predictions of transcription factor

  15. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    PubMed

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade. PMID:26285209

  16. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    SciTech Connect

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Here we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.

  17. Multiple transcription factor binding sites predict AID targeting in non-immunoglobulin genes

    PubMed Central

    Duke, Jamie L.; Liu, Man; Yaari, Gur; Khalil, Ashraf M.; Tomayko, Mary M.; Shlomchik, Mark J.; Schatz, David G.; Kleinstein, Steven H.

    2013-01-01

    Aberrant targeting of the enzyme Activation Induced Cytidine Deaminase (AID) results in the accumulation of somatic mutations in approximately 25% of expressed genes in germinal center B cells. Observations in Ung−/− Msh2−/− mice suggest that many other genes efficiently repair AID-induced lesions, so that up to 45% of genes may actually be targeted by AID. It is important to understand the mechanisms that recruit AID to certain genes, as this mis-targeting represents an important risk for genome instability. We hypothesize that several mechanisms will combine to target AID to each locus. In order to resolve which mechanisms affect AID targeting, we analyze 7.3Mb of sequence data, along with the regulatory context, from 83 genes in Ung−/− Msh2−/− mice to identify common properties of AID targets. This analysis identifies the involvement of three transcription factor binding sites (E-box motifs, along with YY1 and C/EBP-beta binding sites) that may work together to recruit AID. Based on previous knowledge and these newly discovered features, a classification tree model was built to predict genome-wide AID targeting. Using this predictive model we were able to identify a set of 101 high-interest genes that are likely targets of AID. PMID:23514741

  18. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms.

    PubMed

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward; Grallert, Harald; Glunk, Viktoria; Berulava, Tea; Lee, Heekyoung; Oskolkov, Nikolay; Fadista, Joao; Ehlers, Kerstin; Wahl, Simone; Hoffmann, Christoph; Qian, Kun; Rönn, Tina; Riess, Helene; Müller-Nurasyid, Martina; Bretschneider, Nancy; Schroeder, Timm; Skurk, Thomas; Horsthemke, Bernhard; Spieler, Derek; Klingenspor, Martin; Seifert, Martin; Kern, Michael J; Mejhert, Niklas; Dahlman, Ingrid; Hansson, Ola; Hauck, Stefanie M; Blüher, Matthias; Arner, Peter; Groop, Leif; Illig, Thomas; Suhre, Karsten; Hsu, Yi-Hsiang; Mellgren, Gunnar; Hauner, Hans; Laumen, Helmut

    2014-01-16

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms. PMID:24439387

  19. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    PubMed Central

    Xu, Minli; Su, Zhengchang

    2010-01-01

    Background Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however, few such methods with high accuracy have been described. Methodology/Principal Findings Here we describe a novel alignment-free method for quantifying the similarity of motifs using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity among their corresponding k-mer vectors. Conclusions/Significance We demonstrate that our method in general achieves similar performance or outperforms the existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription factors of the same family. PMID:20098703

  20. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency

    PubMed Central

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade. PMID:26285209

  1. Allele Frequencies of Variants in Ultra Conserved Elements Identify Selective Pressure on Transcription Factor Binding

    PubMed Central

    Silla, Toomas; Kepp, Katrin; Tai, E. Shyong; Goh, Liang; Davila, Sonia; Ivkovic, Tina Catela; Calin, George A.; Voorhoeve, P. Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level. PMID:25369454

  2. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression.

    PubMed

    Tian, Erming; Børset, Magne; Sawyer, Jeffrey R; Brede, Gaute; Våtsveen, Thea K; Hov, Håkon; Waage, Anders; Barlogie, Bart; Shaughnessy, John D; Epstein, Joshua; Sundan, Anders

    2015-11-01

    The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells. PMID:26220195

  3. AthaMap: from in silico data to real transcription factor binding sites.

    PubMed

    Bülow, Lorenz; Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Hehl, Reinhard

    2006-01-01

    AthaMap generates a map for cis-regulatory sequences for the whole Arabidopsis thaliana genome. AthaMap was initially developed by matrix-based detection of putative transcription factor binding sites (TFBS) mostly determined from random binding site selection experiments. Now, also experimentally verified TFBS have been included for 48 different Arabidopsis thaliana transcription factors (TF). Based on these sequences, 89,416 very similar putative TFBS were determined within the genome of A. thaliana and annotated to AthaMap. Matrix- and single sequence-based binding sites can be included in colocalization analysis for the identification of combinatorial cis-regulatory elements. As an example, putative target genes of the WRKY18 transcription factor that is involved in plant-pathogen interaction were determined. New functions of AthaMap include descriptions for all annotated Arabidopsis thaliana genes and direct links to TAIR, TIGR and MIPS. Transcription factors used in the binding site determination are linked to TAIR and TRANSFAC databases. AthaMap is freely available at http://www.athamap.de. PMID:16922688

  4. Structure-based prediction of transcription factor binding specificity using an integrative energy function

    PubMed Central

    Farrel, Alvin; Murphy, Jonathan; Guo, Jun-tao

    2016-01-01

    Transcription factors (TFs) regulate gene expression through binding to specific target DNA sites. Accurate annotation of transcription factor binding sites (TFBSs) at genome scale represents an essential step toward our understanding of gene regulation networks. In this article, we present a structure-based method for computational prediction of TFBSs using a novel, integrative energy (IE) function. The new energy function combines a multibody (MB) knowledge-based potential and two atomic energy terms (hydrogen bond and π interaction) that might not be accurately captured by the knowledge-based potential owing to the mean force nature and low count problem. We applied the new energy function to the TFBS prediction using a non-redundant dataset that consists of TFs from 12 different families. Our results show that the new IE function improves the prediction accuracy over the knowledge-based, statistical potentials, especially for homeodomain TFs, the second largest TF family in mammals. Contact: jguo4@uncc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307632

  5. Multiple G-protein-dependent pathways mediate the antisecretory effects of somatostatin and clonidine in the HT29-19A colonic cell line.

    PubMed Central

    Warhurst, G; Turnberg, L A; Higgs, N B; Tonge, A; Grundy, J; Fogg, K E

    1993-01-01

    Using the functionally differentiated colonic cell line, HT29-19A, we have examined sites at which inhibitory G-proteins mediate the antisecretory actions of somatostatin (SST) and the alpha 2-adrenergic agonist, clonidine (CLON) at the epithelial level. Both agents caused a dose-dependent inhibition (EC50:SST 35 nM; CLON 225 nM) of Cl- secretion (assessed by changes in short circuit current) activated by cAMP-mediated agonists, PGE2 and cholera toxin. Inhibition was accompanied by a reduction in intracellular cAMP accumulation and could be blocked by pretreatment with pertussis toxin at a concentration (200 ng/ml) which activated ADP-ribosylation of a 41-kD inhibitory G protein in HT29-19A membranes. Secretion stimulated by the permeant cAMP analogue, dibutyryl cAMP, was also inhibited by SST and CLON (30-50%; P < 0.005), indicating additional inhibitory sites located distal to cAMP production. Both agents were effective inhibitors of secretion mediated through the Ca2+ signaling pathway. SST (1 microM) and CLON (10 microM) reduced the Isc response to the muscarinic agonist, carbachol, by 60-70%; inhibition was reversed in pertussis toxin-treated cells. These effects did not, however, involve inhibition of the carbachol-induced increase in cellular inositol 1,4,5-trisphosphate levels or the rise in cytosolic calcium, [Ca]i. Inhibition by SST of secretion induced by phorbol 12,13 dibutyrate but not by the calcium agonist, thapsigargin, suggests that SST may act at a distal inhibitory site in the Ca(2+)-dependent secretory process activated by protein kinase C. We conclude that SST and alpha 2-adrenergic agonists can act directly on intestinal epithelial cells to exert a comprehensive inhibition of Cl- secretion mediated through both cAMP and Ca2+/protein kinase C signaling pathways. Inhibition is mediated via pertussis toxin-sensitive G-proteins at sites located both proximal and distal to the production of second messengers. Images PMID:8102378

  6. Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution

    PubMed Central

    He, Ximiao; Tillo, Desiree; Vierstra, Jeff; Syed, Khund-Sayeed; Deng, Callie; Ray, G. Jordan; Stamatoyannopoulos, John; FitzGerald, Peter C.; Vinson, Charles

    2015-01-01

    In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif (TGAC/GTCAN), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (GCAGCTGC), the NF-1 motif (GGCA—TGCC), and the GR (glucocorticoid receptor) motif (G-ACA—TGT-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. PMID:26507798

  7. Methylated Cytosines Mutate to Transcription Factor Binding Sites that Drive Tetrapod Evolution.

    PubMed

    He, Ximiao; Tillo, Desiree; Vierstra, Jeff; Syed, Khund-Sayeed; Deng, Callie; Ray, G Jordan; Stamatoyannopoulos, John; FitzGerald, Peter C; Vinson, Charles

    2015-11-01

    In mammals, the cytosine in CG dinucleotides is typically methylated producing 5-methylcytosine (5mC), a chemically less stable form of cytosine that can spontaneously deaminate to thymidine resulting in a T•G mismatched base pair. Unlike other eukaryotes that efficiently repair this mismatched base pair back to C•G, in mammals, 5mCG deamination is mutagenic, sometimes producing TG dinucleotides, explaining the depletion of CG dinucleotides in mammalian genomes. It was suggested that new TG dinucleotides generate genetic diversity that may be critical for evolutionary change. We tested this conjecture by examining the DNA sequence properties of regulatory sequences identified by DNase I hypersensitive sites (DHSs) in human and mouse genomes. We hypothesized that the new TG dinucleotides generate transcription factor binding sites (TFBS) that become tissue-specific DHSs (TS-DHSs). We find that 8-mers containing the CG dinucleotide are enriched in DHSs in both species. However, 8-mers containing a TG and no CG dinucleotide are preferentially enriched in TS-DHSs when compared with 8-mers with neither a TG nor a CG dinucleotide. The most enriched 8-mer with a TG and no CG dinucleotide in tissue-specific regulatory regions in both genomes is the AP-1 motif ( TG: A(C)/GT CA: N), and we find evidence that TG dinucleotides in the AP-1 motif arose from CG dinucleotides. Additional TS-DHS-enriched TFBS containing the TG/CA dinucleotide are the E-Box motif (G CA: GC TG: C), the NF-1 motif (GG CATG: CC), and the GR (glucocorticoid receptor) motif (G-A CATG: T-C). Our results support the suggestion that cytosine methylation is mutagenic in tetrapods producing TG dinucleotides that create TFBS that drive evolution. PMID:26507798

  8. Simultaneous prediction of transcription factor binding sites in a group of prokaryotic genomes

    PubMed Central

    2010-01-01

    Background Our current understanding of transcription factor binding sites (TFBSs) in sequenced prokaryotic genomes is very limited due to the lack of an accurate and efficient computational method for the prediction of TFBSs at a genome scale. In an attempt to change this situation, we have recently developed a comparative genomics based algorithm called GLECLUBS for de novo genome-wide prediction of TFBSs in a target genome. Although GLECLUBS has achieved rather high prediction accuracy of TFBSs in a target genome, it is still not efficient enough to be applied to all the sequenced prokaryotic genomes. Results Here, we designed a new algorithm based on GLECLUBS called extended GLECLUBS (eGLECLUBS) for simultaneous prediction of TFBSs in a group of related prokaryotic genomes. When tested on a group of γ-proteobacterial genomes including E. coli K12, a group of firmicutes genomes including B. subtilis and a group of cyanobacterial genomes using the same parameter settings, eGLECLUBS predicts more than 82% of known TFBSs in extracted inter-operonic sequences in both E. coli K12 and B. subtilis. Because each genome in a group is equally treated, it is highly likely that similar prediction accuracy has been achieved for each genome in the group. Conclusions We have developed a new algorithm for genome-wide de novo prediction of TFBSs in a group of related prokaryotic genomes. The algorithm has achieved the same level of accuracy and robustness as its predecessor GLECLUBS, but can work on dozens of genomes at the same time. PMID:20653963

  9. A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites

    PubMed Central

    Santolini, Marc; Mora, Thierry; Hakim, Vincent

    2014-01-01

    The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond

  10. Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites

    PubMed Central

    2012-01-01

    Background The computational prediction of Transcription Factor Binding Sites (TFBS) remains a challenge due to their short length and low information content. Comparative genomics approaches that simultaneously consider several related species and favor sites that have been conserved throughout evolution improve the accuracy (specificity) of the predictions but are limited due to a phenomenon called binding site turnover, where sequence evolution causes one TFBS to replace another in the same region. In parallel to this development, an increasing number of mammalian genomes are now sequenced and it is becoming possible to infer, to a surprisingly high degree of accuracy, ancestral mammalian sequences. Results We propose a TFBS prediction approach that makes use of the availability of inferred ancestral mammalian genomes to improve its accuracy. This method aims to identify binding loci, which are regions of a few hundred base pairs that have preserved their potential to bind a given transcription factor over evolutionary time. After proposing a neutral evolutionary model of predicted TFBS counts in a DNA region of a given length, we use it to identify regions that have preserved the number of predicted TFBS they contain to an unexpected degree given their divergence. The approach is applied to human chromosome 1 and shows significant gains in accuracy as compared to both existing single-species and multi-species TFBS prediction approaches, in particular for transcription factors that are subject to high turnover rates. Availability The source code and predictions made by the program are available at http://www.cs.mcgill.ca/~blanchem/bindingLoci. PMID:23281809

  11. Role of an aprotinin-sensitive protease in protein kinase Calpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium.

    PubMed

    Chakraborti, Sajal; Michael, John R; Chakraborti, Tapati

    2004-06-01

    Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the

  12. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    PubMed Central

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF, separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these applications. While there are already several metrics for motif similarity proposed before, their performance is still far from satisfactory for these applications. Methods A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information Contents) for measuring the similarity between a column of a motif and a column of another motif. When defining this similarity score, we consider the likelihood that the column of the first motif's PFM can be produced by the column of the second motif's PSSM, and multiply the likelihood by the information content of the column of the second motif's PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a global alignment method having a function for affine gap penalty, for computing the similarity between two motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs from the same group and retrieving motifs from a database on three datasets. Results When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function (gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven

  13. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  14. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  15. Impact of Genetic Background on Neonatal Lethality of Gga2 Gene-Trap Mice

    PubMed Central

    Doray, Balraj; Govero, Jennifer; Kornfeld, Stuart

    2014-01-01

    The functional redundancy of the three mammalian Golgi-localized, γ-ear–containing, ADP-ribosylation factor-binding proteins (GGAs) was addressed in a previous study. Using insertional mutagenesis, we found that Gga1 or Gga3 homozygous knockout mice were for the most part normal, whereas mice homozygous for two different Gga2 gene-trap alleles exhibited either embryonic or neonatal lethality in the C57BL/6 background, depending on the source of the vector utilized (Byg vs. Tigm, respectively). We now show that the Byg strain harbors a disrupted Gga2 allele that is hypomorphic, indicating that the Byg lethality is attributable to a mechanism independent of GGA2. This is in contrast to the Tigm Gga2 allele, which is a true knockout and establishes a role for GGA2 during the neonatal period. Placement of the Tigm Gga2 allele into the C57BL6/Ola129Sv mixed background results in a lower incidence of neonatal lethality, showing the importance of genetic background in determining the requirement for GGA2 during this period. The Gga2−/− mice that survive have reduced body weight at birth and this runted phenotype is maintained through adulthood. PMID:24637350

  16. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  17. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    PubMed Central

    Stiles, Bradley G.; Pradhan, Kisha; Fleming, Jodie M.; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R.

    2014-01-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  18. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being.

    PubMed

    Stiles, Bradley G; Pradhan, Kisha; Fleming, Jodie M; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R

    2014-09-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  19. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    SciTech Connect

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.

  20. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  1. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity

    PubMed Central

    Ayala, Inmaculada; Colanzi, Antonino; Lapazio, Lucia; Corda, Daniela; Soriani, Marco; Pizza, Mariagrazia; Rossi Paccani, Silvia

    2015-01-01

    Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis. PMID:25996923

  2. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes

    PubMed Central

    Bean, Bjorn D. M.; Davey, Michael; Snider, Jamie; Jessulat, Matthew; Deineko, Viktor; Tinney, Matthew; Stagljar, Igor; Babu, Mohan; Conibear, Elizabeth

    2015-01-01

    The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function. PMID:25609093

  3. Structure of the sirtuin-linked macrodomain SAV0325 from Staphylococcus aureus.

    PubMed

    Appel, C Denise; Feld, Geoffrey K; Wallace, Bret D; Williams, R Scott

    2016-09-01

    Cells use the post-translational modification ADP-ribosylation to control a host of biological activities. In some pathogenic bacteria, an operon-encoded mono-ADP-ribosylation cycle mediates response to host-induced oxidative stress. In this system, reversible mono ADP-ribosylation of a lipoylated target protein represses oxidative stress response. An NAD(+) -dependent sirtuin catalyzes the single ADP-ribose (ADPr) addition, while a linked macrodomain-containing protein removes the ADPr. Here we report the crystal structure of the sitruin-linked macrodomain protein from Staphylococcus aureus, SauMacro (also known as SAV0325) to 1.75-Å resolution. The monomeric SauMacro bears a previously unidentified Zn(2+) -binding site that putatively aids in substrate recognition and catalysis. An amino-terminal three-helix bundle motif unique to this class of macrodomain proteins provides a structural scaffold for the Zn(2+) site. Structural features of the enzyme further indicate a cleft proximal to the Zn(2+) binding site appears well suited for ADPr binding, while a deep hydrophobic channel in the protein core is suitable for binding the lipoate of the lipoylated protein target. PMID:27345688

  4. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2

    SciTech Connect

    Quenet, Delphine; Mark, Manuel; Govin, Jerome; Dorsselear, A. van; Schreiber, Valerie; Khochbin, Saadi; Dantzer, Francoise

    2009-10-01

    Spermiogenesis is a complex male germ cell post-meiotic differentiation process characterized by dramatic changes in chromatin structure and function, including chromatin condensation, transcriptional inhibition and the sequential replacement of histones by transition proteins and protamines. Recent advances, in mammalian cells, suggest a possible role of poly(ADP-ribosyl)ation catalyzed by Parp1 and/or Parp2 in this process. We have recently reported severely compromised spermiogenesis in Parp2-deficient mice characterized by a marked delay in nuclear elongation whose molecular mechanisms remain however unknown. Here, using in vitro protein-protein interaction assays, we show that Parp2 interacts significantly with both the transition protein TP2 and the transition chaperone HSPA2, whereas Parp1 binds weakly to HSPA2. Parp2-TP2 interaction is partly mediated by poly(ADP-ribosyl)ation. Only Parp1 poly(ADP-ribosyl)ates HSPA2. In addition, a detailed analysis of spermatid maturation in Parp2-deficient mice, combining immunohistochemistry and electron microscopic approaches, reveals a loss of spermatids expressing TP2, a defect in chromatin condensation and abnormal formation of the manchette microtubules that, together, contribute to spermatid-specific cell death. In conclusion, we propose both Parps as new participants of a spermatid-specific protein complex involved in genome reorganization throughout spermiogenesis.

  5. Effects of butyrate on the expression of insulin-like growth factor binding proteins in bovine kidney epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium butyrate induces cell cycle arrest and apoptosis in bovine kidney epithelial cells primarily via down-regulating cell cycle-related gene expression and enhancing expression of pro-apoptotic genes. The insulin-like growth factor (IGF) system plays an essential role in these processes as well a...

  6. Differential tissue regulation of insulin-like growth factor binding proteins in experimental diabetes mellitus in the rat.

    PubMed

    Gelato, M C; Alexander, D; Marsh, K

    1992-12-01

    The expression and regulation of IGF-I is tissue-specific in diabetes mellitus in the rat. These studies were designed to examine if similar tissue specificity exists for IGF-BPs in the diabetic milieu. Diabetes mellitus was induced by a single i.p. injection of STZ (100 mg/kg body weight). Rats were treated with either vehicle--insulin, vanadate, or phlorizin for 7-14 days. Tissues were analyzed for IGF-BPs by ligand blotting and by affinity cross-linking and immunoprecipitation. In liver tissue from nondiabetic control rats, multiple forms of IGF-BPs were noted, ranging from 48,000 to 25,000 M(r). In diabetic rat liver tissue, the 25,000-M(r) form was unchanged, whereas the higher M(r) forms (48,000-42,000 M(r)) were decreased, and the 30,000-M(r) form was increased. Insulin therapy of diabetic rats decreased all forms to below control levels. In the kidney tissue of control rats, faint IGF-BP bands were seen at 30,000 and 25,000 M(r). In diabetic rat kidney tissue, the 30,000-M(r) form again was increased (as in liver) and restored to control levels with insulin therapy. In contrast, only a 30,000-M(r) band was seen in control pituitary tissue, which was slightly increased in the diabetic rats and also was decreased below control levels by insulin. In hypothalamus and cerebral cortex tissue, bands at 30,000 and 25,000 M(r) were noted, and neither was altered by diabetes or insulin treatment. Treatment of diabetic rats with vanadate and phlorizin resulted in comparable blood glucose levels, which were only slightly higher than those achieved with insulin therapy.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1280236

  7. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging

    PubMed Central

    Noren Hooten, Nicole; Fitzpatrick, Megan; Kompaniez, Kari; Jacob, Kimberly D.; Moore, Brittany R.; Nagle, Julia; Barnes, Janice; Lohani, Althaf; Evans, Michele K.

    2012-01-01

    Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog of Escherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity. Recently, we reported that OGG1 binds to the Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein that poly(ADP-ribosyl)ates nuclear proteins in response to DNA damage and other cellular signals. Here, we show that NEIL1 and PARP-1 bind both in vitro and in vivo. PARP-1 binds to the C-terminal-100 amino acids of NEIL1 and NEIL1 binds to the BRCT domain of PARP-1. NEIL1 stimulates the poly(ADP-ribosyl)ation activity of PARP-1. Furthermore, NEIL-deficient fibroblasts have impaired poly(ADP-ribosyl)ation of cellular proteins after DNA damage, which can be rescued by NEIL1 expression. Additionally, PARP-1 inhibits NEIL1 incision activity in a concentration-dependent manner. Consistent with the idea of impaired DNA repair during aging, we observed differential binding of PARP-1 to recombinant NEIL1 in older mice compared to younger mice. These data further support the idea that dynamic interplay between different base excision repair proteins is important for efficient BER. PMID:23104860

  8. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calciu